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Preface

Internet of Things (IoT), as the most powerful and exciting technology, has quickly
become a disruptive force, reshaping how we live and work. The Internet of Things
refers to the billions of physical devices that are now connected to and transfer
data through the Internet without requiring human-to-human or human-to-computer
interaction. These connected IoT devices are slowly entering every aspect of our
lives, ranging from healthcare to industrial manufacturing. According to Gartner’s
prediction, there will be more than 37 billion IoT connections in the future year
of 2025. However, with large-scale IoT deployments, IoT networks are facing
challenges in the aspects of scalability, privacy, and security. The ever-increasing
complexity of the IoT makes effective monitoring, overall control, optimization,
and auditing of the network difficult. Hence, there is a need for more powerful
approaches to solve the challenges faced in IoT network design, deployment, and
management.

Recently, artificial intelligence (AI) and machine learning (ML) approaches have
achieved huge success in many fields of computing, including computer vision,
natural language processing, and voice recognition. These successes suggest that
machine learning techniques could be successfully applied to problems in the IoT
network space. Besides, with the development of the emerging network technologies
(e.g., Mobile Edge Computing, Blockchain, and Programmable Network), it is
feasible to perform flexible processing logic and intelligent computing inside the
IoT networks. Therefore, in this book, we design a new intelligent IoT network
architecture. We use different machine learning approaches to investigate solutions.
In this book, we focus on three scenarios of successfully applying machine learning
in IoT networks.

IoT Network Awareness Network awareness is the prerequisite for network
optimization control. Some machine leaning approaches have already been applied
to IoT network awareness problems, including traffic classification, anomaly traffic
identification, and traffic prediction. Part of these works is introduced in Chap. 3.

IoT Network Routing Control The ever-increasing network complexity makes
effective routing control extremely difficult. In particular, current control strategies
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largely rely on manual processes, which exhibit poor scalability and robustness.
Chap. 4 discusses how machine learning approaches (e.g., reinforcement learning)
can deal with the routing control problem (e.g., QoS routing, load balance) in IoT
networks.

Resource Optimization How to distribute network resources in order to accommo-
date different and possibly contrasting business requirements on a single physical
network infrastructure is incredibly challenging. In Chap. 5, we introduce the
network slicing technique in IoT networks and focus on how machine learning can
enhance network utility.

Besides, in Chap. 6, we discuss the Mobile Edge Computing-aided intelligent
IoT. Mobile Edge Computing is one of the defining technologies for envisioning the
IoT. It essentially implies computational speed and intelligent processing power at
the edge of the IoT network. Moreover, Chap. 7 covers blockchain-aided intelligent
IoT. Blockchain has the potential to help address some of the IoT security and
scalability challenges. At its core, a blockchain system consists of a distributed
digital ledger, shared between participants in the system, that resides on the
Internet: transactions or events are validated and recorded in the ledger and cannot
subsequently be amended or removed. It provides a way for information to be
recorded and shared by a community of users. We discuss how blockchain can
improve the performance of intelligent IoT networks.

Beijing, China Haipeng Yao
Abu Dhabi, United Arab Emirates Mohsen Guizani
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Chapter 1
Introduction

Abstract We provide a detailed review of the Internet of Things network and
machine learning technologies. The Internet of Things (IoT) is the interconnected
Internet of Things, an extension of the Internet. Through sensor equipment and the
agreed protocol, any item is connected to the Internet for information exchange
and communication, so as to realize intelligent identification, monitoring, and
management. The combination of machine learning and the Internet of Things
enables various types of information collected by sensors in real time to be
intelligently analyzed through machine learning in terminal devices, edge domains,
or cloud centers. This helps the IoT reach its full potential and enables the Internet
of Everything. In addition, we discuss how emerging network technologies (e.g.,
Mobile Edge Computing, Blockchain, and Programmable Networks) can benefit
IoT network control and management.

Keywords Internet of things architecture · Machine learning · Emerging network
technologies · Programmable networks

1.1 Background

The Internet of Things (IoT) as the most powerful and exciting technology has
quickly become a disruptive force, reshaping how we live and work. The Internet of
Things describes the network of physical objects with sensors, processing ability,
software, and other technologies for the purpose of connecting and transferring
data with other devices over the Internet [1]. By combining these connected devices
with automated systems, it offers the potential for a “fourth industrial revolution,”
and experts predict that more than half of new businesses will run on the IoT by
2020. According to Gartner’s prediction, there will be more than 37 billion IoT
connections in the future year of 2025. With the large-scale IoT deployments, it
present huge challenges for current IoT network in the aspects of scalability, privacy,
and security. The ever-increasing complexity of the IoT application makes effective
monitoring, overall control, optimization, and auditing of the network difficult.
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There is a need for more powerful approaches to solve the challenges faced in IoT
network design, deployment, and management.

Recently, machine learning technology has emerged as a viable solution to
address this challenge. Machine learning is the science of getting computers
to act more accurate from studying data and statistics without being explicitly
programmed to do so. It is a method of data analysis that automates analytical
model building. Machine learning approaches have achieved huge success in many
fields of computing, including computer vision, natural language processing, and
voice recognition. These successes suggest that machine learning techniques could
be successfully applied to problems in the IoT networks space. Machine learning
for IoT networks can be used to detect anomalies, optimize traffic, and augment
intelligence by ingesting network state. Therefore, in this book, we design a new
intelligent IoT network architecture. We use different machine learning approaches
to investigate solutions.

1.2 Overview of Internet of Things Network and Machine
Learning

In this section, we provide a more detailed view of Internet of Things network and
machine learning technologies. The Internet of Things (IoT) is the interconnected
Internet of Things, an extension of the Internet. Through sensor equipment, accord-
ing to the agreed protocol, any item is connected to the Internet for information
exchange and communication, so as to realize intelligent identification, monitoring,
and management. The combination of machine learning and the Internet of Things
enables various types of information collected by sensors in real time to be
intelligently analyzed through machine learning in terminal devices, edge domains,
or cloud centers [2]. This helps the IoT reach its full potential and enables the
Internet of Everything.

1.2.1 Internet of Things Architecture

The industry and academia usually divide the IoT architecture into three layers,
including the perception layer, the network layer, and the application layer, as shown
in Fig. 1.1. The perception layer usually monitors network nodes, collects essential
data in real time through various information sensing devices, and integrates
multiple information technologies. The perception layer usually monitors network
nodes and collects essential data in real time by integrating various information
technologies with different information sensing devices. The network layer uses
Internet technologies to form an extensive network by combining the perception
layer’s sensing devices and the application layer’s terminal devices to realize the
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Fig. 1.1 The architecture of IoT

transmission of essential data in production and life. The application layer is located
at the top of the three-layer structure of the Internet of Things. Its function is to
process the data generated by the perception layer [3]. The application layer can
perform calculation and knowledge mining on the data collected by the perception
layer to realize real-time control, efficient management, and intelligent decision-
making of terminal equipment.

(A) Perception Layer The perception layer consists of sensing nodes responsible
for collecting and forwarding controlled data under control. In order to meet the
needs of ubiquitous sensing, sensing nodes must have the characteristics of simplic-
ity, economy, low energy consumption, flexible arrangement, and simple operation.
Perception layer technologies include QR code tags and readers, RFID tags and
readers, cameras, GPS, sensors, M2M terminals, sensor gateways, etc. Among
them, the common technology has radio frequency identification communication
technology. Its working principle is to identify the designated object through radio
waves and obtain information about the thing [4]. In addition, it also includes sensor
technology, which is a perception device used by sensors to collect and process
information. As an essential means of sensing and acquiring data information in the
Internet of Things, sensors play a significant role in the Internet of Things.

(B) Network Layer The network layer is usually divided into two parts: the
communication technology and the communication protocol of the Internet of
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Things. Communication technology is responsible for physically linking devices
and enabling communication [5]. Communication protocols are responsible for
establishing rules and unified formats for communication. Communication technol-
ogy is divided into wired networks and wireless networks from the medium. The
communication distance is divided into ultra-short-distance, short-distance, medium
long-distance, and ultra-long-distance. The current Internet already uses part of the
communication technology, and the other part is created according to the Internet of
Things.

(C) Applications Layer The application layer can connect with users by respond-
ing to the relevant needs of industry informatization and realizing the multifaceted
application of the Internet of Things. The application layer provides rich applica-
tions based on the Internet of Things, which is the fundamental goal of developing
the Internet of Things. It combines IoT technology with industry informatization
needs to achieve a solution set for a wide range of intelligent applications. Due
to the wide variety of electronic manufacturing and other equipment, it is very
cumbersome for the perception layer to realize the monitoring process of the
equipment. The application layer needs middleware to eliminate data heterogeneity
generated by IoT end devices. With the development of information technology,
two major IoT application technologies have been derived: cloud computing and big
data [6]. Cloud computing can help store and analyze massive data in the Internet
of Things. According to the service types of cloud computing, the cloud can be
divided into infrastructure as a service (IaaS), platform as a service (PaaS), and
software as a service (SaaS). Big data can perform calculation, processing, and
knowledge mining on the data collected at the perception layer to provide better
service. Machine learning will also help the further development of the Internet of
Things.

1.2.2 Internet of Things Network Technologies

In recent years, with the rapid development of the Internet of Things, its application
scenarios cover smart homes, smart cities, smart medical care, smart industry, and
smart agriculture. Compared with the traditional Ethernet, the Internet of Things can
combine various sensing devices with the network to realize the interconnection of
people, computers, and objects. Meanwhile, the Internet of Things facilitates various
utilities of the system, such as sensor identification, data transfer, information com-
munication, and knowledge management. IoT network technologies include sensor
technology, intelligent technology, embedded technology, etc. IoT platforms can
easily integrate various IoT-enabled technologies. Various forms of IoT protocols
can realize the interconnection between IoT devices. They have different protocol
stacks, which makes IoT protocols often show different characteristics.



1.2 Overview of Internet of Things Network and Machine Learning 5

Fig. 1.2 IoT protocol stack

There are various IoT protocols. The most common protocol layering is shown
in Fig. 1.2. It is comprised of four layers: application layer, transport layer, Internet
layer, and network link layer, as described in detail below [7].

(A) Application Layer IoT application developers have a wealth of protocols
available at the application layer, both from the traditional Internet and from those
built specifically to support IoT applications. The IoT application layer uses the
analyzed and processed sensory data to provide users with different types of specific
services. Its main functions include the collection, transformation, and analysis of
the data. The application layer is expanded into two layers in the IoT protocol
stack: Application Protocol and Application Services. Application protocol mainly
includes MQTT, CoAP, AMQP, etc. Application Services mainly include mDNS,
SSDP, etc. [8]. Several key protocols are described in detail below.

MQTT (Message Queuing Telemetry Transport) is a protocol designed for a large
number of sensors or controllers with limited computing power, limited working
bandwidth, and unreliable network environments.

CoAP is synonymous with Constrained Application Protocol. It is based on
the UDP protocol, and its original intention is to convert it to the HTTP protocol
as easily as possible. CoAP allows users to use the CoAP protocol in resource-
constrained IoT devices just like the HTTP protocol.

mDNS realizes mutual discovery and communication between hosts in a local
area network without a traditional DNS server. mDNS can also be used in
conjunction with (DNS-SD) DNS Service Discovery.

(B) Transport Layer The transport layer is the channel through which IoT devices
connect and is responsible for connecting terminal devices, edges, and clouds.
With the rapid increase in the number of IoT devices and the increasingly rich
application scenarios, the market has put forward higher requirements for network
connectivity. The transport layer contains two protocols, TCP and UDP. TCP is
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a connection-oriented communication protocol. It provides reliable delivery of
services and allows applications on both sides of the communication to send data
at any time. It can accommodate layered protocol hierarchies supporting multiple
network applications. UDP is a message-oriented transport layer protocol. It is an
unreliable protocol. UDP is a faster method of communication because it reduces the
acknowledgment process. UDP has no congestion control, allowing the application
layer to better control the data to be sent and the time to send it. It is a non-
connection-oriented protocol that does not establish a connection with the other
party and sends data packets directly. Therefore, there is no delay required to
establish a connection. Therefore, compared to TCP/IP, UDP is relatively less
reliable, but faster [9]. For quick prototyping of M2M projects, a very simple
solution is to use UDP, since UDP headers contain few bytes and consume less
payload than TCP.

The aforementioned MQTT protocol is built on the TCP stack, which is open,
simple, lightweight, and easy to implement. CoAP is built on top of the UDP stack,
which can be faster and better resource-optimized, rather than resource-intensive.

(C) Internet Layer The Internet layer protocol is responsible for data forwarding,
from the source to the destination, to provide communication services for IoT
devices. The IoT Internet layer is divided into two sub-layers: the routing layer
and the adaptation layer. The routing layer handles the transmission of packets from
source to destination, and the adaptation layer is responsible for forming packets.
The following focuses on two key technologies in the Internet of Things, IPv6 and
6LoWPAN.

With the popularity of the Internet of Things, the era of the Internet of Everything
has come. However, each device will use a single IP address. In terms of the volume
of IPv4, IPv4 is not enough to support the market of tens of billions of devices. IPv6
has a huge address space to support the future development of the Internet of Things.
IPv6 also provides a Quality of Service (QoS) mechanism to provide smooth and
orderly network transmission, which can classify network resources, and maintain
smooth network transmission with the help of traffic control.

Due to the existence of a large number of low-power nodes and low latency nodes
in the IoT network, there are higher control requirements for the access capability
and investment budget of the large-scale deployment of IoT devices, which requires
flexible deployment in complex operating environments. Therefore, a new tech-
nology, 6LoWPAN, is proposed. 6LoWPAN is a low-speed wireless personal area
network standard based on IPv6, namely IPv6 over IEEE 802.15.4 [10]. 6LoWPAN
allows each node to connect to the Internet with an IPv6 address. This allows nodes
to connect directly to the Internet using open standards. The Internet protocols
can be applied even on the smallest resource-constrained devices, and low-power
devices with limited processing power should be able to participate in IoT [11].

(D) Link Layer The link layer refers to the physical medium of data transmission,
and its role is how bits of data are transferred from one device to another. This layer
is the foundation of the IoT protocol. The physical link layer protocol of the Internet
of Things can be divided into wired and wireless, and wireless can be divided
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into short-distance and long-distance [12]. Wired communication includes RS232,
RS485, USB, I2C, ISP, CAN, M-Bus, etc. Wireless communication can be divided
into short-distance and long-distance. Wireless short-range communication includes
NFC, RFID, Bluetooth, etc., and long-distance includes GSM, GPRS, 2 5G, NB-
IoT, Wi-Fi, LoRa, Zigbee, etc. Next, we will focus on several key technologies that
are widely used in the Internet of Things network.

RFID is an acronym for Radio Frequency Identification. The principle is the
non-contact data communication between the reader and the tag to achieve the
purpose of identifying the target [13]. The main function of RFID technology is
that it has a large data memory capacity, can be scanned quickly, and can be reused.
These capabilities make it possible to automatically identify every object on the
Internet of Things. NFC is short for Near Field Communication. It is a short-
range high-frequency wireless communication technology that allows non-contact
point-to-point data transmission (within 10 cm) to exchange data between electronic
devices. The RFID introduced above is essentially an identification technology,
while NFC is communication technology. Although NFC is more convenient and
safe and the cost is lower than that of Bluetooth, the method of establishing a
connection that requires close proximity or even contacts is a shortcoming of it.

WiFi represents the wireless local area network networking technology (the main
standard is IEEE 802.11), it is widely used in the home, commercial, and industrial
scenarios. It has become one of the most mainstream networking methods. Wi-Fi
provides great convenience for networking in buildings, avoiding physical wiring
and construction. At the same time, the range of Wi-Fi networks can be as small as
the range of a room or as large as the level of towns, and the bandwidth can be from
tens of Mbps to several hundred Mbps.

1.2.3 Emerging Network Technologies for IoT

Emerging technologies that bring the digital and physical worlds closer together
are becoming increasingly important as IoT solutions expand into new applications
and environments. Most organizations already consider emerging technologies:
Artificial Intelligence (AI), Software-Defined Networking (SDN), Mobile Edge
Computing (MEC), and blockchain technologies, as part of IoT solutions. These
technologies are changing the nature of connected devices, how they run IoT
applications, and how they communicate with each other and create benefits by
connecting the digital and physical realms.

(A) Software-Defined Networking for IoT With the rapid growth of IoT devices
and applications, IoT networks are becoming increasingly complex. Software-
defined networking (SDN) that can be centrally managed, scalable, and flexible can
address the enormous data flow brought about by IoT devices. SDN offers a cost-
effective approach to managing IoT and securing networks, while also optimizing
application performance and analysis. Due to the explosive growth of IoT and the
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Fig. 1.3 SDN-based IoT network

chaotic nature of the public Internet, this traffic needs to be migrated to private
dedicated channels; otherwise, critical communication services and applications
will experience latency issues [14]. For this reason, some people propose to use
SDN to solve these existing problems of the Internet of Things. The SDN combined
with the IoT architecture is shown in Fig. 1.3.

SDN is short for software-defined networking. SDN is a programmable network
architecture. It separates network control functions from forwarding functions. It
separates network control functions from forwarding functions, so as to get rid of
the hardware restrictions on the network architecture and improve the scalability
and flexibility of the network [15]. The key point of the SDN network is that an
SDN controller is added to the network architecture, and the centralized control of
the network is realized by this centralized controller. The SDN network architecture
has three basic features: separation of forwarding and control, centralized control,
and open interfaces.

The number of network devices involved in the construction of the Internet of
Things is very large. The use of SDN technology can separate data forwarding and
network control, reducing the frequency and cost of equipment replacement. The
network structure is virtualized through SDN, and an IoT network is virtualized
into multiple networks with software. Network resources are dynamically allocated
and managed. SDN can optimize the environmental configuration of storage and
processing centers and ensure that the IoT network can operate in a unified network.
It works properly in the architecture. The Internet of Things contains a huge amount
of data and faces security issues in practical applications. SDN can strip data from
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the control plane through the controller and control the entire network. Compared
with traditional networks, SDN has great advantages over traditional networks in the
real-time push of security policies, fine-graininess, and traffic monitoring, ensuring
the safety and reliability of network operations.

(B) Mobile Edge Computing for IoT The expansive development of the IoT
devices promotes the Mobile Edge Computing architecture as a necessary archi-
tecture for enterprises. Traditional machine-to-machine communication (M2M, the
originator of the Internet of things) has existed for decades. And in recent years,
the rapid growth of IoT devices has caused a rapidly increasing in their data
transmission quantity and transmission speed. Besides, recently many machine
learning methods can be integrated with the IoT devices (called AIoT), which
further increases the computing demand of the network. Traditional business
computing methods rely on a centralized computing center, which will cause
high transmission delays. However, IoT devices require a millisecond-level data
processing ability. Their urgent need for response speed makes the cloud computing
architecture more and more unrealistic due to the huge delay. Generally, cloud data
centers are located several kilometers away from IoT devices, which will bring
performance problems to IoT applications with high bandwidth and low latency
requirements.

Mobile Edge Computing technology provides a feasible way to solve the above
problems. The distributed computing capability provided by MEC provides the
flexibility and possibility to process data at the data source or critical delivery
points. By reasonably arranging computing resources between the cloud and the
edge IoT devices, the network can provide low latency, balanced computing power
supply, and sufficient bandwidth. By enabling the computing ability of data sources
(Internet of Things devices), MEC enables localized processing of lightweight
computing tasks at the network edge, rather than relying on centralized cloud
data centers. Specifically, MEC technology embeds machine learning and artificial
intelligence methods into IoT devices for agile and efficient data processing. Due to
the localized processing of data, the MEC architecture reduces congestion pressure
in primary links. Therefore, it also improves the service quality and elasticity of
some complex IoT applications that need to be transferred to the cloud data center
for processing. In addition to empowering IoT devices with lightweight computing
ability, MEC technology also supports the deployment of some edge computing
infrastructures on demand. Those infrastructures are located between IoT devices
and cloud data centers. Therefore it can calculate and respond to some requests
initiated by distributed IoT devices. Because MEC enables the computing power
closer to the data source or the critical position of commercial business, it brings
faster speed, higher reliability, and greater flexibility to IoT applications. Moreover,
integrating MEC and cloud computing has greatly optimized the implementation
speed and quality of IoT applications and further improved the scalability of the
Internet of Things.

(C) Blockchain for IoT In recent years, with the increasing number of IoT devices
and the emergence of IoT applications, the security of IoT has gradually attracted
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Fig. 1.4 The composition of the blockchain

the attention of academia and industry. Due to the wide variety of IoT devices and
server devices, the potential security problems of the IoT are mainly concentrated
in the edge devices and the cloud center.

Blockchain technology provides an effective solution to the above problems.
Blockchain technology adopts a unique chain architecture to realize distributed
data recording and storage, thus providing strict protection for terminal security and
privacy [16]. Specifically, blockchain can be regarded as a distributed ledger. Each
“block” contains transaction records of anonymous users. Blockchain technology
links these transactions together to create a comprehensive history of each transac-
tion. Since each block is encrypted to the previous block, any changes in the past
affect all future blocks. Therefore, changing the previous blocks in the blockchain
becomes challenging, so the security is improved. This feature makes the blockchain
applicable to various IoT applications, such as currency encryption in the trading
system, as shown in Fig. 1.4.

Blockchain technology’s distributed trust, security, and invariance are crucial
to building an effective financial trading system. In recent years, some chip-level
blockchain security technologies have been widely deployed in IoT devices. By
storing and signing data in the chip and encrypting data transmission links with
cryptography, the blockchain fundamentally eliminates data tampering and can
realize data traceability and tracking. In addition, another important application of
blockchain-based IoT is to prevent service providers from tampering with data.
When the assets of service providers need to be pledged or used for financing,
the accuracy and reliability of this data are very important. In particular, as
the data owner, the service provider can operate the data with higher authority,
so it is very critical to prevent the service provider from tampering with the
data. With the continuous promotion of the “Internet of Things,” IoT devices
have entered a geometric growth state. Efficient management of massive devices
and mining the commercial value of enormous data safely and reliably are the
fundamental advantages of blockchain technology. The blockchain module connects
the blockchain application platform and the IoT, thus allowing IoT devices to access
smart contracts. In short, if the IoT achieves low-cost access to massive data,
blockchain enables us to trust these data on a large scale, with high efficiency and
low cost. Undoubtedly, blockchain is of great significance to the Internet of Things.
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1.2.4 Machine Learning Technologies

Machine learning can explore the potential capacity of the computer, enable the
computer to self-study by utilizing the input data, and can therefore solve the
problems with high time complexity and spatial complexity. Also, machine learning
is an effective tool to achieve deep-level data mining and fine-grained feature
extraction. Based on the above advantages, we believe that machine learning
can break through the technical bottleneck of IoT technology and promote the
development of the Internet of Things.

The evolution history of machine learning can be found in Fig. 1.5. Long before
computers, problems closely related to machine learning have been discussed at
the Dartmouth Conference in 1956 [17]. At that time, the researchers generally
believed that machines could simulate human thinking to some degree. Based on
this, they also proposed an evaluation criterion, the Turing test. It can be summarized
as whether machines can judge the actor as a human or another machine without
knowing the identity of the actor. In 1990, the 23 unsolved mathematical problems
proposed by Hilbert also include the relevant contents of machine learning.

During that period, some basic research results about machine learning have been
proposed, such as automatic theorem proving, checkers programs, LISP voice, and
so on. Besides, the proposal of some advanced machine learning algorithms like the
Multilayer Neural Network and the Back Propagation algorithm also enhanced the
ability of machine learning to deal with some more complex problems.

However, the critical question of how can machines imitate human thinking
to judge is still unsolved, and in 1973, the artificial intelligence report made by
Lighthill points out that the development of machine learning has fallen into a
bottleneck. The emergence of the expert system has improved this situation. The
expert system no longer requires machines to simulate the whole situation of human

Fig. 1.5 Evolutions of machine learning
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thinking but only focuses on a specified field and solves the problems in it. It
greatly reduces the achievement difficulty of machine learning and promotes the
development of machine learning from the theoretical stage to the implementation
stage. In 1980, CMU developed the multilayer neural network expert system XCON
which allows the expert system to play an efficient role in specific fields. Therefore
XCON is also considered a milestone for machine learning in this period.

As mankind enters the twenty-first century, the rapid development of the Internet
promotes the innovation of machine learning technology. In 2006, the Learning
Multiple Layers of Representation by Jeffrey Sington establishes a new architecture
of deep neural networks which is still used today. Many new achievements of
artificial intelligence have sprung up, like chat robot Alice, the Deep Blue computer
developed by IBM, and the AlphaGo programs. Some new technologies like cloud
computing, blockchain, and big data also provide application scenarios for machine
learning technology.

As a discipline with a huge architecture, machine learning can be divided into
multiple small branches. As shown in Fig. 1.6, based on whether the training data
is labeled, the existing machine learning techniques can be generally divided into
supervised learning, unsupervised learning, and reinforcement learning [18]. The
algorithms belonging to the supervised learning use labeled data to train, and the
unsupervised learning algorithms train with unlabeled data. As for the reinforcement
learning algorithms, they train the neural network relying on the feedback function,
but the training data is unlabeled, too. We will introduce the above three types of
machine learning methods below.

(A) Supervised Learning Supervised learning is the oldest machine learning
method, and by using the labeled date to train, it can achieve good performance
when the amount of data is small. At present, there are many kinds of supervised
learning algorithms with their own advantages and disadvantages. To solve specific
problems, the supervised learning algorithms can be chosen by considering the
following factors: the amount of data, continuity or dispersion of data, the dimension
of data, the accuracy and time requirements of the algorithm, and so on. Figure 1.7
is proposed for further reference:

From Fig. 1.7, we can find the characteristics of different supervised learning
algorithms. For example, when the data is continuous, the logistic regression
algorithm has a higher training efficiency and the results are more explicable, while
the random forest algorithm and the support vector machine method are more
accurate.

(B) Unsupervised Learning Unlike supervised learning, unsupervised learning is
a method with unlabeled data, and this feature challenges the machine to make the
right decisions and also puts forward higher requirements for the performance of
the machine. However, robust unsupervised learning algorithms can process large-
scale data, thus greatly reducing the human workload. Without loss of generality,
the unsupervised learning method can be divided into the clustering algorithm and
the dimension reduction algorithm.
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Fig. 1.6 Various of machine learning

The clustering algorithm aims to cluster the data according to their similarity.
Although the classification results usually have no intuitive meaning, the detect
abnormal data can be detected easily in this way. It mainly includes the K-MEANS
algorithm, the DBSCAN algorithm, and the Hierarchical Clustering algorithm,
and those algorithms cluster the data from different aspects. While the dimension
reduction algorithm aims to reduce the dimension of data by data compression.
During this process, some redundant information can be deleted to reduce the
amount of calculation. The dimension reduction algorithms mainly include the PAC
algorithm and the LDA algorithm.

(C) Reinforcement Learning Reinforcement learning is an important part of
machine learning, different from other machine learning algorithms, and the purpose
of reinforcement learning is to learn a robust strategy to maximize rewards or
achieve specific goals [19]. By interacting with the environment, the strategy
can be updated directionally. Adopting the method of reinforcement learning is
like arranging a virtual guide for the computer, it can judge the advantages and
disadvantages of computer behavior and score the computer based on this. The
computer, on the other hand, will try to make the score higher and higher, so that the



14 1 Introduction

Fig. 1.7 Supervised learning

Fig. 1.8 Reinforcement learning

behavior will be correct eventually. Without loss of generality, we classify several
classical reinforcement learning algorithms as shown in Fig. 1.8:

As for the value-based RL algorithms, the Q-Learning, Sarsa, and Deep Q
Network algorithms are the most commonly used methods. While for the policy-
based RL algorithms, the Policy Gradient algorithms are the most widely applicable.
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1.3 Related Research and Development

Recently, the combination of ML and IoT has attracted much attention in civilian
applications. An intelligent IoT network is a network that improves resource
utilization and decreases manual approaches between trillions of bits of data.
For example, the service delivery system in our daily life achieves the above
objectives. Another example is companies such as Amazon and Uber have deployed
an intelligent IoT network to better manage and handle the service requests by
analyzing the user’s feedback and experiences.

1.3.1 IEEE CIIoT

IEEE SSCI is a flagship annual international conference on computational intel-
ligence. And it contains two panels: Artificial Intelligence and Intelligence in
IoT [20]. IEEE Symposium on Computational Intelligence in IoT and Smart Cities
(IEEE CIIoT) academics discuss Intelligent IoT. IoT network has many kinds of
related technologies such as wireless networks, communication modules, sensors,
and smart terminals. And it is necessary to develop the above related technologies
for achieving a better IoT network. However, with the increase of abundant sensors
and devices, the growing volume of data is a challenging problem for intelligent IoT
networks. Another challenge for the IoT network is how to make the devices more
intelligent.

To solve the above problems, it is necessary to seek more intelligent methods and
technologies. At the same time, Computational Intelligence (CI) plays an important
role in managing and storing huge data flows in the network. Thus, as IoT gains
its full potential CI will be at the forefront to facilitate the potential of IoT. IEEE
CIIoT emphasizes the gathering of Computational Intelligence and IoT. And its
topic mainly contains CI-based Scalability Solutions for IoT, CI Control Schemes
in IoT, Resource Management Techniques Using AI for IoT, CI Applications in
Industrial IoT, and so on.

1.3.2 Aeris

In 2022, Aeris, the leading global IoT solutions provider, announced the next
generation of intelligent IoT networks [21]. The Aeris intelligent IoT network
provides users with the most dynamic, flexible, reliable, and secure IoT network
on the market. Moreover, it connects with approximately 400,000 IoT devices that
enable millions of people to deliver affordable, reliable, and clean energy. It has the
following properties:
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(1) Intelligent IoT Connectivity. With the Aeris intelligent IoT network, it can
realize the boundary-free connection with Seamless 5G-ready, LTE-M, 3G, and
2G. At the same time, the technology of Aeris intelligent IoT can also increase
uptime.

(2) Intelligent IoT security. The Aeris intelligent IoT network can protect its IoT
devices from becoming compromised. At the same time, cyberattacks on IoT
networks can be prevented simply and cost-effectively.

(3) Intelligent IoT service. The Aeris IoT Services platform is a comprehensive
IoT solution that provides intelligent data management, asset management,
and automotive services from device to application. The Aeris IoT Services
platform is composed of event generation, IoT connectivity, data ingestion, data
storage and management, analytics, presentation and action, and rating and IoT
billing.

(4) Intelligent IoT applications. The Aeris’s next-generation intelligent IoT net-
work will realize Advanced Security insurance. With the increase of connected
IoT programs, Aeris is also developing its next-generation applications in its
intelligent IoT network.

1.3.3 Google GCP

Google also proposed an intelligent Internet of Things, which makes it easy to
connect devices to the cloud platform in a few clicks. Google Cloud Platform (GCP)
is a Google-provided suite of cloud computing services that operates on Google’s
same platform internally for its end-user products such as Gmail, YouTube, Google
One, and Google search [22]. With Google’s intelligent IoT platform, data can be
connected, stored, and analyzed at the edge and inside the cloud. The greatest part of
adopting the Google Cloud Platform is the unique Big Data, Artificial Intelligence,
with the Internet of Things (IoT) capabilities.

The Google IoT solution can realize the intelligent network from the edge to
the cloud by executing real-time analysis. For example, many applications can be
achieved by Google IoT solution, such as fleet management, inventory tracking,
cargo integrity monitoring, and other key business functions. Moreover, the IoT
solution of Google can contribute to the smart city by spanning billions of sensors
and edge devices. There are also several top industries that use Google Cloud IoT
services to explore how they are deploying secure, scalable IoT solutions on the
cloud, such as information technology and services, smart cities, computer software,
smart home solutions, and manufacturing. In the future, the importance, utility, and
deployment of an IoT-enabled network intelligence system will increase along with
the increase in the amount of data.
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1.3.4 3GPP RedCap

RedCap UE, the full name of reduced capability UE, is a terminal with reduced
capability. It is a 5G standard technology proposed by 3GPP in the Rel-17
version standard [23]. When 3GPP first proposed this issue, it also used NR
Light (NR lite). Briefly, the RedCap UE technology is to meet the requirements
of specific application scenarios, by reducing the air interface capability of the
terminal, reducing complexity, reducing costs, reducing power consumption, and
other requirements.

The reason for the emergence of RedCap is that existing radio specifications
have blind spots that cannot be covered. RedCap is positioned to address use
cases that cannot be optimally serviced today with Ultra-Reliable Low Latency
Communication (URLLC), massive Machine Type Communications (mMTC), or
enhanced Mobile Broadband (eMBB) solutions. These use cases include wearable
medical devices, smart watches, industrial wireless sensors, video monitors, etc.,
which are common use cases in intelligent IoT applications. These use cases are less
stringent than enhanced mobile broadband (eMBB) use cases and do not require
strict or deterministic latency requirements as time-critical communication use
cases. Therefore, RedCap balances cost and performance, appropriately sacrifices
some indicators and requirements, and finally achieves cost reduction. The Internet
of Things is divided into high-speed, medium-speed, and low-speed. RedCap,
in fact, corresponds to more medium-speed or medium-high-speed. At present,
LTE Cat.1 and Cat.4 have already covered this part of the demand. Since the
establishment of the RedCap project in 2021, it has developed rapidly. Although
not yet fully commercialized, the RedCap market is expected to take shape in 2022.
The IoT industry will also develop rapidly.

1.3.5 SwRI Intelligent Networks and IoT

Southwest Research Institute(SwRI) focuses on researching solutions for network
applications and wireless communication technologies. Meanwhile, because of
its decades-long research on embedded systems, it also provides intelligent IoT
solutions for government or other commercial customers [24]. During the entire
project life cycle, it can provide services for solution customization, software and
hardware platform development, system verification, and so on. In addition, in order
to ensure the normal operation of industrial networks, the institute has also been
researching IoT security issues in manufacturing systems and critical infrastructure.
The team developed an intrusion detection system (IDS) for industrial control.
Specifically, they discover the cyber threats across network protocols through unique
algorithms. This system can detect the transmission of all industrial control data
from pipelines to robotic manufacturing.
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Today, industrial networks need to utilize the Internet of Things to transmit
massive data. It is the development direction of modern industry to closely integrate
traditional industrial networks with AI. IoT connects various embedded sensing
devices to the network. These devices continuously exchange data to realize the
interconnection of people, machines, and things. Once industrial equipment is con-
nected to the Internet, it brings cyber threats into the industrial network. Criminals
may exploit vulnerabilities in equipment, protocols, or software to conduct cyber-
attacks. SwRI uses the Modbus/TCP protocol to discover the attacks. The protocol
can monitor the controls and data acquisition (SCADA) systems equipment and
provide a guarantee for the normal operation of industrial control. The detection
algorithm can distinguish and identify normal Modbus/TCP traffic and network
attack traffic such as data obfuscation and out-of-band timing. It can also determine
the packet type based on the source of the packet. The algorithm considers the packet
to be normal if it comes from a normally used industrial device; otherwise, the
algorithm considers it an attack.

1.3.6 IBM Smart City

International Business Machines Corporation (IBM) is one of the world’s largest
information technology and business solutions companies. The company was the
first to coin the term “smart city” [25]. Through the Smarter City Challenge project,
the company has specified a vision based on data centralization and focusing on
security. A smart city refers to taking full advantage of network interconnection
and big data information to operate and optimize the city with limited resources.
According to IBM’s vision, becoming a smart city is a revolutionary change in urban
development. Nowadays, benefiting from the fact that computing power is endowed
with a wide range of devices, IBM uses the development of instrumentation,
interconnection, intelligence, and other aspects to build a smart city. IBM’s solution
integrates the city’s systems with the intelligent IoT. It improves the efficiency of
urban resource utilization and optimizes urban management and services.

In general, IBM uses an intelligent and innovative approach to experiment with
new business models or technologies operating in a city. The company has suc-
cessfully implemented several smart city solutions. For example, they use artificial
intelligence to predict public transportation and use big data to digitize operations
for ports. They aim to modernize infrastructure, build digital cities for governments
and people, and provide sustainable support using the latest innovations.

1.4 Organizations of This Book

This book is organized as depicted in Fig. 1.9. We first design a hybrid network
control architecture of the Intelligent Internet of Things Networking, where intelli-
gent in-network devices can automatically adapt to network dynamics and generate
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Fig. 1.9 Book organization

control strategies, and the centralized platform is used to ease the training process of
distributed in-network devices for achieving network global intelligence [26]. With
the advancement of programmable network hardware, it is possible to implement
personalized network functions inside the network. In addition, to enhance the
collaboration among distributed in-network devices, a centralized management
plane is introduced to ease the training process of distributed switches.

Then, we discuss the promising machine learning methodologies for intelligent
network awareness [27]. With the ability of the network awareness to migrate from
end-hosts to the network core, it becomes sustainably important to strengthen the
management of data traffic in-network [28]. As a critical part of massive data
analysis, an efficient traffic classification mechanism plays an important role in
guarding network security and defending traffic attacks. Moreover, the flexible and
programmable data plane opens one way to aware the network more fine-grained.

Furthermore, we discuss how machine learning can achieve network intelligent
control. Deep learning and reinforcement learning make it possible to find optimal
solutions in highly complex network topologies [29]. Examples include routing
decisions, QoS strategies, load balance, and so on.

However, various task scenarios in IoT bring new challenges of dynamic
scheduling and on-demand allocation to network resource management. Therefore,
to address this issue, in Chap. 5, we apply several intelligent approaches for efficient
resource scheduling in networks.

In Chap. 6, we focus on how mobile edge computing enables the intelligent IoT,
where the computing and communication resources of devices are limited [30]. We
mainly discuss the resource sharing and edge computation offloading problems in
mobile edge networks. In order to jointly optimize task offloading and resource
allocation, we propose a second-price auction scheme for ensuring fair bidding for
resources rent. With the aid of the new isotone action generation technique (IAGT)
and adaptive action aggregation update strategy (3AUS) based on the proposed DRL
framework, an efficient edge intelligent method is proposed to offload tasks and
manage edge resources.
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In order to incentive more IoT devices to participate in the network task, we
discuss the blockchain-based IoT which allows fairly and securely renting resources
and establishing contracts in Chap. 7. The cloud computing service is introduced
into the blockchain platform for the sake of assisting to offload computational task
from the IoT network itself.

1.5 Summary

In this chapter, we mainly introduce the background. We state the motivation of
this book at first. Based on the motivation, we propose the hybrid network control
architecture of the Intelligent Internet of Things Networking and discuss the key
technologies and challenges in the architecture. Then, the related research and
development are provided. Finally, we give the organizations of this book [31].
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Chapter 2
Intelligent Internet of Things Networking
Architecture

Abstract The Internet of Things (IoT) has many compelling applications in our
daily lives. With the explosion of IoT devices and various applications, the demands
on the performance, reliability, and security of IoT networks are higher than ever.
Current end-host-based or centralized control frameworks generate excessive com-
putational and communication overhead, and the dynamic response of IoT networks
is sluggish and clumsy. Recently, with the advancement of programmable network
hardware, it has become possible to implement IoT network functions inside the
IoT network. However, current in-network schemes largely rely on manual pro-
cesses, which exhibit poor robustness, flexibility, and scalability. Therefore, in this
chapter, we present a new IoT network intelligent control architecture, in-network
intelligence control. We design intelligent in-network devices that can automatically
adapt to IoT network dynamics by leveraging powerful machine learning adaptive
abilities. In addition, to enhance the collaboration among distributed in-network
devices, a centralized management plane is introduced to ease the training process
of distributed switches. To demonstrate the technical feasibility and performance
advantage of our architecture, we present three use cases: in-network load balance,
in-network congestion control, and in-network DDoS detection.

Keywords In-network intelligent control · Software-defined network ·
Congestion control

The Internet of Things (IoT) has many compelling applications in our daily lives.
With the explosion of IoT devices and various applications, the demands on the
performance, reliability, and security of IoT networks are higher than ever. Current
end-host-based or centralized control frameworks generate excessive computational
and communication overhead, and the dynamic response of IoT networks is sluggish
and clumsy. Recently, with the advancement of programmable network hardware,
it has become possible to implement IoT network functions inside the IoT network.
However, current in-network schemes largely rely on manual processes, which
exhibit poor robustness, flexibility, and scalability. Therefore, in this chapter, we
present a new IoT network intelligent control architecture, in-network intelligence
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control [1]. We design intelligent in-network devices that can automatically adapt to
IoT network dynamics by leveraging powerful machine learning adaptive abilities.
In addition, to enhance the collaboration among distributed in-network devices,
a centralized management plane is introduced to ease the training process of
distributed switches. To demonstrate the technical feasibility and performance
advantage of our architecture, we present three use cases: in-network load balance,
in-network congestion control, and in-network DDoS detection.

2.1 In-network Intelligence Control: A Self-driving
Networking Architecture

Recently, the Internet of Things (IoT) has become a disruptive force reshaping our
lives and works, ranging from industrial manufacturing to healthcare. IoT refers to
massive physical devices around the world that are connected to the IoT network
for the sake of connecting and exchanging data. According to Gartner’s prediction,
it is expected that more than 25 billion IoT devices will be connected to the Internet
in the future year 2025. With the exponential growth of diverse IoT devices, as
well as various applications (e.g., intelligent manufacturing, smart agriculture),
the expectations for the performance, reliability, and security of IoT networks
are greater than ever [2]. For example, the industrial control system developed a
2ms network delay and 1 .µs jitter stringent target [3]. With users elevating their
expectations for low latency, high bandwidth, ubiquitous access, and resilience to
attack, IoT network control and management have become even more challenging.

Current IoT network control and management are largely built on the end-to-end
mechanism and the closed-loop control framework (i.e., measurement, decision-
making, and action). The IoT network control agency, which can be deployed at
the end-host or the software-defined networking (SDN) controller, works tirelessly
to (1) continuously collect troves of heterogeneous data from the IoT network, (2)
analyze this data to infer characteristics about the IoT network, and (3) decide how
to adapt the network’s configuration in response to IoT network conditions (e.g.,
a shift in traffic demand, intrusion detection). However, this out-network control
framework makes the control loop take place above the IoT network in a large
timescale. The centralized control agencies have to collect and analyze a massive
amount of data to respond to a single IoT network event, which incurs too much
communication and computation overhead, and therefore exhibit clumsy and tardy
in response to network dynamics.

Recently, with the development of the programmable IoT network hardware
(e.g., SmartNIC, Barefoot’s Tofino switches, Cavium XPliant switches), it is fea-
sible to perform flexible processing logic inside the IoT network. The operator can
reconfigure the IoT network hardware on the fly through high-level programming
languages like P4, thus exercising control over how network packets are processed.
Benefiting from this flexible data processing capacity and programmability, it is
possible to consider that the control loop can be implemented in an integrated way
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with a set of abstractions around measuring, analyzing, and controlling the traffic
at a small timescale directly as the packets are flowing through the IoT network.
In other words, the programmable network hardware opens up new possibilities for
in-network control, where the control loop can be directly implemented inside the
IoT network (e.g., in-network load balance, in-network security).

There has been a series of works on IoT network control and management from
the perspective of the in-network control paradigm, such as balancing the traffic load
(e.g., CONGA [4]), adjusting the end-hosts transmission rates (e.g., FlexSwitch [5]),
and DDoS detection. Compared to the end-host-based or centralized schemes, the
in-network solutions are more effective at scale and more responsive to network
events and dynamics. For example, in [4], the in-network load balance scheme
CONGA achieves .5× better flow completion times and .2 − 8× better throughput
than traditional solutions (e.g., MultiPath TCP). However, current in-network
schemes are largely dependent on the manual process, where the operators need to
meticulously analyze network behavior and design corresponding control policies
(requiring the least weeks). This handcrafted method presents poor scalability and
robustness, especially with the IoT network becoming extremely complicated and
flexible.

Recently, machine learning has attracted a large amount of attention from both
academia and industry. Machine learning can automatically learn and optimize
strategy directly from experience without following predefined rules. Therefore, it
is promising to apply machine learning in IoT network control and management to
leverage the powerful machine learning adaptive abilities for higher IoT network
performance. In this work, we present a new IoT network control paradigm, in-
network intelligent control. We desire to design intelligent in-network devices that
can automatically adapt to IoT network dynamics, thus improving IoT network
performance and satisfying the users’ requirements.

However, as an inherently distributed system, each in-network device can only
perform its local control loop of “measuring-analyzing-acting” over a small portion
of the whole system. It behooves us to ask the question: “how could the distributed
in-network devices learn the cooperative control policy in a distributed fashion?”.
To address this problem, we proposed a hybrid in-network intelligent control
architecture. In our architecture, we adopt the centralized training and distributed
execution framework, where a centralized management platform is introduced to
ease the training process of distributed in-network devices. Besides, to evaluate the
feasibility and performance of our architecture, we present three relevant use cases:
in-network load balance, in-network congestion control, and in-network DDoS
detection.

2.1.1 In-network Functionality

In this section, we will analyze the driving factors of the development of in-network
functionality from both the technique push (i.e., programmable network hardware)
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and the users’ pulls (i.e., the higher expectations for the performance, reliability, and
security).

2.1.1.1 Programmable Network Hardware

Recently, the advance of programmable network hardware leads to a more flexible
packet processing architecture. Examples include the Barefoot’s Tofino 2 switch,
the Cavium’s XPliant switch, and the Broadcom’s Trident 4 switch. They enable
network users to customize the processing logic on data packets, including the type,
sequence, and semantics of processing operations, while maintaining line speed
forwarding (e.g., Tofino 2 has 12.8 Tb/s throughputs).

Current programmable network hardware largely relies on Protocol Independent
Switch Architecture (PISA). The PISA allows the users to configure the packet
parsing and processing operation through domain-specific language like P4. A
typical PISA switch contains a programmable parser, ingress pipeline, egress
pipeline, and deparser. When a packet arrives, the parser first converts packet data
into the metadata (i.e., parsed representation). Then, the ingress/egress pipeline
performs user-defined processing operations on the metadata through match-action
tables. Finally, the deparser converts metadata back into a serialized packet.

In the PISA, the multiple data packet processing stages (i.e., match-action units)
work in a pipelined manner. That is, each stage can process a small number of
data packets independently with each other, so multiple data packets can exist in
different stages of the pipeline at a certain time. This programmable pipeline design
guarantees line speed packet processing performance. At the same time, though, it
also incurs rigid restrictions toward data plane programming, such as the limited set
of operations, limited concurrent memory access, and limited stages. Therefore, we
need to carefully identify what functions should be migrated to the programmable
network hardware.

2.1.1.2 In-network Functionality

Current IoT network functions are largely built on the end-to-end principle [6]. This
principle states that IoT network functions’ operations should reside at the end-
hosts rather than the IoT network core. This design reduces the IoT network core’s
complexity, and facilitates the generality in the IoT network, that any new functions
can be added at the end-hosts without having to change the core of the IoT network.
However, with the explosion of IoT devices and various applications (e.g., 4K/8K,
industrial control), a lot of new requirements have emerged for the IoT network.

Firstly, as the number of end devices broadens, especially the lightweight IoT
devices, it requires an easier used IoT network. In light of the end-to-end principle,
the current IoT network was conceived as a dumb pipe, where the intermediary
nodes are designed only to forward IoT network packets. By contrast, the end-hosts
have to constantly adjust their action (e.g., balancing the traffic load, adjusting the
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transmission rates) to respond to IoT network events and dynamics. As a result,
substantial software or protocol stacks are deployed on the end devices. These
software or protocol stacks must be installed, configured, upgraded, and maintained
separately by each user, which adds too much complexity to users. Meanwhile, it
requires all end-hosts to cooperate to achieve optimal performance and fairness, thus
leading to inefficiencies and poor performance isolation.

Secondly, the current Internet has become an untrustworthy world. There is less
and less reason to believe that we can trust other end-hosts. The untrustworthy
end-points lead to various IoT network security problems (e.g., Distributed Denial
of Service Attack, Trojan). These security problems are becoming increasingly
serious with the dramatic growth of IoT network users. As the intensity of attacks
increases, current end-host-based security mechanisms are becoming ineffective and
inefficient. Therefore, it urgently requires new security mechanisms to make a more
trustworthy IoT network.

As discussed above, the network users elevate their expectations to network
for ease of use, ubiquitous access, high performance, and resilience to attack. To
meet these requirements, deploying new functions inside the network becomes a
feasible solution. In recent years, there has been an increasing amount of literature
on in-network function deployment. We list the representative works of in-network
functions in Table 2.1. These successes show that in-network functions are more
effective at scale and more responsive to quickly adapt to network events and
dynamics.

Table 2.1 Representative works of in-network functionality

Ref. Function Performance

[4] Load balancing Achieving more than .5× better flow completion time for a
realistic datacenter workload and .2−8× better than
MPTCP in incast scenarios

[7] Load balancing Achieving .10× better performance than ECMP at 60%
network load

[8] Congestion control Achieving .4× better average flow completion time and
.10× better tail latency compared to TCP

[9] Fairness Improving the latency observed by web traffic by almost
50% compared to end-host solution

[10] QoS scheduling Keeping the packet delay closer to the target value across
the full range of bandwidths and the measured link
utilizations are consistently near 100% of link bandwidth

[11] Heavy-Hitter detection Detecting 95% of the heaviest flows with less than 80 kb
memory
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2.1.2 In-network Intelligent Control

While in-network functionality has many advantages, current in-network solutions
are largely dependent on the manual process. Inspired by the recent success of
machine learning in the control field (e.g., robotic control, autonomous vehicles, and
Go), in this section, we propose a new IoT network control paradigm, in-network
intelligent control. We introduce machine learning to in-network devices to leverage
the powerful self-adaptive learning abilities for responding to IoT network events
and dynamics. In addition, a centralized management platform is used to enhance
global IoT network intelligence.

2.1.2.1 Hybrid In-network Intelligence Architecture

As shown in Fig. 2.1, it shows an overview of the in-network intelligent control
architecture and its functional planes. In our architecture, we design an intelli-

Policy ConfigurationTelemetry Data Smart Algorithm

Fig. 2.1 Hybrid in-network intelligent control architecture
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gent switch for hosting intelligent in-network control functions. In the switch,
the programmable data plane is responsible for measuring IoT network events
and dynamics and performing corresponding processing operations on packets.
Concretely, the data plane uses telemetry probes (e.g., in-band network telemetry)
to monitor and report flows and IoT network information (e.g., link utilization,
microburst flow). These probes travel periodically overall desired adjacent links
(e.g., adjacent equal-cost multipath). Note that this telemetry data only contains
a small portion of the IoT network state (i.e., local observation information).
Subsequently, the data plane performs specific processing operations according
to its local observation and current strategy. The processing logics rely on the
configuration instructions issued by the control plane.

The intelligent control plane is responsible for learning the behavior of the IoT
network and automatically generating control strategies accordingly. The control
plane consists of the high-performance CPU and GPU to provide computing power
for the training process. Machine learning algorithms can constantly learn and
optimize control strategies through the operating data reported from the data plane.
Then, the updated control strategies (programmed by P4) will be feedback to the
data plane.

As discussed above, these two planes constitute a closed-loop control of the
“measurement-learning-decision-action” process, which contributes to control the
local IoT network autonomously. While this control loop enables quick to adapt to
IoT network dynamics in local, the IoT network as a distributed system requires
the cooperation of all nodes to achieve optimal performance. Learning from nodes
with only a local observation and control is a complex task, especially with the
goal of global optimization. Therefore, for the sake of achieving network global
intelligence, in our architecture, we introduce a centralized management plane to
coordinate these switches. The management plane constantly collects IoT network
information and learns global knowledge and then shares the knowledge to each
switch to revise the learning process of control strategies, thus improving IoT
network performance at the global level. Note that compared to the centralized
control paradigm, our centralized plane is only used to revise the strategies.

In this section, we will present three specific use cases to demonstrate the feasi-
bility and performance advantage of the in-network intelligent control paradigm.

2.1.2.2 In-network Load Balance

The first use-case is the in-network load balance. Recently, with the dramatic
increase of connected IoT devices, the traffic volume of IoT applications is growing
exponentially. To improve the throughput, the use of multiple wireless technologies
(e.g., Bluetooth, Zigbee, 802.11a/b/g/n) to realize parallel forwarding of data.
Therefore, efficiently distributing traffic among multiple available paths (i.e., load
balance) is the key point for maximizing IoT networks’ throughput.

However, achieving optimal load balancing is not trivial due to the complexity
and dynamics of IoT networks. In recent years, there has been an increasing amount
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Fig. 2.2 Hybrid in-network load balance scheme

of literature focused on designing better load balance schemes. The prior works
can be classified into centralized scheduling, host-based transport protocols, and in-
network load balance. Combining with the SDN architecture, some schemes, such
as Hedera [12] and SWAN [13], use a centralized SDN controller to constantly
collect network events and dynamics and calculate the optimal decision. While
the advantages of the centralized mechanism are clear, it brings computation and
communication overhead for flow-level traffic control. They are too slow to respond
to rapidly varying traffic. Besides, host-based schemes, such as MultiPath TCP
(MPTCP) [14], make the end-host protocol stack too complex and therefore add
processing burdened to high-performance applications.

With the development of programmable network hardware, in-network load
balance schemes (e.g., CONGA [4], HULA [7]) have received an amount of
attention from both academia and industry. For example, in [7], Katta et al. use
specific probes periodically to collect the link utilization and automatically shift
traffic to less-congested links directly in switches. The experiment results show that
the in-network scheme is more responsive in a few microseconds to adapt to the
volatility of traffic.

In this work, compared to the current in-network schemes, we present a
reinforcement learning aided in-network load balance scheme. As shown in Fig. 2.2,
we adopt a centralized learning and distributed execution framework and propose a
multi-agent actor-critic policy gradient (MADDPG)-based load balance algorithm.
In our architecture, a centralized plane is reinforced with the global network state
(i.e., global link utilization), which is uploaded from each switch, to ease the
distributed agent training process and thus help distributed switches to act in a
globally coordinated way. Note that each switch makes decisions only according
to the local observation, which is collected by the telemetry probes. The algorithm
details can be found in [15].
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To assess the validity of this architecture, we carried out the following simple
experiment. Our simulation environment is based on a discrete-time simulator
Omnet.++ and TensorFlow 1.8.0. As shown in Fig. 2.2, we simulated a network
topology with 6 nodes, which consists of 2 ingress switches, 2 intermediate
switches, and 2 egress switches. The in-network load balance agencies are imple-
mented in the ingress switches. We set all link capacity as 50Mbps and the traffic
volume of each source–destination pair as .20 ± 2Mbps. The experiment result
shows that our algorithm exhibits a good convergence performance and can be stable
in traffic fluctuation.

2.1.3 In-network Congestion Control

The second use case is in-network congestion control. In IoT networks, affecting
by the lossy communication medium, dense deployment, and frequent topology
change, congestion control has become a challenging problem. Nowadays, in IoT
transport layer protocol (e.g., TCP, TIMELY), congestion control is primarily
achieved by end-to-end-based schemes, where end-hosts react to congestion signals
from the network. For example, the well-known additive-increase/multiplicative-
decrease (AIMD) algorithm in TCP is a feedback-based congestion control algo-
rithm. When congestion is detected (i.e., receiving a congestion signal from
the network, such as Explicit Congestion Notification (ECN)), the sender will
reduce the congestion window size and therefore ease congestion. While such a
scheme simplifies network design, massive end-hosts must cooperate to achieve
fair bandwidth allocation and isolation among competing flows, thus leading to
inefficiencies and poor convergence.

Compared to the end-host, enforcing fair allocation and isolation among compet-
ing flows directly in switches seems more efficient. Congestion can be controlled at
in-network devices through scheduling and queueing algorithms. Recently, several
success cases proved that in-network congestion control presents perfect perfor-
mance. Examples include FlexSwitch and Approximating Fair Queueing. In [5],
Sharma et al. implement Rate Control Protocol (RCP) on programmable network
hardware to control congestion, where RCP relies on explicit network feedback to
control sending rate. The switch computes sending rate .R(t) periodically and sends
it back to the end-host. In an ideal scenario, the rate can be simply calculated by
.R(t) = C/N(t), where .N(t) is the number of ongoing flows and C is the link
capacity. The experiment results show that the flow completion time of RCP is 10
times faster compared to traditional solutions.

Compared to prior works, we consider a more complex congestion control
scenario. We focus on a kind of microburst traffic that occurs on the timescales 10 to
100ms, which are too short for traffic engineering to react but still large enough to
cause congestion to occur. This microburst will lead to the condition that the arrival
rate momentarily exceeds the maximum process rate of a particular switch (e.g., s3
in Topology 2 of Fig. 2.3). To handle this problem, the switch can use a queue to
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(a) (b) (c)

Fig. 2.3 Multiple switch congestion control. (a) Topology 1. (b) Topology 2. (c) Experimental
topology

(a) (b)

Fig. 2.4 The performance analysis. (a) In-network congestion control. (b) In-network DDoS
detection

smooth the fluctuation and relieve downstream switch processing pressure, where
the packet can be cached in peak periods and be released at other times.

For example, as shown in Topology 1 of Fig. 2.3, we assume that the arrival rate
of switch1 is 13Mbps with a standard deviation 3Mbps. The maximum transmission
rate of upstream switch1 and downstream switch2 is 20Mbps and 15Mbps, where
the queue capacity of both is 1M. At peak flow, the arrival rate in switch1 is
16Mbps, which is smaller than the 20Mbps but larger than 15Mbps. If switch1
sets the service rate as 13Mbps, switch2’s queue will be quickly full. Therefore,
switch1 needs to reduce its sending rate to relieve the processing pressure of
switch2. Meanwhile, the excessive decrease in the process rate will bring too much
transmission delay and even packet loss of locality switch. The multiple switches
need to work collaboratively to achieve global optimal.

Adopting the hybrid intelligent architecture and MADDPG algorithm we
described above, we present a multi-agent reinforcement learning aided in-network
congestion control scheme. Our simulation environment is built on a discrete-time
simulator Omnet.++. As shown in Fig. 2.3, the experiment topology contains four
switches and a centralized management platform. As shown in Fig. 2.4a, in the
baseline, the packet loss occurs in about 37 s. In contrast, our algorithm did not
experience packet loss until the 50 s.
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2.1.4 In-network DDoS Detection

The third use case is in-network distributed denial of service (DDoS) detection.
The DDoS attack is a malicious attempt to disrupt the legitimate requests of a
targeted network or server, through flooding the targeted machine or resource with
a large number of superfluous requests. The DDoS attacks achieve effectiveness
by utilizing massive, hijacked internet-connected devices as sources of the attack
traffic. Especially, with the development of the Internet of Things, vulnerable IoT
devices have been the primary force behind the DDoS botnet attacks. For example,
in October 2016, a series of IoT DDoS attacks caused widespread disruption of
legitimate Internet activity in the United States. As the intensity of DDoS attacks
increases, the current DDoS detection engine, which relies on proprietary hardware
appliances deployed at network edge, is becoming ineffective and inefficient.

Recently, emerging programmable switches provide an opportunity to address
these limitations by using in-network security functionality to mitigate DDoS
attacks. In-network security schemes are able to detect anomaly traffic immediately
in the switch as packets are forwarded without needing to go through proprietary
hardware, thus presenting more effective at scale [16]. Therefore, in this work,
based on our architecture, we design a variational Bayesian-based in-network DDoS
detection schemes to identify malicious traffic. The intelligent switches are able to
constantly learn defense tactics (i.e., Bayesian classifier) and detect DDoS attacks
in a distributed and automated fashion. Besides, the centralized management plane
is used to synchronize a global set of observations and therefore realize multiple
switches cooperation effectively. The algorithm details can be found in [17].

To validate our algorithm, we carried out a simple experiment. We use the KDD
99 DATA set to evaluate our algorithm, which is a standard data set for evaluating the
performance of the DDoS detection algorithm. In addition, we construct a network
with 20 network nodes and set two different baseline algorithms, the centralized
naive Bayes algorithm (NB) and distributed variational Bayes algorithm (NDVB,
without centralized sharing platform). As shown in Fig. 2.4b, the average accuracy
of the centralized naive Bayes and our algorithm is increasing with the process
of learning. This result shows that our hybrid learning architecture can enhance
cooperation effectively.

2.1.4.1 What Functions Should Be Implemented Inside the Network

While programmable network hardware provides a powerful primitive for develop-
ing specific in-network functions, they are not a panacea for improving performance.
In this section, we will discuss the question of what functions should be imple-
mented inside the network. Firstly, considering the limited computational and
storage capabilities and rigid restrictions of programmability, functions that require
a great deal of memory or computing on per-packet processing are more suitable to
implement at the end-host rather than the switch, such as virtual network mapping.
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This is because that the end-host has more memory and computing power and its
relative ease of programmability.

Secondly, functions should be implemented as close as possible to the data where
they need to access. For example, it will be more accurate and efficient to directly
measure the queuing delay and link utilization of the particular nodes. By contrast,
end-host approaches require collecting a massive amount of data distributed across
the IoT network, thus incurring inaccurate and overheads. Another example is
congestion control. As discussed above, Rate Control Protocol, which can directly
access queue size data in the switch, presents a better performance compared to the
end-host approaches (e.g., TCP congestion control).

Thirdly, functions that need to respond to network dynamics at very short
timescales should be implemented inside the network. For example, in the data
center network, the load balancing agency needs to respond to microbursts in a
millisecond. End-host and centralized solutions are too slow to respond to rapidly
varying traffic. These guidelines may help the network operators to govern where
(end-host vs. network core) a network function should be implemented.

2.2 Summary

Recently, machine learning has attracted a large amount of attention from both
academia and industry. Machine learning can automatically learn and optimize
strategy directly from experience without following predefined rules. Therefore,
it is promising to apply machine learning in network control and management
to leverage the powerful machine learning adaptive abilities for higher network
performance. The Internet of Things can make the network self-adjusting through
the hybrid in-network intelligent control architecture of centralized learning and
distributed learning. The centralized learning engine adapts to unstable network
conditions and dynamically controls the network, making it break through the fixed
network configuration. Self-driving networking is expected to boost the intelligent
connectivity capabilities of the Internet of Things with explosive growth of devices
and various applications, thereby improving service quality.
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Chapter 3
Intelligent IoT Network Awareness

Abstract IoT devices are everywhere sensing, collecting, storing, and computing
massive amounts of data. In the Internet of Things scenario, diversified services
will generate traffic with different characteristics and put forward different business
requirements. The application based on network intelligent awareness plays a key
role in effectively managing network and deepening the control of network. In
this chapter, we propose an end-to-end IoT traffic classification method relying
on a deep learning aided capsule network for the sake of forming an efficient
classification mechanism that integrates feature extraction, feature selection, and
classification model. Then, we propose a hybrid IDS architecture and introduce a
machine learning aided detection method. In addition, we model the time-series
network traffic by the recurrent neural network (RNN). The attention mechanism
is introduced for assisting network traffic classification in the form of the following
two models: the attention aids long short term memory (LSTM) and the hierarchical
attention network (HAN). Finally, we propose to design a machine learning-based
in-network Distributed Denial of Service (DDoS) detection framework. Benefit
from switch processing performance, the in-network mechanism could achieve high
scalability and line speed performance.

Keywords Network awareness · Traffic classification · Encrypted traffic ·
Recurrent neural network · DDoS detection

IoT devices are everywhere sensing, collecting, storing and computing massive
amounts of data. In the Internet of Things scenario, diversified services will generate
traffic with different characteristics and put forward different business requirements.
The application based on network intelligent awareness plays a key role in effec-
tively managing network and deepening the control of network. In this chapter, we
propose an end-to-end IoT traffic classification method relying on a deep learning
aided capsule network for the sake of forming an efficient classification mechanism
that integrates feature extraction, feature selection and classification model [1].
Then, we propose a hybrid IDS architecture and introduce a machine learning
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aided detection method [2]. In addition, we model the time-series network traffic
by the recurrent neural network (RNN). The attention mechanism is introduced for
assisting network traffic classification in the form of the following two models, the
attention aids long short term memory (LSTM) as well as the hierarchical attention
network (HAN) [3]. Finally, we propose we design a machine learning-based in-
network Distributed Denial of Service (DDoS) detection framework [4]. Benefit
from switch processing performance, the in-network mechanism could achieve high
scalability and line speed performance.

3.1 Capsule Network Assisted IoT Traffic Classification
Mechanism

In recent years, the Internet of Things (IoT) has witnessed its success in a range
of compelling applications [5–9]. It is estimated that by 2020, the global market
value of IoT may reach 7.1 trillion dollars [10]. Particularly, smart cities will be
the future direction of cities, where IoT techniques and artificial intelligence (AI)
algorithms play critical roles in prospering the construction of the smart cities [11].
With the gradual development of smart cities, more and more IoT devices are
included [12–14], and the interactive data traffic also grows rapidly [15]. Hence, the
analysis of this massive data is of great significance and has a large workload [16–
19]. Fortunately, the method of using AI technique can be a beneficial solution for
massive data analysis.

As a critical part of massive data analysis, traffic classification plays an important
role in ensuring network security and defending traffic attacks. Moreover, the
classification of different traffic can help IoT devices improve their work efficiency
and quality of service (QoS). It is noted that the data traffic in smart cities is
more complex in comparison to other IoT application scenarios. First, the scale
of data traffic is much larger because there are more IoT devices and users. Second,
more diverse data flows are transferred between devices since a variety of services
are offered. Third, there are more sources of traffic attacks, and some uses the
camouflage technique, which leads to more complex malware traffic [20]. All of
these reasons account for the complexity of data traffic characteristics and the
difference in fine details in smart cities, which impose a huge challenge on traffic
classification in this scenario. Based on the characteristics of data traffic in smart
cities, in this section, we propose an end-to-end traffic classification mechanism
based on the capsule network. Our model is illustrated in Fig. 3.1.
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Fig. 3.1 Two methods of
data flow classification. (a)
The conventional method. (b)
The proposed method

3.1.1 Methodology

3.1.1.1 Brief Introduction of Dataset

As mentioned before, the data traffic in smart cities has the following three char-
acteristics: huge amount, various data types, and diverse aggressive data sources.
Therefore, the dataset used in this work should have related characteristics to
represent the traffic data in smart cities. Hence, we select the UTSC-2016 dataset
for our experiments [21], which contains both the malware data and the benign
data. More specifically, it includes total 10 kinds of malware data traffic, such as
Cridex, Virut, etc., and 10 kinds of benign data traffic, i.e., BitTorrent, FTP, etc.,
which beneficially match the fine-grained characteristics of the traffic in smart cities.
There are total 242,211 benign raw data flows and 179,252 malware raw data flows,
respectively. The pie charts in Fig. 3.3 portray the proportion of the data flows of
both benign dataset and the malware dataset.

In this work, the end-to-end traffic classification method is proposed. In order
to verify the feasibility of our proposed model, we omit the step of data feature
extraction and directly put the raw data into the model for further classification.
However, data flows in smart cities are usually of different sizes, which may be in
conflict with the requirement of our classification model having the uniform size of
input data. Hence, the overall flow of the traffic classification is designed as shown
in Fig. 3.2, where we first of all perform a simple unified preprocessing including
both padding and segmentation operations based on raw data flows for the sake of
making input data have a uniform size. Then, the processed input data flows are
represented in the form of the two-dimensional matrix.

Suppose the raw data flows are represented as .Fi, i = 1, 2, 3, . . . , I , where I

is the number of categories of flows. Each flow .Fi contains .Mi packets, denoted as
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Fig. 3.2 The diagram of data processing

Outlook Virut
Miuref
Neris
Cridex

18%
5%

4%

8%

3%3%3%3%4%2%
2%

3%

42%

36%

19%

9% 3%
6%

5%

23%

Nsis-ay
Zeus
Shifu
Geodo
Htbot
Tinba

Gmail
Weibo
FaceTime
WorldOfWarcraft
FTP
MySQL
BitTorrent
Skype
SMB

(a) (b)

Fig. 3.3 Pie chart of the proportion of various flows in both benign (a) and malware (b) dataset,
where benign dataset contains 242,211 raw data flows, while malware dataset contains 179,252
raw data flows

.Pj , j = 1, 2, 3, . . . , J . Each packet .Pj consists of .Nj bytes. Moreover, each byte
is represented as a decimal number from 0 to 255 and is normalized into .[0, 1]. For
the purpose of unifying data size, we assume that each data flow .Fi contains the
same number of packets, i.e., M , and each packet .Pj contains the same number of
bytes, i.e., N . For the case where .Mi is smaller than M or .Nj is smaller than N , we
pad the data with 0. For the case where .Mi is greater than M or .Nj is greater than
N , we segment the data.

After the padding and segmentation operations, we transform the data flows into
two-dimension matrices [24], which have the uniform size of .N × M . Suppose we
choose the hyperparameters .M = 10 and .N = 1000, and then a flow can be visually
represented as shown in Fig. 3.4.

3.1.1.2 Data Classification

Once these data flows are represented as two-dimensional matrixes, they act as
the input of our proposed capsule network classification model, which will be
elaborated in detail in Sect. 3. The output of the model is the predicted category of
each input data flow. As is shown in Fig. 3.5, the entire traffic classification process
can be executed automatically without any manual participation.
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Fig. 3.4 The traffic flows
and their classification in
smart city scenario

Fig. 3.5 The representation
of a data flow in the form of
two-dimensional matrix,
where “PAD” means that the
packet is pad with 0. The
uniform size of processed
flow is 1000 .× 10

3.1.2 The Capsule Network Architecture

In this section, we will introduce the concept of the capsule network, which is the
basic part of our classification model in Sect. 3. Furthermore, we will analyze the
benefits of the capsule network in traffic classification in smart cities in Sect. 3.
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3.1.2.1 Capsule Network

The capsule network is a family member of deep learning networks proposed by
Hinton et al. in [22] in order to enhance the performance of CNN. As a deep learning
model, the capsule network is applicable to process big data, which is exactly
what smart cities need. Moreover, the concept of capsules and the dynamic routing
algorithm are designed for efficiently processing of data flows. As mentioned before,
the traffic data in smart cities is characterized by complexity and diversity. There
may be slight differences between flows. Therefore, the capsule network is suitable
for processing massive fine-grained data in the context of smart cities.

1. Capsule
In a capsule network, a capsule is a group of neurons whose activation vector
represents an instantiation parameter of a particular type of an entity. Moreover,
the length of it represents the probability of occurrence of an entity, and its
direction position denotes the generalized pose of the entity [22]. In this way,
the vector-based representation of a capsule has richer information than the
scalar-based representation of CNN, which provides a prerequisite for better
distinguishing the difference of data in detail. In order to achieve this, the
capsule network utilizes a nonlinear function, namely the squash function, as
the activation function of capsules. The squash function can be expressed as

.vj =
∥
∥sj

∥
∥
2

1 + ∥
∥sj

∥
∥
2 × sj

∥
∥sj

∥
∥
, (3.1)

where .sj denotes the total input of a capsule in layer j , and .vj is its output.
Equation (3.1) ensures that the length of short vectors can be compressed into
almost zero, and the length of long vectors is slightly below 1.

2. Dynamic Routing Mechanism CNN relies on pooling algorithm to transfer data
information between each layer, which is a bottom-up and passive mechanism
lacking of the guidance by tasks [23]. By contrast, in a capsule network, the
output of a capsule is a vector, which makes it possible to invoke a dynamic
routing mechanism for ensuring that the output vector can be sent to an
appropriate parent capsule in the higher layer. Initially, the output vector in a low
layer is routed to all parent capsules and is scaled down by coupling coefficients.
The low-layer capsule is multiplied by a weight matrix to obtain a prediction
vector, if the prediction vector has a large scalar product with the output of the
high-layer capsule. Then, the coupling coefficient of the low-layer capsule to
the high-layer capsule is increased relying on a feedback mechanism, and the
coupling coefficient of the other high-layer capsules is correspondingly reduced.
Thus, the contribution of the low-layer capsule to the high-layer capsule can be
increased by iterations. Hence, valuable information can be transmitted more
effectively, while shotten information, by contrast, can be reduced accordingly.
This mechanism is far more effective than traditional pooling algorithm, such as
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max-pooling, which abandons all but the most active feature detector in a local
pool in the low layer.
In the following, we focus on the dynamic routing mechanism. Let .ui represent
the output of a capsule of layer i and .Wij be a weight matrix. The prediction
vector .ûij from capsule i to capsule j can be calculated by

.ûij = Wijui. (3.2)

The input .sj of capsule j is a weighted sum over all prediction vector .ûij , and
.cij denotes the coupling coefficient between .sj and .ûij , which is updated during
the dynamic routing process. In our model, .sj can be given by

.sj =
∑

i

cij ûij , (3.3)

where .cij is determined by a softmax function, i.e.,

.cij = exp(bij )
∑

k exp(bik)
, (3.4)

where .bij represents the log prior probabilities coupling capsule i to capsule j .
We use .aij to indicate the agreement between prediction vector .ûij and current
output .vj , which can be calculated by

.aij = vj ûij . (3.5)

Hence, .bij can be updated by

.bij = bij + aij . (3.6)

The pseudo-code of the dynamic routing algorithm is shown in Algorithm 3.1.
The iteration of the dynamic routing algorithm refers to Fig. 3.6b.

3. Capsule Network Based Classification Model
Our capsule network based classification model includes five layers from bottom
to top, i.e., one-dimensional CNN layer, convolutional capsule network layer,
fully connected capsule network layer, long short term memory (LSTM) layer
[25], and output layer. The data is calculated through a five-layer network and the
result is finally obtained [26]. In the following, we will introduce them separately.
The overall model flow is shown in Fig. 3.6a.

4. One-Dimensional CNN Layer
CNN has been widely used in the field of computer vision and has achieved
superior results in image classification. In recent years, CNN has been applied
to the field of natural language processing [27] with satisfactory results. The
success of CNN results from the use of convolutional kernels for extracting local
features of the input data. As the increase of the number of convolutional layers,
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(a)

(b)

Fig. 3.6 (a) The architecture of the capsule network based classification model. (b) A detailed
iterative process of dynamic routing, where .

⊕
is an add operation, .

⊙
is an inner product

operation, and .
⊗

is an element-wise product operation. Moreover, W is the weight matrix
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Algorithm 3.1 Dynamic routing algorithm
Input: The output .ui of capsule i in layer l,

Number of iteration t

Output: The output .vj of capsule j in layer (l+1)
initialize the logit of coupling coefficient .bij = 0,

.ûij = .Wijui

for the t-th iteration do:
for all capsule i of layer l do:

.cij = softmax(.bij ), where ‘softmax’ refers to (3.4);
for all capsule j in layer (l+1) do:

.sj = .
∑

i cij ûij ;
.vj = squash(.sj ), where ‘squash’ refers to (3.1);

for capsule i of layer l and capsule j in layer (l+1) do:
.aij = .vj .ûij ;
.bij = .bij + .aij ;

return .vj

the extracted features are more advanced. Therefore, CNN is considered to be
applicable to process the data with the following characteristics, i.e., there is a
certain spatial relationship between the data, and the characteristics of the data
do not change with its spatial rotation or distortion [28].
In the data processing, we represent the one-dimensional data flow by a two-
dimensional matrix. The vertical direction denotes the number of packets in
a data flow, while the length of each packet is represented by the horizontal
direction. The sequence characteristics of the data packets in a data flow are
reflected in the longitudinal direction of the two-dimensional matrix, and the
spatial features in the data packets are reflected in the horizontal direction of the
two-dimensional matrix. In this way, we are capable of comparing the data flow
and of extracting features relying on CNN. We use a one-dimensional CNN as
the first layer of our model for the sake of extracting features of input data.
Let .xi represent the input flow. One-dimensional CNN layer employs convolution
operation on the input to extract features. The output of the one-dimensional
CNN .Convi can be determined by

.Convi = σ(Wconv · xi + bconv), (3.7)

where .Wconv is the filter of the CNN, while .bconv denotes its bias. Moreover, .σ()

is a nonlinear activation function, such as the Relu.1

1 https://en.wikipedia.org/wiki/Rectifier_(neural_networks).

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
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Convolutional Capsule Network Layer

The input of the convolutional capsule network layer is the feature vector .Convi , say
the output from the CNN layer. In order to obtain high-order features, we perform a
convolution operation to further extract features. Then, a squash function is used to
compress them for constructing capsules. The capsule .Capconv of the convolutional
capsule network can be calculated by

.Capconv = ρ(Wcap · Convi + bcap), (3.8)

where .Wcap is the filter of the convolutional capsule network, while .bcap is its bias.
Moreover, .ρ() represents the combination of convolution function and the squash
function mentioned in (3.1).

5. Fully Connected Capsule Network Layer
Each capsule in the fully connected capsule network layer is connected to the
capsules in the convolutional capsule network layer via a weight matrix. The
weight matrix is utilized to generate the prediction vector .ûij of an input.
The input-to-output relationship is adjusted relying on the dynamic routing
mechanism. The fully connected capsule network layer uses a dynamic routing
mechanism instead of the traditional pooling operation, which enables an
efficient layer-to-layer information delivery among capsules. The output of the
fully connected capsule network .Capf ull can be given by

.Capf ull = �(Wf ull · Capconv + bf ull), (3.9)

where .Wf ull is the weight matrix, while .bf ull is the bias. Furthermore, .�()

represents the dynamic routing algorithm mentioned in Sect. 2.
6. LSTM Layer

LSTM is an improved network structure for RNN. RNN is originally designed
to process time-series sequence data, which performs well for short sequences.
However, for long sequences, RNN may cause a poor performance due to the
short memory. LSTM adds a gate structure based on RNN, which effectively
solves the problem and achieves a beneficial effect on long sequences. Here,
we employ the LSTM layer to connect the underlying fully connected capsule
network layer, which helps increase the correlation between capsules. We put
a list of capsules of the fully connected capsule network layer into the LSTM
network layer. And the output of LSTM directly is the input of the next layer.
The LSTM layer is beneficial of accurately differentiating the traffic with nuances
in smart cities. Suppose there are two flows belonging to different categories.
Their differences are so small that the output of the fully connected capsule
network layer has only one capsule with subtle differences. Even so, the LSTM
layer can distinguish and widen the subtle differences and finally influence the
output.
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7. Output Layer
The last layer of the model in this article relies on a fully connected layer
followed by a softmax function to obtain a prediction vector .ŷi . The result of
the LSTM output is input of the fully connected layer, and the predicted result is
the final output. We then use the cross-entropy loss function for calculating the
loss L of the result, which can be expressed as

.L = −
n

∑

i=1

yi log ŷi , (3.10)

where .yi is the true label vector, and .ŷi is the prediction vector.
We employ TensorFlow2 to build and train our five-layer network structure
model. In the training step, processed traffic data is directly put into the model
for training model parameters.

3.1.3 Experiments and Result Analysis

3.1.3.1 Experimental Environment

The environment of our experiments is as follows: Ubuntu 16.04OS, Python 2.7,
TensorFlow 1.8.0, 4-core CPU, and 64Gmemory. The experimental dataset has been
described in detail in Section 2.1.1.1. In terms of the dataset partition, we randomly
extract 80% of each type of data as the training set, 10% as the validation set, and
10% as the test set. The batch size is 64, and the number of training epoch is 30.

3.1.3.2 Evaluation Metrics

In order to measure the performance of our proposed method, we use four evaluation
indicators commonly used in classification problems, i.e., accuracy, precision, recall
rate, and F1 value. We use “TP” to represent the result of viewing the positive case
as a positive case, “FP” to represent the result of viewing a negative case as a positive
case, “FN” to denote the result of identifying a positive case as a negative case, and
“TN” to denote the result of identifying a negative case as a negative case. Hence,
aforementioned four evaluation indicators can be calculated by

.accuracy = T P + T N

T P + FN + FP + T N
, (3.11)

2 https://www.tensorflow.org.

https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
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Fig. 3.7 The outline of two
experiments

.P = T P

T P + FN
,R = T P

T P + FP
,F1 = 2PR

P + R
. (3.12)

Here the accuracy represents how many samples are correctly predicted, while the
precision P shows how many of the samples with positive predictions are correct.
Moreover, the recall rate R indicates how many positive examples in the sample
are predicted correctly, and F1 value is the harmonic mean of the precision and the
recall.

3.1.3.3 Experimental Result Analysis

The main purpose of this work is to design an appropriate and reasonable model
for classifying IoT data traffic. Specifically, we expect that our proposed model
can achieve two goals, i.e., to ensure that the aggressive traffic and normal traffic
are efficiently distinguished and to classify the data traffic with a high accuracy
rate. Hence, we conduct our experiments relying on two scenarios. Firstly, we do
a two-class experiment for classifying aggressive traffic and normal traffic based
on the dataset containing malware traffic and benign traffic. Secondly, we conduct
a multi-classification experiment on identifying each sub-category of 10-class
aggressive traffic and 10-class normal traffic. Figure 3.7 outlines above-mentioned
two experiments. In the following, we focus our attention on two parts of the
experiment. The preliminary experiment is used to determine the best representation
of the data flow and to determine two hyperparameters. By contrast, the main
experiment is used to evaluate the effects of the proposed method. Our proposed
model is then applied to classify the flow data based on aforementioned two
scenarios in comparison to a pair of traditional deep learning models as well as
a machine learning model.
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Fig. 3.8 The distribution of both the length of the traffic flows and the length of the packets. The
figure above describes the relationship between the length of the data flow (the number of packets
contained in a flow) and the number of flows. The figure below describes the relationship between
the length of the packet (the number of bytes in a packet) and the number of packets

3.1.3.4 Preliminary Experiment

In this section, in order to unify the representation, raw flows are segmented or
padded. It is necessary to determine the appropriate number of packets M of each
flow and the number of bytes N in each data packet. In order to determine the
two hyperparameters, we first perform a preliminary experiment and use the grid
search method to determine the optimal hyperparameter value. In the first place, we
perform statistical analysis of the raw traffic distribution in the dataset, including the
distribution of the number of packets in each data flow and the distribution of the
number of bytes in each packet, which are shown in Fig. 3.8. From the distribution
of the traffic in Fig. 3.8, we can find that the number of packets contained in each
flow is less than 20, and the majority of them are concentrated within 10, while
most of them are concentrated within 5. Hence, as for hyperparameter M , we take
.M = 5, .M = 10 and .M = 20 for the grid search. As to the length of the packets,
i.e., N , it can be found that all of them are within 1500, and the majority of them
are within 1100, while most of them are less than 700. Hence, we select .N = 700,
.N = 1100, and .N = 1500 for the grid search. After executing the grid search, our
experimental results are shown in Table 3.1. We demonstrate the average accuracy
rate of the grid search for each type of the traffic in Fig. 3.9a. It can be seen that
when the hyperparameters .M = 20 and .N = 1100, we achieve the highest accuracy
rate both in the malware dataset and in the whole dataset and obtain a relatively high
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Fig. 3.9 The accuracy analysis. (a) The average accuracy. (b) The accuracy

accuracy rate in the benign dataset. Therefore, in the main experiment, we select the
hyperparameters with .M = 20 and .N = 1100.

3.1.3.5 Main Experiment

In the experiment, we use the capsule network model proposed in Sect. 3 to classify
the traffic of data flows. In addition, we use a pair of traditional deep learning
models, i.e., the CNN and the CNN combined with LSTM (CNN-LSTM), as
well as the logistic regression model for comparative experiments. For the data
representation, we simply segment and pad original data flows and then represent
each data flow as a two-dimensional matrix. The length of the data flow and the
length of the packet are selected as .M = 20 and .N = 1100.

In order to better evaluate the performance of the proposed method, we conduct
experiments in two different scenarios, i.e., a two-class experiment on the whole
dataset and two 10-classification experiments on malware traffic dataset and benign
traffic dataset, respectively. Furthermore, we use the accuracy, precision, recall, and
F1 values as evaluation indicators of our experiments.

In the following, we provide the hyperparameters commonly used in our
proposed model, which is shown in Table 3.2. Specifically, the number of filters used
by the one-dimensional CNN layer of the capsule network is 64. Moreover, the size
of the kernel is 3, and the size of stride is 1. By contrast, in the convolutional capsule
network layer, the size of the above three parameters is 128, 2, 1. And the dimension
of a capsule vector is 8. The number of output capsules is 16. In the fully connected
capsule network layer, the dimension of the capsule vector is also 8, and the number
of output capsules is determined by the final number of classifications (2 or 10). In
LSTM layer, the number of hidden layer units is 32 and the size of forget bias is 1.0.
For the CNN model, we used 64 filters, and kernel sizes are 3, 4, and 5, respectively.
Moreover, the size of stride is 1. A dropout with a ratio of 0.5 is utilized to optimize
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Table 3.2 The configuration details of classification models

Model Layer Configuration details

Capsule network One-dimensional CNN layer Filters=64, kernel=3, stride=1

Convolutional capsule network
layer

Filters=128, kernel=2, stride=1,
capsule vector=8, capsule=16

Fully connected capsule network
layer

Capsule vector=8, capsule=number of
classes (2 or 10)

LSTM layer Hidden units=32, forget bias=1.0

CNN One-dimensional CNN layer Filters=64, kernel=3,4,5, stride=1

CNN LSTM One-dimensional CNN layer Filters=64, kernel=3,4,5, stride=1

LSTM layer Hidden units=32, forget bias=1.0

LR — l2 regularization coefficient=1.0

the model. Learning rate is set as 0.1. For the CNN+LSTM model, a layer of LSTM
was added to the CNN model, where the parameters are consistent with those used
in the capsule network. For the LR model, we use a l2 penalty with a regularization
coefficient of 1.0. Other non-numeric parameters employ the default values of the
LogisticRegression interface provided in the sklearn3 library.

The average accuracy of each type of flow is shown in Fig. 3.9b. We can
conclude that in terms of identifying the malware traffic and benign traffic, all of
four models have achieved 100% accuracy, that is, for the two-class classification
task, our proposed model, two deep learning models, and the machine learning
model can accurately complete the task. Moreover, as for the multi-classification
experiment, the accuracy rate of classifying benign traffic is higher than that of
classifying malware data because the benign data is the normal flow dataset, where
data characteristics of each flow are generally similar and follow standard protocols.
By contrast, the malware data flow varies substantially and often does not have the
consistency, and hence it is difficult for identifying. Furthermore, we can see that the
capsule network based model proposed in this work has the highest accuracy on all
three datasets. This is because that the capsule network uses the dynamic routing
mechanism, which is more suitable for classifying traffic with subtle difference
thereby getting higher accuracy. The results indicate that the capsule network based
model has a beneficial performance on traffic classification and the end-to-end
method of classification architecture is feasible.

In order to better evaluate the model and demonstrate the experiment results,
the precision, recall, and F1 value of the two 10-class experiments are shown in
Figs. 3.10 and 3.11. In Fig. 3.10, we analyze the experiment results in classifying
benign traffic. We can find that the capsule network has a high score for all 10 kinds
of traffic in terms of three evaluation indicators, especially in some traffics, such
as Weibo, SMB, and Outlook. The score of the other three models is around 0.8 in

3 https://scikit-learn.org/stable/.

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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Fig. 3.10 The F1 score,
recall, and precision of each
class in benign traffic. (a) The
F1 score of benign traffic. (b)
The recall score of benign
traffic. (c) The precision score
of benign traffic

(a)

(b)

(c)
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Fig. 3.11 The F1 score,
recall, and precision of each
class in malware traffic. (a)
The F1 score of malware
traffic. (b) The recall score of
malware traffic. (c) The
precision score of malware
traffic

(a)

(b)

(c)
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some contexts, but the capsule network always has a score close to 1. Hence, the
capsule network not only has a high classification accuracy rate but also has a very
stable classification effect.

We conclude that some classification effect is relatively poor because some
traffics, such as Weibo and SMB, tend to vary greatly in the size of packets and
flows. Traditional models do not handle this situation well, but the capsule network
using the dynamic routing mechanism can give higher weight to the more important
parts of the packets and flows, and then it is less affected by size changes, so it can
classify traffic more accurately.

As shown in Fig. 3.11, we can conclude that all of the scores of four models in
malware traffic are lower than those in benign traffic. The reason is that the malware
traffic data flow is more complicated compared with other traffics. However, the
capsule network still scores higher than the other three models. We can see that the
capsule network can reach the score of 0.9 on three evaluation indicators for the data
flow of Virut, Neris, etc., which is significantly higher than the other three models.
The capsule network relies on the dynamic routing mechanism for extracting the
detailed features, which can accurately and efficiently process the nuanced data.

In addition, we can see that the linear classifier LR does not perform well on
both datasets, which indicates that most of the traffics in the dataset are nonlinearly
separated. While the capsule network has high scores in terms of three evaluation
indicators, indicating that the capsule network has strong classification ability for
data.

In a nutshell, our proposed capsule network based model as well as the end-to-
end classification method can achieve a superior classification accuracy, the recall
rate, and the F1 value in comparison to the CNN model, the CNN-LSTM model,
and the LR model.

3.2 Hybrid Intrusion Detection System Relying on Machine
Learning

Recently, with the concept of Industry 4.0, the industrial Internet of Things (IIoT)
has been widely developed. It is estimated that the value created by the IIoT will
exceed 12 trillion dollars by 2030. As a family member of the Internet of Things
(IoT), IIoT has a range of compelling applications, namely smart factories, smart
grids, etc. Edge-based IIoT, by definition, relies on a large amount of edge devices
for the sake of sensing, computing, and storing, of which the scenario is shown in
Fig. 3.12. However, decentralized data interaction makes it easy to result in data
leakage, manipulation, and other network attacks. Hence the security issue of edge-
based IIoT has become the focus of our attention.

For the sake of ensuring the security of IIoT, some researches have paid their
attention to providing data consistency, identity authentication, etc. However, these
methods were not able to deal with attacks resulting from malicious traffic, such as



56 3 Intelligent IoT Network Awareness

Data center

IIoT edge devices

Fig. 3.12 Edge-based IIoT scenario

the deny of service (DoS), root to local (R2L), etc. Therefore, intrusion detection
becomes a fundamental task for ensuring network security. An intrusion detection
system (IDS) is designed for detecting detrimental intrusions. Generally, an IDS is
used for identifying the traffic in the network, especially for distinguishing normal
and malicious traffic, and hence is beneficial to eliminating malicious traffic. As for
the IDS at edge-based IIoT, considering its limited storage and computational power
of each small edge device, resource utilization efficiency should be considered when
designing detection methods as well as the system architecture.

In edge-based IIoT, the design of IDS mainly considers the following two
aspects: namely, the detection method and the system architecture. To elaborate
a little further, detection methods can be classified into knowledge-based methods
and anomaly-based methods, where knowledge-based methods are based on off-
the-shelf databases for detection which cannot identify unknown attacks, while
anomaly-based methods typically invoke machine learning algorithms for identify-
ing traffic. As for the system architecture, the architecture of IDSs can be classified
into three categories, i.e., the distributed architecture, the centralized architecture,
and the hybrid architecture. Specifically, the distributed IDS operates on each
physical device in the network and conducts the intrusion detection independently.
By contrast, the centralized IDS runs on several central devices, such as central
servers [29]. Only these so-called central devices are capable of detecting malicious
traffic in the network. The hybrid IDS combines the advantage of the above-
mentioned two architectures, where different detection methods are operated among
the lower layer network devices and the upper layer network devices, respectively.
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However, there are still some challenges imposed for the edge-based IIoT IDS.
In terms of the detection method, for the sake of reducing the computational com-
plexity, some traditional machine learning algorithms have to decrease the detection
accuracy. Moreover, the deep learning based intrusion detection algorithms can
improve the accuracy, while they also result in high power consumption, which is a
key limitation of the edge-based IIoT devices. As for the system architecture, dis-
tributed architectures require a large amount of network resources and also reduce
the overall monitoring capability of the whole network. Centralized architectures
often generate amounts of request-type information between edge devices and cen-
tral devices, increasing bandwidth resource consumption. Centralized architectures
cannot detect intrusion or malicious traffic between edge devices. Therefore, in
this work, we propose a new hybrid IDS architecture for edge-based IIoT, where
a new machine learning algorithm and a deep learning algorithm are employed in
the lower layer network and the upper layer network, respectively. In comparison to
existing IDS architectures and intrusion detection methods, the main contributions
of our proposed architecture and detection algorithm are summarized as follows. A
new machine learning based intrusion detection algorithm is applied to the lower
layer network, where the detection accuracy can be substantially improved without
increasing the training time. Deep learning algorithm applied to the resource-
rich upper layer network, yielding a higher detection accuracy with the aid of
its powerful learning capability. The hybrid architecture combines the advantage
of both machine learning algorithms and deep learning algorithms for improving
the security of the network. Moreover, the hierarchical information interaction and
resource allocation lower the current limit of the network’s bandwidth and energy.

3.2.1 Traditional Machine Learning Aided Detection Methods

In this section, we will introduce anomaly-based detection methods relying on
traditional machine learning algorithms and analyze their pros and cons. On basis
of that, we will propose our method for detecting intrusion. Table 3.3 shows some
typical machine learning based intrusion detection methods and their contributions.

In the IIoT, the methods of intrusion detection are mainly divided into
knowledge-based and anomaly-based methods. Knowledge-based methods cannot
detect unknown traffic because of utilization of existed databases for detection,
which does not meet the needs of IIoT to detect multiple types of intrusion. The
anomaly-based method can solve the problems faced by the knowledge-based
method. It detects intrusion by learning the general features of intrusive traffic and
does not stick to exited traffic databases [30]. Once the learning of intrusive traffic
features is completed, the known and unknown intrusion traffic can be effectively
detected based on anomaly-based method.

The employment of machine learning algorithms for anomaly-based methods is
an important direction. Machine learning algorithms learn the general features of
the training traffic data. Based on the learned features, the input traffic data will
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Table 3.3 Machine learning and deep learning based intrusion detection methods

Reference Algorithms Contributions

Machine
learning

[1] Naive Bayes Introduce the feature reduction to
intrusion detection

[2] Logistic regression
Naive Bayes

Develop an anomaly-based IDS relying
on feature engineering

[3] Random forest Propose a hybrid intrusion detection
method

Deep
learning

[4] CNN, neural network Propose a novel android malware
detection system using CNN

[5] CNN, LSTM Develop two models employing CNN
and LSTM for intrusion detection

[6] CNN, RNN LSTM,
GRU

Apply CNN and RNN and its variants
for intrusion detection

be detected correctly. This generalized learning mode allows the machine learning
algorithms to process data that has never appeared before. At the same time, the
traditional machine learning algorithms do not require high computational power of
the hardware, and the training time is relatively short, which is more suitable for the
requirements of the IIoT edge devices.

A range of researches have introduced machine learning algorithms for intrusion
detection. Specifically, the authors of [31] employed Naive Bayes (NB) algorithm
to detect intrusion. First, four different feature reduction methods were utilized to
reduce the feature dimension of the original data feature. Then the dimensionality-
reduction data feature, as the representative of the flow, was input to the NB for
intrusion detection. Experimental results showed that this method had relatively
high recognition accuracy. The Logistic Regression (LR) algorithm was adopted
by Subba et al. [32]. They first utilized an evaluation tool to map data feature in
the original dataset and selected the top 23 features to generate a new dataset. Then
several machine learning algorithms were performed on the dataset for a two-class
experiment. Experimental results showed that LR had a higher accuracy. Zhang et
al. [33] designed an intrusion detection system that integrated online phases and
offline phases. The offline phase employed Random Forest (RF) algorithm. The
input data was first preprocessed, and the most important data features were selected
as feature vectors, which were used as input to the RF to perform intrusion detection
task.

Although these studies combined with machine learning algorithms had achieved
good experimental results, improvement still exits for intrusion detection tasks in the
edge-based IIoT. First, the high experimental accuracy of these studies is based on
a combination of feature engineering including feature reduction, feature mapping,
etc. and classification algorithms. However, feature engineering is a time-consuming
task, which is not a good choice for time-critical edge-based IIoT and edge devices
with limited computing resources. In addition, the detection accuracy of machine
learning algorithms employed in the studies still has room for improvement.
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In view of the above two problems, this work utilizes a new machine learning
algorithm LightGBM4 for intrusion detection of original data features and improves
the detection accuracy on the basis of ensuring no increase in time consumption,
which can be viewed as a fast, distributed, high performance decision-tree-based
gradient lifting framework. Based on the decision tree algorithm, LightGBM
employs the optimal leaf-wise strategy to split the leaf nodes, while other lifting
algorithms split trees generally relying on depth or horizontal-wise rather than
leaf-wise. The leaf-wise algorithms reduce more losses than the horizontal-wise
algorithm. This helps LightGBM get higher accuracy in varieties of tasks, which no
other existing lifting algorithms can reach. As far as we know, this is the first time
that LightGBM has been applied to detect intrusion, which implements tree boosting
in parallel computing, which can be seen as a final classification model formed by
a combination of multiple tree classification models. In this work, LightGBM is
used for intrusion detection, which can reduce both the training time of model and
the cost of communication, which is beneficial of improving parallel computing
efficiency. Compared to traditional machine learning algorithms, LightGBM has
higher computational efficiency, supports distributed computing, and encapsulates
feature selection algorithms in it, which means it does not require additional
feature engineering. To demonstrate the performance of the LightGBM, we conduct
comparison experiments relying on a dataset using several traditional machine
algorithms. The experimental content is to perform a two-class classification exper-
iment for intrusion detection of network traffic data. Four evaluation indicators, i.e.,
accuracy, precision, recall, and F1, are utilized for evaluating the performance. The
experimental results are shown in Fig. 3.13. As we can see, LightGBM has a higher
detection accuracy than other traditional machine learning algorithms. LightGBM’s
low-time-consumption and high-detection-accuracy features meet the requirements
for fast-traffic-detection and high-quality-security in edge-based IIoT. In addition,
LightGBM can generate the sorting results of the importance of features without
increasing computation consumption, which contributes to further work mentioned
later.

3.2.2 Deep Learning Aided Detection Methods

In this section, we will introduce the researches of intrusion detection using deep
learning algorithms and analyze the feasibility of deep learning algorithms applied
in edge-based IIoT. Table 3.3 summarizes the related typical researches.

The application of deep learning algorithms is also an anomaly-based intrusion
detection method. As like machine learning algorithms, deep learning algorithms
actively learn the general features of input data, which help to learn model
parameters. Based on this, a task model can be built. Once the model parameters

4 https://github.com/Microsoft/LightGBM.

https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
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Fig. 3.13 The performance comparison of five different machine learning based algorithms (NB:
Naive Bayes, LR: Logistic Regression, DT: Decision Tree, RF: Random Forest, and LGB:
LightGBM)

are learned, the model is not dependent on the input data, so unknown data can
be processed. Compared with traditional machine learning algorithms, the deep
learning model has better effects in scenarios with larger data volume. However,
deep learning models are generally more complicated, resulting in longer training
time and higher requirement of computing power of hardware.

In existing studies, different deep learning algorithms are employed, such
as convolutional neural network (CNN), recurrent neural network (RNN), etc.
Mclaughlin et al. [34] utilized a combination of CNN and fully connected neural
networks to identify malicious traffic. The fully connected neural network is actually
a traditional neural network, and the CNN plays the role of feature extraction in
the overall architecture. The scenario targeted by the paper was malicious traffic
detection in the Android system. As a lightweight operating system, the Android
system is often employed on mobile devices and IIoT devices. Malicious traffic
identification in the Android system is also part of the intrusion detection task in the
IIoT scenario. During the experiment, Mclaughlin et al. processed the data traffic as
text and then trained the CNN model on the GPU, which should be noted that the
GPU is applied to train the model in order to reduce training time. Wang et al. [35]
designed two models for intrusion detection. One used one-dimensional CNN to
process the input data traffic to obtain feature vectors, which were utilized as the
basis for classification. The other employed CNN combined with long short term
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memory (LSTM) network for detection. Two datasets were used to experimentally
verify the proposed models. Experimental results were analyzed combined the
characteristics of the datasets. Final experiment used three indicators to evaluate the
test results, which showed that the proposed models had a good detection effect.
Chawla et al. [36] employed the different combinations of CNN, RNN, and its
variants as detection models. Experimental results showed that these combinations
can achieve satisfactory detection results.

Beneficial experimental results were achieved in the above-mentioned
researches, which is based on the ability of deep learning algorithms for high-
accuracy classification in big data scenarios. However, as far as we mentioned
earlier, deep learning algorithms also have some problems, such as higher
requirements for hardware devices and long training time for models. These issues
cannot be overlooked in edge-based IIoT. Mclaughlin et al. [34] applied GPU to
train the detection model to reduce training time. However, in the actual edge-based
IIoT, most of the edge devices are equipped with CPUs rather than GPUs. Training
a deep learning model on CPUs is much slower than on GPUs. Therefore, if the
deep learning model is placed on the IIoT edge device equipped only with CPUs,
the time spent on the overall intrusion detection task in the network will be greatly
increased, which is not acceptable for edge-based IIoT. Wang et al. [35] emphasized
that the proposed models have high detection accuracy but did not mention the time
problem required for model training and testing. Chawla et al. [36] demonstrated
the training and testing time of the model in the experimental analysis section. On
the training set used by the authors, the model had a minimum training time of more
than 300 s. Moreover, the training of these models was performed on the GPU, and
if the same process is performed on the CPU, it will cost more time.

In order to demonstrate the training time and detecting accuracy of the deep
learning algorithm more clearly, we conduct a comparative experiment using the
LightGBM and CNN, which is performed on the CPU, and two datasets are used.
Experimental results are showed in Fig. 3.14. In the pair of experiments, we can
draw three consistent and obvious experimental conclusions. First, the training
time of LightGBM is significantly less than that of CNN. Specifically, the time
for training the CNN is several times longer than that of the training LightGBM.
Second, it takes longer for the CNN to achieve the same classification accuracy
against LightGBM. Third, with sufficient training time, CNN can achieve higher
classification accuracy than that of LightGBM. By analyzing these conclusions, we
can see that both CNN and LightGBM have their own strengths and weaknesses. To
elaborate a little further, CNN has a higher detection accuracy but needs longer
training time. LightGBM’s training time is smaller than that of CNN, while its
detection accuracy is lower. These facts have inspired us to consider how to combine
the advantages of the two algorithms in edge-based IIoT so that it can get better
security, which we discuss later.

In addition, Xiao et al. [37] proposed to use Reinforcement Learning (RL) to
solve the DoS attack problem in edge networks. Moreover, Min et al. [38] employed
RL to solve related problems in the IoT scenario. This suggests that our future work
may consider applying RL to intrusion detection problems.
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Fig. 3.14 (a) The accuracy vs. training time of LightGBM, CNN, and LR relying on dataset 1.
(b) The accuracy vs. training time of LightGBM, CNN, and LR relying on dataset 2
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3.2.3 The Hybrid IDS Architecture

In this section, we will review some of the existing researches on IDS architecture.
On this basis, for the edge-IIoT scenario, we propose an IDS architecture and
analyze its advantages over other architectures. Table 3.4 summaries the investigated
effort to design IDS architectures.

The existing IDS architectures are mainly divided into distributed architecture,
centralized architecture, and hybrid architecture. The distributed architecture places
the IDS on each edge device in the network, and each edge device independently
detects inbound and outbound traffic. For the problem of limited computing power
and memory in the IoT scenario, Oh et al. [39] designed a lightweight distributed
detection system using a novel malicious pattern-matching engine, which matched
the signature and packet payload of malicious traffic. In order to make the proposed
system run on devices with limited computing power, the memory footprint was
limited. By comparing with one of the fastest pattern-matching algorithms, better
performance was revealed in the proposed method. Wallgren et al. [40] chose to
place IDSs in the IoT edge routers for unified management and control. A heartbeat
protocol is proposed, in which the routers regularly sent detection requests to all
edge devices, and the edge devices sent the information to the router for detection
after receiving the request. Although the authors stated that the protocol increases
no memory burden of the edge devices, this approach increased the additional
traffic in the network. In a more recent study, the IDS proposed in [41] was a
kind hybrid architecture. The authors divided the network into small clusters. Each
cluster consisted of a small number of common nodes and a cluster head. The
cluster head was responsible for collecting information about the self and neighbor
nodes detected by the common nodes. On this basis, the intrusion detection task was
completed by the cluster head utilizing a lightweight detection method.

In summary, the three architectures of IDS have pros and cons. The distributed
architecture can quickly detect traffic passing through the node itself and does not
generate many interactive information. However, distributed architectures need to
balance detection accuracy and node resources, such as processing power, memory,
etc. Especially for the problem of limited edge device resources in edge-based
IIoT, it is more difficult to design an appropriate one. The centralized architecture

Table 3.4 The characteristics of three kinds of IDS architectures

Architecture Reference Pros and Cons

Distributed architecture [10] Decrease the communication overhead, while
requiring more resources of edge devices

Centralized architecture [11] Be able to apply algorithms with higher detection
accuracy, while generating more additional
information

Hybrid architecture [12] Adapt the resources of different devices, while it is
difficult to design in the context of IIoT
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places the IDS on a central device, such as border routers, servers, etc. with
strong computing power and sufficient memory, which enables IDS to perform
intrusion detection tasks with a more complex algorithm. However, the centralized
architecture requires additional communication between central devices and edge
devices, generating amounts of additional information in the network that consumes
bandwidth resources. Moreover, centralized architecture cannot detect intrusion
between edge devices, which is a security risk. The hybrid architecture combines
the advantages of the two architectures. But in edge-based IIoT, the design of the
IDS of the hybrid architecture also faces many problems, such as how to select the
central devices and edge devices to place IDS using different detection methods,
how to improve the communication efficiency between these devices to reduce the
additional information in the network, and so on.

Moreover, [42–45] mentioned hybrid architectures in different network applica-
tion scenarios. Inspired by these works and combined with the above analysis, we
propose a hybrid architecture for IDS in edge-based IIoT, as shown in Fig. 3.15. The
overall IIoT scenario can be divided into central network part and edge part. The IDS
architecture we will propose of which the target object is the edge-based IIoT. First,
we further divide the edge-based IIoT. Devices with strong computing power and
sufficient resources such as edge routers are regarded as the master nodes, while the
industrial equipment of the edge part is regarded as edge nodes. Due to the limited
computing power and resources of edge nodes, we apply the lightweight LightGBM
algorithm on them and perform the first intrusion detection task at the edge nodes to
ensure the security. At the same time, we utilize the LightGBM algorithm to extract
the more advanced features as the representative of the traffic without increasing the
resource consumption, so as to perform further detection on the master nodes. On
master nodes, we employ deep learning algorithm with higher accuracy to perform
the second intrusion detection task, further improving the detection accuracy of the
overall network. Master nodes receive the advanced traffic features delivered by the
edge nodes instead of the original data traffic for detection, in order to reduce the
additional information in the network. We believe that master nodes have sufficient
resources to meet the needs of the deep learning model to efficiently complete the
intrusion detection task.

To illustrate the advantages of the proposed architecture, we compare it to
distributed and centralized architecture. The distributed architecture places IDS
on each device in the network. Due to the constrain of resource-constrained
devices, the intrusion detection method used by IDS is usually traditional machine
learning algorithms with less resource requirements. In Fig. 3.13, we compare the
performance of traditional machine learning methods with LightGBM. Therefore,
the architecture proposed in this work utilized LightGBM algorithm to have higher
detection accuracy than distributed architecture combined with machine learning
algorithms. The centralized architecture places the IDSs on master nodes, usually
employing more complex deep learning algorithms. But the centralized architecture
cannot detect intrusion between edge nodes, which can be naturally solved by hybrid
architecture. The architecture proposed in this work utilizes LightGBM and deep
learning algorithm to detect the lower level and upper level network respectively,
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Fig. 3.15 The proposed hybrid IDS architecture

making full use of the advantages of the two algorithms, as shown in Fig. 3.14.
The overall detection accuracy of the network can be guaranteed without increasing
the training time. As a hybrid architecture, it solves the problem that centralized
architectures cannot detect intrusion between edge nodes. In addition, the proposed
architecture utilized LightGBM algorithm to select the advanced traffic features to
be transmitted in the network, which effectively reduces the bandwidth burden. The
amount of bandwidth reduction depends on both the proportion of actual network
intrusive traffic and the proportion of the advanced features selected. For example,
suppose there are 100 units of traffic, of which normal and intrusive traffic have 80
units and 20 units, respectively. The edge node correctly detects 10 units of intrusion
traffic. We select advanced features that account for 10% of the original data, and
then only 9 units of advanced features need to be sent to the master nodes for further
detection. Compared to directly sending raw data to the upper layer, our proposed
method reduces bandwidth consumption by 90%.

3.3 Identification of Encrypted Traffic Through Attention
Mechanism Based LSTM

Network traffic classification plays a critical role in next-generation communication
networks, which aims at classifying network traffic based on both the type of
protocols, such as HTTP, FTP, and the type of applications, such as Facebook,
Skype, etc. Meanwhile, network traffic classification is beneficial in terms of
understanding the distribution of traffic flows, improving the utilization efficiency of
network resources, enhancing quality of service (QoS), and guaranteeing network
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security [46]. In addition, as network traffic becomes larger and larger, operators
tend to adopt big data tools for stable storage and fast processing, such as Hadoop
and Spark. Besides, distributed computing methods are also used in this task because
of the high requirements for real-time calculation.

Recently, with the extensive demands for protecting both data transmission and
user privacy, protocols and applications prefer to adopting encryption methods.
Under such a circumstance, the amount of the encrypted traffic has grown exten-
sively in current communication networks. A variety of encryption mechanisms
have been employed [47], such as SSH, VPN, SSL, encrypted P2P, VoIP etc. These
encryption algorithms are different from each other, since some encrypted data
packets locate in the transport layer, while others locate in the application layer,
which make the classification of encrypted traffic difficult and hence impose a
huge challenge on the network traffic classification [48]. Moreover, even if the
same encryption algorithm is utilized, the encrypted traffic can exhibit different data
distributions because of the different distributions of the original traffic.

Traditional port-based traffic identification methods have unsatisfied perfor-
mance on the classification of encrypted traffic since they utilized the official
standards defined by the Internet assigned numbers authority (IANA) to identify the
type of applications. However, some protocols did not follow those standards, such
as P2P protocol utilized the random port, and HTTP protocol used the 80 port for
disguising. Moreover, some deep packet inspection (DPI) based methods conducted
the traffic classification by regular expression for matching the payload data,
while the payload of the encrypted packet was changed relying on the encryption
algorithm. Consequently, the DPI based methods could only identify those coarse-
grained protocols such as SSL but completely failed to identify the encrypted traffic.
In addition, most of the machine learning aided traffic classification methods [49–
51] were based on manual extraction of data packets or their statistical features
at the data flow level to train the classifier, such as the duration of a flow, the
total number of packets, the length of a packet, the number of the bytes contained
in a flow, as well as the interval of the packet arrival. Since these characteristics
require prior knowledge and experience, the extraction of them would also be time-
consuming. More importantly, it cannot be guaranteed that these features are really
helpful in improving the performance of classification. Therefore, to the best of our
knowledge, all of these aforementioned methods cannot achieve preferable results
on the encrypted traffic classification problem.

Recently, deep learning has rapidly developed and has witnessed its great
success in a variety of areas, such as computer vision (CV), speech recognition,
natural language processing (NLP), etc. Meanwhile, deep learning methods have
been widely used in the scenario of communication networks. Network traffic
classification can be regarded as a common classification problem in the field of
machine learning, and some papers [52–56] have proposed the application of deep
learning methods in solving such a problem. Nevertheless, most of them utilized
CNN to extract the features from the traffic flow without considering the timing
features among different packets. In this work, we propose to utilize LSTM for
network traffic classification tasks, which cannot only omit the complex feature
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engineering but also automatically learn the temporal relationship between traffic
flows. The specific contributions of this work can be summarized as follows:

• We treat the network traffic flow as time series and analyze it as text data with
the aid of LSTM model. Experimental results yield the best representation of the
network traffic, where each flow contains 10 packets and each packet contains
1500 bytes.

• Two models are proposed for encrypted traffic classification, i.e., attention based
LSTM and hierarchical attention network (HAN). The attention based LSTM
focuses more on important data packets in the traffic flow, while HAN is capable
of distinguishing the role of different bytes in each packet during the process of
classification.

• Simulation results demonstrate that the classification accuracy rate of our pro-
posed model can achieve 91.2%, which outperforms traditional machine learning
based methods.

3.3.1 Methodology

3.3.1.1 Dataset

As aforementioned, the dataset and evaluation criteria are not consistent in the
network traffic classification. In such a case, the models and algorithms proposed
in existing works cannot be compared with each other in terms of a common
benchmark. In this work, we focus on the ISCX VPN-NonVPN dataset [57], which
contains two levels of traffic classification tasks. The first level is identification of
protocol types (chat, email, etc.), while the second level is the identification of
application types (Facebook, Skype, etc.). We classify them from the perspective
of the protocol type in this work which contains 6 kinds of non-VPN data and 6
kinds of VPN data. The dataset is saved in the form of pcap file, where the name of
each file is specified by protocol. In addition, those two kinds of data, i.e., VPN and
NonVPN, allow us to train the classifier for the encrypted packets. The original
dataset is about 35G, so we execute the data preprocessing process on Hadoop
platform, and the data after processing is about 1G. In addition, since we need to
perform multiple sets of comparison experiments to select the best hyperparameters,
our algorithms are distributed based on TensorFlow to reduce training time.

3.3.1.2 Data Preprocessing

In order to facilitate the training model, we need to store the original packets in the
form of pcap format according to three structures, i.e., category, flow, and packet.
Data preprocessing consists of the following four stages: traffic flow segmentation,
unwanted field removal and data normalization, time-series data representation, and
the segmentation of training set and test set. The process of data preprocessing is
shown in Fig. 3.16.
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Fig. 3.16 The flow diagram
of data preprocessing

1. Traffic Flow Segmentation
Let us take each network traffic flow .Fi, i = 1, 2, 3, . . . , N for example, which
consists of multiple data packets .Pj , j = 1, 2, 3, . . . ,M . We utilize a five-tuple
including the source IP, destination IP, source port, destination port, and transport
layer protocol such as TCP and UDP, to identify a traffic flow. Packets having the
same five-tuple belong to the same traffic flow. In particular, we put the source-to-
target and target-to-source packets together to form bidirectional flows. In such
a case, we can use the SplitCap tool to split the original pcap files into many
bi-flows. Then, we saved each bi-flow as a small file in the form of pcap file and
label the data with the corresponding file name. The number of flows that each
class contains is shown in Fig. 3.17. In such a case, we can use the SplitCap tool
to split the original pcap files with the aid of the above-mentioned five-tuple.
Then, we save the data of each flow as a small file in the form of pcap file and
label the data with the corresponding file name. The number of flows that each
class contains is shown in Fig. 3.17.
As we can see from Fig. 3.17, there is a distinct difference between the data
with different category, which is extremely unbalanced. Therefore, we use
cost-sensitive learning method to reduce the impact of unbalanced dataset.
Furthermore, some files may generate a large amount of flows after segmentation,
and thus we are able to choose a portion of the flows and abandon the rest.
However, because of the difference of preprocessing methods used, the final
datasets may be very different.
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Fig. 3.17 The distribution of different classes of data

2. Unwanted Field Removal and Data Normalization
Each packet consists of multiple protocol layers, so we can use all data or just
the application layer (L7) data for classification. We will verify which is better
in Sect. 3.4. In attention, because the dataset was collected by several fixed IP
addresses where each IP address is responsible for collecting data of a certain
protocol type, it can mingle external information so that the experimental results
are greatly biased when using all data. Therefore, we chose to delete the data link
layer information and IP address [53]. As for data normalization, considering
the packets consisting of binary strings, each byte consists of 8 bits and can
be represented as a decimal number in the range of [0–255]. The input of neural
network needs to be normalized, so we normalize each byte in the range of [0–1].

3. Time-Series-Data Representation
In order to use the traffic flow as an input to the model, we need to represent it as
an N*M-dimensional matrix, where N means the number of packets in a traffic
flow and M means the number of bytes in a packet. If a packet contains less than
M bytes, we need to pad 0 after its data until its length reaches M . While if the
packet length is larger than M , it needs to be truncated to retain only the first
M bytes. The same method will also be used to N . This method can solve the
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Fig. 3.18 The distribution of the length of traffic flow and the length of packet

problem of variable length sequences. Moreover, we use 0 as the padding value,
which does not bring any additional information and bias to the classification
result because if the input of neural network is 0, then the output is also 0. To
determine the best values for N and M , we first visualize the data distribution as
shown in Fig. 3.18.
From Fig. 3.18, we can conclude that most of the data consists of only two data
packets because the dataset contains many domain name system (DNS) protocol
packets. We will construct a comparison experiment in section 5 to verify the
impact of the DNS flows. In order to determine the optimal length of traffic flow
N , we take experiments with the length of .N = 5, .N = 10, and .N = 20 to
determine the hyperparameter, respectively.
Moreover, in Fig. 3.18, the number of bytes contained in the packet .Pj is mainly
distributed at both ends. In order to determine the optimal length of package
M , contrast experiments with .M = 500, .M = 1000, and .M = 1500 are
conducted. Once the best choices for N and M are determined, a traffic flow
can be represented as a matrix of .N × M , and the value of each element in the
matrix is between 0 and 1, i.e., each traffic flow is represented as a matrix of
.N × M as an input sample of LSTM. Figure 3.19 portrays the representation of
each traffic flow.

4. Dataset Segmentation
In the stage of dataset segmentation, in order to ensure the generalization ability
of the model and the credibility of the experimental results, we adopt the tenfold
cross-validation method. The dataset is randomly divided into 10 parts. Next, the
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Fig. 3.19 The matrix representation of traffic flow

Table 3.5 The statistical
information of dataset

VPN Non-VPN

Training set 15,545 22,706

Validation set 1943 2838

Test set 1943 2838

training–validation–test sets are randomly selected in the manner of 8-1-1 for 10
times, and the final result is averaged. Specifically, the validation set is used to
determine the hyper parameters in the experiment, while the test set is conceived
for representing the final model effect. Finally, the statistical information of
dataset is shown in Table 3.5.

3.3.2 Attention Based LSTM and HAN Architecture

Considering the network traffic as time-series data, we used the improved RNN
for modeling it in this section. Because the sequence of traffic data is very
long, for example, there are 1500 bytes per packet in our dataset, so we use
LSTM [60] instead of the original RNN. The reason is that LSTM can remove or
add information to the hidden state vector with the aid of the gate function. This
means that LSTM can retain important information in hidden layer vectors.

There are three gate functions, i.e., the forget gate, the input gate, and the output
gate. The forget gate is used to control how much information in .Ct−1 is retained
in the process of calculating .Ct . The forget vector .ft can be given by

.ft = σ(Wf · [ht−1, xt ] + bf ), (3.13)

where .Wf and .bf are the parameters of forget gate, .xt is the input vector in step t ,
and .ht−1 is the hidden state vector in step .t − 1.

Moreover, the input gate decides how much information of .xt is added to .Ct ,
which can be express as
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.it = σ(Wi · [ht−1, xt ] + bi), (3.14)

where .Wi and .bi are the parameters of input gate, and hence .Ct can be calculated
relying on forget gate vector .ft as well as on the input gate vector .it , i.e.,

.Ct = ft · Ct−1 + it · C̃t , (3.15)

where .C̃t = tanh(WC · [ht−1, xt ] + bC) denotes the information represented in the
hidden layer vector.

The output gate controls the output in .Ct , and we have

.

ot = σ(Wo · [ht−1, xt ] + bo),

ht = ot · tanh(Ct ),
(3.16)

where .WC , .Wo, .bC , and .bo are the parameters of output gate, and .Ct is the internal
state in step t . However, the length of the packet is large so that the LSTM model
cannot memorize all of the information. Besides, the long sequence may also
produce gradient explosions and gradient vanishing during the training process.

To address the long-term dependence of time-series data, in [61], Bahdanau et al.
utilized the attention mechanism to the seq2seq model, which was used to calculate
the weight of all hidden vectors, as shown in the following.

.ui = tanh(Wphi + bp), (3.17)

.αi = exp(uT
i us)

�j exp(uT
j us)

, (3.18)

.c =
∑

i

αihi, (3.19)

where .Wp, .bp, and .us are all parameters that need to be trained, while .ui is the
importance score of each packet, and .αi is the normalized weight. We have .�iαi =
1. In fact, the above calculations are equivalent to using a fully connected neural
network to calculate the weight of each vector and then weighting each hidden layer
vector with the weighted value to obtain the intermediate vector c. Based on this
attention mechanism, in the following, we propose the attention based LSTM and
HAN [62] for network traffic classification.

3.3.2.1 Attention Based LSTM

The attention based LSTM neural network structure diagram is shown in Fig. 3.20,
where each packet .Pi is encoded into an input vector by a Bi-LSTM model. The

hidden layer vectors .
−→
hi and .

←−
hi are connected to form the context vector .hi = [.

−→
hi ,
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Fig. 3.20 The architecture
diagram of the attention
based LSTM model

Algorithm 3.2 Attention based LSTM
1: Input: Network flow data .F = {Pi |i = 0, 1, 2, . . . , N}
2: Output: The predict label predict of F

3: for .Pi in F :
4: .

−→
hi = LST M1(Pi)

5: .
←−
hi = LST M2(Pi)

6: .hi = [−→hi ,
←−
hi ]

7: end for
8: .c = ∑

i αihi (Eqs. (3.17)–(3.19))
9: .predict = sof tmax(f ullyConnect (c))

.
←−
hi ], where .hi represents the encoding vector of each packet and it contains the
information of the preceding and following packets. Then the attention mechanism
is used to calculate the weight of .hi . As shown in Eq. (3.19), we multiply each
vector by their weight and add them up. Finally, we obtain the encoder vector c of
the traffic flow.

The pseudo-code of Algorithm 1 is shown in Algorithm 3.2.



74 3 Intelligent IoT Network Awareness

Fig. 3.21 The architecture diagram of HAN model

3.3.2.2 HAN Architecture

The HAN architecture is a kind of neural network structure proposed by Yang et
al. [62] in the scenario of text classification. It is similar to attention based LSTM
except that two layers of LSTM networks are used to encode each packet and flow,
separately. The architecture diagram is shown in Fig. 3.21.

The first layer of the LSTM network uses each byte .bj in the packet as input and
processes only one byte and encodes it at each time. Therefore, the rolled step of the
LSTM is as large as the length of the packet. Each .bj is encoded as a hidden vector

.hj = [.
−→
hj , .

←−
hj ]. Then, it uses the attention mechanism to calculate the weight of each

byte and performs a weighted summation for getting the vector .pi , which represents
the information in each packet. The second layer of the LSTM network is used to
exactor the encoder vector of the whole flow F , where .pi is encoded as the input
of the second LSTM layer at each time, and the attention mechanism is also used to
calculate the importance score of each data packet. Moreover, weighted summation
is performed to get the representation vector F of the traffic flow. The pseudo-code
of Algorithm 2 is shown in Algorithm 3.3.
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Algorithm 3.3 HAN architecture
Input: Network flow data .F = {Pi |i = 0, 1, 2, . . . , N}

2: Output: The predict label predict of F

for .Pi in F :
4: for .bj in .Pi :

.
−−−→
h(bj ) = LST M1(bj )

6: .
←−−−
h(bj ) = LST M2(bj )

.h(bj ) = [−−−→
h(bj ),

←−−−
h(bj )]

8: end for
.ci = ∑

j αjh(bj ) (Eqs. (3.17)–(3.19))

10: .
−→
hi = LST M1(ci)

.
←−
hi = LST M2(ci)

12: .hi = [−→hi ,
←−
hi ]

end for
14: .c = ∑

i αihi (Eqs. (3.17)–(3.19))
.predict = sof tmax(f ullyConnect (c))

3.3.2.3 Output Layer and Objective Function

We can choose one of the above-mentioned two methods to encode the traffic flow
into the vector c, which is the input of the full-connection layer. The processed result
is then sent to the softmax layer for obtaining the probability .ŷi . We utilize a dropout
in the full-connection layer for the sake of increasing the generalization ability of
the model and keep the probability of the dropout as 0.8.

Cost-sensitive learning is used because of the serious class imbalance problem
in the training data. Cost-sensitive learning means that the cost of mis-classification
in different class is varying, so we introduce a cost vector .cn ∈ [0,∞)K for each
sample where each dimension means the cost of classifying the sample as k-th class.
The loss function proposed in [63] is used to calculate the loss of each sample as
follows:

.δn,k = ln(1 + exp(zn,k · (rk(xn) − cn[k]))), (3.20)

where .δn,k represents the loss of classifying the n-th sample as k-th class, .rk(xn)

represents the k-th dimension of the neural network output vector, .cn[k] represents
the k-th dimension of the cost vector, .zn,k indicates whether the n-th sample is k-th
class, and its calculation formula is .zn,k = 2[cn[k] = cn[yn]] − 1. The advantage of
this loss function is smooth and differentiable so that it can be used as the objective
function of the neural network to perform the back propagation directly. Therefore,
the objective function is as follows:
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.L(θ) =
N

∑

n=1

K
∑

k=1

δn,k. (3.21)

In order to get prediction label of the model, the following formula can be used:

.ŷn = argmin
1≤k≤K

rk(x). (3.22)

3.3.3 Experiments and Result Analysis

3.3.3.1 Experimental Environment

The experimental environment is listed as follows: Ubuntu 14.04 OS, TensorFlow
1.4.0, Python 2.7, NVIDIA 1080Ti graphics, and 16G memory. In order to prevent
the over-fitting phenomenon, the dropout technique is utilized and its probability
is set as 0.8 during the training process. As for the optimization method, Adam
optimization is employed and the initial learning rate is set as 0.001. Meanwhile,
we have used Relu as the activation function. Moreover, the batch size is 64 and
the program is trained for 30 epochs. The major parameters in both models include
the .lstm_size of LSTM cell, the .hidden_size of the fully connected layer, and
the .out_size of the output layer which is selected according to the number of
output classes. The .lstm_size and .hidden_size are both the dimension of vector
which encoded the information of the flow. Because the shape of a flow is similar
to the shape of an article, we can refer to the hyperparameter setting in the text
classification task [62]. A vector of approximately 100 dimensions is sufficient to
solve this problem. Specially, in the attention based LSTMmodel, we set .lstm_size
as 100 and .hidden_size as 128, while in HAN, the first layer is used to encode the
packet which is a long sequence, and the second layer is used to encode the entire
flow, so we set .lstm_size in both LSTM layers as 128 and .hidden_size as 128. As
for the input shape of the model, it is selected according to the following experiment.

3.3.3.2 Evaluation Metrics

In order to evaluate the experimental result, we use four evaluation criteria, i.e.,
accuracy (acc), precision (P ), recall (R), and F1 score (F1). Because encrypted
traffic classification is a multi-category task, we need to separately calculate the
above indicators for each category. Specially, we use N as the total number of
training samples; .T Pc is to indicate the quantity that originally belongs to category
c and is predicted by the model as c; .FPc indicates the quantity that originally
does not belong to category c but is predicted by the model as c; .T Nc indicates the
quantity that does not belong to category c and is not predicted to be class c; and
.FNc indicates the quantity that it belongs to class c but is misclassified to other
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class. Hence, the definition of aforementioned four evaluation metrics can be given
by

.Pc = T Pc

T Pc + FPc

, Rc = T Pc

T Pc + FNc

, F1c = 2PcRc

Pc + Rc

, (3.23)

.acc =
∑C

c=1 T Pc

N
. (3.24)

Traffic Representation Evaluation

In order to test the performance of the proposed model, four experimental scenarios
in [54, 57] are used in this work. The first task is the protocol encapsulated traffic
identification, which is a two-category problem. Moreover, the second task is the
regular encrypted traffic classification, which is a six-category problem. The third
one is the protocol encapsulated traffic classification, which is also a six-category
problem. The difference between second and third tasks is the datasets used. To
elaborate, the second task uses the VPN dataset, while the third task relies on
NonVPN dataset. Finally, the last task is the encrypted traffic classification, which
is the most difficult task, because it is a twelve-category problem. The details of
aforementioned experiments are given in Table 3.6.

Table 3.7 shows the results with attention based LSTM for different dataset
processing methods. There are two main variables: whether to remove the DNS
flows and whether to use all data or only L7 data. All data means the data after
removing data link layer and IP address. The results show that it is better to retain
the DNS flows. The reason is that DNS is used for hostname resolution, which is
closely related to the host. They are easier to identify than other encrypted flows and
bring some bias in the results. So we should remove the DNS flows from the dataset.
In addition, the accuracy of using all data is 2–3% higher than only using L7 data
which is similar with [54]. This is because all data contains the transport layer and
part of the network layer information, such as the port number and packet length,

Table 3.6 The description of
contrastive experiments

Description Class num

1 Protocol encapsulated traffic iden-
tification

2-classes

2 Regular encrypted traffic classifica-
tion

6-classes

3 Protocol encapsulated traffic classi-
fication

6-classes

4 Encrypted traffic classification 12-classes
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Table 3.7 The accuracy of
different processing methods

With DNS Yes No

Packet data All data L7 data All data L7 data

Exp 1 1.000 0.964 0.997 0.951

Exp 2 0.898 0.859 0.893 0.844

Exp 3 0.970 0.934 0.948 0.920

Exp 4 0.936 0.905 0.912 0.886

Table 3.8 The accuracy result of different length of flow and packet

Parameter 5,500 5,1000 5,1500 10,500 10,1000 10,1500 20,500 20,1000 20,1500

Acc 0.891 0.897 0.891 0.904 0.908 0.912 0.899 0.906 0.902

We highlight the highest accuracy and lowest latency of experimental results, which correspond
to the method with better performance.

which are helpful for classification. Therefore, we will use all data to represent the
traffic flow and remove the DNS flows.

In order to find the best network traffic flow representation method, we perform a
grid search on both the length of the traffic flow N and the length of the data packet
M . The value range of N is [5, 10, 20] and that of M is [500, 1000, 1500]. The grid
search performs 9 sets of experiments based on a combination of different values of
N and M , while the other parameters remain unchanged. The experimental results
are shown in Table 3.8.

In the Table 3.8, when .N = 10 and .M = 1500, the classification accuracy
is highest so that we chose it as the hyperparameters. In order to show the effect
of the model in different categories in detail, we draw Fig. 3.22a based on the F1
value. After analyzing the F1 score for each category considered, we can conclude
that the F1 scores of NonVPN’s chat and NonVPN’s email protocol are very small
because some relatively short traffic flows may involve more frequent interactions.
The distribution difference between traffic flows is relatively large, which leads to a
poor performance of the classification. Therefore, we can conclude that when .N =
10 and .M = 1500, the classification of the chat class is better. We need to use a
larger amount of data to learn this type of protocol with a large difference in data
distribution.

Performance Comparison with the State of the Art

We choose .N = 10 and .M = 1500 as hyperparameters and use the attention
based LSTM and HAN models to perform traffic classification tasks in the above-
mentioned four experimental scenarios. The experimental results are shown in
Table 3.9, followed by more details in Appendix B.

From Table 3.9, we can conclude that the models can handle the two-category
classification problem correctly. As described in the introduction, the traffic is
encrypted to exhibit a completely different distribution, such that the model can
easily distinguish them. In addition to the C4.5 decision tree proposed in [57],
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(a)

(b)

Fig. 3.22 The F1 score and precision. (a) The F1 score of different length of flow and packet. (b)
The precision of all four experiments
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Table 3.9 The accuracy of five models in four experimental scenarios

Attention based LSTM HAN Deep packet One-dim CNN C4.5 decision tree XGBoost

Exp 1 0.997 0.995 0.992 0.990 0.900 0.991

Exp 2 0.893 0.851 0.868 0.818 0.890 0.841

Exp 3 0.948 0.929 0.923 0.986 0.870 0.918

Exp 4 0.912 0.895 0.898 0.866 0.800 0.864

We highlight the highest accuracy and lowest latency of experimental results, which correspond to
the method with better performance.

Table 3.10 The training runtime of five models in experimental 4

Attention based LSTM HAN Deep packet One-dim CNN XGBoost

One batch 0.05 s 1.48 s 0.1 s 0.02 s –

Total 1783.6 s 53,149 s 3600 s 720 s 300 s

all other methods work better on the VPN dataset than the Non-VPN dataset. As
shown in [54], each protocol has different distributions after encryption, which can
contribute to the distinction. The deep learning method can learn and extract the
distribution features of encrypted traffic, thereby more accurately distinguishing the
encrypted traffic.

In scenarios 1, 3, and 4, the attention based LSTM model achieves the best
experimental results and has a significant performance improvement compared with
Deep Packet [53], one-dim CNN [54], decision tree [57], and XGBoost models. The
accuracy of the two-category classification is directly improved up to 0.997. The
most significant improvement is the twelve-category classification in comparison to
one-dim CNN, which increases by 5%, to NonVPN, which increases by nearly 7%.
The overall performance of HAN is not as good as that of attention based LSTM,
while it is still much better than that of one-dim CNN and decision tree models in
scenarios 1 and 4. But the performance of HAN in two six-category classification
problems is poorer than that of the one-dim CNN. The results of the Deep Packet
model are the closest to attention based LSTM but better than the HAN model.
The Deep Packet model classifies traffic flow using two-layer CNN and seven fully
connected layers. It is a little complicated so that the speed of Deep Packet is slower.
In terms of processing speed, XGBoost is the fastest, then one-dim CNN, attention
based LSTM, Deep Packet, HAN. The training runtime of these models is shown
in Table 3.10. We can see that the time consumption of HAN is very large, mainly
because the length of its first LSTM is too long, while other models are relatively
faster.

In order to analyze the experiment results in detail, we show in Fig. 3.22b
the precision of a model in different categories. It can be seen that the attention
based LSTM performs the best. However, its precision in the streaming and VoIP
categories is lower than one-dim CNN. This is because the traffic in these two
categories is too huge for LSTM to learn the long-term relationship.
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(a) (b) (c)

Fig. 3.23 The F1 score of each class, where the red bar represents F1 score of attention based
LSTM model, while the blue bar represents that of HAN model. (a) The F1 score of each class in
scenario 2. (b) The F1 score of each class in scenario 3. (c) The F1 score of each class in scenario 4

In addition, the overall performance of the proposed two models has a relatively
high improvement compared with the previous models with the following two
reasons:

• Firstly, we treat the network traffic as time-series data and use the LSTM for
processing. In comparison to the CNN model, RNN is capable of learning the
relationship between adjacent packets, where each hidden layer state records
relevant information of all previous packets in order to learn its long-term
dependency.

• Secondly, we use the attention mechanism to improve the accuracy of the LSTM
classification. The weighted summation of all historical state information is used
as the final coding vector. Compared with the use of the latest hidden layer vector,
more historical information is included.

In order to clearly show the classification effect of attention based LSTM and
HAN, we transform the F1 scores of each class in scenarios 2, 3, and 4 into bar
graphs, which are shown in Fig. 3.23.

Packet Importance Distribution

For the sake of exploring the importance of each packet in the final classification,
we need to visualize the weight value .αi of each packet. The result is shown in
Fig. 3.24. The test set is divided according to the category, and the attention vector
c is calculated to obtain the average attention vector of the entire dataset. Each
category has a different attention vector, which represents the contribution of each
packet imposed on different categories. The basic focus is on the first four data
packets, because the packets at the end of the traffic flow hardly contribute features
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Fig. 3.24 The weight distribution of different packets in (a) NonVPN dataset and (b) VPN dataset

except those belong to protocols, such as streaming, torrent, and file. As we all know,
the first few packets carry more protocol-related information in the transmission of
the traffic, such as the three-way handshake of the TCP protocol. In other words,
our model does learn this important feature and increase the weight of the first
few packets. In addition, we also analyze the importance of different bytes of data.
Similar to the distribution of packets, important bytes are concentrated in the header
of the data. This is because the bytes that contain category information are often
located at the header of each packet in traffic.

3.4 Distributed Variational Bayes-Based In-network Security

Recently, the Internet of Things (IoT) has become a disruptive force reshaping our
lives and works. According to Gartner’s perspective, it is estimated that there may
be a total of 20 billion connected IoT devices by 2025 [64, 65]. However, with the
numbers of IoT devices increasing, so does the number of insecure IoT devices in
the network. Network security, especially the DDoS attack, has presented a great
challenge [66]. DDoS attacks are designed to consume the limited resources on a
target service host through a large number of legitimate and useless requests [67–
69]. Vulnerable IoT devices as a DDoS vector can be easily hijacked to spread
malware, recruited to form botnets to attack other Internet users. The GitHub DDoS
attack of 2018 as an example. This was the first multi-terabyte/s DDoS attacks
(1.3 TB/s attack) against the cloud-based code hosting platform, which have been
bringing large organizations to their knees.

Traditional DDoS detection and mitigation solutions often adopted out-of-band
architecture. As shown in Fig. 3.25, it is a typical out-of-band DDoS detection and
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Fig. 3.25 Typical DDoS attacks and detection in IoT

mitigation solution in current networks. This design is accomplished by processes
that receive monitoring data from NetFlow, sFlow, or IPFIX in each switch and
then analyzes that flow data to detect attacks. In this design, due to the scale and
cost, DDoS detection cannot monitor all network traffic [70]. The network operator
must set some static mirror rules on the edge router to mirror part of the traffic.
Therefore, for highly distributed and complex attacks, devices can either scale to
detect megabits per second and millions of connections or can monitor small-scale
traffic with low accuracy. Especially, facing such a huge number of IoT devices, this
approach is confronted with limited processing capacity, bandwidth resources, and
service assurance, especially with the number of IoT devices increasing [71–74].

Recently, with the development of programming switch, it allows the packet
processing behavior, including the type, sequence, and semantics of processing
operations, to be reconfigured on the fly in a systematic fashion [75]. As such,
programmable switches open up new possibilities for aggregating traffic statistics
and identifying abnormal traffic flows directly in the data plane [76]. The DDoS
detection mechanism could be migrated from the edge to the core of networks.
In other words, the deployment of security mechanism for in-network will set up
programmable data plane defenses into the network paths and synchronize the
whole-network defense.

The advantages of the in-network DDoS detection solution are as follows:
under any type of attack, it can use the least memory and resource consumption
to achieve high scalability and line speed performance; it has high accuracy
and almost negligible false alarm probability; programmable data plane allows
customers to flexibly customize DDoS detection methods and mitigation schemes;
and fine-grained statistical data allows customers to quickly identify the attacked
applications and services. The in-network solution will undoubtedly enhance the
DDoS detection performance. However, with the DDoS detection responsibility
shifted to each switch, how the geo-distributed switches can cooperatively learn
the distributed DDoS detection strategies is a critical problem. Meanwhile, how
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to design the effective algorithm considering the time complexity and accuracy in
matching requirements desires our concern on account of the lower computational
performance of hardware devices.

In this work, inspired by the recent success of distributed machine learning
in classification problems, we present a lightweight machine learning-based in-
network DDoS detection scheme. We propose a hybrid variational Bayes algorithm
for DDoS detection, where the variational Bayes method provides a local opti-
mization with an approximate posterior method. With the massive data in DDoS
detection, it turns the problem from statistical inference into optimization, greatly
reducing the computational cost. In addition, a centralized platform is introduced
to synchronize parameters among distributed switches to realize the collaborative
learning of the DDoS detection policy. Some simulation results are presented to
evaluate the correctness of our architecture and algorithm.

The main contributions of our work are summarized as follows:

• We construct an in-network security architecture for DDoS detection, where the
distributed switches can collaboratively learn the independent DDoS detection
policy through a centralized parameter synchronous platform.

• We propose a hybrid variational Bayes algorithm in our architecture for detecting
the DDoS attacks in the IoT. The lightweight distributed Bayes algorithm can
dynamically learn DDoS detection strategies.

• Extensive simulations are conducted to demonstrate the convergence and effi-
ciency of our mechanism.

3.4.1 System Model and Problem Formulation

As shown in Fig. 3.26, consider a network with a set of switches denoted as .N =
{1, . . . , n}. Within a time interval .	T , the flow data collected by node i can be fitted
as Gaussian mixture model (GMM) byK characteristic components. We regard flow
K’s characteristics of each traffic information as indicators to evaluate the flow data.

Taking node i as an example, it transmits packets. In our work, a network
composed of N nodes consists of a series of nodes .V = {1, . . . , N} and a series of
edges .γ . Each pair of edge .(i, j) ∈ γ connects a different pair of an unordered node.
For each node .i ∈ V , we use .Ni = {j | (i, j) ∈ γ } to represent the neighbor nodes
of i. The distance between neighbor nodes is called the communication distance.
There is no interaction when the distance between two nodes is larger than the
preset value. In the node i, it will receive the flow data .xij (i = 1, 2, . . . , n, j =
1, 2, . . . , ni). Furthermore, the .μk is average and .�−1

k is the covariance of the
Gaussian distribution for each component of data .Ni .

Considering the correlation among data by order and the high dimension of the
parameter matrix, we introduce the discrete hidden variable: .yi . Local distribution
of each node can be expressed as
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Fig. 3.26 Traffic collection in DDoS attacks

.P({xi}N | yi, μ,�) =
Ni∏

j=1

K
∏

k=1

N(xij | μk,�
−1
k )

Nyijk , (3.25)

where .yi = {yi1, yi2, . . . , yiNi
}i , .yij = {yij1, yij2, . . . , yijk}. The prior distribution

of .yi is the product of multinomial distributions, conditioned on the mixing coeffi-
cient. The prior distribution of the mixing coefficient is a Dirichlet distribution, and
the prior distribution of the mean is specified as multivariate Gaussian distribution,
conditioned on the precision matrix. The prior distribution of the precision matrix
is a Wishart distribution. Using these priors distributions and the conditional
independence relationships, the generate model of each node i can be expanded
as

.

P({xi}N, yi, π, μ,�) =P({xi}N | yi, μ,�)P (yi | π)

P (π)P (μ | �)P (�).
(3.26)

Under the mean field theory hypothesis, the joint variational distribution of unob-
served variables can be decomposed into

.q(yi, π, μ,�) = q(yi)q(π)

K
∏

k=1

q(μk | �k)q(�k). (3.27)

In this way, we construct the system model according to a sets of characteristics of
traffic and observe the independent parameters separately so that we can simplify
the classification problem as optimization problem. For a clear understanding, we
list the notations of this work in Table 3.11.
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Table 3.11 Majority notations

Notation Description

N Number of nodes

i The sequence of each node, .i = 1, 2, . . . , N

j The neighbor node of node i

.Ni A set of the neighbor nodes of node i

.xij Number of observed data of node i

.yi The discrete hidden variables of node i

K Number of characteristics of the data

.�k The covariance matrix of the k component of the dataset
.xij , .k = 1, 2, . . . , K

.μk The average of the k component of the dataset .xij , .k =
1, . . . , K

.θ Parameter of the model

z Unobserved variable

.πi Mixing coefficient of node i

.φθ,i Global natural parameter vector of node i

.P(z|x) Posterior probability of unobserved variables

.Q(z) Approximate of .P(z|x)

.�(Q) Lower bound of evidence .logP (x)

repeat Number of iterations

.η Time-varying step size

3.4.2 Hybrid Variational Bayes Algorithm

In this section, we will describe an in-network security architecture and propose a
hybrid variational Bayes algorithm for in-network DDoS detection.

3.4.2.1 In-network Security Architecture

With the DDoS detection responsibility shifted to each switch, it acts as an
independent intelligent agent and constitutes a Multi-Agent System. How the
geo-distributed switches can cooperatively learn DDoS detection strategies is a
critical problem. Inspired by the recent success of distributed machine learning in
classification problems, in this section, we construct a distributed machine learning-
based in-network security architecture. As shown in Fig. 3.27, the attack flows
mixed with normal flows are transmitted through distributed switches randomly.
During a processing period, neighbor switches exchange local information and
iterate to update local parameters. The centralized platform collects the current
processing results, flags the abnormal traffic, and calculates the global parameter
for the next processing phase. The co-work of centralized platforms and switches
can effectively reduce the communication overhead among switches.
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Fig. 3.27 A machine learning-based in-network security architecture

3.4.2.2 Hybrid Variational Bayes Algorithm

In this section, we propose a hybrid variational Bayes algorithm for effectively
distributed DDoS detection policy generation. The hybrid variational Bayes is a kind
of Bayesian inference method. While the traditional Bayesian inference can avoid
the over-fitting of the maximum likelihood function to some degree, the posterior
probability is difficult to calculate in the mixed model. Variational Bayesian method
provides an approximate analytic solution for the posterior probability. We set
.θ represent model parameters, including unknown parameters and global hidden
variables. Therefore, .θ and .{y} can be collectively referred to as “unobserved
variables,” denoted as .z = {θ, y}. Variational Bayes uses the distribution .Q(z) to
approximate the posterior probability .P(z | x) of the unobserved variables. This
simple distribution .Q(z) is obtained by minimizing the KL divergence between
these two distributions.

.

KL(Q(z) || P(z | x)) =
∫

Q(z) log
Q(z)

P (z | x)
dz

= −EQ

[

log
Q(z)

P (z | x)

]

+ logP(x)

= −�(Q(z)) + logP(x),

(3.28)

where .�(Q) is the lower bound of logarithmic evidence .logP(x). To minimize
the divergence of KL, in which logarithmic evidence .logP(x) is fixed by the
corresponding Q, we just need to maximize .�(Q). By selecting the appropriate
distribution of Q, .�(Q) is easy to calculate and obtain the extreme value, which
gives an approximate analytic expression of the posterior .P(z | x) and the
lower bound of the evidence .�(Q), also known as the variational free energy. The
variational free energy can be expressed as the sum of an energy term and an entropy
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term:

.�(Q(z)) = EQ[logP(z | x)] + H [Q(z)]. (3.29)

Then, minimizing KL divergence is equivalent to maximizing the variational free
energy, in which case the inference problem becomes an optimization problem of
the distribution function. Based on the naive mean-field theory, the optimization
space of the optimization problem can be limited to a distribution subset that is
easy to describe. Assuming that the variational posterior distribution of unobserved
variables can be decomposed into

.Q(z) =
M
∏

m=1

qm(zm), (3.30)

where .z = {z1, z2, . . . , zm}. Under the family distribution of conjugate exponen-
tials, .Q(z) can be re-parameterized as

.q∗
m(zm) = h(zm)exp{φ∗T

m u(zm) − A(φ∗
m)}, (3.31)

where .q∗
m is the optimal distribution of .qm. Natural parameters can be seen as

functions of super parameters, without considering local variables and hidden
variables. The natural parameter vector of Dirichlet distribution is

.φπi
= [αi1 − 1, αi2 − 1, αiK − 1]T . (3.32)

Then we introduce the global natural parameter vector .φθ,i that belongs to the joint
distribution of the exponential family .q∗(πi)

∏K
k=1 q∗(μik,�ik).

.φθ,i = [

φT
πi

, φT
μi,1,�i,1

, . . . , φT
μi,k,�i,K

]T (3.33)

is the information interacted between two nodes. The distribution of the variational
form is known and remains unchanged throughout the iterative process, and there-
fore, the optimal distribution given by (3.33) can be determined and represented by
its natural parameter vector .φ∗

m.
The optimization of variational free energy can be directly optimized by natural

parameter vectors in parameter space instead of variational distribution optimization
in probability space. The variable distribution of the hidden variable y and the model
parameter .θ in VB algorithm alternate to maximize the lower bound of the variable,
which is similar to the EM algorithm.

.φ∗
y = argmaxφy �(φy, φ

∗
θ ). (3.34)

.φ∗
θ = argmaxφθ �(φ

∗
y , φθ ). (3.35)
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The joint distribution can be decomposed by conditional independence assumption
as

.

P(z, x) = P({xi | yi, θ})P (yi | θ)

= P(θ)

N
∏

i

P (yi | θ)

N
∏

i

P (xi | yiθ)

= P(z)

N
∏

i

P (xi | z).

(3.36)

The objective function, also the global lower bound, is replaced by the average of a
series of local lower bounds.

.

�(Q(z)) = EQ[logP(z, x)] + H [Q(z)]

= 1

N

N
∑

i=1

EQ[logP(z, x)] + EQ

[
P(z)

Q(z)

]

= 1

N

N
∑

i=1

�i(Q(z)).

(3.37)

In the formula (3.37),

.�i(Q(z)) = EQ

[

log
P(xi | z)NP (z)

Q(z)

]

, (3.38)

which is obtained from the inequality of the piano and the concavity of the
logarithmic function,

.�i(Q(z)) ≤ logEP(z)[P(xi | z)]N = logP({xi}N). (3.39)

Only if .Q(z) is exactly the given repeated observation data .{xi}N , also the posterior
distribution of the unobserved variable z, for (3.33),

.maxQ�(Q) = 1

N
�i(Q

∗) ≤ 1

N
�i(Q

∗
i ) = 1

N
�i(Q), (3.40)

where the .Q∗ is the optimal variational distribution that maximizes the global lower
bound .�(Q), and the .Q∗

i is the optimal variational distribution that maximizes the
local lower bound .�i . In other words, the global lower bound of logarithmic evidence
of complete observation data is strictly less than or equal to the average of the lower
bound of logarithmic evidence of repeated observation data on all nodes. In this
case the local lower bound on each node cannot be maximized separately to achieve
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a global optimal.

.φ∗
yi

= argmaxφyi
�i(φyi

, φ∗
θ ). (3.41)

.φ∗
θ = argmaxφθ

N
∑

i=1

�i(φ
∗
yi

, φθ ). (3.42)

Given the global natural parameter .φ∗
θ , the optimization of (3.41) can be addressed

individually on each node. In the case of fixed hidden variable variational distribu-
tion, the optimal variational distribution of global model parameters for each node
is .q∗

θ,i , whose corresponding natural parameter vector is .φ∗
θ,i . That means the local

lower bound .�i gets the maximization at .φ∗
θ,i while given the fixed .φ∗

yi
.

.φ∗
θi

= argmaxφyi
�i(φyi

, φθ ). (3.43)

Taking the derivative of .�i with respect to .φθ and set it to zero, we can get the general
solution to (3.38):

.φ∗
θ = 1

N

N
∑

i=1

φ∗
θ,i . (3.44)

Equation (3.40) is the average value of locally optimal natural parameters
calculated at each node. Usually, a centralized fusion center is the optimal choice for
this type of problem, in which case we can design a centralized VB algorithm using
the local optimal natural parameters of all nodes. However, considering the large
amount of network resources in DDoS attack and the low cost network system, we
propose a distributed estimation method to deal with this problem.

3.4.2.3 Knowledge Sharing

We explore vital features and analyze their weight of differentiating normal and
attack IoT traffic. When single switch calculates local parameter, we present the
process of knowledge sharing as follows:

As shown in Fig. 3.28, the gradient-based distributed estimation method does not
directly use first-order conditions on each node to obtain the locally optimal .φ∗

θ,i but
use stochastic gradient and a diffusion process to get the global natural parameter
approximately. We use .ϕθ,i to represent the intermediate quantity obtained by a
gradient ascent on node i. For each iteration, the update equation on node i can be
described as

.ϕt
θ,i = ϕt−1

θ,i + ηt�φθ �i(φ
∗
yi

, φt−1
θ,i ), (3.45)



3.4 Distributed Variational Bayes-Based In-network Security 91

Fig. 3.28 The process of knowledge sharing at a single switch

more plainly,

.φt
θ,i =

∑

j∈Ni∪{i}
ωijφ

t
θ,j , (3.46)

where the .�φθ �i represents the natural gradient over Riemannian space, the .ηt

represents the step length, and .{ωij } represents the nonnegative weights.
The iteration process (3.41)–(3.42) makes up a distributed implementation of

random variational inference, with each node performing once gradient ascent step
using local data. Process (3.42) diffuses all local estimates to the whole network,
seen as the process of collecting global sufficient statistics gradually through the
VB iteration process. The gradient-based method takes the estimator .φt−1

θ,i from the
last step into the consideration of (3.41), which is the result of diffusion of all nodes’
estimators across the whole network. Therefore, the convergence value of gradient
rise (3.41) is the solution of the global target function (3.37), not the solution of the
local target function of .�i . Literature clarifies that a distributed parameter space has
a Riemann metric structure, in which case the natural gradient follows the steepest
direction. According to this conclusion, the natural gradient of local lower bound
.�i(φ

∗
yi

, φθ ) with respect to .φθ can be simplified as

.

�φθ �i(φ
∗
yi

, φθ ) = �−2
φθ

A(φθ )�φθ �i(φ
∗
yi

, φt−1
θ,i )

= φ∗
θ,i − φt−1

θ,i .
(3.47)

An iterative formula for calculating global natural parameters for each node i is
integrated as



92 3 Intelligent IoT Network Awareness

.

φt
θ,i =

∑

j∈Ni∪{i}
ωijφ

t
θ,j

+ η
∑

j∈Ni∪{i}
ωij (φ

∗
θ,i − φt−1

θ,i ).

(3.48)

As our core formula of the algorithm, the optimization of the local lower bound
is transmitted to iteratively calculate global natural parameters for each node i. As
shown in (3.48), this process can be divided into two parts, of which the first term
spreads the information throughout the network, and the second term uses local data
and information from neighbors to gradually update the estimator.

In the natural gradient descent step, time-varying step size is selected as

.ηt = 1

d0 + τ t
. (3.49)

On the global network, each switch calculates the intermediate .ϕt
θ,i using local

data and then sends it to its neighbor, from which it receives the message .ϕt
θ,j . Since

the communication dimensions of the intermediate route and the computing amount
after distributed processing are much lower than that after centralized processing,
the method in our work saves communication resources and energy to a great extent.
The server collects and memorizes the result of each processing period and then
centrally regulates the processing of the next period.

Algorithm 3.4 Distributed variational Bayes algorithm
1: Initialization: Node i collects data .xi . Initialize natural parameters with no

information prior.
2: Set appropriate parameter .τ based on the result of last period from superior

network.
3: for each .t = 1, 2, . . . do
4: for all .i = 1, . . . , N do
5: .φ

∗,t
yi

= argmaxφy,i
�i(φy,i , φ

t−1
θ,i )

6: .φ
∗,t
θ,i = argmaxφθ �i(φ

∗,t
y,i , φθ )

7: Calculate natural gratitude .ϕt
θ,i .

8: Broadcast the .ϕt
θ,i to all the neighbor nodes of node i.

9: end for
10: for all .i = 1, . . . , N do
11: Calculate .φt

θ,i

12: end for
13: end for
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3.4.2.4 Complexity Analysis

As for the complexity of our proposed dVB algorithm, we use the EM algorithm
with the same logic to make the analogy. As well known, EM is almost identical to
the Lloyd variant of K-means, so each iteration requires .O(n∗k) distance calculation
and the worst case complexity of the EM algorithm is .O(n ∗ k ∗ i), a theoretically
infinite value. However, in our GMM model, the result of classification is 0 or 1,
and we selected the number of clusters used for classification as 3. Considering the
interaction between switches, the complexity is approximately .T ∗ O(3n), where T

represents the iteration times.

3.4.3 Experiment Results and Analysis

In this section, we present experiment results to evaluate our proposed framework
and algorithm. We firstly use the KDD 99 DATA to evaluate our algorithm.

3.4.3.1 Experimental Setup and Data Preprocessing

The KDD 99 DATA provides a standard dataset for evaluating the performance of
different algorithms, and it contains four gigabytes raw training data of the TCP
dump data from seven weeks of network traffic. In the original dataset, the DoS
flows are labeled as “back,” “land,” “Neptune,” “smurf,” “teardrop,” and “pod,” and
normal flows are labeled as “normal.” Considering the limited computing power
in switches, we use the random forest to rank the importance of different features
and leave the top one-thousandth important features, which can reduce runtime
computing complexity. Table 3.12 is listed in order of importance.

In learning process, it is common practice to divide data into training sets
and test sets. We use 10% of the dataset as the training data for our algorithms
training. The data label proportions are 44,118 label normal and 59,108 label
attack. The test sets are data independent of the training process. It is used to
evaluate the performance of the learned model. Besides, to avoid the overfit-
ting problem in the training process, we separate part of the training data into
validation data to evaluate the training effect of the model. We adopt fivefold
cross-validation in our training process. The result of fivefold cross-validation is
.[0.98324131 0.99287998 0.98721302 0.95141445
0.99346057]. It shows that a characteristic vector consisting of the above six
components can represent a single flow.

In each time period .	T , the switch receives a set of flows, which can be
represented as flow feature vectors. Then all flow data received by this node can
be fitted with a Gaussian distribution on each feature, seen as the component of
feature vectors. And all components of feature vector constitute a Gaussian mixing
model GMM. As shown in Fig. 3.29a, we establish a network with 20 switch nodes,
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Table 3.12 The characteristics and their occupation

Feature Description Occupation

SAME_SRV_RATE The percentage of connections that have the same
destination host as the current connection in the last two
seconds that have the same service as the current
connection

0.9644

DST_HOST_ SRV_COUNT Of the first 100 connections, the number of connections
that have the same destination host service as the current
connection

0.0151

COUNT Has the same number of connections to the target host as
the current connection in the last two seconds

0.0085

DST_HOST_SERROR_RATE Percentage of the first 100 connections that have the
same target host as the current connection that have SYN
errors

0.0060

SRV_COUNT The number of connections that have the same service as
the current connection in the last two seconds

0.0023

DST_HOST_COUNT Of the first 100 connections, the number of connections
that have the same target host as the current connection

0.0022
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Fig. 3.29 Experiment results and analysis. (a) Network topology. (b) The accuracy vs. the
iteration times

placed randomly in a .5 ∗ 5 square area, in which the communication limitation
distance is set as .0.8. There are very few switches adjacent to the top and bottom
nodes in the topology in our experiment, and in actual network deployments it
is even directly connected to the data center due to communication distance. We
deploy edge switches to handle unexpected but necessary traffic requests, as well
as to safeguard remote communications and backup services. In our algorithms, we
focus more on the interactions between switches, in which case the edge switch
in real network environment is represented by sparse connection and long distance
communication. There will be no information exchange between two nodes over
than the communication distance.
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The algebraic connectivity of the network was .0.2238 and the average
degree was .5.2000. In order to judge whether the traffic is normal or
abnormal globally, we use this network to collect and process traffic samples
distributively. The data flow is randomly divided among the 20 nodes, with each
dimension being (“dst_host_count,” “srv_count,” “dst_host_serror_rate,” “count,”
“dst_host_srv_count,” “same_srv_rate”).

3.4.3.2 Baseline Algorithm

In this work, we adopt several baseline algorithms to evaluate our framework.

1. Naive bayes
The first baseline algorithm is Naive bayes. One of the difficulties in statistical
inference under Bayesian framework is the complexity in calculating posterior
probability. The traditional Naive Bayes approach is equivalent to one fusion
center and multiple nodes, whose mathematical model is expressed as (3.50).

.P(c|K) = P(c)P (K|c)
P (K)

= P(c)

P (K)
�d

i=1P(ki |c), (3.50)

where we consider the factors of traffic characteristics to be independent of each
other. Here, we use c to represent the label of flow, as 0 or 1. Obviously, the
incoherence between nodes greatly save the time-consuming of the algorithm,
but it is not a good result for the correlation of various features in the case of
large traffic attacks.

Distributed Variational Bayes Without Cooperation

The second baseline algorithm is distributed variational bayes without cooperation
between neighbor nodes to further show the superiority of our proposed algorithm.
The fusion coefficient .ωij is determined using the simple nearest neighbor rule as
(3.51)

.ωij =

⎧

⎪⎨

⎪⎩

loss function = 1

|Ni + 1| , j ∈ Ni ∪ i

0, else.

(3.51)

2. Variational AutoEncoder (VAE)
The third baseline is the VAE. Moreover, VAE is derived from the variational
Bayes theory as well as DVB, in which case VAE is an excellent comparison
algorithm to test the merits of the algorithm we proposed. Similar to the formula
(3.28), the goal of VAE is to minimize the loss function as follows:
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.KL[Q(z) || P(z | x)] − log[P(x̂ | z)], (3.52)

where the .x̂ represents the output of the network. We use the backpropagation
for training VAE. VAE calculates the probability of reconstruction by deriving
the random latent variables of the parameters. What is being reconstructed is the
parameter of the input variable distribution, not the input variables itself. Using
these parameters, VAE can calculate the probability of the original data being
generated from the distribution. The average probability is named as the anomaly
score or the reconstruction probability mentioned above. The flow data with a
high probability of reconstruction will be classified as an attack. To deploy the
experiment, the continuous data feature distribution is still the Gaussian mixture
distribution.

3. Stacked Denoising Autoencoder (SDAE)
The forth baseline we use is the SDAE with dropout [77]. In recent years, many
researches have focused on the advanced autoencoder to construct an intrusion
detection system [78–80]. In [81], the authors have proved that SDAE had higher
accuracy and shorter running time than other deep learning methods such as
DBN. In general AE, the hidden layer activation is

.h(k)(x) = g(a(k)(x)), (3.53)

where .a(k) represents the pre-activation value in layer k and .g(·) is the activation
function. It is easy to be overfitting when using a complex model such as deep
neural network. Compute gradient of hidden layer as equation (3.53).

.

∇W(k)L(W, b; x, y)

= (∇
a

(k)(x) L(W, b; x, y))h(k−1)(x)T ∇b(k)L(W, b; x, y)

= ∇
a

(k)(x) L(W, b; x, y),

(3.54)

where .W(k) is the weight matrix in layer k and .b(k) is the offset in layer k.
Generally, an auto-encoder uses the long short term memory (LSTM) to predict.
To speed up the process, SDAE fine-tunes the parameters using stochastic
gradient descent. The average probability is named as the anomaly score or
the reconstruction probability mentioned above. The flow data with a high
probability of reconstruction will be classified as an attack. To deploy the
experiment, the continuous data feature distribution is still the Gaussian mixture
distribution.

Finally, we compare the latest deep learning algorithms using the same dataset
and gave a conclusion.
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3.4.3.3 Performance Analysis

1. DVB vs. NB and NDVB
According to the analysis of our algorithm, we need to set the iteration time as an
appropriate number so that our model can achieve high accuracy without much
resources consumption. In our experiment, we first evaluate the performance of
our algorithm. We set two different baseline algorithms: the centralized naive
Bayes algorithm and distributed variational Bayes (no cooperation between
neighbor nodes). As shown in Fig. 3.29b, with the increasing of iteration times,
the average classification accuracy is improving both our algorithm and naive
Bayes algorithm. After 2000 iterations, these two algorithms can almost converge
to the optimal point. The accuracy of the NDVB method does not improve
significantly over time due to the lack of cooperation between neighboring nodes.
This experiment results show that our hybrid variational Bayes algorithms can
effectively enhance the cooperative learning ability.
Then, we compare the performance of the three algorithms by observing the
curve of average error (KL divergence) changing with iteration. As shown in
Fig. 3.30a, NDVB algorithm falls into local optimality and is highly biased
on account for no steps for information interaction and fusion, and only local
information is used for each iteration. However, distributed variational Bayes
algorithm gradually improves the estimator as the information spreads through-
out the network, which can finally achieve as good a result as the centralized
algorithm.
More specifically, we notice that the centralized Bayes classifier achieves
higher performance in our algorithm consuming less time. This is because the
centralized solution can use more data to train the model and need not the local
interaction. NDVB shows the advantage of time consumption, which is even
better than centralized algorithm due to the distributed processes. In the view
of resources consuming and accuracy, our algorithm combines the advantages
of centralized Bayes classifier and distributed processes. However, as discussed
above, the centralized solution presents poor scalability and robustness in a large-
scale network environment. Thus, our algorithms trade off the performance and
robustness of the whole system, where the performance of our algorithm reaches
the centralized solution and can still be implemented in a distributed fashion.
As shown in Table 3.13, we list the statistical average inference accuracy and
average misjudgment rate of three algorithms.

2. DVB vs. VAE
Above we compare and evaluate the DVB with the traditional naive Bayes
classification algorithm. Furthermore, we analyze the difference between the
DVB algorithm based on stochastic gradient descent and the VAE algorithm
of deep learning in DDoS detection. We set up a single hidden layer with 400
dimensions for both the encoder and decoder. The potential size is set 200 dimen-
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Fig. 3.30 KL divergence. (a) KL divergence changing with iteration. (b) KL divergence changing
with epochs

sions. To balance the running time of the DVB algorithm, the iteration number
of the DVB is set as 1000. Both VAE and DVB are trained using complete
feature data as (“dst_host_count,” “srv_count,” “dst_host_serror_rate,” “count,”
“dst_host_srv_count,” “same_srv_rate”). To visualize the result explicitly, we
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Table 3.13 Statistical average inference accuracy and average misjudgment rate

Methods Accuracy The average of misclassified samples

DVB 0.8171 182.9

Naive Bayes 0.8652 159.3

Nocoop-DVB 0.7342 265.8

just select the three features components with the largest proportion of weight,
as shown in Fig. 3.31a and b.
We select the running time and AUC-ROC as evaluation indicators and obtain
the comparison of DVB and VAE as shown in Table 3.14.
From the above experimental results, we can conclude that the operating
efficiency of VAE is better than DVB because the interaction among switches
can be considered more complex. That is why DVB is regarded as more robust.

3. DVB vs. SDAE
It is obvious that the time-consuming focuses on the process of stochastic
gradient descent, which leads to slow convergence near local optima. In this part,
the input vector uses complete flow characteristics in three models. As shown in
Fig. 3.30b, we compare the KL divergence of DVB, AE-LSTM and SDAE. The
KL divergence changes with epochs in AE-LSTM and changes with iteration
times in DVB. It can be observed that using more characteristics as input, our
algorithm can convergent faster. We select the running time and mean accuracy
as evaluation indicators and obtain the comparison of DVB and SDAE as shown
in Table 3.15. Since this experiment uses all the data characteristics, the DVB
algorithm will reach convergence with a smaller number of iterations. We test
different iteration times (repeat) to observe the performance.

From the above experimental results, we can conclude that the operating efficiency
of DVB is better than SDAE because the interaction among switches can shorten the
time of the stochastic gradient descent. The accuracy of general autoencoder used
in the DDoS detection with LSTM only achieves 49%.

SDAE uses a very high time cost in exchange for accuracy, which is what we
expected, that is, the deep learning method will have a better effect on the accuracy
of the two classification of data. However, our proposed algorithm is more worthy of
being deployed in the actual network environment. For 10% of the KDD99 dataset,
the accuracy of deep migration learning based on rough set theory is 87.19% [82].
It can be proved that centralized data analysis is more likely to confuse attacks that
conform to normal behavior patterns in big datasets, while they can be identified
simply through a single switch. Additionally, our algorithm has more advantages
than most deep learning algorithms in terms of time complexity, which is more in
line with the concept of in-network security.
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Fig. 3.31 The comparison of experimental results between (a) DVB and (b) VAE

3.4.3.4 Characteristic Analysis

To analyze different traffic features, we will visualize the three features components
with the largest proportion of weight in this section. As shown in Fig. 3.32, there is a
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Table 3.14 Contrast
experiment of DVB and VAE

Methods Running time AUC-ROC

DVB 13min 2 s 0.907
VAE 7min 14 s 0.795

We highlight the highest accuracy and lowest
latency of experimental results, which correspond
to the method with better performance.

Table 3.15 Contrast experiment of DVB and SDAE

Methods Running time (s) Mean accuracy

DVB(repeat = 20) 42 0.898

DVB(repeat = 100) 104 0.868

DVB(repeat = 1000) 784 0.890

SDAE 2281 0.933

We highlight the highest accuracy and lowest latency of experimental results, which correspond to
the method with better performance.

Fig. 3.32 The visualization result of distributed variational bayes as repeat = 2000

clear identification to distinguish traffic conditions in the view of the most weighted
component .same_srv_rate. In the last two seconds, the percentage of connections
that have the same destination host more than 30% of total traffic will almost be
considered as an abnormal traffic. The smaller the weight of the characteristic
component, the more likely to appear in the detection of fuzzy discrimination. Some
subsequent experiments showed that the detection performance is not increasing
significantly as all characteristic considered.

As shown in Fig. 3.33, it shows that DVB and NB can achieve similar results. But
after training, NB can better identify anomalies that are not easily detected. In the
absence of interaction between nodes, the accuracy of NDVB in detection decreased
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Fig. 3.33 The results of 3 models (Blue: Normal; Red: Attack). (a) Distributed VB. (b) Naive
Bayes. (c) Noncoop-VB

significantly. The naive Bayes used in classification is superior to distributed
variable bayes due to advantages of centralized processing in binary classification
problems. However, through comprehensive factors and more iterative calculation,
we notice that the results of distributed variational bayes processing are comparable
to naive bayes. The variational bayes algorithm without distributed interaction
among nodes is not as good as the distributed variational bayes algorithm in terms
of accuracy, performance and misjudgment, except for the accelerated processing
time.

3.4.4 Simulation on Mininet

In this section, we use the Mininet to emulate a virtual network environment to
evaluate our architecture and algorithm. Mininet is a powerful network simulation
platform, where the operator could easily simulate the network topology and
monitor flow information in real time. We adopt the Floodlight as the controller
of OVS switches. To monitor network traffic information, we use sFlow monitoring
software, which consists of sFlow Agent and sFlow Collector. As a client, the sFlow
Agent is embedded in the OpenVSwitch (OVS). By obtaining the interface statistics
and data information on the device, agents package the information into sFlow
messages and send them to the designated Collector. As a remote server, Collector
is responsible for analyzing, summarizing, and generating traffic reports for sFlow
messages.
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Fig. 3.34 Simulation analysis. (a) Simulation topology. (b) The relationship between classifica-
tion accuracy and time window settings

3.4.4.1 Network Topology

In our simulation, we generalize the DDoS flood with random IP and a t imeout

command. We set the network topology as shown in Fig. 3.34a. The default port of
IP is set as 6343 and sampling rate as every 10 packets. We set the IP of 8 hosts
as 10.0.0.1–10.0.0.8, and each host can be a normal user also an attacker, randomly
sending requests to switches during processing time. We set the process to run for
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100 episodes and the length of each episode is 10. When we set the initial spoofing
IP for a DDoS flood to be 10.1.1.1, which changes with different episodes to prevent
it from being judged as abnormal traffic easily. After one episode, we use t imout

command to abort the hping3 command, which matches the length of time window
in the actual network architecture. During the process of simulations, we can use the
top command to see the CPU usage, which is also a feature of DDoS attacks. Taking
this vision one step further, we can modify the flow table to drop the specified flow,
such as OpenFlowSwitch only drops the flow of ICMP without affecting the normal
HTTP service.

3.4.4.2 Experiment Results

In this section, we evaluated the performance of our hybrid machine learning
algorithm and OpenFlow based centralized naive Bayes detection algorithm in this
topology. Additionally, we explored the performance fluctuation with the change of
the time window .	T , which is a set for aggregating statistics over multiple packets.
For our hybrid machine learning algorithm, considering the time-consuming caused
by iteration, we select the iteration times as 2000. Due to the cost of time-consuming
deserves concern, we care about the time window in the simulation. Comparing the
mislabeling and dropping of normal traffic, mislabeling attack traffic costs more.
Therefore, we evaluated the relationship between classification accuracy and time
window settings as shown in Fig. 3.34b.

We calculate the precision of classification both normal traffic and attack traffic
using three methods and list the relatively best time window in Table 3.16. By
comparing the results, we notice that the accuracy and efficiency of abnormal
flow detection are significantly improved in the subsequent detection process for
the labeled attack flows. Although centralized DDoS deployment using the naive
Bayes classifier in the controller has shorter time windows, it increases the risk of
mislabeling the traffic in edge switches. Traditional DDoS defense on SDN calls
Floodlight’s static flow entry pusher to discard DDoS attack packets for defense in
the experiment. There is little difference in the precision of the three methods in
labeling normal traffic, while naive Bayes classifier has an advantage in labeling
attack traffic with a relatively short time window. Furthermore, the simulation
experiment on Mininet can be transplanted to the real environment, which provides
a guarantee for the realization and portability of the algorithm.

Table 3.16 IoT DDoS traffic classification

Methods Precision (normal) Precision (attack) Time window

DVB 0.942 0.897 2.7 s

Naive Bayes 0.953 0.917 1.2 s
Flow-table 0.927 0.868 –

We highlight the highest accuracy and lowest latency of experimental results, which correspond
to the method with better performance.
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3.5 Summary

In this chapter, we discuss the main challenges of intelligence in the Internet of
Things and introduce several network awareness algorithms based on machine
learning. Network traffic information includes service-level information (such as
QoS/QoE) and abnormal traffic detection information. To solve these problems, we
first proposed an end-to-end IoT traffic classification method based on deep learning
capsule network, aiming to form an efficient classification mechanism integrating
feature extraction, feature selection, and classification model. Moreover, we propose
a hybrid detection architecture to improve the security of the network and to reduce
the bandwidth consumption in the meantime. In addition, we propose that the
traffic flow is considered as time series and stored in the form of a matrix, which
facilitates the use of deep learning models for classification. Moreover, attention
based LSTM and HAN neural network architectures are constructed for traffic
classification. Finally, we propose an in-network distributed machine learning-based
DDoS detection architecture. The switches could collaboratively learn the DDoS
detection policy through a centralized parameter synchronous platform.
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Chapter 4 
Intelligent Traffic Control 

Abstract Whether in a wired network or a wireless network, how to carry out 
effective and reliable traffic control is always discussed. However, most of the 
solutions to this problem rely heavily on manual processes. In order to solve 
this problem, in this chapter, we apply several artificial intelligence approaches 
to network traffic control. First, we introduce a social-based mechanism in the 
routing design of delay-tolerant network (DTN) and propose a cooperative multi-
agent reinforcement learning (termed as QMIX) aided routing algorithm adopting 
centralized training and distributed execution learning paradigm. Then, in traditional 
network, we propose a new identity for networking routers—vectors, and a new 
routing principle based on these vectors and neural network is designed accordingly. 
In addition, we construct a jitter graph-based network model as well as a Poisson 
process-based traffic model in the context of 5G mobile networks and design a 
QoS-oriented adaptive routing scheme based on DRL. Finally, based on the SDN 
architecture, we propose a pair of machine learning aided load balance routing 
schemes considering the queue utilization (QU), which divide the routing process 
into three steps, namely the dimension reduction, and the QU prediction as well as 
the load balance routing. Extensive simulation results show that these traffic control 
methods have significant performance advantages. 

Keywords Traffic control · Delay-tolerant network · Multi-agent reinforcement 
learning · QoS routing · Queue utilization 

Whether in a wired network or a wireless network, how to carry out effective 
and reliable traffic control is always discussed. However, most of the solutions to 
this problem rely heavily on manual processes. In order to solve this problem, in 
this chapter, we apply several artificial intelligence approaches to network traffic 
control. First, we introduce a social-based mechanism in the routing design of 
delay-tolerant network (DTN) and propose a cooperative multi-agent reinforcement 
learning (termed as QMIX) aided routing algorithm adopting centralized training 
and distributed execution learning paradigm [1]. Then, in traditional network, 
we propose a new identity for networking routers—vectors, and a new routing 
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principle based on these vectors and neural network is designed accordingly [2]. 
In addition, we construct a jitter graph-based network model as well as a Poisson 
process-based traffic model in the context of 5G mobile networks and design a 
QoS-oriented adaptive routing scheme based on DRL [3]. Finally, based on the 
SDN architecture, we propose a pair of machine learning aided load balance routing 
schemes considering the queue utilization (QU), which divide the routing process 
into three steps, namely the dimension reduction, and the QU prediction as well 
as the load balance routing [4]. Extensive simulation results show that these traffic 
control methods have significant performance advantages. 

4.1 QMIX Aided Routing in Social-Based Delay-Tolerant 
Networks 

Delay-tolerant network (DTN) is one of the emerging communication schemes that 
aim to operate effectively in extreme conditions (i.e., lack continuous network con-
nectivity) and over very large distances [5]. In DTN, communication is challenged 
by sporadic and intermittent connections, and therefore traditional ad hoc routing 
protocols (e.g., ad hoc on-demand distance vector (AODV) and dynamic source 
routing (DSR)) are difficult to establish end-to-end routing path [6]. To overcome 
these challenges, DTN routing protocols adopt the “store and forward” mechanism. 
Packets are moved and stored incrementally in the whole network, hoping to reach 
the destination. DTN is originally developed for the initial interplanetary Internet 
(IPN) architecture to deal with message corruption and inevitable delays in deep-
space communications. Recently, with the advance of 5G applications (e.g., Internet 
of Vehicles, intelligent communicable devices), DTN has also been introduced to 
these highly dynamic network scenarios [7]. As shown in Fig. 4.1, vehicles are 
connected through the roadside units (RSUs) to form the Internet of Vehicles, and 
mobile smart devices can also be interconnected. However, the highly dynamic 
topology and the limited node capacity in such network scenarios present great 
challenges to DTN routing [8]. 

Traditionally, DTN algorithms mostly rely on opportunity-based models, which 
are greedy schemes [9]. Most of them only rely on the comparisons between per-
node metrics when encountering. For instance, in [10], Zhao et al. proposed a 
history-based forwarding message protocol that greedily transmits packets to all 
nodes whose delivery probability is greater than the current node. In [11], Dubois-
Ferrière et al. proposed a FRESH scheme that forwards the message to the relay 
as long as it has encountered the destination more recently than the current node 
does. Although the greedy strategy is simple, however, this will not guarantee that 
the packet will eventually reach the destination. In addition, multiple copies of 
the same message may flood the network, which will eventually lead to routing 
failure and overload [12]. To overcome these insufficiencies, social-based methods 
are introduced into the routing design in DTN applications. Social-based DTN uses
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Fig. 4.1 The DTN scenario in 5G 

the community and the centrality to increase the delivery rate of the network [13]. 
These attributes are usually long-term characteristics and less volatile than node 
mobility [14]. The community in DTN reflects the social relationship among 
wireless devices. A member in a community is usually more willing to communicate 
with members in the same community than with other members [15]. Therefore, 
through community detection, DTN nodes can more easily find the optimal next 
node. Centrality represents the “popularity” of the node, which means that the 
node is more willing to transmit data [12]. In this chapter, we introduce the social-
based mechanism to our routing algorithm. We divide DTN nodes into countable 
communities. In addition, to speed up the convergence of the community detection 
algorithm, we set an iteration threshold. With that in mind, we propose a centralized 
and distributed hybrid architecture in the social-based DTN. 

In a distributed system, it is worth asking how could the nodes cooperatively 
learn the routing policy while executing in a distributed fashion among multiple 
communities? Inspired by the recent success of the distributed reinforcement 
learning in multi-agent system control and the positive social attributes of DTN 
nodes [16, 17], we introduce a cooperative multi-agent reinforcement learning 
algorithm QMIX to our system, which helps nodes not only consider their own 
performance but also consider the undeniable connections of other nodes [18]. 

In general, for the positive social characteristics of DTN nodes, we describe the 
problem of selecting a reliable next-hop neighbor node as a cooperative Markov 
game, which can be seen as a Dec-POMDP model. Besides, we introduce the QMIX 
algorithm in a centralized training and decentralized execution way. Because the 
number of communities is far less than the number of nodes, the complexity of 
the algorithm is greatly reduced. What is more, to prevent the routing algorithm 
from transmitting a large amount of information to nodes with high social indicators
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without restrictions, which causes these nodes overburdened, we consider the buffer 
occupancy of nodes in a fine-grained way. The main contributions of this article can 
be summarized as follows: 

• We adopt a centralized training and distributed execution learning paradigm and 
design a hierarchical social-based DTN architecture. 

• We model selecting a reliable next-hop neighbor node as a Dec-POMDP model. 
Combined with a collaborative multi-agent reinforcement learning algorithm, 
QMIX, routing decisions are made in a centralized training and decentralized 
execution manner. 

• Through a large number of in-depth simulations, it is verified that our proposed 
routing algorithm is superior to other state-of-the-art DTN routing algorithms. 

4.1.1 System Model 

In this section, we present a hierarchical social-based DTN architecture firstly. 
Then, we discuss the trade-off problem of social attributes and buffer congestion. 
Finally, we design two important evaluation metrics to evaluate routing protocols’ 
performance. 

4.1.1.1 Network Model 

Consider a special ad hoc network with a weighted direct graph .G = {V,E}, 
consisting of a group of DTN nodes .V = {1, ..., n} and a set of directed links 
. E in this model. We assume that this model lacks end-to-end connectivity. The 
weighted direct path is decided by the node pair’s history connection records, 
which include the total connection times .Mnd

ns
and two corresponding time stamps, 

.T end
ns,nd

and .T start
ns ,nd

. Through the above parameters, we divide dozens of nodes into K 
communities .C = {C1, ..., Ck} with the community detection algorithm in Sect. 4.4. 

As shown in Fig. 4.2, we present a hierarchical social-based DTN architecture. In 
our architecture, it includes the community-aware clusters, the service units, and the 
computing center. Community-aware clusters are obtained through the clustering 
of our proposed community detection algorithm. They represent groups that are 
more willing to communicate with each other internally. Service units collect and 
analyze the social information of their respective communities and upload these 
attributes to the computing center. The computing center collects social attributes 
and issues routing strategies wisely in turn. Based on this architecture, we adopt the 
centralized training and distributed execution paradigm. The centralized training 
refers to the use of a joint function in the computing center to train the agents, 
while distributed execution means that each agent will only act according to the 
local observation. This paradigm cannot only avoid the large amount of computation 
cost of SDN centralized control but also tackle the problem that distributed single-
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Fig. 4.2 The architecture of the social-based DTN 

agent algorithm is likely to fall into a locally optimal solution. Note that we do not 
identify what the specific service unit is. At the mobile social DTN dominated by 
smart devices, the service unit could be the access point (AP) on the user side or just 
be a home-aware community model [13]. When it comes to the situation of vehicle 
delay-tolerant networks, the service unit may be the roadside unit (RSU) deployed 
along the road section [19]. 

4.1.1.2 Social Attribute Definitions and Problem Formulation 

Next, we design two different centrality indexes at the community level, named 
the local centrality and the global centrality. The local centrality index .wlocal

Ci
of 

community . Ci limits the source nodes and the destination nodes in . Ci and sums up 
all the connection time considering the age constant. It can be expressed as 

.wlocal
Ci

=
∑

ns∈Ci

∑

nd∈Ci

M∑

m=1

ϕt ·
(
T end

ns,nd
− T start

ns ,nd

)
, (4.1) 

where M indicates that the total connection times of . ns and . nd , and . ϕ (.0 < ϕ < 1) 
indicates the age constant calculated by time slices. Then, the time index t can be 
expressed as
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.t =
⌊

Tnow − T end
ns,nd

Tinterval

⌋
, (4.2) 

where .Tnow is the simulation time and .Tinterval is a variable time interval parameter 
that is selected for specific DTN scenarios. 

Under the same restrictions, the global centrality index .w
global
Ci

of community . Ci

also limits the source nodes in . Ci , but it extends the scope of the destination nodes 
to the whole DTN. It can be expressed as 

.w
global
Ci

=
∑

ns∈Ci

∑

nd∈N

M∑

m=1

ϕt ·
(
T end

ns,nd
− T start

ns ,nd

)
. (4.3) 

Inspired by the fact that messages are more likely to be transmitted to destinations 
by passing through more “popular” communities [14], we take the centrality into 
consideration, and however, unlimited transmissions will lead to an overload of 
nodes with limited capacity. Thus, we should take the problem of buffer capacity 
limitation into account while transmitting messages cooperatively. Considering 
the bottleneck effect, .Lbuf

Ci
represents the maximum value buffer occupation in 

community . Ci and can be calculated by 

.L
buf
Ci

= max
(
l
buf

1 , ..., l
buf
n

)
, n ∈ Ci, (4.4) 

where .lbuf
n is the immediate buffer occupation in node n that belongs to . Ci . It can  

be expressed as 

.l
buf
n =

⎧
⎨

⎩

∑m
i=0 Hi

N

nsize
if l

buf
n � 1

1 if l
buf
n > 1,

(4.5) 

where .nsize is the total buffer size of node n and is the number of bits of integer type, 
.
∑m

i=0 Hi
N represents the buffer occupation size in node n, m represents the number 

of messages, and .Hi
N is the number of bits per message. 

As a result, the optimization goal of each community can be formulated as 

.max α · �wC − β · L
buf
C , (4.6) 

where . α and . β (.0 < α, β < 1) are weight parameters. The optimization goal 
represents the improvement of the forwarding strategy [10], in which one node 
would consider any node as a relay as long as the latter node is more willing 
to forward messages to the destination node. We will specifically present the 
optimization objective of the design of rewards in Sect. 4.1.3. Here we list some 
important notations of this article in Table 4.1 for better comprehension.
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Table 4.1 List of main notations in MARL routing protocol 

Parameter Definition 

.G Network model as a weighted direct graph 

.ns, nd Source DTN node and destination DTN node in one message 

.Ci Community of one DTN node 

K Number of communities (agents) 

.ϕ Age constant 

..w
global
Ci

Global centrality index of community . Ci

..wlocal
Ci

Local centrality index of community . Ci

..L
buf
Ci

Maximum value of the buffer occupation in community . Ci

.Pdelivery Delivery ratio of the social-based DTN routing protocol 

.Tlatency Mean latency of the delivered messages 

.Qtot (τ , a) Joint action-value function 

s State space, . s ∈ S

a Action space, . a ∈ A

o Observation for an agent, . o ∈ �

.γ Discount factor considering reducing the impact of earlier actions 

.τi Action-observation history for each agent 

4.1.1.3 Evaluation Metrics 

We design three metrics to evaluate routing protocols’ performance, namely the 
delivery ratio, the mean latency, and the overhead ratio. The delivery ratio is 
calculated by dividing the sum of data packets which is successfully transmitted 
to destinations by the total generated messages and can be described as 

.Pdelivery = Ndelivered

Ncreated

. (4.7) 

It most intuitively reflects the delivery capacity of DTN routing strategies, while 
the mean latency can be calculated as 

.Tlatency =
∑i=tot

i=1 T i
latency

Ndelivered

. (4.8) 

Note that the main reason for the latency is the queueing delay of the node buffer. 
Whether it is not making good use of social attributes or unrestricted transmission 
of messages results in buffer overload, it will lead to poor performance in the mean 
delay. The overhead ratio of delivery result can be calculated as 

.Poverhead = Nrelayed − Ndelivered

Ndelivered

. (4.9)
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It represents the extra consumption rate in data delivery and reflects the routing 
transmission efficiency. 

4.1.2 Community Detection 

In this section, we present an improved heuristic successive iteration algorithm 
for convergence of modularity [20]. In our algorithm, the modularity function 
is introduced to measure the quality of community division. It can describe the 
cohesion within the community and the difference between the communities, and 
it can be expressed as 

.

Q = 1

2n

∑

i,j

[
Aij − sisj

2n

]
· δ(Ci, Cj )

= 1

2n

∑

C

[
∑

in −
(∑

tot
)2

2n

]
,

(4.10) 

A is the adjacency matrix. We regard the DTN topology as a weight graph, while 
.Aij represents the weight of the edge between node i and node j , specifically 
referring to the connection duration between the two. The sum of the weights 
of all edges . si connected to node i can be expressed as .si = ∑

j Aij . The  

sum of weights of all edges n can be reformulated as .n = 1
2

∑
ij Aij , which 

is the normalization function. .δ(Ci, Cj ) is 1 if node i and node j are in the 
same community. .

∑
in represents the sum of the weights of the edgs within the 

community and .
∑

tot represents the sum of weights of edges connected to nodes 
in the community. 

To maximize the modularity, we introduce the fast unfolding algorithm [21]. 
Rather than unrestricted multiple iterations, we set a threshold in the update of 
modularity value to speed up the convergence of the heuristic algorithm and avoid 
putting outlier nodes into communities. The modularity gain is a numerical index to 
evaluate the effect of an iteration, which is a heuristic optimization process. It can 
be calculated as follows: 

.�Q =
[∑

in +si,in

2n
−
(∑

tot +si

2n

)2
]

−
[∑

in

2n
−
(∑

tot

2n

)2

−
( si

2n

)2
]

. (4.11) 

The first part means the modularity of a community after adding node . ni , while 
the second part means the modularity summed by node . ni independently and the 
independent community. Our improved algorithm iterates until .�Q cannot reach 
a preset threshold. We can avoid outliers clustering into communities blindly and
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get faster convergence to accelerate our total routing algorithm in this way. The 
community detection algorithm is shown in Algorithm 4.1. 

Algorithm 4.1 Community detection algorithm 
1: Initialize:each node in the graph is regarded as an independent community 
2: while The structure of the community stables do 
3: for node i = 1, N  do 
4: Get �Qi by trying to assign node i to the community where each of its 

neighbors is located 
5: if �Qi > Qthread  then 
6: assign node i to the neighbor’s community 
7: else 
8: break 
9: end if 

10: end for 
11: Corresponding to each new node by each new community 
12: Update the weight of the ring of the new node 
13: Update the edge weight 
14: end while 

4.1.3 Dec-POMDP Model and Cooperative MARL Protocol 

In this section, we introduce the cooperative Markov game and model the game 
as a decentralized partially observable Markov decision progress (Dec-POMDP) 
model [22]. Then we present a cooperative multi-agent reinforcement learning 
(MARL) algorithm, QMIX [18], to solve the social-based DTN routing problem. 

4.1.3.1 Cooperative Markov Game 

When multiple agents apply reinforcement learning in a shared environment at the 
same time, it may be beyond the scope of theMarkov decision process (MDP) model 
because the optimal strategy of a single learner depends not only on the environment 
but also on the strategies adopted by other learners. MDP can be extended to the 
case of multi-agents by Markov games. Specifically speaking, as shown in Fig. 4.2, 
to obtain good routing performance, a community must send messages out on time 
when others have forwarded their messages to it. Otherwise, serious buffer blockage 
will occur. On the contrary, its enthusiasm as a relay is meaningless when little 
messages are delivered to it. This shows that routing decisions between communities
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must be at the same pace. Thus we describe the problem of choosing the next relay 
in social-based DTN as a collaborative Markov game. 

The Markov game is a tuple .(n, S,A1,...,n, R1,...,n, T ), where . T : S ×A1 ×· · ·×
An× → [0, 1] is the transformation function. The Nash equilibrium strategy of the 
Markov game can be written as .(π∗

1 , ..., π∗
n ), and then for .∀s ∈ S, i = 1, · · · , n and 

for .∀πi, i = 1, · · · , n, 

.Vi

(
s, π∗

1 , · · · , π∗
i , · · · , π∗

n

)
� Vi

(
s, π∗

1 , · · · , πi , · · · , π∗
n

)
, (4.12) 

where .Vi(s, π
∗
1 , · · · , π∗

i , · · · , π∗
n ) is the cumulative state value. According to the 

Bellman equation, the Nash equilibrium can be described by cumulative state–action 
value as 

.

∑

a∈A1×···×An

Q(s, a)π∗
1 (s, a1) · · · π∗

1 (s, ai) · · · π∗
1 (s, an) �

∑

a∈A1×···×An

Q(s, a)π∗
1 (s, a1) · · · π1(s, ai) · · · π∗

1 (s, an).

(4.13) 

Next, we will describe the cooperative Markov game as a Dec-POMDP model 
and then introduce the QMIX algorithm, to solve the social-based DTN routing 
problem. 

4.1.3.2 Dec-POMDP Model 

As mentioned above, we consider the social-based DTN routing strategy as a fully 
cooperative multi-agent task scenario, which can be described as a Dec-POMDP 
model. The Dec-POMDP model is the solution framework of the POMDP model 
under distributed conditions, and its solution process is more complex than the 
POMDP model. The fundamental reason is that the decision-making of agents under 
distributed conditions should not only consider the influence of the environment 
but also consider the strategies of other agents. The Dec-POMDP model is built 
in a discrete-time dynamic system, and there is usually a time upper limit, which 
is called steps or stages. In each step, the agent adopts an action, transfers to the 
next state according to the state transition function, and obtains the observation 
information in this state. 

The Dec-POMDPmodel can be formalized as a tuple .G = 〈N, S,A,O,R,�, γ 〉, 
where N represents the number of agents, .si ∈ S describes the true state 
of the environment, A is the action space, and . � is the observation space. 
.O : A × S → � is the observation function. Each agent has an action-observation 
history .τi = (ai,0, oi,1, ..., ai,t−1, oi,t ). For each step, each agent conditions 
a stochastic policy .π(a|τi), getting the cumulative reward .Ri = ∑T

t=0 γ t rt
i , 

where . γ is a discount factor. On the whole, the joint action-observation history
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is .τ = (τ1, ..., τn) and .a = (a1, ..., an) means a joint action. The joint action-value 
function is .Qtot (τ , a). 

Specifically, in our scenario, the observation space of each agent refers to which 
communities forward messages to it within a time slice and its own bottleneck buffer 
occupancy. It can be expressed as 

. oi =
[
U(Cj1), ..., U(Cjm), l

buf

1 , ..., l
buf
n

]
, (4.14) 

where the corresponding U function is 1 if . Cj chooses forwarding messages to 
agent . Ci . 

The action space refers to whether . Ci transferring messages to . Cj before the 
next action coming. Notice that the packet can reach the destination node with less 
overhead and fewer hops once the packet’s source node and destination node are in 
the same community [14]. So we mainly consider the action as the inter-community 
transmission. The joint observation and joint action of the multi-agent environment 
are all discrete .K − level tuples, where K is the total number of communities. 

The reward of agent . Ci can be described as 

.ri =
{

α1 · �w − β1 · L
buf
Ci

if message.des /∈ Ci

−α2 · wlocal
Ci

− β2 · L
buf
Ci

if message.des ∈ Ci,
(4.15) 

where .�w is 

. �w = w
global
Cj

− w
global
Ci

. (4.16) 

If the message should be spread within this community but is forwarded to other 
communities or the message is forwarded to a community with a lower global 
centrality than the original community, the first item of the reward is negative. On 
the contrary, this action is beneficial to packet transmission. As shown in the second 
term of the reward function, we also regard the buffer occupancy as an important 
factor affecting message transmission. 

A key stumbling block in a multi-agent environment is how to learn the joint 
action-value function. On the one hand, learning a central action-value function 
has a positive impact on the actions of agents. On the other hand, the action-
value function is not easy to learn when there are many agents. Even if the central 
function can be learned, there is no obvious method to extract decentralized policies 
that allow each agent to select only an individual action based on the individual 
observation. 

In the next section, we introduce QMIX aided routing algorithm to solve the 
above problem in a centralized training and distributed execution (CTDE) way.
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Fig. 4.3 The collaborate 
MARL structure 

4.1.3.3 Cooperative Multi-agent Reinforcement Learning 

The community detection could make messages forward between communities in a 
cooperative way. The centrality of a community means the willingness to forward 
packets. Emphasizing these positive cooperative social characteristics in social-
based DTN, we introduce the QMIX algorithm to solve the selecting problem of 
the next relay in a centralized training and distributed execution way. 

Figure 4.3 indicates the network structure of this cooperative multi-agent rein-
forcement learning algorithm. The lower layer shows that each agent uses a Deep 
Recurrent Q-Learning (DRQN) [23] to fit whose own Q value .Qi(τi, ai; θi). DRQN  
introduces RNN to deal with the partially observable problem, which is . Q(o, a|θ) �=
Q(s, a|θ) in DQN. DQN circularly inputs the current observation . oi,t and the action 
.ai,t−1 of the previous time to obtain the Q value. 

Nodes with positive social characteristics can extract decentralized strategies 
which are consistent with the centralization strategy. We only need to ensure that 
a global argmax performed on .Qtot yields the same result as a set of individual 
argmax operations which are performed on each . Qa . This means that the local 
optimal action chosen by each agent is just a part of the global optimal action and it 
can be expressed as 

. argmax
a

Qtot (τ , a) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

argmax
a1

Q1(τ1, a1)

·
·
·

argmax
an

Qn(τn, an)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (4.17)
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where 

.
∂Qtot

∂Qi

� 0,∀i ∈ {1, ..., n}. (4.18) 

Equations (4.17) and (4.18) show that the monotonicity can be implemented by a 
constraint on the relationship between .Qtot and each . Qa . For each . Qa , agent a can 
execute distributed and greedy actions. So it is very easy to calculate .argmaxaQtot . 
Conversely, the strategy of each agent can be explicitly extracted from .Qtot . 

To achieve the above constraints, the mixing network takes the outputs of 
the agents’ neural networks as inputs and mixes them monotonically, which can 
produce the values of .Qtot . To enforce the monotonicity constraint of Eq. (4.18), 
the weights (but not the biases) of the mixing network, which should be generated 
by a separate hyperparametric network, are restricted to be non-negative. Hence 
it can represent any joint action value function that could factor into a nonlinear 
monotonic combination of the agent’s individual value functions. 

In addition, there should be an appropriate order of the values of actions for the 
agent’s individual value functions. It can be expressed as 

.

Qi(st , ai) > Qi(st , ai
′) �

Qtot (st ,(a−ai
, ai)) > Qtot (st , (a−ai

, ai
′)).

(4.19) 

Equation (4.19) represents the ordering of the agent’s actions in the joint action 
value function, while in Dec-POMDP, the observation of each agent could not 
observe the full state, which causes the disability of distinguishing the true state. If 
the ordering of the agent’s value function is wrong depicted in Eq. (4.20), the mixing 
network would be unable to correctly represent .Qtot considering the monotonicity 
constraints. 

.

Qi(τi, ai) > Qi(τi, ai
′) when

Qtot (st ,(a−ai
, ai)) < Qtot (st , (a−ai

, ai
′)).

(4.20) 

The final cost function of QMIX can be expressed as 

. L(θ) =
b∑

i=1

[(
ytot
i − Qtot (τ , a, s; θ)

)2]
, (4.21) 

where .ytot is the time difference target: 

. y
tot = r + γ max

a′ Qtot (τ
′, a′, s′; θ). (4.22) 

The update uses the way of gradient descent by the backpropagation. b represents 
the number of samples that are taken from empirical memory. .Q(τ ′, a′, s′; θ)
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Algorithm 4.2 Cooperative MARL algorithm for social-based DTN 
1: Initialize replay buffer 
2: for episode = 1,M  do do 
3: Initialize network environment 
4: for step = 1, T  do do 
5: Each agent obtains its observation o 
6: Execute the action to get each new observation o′ and reward r of each 

agent 
7: Store (o, a, r, o′) to replay buffer 
8: end for 
9: for agent t = l, N do do 

10: Randomly extract a batch from replay buffer 
11: Calculate Qi(τi, ai; θi) and maxai

′ Q̄i(τi
′, a′

i; θi
′) by DRQN 

12: end for 
13: Input all Qi(τ, a, s; θ)  into the mixing network 
14: Set: ytot  = r + γ maxa′ Q̄(τ ′, a′, s′; θ ′) by (1) 
15: Perform a gradient descend step on 

L(θ) = 
b∑

i=1 

[(ytot  
i − Qtot (τ , a, s; θ))2] 

16: end for 

indicates the target network. Under the action of Eq. (4.17), the computation of the 
maximum value of .Qtot can be solved linearly with an increase in the number of 
agents. The specific pseudo-code of the QMIX algorithm is shown in Algorithm 4.2. 

4.1.3.4 Complexity Analysis 

As for the time complexity of our proposed multi-agent routing algorithm, the time 
complexity of neural network training is .O(E ∗ D/B ∗ T ), where E represents the 
epoch size, D represents the size of dataset, B denotes the batch size, and . O(T )

denotes the time complexity of a single iteration. Under the restriction of Eq. (4.17), 
we consider .O(T ) = O(n ∗ T 1), where .O(T 1) is the time complexity of a single 
agent. Furthermore, the number of layers and the number of neurons in the agent 
are listed in Table 4.3.
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4.1.4 Experiments and Simulation Results 

In this section, we apply QMIX to real-life wireless datasets. We simulated in the 
Opportunistic Network Environment (ONE) simulator [24] based on JDK 1.8 and 
Pytorch 1.7.0 based on Python 3.6 in Windows 10. The hardware environment is 
Inter (R) Core (TM) i5-8500 CPU @ 3.00GHz (6 CPUs), 3.0GHz. 

4.1.4.1 Experiment Configuration 

We choose INFOCOM05 and INFOCOM06 dataset [25] for analysis. The infor-
mation and some specific important configurations of using the datasets are listed 
in Table 4.2. First, we exploit the improved community detection algorithm with 
a threshold to aggregate a large number of nodes into countable communities. 
Figure 4.4 shows an iterative result graph in the process of maximizing the 
modularity in Gephi based on JDK1.8. The lines with color mean the connection 
of node pairs. The nodes of different colors belong to different communities which 
are formed after iteratively optimizing the modularity value. 

Important hyperparameters of the multi-agent reinforcement learning are listed 
in Table 4.3. We choose Deep Q-learning (DQL) [26] published in Nature by 
Deep-mind as the baseline to prove the advantage of our proposed multi-agent 
reinforcement learning routing algorithm. DQL is a value-based and off-policy 
single-agent reinforcement learning algorithm, which updates by the time difference 
(TD) with .ε-greedy choosing actions. It can be depicted as 

. ai = argmax
a

Q
μ
i (oi, a). (4.23) 

Fig. 4.4 An iterative graph of the community detection algorithm
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Table 4.2 DataSet 
configuration 

Parameter Infocom5 Infocom6 

Number of DTN nodes 41 98 

Number of community 6 5 

Simulation time 275,000 s 34,3000 s 

Interface transmit speed 250Kbps 250Kbps 

Node buffer occupation 5M 5M  

Message interval (300,400) (300,400) 

Single message size (0.8 k,1 k) (0.8 k,1 k) 

Table 4.3 MARL and DQL 
configuration 

Parameter Value 

Discount factor (. γ ) 0.95 

Default learning rate (. α) 0.005 

Default batch size 60 episodes 

Number of neuron cell 64 

Number of network layers 3 

Maximum episode duration 20 s 

Maximum episodes 12,000 

Use dueling True 

DQL also adopts the experience replay strategy to train the reinforcement 
learning process and sets the target network to deal with the TD bias in the time 
difference algorithm. 

4.1.4.2 Training Performance 

We evaluate the delivery ratio and mean latency with the lifetime of the packet as 
the independent variable. The convergence graph of reward is shown in Fig. 4.5a, b. 
From Fig. 4.5a, we test the effect of different learning rates on the training results. 
We can see that convergence can be achieved at about 3200 episodes when 
.learningRate = 0.0005 and .learningRate = 0.005. However, when the learning 
rate increases, convergence cannot occur. This can be explained that the gradient on 
Eq. (4.21) may oscillate back, forth near the minimum, and may not even converge. 
In the trade-off between accuracy and time cost, we use .learningRate = 0.005 for 
our following experiment. 

We then compare the training effect between QMIX and the single-agent 
reinforcement learning, DQN. As depicted in Fig. 4.5c, our cooperative MARL 
routing algorithm gets a higher reward and can be more stable than the DQN trainer. 
Under the same training parameters, QMIX can reach a relatively convergent state 
under 3000 iterations, while DQN needs to spend more training time so that the 
reward can stabilize after 9000 iterations. The distributed training and distributed 
execution of DQN lack cooperation between agents, which results in a high reward 
for one single agent, but low rewards for other agents. In the specific routing
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Fig. 4.5 Compare the 
convergence graph of reward. 
(a) Mean reward in different 
learning rate. (b) Mean 
reward in different batch size. 
(c) Mean reward in MARL 
and DQN
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scenarios of selecting the next relays, to increase the value of the first term in 
Eq. (4.6), the agent will unrestrictedly transmit its messages to other agents with 
high centrality, which causes other agents to congest. In addition, the agent will 
be reluctant to receive messages from other agents in order to selfishly increase 
the second part of the reward. Therefore, the training curve cannot be stable and the 
training process performs poorly in DQN, while with the QMIX algorithm, excellent 
performance could get because of the consideration of the cooperation among multi-
agents. 

4.1.4.3 Performance of the Real-Life Datasets 

With the final neural network model, nodes can implement their own policies sepa-
rately after 12000 episodes of centralized training. We choose DQN as the baseline 
to outstand the performance of our routing algorithm. We also use BubbleRap [14] 
as the comparative method, which adopts greedy ideas to forward messages. We 
also experiment with the direct delivery routing algorithm as the benchmark, in 
which each node carries its message and moves continuously until it meets the 
destination node, which means the whole communication process never uses other 
nodes as relays. At last, in order to make the experiment more comprehensive, we 
list the result of the Epidemic routing algorithm with and without considering buffer 
capacity limitation. 

As shown in Fig. 4.6a, the highest delivery ratio is the Epidemic routing protocol. 
Regardless of the buffer limit, the flooding method makes every node transmit 
messages through current valid connections. In actual situations, however, the 
limited buffer size will cause the buffer to fill up, thereby blocking the routing 
of data, resulting in poor performance of Epidemic when TTL increases. DQN is 
not as good as QMIX aided routing algorithm in terms of routing delivery rate. By 
extracted from .Qtot in Eq. (4.17), the centralized training in QMIX allows each 
agent to consider the overall reward according to the strategies of other agents 
when choosing actions. While adopting DQN, agents become selfish and competing 
with each other due to the lack of global constraints. Selfish communities will 
greedily transfer their own messages to the regions with higher centrality index 
and are reluctant to receive messages from other communities to increase their own 
reward in Eq. (4.15). QMIX aided routing algorithm outperforms the state-of-the-art 
algorithm in social-based DTN. BubbleRap chooses the relay node by the rank of 
“popular” nodes, which could cause the “first in first out” (FIFO) drop mechanism 
in buffer spaces of high centrality nodes over time. With the packet’s time-to-live 
(TTL) increasing, it can reduce the situation that packets delete in their source 
node’s buffer before they forward, which means there will be more opportunities 
to transfer messages between nodes. However, it can also cause the node buffer 
overflow so that the increased delivery ratio is not obvious. In our proposed routing 
algorithm, the design of the agent reward in Eq. (4.6) considers not only the positive 
social attributes but also the buffer occupation. With appropriate weight parameters
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Fig. 4.6 Compare the convergence graph of reward. (a) Delivery Ratio in INFOCOM05. (b) Mean 
latency in INFOCOM05. (c) Packet delivered and overhead in INFOCOM05
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. α and . β, we can utilize the advantage of the “popular” community’s forwarding 
capability and avoid unlimited relaying causing the buffer overflow problems. 

Figure 4.6b depicts the mean latency of the above five routing algorithms, taking 
messages’ TTL as the independent variable. The highest average delay is the direct 
delivery routing algorithm because of being short of relay nodes. So messages 
can only passively wait in place for their destination nodes to communicate 
with them. Epidemic routing protocol also causes relatively high latency. This 
is because the flooding strategy requires messages to be routed to many relays 
before finally reaching the destination node. DQN is also inferior to QMIX in 
terms of delivery latency. Selfish nodes unrestrictedly transmit messages to other 
agents with high centrality, which would increase the queueing delay. Whether 
it is the intra-community transmission or inter-community transmission using 
BubbleRap, selecting the best relay among dozens of nodes is time-consuming. 
Instead, the routing algorithm we propose is calculated and spread among countable 
communities by adopting the improved community detection algorithm. In addition, 
strict control of the buffer size rather than greedy forwarding can reduce the message 
queueing delay. Therefore, the average delay was reduced compared to BubbleRap. 

For better understanding, we list the histogram of delivery capacity in Fig. 4.6c 
when messages’ TTL is 360min and the buffer size of each node is 5MB. We 
also compare the overhead ratio in different algorithms and different conditions. 
Compared with Epidemic, QMIX has a relatively high packet delivery rate and a 
much low overhead ratio. The second column result reflects the bad properties of 
Epidemic when buffer size is limited. This is because the flooding method causes 
the buffer to fill up quickly and blocks the transmission of packets. The fourth 
column is the result of decreasing the threshold of .�Q in Eq. (4.11). It causes that 
the process of community clustering does not converge in time and clusters outliers 
into communities blindly. Then these outlier nodes cannot learn the routing strategy 
correctly in the training phase. Lastly, the fifth column reflects the single-agent 
reinforcement learning DQN routing scheme. After training convergence, agents 
trained under QMIX perform better than those trained under DQN. Compared with 
DQN, the data delivery rate is .12% higher and the overhead ratio is .21.5% lower in 
QMIX. 

Similarly, we conduct the same experiment using the INFOCOM06 dataset. 
There are 98 DTN nodes recording and the duration time is 343,000 s. Figure 4.7a–c 
also indicates the effectiveness of our proposed QMIX aided routing algorithm with 
the distribute execution and centralized training way. 

4.2 A Learning-Based Approach to Intra-domain QoS 
Routing 

Nowadays, most intra-domain routing methods are based on distance vector algo-
rithm or link state algorithm, such as RIPng, OSPFv3, EIGRP, and so on. These
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Fig. 4.7 Compare the convergence graph of reward. (a) Delivery Ratio in INFOCOM06. (b) Mean 
latency in INFOCOM06. (c) Packet delivered and overhead in INFOCOM06
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routing methods are categorized as rule-based methods. As designed for specific net-
work environments or for specific metric routing (e.g., delay), rule-based methods 
lack flexibility. For example, when extended to other metric (e.g., bandwidth), rule-
based methods need to modify rules. In addition, rule-based methods cannot learn 
potential valuable information from massive network flows and network status, so 
their performance is limited because they cannot use such information to improve 
routing performance. 

As a matter of fact, learning methods that feed on the variable networking data 
could be applied to advance the performance of network. Specifically, Fadlullah 
et al. [27] surveyed deep learning application in network traffic control systems. 
Meanwhile, deep learning has also been applied to packet transmission [28, 29], load 
balance [30], load prediction [31, 32], channel allocation [33], channel estimation 
[34], etc. J. Wang et al. [35] surveyed machine learning application in wireless 
network. Machine learning and related emerging methods are applied in wireless 
network [36–38], edge computing [39], ICN [40], IoT [41, 42], and routing [43]. 
Besides, some works focus on the application of reinforcement learning, such as 
virtual network embedding [44], resource allocation [45, 46], edge computing [47], 
data analytic [48], IoT [49], 5G [50], etc. 

Recently, some works (Ref. [51–57]) focus on the graphical structure and encode 
vertices into the vectors with extracting features. Inspired by these works, we 
propose a new device identity, i.e., vectors, which can encode the network distance 
information and serve as universal patterns of network devices, such that it can adapt 
to various routing scenarios. On the one hand, unlike the IP address of devices, 
vectors can be directly applied to the routing computation. On the other hand, just 
like encoding words into vectors in natural language processing, vectors can provide 
a universal representation of network devices that could be put into neural networks. 
To obtain the optimal vectors, we apply the gradient descent method to minimize the 
proposed objective function of vectors. Based on these vectors, we design a basic 
routing algorithm that routers can independently choose the next hop by simply 
calculating the vectors between it and the relative nodes with a quite small amount 
of computation loads [58]. More importantly, the introduction of node vectors is 
not only for routing calculations but also for transforming networking units into 
appropriate input of neural networks. Therefore, our method is not limited to the 
basic routing, i.e., by using a neural network to process these vectors, different QoS 
demand routings can be devised by extracting the desired features. 

The work has been early published in the conference [59]. The difference 
between this work and the conference one is as follows: (1) we modified the 
description of the proposed auxiliary algorithm and provided a theoretical proof 
for a special case, where the proposed vectors could guarantee delivery without the 
aid of the proposed auxiliary algorithm, (2) we provided time complexity analyses 
for our algorithms, such as “complexity analysis on the optimization of vectors”, 
etc., (3) considering that multicast are indispensable functions of routing algorithm, 
we also provided the extension of the proposed method to the multicast scenario,
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(4) we add a comparison with DBA (Mao et al. [28]) and the OSPF, and (5) we 
provided a demo of the special case for the vector-based routing. 

4.2.1 The Basic Routing Based on Node Vectors 

4.2.1.1 The Principle of Algorithm 

In the shortest path routing, the next router (not the destination), where the packets 
are directly transported to, is the node which is closest to the destination node in 
the neighbors of the current router. If we model the network as .G = (V ,E) (where 
V denotes the set of nodes and E denotes the set of links) and define the shortest 
distance from the node i to the other node j as .Dij (.i, j ∈ V ), this strategy could be 
formulated as 

.

nextHop = arg min
i

Did

i ∈ {x|Dxd < Dcd, exc ∈ E, ecd /∈ E}
, (4.24) 

where c denotes the current node, and d denotes the destination. 
Especially, if the distance .Dij is replaced by a distance function .f (vi , vj ), our 

method for the shortest path routing (SP-RBNV) is proposed. The estimated value 
.D̃ij of the distance .Dij is obtained by calculating the proposed function of vectors 
.f (vi , vj ): .D̃ij = f (vi , vj ), where . vi denotes the represented vector of node i. 
For basic routing, delivering packets to the neighbor, which is the closest node to 
the destination, is not necessary. Any neighbor x that satisfies .Dxd < Dcd is an 
available candidate. Since the candidate is always closer to the destination than the 
current node, packets will be delivered to the target in a loop-free route. 

The principle of our method could be summarized as follows: (1) the next 
hop must be closer to the target node than the current node, unless the target 
node is directly linked with the current one, and (2) the metric of distance 
is the proposed function .f (vi , vj ). Specifically, to deliver packets, such values 
.f (va1, vd), ..., f (vak

, vd) and .f (vc, vd) could be calculated in the current node, 
where .a1, ..., ak denotes these neighbors of the current one. Then, these nodes that 
satisfied the distance condition are the eligible candidates. 

In this method, the routing is determined by the comparison of corresponding 
“distance function” between nodes and their neighbors. The comparison indicates 
the routing direction. Generally, there could be more than one neighbor that satisfies 
the condition. In such a case, multiple reliable paths could be selected for the 
routing. As the extension of Eq. (4.24), our strategy is formulated as follows: 

.
nextHop = i

i ∈ {x|f (vx, vd) < f (vc, vd), exc ∈ E, ecd /∈ E}. (4.25)
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4.2.1.2 Training of the Vectors 

Assume there are n number of nodes in the network, each node of it is assigned 
an m-dimensional row vector. We could stack these vectors up as a matrix: . M =
(v1, v2, ..., vn)

T . This matrix . M is the target parameter that our learning method 
is going to optimize. A single vector . vi could be described by the matrix . M . For  
this purpose, we introduce an n-dimensional row . ui , namely, the index vector. Any 
dimensional value of it is zero except the index of i, which is one. Then, the node 
vector . vi could be rewritten as a multiplication: .vi = uiM . In our method, the 
distance .Dij is replaced by a predicted value, .f (vi , vd). Thus, the objective of 
training these vectors is to minimize the difference between the distance and the 
function, which is formulated as follows: 

.M = arg min
M

∑

i,j,Dij ∈S

loss(|Dij − f (uiM,ujM)|), (4.26) 

where S denotes training set that collects nodes and the distance between them, and 
.loss(·) denotes the object function. 

Specially, if .S = {i, j,Dij |i, j ∈ V }, we stack all .Dij and corresponding 
.f (uiM,ujM) as matrices, which we denote as . D and .F (M). Additionally, we 
assume .loss(·) is L1-norm, and then Eq. (4.26) could be rewritten as follows: 

.M = arg min
M

||D − F (M)||1. (4.27) 

Equation (4.27) shows the relation between the optimization and matrix manip-
ulation. Considering the computational cost of the optimization, in general, simple 
function is the optimal selection for the object function .f (·), e.g., the mean square 
function. While the optimization could be allocated to a certain node (e.g., the 
controller in an SDN network). Then, these vectors are distributed by this node to 
other net nodes. Considering the time-varying property of the net, the optimization 
should be processed periodically. 

We apply the gradient descent to optimize Eq. (4.26), as shown in Algorithm 4.3. 
Meanwhile, other optimization algorithms are also able to solve Eq. (4.26) such 
as Adagrad (Adaptive Gradient [60]), RMSprop (Root Mean Square Prop [61]), 
Adam (Adaptive Moment Estimation [62]), etc. Nevertheless, the collection of 
training dataset is a tough problem, and thus two methods to collect training data 
are proposed in this work. One is to collect all pairs of nodes in the network and 
the distance between them into the training set, which requires the computing 
node to obtain the global topology. In such a case, the disadvantage of it is that 
additional algorithms are required to acquire the global topology information. On 
the other hand, the advantages are also obvious that the similarity between the 
predicted value . ˜D of function .f (·) and the true value . D can be directly tested on 
the training set. The other is sampling based method. In [57], the random walks 
sampling method was proposed to construct a “text-like” dataset. In this work, a
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Algorithm 4.3 The optimization on the vectors 
Input: {(us1 , ud1,Ds1d1), ..., (usk , udk ,Dskdk )} 

notes as the training set S. 
Output: The trained vectors: M 
1: Epoches: e, Batch size: bs, Learning rate: lr 
2: Procedure gradient descent 
3: Random initializes M 
4: while turns  <  e  do 
5: Random shuffle S 
6: while i <  k/bs  do 
7: start = i ∗ bs, end = (i + 1) ∗ bs − 1 
8: �j = Dsj ,dj − f (usj M, udj M) 
9: l = ∑end 

j=start loss(|�j |) 
10: M = M − lr ∗ ∂l 

∂M 
11: + +  i 
12: end while 
13: + +  turns  
14: end while 

sample-based dataset is built based on the random walks approach as shown in 
Algorithm 4.4. Let .s1, s2, ..., sL denote random walks sampled sequence of length L 
and .{(s1, s2,Ds1s2), ..., (sL−1, sL,DsL−1sL)} denote the training set obtained by the 
sampling method. Compared with the method that collects all the node pairs into the 
training set, the sampling method based on random walks only collects neighboring 
nodes and the distances between them. The advantage of the sampling method is 
that it does not require the topology information of the entire domain, while the 
disadvantage is that the sampling sequences and distance information should be 
delivered to the computing node. 

The value of .Dij may vary in a wide range, which could cause trouble in 
the optimization process. Since only the relative distance of .D̃ij = f (vi , vj ) is 
concerned, rather than the absolute value of the distance, we utilize a regularization 
approach to . Dij : 

.Dnew = w · Dold + b, (4.28) 

where .Dold denotes the absolute value of the distance (e.g., . Dij ), w denotes the 
weight, and b denotes the bias. The purpose of the transformation is to limit the new 
distance .Dnew into a smaller range (e.g., .Dnew ∈ (0, 1)). If we scale D into (0,1), 
the simplest one is that .w = 1/(Dmax − Dmin) and .b = −Dmin/(Dmax − Dmin).
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Algorithm 4.4 The random walks sampling 
Input: The network G = (V , E), 
Input: Repeated times Rt , 
Input: The length of the sampling sequence L. 
Output: The sampled training set S 
1: for node o in V do 
2: while t <  Rt do 
3: cur = o 
4: while i <  L  do 
5: Z = ∑

(cur,x)∈E Weight (cur,  x)  
6: P(ci = y|ci−1 = cur) = Weight (cur, y)/Z 
7: Chooses y with P(ci = y|ci−1 = cur) from cur.neighbors 
8: Adds (cur, y,Weight (cur, y))  into S 
9: cur = y 

10: + +  i 
11: end while 
12: + +  t 
13: end while 
14: end for 
15: Random shuffle S 

4.2.1.3 The Auxiliary Algorithm 

The performance of the shortest path routing (SPR) depends on the training 
quality of . M which cannot always guarantee .f (uiM,ujM) = Dij . Reliability 
of the routing relies on unbiased estimation of the shortest path distance . Dij . 
Thus, in practice, the proposed routing cannot provide true routing decision for 
all source node and destination node pairs. To ensure the reliability of the entire 
routing algorithm, we designed the auxiliary algorithm based on depth-first traversal 
algorithm. When SP-RBNV fails, the auxiliary routing algorithm (AuR) works to 
ensure the routing. 

The auxiliary algorithm is based on the depth-first search (DFS) that roots on 
the source node. The principle of the algorithm is as follows: when the source node 
does not know how to deliver the packets to the destination node, it sends packets to 
inquiry all its neighboring nodes. Then, the neighboring node confirms whether the 
destination node is its neighbor. If not, the neighboring node sends packets to inquiry 
its neighboring nodes again. In the inquired packet, a list is maintained where visited 
nodes are recorded. The neighboring node that records in the list will not be inquired 
again in order to avoid the loop in the path. Finally, when the destination node is 
found by the inquiry mechanism, the inquired packet is sent back to the source node 
following the visited node list. Every node in the list will write the destination and 
the next hop into its table. As long as there are paths from the source node to the 
destination node, the route will eventually be found.
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To reduce the cost of network communication, the auxiliary algorithm only looks 
for an available route and does not guarantee the shortest route. The complete 
pseudo-code of the auxiliary algorithm is shown in Algorithm 4.6. 

In some special cases, the auxiliary algorithm is not an essential part of our 
method. We could theoretical prove that if the dimension of the vector . dv is 
equal to the size of network n and dot product is used as the distance function 
(.f (vi ,uj ) = vi · uT

j ), there is . M that can guarantee .f (uiM,ujM) = Dij . 
Assume the matrix . A denotes the distance matrix of the network graph G. As  

condition .i = j is not used in the routing, the shortest distance between nodes i and 
j is as follows: 

.Dij = ui (A + αI )uT
j , (i �= j), (4.29) 

where . I denotes a unit diagonal matrix (.uiIuT
j = 0, .uiIuT

i = 1), and . α(α > 0)
denotes a coefficient. Obviously, the matrix .A + αI is a real symmetric matrix. 
When the coefficient . α is large enough, the matrix .A + αI is a positive definite 
matrix. And its eigenvalue decomposition is performed as follows: 

.A + αI = P�P T . (4.30) 

The eigenvalues of .A + αI are all greater than zero. If the matrix .
√

� satisfies 

.� = √
�

√
�

T
, .A + αI can be decomposed as follows: 

.A + αI = P
√

�(P
√

�)
T
. (4.31) 

If .M = P
√

�, we rewrite the distance .Dij as follows: 

.Dij = uiM(ujM)T , (i �= j). (4.32) 

In this case, the .M = (v1, v2, ..., vn)
T optimized by our algorithm will converge to 

the .P
√

�. The related demo is shown in Sect. 4.2.4.2. 
However, the dimension of vectors is increasing with the expansion of the 

network scale. This scheme could be applied to small-scale networks, but not to 
the large-scale networks. There should be a trade-off between the application of the 
auxiliary algorithm and the expansion of dimension. 

4.2.1.4 Complexity Analysis 

Complexity Analysis on the Optimization of Vectors If we assume that the 
number of training data is . |S|, the optimization algorithm iterates r times and 
the dimension of vectors is . dv . If the vectors are calculated following Eq. (4.27), 
where the objective function contains a vector multiplication, then the total cost is 
.O(r ∗ dv ∗ |S|). The number of training data . |S| is decided by the collection method
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Algorithm 4.5 The auxiliary algorithm based on depth-first traversal 
Input: The current node c, 
Input: The destination node d, 
Input: The set of visited nodes list 
Output: The next hop h, or null 
1: Procedure DFS(c, d, list) 
2: if d in c.neighbor then 
3: return d 
4: end if 
5: for node in c.neighbor if node not in list do 
6: list.add(node) 
7: next = DFS(node, d, list)  
8: if next ! = null then 
9: c.men[d] =  node 

10: return node 
11: end if 
12: list.remove(node) 
13: end for 
14: return null 

of the training set: if the training set collects all pairs of nodes and the distance 
between them, the number of training data is .|S| = |V | ∗ (|V | − 1)/2, and if the 
training set is collected by sampling based method, .|S| = |V | ∗ (L − 1) ∗ Rt . 

Complexity Analysis on Random Walks Sampling As  shown in Algorithm 4.4, 
random walks sampling contains three loops. For each node cur in V , repeated 
calculation for variable Z is not essential. It can only be calculated when node cur 
first occurred. Then, all operations of the innermost loop could be executed in O(1). 
In conclusion, the total cost is O(L ∗ Rt ∗ |V |). 
Complexity Analysis on Choosing the Next Hop We assume that a node has at 
most De neighbor nodes and apply the greedy strategy. Therefore the times of vector 
multiplication and finding the next hop is De + 1. So, the worst cost is O(dv ∗ De). 

Complexity Analysis on the Auxiliary Algorithm The complexity analysis of 
auxiliary algorithm is kind of difficult, as the times of query are intractable. 
Nevertheless, the worst situation can be easily analyzed. If the number of nodes in 
the network is |V |, the query will be executed |V |− 1 times, and thus the worst cost 
is O(|V |). Note that only the first lost package will activate the auxiliary algorithm, 
and then the path will be saved in the tables.
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Algorithm 4.6 The extended shortest path routing (SP-RBNV . +AuR)
Input: The source node s, the destination node d 
Output: Route list , or null 
1: Procedure routing(s, d) 
2: next = s 
3: list.add(s) 
4: while next ! = d&&next ! =  null do 
5: next = nextHop(next, d) 
6: list.add(next) 
7: end while 
8: if next ! =  null then 
9: return list 

10: else 
11: return null 
12: end if 
13: 

14: Procedure:nextHop(c, d) 
15: if c.mem.contain(d) then 
16: return c.mem[d] 
17: end if 
18: if c == d then 
19: return c 
20: end if 
21: if d in c.neighbor then 
22: return d 
23: end if 
24: Benchmark = f (vc, vd) 
25: list = []  
26: for a in c.neighbor if f (va, vd) < f  (vc, vd) do 
27: list.add(a) 
28: end for 
29: if list is None then 
30: return DFS(c, d, list) 
31: else 
32: Choose one from list and return 
33: end if 

4.2.2 The Constrained Routing Based on Node Vectors 

Except ensuring the proposed algorithm could guarantee the basic shortest path 
routing, we also explore the possibility of our algorithm for handling the constrained 
routing problem, which can be mathematically formulated as
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Fig. 4.8 The structure of the shallow neural network 

.

zopt = min
∑

x∈Psd
cost (x)

s.t. g1(x) ≤ q1,

...

gm(x) ≤ qm,

(4.33) 

where .Psd, Psd ⊆ {0, 1}|E|, denotes the set of paths from the source node to the 
destination node. 

In this work, we propose a shallow neural network to learn the bandwidth and 
delay of links of the network as shown in Fig. 4.8. In this section, we reuse the node 
vectors that we train for the SP-RBNV. The input of the neural network is vectors 
of the source node s and destination node d, .(vs , vd) which represent the virtual 
link (or physical link) between s and d. The output of it is the attributes of the link 
such as bandwidth, delay, packet loss rate, etc. The shallow neural network could be 
mathematically formulated as 

.output = σ

(
W oσ

(
Whsv

T
s + WhdvT

d + bh

)T + bo

)
, (4.34) 

where .σ(x) is the sigmoid function (.σ(x) = 1
1+e−x ), which is a common activation 

function in ML tasks. .Whs,Whd ∈ Rh×m denote weights of the hidden layer, 
.W o ∈ Rκ×h denotes weight of the output layer, h denotes the number of neuron
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in the hidden layer, and .bh ∈ Rh×1andbo ∈ Rκ×1 denote the bias. . output ∈ Rκ×1

denotes . κ predicted attributes of the input link. Since .σ(x) ∈ [0, 1], the values of 
the attributes are normalized into .[0, 1]. 

The proposed neural network is applied to extract fine-grained information from 
these vectors and networks, which maps from the input space (links) into the output 
space (attributes). To train it, we use cross-entropy as the objective function. The 
cross-entropy is a common one in such machine learning tasks, which is as follows: 

.lossnn =
∑

(vs ,vd ,q)∈S

i∑
−qi log(outputi), (4.35) 

where . qi denotes the i-th normalized attribute of the link between s and d, and the 
.outputi is the predicted counterpart of the . qi . 

The neural network is optimized by back propagation (BP) [63, 64]. The BP 
algorithm applies the chain rule to calculate the gradients of the parameters as shown 
in Eq. (4.36). We consider two kinds of data feeding of the neural network: the one is 
that only the physical links are put into the network, and the other is that all pairs of 
node (virtual link and physical link) are put into the network. The attributes of virtual 
link between arbitrary two nodes could be taken as the attributes of the shortest path 
between them or the attribute expectations of all possible path. To make it simple, 
we adopt the attributes of the shortest path as the attributes of virtual link in the 
experiments. 

.
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(4.36) 

The constrained routing decision is roughly the same as the basic routing. The 
difference of MC-RBNV is that only the neighbor node that the predicted attributes 
of the virtual link between it and the destination node are satisfied the constrained 
attributes are consideration in the decision of the next hop. 

4.2.3 Extension to the Multicast Scenario 

In the unicast routing, the calculation of the estimated distance .f (vs , vd) is needed 
to choose the next hop. As the shortest path distance is always a non-negative 
value, we propose a negative function .f (vs , vd) < 0 for multicast routing. We 
only consider the situation that a single source node delivers packets to multiple 
destination (one to many), as many-to-many multicast can be achieved by one-to-
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many multicast. Suppose that node A is the source node and nodes C, F, G, H, and 
J are the destination nodes as shown in Fig. 4.9. 

Let .f (·) satisfy .f (kvs , vd) = kf (vs , vd). The procedure of building a multicast 
group (or new members join in) is as follows: 

Step 1 The multicast destination nodes send CONNECTED packets to the source 
node. 

Step 2 After receiving the CONNECTED packets, node A generates a random 
number .γA, (γA < 0) and calculates available routing paths to these 
destination nodes by the RBNV algorithm. Then, node A delivers the 
ESTABLISHED packets whose destination vector is .γA ∗ vA to the next 
hops B and C. 

Step 3 When the ESTABLISHED packet arrives at node B, node B is aware that it 
is a multicast packet, because .f (γA ∗ vA, vB) < 0 (.f (vA, vB) > 0). Then, 
node B searches its multicast table with the index .RA = f (γA ∗ vA, vB). 
If . RA does not exist in the table, node B creates a new rule in the table; 
otherwise, node B updates the existed rule and delivers the packet following 
the rule in the table. 

Step 4 After a new rule is created, node B obtains the destination nodes F, G, H, 
and J from the packet and calculates the next hop for every target node. After 
that, node B generates a random number .γB, (γB < 0) and writes it into the 
new rule. The new rule contains the index . Ra , the random number . γB , and 
next hops. 

Step 5 When node B delivers the packet to next hops D and E, the destination vector 
of the packet is replaced by .γB ∗ vB . The content of the packet is replaced 
by the destination nodes F and G (or H and J), which are reachable via hop 
D (or  E).  

Step 6 After the source node receives ACKNOWLEDGE from destination nodes, 
a multicast tree is built. 

The intermediate nodes are periodically sending heartbeat packets to its adjacent 
nodes in the multicast tree to test connection status of the paths. The leaving 
procedure of members (or members miss connection) is as follows: 

Leaving of Destination Node The destination node sends a DISCONNECTION 
packet to the source node. After receiving the packet, the source node sends an 
UPDATED packet back to update the subtree that the destination node locates on. 

Destination Node or Intermediate Node Breaks Down The relative node sends 
a DISCONNECTION packet to the source node on behalf of the broken node, after 
it detects the breakdown. The next procedure is the same as the that of destination 
node leaving. 

Source Node Breaks Down The intermediate nodes that directly connect with the 
source remove their relative rule and inform their multicast neighbors when they 
cannot connect with the source node. Recursively, the multicast tree will be removed 
from the network.
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Fig. 4.9 The muticast demo 

Since every rule in multicast tables contains a unique value, i.e., . γ , they could 
be retrieved in an effective manner by taking the . γ as index. In addition, the QoS 
multicast routing can be provided by adding delay or other constraints into the 
routing paths, as the multicast routing is based on the proposed node vectors. 

4.2.4 Experiments and Simulation Results 

4.2.4.1 Simulations on the Basic Routing 

There are four kinds of simulations in this part. The first one is testing the shortest 
path routing in a 100-node net without considering weights of link, in which 
we compared with different vectors (vectors from our method and vectors from 
node2vec [57]). Considering link costs of routing, the second one tests on net 
with weighted links. In the third one, the SP-RBNV was tested in a 1000-node 
network (the net without considering link weights) with the aim of verifying the 
availability of the routing in larger networks. In the fourth simulation, we randomly 
disconnected a link in a tiny net (a net with 34 nodes) to test the response of the 
RBNV to network transition.
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The mean square error (MSE) is the objective function on the optimization 
process of vectors, and Eq. (4.37) is the estimated function. Two different methods 
are applied for the initialization of the matrix . M: one is initializing . M with random 
numbers, and the other is initialized by vectors from node2vec. The experimental 
topology was generated with graph generator algorithms [65, 66]. 

.f (vi , vj ) = k

(
1 − vi · vT

j

||vi ||2||vj ||2

)
. (4.37) 

Figure 4.10a shows the routing results of a randomly generated 100-node 
network graph. The methods that mentioned in Fig. 4.10a are listed in Table 4.4. 
In this table, M2-M5 are all proposed SP-RBNV methods. Additionally, the results 
on average training time cost are shown in Table 4.5 (trained on 4 core CPU virtual 
machines). 

In these simulations, the paths generated by our method (SP-RBNV) are 
compared with the shortest paths. If the routes are the same as the shortest paths, 
we categorize it as the shortest route (SR), while if the routes are not the shortest 
one, we categorize it as non-shortest reachable route (NSR). In addition, if the route 
is not existed with the SP-RBNV, we categorize it as unreachable route (UR). In 
the routing model, all nodes in the network can generate and deliver packets [67]. 
All source–destination pairs in the net were test, except these whose source node is 
directly connected to its destination node (total 9408 pairs). Although the node2vec 
[57] is not designed for the routing tasks, we used the vectors learned by node2vec as 
the pre-trained vectors and learned our vectors by fine tuning these vectors (methods 
M3 and M5). To distinguish the node2vec method and our proposed method, the 
vectors of node2vec, as a kind of “routing” method, were testing on our simulation 
as well. Undoubtedly, our proposed method outperforms the node2vec method in the 
simulation. And the method that collects all node pairs terminally performs better 
than the sampling based one in Fig. 4.10a, which is reasonable. 

Figure 4.10a shows that the initialized value of node vectors has influence on the 
performance of the SP-RBNV algorithm and specially has effort on the training 
time cost. Methods that initialized vectors by node2vec perform well. In these 
methods, the node2vec method serves as a pre-trained model, which is used for 
vector initialization. Then, our proposed method is applied to optimize these vectors, 
which is called fine-tuning. 

In the follow-up experiments, we used the node2vec as a pre-trained model 
and fine tuned vectors by our proposed method, since pre-trained and fine-tuning 
mechanism has better performance. 

L2 in Table 4.5 and Fig. 4.10b show the simulation results in a 100-node weighted 
net. The result shows that the auxiliary algorithm (AuR) guarantees the reliability 
of our method. The performance of these methods on the weighted net is inevitably 
worse than the un-weighted one. The cost ratio refers to the cost division between 
the NSR and the shortest path.
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Fig. 4.10 Results analysis. (a) The results on 100-node unweighted net. (b) The results on 100-
node weighted net 

Simalarly, L3 in Table 4.5 and Fig. 4.11 show the results in a 1000-node un-
weighted net. Although the node2vec-trained vectors perform well in the 100-node 
unweighted net, experimental results in the weighted net and large networks have
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Table 4.4 The methods on the experiments 

Method 

M1 node2vec 

M2 The sampling based method+ random initialization of node vectors 

M3 The sampling based method+ initialized node vectors by node2vec 

M4 The method that collects all node pairs+ random initialization of node vectors 

M5 The method that collects all node pairs+ initialized node vectors by node2vec 

Table 4.5 The average training time and cost ratio on the experiments 

M1 M2 M3 M4 M5 

L1 Training time (unit:second) 29.8 588.2 57.9 762.0 66.4 

L2 Training time (unit:second) 29.4 – 194.8 – 525.1 

Cost ratio 1.599 – 1.322 – 1.142 

L3 Training time (unit:second) 661.3 – 823.3 – 4825.4 

Cost ratio 1.186 – 1.190 – 1.149 

L1: 100-node unweighted net; L2: 100-node weighted net; L3: 1000-node net 
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Fig. 4.11 The results on 1000-node net 

proved that they are not ideal vectors for the routing. The method that trains node 
vectors on the sampling training set performs not that satisfied as well, despite the 
sampling method is more practical than the method of collecting the global topology 
information. Therefore, it is worthy of paying more attention on the improvement 
of the sampling method. 

To test the response of SP-RBNV to the net transition, we randomly broke down 
a link in the experimental net and remained using the node vectors that trained in 
the original net to calculate the route in the broken net. We conducted ten sampling
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Table 4.6 The results of coping to network mutation on 34-node net 

SR NSR UR The number of test route 

1 912 8 16 936 

2 904 6 26 936 

3 926 12 0 938 

4 930 8 0 938 

5 932 6 0 938 

6 933 5 0 938 

7 907 6 23 936 

8 908 30 0 938 

9 913 6 17 936 

10 912 21 5 938 

Baseline 934 2 0 936 

Table 4.7 The node vectors of the demo network 

1-d 2-d 3-d 4-d 5-d 6-d 

A −1.542 −0.296 −0.168 1.117 −0.504 −0.064 

B −1.342 −0.202 0.443 −0.922 0.184 −1.038 

C −1.410 0.101 0.755 0.307 0.589 0.995 

D −1.426 0.297 0.019 −0.178 −1.342 −0.211 

E −1.356 0.214 −0.481 0.358 1.103 −0.735 

F −1.286 −0.100 −0.604 −0.894 0.092 1.0790 

tests in a 34-node unweighted small-scale network, and the results are shown in 
Table 4.6, in which the Baseline is the result of the original network (no broken 
link). Table 4.6 shows that the SP-RBNV can still ensure reliable routes under most 
of the circumstances. Specifically, in test cases 3, 4, 5, 6, and 8, the SP-RBNV 
guarantees routes that are affected by the disconnected link rather than leading to 
inaccessible results. 

4.2.4.2 The Demo of Shortest Path Routing 

Figure 4.12 shows the demo network, in which the black values represent the link 
weights. In this demo, we choose dot product function as the distance estimated 
function .f (·): 

.f (vi , vj ) =
{

vi · vT
j i �= j

0 i = j.
(4.38) 

Thus, we calculated vectors of all the nodes in this network, as shown in Table 4.7. 
We suppose that there are packets delivering from router B to the destination 

router D. Blue numbers in Fig. 4.12a are the value of .f (vi , vD)(i = A,B, ..., F )
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Fig. 4.12 The demo networks. (a) The original topology. (b) After the link between B and C 
break 

we calculated. Obviously, among the neighboring nodes of B, nodes F and C satisfy 
the cosine function .f (vB, vD) < f (vi , vD)(i = F or C). Therefore, F and C 
are candidates that would transmit packets in the correct direction, and two paths 
can be chosen from B to D. Similarly, there are two paths available from A to D: 
.A − B → D and .A − F → D. 

Now we assume that the connection between router B and router C suddenly 
breaks, as shown in Fig. 4.12b. In other words, the original shortest path .B−C−D is 
disconnected. According to our proposed routing algorithm, an alternative solution 
can still be selected at router B, which is forwarded through router F . The  
time required for this decision is only the time cost for router B to detect the 
disconnection from router C. On the other hand, if the shortest path from router 
A to router D is broken at .E − D in .A − F − E − D, router A can choose . A − B

as an alternative route as long as the link-down message is feedback to router A via 
router F . 

4.2.4.3 Simulations on the Constrained Routing 

In this part, the MC-RBNV was tested on the DCLC problem. The resluts are 
shown in Fig. 4.13 with the EDSP [68],  the H_MCOP [69], the Mixed_Metric 
[70], the DEB [71], and the Larac [72]. We assume that both costs and delays are 
independently selected from uniform distributions. The cost and delay of a link 
.(u, v) are taken as .wc(u, v) ∼ unif orm[1, 10], wd(u, v) ∼ unif orm[1, 10](ms). 
Since the source and destination of the requests may come from all possible node 
pairs in the net, the minimum hop-count between them is at least three. The EDSP 
[68] requires a predetermined parameter .x = coef ∗ ds,t , where coef is a given 
positive integer and .ds,t is the distance from s to t . Following the suggestion of 
authors, we used .coef = 4 and set .x = 4|V |. Similarly, the Mixed_Metric [70] 
requires a constant . ε. We set  .ε = 5, as the simulation in [70] shows that the 
Mixed_Metric performs best when .ε = 5. In these experiments, the cross-entropy
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(a) (b) 

(c) (d) 

Fig. 4.13 The results of experiment on the constrained routing. (a) The average cost ratio in a 
32-node network. (b) The average delay ratio in a 32-node network. (c) The average cost ratio in a 
64-node network. (d) The average delay ratio in a 64-node network 

is chosen as the objective function as mentioned in Eq. (4.35). Our method requires 
the shortest path from the source–destination pairs. Thus, two types of shortest paths 
were used in experiments (the cost shortest path, i.e., RBNV-cost, and the delay 
shortest path, i.e., RBNV-delay). 

For better display, the results are drawn in two sub-layers. The cost ratio (delay 
ratio) refers to the cost (delay) division between the path provided by the model (i.e, 
RBNV-cost) and the actual optimal path. As shown in the figure, the metrics (the 
average cost ratio and the average delay ratio) of the proposed method is close to the 
best one (the EDSP and the Larac) with no distinct difference. The Mixed_Metric 
method seems to prefer to choose these low-delay paths. The performance of this 
method on average cost ratio is the worst. However, the Mixed_Metric is used to 
find a feasible path but not the least cost path and it performs the best on the average



150 4 Intelligent Traffic Control

delay ratio. The RBNV-cost performs better than the RBNV-delay on the average 
cost ratio but worse on the average delay ratio. 

4.2.4.4 Experiments on the Throughput of Routing 

To test the performance of the proposed method on the throughput, latency, and 
signal overhead, we proceeded an experiment with the OMNET. ++. The simulation 
was conducted on the common network topology—the NTT backbone network. 
Our method was compared with the method of Mao et al. [28], which applies deep 
learning to optimize packet transmission of network routing and calculates the next 
hop for packets with a deep neural network (the DBA). In addition, we also add the 
OSPFv2 into the experiment, following Mao et al. [28]. In the experiment, the data 
rate and delay of links are set as 2 Gbps and 100 . μs. Data generating rate changed 
from 1.74 to 3.48Gbps. The signaling interval of methods is fixed at one second. 

The detail of our method in the experiment is as follows: a computing node 
is specified for training the node vectors. All nodes check state of links between 
them and their neighbors and send state information to the computing node at 
every signaling interval. Then, the computing node cyclically distributes vectors 
to other nodes. The flood method (RBNV-flood) is applied to distribute vectors. 
Furthermore, to reduce the signaling overhead, we also apply the proposed multicast 
method (RBNV-multicast) to deliver vectors. As shown in Fig. 4.14a, compared 
with the flood method, the proposed multicast method reduces approximately 20% 
signaling overhead. The vectors trained in the next period are fine tuned based on the 
vectors of the previous period. In other words, vectors are initialized by the previous 
period one. As shown in Table 4.5, the training time of the vectors is greater than the 
signaling interval in the experiment. Even we train the vectors based on the previous 
period one, the time cost will not reduce into one second. However, the DBA in the 
work by Mao et al. requires less signaling interval. On the contrary, the proposed 
method requires greater signaling interval. To compare the signal overhead, in our 
method, the computing node distributes vectors to other nodes at every signaling 
interval. But the vectors are trained and updated every ten signaling intervals. For 
making full use of the advantages of the vector-based method, our method applied a 
simple load balancing policy to choose the next hop: all available candidates of the 
next hop that is chosen by the vector calculation have equal probability becoming 
the next hop. In other words, every time the routing decision that choosing the next 
hop is a sampling process from a discrete distribution. The results of the experiment 
are shown in Fig. 4.14. As shown in Fig. 4.14b, c, the proposed method with the 
simple load balancing policy outperforms other methods.
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Fig. 4.14 The results of 
experiment on the throughput 
of routing. (a) The signaling 
overhead. (b) The throughput. 
(c) The average delay per hop 
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4.3 Artificial Intelligence Empowered QoS-oriented Network 
Association 

With the rapid development of fifth generation (5G), the mobile networks will 
be able to share physical infrastructure to provide mobile applications, streaming 
media service, and Internet of Things [73–75]. Both the dimension and the cate-
gory of information transmitted on the communication network have substantially 
increased. Hence, traffic services require high Quality of Service (QoS), such as 
high reliability and low queueing delay [76]. 

To meet the complex network application scenarios and diversified QoS require-
ments, many network association schemes have been proposed based on mathemat-
ical models [77]. However, it is still difficult to model the real network scenarios 
accurately and solve complex routing problems even with ideal assumptions. Due 
to the powerful capability of representation and decision-making, machine learning 
algorithms are currently the subject of extensive attention [78]. Especially, Deep 
Reinforcement Learning (DRL) [79, 80] can highlight how to take action relying 
on the environment by maximizing the expected reward function. Furthermore, 
Software-Defined Network (SDN) is proposed to simplify network management and 
enable innovation through network programmability so that a data-driven approach 
can be supported [81]. Hence, we aim for developing an efficient QoS-oriented 
network association, where DRL can learn to control a communication network 
from its experience, and an accurate mathematical mode can guarantee its reliability 
and interpretability. 

4.3.1 System Model 

In this section, we describe a jitter graph-based network model and a Poisson 
process-based traffic model. For a given traffic, a server and buffer space allocation 
problem constrained on the queueing delay and PLR is proposed to find the feasible 
path set and reduce the cost of allocated resources. 

4.3.1.1 Data Transmission Framework in SDN 

Considering the system model, a data transmission framework based on SDN in 5G 
mobile networks is shown in Fig. 4.15. In general, a data transmission framework 
based on SDN decouples the data and control planes. Specifically, the control 
plane is composed of a data collector to collect network information and a traffic 
dispatcher to manage the network. In the data plane, a set of connected network 
devices forward packets to the next hop according to the control logic. As for the 
data plane of 5G mobile networks, we consider a three-tier wireless heterogeneous 
network composed of Base Stations (BSs), relays, and users. In detail, a popular
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Fig. 4.15 Data transmission framework based on SDN in 5G mobile networks 

approach for analyzing mobile networks is to use stochastic geometry and treat the 
location of BSs as points distributed according to a homogeneous Poisson Point 
Process (PPP) [82–84]. 

The data transmission based on SDN in 5G mobile networks can be summarized 
as the following steps. The BSs and relays in the data plane report the network 
states, such as the queue length and traffic distribution, to the data collector in the 
control plane. Then according to the overviews of the whole network and the states 
of each network device, the SDN controller generates a routing strategy. Finally, the 
specific action of routing strategy is deployed by the traffic dispatcher. 

4.3.1.2 Network Model 

The theoretical QoS values always consider the available resources, the traffic shape, 
and service disciplines. To determine the relationships between the QoS values and 
different resources inside a network, we propose a jitter graph-based network. Here, 
an undirected jitter graph [85] .G(V,E) is abstracted as a mobile network, where V 
denotes a set of jitter nodes representing routers and E denotes a set of jitter edges 
indicating communication links. Each edge .e(u, v) has a specific bandwidth .BWuv , 
which represents its available data transmission capability. Also, there are two fixed 
values of each node, which can be defined as . Cu and . Bu to represent the server 
space and buffer space of the router u, respectively. The relationship between our 
proposed jitter graph and the substrate network is shown in Fig. 4.16. 

Specifically, the service discipline from router u to its neighbor v is composed 
of the jitter node u and the connection edge .e(u, v), which is characterized by .(1)
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Fig. 4.16 Jitter graph-based network model 

maximum delay . Duv , . (2) minimum delay . duv , . (3) available bandwidth .BWuv , . (4)
packet loss rate .PN(u), and . (5) queueing delay .Wq(u). To elaborate a little further, 
the maximum delay .Duv models the end-to-end delay of the connection link . e(u, v)

and the bounded delay of the node u. The minimum delay .duv can be computed 
as the sum of the processing delay on the jitter node u and the propagation delay 
and transmission delay on the jitter edge .e(u, v). The available bandwidth . BWuv

here defines the channel capacity in bits per second. Furthermore, PLR is defined as 
the failure of transmitted packets to reach their destination, which is mainly caused 
by congestion and mistakes in packet transmission. Assuming that .ntran(u) is the 
packets transmitted from the router u and .nrec(v) is the packets received by the 
router v, the PLR .PN(u) on the edge .e(u, v) can be measured as .ntran(u)

nrec(v)
. The  

queueing delay .Wq(u) is defined as the time a packet waits in the router u’s buffer 
until transmitted, which is a critical component of jitter caused by the difference in 
packets’ delay. 

4.3.1.3 Traffic Model 

Each traffic . fk passes through the source . sk and the destination . dk in the commu-
nication networks, where the established path can be denoted by . pk . We use an  
.M/M/C/N queuing system [86] described below as a measurement tool for traffic 
policy. The arrival time of packets subjects to the Poisson distribution [87–89] and 
the service time of packets independently obeys the exponential distribution [90]. 
The considered queuing system is composed of C servers to handle incoming 
packets on the First-Come-First-Served (FCFS) discipline. The capacity of a 
queuing system is defined as .N(N ≥ C), which contains both the packets in service 
and queue. If the number of packets in the system reaches N , the arrival packets will 
be discarded.
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(a) (b) 

Fig. 4.17 Traffic and queueing models. (a) The state-transition-probability diagram, and (b) the  
traffic oriented queueing model 

As the arrival time of packets subjects to the Poisson distribution, we can 
determine the following two characteristics for the packets arrival process. On the 
one hand, the number of arrival packets occurring in two non-overlapping intervals 
is a random variable that is independent of each other. On the other hand, for each 
time interval .(t, t + τ ], the number of arrival packets is a random variable that 
follows the Poisson distribution with associated parameter . λτ as 

.P [(N(t + τ) − N(t)) = k] = e−λτ (λτ)k

k! , k = 0, 1, .... (4.39) 

Packet service time obeys an exponential distribution of parameter . μ: 

.F(X;μ) =
{
1 − e−μx, x � 0,
0, x < 0,

(4.40) 

and we write .X ∼ exp(μ). If there are more than C packets, the packets will 
queue in the buffer. If the packets in the queuing system are less than C, some of  
the servers will be idle. As the corresponding state-transition-probability diagram 
shown in Fig. 4.17a, traffic intensity .ρ = λ

Cμ
can be measured as the average 

occupancy of a server. If . ρ is less than 1, there exists a stationary distribution of 
the system. Otherwise, the queue will be filled and the packets will be continuously 
discarded. 

The routing strategy and resource allocation on the queueing model in Fig. 4.17b 
can affect the users’ perceiving, so we aim to reduce the mismatch between the 
network available resources and the traffic distribution. In this work, a QoS routing 
strategy with resource allocation based on Poisson traffic is proposed to select a 
feasible path set and an adaptive routing algorithm is proposed to select an optimal 
path. Specifically, . pk is the available path from . sk to . dk composed of a sequence of
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nodes and links. Moreover, .V (p) = {n|n ∈ p} and . E(p) = {e(u, v)|e(u, v) ∈ p}
are used to represent all the jitter nodes and jitter edges on p, respectively. The 
arrival rate of packets is determined by the traffic request, so its actual service rate is 
the minimum value of its arrival rate and routers’ service rate. The path composed 
of multiple jitter nodes can be simplified as an .M/M/C/N queuing system, 
whose parameters are determined by the bottleneck router with the least available 
resources. Hence, the path . pk can be viewed as a queuing system characterized by 
the buffer space and the server space, which can be given by . Bk and . Ck , respectively, 
i.e., 

.Bk = min
v∈p

B(v), (4.41) 

as well as 

.Ck = min
v∈p

C(v). (4.42) 

For an established path, the channel can be viewed as a simplified link characterized 
by the bottleneck bandwidth, which can be calculated as 

.Rk = min
e(u,v)∈p

BWuv. (4.43) 

4.3.1.4 M/M/C/N Queueing Model 

We consider a problem involving the resource allocation of the bandwidth, the 
server, and buffer space, when establishing the available channel for the traffic 
. fk from . sk to . dk . As the mobile network always has security demands for low-
jitter QoS and more bandwidth, we aim to maximize the available resources while 
satisfying the restrictions. The jitter node can be viewed as a truncated multi-channel 
queue with a general balk function. The steady-state distribution can be derived and 
the expected packet number in the queue can be obtained [86]. The corresponding 
mathematical derivation is given as follows. 

The number of servers is C, the buffer space is B, and the system’s capacity is 
.N = C + B. Hence, the service rate . μn on the state space . {0, 1, 2, . . . , C, . . . , N}
can be obtained by 

.μn =
{

nμ n = 1, 2, · · · , C,

Cμ C < n ≤ N,
(4.44) 

and the transition rate matrix Q can be calculated by
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.Q =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ λ

μ −(μ + λ) λ

. . .

Cμ −(Cμ + λ) λ

. . .

Cμ −Cμ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.45) 

The probabilities .P t = {P t
0 , P

t
1 , . . . , P

t
N } of a state can be calculated by the 

following two equations: 

.P t+1 = QP t, (4.46) 

and 

.

N∑

n=1

P t
n = 1, (4.47) 

where . P t
n is the probability that there are n packets at time t . After the long-

term iteration, the system will be in a stable state satisfying . P t = P t+1 = P =
{P0, P1, . . . , PN }. 

For simplicity, .Cn(n = 1, 2, · · · , N) are assigned to each queue state, which can 
be formulated by 

. Cn = λn−1λn−2···λ0
μn−1μn−2···μ0

=
{

1
n! (

λ
μ
)n n = 1, 2, · · · , C,

1
C!Cn−C ( λ

μ
)n C < n ≤ N.

(4.48) 

Therefore, the probability . Pn can be obtained based on the traffic intensity .ρ = λ
Cμ

, 
which can be expressed as 

.Pn = CnP0 =
{

(Cρ)n

n! P0 n = 1, 2, · · · , C,
ρnCC

C! P0 C < n ≤ N.
(4.49) 

According to Eqs. (4.46–4.47), the probability that the queuing system is idle can 
be obtained by 

.

P0 = 1
∑C−1

n=0 Cn +∑N
n=C Cn

= 1
∑C−1

n=0
1

n!
(

λ
μ

)n + CC

C!
ρ(ρC−ρN )

1−ρ

.
(4.50)
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Hence, the queueing length, which represents the number of packets waiting to be 
transmitted in the buffer, can be given by 

.

Lq = ∑N
n=C(n − C)Pn,

= ∑N−C
j=0 jP

C+j
,

= ρ(Cρ)CP0

C!(1 − ρ)2

[
1 − ρN−C − (N − C)ρN−C(1 − ρ)

]
.

(4.51) 

Then, the average queueing delay proportional to . Lq can be expressed as follows: 

.Wq = Lq

λeff

= Lq

λ(1 − PN)
, (4.52) 

where the actual arrival rate of the packets .λeff can be calculated as . λeff =
λ(1 − PN). Moreover, the packets will wait only when all the servers are busy and 
the buffer has free space. Thus, we can conclude that the queuing system is in the 
queueing state if the number of packets ranges from C to N . 

4.3.2 QoS Routing with Resource Allocation 

In this section, we define the problem of QoS routing with resource allocation 
relying on the jitter graph-based network model and the Poisson process-based 
traffic model, where the knowledge of the network elements implementation and the 
traffic shape inside the network can be fully incorporated. Also, a low computational 
complexity greedy algorithm is presented to solve the problem described above with 
the PLR and queueing delay satisfying the non-increasing conditions. 

4.3.2.1 Problem Formulation 

Consider a jitter graph-based network .G = (V ,E) as well as the source and 
destination nodes .sk, dk ∈ V of the traffic . fk . We aim to find the feasible path set, 
which is composed of the jitter nodes connected in tandem. Then we can allocate 
the buffer space .b(v) satisfying .0 ≤ b(v) ≤ B(v) and the number of servers . c(v)

satisfying .0 ≤ c(v) ≤ C(v) for the jitter nodes connected in tandem of . pk . 

Definition 4.1 For a selected path . pk , the problem of QoS routing with resource 
allocation can be defined as
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.

max Z(pk) = aC(pk) + bB(pk)

s.t. (15a) : PN(pk) ≤ PLRk,

(15b) : Wq(pk) ≤ delayk,

(15c) : C(pk) = min
v∈pk

c(v) ≤ min
v∈pk

C(v),

(15d) : N(pk) = b(vbn) + c(vbn).

(4.53) 

Given traffic . fk , we aim for maximizing the available resources .Z(pk) on the 
selected path so that the user can obtain better experience. Hence, we set the 
objective as a weighted sum of the server and buffer space, where a and b represent 
the corresponding coefficients. In Eqs. (4.53a) and (4.53b), the QoS metrics of . pk

are composed of the PLR .PN(pk) as well as the queueing delay .Wq(pk). Then, a 
feasible path set satisfying the QoS constraints .(PLRk, delayk) of the traffic . fk can 
be determined. Therefore, we can obtain the available server space of the queuing 
system .C(pk) by Eq. (4.53c) and the maximum capacity .N(pk) by Eq. (4.53d), 
which are constrained by the router .vbn with the minimum available server space 
.min
v∈pk

c(v). 

Unfortunately, the problem of Eq. (4.53) is non-convex and NP-hard, and thus it is 
hard to find the global optimal solution. To improve search efficiency, we simplify 
the problem based on two hypotheses, which can guide the search direction with 
some empirical suggestion proved in Sect. 4.3.4(B). We can obtain a solution toward 
the problem of QoS routing with resource allocation and assign numerical values 
to .b(v) and .c(v) for all jitter nodes .v ∈ pk , if the constraints can be satisfied 
simultaneously. Otherwise, increasing any other value .b(v) and .c(v) cannot affect 
the available resource .B(vbn) and .C(vbn) on the bottleneck router . vbn. In this case, 
we determine the available resources on . pk by . B(pk) = B(vbn), C(pk) = C(vbn)

and select the path by maximizing the objective to make .PN(pk) and .Wq(pk) as low 
as possible. 

Assumption The queuing system of . pk can be simplified with consideration of the 
bottleneck node . vbn whose allocated server space is minimum on . pk , because the 
number of servers plays a more important role in reducing the queueing delay and 
PLR compared with the buffer space [91]. ��
Assumption As the key problem of queueing is always the available bottleneck 
resources [92], it is supposed that the number of servers of a path . pk can be viewed 
as a concave function .C(pk) = min

v∈pk

{c(v)} as depicted in Eq. (4.53c).. ��
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4.3.2.2 Optimality Conditions 

In this subsection, the preconditions [93] are presented for the problem of QoS 
routing with resource allocation. We present the non-increasing QoS metrics of the 
queueing delay and PLR, which capture the routers’ properties. 

Definition 4.2 For the modeled jitter graph .G = (V ,E), the operator . ⊕ is used as 
a walk between two jitter nodes: .q = p1 ⊕p2, where the last node in . p1 is the same 
as the first node in . p2. A sequence of jitter nodes q is constructed by concatenating 
. p2 to . p1. The function f is said to satisfy the non-increasing condition if 

.f (p1(s, x)) ≤ f (p1(s, x) ⊕ p2(x, d)). (4.54) 

For a path .pk(s, d) =< s, v1, v2, . . . , vn, d >, the queueing delay and the PLR can 
be defined as .Wq(pk) and .PN(pk), respectively, i.e., 

.Wq(pk) = Wq(s) + Wq(v1) + · · · + Wq(vn) + Wq(d), (4.55) 

.PN(pk) = 1 − [1 − PN(s)] · [1 − PN(v1)] · · · · · [1 − PN(d)]. (4.56) 

Because .Wq(v) ≥ 0 and .0 ≤ PN(v) ≤ 1, the queueing delay and PLR satisfy the 
non-increasing condition shown in Eq. (4.54), which can also be expressed as 

.Wq(pk) ≥ Wq(vbn), (4.57) 

.PN(pk) ≥ PN(vbn). (4.58) 

According to Assumption 4.3.2.1, the resource on the routers is a concave function 
and we pay attention to the router with the least resource of . pk , namely the 
bottleneck router . vbn. 

4.3.2.3 QoS Routing Strategy with Resource Allocation 

We aim to select the feasible path set under constraints of the queueing delay and 
PLR while maximizing the available resources. The total latency can be obtained by 

.

ttol = tpd + ttd + twat + tser

= dis

cl

+ λ

BW
+ Wq(pk) + 1

C · μ
,

(4.59) 

where the propagation delay . tpd is the proportion between the distance dis and the 
speed of light . cl , the transmission delay . ttd is the proportion between the packet 
arrival rate . λ and the bandwidth BW , .twat is the queueing delay, and .tser is the 
service delay.
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For better user experience and network performance, our object is to maximize 
the available resources on . pk . According to Eqs. (4.53(a–b)) and (4.57–4.58), we 
have .PN(vbn) ≤ PN(pk) ≤ PLRk and .Wq(vbn) ≤ Wq(pk) ≤ delayk . Thus, 
we determine the available server space .C(pk) and maximum capacity . N(pk)

considering the bottleneck router .vbn selected by .min
v∈pk

C(v). Then . C(pk) =
min
v∈pk

C(v) and .N(pk) = C(vbn) + B(vbn) can be obtained from Eq. (4.53 (c–d)). 

Finally, the QoS routing strategy with resource allocation based on Eq. (4.53) can 
be redefined as 

.

max
C,B

Z(pk) = aC(pk) + bB(pk)

s.t. (22a) : PN(vbn) ≤ PN(pk) ≤ PLRk,

(22b) : Wq(vbn) ≤ Wq(pk) ≤ delayk,

(22c) : C(pk) = min
v∈pk

C(v),

(22d) : N(pk) = C(vbn) + B(vbn).

(4.60) 

In the objective function, a and b are the corresponding coefficients for the 
server and buffer space. As described by Eqs. (4.60a) and (4.60b), a path . pk is 

feasible if the PLR .PN(vbn) = CCρN

C! · P0(vbn) and queueing delay . Wq(vbn) =
Lq

λk[1−PN(pk)] satisfy the corresponding constraints. Equation (4.60c) is used to select 
the bottleneck router . vbn according to the routers’ available server space. Then, we 
can determine the capacity of . pk by Eq. (4.60d) based on . vbn’s available resource. 

More specifically, the PLR of the established path . pk can be calculated as 

.

PN(pk) ≥ PN(v)

= CCρN

C! · 1
∑C−1

n=0
1
n! (

λ
μ
)n + CC

C!
ρ(ρC−ρN )

1−ρ

,
(4.61) 

and the queueing delay .Wq(pk) can be obtained by 

.

Wq(pk) ≥ Wq(v)

= 1
λk[1−PN(pk)] ·

ρ(Cρ)CP0

C!(1 − ρ)2

·
[
1 − ρN−C − (N − C)ρN−C(1 − ρ)

]
.

(4.62) 

The number of servers .C(pk), the buffer space .B(pk), and the capability of queuing 
system .N(pk) = C(pk) + B(pk) satisfy the following relationship: 

.C = C(pk) = min
v∈pk

c(v) = c(vbn) ≤ C(vbn), (4.63)
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as well as 

.N = N(pk) = c(vbn) + b(vbn) ≤ C(vbn) + B(vbn). (4.64) 

Hence, we can obtain an optimum solution by 

.

(C∗, B∗) = argmax
C,B

Z(pk)

= argmax
C,B

{aC(pk) + bB(pk)}

= (
c∗(vbn), b∗(vbn)

)
.

(4.65) 

With the number of servers .C(pk) and the buffer space .B(pk) obtained, the available 
resources on . pk can be determined for all jitter nodes .v ∈ pk , including the number 
of servers and the buffer space, which can be defined as 

.c(v) = C(pk) = c(vbn), (4.66) 

and 

.b(v) = B(pk) = b(vbn). (4.67) 

The QoS routing with resource allocation problem in Eq. (4.60) can be divided 
into two cases: 

Case (1) . PN(vbn) ≤ PLRk,Wq(vbn) ≤ delayk.

Case (2) . PN(vbn) > PLRk ∪ Wq(vbn) > delayk.

Due to the non-increasing condition of latency and PLR, the path . pk can be 
determined as feasible only in the condition of case (1). Hence, QoS routing with 
resource allocation is proposed in algorithm 4.7 leveraging beam search [94]. We 
aim to maintain a feasible path set of K candidates at each step t : 

.�t =
{(

v11, . . . , v
1
t

)
, . . . ,

(
vK
1 , . . . , vK

t

)}
. (4.68) 

Then the feasible path set at next time can be obtained by expanding . �t and keeping 
the best K candidates by 

.�∗
t+1 =

(
K⋃

k=1

�k
t+1

)∗
, (4.69) 

where 

.�k
t+1 =

{(
vk
1, . . . , v

k
t , v1

)
, . . . ,

(
vk
1, . . . , v

k
t , v|V |

)}
. (4.70)
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Specifically, we have the valid outputs 

.� := {vsrc ◦ v ◦ vdst |v ∈ V } , (4.71) 

where . ◦ is the string concatenation and V is the set of jitter nodes. Given the 
constraints .x : (PLRk, delayk), we define the probability distribution . pθ as the 
product of probability distributions 

.pθ(� |x ) =
|�|∏

t=1

pθ(�t |x,�<t ), (4.72) 

where each .pθ(· |x,�<t ) is a distribution with support over .�<1 = �0 := vsrc. 
The objective for path generation aims to find the most probable hypothesis: 

.�∗ = argmaxlogpθ(� |x ). (4.73) 

For an elegant answer, we define the time-dependent surprising by log-likelihood 
equation to characterize the new information at time t: 

.

u(�0) = 0,

u(�) = −
∑

t�1

logpθ(�t |x,�<t ).
(4.74) 

As minimally surprising means maximally probable, every local surprise . ut should 
be close to the minimally surprising choice. 

Algorithm 4.7 QoS routing with resource allocation 
Input: the number of path in the feasible path set K , the traffic vsrc → vdst , 
its constraints PLRk , delayk and its arrival rate λk 
Output: the feasible path set 
1: Initialize the current router vk 

1 = vsrc,the path set � = {(v1 1),  . . . , (vK 
1 )} 

2: while vk 
t �= vdst do 

3: for any i ∈ [1,K] do 
4: Select the available next hop vi from vk 

t 
5: Compute the PN(vi) and Wq(vi) 
6: Expand �t as Eq. 4.70 
7: Keep the best K candidates as Eq. 4.69 
8: end for 
9: end while 

10: return � = {(v1 src, . . . , v
1 
dst ),  . . . , (vK 

src, . . . , v
K 
dst )} 
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4.3.2.4 Computational Complexity Analysis 

Proposition 4.1 The time complexity of the QoS routing with resource allocation 
is O((K2(logN + logC))len ), where K is the number of paths in the feasible path 
set, C is the number of available servers, N = B + C is the capacity, and len is the 
average number of iterations required to search the feasible paths. 

Proof Given a traffic request, we need to iteratively calculate PLR and queueing 
delay to determine feasible paths that meet the constraints. We simplify the 
established path as an M/M/C/N queuing system based on the bottleneck router, 
so each router has to satisfy given constraints. For the path set� of the traffic request 
fk , we need to calculate the QoS value of all possible next hops to determine the path 
feasibility with complexity of O(K2NC). To improve the efficiency of calculation, 
we turn an enumerated problem into a divide-and-conquer process considering the 
monotonicity. Thanks to the strategy of binary search, the time complexity for 
determining the feasible path set � at each step is O(K2(logN + logC)). The  
iteration stops when fk reaches the destination, so the computational complexity is 
O((K2(logN + logC))len ). The average number of iterations len is determined by 
the network size and the search size. ��

4.3.3 Deep Reinforcement Learning for QoS-oriented Routing 

The problem formulated in Eq. (4.53) targets to only one path. However, there are 
always multiple traffics arriving at the same time and each pair’s path decision 
impacts others. Even if the packet arrival at every source node follows a Poisson 
distribution, packet arrivals at intermediate nodes may not. In this section, we 
propose a QoS-oriented adaptive routing strategy based on deep reinforcement 
learning techniques. 

4.3.3.1 Deep Reinforcement Learning Framework 

Reinforcement learning is a kind of reward-guided algorithm, where the agent learns 
in a trial-and-error manner to maximize the reward through the interaction with the 
environment. Boyan et al. [95] propose the Q-routing algorithm for packet routing, 
where the Q-learning is first applied to the routing algorithm. .vcur estimates the 
delivering time .Qvcur (vdst , vnxt ) from . vcur ’s neighbor .vnxt to .vdst and select the 
next hop with minimum delivering time by 

.anxt = min
vnxt∈neighbors of vcur

Qvcur (vdst , vnxt ). (4.75) 

As for updating Q-table, .vcur immediately gets back . vnxt ’s estimate for the time 
remaining t . Then .vcur can revise its estimate as follows:
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.�Qvcur (vdst , vnxt ) = α(

new estimate︷ ︸︸ ︷
q + s + t −

old estimate︷ ︸︸ ︷
Qvcur (vdst , vnxt )), (4.76) 

where . α is a “learning rate” parameter, q is the queueing delay, and s is the 
transmission time. To search for an incentive solution, a trade-off by .ε-greedy policy 
is considered to balance the exploration and exploitation, where the agent takes a 
random action with probability . ε and the action of the highest Q value otherwise. 

According to [96], deep reinforcement learning is a strategy, which approximates 
some component of reinforcement learning with deep neural networks. DDPG is 
a deep reinforcement learning strategy that can learn a good and specific QoS-
oriented routing strategy with low-dimensional observations [97]. The agent selects 
the optimal action simply relying on the reward function. Specifically, 

• State Space: The state is denoted by the traffic request, which is composed of 
the parameters of queuing systems, the position messages of packets, and the 
requirements of traffic. The parameters of queuing systems illustrate their charac-
ter by the arrival rate and the service rate. The position messages demonstrate the 
source, the current position, and the destination in packet-level simulation. The 
requirement of traffic is used to make a routing strategy satisfied QoS constraints. 
The state vector can be formulated as .s = [λ,μ, vsrc, vcur , vdst , PLRk, delayk]. 

• Action Space: The action is used to select next hop from the located router of 
traffic and can be represented as the probability of each router to be the next hop. 
We formulate the action vector as .a = [a1, a2, · · · , aV ], where . ai represents the 
probability of . vi selected as the next hop satisfying .

∑V
i=1 ai = 1. 

• Reward Space: The reward is defined considering the distance difference and 
available resource. 

As shown in Fig. 4.18a, the framework of DDPG is composed of the primary 
network and the target network, both of which are actor-critic-based (ac-based) 
framework. The actor neural network updated by policy gradient aims for specifying 
the optimal action founded on the current network status. Hence, its input is the real-
time state . st , while the output is the selected probability of each router . a = π(s; θμ)

as shown in Fig. 4.18b. In the final output layer, we employ the softmax [98] as the  
activation function to ensure that the sum of output equals one. The critic neural 
network aims to predict the value function generated by the state and corresponding 
QoS routing action as Fig. 4.18c. We formulate the critic network as . Q(s, a) =
Q(s, a; θQ) and perform parameter update using deep Q-Network [99]. 

4.3.3.2 DDPG Model for QoS-Oriented Routing 

The key parts of a DDPG model are the primary actor network and primary 
critic network. The so-called routing policy is actually a series of actions. In this 
subsection, we will elaborate on the update of the two networks as well as the 
definition of reward.
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Fig. 4.18 DDPG-based QoS routing: (a) the framework of DDPG, (b) the architecture of actor 
network, and (c) the architecture of policy network 

.Primary Actor Network (Actor_P) is used to find a good policy, which is a 
mapping from a traffic state to a probability distribution, i.e., action. The action a 
for the current state s can be determined as 

.a = π(s; θμ), (4.77) 

where s is the normalized metrics referred in state space. a represents the 
probability of each router to be the next hop, which can be selected from the 
neighbor routers of packets’ current position with the largest probability. The 
objection of .Actor_P is to maximize the expectation of long-term cumulative 
reward with the given state and the objective function can be predicted through 
.primary critic network (Critic_P):
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.

maxθμJ (θμ) = maxEθμ[r(1) + γ r(2) + γ 2r(3) + · · · ]
= maxEθμ[Q(s, a; θQ)].

(4.78) 

In Eq. (4.78), .r(t) represents the instant reward obtained by executing the policy 
.a = π(s; θμ) with the discount . γ at time t. The prediction of reward is the output of 
.Critic_P represented by .Q(s, a; θQ). Also, the gradient of the objective function 
with respect to . θμ is equivalent to the value function [97]. Therefore, parameters 
of .Actor_P can be updated in the direction where the objective function increases 
based on its gradient 

.

∂J (θμ)

∂θμ
= Es

[
∂Q(s, a|θμ)

∂θμ

]

= Es

[
∂Q(s, a|θQ)

∂a

∂π(s|θμ)

∂θμ

]
.

(4.79) 

.Primary Critic Network (Critic_P) aims to obtain the value function for 
updating .Actor_P . As for the update of .Critic_P , it is similar to DQN. The loss 
function of DQN is defined as .loss = (Qtarget − Q(s, a))2, where . Qtarget =
r+γmaxa′Q(s′, a′; θ ′). Instead of traversing the action space to obtain .Q(s′, a′; θ ′), 
the DDPG algorithm only needs to use the .target critic network (Critic_T ) to 
evaluate the prediction .π ′(s′; θμ′

) of .target actor network (Actor_T ). Hence, 
the .Critic_P can be updated by minimizing the loss function 

.loss =
[
r + γQ′(s′, π ′(s′; θμ′

); θQ′
) − Q(s, a; θQ)

]2
. (4.80) 

.T arget Network is used to generate the target value according to the input 
transformed state to train .Critic_P . To solve the problem of unstable convergence 
of the ac-based framework, DDPG updates and modifies the parameters using “soft” 
target updates unlike DQN. Rather than a simple snapshot of the earlier primary 
network, the parameters of .T arget Network approach the primary network 
parameters with a small amount in each iteration by 

.

θQ′ ← τθQ + (1 − τ)θQ′

θμ′ ← τθμ + (1 − τ)θμ′
.

(4.81) 

The coefficient . τ for updating .T arget Network is generally smaller due to the 
minor environmental changes in an ultra-low time. 

Reward is the feedback from the environment based on the current state and 
action. From the 2G to 5G era, people’s demand for network communication has 
become more diverse as in Table 4.8. 
To meet the QoS requirements for different use cases, the reward function can be 
defined as
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Table 4.8 QoS requirements 
with respect to traffic requests 

Application QoS requirements 

Telnet connection Delay, packet loss rate 

Simple web page Delay 

Heavy web page Throughput 

STMP/POP3/IMAP Packet loss rate 

FTP data connection Throughput 

Data with Telnet Packet loss rate 

Real-time multimedia Delay, throughput, jitter 

Control message Delay 

.

Rt = R(i → j |st , at )

= ω1f (C,B) + ω2f (Wq) + ω3f (PN)

+ ω4f (BW) + ω5f (dis),

(4.82) 

where the environment takes action . at at state . st . In Eq.  (4.82), . ω1, ω2, ω3, ω4, ω5 ∈
[0, 1) represent the weights of corresponding QoS requirements. For the sake of 
explicitly evaluating our proposed routing method, we normalize abovementioned 
QoS-oriented benchmarks as follows: 

• .f (C,B) is the normalized capacity of the queuing system on the router j : 

.f (C,B) = − 4

3π
arc tan

(
1

C(vj )

)
− 2

3π
arc tan

(
1

B(vj )

)
. (4.83) 

• .f (Wq) is the normalized function of the queueing delay .Wq(vj ) for the traffic 
arriving at the router j : 

.f (Wq) = − 2

π
arc tanWq(vj ). (4.84) 

• .f (PN) is the normalized function of PLR .PN(vj ) for the traffic arriving at the 
router j : 

.f (PN) = 1 − 2PN(vj ). (4.85) 

• .f (BW) is the normalized function of available bandwidth .BWA
ij on the edge 

.e(i, j) and we have 

.f (BW) = 2

π
arc tan

(
0.01BWA

ij

)
. (4.86) 

• .f (dis) is the distance difference to destination: 

.f (dis) = disid − disjd , (4.87)
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where .disid and .disjd represent the number of hops from the router i and j to 
the destination d, respectively. 

According to Eqs. (4.83–4.87), all the above functions normalize the QoS metrics 
within .[−1, 1]. The selection for next hop is preferred if the value of .f (·) is close to 
1, while the action is likely to be rejected with the value of .f (·) close to . −1. 

4.3.3.3 DDPG Aided QoS-Oriented Routing 

A randomized algorithm is proposed to trade-off exploration and exploitation. 
Specifically, we take action .a + ε · N with .1 − ε probability where .a = π(s; θμ) is 
the output of .Actor_P . To explore a hopefully optimal policy, we derive action 
.abase + ε · N , where .abase is a base routing strategy. We chose N to suit the 
environment and used an Ornstein–Uhlenbeck process proposed by Uhlenbeck and 
Ornstein as 

.

N = θ(μ − a) + σW,

N = θ(μ − abase) + σW,
(4.88) 

where W is the velocity of a Brownian particle with friction. As for parameters in 
Eq. (4.88), .μ = 1

V
is the mean, . θ is the weight of noise, and . σ is the rate of mean 

regression. 
Motivated by the proposed DDPG model, a QoS-oriented routing strategy is 

described in Algorithm 4.8. 
In the data plane, the source forwards its generated traffics regularly according to 

the QoS-oriented routing strategy, which is trained and updated by the control plane. 
For training of control plane, the agent initializes .Actor_P : π(·) and . Critic_P :
Q(·) with parameters . θμ and . θQ generated randomly (line 1). .T arget Network is 
initialized in the same way as the primary network whose parameters . π ′(·),Q′(·)
are snapshot of .π(·),Q(·) (line 2). As for its update, “soft” target updates are used 
with the control of hyperparameter . τ (line 21). 

We define the hyperparameter . ε to balance the exploration of feasible path and 
the exploitation of recommended path (lines 7–13), which is updated according 
to .εdecay, εmin (lines 22–24). We connect the selected next hop with the path and 
observe the environment for the reward and next state. Then we store the transition 
sample .s, a, r, s′ into the replay buffer R (line 15). We sample a random minibatch 
of M transitions to update the DDPG network (lines 16–22), so that the relation 
between transitions sampled sequentially can be destroyed and the agent can learn 
with fewer oscillations and less divergence (line 17). We determine the next hop for 
the transformed state . s′ from .Actor_T : π ′(·) and .Qtarget for training . Critic_P
(lines 18–19); In addition, we update .Actor_P with its parameters . θμ (line20) by 
applying the chain rule to the expected return of .Critic_P .
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Algorithm 4.8 QoS-oriented adaptive routing 
Input: the initialized hyperparameter γ,  τ,  M, ε, εdecay, εmin,the traffic vsrc, vdst 
and constraints PLRk, delayk 
Output: the established path 
1: Randomly initialize Actor_P and Critic_P with weights θμ and θQ respec-

tively 
2: Initialize T arget  Network  with weights θμ′ = θμ , θQ′ = θQ 

3: Initialize replay buffer R, count = 0 
4: Receive the initial observed state s = [λ, μ, vsrc, vcur , vdst , PLRk, delayk] 
5: Initialize the path pk = [vsrc] 
6: while (vcur ! = vdst ) do 
7: Find the feasible set A according to algorithm 4.7 
8: z ← uniform random number [0, 1] 
9: if z < ε then 

10: select the action vnext ∈ A according to a base solution and exploration 
noise a = abase + ε · N 

11: else 
12: select vnext according to the current policy and exploration noise a = 

π(s; θμ ) + ε · N 
13: end if 
14: Update pk = pk + [vnext ] 
15: Take action by vcur = vnext , obtain r and s′
16: Store transition (s, a, r, s′) in R and count+ = 1 
17: if count > M then 
18: Sample a random minibatch of M transitions (si, ai, ri , s

′
i ) from R 

19: Set Qtarget  = ri + γ ∗ Q(s′
i , π

′(s′
i; θμ′

); θQ′
) 

20: Update Critic_P by minimizing the loss L = 
1 
M

∑
i

(
Qtarget  − Q(si, ai; θQ )

)2 

21: Update Actor_P by sampled policy gradient ∇θμJ ≈
1 
M

∑
i∇ai Q(si, ai; θQ )∇θμπ(si; θμ ) 

22: Update T arget  Network  by Eq. (4.81 ) 
23: if ε > εmin then 
24: ε = ε · εdecay 
25: end if 
26: end if 
27: end while 
28: Return the established path pk for traffic fk 

There are some hyperparameters in the proposed DDPG aided QoS-oriented 
routing. A comprehensive empirical study is made to find the best structure for 
optimal performances. Regarding the neural network architecture of .Actor_P , it is  
composed of four fully connected layers as shown in Fig. 4.18b: three hidden layers 
with 32, 32, and 64 neurons, respectively, activated by the Rectifier Linear Unit
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(ReLU), as well as output layer with V neurons using softmax as activation function. 
As for the .Critic_P , we use a 4-layer fully connected neural network as shown in 
Fig. 4.18c, which is composed of three hidden layers with 50, 50, and 30 neurons 
each, all using the ReLU activation, and the output layer with one neuron using the 
standard linear transfer function. Furthermore, dropout is added before the output 
layer to prevent .Actor_P,Critic_P from overfitting by letting the activation value 
of a certain neuron stop working with probability 0.5. Moreover, we find the best 
settings for the other hyperparameters: . γ = 0.95, τ = 0.01, M = 128, ε =
1.0, εdecay = 0.995, and .εmin = 0.2 according to the empirical study. 

4.3.3.4 Computational Complexity Analysis 

Proposition 4.2 The time complexity of the “DDPG Aided QoS-Oriented 
Routing” on an established channel is O((K2(logN + logC))len · εmin + 
(lInput  · l1 + l1 · l2 + l2 · l3 + l3 · lOutput )

len · (1 − εmin)), and the time complexity 
for updating and sampling is O(M · (lInput  · l1 + l1 · l2 + l2 · l3 + l3 · lOutput )). 

Proof In the process of Algorithm 4.7, the QoS routing with resource allocation 
on an established channel is O((K2(logN + logC))len ), where K is the number 
of paths in the feasible path set, C is the number of available servers, and N = 
B + C is the bottleneck router’s capacity. For the neural network agent, the 
time complexity of the feedforward and backward propagation for one sample is 
O(lInput ·l1+l1 ·l2+l2 ·l3+l3 ·lOutput ), where lInput  and lOutput represent the units’ 
number of the input and output layers, while li (i ∈ [1, n]) represents the units’ 
number of the ith hidden layer. It can be noticed that we leverage Algorithm 4.7 as 
the baseline during exploration with probability εmin. Otherwise, we employ a new 
action a = π(s; θμ ) with careful consideration for both actor and critic networks. 
As for the iteration time, len is determined by the convergence and performance of 
routing strategy. Moreover, the actor and critic networks are updated according to 
the real-time network status with a random minibatch of M transitions, so its time 
complexity is O(M · (lInput  · l1 + l1 · l2 + l2 · l3 + l3 · lOutput )). ��

4.3.4 Experiments and Simulation Results 

We utilize the random regular graph generator algorithm to generate a substrate 
network as a simulation environment [65]. Our proposed QoS-oriented routing 
strategy is tested on an ER random graph with 25 nodes.The performance on the 
PLR, queueing delay, and path length can be evaluated based on the formula in 
Sect. 4.3.1. We first depict the settings of the jitter graph-based network and traffic 
pattern in detail. Then we prove the correctness of the mathematical derivation 
in Sect. 4.3.1 and the availability of QoS routing strategy with resource allocation 
in Sect. 4.3.2. Furthermore, we analyze the performance of our proposed strategy,
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which combines the QoS routing strategy for a feasible path set and adaptive routing 
strategy for the optimal routing strategy. Finally, we make an expansion experiment 
on another ER random network with 50 nodes to interpret the accuracy of our 
proposed strategy more deeply. 

4.3.4.1 Database 

In this work, an ER random graph is generated to provide a jitter graph-based 
network model for routing and corresponding resource allocation of different traffic 
requests. There are 25 jitter nodes and 76 jitter links in our generated network, 
where each pair of nodes is connected with the probability of 0.25. The time for 
every packet service is a Poisson process obeying the independent and identical 
distribution with an average rate of .μ = 3, which represents the number of packets 
that can be processed per unit time. Each router can be viewed as a queuing system 
with .C = 20 servers to provide the service for the packets in order of their arrivals 
(First-Come-First-Server). The available buffer space is .B = 10 and the capacity of 
the queuing system is set as .N = B + C = 30. 

In practical mobile networks, the interference between routers cannot be accu-
rately modeled as collisions [100]. A popular approach for analyzing mobile 
networks is to use stochastic geometry and treat the location of BS as PPP [82–84]. 
Furthermore, we concentrate on the traffic with fair contention access period [101]. 
Hence, we model the packet arrival at the source node of each traffic request as a 
Poisson process (note that the packet arrivals at intermediate nodes may not follow 
a PPP) in our simulator. To model the dynamic traffic requests, we set the traffic 
pattern uniformly distributed in a window with a size of 6 requests per unit time. 
Considering the available resources of our generated network, we set arrival rate 
.λ = 15 for each traffic, which can be characterized by the source, destination, 
starting time, and departure time. The duration time of each traffic is a random 
number from 0 to 1. 

We implement the SDN-based data transmission framework of 5G mobile 
networks and set up the environment for packet-level simulation using Python 3.7. 
Due to the light weight of our design, we could easily run and train the proposed 
framework on a regular desktop with an Intel Quad-Core 2.6Ghz CPU with 8GB 
memory. 

4.3.4.2 QoS Routing with Resource Allocation 

For simplification of the QoS routing with resource allocation, we analyze the 
queueing length, queueing delay, and PLR versus the different server and buffer 
space. We calculate the mathematical derivation of QoS metrics. As shown in 
Fig. 4.19, the buffer space has a subtle effect on the queueing delay only when the 
number of servers is limited and has almost no effect on the PLR. Assumption 1 
can be proved that the number of servers is the key factor for reducing the queueing



4.3 Artificial Intelligence Empowered QoS-oriented Network Association 173

Fig. 4.19 The mathematical 
derivation of QoS metrics 
versus the different capability 
of server and buffer. (a) 
Packet loss rate. (b) Queueing 
length. (c) Queueing delay 

(a) 

(b) 

(c)
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length, queueing delay, and PLR. Furthermore, we simulate an .M/M/C/N queuing 
system and record the simulation result in Fig. 4.20 by plotting scatter plots. The 
high similarity of the calculated and simulated QoS metrics witnesses the correction 
of mathematical derivation depicted in Sect. 4.3.1.4. 

To prove the concave of concatenating path in Assumption 2, we simulate 
multiple queuing systems with different routers’ resources. As for the parameter 
settings, the queuing system . pk is connected by five routers with a different number 
of available servers and the same capacity of buffer 10. Hence, the path can be 
represented by .pk(C(v1) − C(v2) − C(v3) − C(v4) − C(v5)), where .C(vi) is the 
available buffer space of router . vi and the simulation result is shown in Fig. 4.21. 
We can observe from the performance of . p2, . p3, and . p4 that the available resources 
of . pk are determined by the router with the least available resources on . pk , namely 
the bottleneck router. Moreover, we can also observe that the QoS metrics of . p1, . p2, 
and . p5 have high similarity because their bottleneck routers have the same available 
resources of 6 servers and 10 buffers. It can be concluded that compared with the 
other routers of . pk , the bottleneck router plays a more critical part in determining 
the routing performance. 

Above all, we select the bottleneck router on the given channel only considering 
the number of servers. Assuming that the constraint of traffic . fk is .(PLRk, delayk), 
we aim for finding the feasible path according to the bottleneck router for the routing 
strategy and resource allocation. 

4.3.4.3 Adaptive Routing Strategy 

We compare our proposed QoS-oriented adaptive routing strategy with three 
experiments, i.e., 

• Shortest Path (SP): a widely used baseline solution where every traffic delivers 
all packets on the shortest path. 

• Q-routing: every traffic load is distributed to multiple paths obtained from the 
Q-learning agent with probability .ε = 0.1 for exploration. 

• Q-base: to address the problem that the agent does not know how to explore, we 
leverage SP as the baseline method during exploration. 

Both the actor and critic networks constructed by the Tensorflow are initialized 
with normally distributed parameters. Some hyperparameter settings are determined 
according to the empirical study. To guarantee the speed and convergence of the 
training process, we use Adam to update neural networks with the learning rate of 
0.0001 for .Actor_P and 0.001 for .Critic_P . For Q value, we use a discount factor 
of .γ = 0.95. We use  .τ = 0.01 to control the soft target update rate. We train with 
minibatch sizes of .M = 64 and a replay buffer size of 1000. In addition, we let the 
parameter . ε decay with decision epoch at rate .εdecay . We need to adjust parameter 
. ε appropriately according to .εdecay and .εmin. To find the best strategy after enough 
exploration, we use a decay rate of .εdecay = 0.995. According to the environmental
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Fig. 4.20 The simulation 
result of QoS metrics versus 
the different capability of 
server and buffer. (a) Packet 
loss rate. (b) Queueing 
length. (c) Queueing delay 

(a) 

(b) 

(c)
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Fig. 4.21 The simulation 
result of QoS metrics versus 
the different path 
concatenated by multiple 
routers. (a) Packet loss rate. 
(b) Queueing length. (c) 
Queueing delay 

(a) 

(b) 

(c)
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(a) 

(b) 

Fig. 4.22 The change of path length in first 150 traffics. (a) Shows the convergence with the 
random exploration, and (b) shows the convergence with the specific exploration 

dynamics, we set . ε value after fully explored as .εmin = 0.2. For the exploration 
noise process, we use an Ornstein–Uhlenbeck process with .θ = 0.15 and .σ = 0.2. 

Compared with the supervised learning process, the reinforcement training agent 
must interact with the environment continuously to perceive the real-time state. To 
show the convergence, we set .abase as a random selection and record the change of 
path length in first 150 traffics as shown in Fig. 4.22a. The path length decreases 
when more traffics arrive, because the random selection of next hop allows the 
model to explore all possibilities of routing. To accelerate the convergence rate, the 
specific simple solution such as SP can help to reduce the path length intuitively, so 
our proposed QoS-oriented adaptive routing unarguably has superior performance
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as Fig. 4.22b. To show the performance of our proposed QoS-oriented adaptive 
routing strategy relying on the QoS routing strategy for a feasible path set, we 
generate 1000 traffic requests and record the average QoS metrics versus a different 
set of traffic patterns in Fig. 4.23. For the steady results, we record and average the 
results of 100-1000 traffics, when the RL agent has learned a lot about the network 
topology from the previous 100 traffics. 

As shown in Fig. 4.23a, the path lengths for Q-routing, Q-base, and QoS-oriented 
adaptive routing have almost no change as traffic intensity grows. Hence, we can 
conclude that the RL agents have learnt a lot from the previous 100 traffics. With 
the guide from exploration process, the path lengths of Q-base and QoS-oriented 
adaptive routing are only .20% more than SP, which is acceptable for the guarantee 
on QoS including the PLR and queueing delay. As shown in Fig. 4.23b, c, the 
queueing delay and PLR grow as traffic intensity grows due to the fixed available 
resource. Compared with the SP strategy, the RL agents can distribute the traffic on 
multiple paths according to its experiences. Therefore, the two RL routing strategies 
accelerated by SP strategy have a better performance than the others. Furthermore, 
the QoS-oriented adaptive routing performs better than Q-base and our explanation 
is that the DDPG agent can learn better from the experience. 

4.3.4.4 Expansion Experiment 

To verify the generalization of our proposed algorithm, we make an expansion 
experiment on another ER random network topology with 50 nodes and 301 links. 
The router parameters are the same as the ER random network of 25 nodes including 
the service rate .μ = 3 and the server and buffer space .C = 20 and .B = 10. We  
generate traffics from 0 to 12 per unit time and record the QoS performance versus 
different traffic patterns in Fig. 4.24. 

Since the objective of the RL agent is to minimize the path length, PLR, and 
queueing delay, we can see that our proposed QoS-oriented adaptive routing strategy 
performs as expected. On the one hand, the DDPG agent learns well about the 
network topology to find a relatively short path as shown in Fig. 4.24a. On the 
other hand, our proposed QoS-oriented adaptive routing strategy outperforms the 
others in terms of PLR and queueing delay as Fig. 4.24b, c. Our explanation is that 
the QoS-oriented adaptive routing strategy can learn better and distribute the traffic 
requests according to its reward function more efficiently. The above analysis proves 
the effectiveness and generalization of our proposed strategy, where the path length, 
PLR, and queueing delay are considered.
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Fig. 4.23 Performance on 
routing of all the methods 
over the ER random topology 
with 25 nodes. (a) Path  
length. (b) Packet loss rate. 
(c) Queueing delay 

(a) 

(b) 

(c)
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Fig. 4.24 Performance on 
routing of all the methods 
over the ER random topology 
with 50 nodes. (a) Path  
length. (b) Packet loss rate. 
(c) Queueing delay 

(a) 

(b) 

(c)
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4.4 Machine Learning Aided Load Balance Routing Scheme 

In the packet-switched networks, data traffic experiences a sharp growth because 
of the rapid development of digital video services such as Internet video, mobile 
streaming media, and IPTV [27]. Considering the bursty nature of the packet traffic, 
conventional routing algorithms cannot effectively avoid network congestion [102]. 
In order to achieve the load balance of the network’s routers, it is necessary to invoke 
an intelligent routing scheme. 

Traditional link state-based routing algorithms, such as the Bellman–Ford algo-
rithm [103, 104], the link state algorithms, and the Dijkstra algorithm [105], just 
to name a few, require each router to know the entire topology information. By 
contrast, the distributed routing algorithms iteratively find the best path to the 
destination relying on all the neighbor nodes [106]. 

Multiple Constrained Path (MCP) selection is a popular member of the combi-
natorial optimization family, which is often used to find available paths that satisfy 
multiple constraints [107]. It is proven to be an NP-complete problem [108, 109] 
if these constraints are mutually independent [106]. A range of work has been 
conducted for addressing Quality of Service (QoS) routing to achieve the reliability 
and stability of networks [110, 111]. The majority of QoS routing algorithms take 
multiple constraints into account relying on intuitive or empirical construction. 
Hence, the feasible solution can be obtained within an acceptable computational 
complexity [112]. 

However, heuristic algorithms still have a slow convergence speed when deal-
ing with large-scale problems. Also, their solutions based on a series of ideal 
assumptions may be out of physical reality. Additionally, owing to the diversity 
of QoS constraints, the feasible path for one constraint may not be available for 
the others [113]. Motivated by these issues, in this section we propose a machine 
learning aided routing scheme to address the QoS routing process. The performance 
comparison of several routing algorithms involved in this section is shown in 
Table 4.9. 

4.4.1 System Model 

In this section, we formulate the load balance routing problem and introduce the 
PCA algorithm to reduce the substrate network’s dimension. The symbols in this 
section is shown in Table 4.10. 

4.4.1.1 Packets Detection in the Dataplane 

Recently, SDRs have appeared along with programming languages. SDRs offer the 
possibility to gather and export important packets’ meta-data, while the packets are
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being processed [114]. As shown in Fig. 4.25, we propose a hierarchical architecture 
based on SDR to detect the packet-switched network and achieve the load balance. 

Local routers monitor the real-time status, process the arrival packets, and select 
the next hop for them. Meanwhile, central routers detect the QU and the traffic 
pattern of all the substrate routers. Then central routers predict and distribute the 
predicted QU vector based on their detection and neural network framework. 

4.4.1.2 Routing Scheme 

Assuming that .G = (V ;E) is the model of the network, we can know that V is 
the set of nodes and .n = |V | indicates the number of nodes; E is the set of links 
and .m = |E| indicates the number of edges. Each link .e ∈ E can be characterized 
by the value .hi(j), which represents the number of routing hops between routers 
. i and . j . The BF does not consider the queue state and the topology, which have 
a great impact on the packets’ transmission. In order to achieve load balance of 
the network, the MLQU and DLQU routing schemes consider both the current and 
predicted QU. The MLQU and DLQU routing schemes decide the next hop for the 
packets in the buffer when the current router is not the destination. The packet is 
mainly composed of destination IP address, source IP address, and load data [107]. 
When a router receives data packets, it selects the next hop intelligently according 
to multi-metrics, such as the QU and topology. In order to get the destination as 
soon as possible, BF may choose the shortest path for routing. However, the MLQU 
and DLQU routing schemes will select the next hop intelligently to avoid the loss 
of packets. 

Table 4.9 Comparison among multiple routing algorithms 

Algorithm name Problem solve Complexity Delay Topology Traffic pattern 

Dijkstra Shortest path 
(SP) 

.O(n2) .\ .\ . \

BF Shortest path 
(SP) 

.O(n · e) .\ .\ . \

CBF Constrained 
shortest path 
(CSP) 

.O((deg − 1)e−deg−3) .� .\ . \

LARAC Constrained 
shortest path 
(CSP) 

.O(e · n2) .� .\ . \

QUBF Constrained 
shortest path 
(CSP) 

.O(n · d · e) .� .\ . \

MLQU, DLQU Constrained 
shortest path 
(CSP) 

.O(n · d · e) .� .� .�
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Table 4.10 Symbols 

Notations Definitions 

s The source router 

d The destination router 

.hi(j) The number of routing hops between router . i and . j

.XN×N The adjacency matrix 

.xij The connection of routers . i and . j

.p(i) The topology of the router . i

.t (i) The traffic pattern of the router . i

.q(i) The QU of the router . i

.qn(k) The QU of the router . k’s neighbors 

.qi(k) The QU of the router . k during the ith time interval 

.RANK(k) A single metric of router . k

.RANKi(k) A single metric of router . k during i time interval 

.N(k) The neighbor set of router . k

.H(k) The candidate set of router . k’s next hop 

.̂h The selected next hop with best resource 

Fig. 4.25 Hierarchical design of the control plane
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4.4.1.3 Metrics 

The main goal of load balance routing is to process packets as many as possible 
while reducing and avoiding network congestion. Through traffic control, we can 
easily achieve load balance while providing a high-quality routing service and a 
great user experience. This work uses the three evaluation metrics, i.e., the packet 
loss rate, the worst throughput, and the average delay, to measure the QoS of routing 
requests. 

Packet Loss Rate (PLR) [115] is a phenomenon leading to the loss of data 
transmitted in the network and queue loss is the main reason for the increase of 
PLR. In this work, we assume that all packages contain the same size of data, and 
then .packet loss rate can be defined as follows: 

.
Number of lost packets in queue of router k

Number of arrival packets in queue of router k
. (4.89) 

Throughput [28] refers to the maximum data transmission and reception capa-
bility of network devices. The throughput is mainly determined by the hardware 
efficiency and program algorithms. In this work, we take the number of packets 
successfully transmitted by the router per unit time as throughput : 

. lim
T →∞

∑T
t=0 packets successfully transmitted

T
. (4.90) 

Average delay [116] reflects the transmission time, during which the packets are 
forwarded from the source to the destination. The achievement of load balance can 
lead to an increase of throughput  and a decrease of .average delay: 

.

∑
packets the delay

the number of packets
. (4.91) 

4.4.1.4 PCA-Based Feature Extraction 

In the MLQU and DLQU routing schemes, the connection of the substrate network 
is critical for the neural network agent to learn the topology. We consider the 
following attributes of routers: 

Computing Resources (CPU) The basic components of the CPU include operator, 
buffer, and controller. And its main processing functions contain receiving instruc-
tions, performing an action, and processing data. The routers’ CPU determines 
its availability. When the CPU of a router is sufficient, it can accept more router 
requests. 

The Length of Queue Buffer The length of the router’s buffer reflects its ability 
to store packets. As for routers, the longer the buffer, the lower the lost packets.
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Degree The degree is the most direct measure of node centrality in the substrate 
network. The router with a higher degree is more important in the substrate network 
and can accept more routing requests. 

Assuming that the router’s CPU and buffer length are the fixed values, the 
topology of the router can be provided by PCA as depicted in Algorithm 4.9. 
The obtained topology represents the nodes’ connectivity in the substrate packet-
switched network better than the degree. 

Algorithm 4.9 PCA aided feature extraction 

Input: XN×N =
[
X1, X2,  . . .  , XN

]
, Low dimensional space dimension: 1 

Output: PN×1 = P1 = lT 
1 X = l11X1 + l12X2 + · · · +  l1NXN 

1: xj =
∑N 

i=1 xij 
N 

2: σ 2 
j =

∑N 
i=1(xij −xj )2 

N 
3: for j = 1 → N do 
4: for i = 1 → N do 
5: x∗ 

ij = xij −xj 
σj 

6: end for 
7: end for 
8: Calculate the covariance matrix �N×N = 1 

N−1X
∗ (X∗)T 

9: Calculate the eigenvalues and eigenvectors �N×Nli = λili 
10: sort the eigenvalues λ1 ≥ λ2 ≥ · · · ≥  λN 
11: sort the eigenvectors l1, l2, . . . , lN according to the eigenvalues 
12: return PN×1 = lT 

1 X 

PCA is the most commonly used dimension reduction and feature extraction 
techniques in multivariate statistical analysis. It converts multiple related variables 
into a few unrelated feature variables, which contain most of the information 
provided by the original variables. Therefore, we can perform PCA on the adjacency 
matrix to obtain the information of the substrate network connection. In this way, 
we can obtain the topology of each router by reducing its dimension and extracting 
its main variation characteristics. PCA is a process of eliminating redundancy and 
overlap of related information and it can help the SDRs to find the next hop with a 
good connection. 

In multivariate statistical analysis, the amount of information contained in a set 
of data can be characterized by its variance. The core idea of PCA is to convert the 
original related variables (M variables) into a set of new unrelated variables (still M), 
namely the principal components. PCA searches a set of orthogonal linear changes 
between the original variables. In the transformation process, the first principal 
component has the largest variance value in the linear combination, and the second 
principal component has the second largest variance value in the linear combination 
and is orthogonal to the first principal component. Thus, after transformation, the
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first few principal components (k principal components) retain the most variance 
and information of the original variable sets. So the first few principal components 
can represent the main features of the original variables and the latter principal 
components can be discarded. 

As the original input, the adjacency matrix X (or .XN×N ) contains the connection 
information of routers: 

.XN×N =

⎡

⎢⎢⎢⎣

x11 x12 . . . x1N

x21 x22 · · · x2N
.
.
.

.

.

.
.
.
.

.

.

.

xN1 xN2 · · · xNN

⎤

⎥⎥⎥⎦ = [
X1, X2, · · · , XN

]T
. (4.92) 

When there is a link between routers i and j, .xij = 1; otherwise, .xij = 0. Moreover, 
. Xi reflects the router . i’s connection to the others. Let .�N×N be the covariance 

matrix calculated by the vector .
[
X1, X2, · · · , XN

]T
: 

. �N×N =

⎡

⎢⎢⎢⎣

cov(X1, X1) cov(X1, X2) . . . cov(X1, XN)

cov(X2, X1) cov(X2, X2) · · · cov(X2, XN)

.

.

.
.
.
.

.

.

.
.
.
.

cov(XN,X1) cov(XN,X2) · · · cov(XN,XN)

⎤

⎥⎥⎥⎦ , (4.93) 

where .cov(Xi,Xj ), i, j = 1, 2, . . . , N , represents the covariance of the variables 
. Xi and . Xj . According to the definition of PCA, all the principal components are 
a linear combination of the input variables. And they can be represented by the 
following formulation: 

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P1 = lT1 X = l11X1 + l12X2 + · · · + l1MXM,

P2 = lT2 X = l21X1 + l22X2 + · · · + l2MXM,

.

.

.

PM = lTMX = lM1X1 + lM2X2 + · · · + lMMXM,

(4.94) 

where .lij , (i, j = 1, 2, . . . ,M) is the transform coefficient. 
According to the knowledge of multivariate statistical analysis, the variance 

of the principal component . Pi is .V ar(Pi) = V ar(lTi X) = lTi �M×Mli , . (i =
1, 2, . . . ,M). We assume that . li is a feature vector of the covariance matrix .�M×M . 
And according to the definition of the eigenvalue, we know that .�M×Mli = λili , 
where . λi is the eigenvalue corresponding to the feature vector . li . Therefore, we 
can derive the variance of the principal components by . V ar(Pi) = lTi �M×Mli =
lTi λi li = λil

T
i li . To ensure that the variance of each principal component is a 

finite value, we assume that the feature vector . li has a unit length, i.e., .lTi li = 1. 
Hence, there is .V ar(Pi) = λi . Obviously, the variance .V ar(Pi) of the principal 
component corresponds to the eigenvalue . λi of the covariance matrix . �M×M

and the eigenvector . li subordinate to the corresponding eigenvalue . λi . Since the 
first principal component of all principal components has the largest variance, it 
corresponds to the largest eigenvalue of the covariance matrix .�M×M . On the
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other hand, since the covariance matrix .�M×M is a real symmetric matrix, the 
eigenvectors corresponding to different eigenvalues are orthogonal to each other. 
In other words, .cov(Pi, Pj ) = lTi �M×Mlj = λil

T
i lj = 0, (i �= j), so . Pi and . Pj are 

irrelevant. 

4.4.2 Network Modeling 

In this section, we focus on the prediction of the routers’ QU based on machine 
learning. And we can divide the prediction procedure into initializing, training, and 
running phases. An ideal output value close to the routers’ QU at the next time slot 
can be obtained by an accurate prediction. 

4.4.2.1 Input and Output Design 

In order to simply describe our research problem, we consider a simple wireless 
network backbone composed of some routers. In the packet-switched network, we 
select the next hop for packets in the routers’ buffer according to their current 
position and destination. This mechanism can be called the routing strategy. 

As the routing strategy can be expressed as a classic combinatorial optimization 
problem, it can be defined as a shortest path problem with multi-constraints. 
However, traditional routing strategies are not intelligent and they cannot learn 
from the occurred invalid routing decisions. Therefore, they make the same routing 
decisions for similar congestion scenarios, such as the bursty traffic. For example, 
as shown in Fig. 4.26, source routers R0, R3, and R6 receive input packets and 
send them to destination router R5. The traditional routing method chooses R4 
to forward the packets to R5. However, the increasing load leads to congestion 
at R4. Faced with this network congestion problem, packets can be forwarded 
through alternate paths (R1 or R7) to alleviate too much burden on R4. However, 
when this happens again, the traditional routing method is “unintelligent” and 
always makes the same decision without considering the substrate topology, the 
routers’ resources, and the traffic pattern. By contrast, the machine learning system 
can collect ineffective routing decisions to predict and avoid possible congestion 
triggered by load imbalance. 

As machine learning has been used to many complicated nonlinear problems to 
learn the features of input, we adopt a neural network for QU prediction. 

Topology As proved in [115], the queue loss ratio is roughly proportional to the 
size of the subtree, which depicts the routers’ connectivity. Thus, the topology 
.P1×N = [p(1), p(2), . . . p(N)] can indicate the routers’ connectivity and determine 
the router’s availability. . pi indicates the topology in the substrate network of router 
. i. The higher a router’s topology is, the more likely the router is selected as an 
intermediate router.
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Fig. 4.26 The unintelligence of the traditional algorithm 

Traffic Pattern Traffic pattern is the generation rate of data packets on each 
router. The traffic pattern can indicate its current situation, such as burst traffic and 
steady traffic. Hence, the traffic pattern can be adopted as the input of our neural 
network [28]. .T1×N = [t (1), t (2), . . . t (N)] indicates the normalized number of 
packets arriving at the substrate routers during the previous time interval. And we 
define traffic pattern .t (i) as the normalized number of packets in the buffer of router 
. i. 

Queue Utilization Queue loss is the main reason for packet loss in high traffic 
scenario. .Q1×N = [q(1), q(2), . . . q(N)] represents the current queue status of the 
substrate network and .q(i) is the normal number of packets in the queue of router . i. 
The router with the fewer packets in its queue has more available storage resources, 
so it is often selected as the intermediate router. 

4.4.2.2 Intialization Phase 

In the initialization phase, the training data should be obtained to train the 
parameters of our proposed neural network. As demonstrated in Fig. 4.27a, the 
topology, the traffic pattern, and the queue state are served as the input and the 
neural network is supposed to process for the QU at the next time slot. Also, since 
the traffic pattern indicates the number of arrival packets in the routers’ buffer, it 
can be added to the QU. However, if the summary of the traffic pattern and the QU 
is larger than 1, it means that the router is overflowing with packets and we record 
the summary as 1. Thus, we can use a 2N-dimensional vector . x as the input and an 
N-dimensional vector . y to represent the output of the neural network model. . x and 
. y are given as follows:
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(a) (b) (c) (d) 

Fig. 4.27 The model of our proposed QU prediction system based on neural network. (a) 
Characterized input and output. (b) The structure of deep neural network. (c) The building block 
of deep neural network. (d) Considering traffic patterns at each routers as input 

.x1×2N = [Q1×N + T1×N, P1×N], (4.95) 

.y1×N = [Q1×N ]. (4.96) 

To obtain training data corresponding to the above formula, we can approach some 
dataset and extract information on topology, traffic pattern, and QU. In addition, we 
can also run the traditional routing algorithm according to the given traffic pattern 
and record the routers’ QU of every time interval. We use the recorded QU of the 
BF algorithm to build a training set and then train the neural network by a machine 
learning system on the central router. 

4.4.2.3 Training Phase 

The training of the neural network could be processed on a certain computing router 
of the substrate network (e.g., the central router in the SDN). In the training phase, 
the obtained data by BF is used as features and labels to train the neural network. The 
training process can be divided into two steps: initializing the parameters . θ(ω, b)

randomly and tuning them with Adam, an algorithm based on adaptive estimates of 
lower order moments. The values of .θ(ω, b) can be obtained by the training phase 
and the details are depicted as follows. 

As depicted in Fig. 4.27b, the neural network model is composed of L layers, 
including the input . x, output . y, and .(L − 2) hidden layers located in the middle. 
As Fig. 4.27a shows, the input layer contains three metric, where . Q1×N =
[q(1), q(2), . . . q(N)] represents the routers’ QU, . T1×N = [t (1), t (2), . . . t (N)]
represents the routers’ traffic pattern, and .P1×N = [p(1), p(2), . . . p(N)] represents 
the routers’ topology in the substrate network.
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The neural network is composed of many building blocks of two layers’ neural 
network. The detail of each building block is depicted in Fig. 4.27c. It is apparent 
that each block is composed of two layers’ neural network and the forward 
propagation of the building block with two layers can be mathematically formulated 
as 

.
A[l] = g[l](Z[l]),
Z[l] = W [l]X + b[l], (4.97) 

where we have defined the activation function .g(x) as .ReLu(x) = max(0, x) and 
.σ(x) = 1

1+e−x in the hidden layers and output layer. When the input is a vector, 
activation functions (.ReLu(x) and .σ(x)) are also vectors. Since .σx ∈ [0, 1], the  
output values are normalized into [0,1]. 

The parameter dimensions of the neural network can be described as 

.
W [l] (n[l], n[l−1]),
b[l] (n[l], 1), (4.98) 

where .l = 1, . . . L. Moreover, . n[l] represents the units’ number for the l and . n[l−1]
for the .l − 1 layer. .n[0] = nx indicates the number of input features. 

In supervised ANNs, training samples include features and labels, which are 
served as the input and output of the network model. After the corresponding 
calculations with features, the network model will obtain the predicted values. 
As shown in Fig. 4.27c, the neural network is a mapping from the topology, the 
traffic pattern, and the current QU to the QU at the next time slot. We use the 
neural network to extract fine-grained information from the input and output. The 
parameters need to be tuned to mine the relation among the topology, traffic pattern, 
and QU. The mapping is determined by the parameters and the activation functions 
of the neural network. 

The closer the predicted value and the true label are, the better the training of the 
neural network is. The distance between the true and predicted label is often used 
as the loss function. We choose the mean square error as the stochastic objective 
function of the neural network, which can be formulated as 

.lossmn =
∑

Q,P,T ∈S

∑

i

(yi − outputi)
2, (4.99) 

where . yi represents the router i’s QU at the next time slot and .outputi is the 
predicted value of . yi . 

The neural network is optimized by Adam, a stochastic gradient-based optimiza-
tion [117]. The gradient is calculated based on the principle as follows:
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.

dZ[l] = dA[l] · g[l]′(Z[l]),
dW [l] = 1

m
dZ[l] · A[l−1]T ,

db[l] = 1
m

∑
i dZ[l](i),

dA[l−1] = W [l]T · dZ[l].

(4.100) 

Hence, Eq. (4.101) can be obtained to reflect the recursive relationship between 
.dZ[l+1] and .dZ[l], which is expressed as 

.dZ[l] = W [l+1]T · dZ[l+1] · g[l]′(Z[l]). (4.101) 

As shown in Fig. 4.27c, the Adam algorithm is depicted in Algorithm 4.10. 

Algorithm 4.10 Adam, an algorithm for first-order gradient-based optimization of 
stochastic objective functions, based on adaptive estimates of lower order moments 

Input: training set(x, y) = {(x(t) , y(t)|t = 1, . . . , m} 
Output: θ = (ω, b) 
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates 
1: epoches: e, batch size bs, learning rate η 
2: procedure Adam 
3: random initialize parameters θ = (ω, b) ∈ (0, 1) 
4: m0 ← 0(Intialize 1st moment vector) 
5: v0 ← 0(Intialize 2nd moment vector) 
6: t ← 0(Intialize timestep) 
7: while θt not converged do 
8: t ← t + 1 
9: gt ← ∇θft (θt−1) 

//Get gradients w.r.t. stochastic objective Eq.(11) at timestep t by Eq.(12),(13) 

10: mt = β1 · mt−1 + β1 · gt 
11: vt = β2 · vt−1 + β2 · g2 

t 
//Update biasd moment estimate 

12: m̂t ← mt/(1 − βt 
1) 

13: v̂t ← vt/(1 − βt 
2) 

//Compute bias-corrected moment estimate 
14: θt ← θt−1 − αm̂t/(

√
v̂t + ε) 

//Update parameters 
15: end while 
16: return θt (Resulting parameters)
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4.4.2.4 Running Phase 

The time interval to record stacked data packets is . �t as in Fig. 4.27d and the traffic 
pattern is described as the recorded number of stacked packets in the last time 
interval .β · �t (. β is any positive integer). At the discrete time .β · �t , the SDRs 
make routing decisions for the packets in the buffer. Given an input . x, the agent 
tries to predict the QU at the next time slot of each router based on the input. The 
running phase is a process of forwarding propagation as depicted in Eq. (4.97) to  
predict the QU at the next time slot. After the predicted QU being calculated, the 
central router distributes the QU vector to each SDR. 

We consider a substrate network with N routers and M links. For each router, 
we can adopt the topology, the traffic pattern, and the current QU as input. After 
the running phase and the information distribution by central routers, each SDR can 
make the routing decision based on the output of the neural network to achieve the 
load balance routing scheme. 

4.4.3 Routing Based on Queue Utilization 

Actually, the SDRs mainly work on the load balance routing. The detailed proce-
dures of the routing are described in this section. Here, we propose the MLQU 
and DLQU algorithms that consider not only the number of routing hops but also 
the current and predicted QU. Hence, MLQU and DLQU perform better in load 
balance, especially in the scenario depicted in Fig. 4.29. 

4.4.3.1 The Representation and Update of Queue Utilization 

It has been proved in [115] that queue loss is the main reason for the growth of 
PLR in high traffic scenario. Due to the limited storage capacity of the buffer, it 
is inevitable that the packets will be discarded if the buffer is filled. To avoid the 
condition that some routers’ buffers are idle while some are busy, we also choose 
QU at each router . k as an impact on next hop: 

.q(k) = Number of packets in queue of node k

Total queue size of node k
. (4.102) 

Figure 4.29a shows that the MLQU and DLQU routing schemes will select R6 for 
routing to avoid the loss of packets on R2 whose QU is much larger. Based on the 
.q(k) calculated by the above formula, we obtain a .1×N -dimensional matrix .Q1×N . 
Then, we update the .q(k) of each router according to the matrix .Q1×N by 

.q(k) = max
{
qn(k) − λ, q(k)

}
, (4.103)
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Fig. 4.28 The impact of . λ on the PLR and the delay 

R5140% 

R2270% 

R6220% 

R4040% 
R3150% 

R1310% 

(a) 

R3 
1 

20% 

R5 
2 

20% 

R2 
2 

30% 

R4 
0 

40% 

R6 
1 

80% 

R1 
3 

10% 

(b) 

R1 
2 

30% 

R2 
2 

30% 

R3 
1 

20% 

R4 
2 

30% 

R7 
2 

30% 

R6 
0 

30% 

R5 
1 

20% 

R9 
1 

20% 

R8 
2 

30% 

(c) 

Fig. 4.29 The deep learning aided load balance routing scheme relying on queue utilization. (a) 
The routing scheme considering the QU (source: R1, destination: R4). (b) The routing scheme 
considering the neighbors’ QU (source: R1, destination: R4). (c) The routing scheme considering 
the predicted QU (source: R1, R4, R7, destination: R6) 

where .q(k) is the QU obtained from Eq. (4.102). .qn(k) represents the QU of the 
router . k’s neighbors and .qn(k) means the average of all the .qn(k). We have also  
analyzed the specific experiment for selecting the threshold that can trigger QU 
adjustment and Fig. 4.28 shows the relationship between the network performance 
and . λ. When .λ = 0.20, both the PLR and the delay achieve their optimal values. 

The intuition behind this adjustment comes from a situation, as depicted in 
Fig. 4.29b, where .q(k) might be small even when the router . k’s neighbors are 
severely congested. In this case, although the buffer of R5 is more available, it is 
better not to be selected as the next hop. As R5 forwards all the packets received to 
its neighbors, the packets are more likely to be discarded at R5’s neighbors. Thus, 
we perform the QU adjustment Eq. (4.102) to reduce the possibility of a router 
whose neighbors have a poor queue status to be selected as an intermediate router. 
Consequently, we set R2 as the next hop.
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4.4.3.2 The Preprocessing of Metric Data 

hi(j): the number of routing hops between routers i and j . To deliver data packets 
to the destination, the next hop must be closer to the destination than the located 
router, or the next hop is the destination. Therefore, the number of routing hops 
should be considered into the routing strategy. 

q(k): the QU of router k. According to Eq. (4.102), we know that q(k) satisfies 
the equation q(k) ∈ [0, 1]. When the router’s QU is 1, all the arrival packets will be 
dropped since its buffer is full. From Eq. (4.103) and the definition that λ = 0.20, 
we conclude that when the QU of router k is greater than 0.80, the packets arriving 
at the router k are more likely to be discarded. 

p(k): the topology of router k. In addition to QU, the degree which means the 
routers’ topology in the substrate network can be a consideration for load balance 
network [115]. From the aforementioned Sect. 4.4.1, we get the routers’ topology, 
P1×N , by PCA dimension reduction method. Since the value processed by PCA is a 
normal distribution, the topology can be used directly as the neural network’s input 
to predict the QU at the next time slot. 

4.4.3.3 The Selection Mechanism of Next Hop 

In our deployment scenario, there are three metrics. Among them, the number 
of routing hops is destination-oriented, the QU is the dynamic attribute, and the 
topology is the static attribute. Our proposed routing schemes choose the next 
hop based on a single metric aggregated as a combination of the above multiple 
metrics [118]. The proposed queue utilization routing algorithm is shown in 
Algorithm 4.11. 

We propose a queue utilization routing algorithm, where the QU at the current 
and next time slots is used for the calculation of RANK and select the next hop 
based on a single metric (RANK). Moreover, we defined RANK of router . k as 

.RANK(k) = α · qi(k) + β · qi+1(k), (4.104) 

where . α and . β are the coefficients which control the weight given to the metrics, 
.qi(k) and .qi+1(k), respectively. . α and . β satisfy that .α +β = 1 and we can select the 
next hop considering both the current QU and the predicted. For further analysis, we 
set traffic pattern as 30pps (packets per second) and record the network performance 
versus different weighting coefficients. Figure 4.32 shows the impact of considering 
the QU at the next time slot which can reflect both the network topology and the 
traffic pattern. According to the experimental results, the network performance is 
improved with the increase of the QU at the next time slot until .cur/pred < 7/3. 
The network performance begins to degrade when the QU at the next time slot is 
more than 0.3. Thus, we set the coefficients . α to 0.7 and . β to 0.3. 

Each router recognizes its neighbor routers by metric messages. Router . k
determines the next hop candidate set . H k according to its neighbors .N(k) as
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Algorithm 4.11 Queue utilization routing algorithm 
Input: the pkt(src,dist), the network graph, the routers’ current queue, the the 
routers’ predicted queue 
Output: the routers’ queue utilization at the next time slot route list, or null 
1: procedure :routing(pkt (s, d), graph, current queue, predicted queue) 
2: next = s 
3: s.buff er.push(pkt) 
4: list.add(s) 
5: while next ! = d&&next ! =  null do 
6: next = nextHop(next, d, current queue, predicted queue)) 
7: list.add(next) 
8: s.buff er.pop(pkt) 
9: next.buff er.push(pkt) 

10: end while 
11: if next ! =  null then 
12: return list , f uture  queue  
13: else 
14: return null,f uture  queue  
15: end if 
16: procedure :nextHop(c, d, pkt, current queue, predicted queue) 
17: if c == d then 
18: return c 
19: end if 
20: if d in c.neighbor then 
21: return c, d 
22: end if 
23: list=[c] 
24: Benchmark=Hop(c,  d)  
25: for a in c.neighbor if Hop(a,  d)  ≤ Hop(c,  d)  do 
26: list.add(a) 
27: end for 
28: if list is None then 
29: return Null 
30: else 
31: choose one from list as nexthop 
32: RANK = current queue + predicted queue 
33: nexthop = argmin(list[].RANK) 
34: c.buff er.pop(pkt) 
35: nexthop.buff er.push(pkt) 
36: return 
37: end if
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.H k = {n ∈ N(k)|hn(d) ≤ hk(d), qi(n), qi+1(n + 1) < 1}, (4.105) 

where .hn(d) ≤ hk(d) means that router . n is as close as or closer to the destination 
than . k, and .qi(n), qi+1(n+1) < 1 indicates that there are resources available for the 
buffer of router . n. Each router performs the next hop selection process at discrete 
time .β · �t . The strategy to select the next hop is as follows: 

.̂h = arg min
n∈Nk

{RANK(n)}. (4.106) 

Thus, the MLQU and DLQU routing schemes allow each router to select the 
next hop which is as close as or closer to the destination with lower QU. Although 
the selected next hop may not satisfy the minimum number of routing hops, load 
balance can be achieved considering the QU. In this way, the substrate network 
resources are utilized more efficiently and the QoS routing is achieved. 

As shown in Fig. 4.29, source routers R1, R4, and R7 receive the input packets 
and send them to destination R6. Since the MLQU and DLQU routing schemes 
consider not only the current but also the QU at the next time slot, R1 and R7 can 
avoid choosing R5 as the next hop and choose R2 and R8 instead. Therefore, we 
can achieve load balance of the network and guarantee the QoS of the routing. 

4.4.3.4 Time Complexity of the Algorithm 

Proposition 4.3 The time complexity of the machine learning aided routing scheme 
is O(n3 + m(lInput  · l1 + l1 · l2 + · · · +  ln · lOutput ) + n2 · e), where n is the number 
of substrate routers, e is the number of substrate edges, d is the average degree 
of routers, and m is the number of training samples. lInput  and lOutput represent 
the units’ number of the input and output layers, respectively, while li (i ∈ [1, n]) 
represents the units’ number of the ith hidden layer. 

Proof (Proof) In the process of PCA, the time complexity to calculate the covari-
ance matrix �M×M of a square matrix XN×N is O(n2), while the time complexity 
to calculate all the eigenvectors is O(n3). For the neural network agent, the 
time complexity of the feedforward and backward propagation for one sample is 
O(lInput  · l1 + l1 · l2 + · · · +  ln · lOutput ). For the BF algorithm, the time complexity 
is O(n · e). After every time interval, the QUBF algorithm is used to construct the 
routing table for each router and make the adjustments with the time complexity of 
O(n2 · e).” ��
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4.4.4 Experiments and Simulation Results 

4.4.4.1 Datasets 

This work utilizes the random regular graph generator algorithms to generate a 
substrate network as a simulation environment for routing algorithms [65, 66]. And 
we suppose a simulation environment with 30 nodes and 45 links, where each node’s 
degree is set as 3. Here, we consider all the substrate nodes as routers that can 
generate, forward, and process the arrival packets. The CPU of each router is 5 
units (packets per seconds) and the bandwidth resources of each link are assumed 
to be large enough. We set the buffer length as 8, while the packets are randomly 
discarded when its buffer is filled. 

In the conducted simulation, the generating rate of packets is set as 30pps. And 
the time interval of QU updating is set as 1 s during which packets are forwarded 
and processed. Considering the initial phase, all the routers choose the shortest path 
to send packets by BF. Then, the recorded traffic pattern and QU are used as the 
training set of our proposed neural network to predict the QU at the next time slot. 
Finally, the routing decisions are made based on the predicted QU. For comparison 
of our proposed routing scheme, BF is used as the benchmark method. 

To guarantee the generalization of the QU prediction, we recorded the routers’ 
QU from 100 to 500 s. The number of substrate physical nodes is 30 in our 
proposed simulation environment of the training set and the QU before and after 
each time interval are recorded as input and output. The test set contains the QU 
information of 500 s based on a substrate network with 30 nodes. First, we trained 
the network model and the network parameters can be improved by the training 
phase. Then we use the obtained network parameters to make QU prediction on the 
test set. Consequently, the generalization of the training model on the test set can be 
observed by our experimental results. 

4.4.4.2 Experiments Settings 

The hidden layers of the shallow and deep neural networks are set as one and 
two, respectively. The specific features of the two neural networks are shown 
in Table 4.11. We use the Python 3.7 programming environment to construct a 
neural network model through TensorFlow and initialize it with normal distribution 
parameters. 

In Sect. 4.4.2, when optimizing neural networks with Adam, many hyperparam-
eters have been fixed at certain values. As for selection of network parameters, 
the output is the routers’ QU from 0 to 1 and the type of activation function is 
determined as .ReLu(x) = max(0, x) for hidden layers and .σ(x) = 1

1+e−x for the 
output layer. Then we select the mean square error as the loss function to reduce 
the difference between the predicted values and true labels. According to the broad 
strategy, we construct a simple structure by determining the number of hidden layers
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Table 4.11 Neural network parameters 

Shallow neural network 

Input layer Full connection layer Output layer 

Width 60 Layer 1 Node 30 

Node 50 Connection Full 

Width 60 Active Relu Active Sigmoid 

Initialize Normal Initialize Normal 

Deep neural network 

Input layer Full connection layer Output layer 

Width 60 Layer 1 2 Node 30 

Node 50 50 Connection Full 

Width 60 Active Relu Relu Active Sigmoid 

Initialize Normal Normal Initialize Normal 

and their corresponding number of neurons. Given a random value of the remaining 
hyperparameters, the learning rate is adjusted to obtain a suitable value. Then the 
number of epochs can be determined by a whole observation based on the given 
hyperparameters. According to the training results as in Fig. 4.30, we set the learning 
rate as 0.025 and the epoch as 5000. 

Four experiments were designed to test the performance of the proposed DLQU 
and MLQU routing schemes. The first two test the application of the MLQU 
routing schemes in a 30-node net. In the experiments, Fig. 4.30 shows the training 
performance of routing based on the QU prediction, where the predicted QUs 
are trained by the shallow neural network (MLQU) and the deep neural network 
(DLQU). The third one (QUBF) tests the application of BF considering the current 
QU to prove the critical importance of QU in load balance routing. In the fourth 
experiment, the BF algorithmwas tested in a 30-node network, which only considers 
the number of routing hops as a benchmark. Both BF and QUBF algorithms aim to 
solve the single source shortest path problem. Since each router needs to find the 
optimal next hop for its packets, their computational complexity is .O(n2 · e) in each 
time interval. In addition, as described in Section V-D, the time complexity of our 
proposed routing schemes is .O(n3+m(lInput · l1+ l1 · l2+· · ·+ ln · lOutput )+n2 ·e). 
Apparently, the computational complexity of MLQU and DLQU can be similar to 
BF and QUBF with the appropriate number of the hidden layer units. 

4.4.4.3 Training Results 

Mean square error (MSE) is used as a value to measure the performance of our 
proposed neural network model. It is important to select the appropriate learning rate 
and epoch because the convergence of the supervised learning process is decided by 
them.
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Fig. 4.30 Performance on 
both training set  and testing  
set. (a) Shows the trend of 
loss versus learning rate in 
6000 epoch in the shallow 
neural network. (b) Shows  
the trend of loss versus epoch 
at the trained learning rate 
(0.025) in the shallow neural 
network. (c) Shows the trend 
of loss versus epoch of the 
shallow and deep neural 
network at the trained 
learning rate and epoch 

(a) 

(b) 

(c)
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Figure 4.30a shows the trend of loss to learning rate in 6000 epochs. The gradient 
is updated by the learning rate . α, which determines the convergence of objective 
function. When . α is set too small, the convergence process will become very slow. 
When . α is set too large, the gradient may oscillate around the minimum value 
and may not even converge. An appropriate . α can enable the objective function to 
converge to a minimum value in a suitable time. According to the result, we choose 
the learning rate as 0.025, where the loss of both training and testing sets can be 
reduced well. Hence, the learning agent can adjust its embedding matrix according 
to the gradient and learning rate. 

As shown in Fig. 4.30a, the loss (MSE) is constantly decreasing with the trained 
learning rate in the shallow neural network. As the number of epoch increases, 
the curve becomes over-fitting from under-fitting. The diversity of data affects the 
number of the suitable epoch and we set the epoch as 5000 based on Fig. 4.30a. 
If training loss is declining and the testing loss is declining, the network is still 
learning, and if training loss is decreasing and testing loss tends to be constant, the 
network is over-fitting. 

As shown in Fig. 4.30c, the shallow neural network performs better than the deep 
neural network on reducing the loss between the output and label. Our interpretation 
is that the number of routers is small and our dataset is simple. The more the number 
of network layers is, the better the neural network learns. Deep neural networks are 
more suitable for the large amounts of data such as complex large-scale problems. 
Hence, there is no need to predict by the deep neural network, which is too complex 
to ignore the random noise and memory the general trend in the training process. 

4.4.4.4 Performance Evaluation 

The Routing Scheme with Consideration of QU We compare the performance 
of our proposal and the benchmarks versus different input traffic evenly distributed 
from 10 pps to 40 pps. It can be concluded that the current QU affects the load 
balance of the network because the packets can be avoided to forward by the busy 
router. The comparison result of three metrics among the two benchmarks and our 
proposed schemes is demonstrated in Fig. 4.31. 

Figure 4.31a depicts the PLR (i.e., dropped packets divided by injected packets 
into the IP layer) with different traffic patterns. The core purpose of the packets-
switched network is to transmit as many packets as possible. And we evaluate our 
proposed routing scheme based on the average PLR. It can be observed that our 
proposed routing schemes have a lower PLR. It is easy to explain that considering 
the router’s queue states, the packets can be well avoided transmitting to the router 
with fewer buffer resources. 

Figure 4.31b shows the throughput (i.e., the number of successfully transmitted 
packets per unit time) with varying traffic pattern. The mean throughput value means 
nothing to the evaluation of load balance, so we record the worst throughput of the 
recommended four algorithms. The higher the worst throughput is, the better the
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Fig. 4.31 Performance on 
routing schemes. (a) Shows  
packet loss rate at routers’ 
queue versus traffic pattern. 
(b) Shows throughput versus 
traffic pattern. (c) Shows  
average delay per packet 
versus traffic pattern 

(a) 

(b) 

(c)
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load balance network performs. As Fig. 4.31b shows, the MLQU and DLQU have 
the highest throughput. Since MLQU and DLQU can forward the packets with both 
the current QU and the predicted, the load balance routing scheme is achieved. 

Figure 4.31c depicts the average delay with varying traffic pattern. Delay is one 
of the important metrics of packet-switched network performance, and the smaller 
the delay is, the better the user experience. Thus, we record mean values to evaluate 
the performance on the network load balance of our proposal. As Fig. 4.31c shows,  
the delay of MLQU and DLQU is 20% more than the shortest routing scheme 
(BF). As a trade-off for the good performance of the PLR and the throughput, the 
slightly lower delay is acceptable. On the one hand, BF chooses the shortest path 
and the packet’s transmission time is relatively short. On the other hand, the MLQU 
and DLQU routing schemes consider the buffer length to reduce the queue delay. 
Compared with BF, our proposal can avoid selecting the router with fewer buffer 
resources as the next hop and the queuing delay can be lowered. 

The Routing Scheme with Prediction of QU To illustrate the success of QU 
prediction by the neural network in the routing process, three kinds of experiments 
were designed to examine our proposed MLQU and DLQU routing schemes. 
Figure 4.32 depicts their performance versus the different proportion of the QU 
at the current and next time slot (cur/pred), where the QU at the next time slot is 
replaced by the real value, the predicted value by shallow and deep neural networks. 

On the one hand, the packet loss rate is constantly decreasing and the throughput 
is constantly increasing at the beginning. It can be indicated that the QUBF always 
deals with bursty traffic unintelligently. While our proposed algorithm can achieve a 
better global convergence and more effective optimization of the network resources. 
The neural network has the following three advantages: strong learning ability, 
robustness to noisy data, and association with approximate nonlinear relationship. 
Therefore, our proposal based on the neural network can predict and avoid the same 
problem at a later instant. 

On the other hand, performances of MLQU and DLQU routing schemes are 
better after cur/pred < 6/4, where the QU at the next time slot is predicted by the 
neural network. Our interpretation is that the neural network prediction is obtained 
by analyzing the current QU, so it includes more information about the current QU. 

The above analysis proves the effectiveness of our proposed scheme, where the 
predicted QU of the next interval is considered. 

4.5 Summary 

In this chapter, we discuss the problem of traditional traffic control methods and 
introduce several intelligent traffic control methods. We first propose a collaborative 
multi-agent reinforcement learning aided routing algorithm. Then, we design a 
vector-based routing principle. What is more, we design a QoS-oriented adaptive 
routing scheme using deep reinforcement learning in 5G mobile network envi-
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Fig. 4.32 Performance on 
the prediction of routing 
schemes. (a) Shows loss rate 
at packet queue versus 
different proportion of the 
current QU and the predicted 
(cur/pred). (b) Shows  
throughput versus different 
cur/pred. (c) Shows average 
delay per packet versus 
different cur/pred 

(a) 

(b) 

(c)
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ronment. Finally, we propose a load balancing routing scheme aided by machine 
learning. Extensive experimental results show that these methods are feasible and 
effective. 
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Chapter 5
Intelligent Resource Scheduling

Abstract The continued growth in the number and applications of Internet
of Things (IoT) connected devices makes it more challenging to meet multi-
dimensional QoS within the same IoT network. In this chapter, we first design a
network slicing architecture over the SDN-based long-range wide area network. The
SDN controller can dynamically split the network into multiple virtual networks
according to different business requirements. Then, a Continuous-Decision virtual
network embedding scheme relying on Reinforcement Learning (CDRL) is
proposed, two traditional heuristic embedding algorithms as well as the classic
reinforcement learning aided embedding algorithm are used for benchmarking
our proposed CDRL algorithm. Finally, we propose a hybrid intelligent control
architecture, which adopts the centralized training and distributed execution
paradigm. A centralized critic is introduced to ease the training process of the
distributed network nodes. Besides, considering the competitive behavior of users,
we formulate the resource allocation problem as a multi-user competition game
model. Based on this, we proposed a multi-agent reinforcement learning-based
SFCs deployment algorithm.

Keywords Network slicing · Long-range wide area network · Service function
chain · Hybrid intelligent control

The continued growth in the number and applications of Internet of Things (IoT)
connected devices makes it more challenging to meet multi-dimensional QoS
within the same IoT network. In this chapter, we first design a network slicing
architecture over the SDN-based long-range wide area network. The SDN controller
can dynamically split the network into multiple virtual networks according to
different business requirements [1]. Then, a Continuous-Decision virtual network
embedding scheme relying on Reinforcement Learning (CDRL) is proposed, two
traditional heuristic embedding algorithms as well as the classic reinforcement
learning aided embedding algorithm are used for benchmarking our proposed CDRL
algorithm [2]. Finally, we propose a hybrid intelligent control architecture, which
adopts the centralized training and distributed execution paradigm. A centralized
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critic is introduced to ease the training process of the distributed network nodes [3].
Besides, considering the competitive behavior of users, we formulate the resource
allocation problem as a multi-user competition game model. Based on this, we
proposed a multi-agent reinforcement learning-based SFCs deployment algorithm.

5.1 Transfer Reinforcement Learning aided Network Slicing
Optimization

Industrial IoT as the most powerful and exciting technology has quickly become
a disruptive force reshaping how we live and work [4]. Massive industrial devices
are now connected to the network, allowing for data collecting, exchanging, and
analyzing. According to the Juniper’s report, there will be 37 billion industrial IoT
devices by 2025. Faced with such massive devices, IoT network technology is now
confronted with unprecedented challenges.

Currently, the industrial IoT network market is dominated by the Long-Range
Wide Area Network (LoRaWAN) technology [5]. It is a non-cellular wireless
wide area network technology, which uses the LoRa radio modulation technology
to provide low cost, low power, and long-range communication. Such appealing
characteristics enable LoRaWAN suited for a wide range of industrial applications,
particularly in distant areas where businesses like petroleum drilling, mining, and
construction operate. However, with the emergence of new applications, providing
the QoS to different IoT devices becomes a critical challenge in LoRaWAN [6].

Recently, network slicing technology has emerged as a viable solution to address
this challenge. Network slicing is the process of dividing a single physical network
into many logical (virtual) networks using network virtualization (i.e., NFV and
SDN) [7]. Different slices have different logical topology, security rules, and
performance characteristics for the sake of fulfilling different business purposes.
In this paper, we design a network slicing architecture over SDN-based LoRaWAN,
where the SDN controller can dynamically partition LoRa gateways’ resources (e.g.,
physical channel) into several virtual networks on the fly [8].

Meanwhile, considering the limited resources on each gateway, designing an
efficient slice resource optimization scheme is another crucial problem. The gateway
should be able to configure slice parameters (e.g., Bandwidth (BW), Spreading
Factor (SF), Transmission Power (TP)) to satisfy the distinct QoS [9]. To address
this issue, we propose a DDPG based slice resource optimization algorithm [10].
The LoRa gateways using the DDPG are able to improve the performance by
exploring the environment and learning directly from their experiences.

While such learning mechanism can converge to the optimal policy, in the end, it
has to take a large number of training episodes. Especially in our scenario, each slice
agent on each LoRa gateway has to learn from scratch (i.e., randomized policy),
thereby resulting in a long learning time to reach the system’s optimal performance.
To accelerate the training process, we introduce the transfer learning framework
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[11]. Transfer learning is a machine learning technique where experience gained
acquired from one task can be transferred to other related tasks. Therefore, to
accelerate the learning process across multiple LoRa gateways, we propose a
Transfer learning-based Multi-agent DDPG (TMDDPG) algorithm.

5.1.1 System Model

In this section, we design a SDN-based network slicing architecture in LoRaWAN.
Then, we present the system model and problem formulation of slice optimization.

5.1.1.1 Network Slicing Architecture

A typical LoRaWAN architecture consists of end devices, LoRa gateways, network
servers, and application servers. The gateways are responsible for forwarding
messages from end devices to network servers. The network servers are responsible
for network management functions, including Over-The-Air-Activation, message
routing, acknowledgment of messages, and adaptive data rate control. The applica-
tion servers are used to process application-specific data messages received from
end devices.

In this paper, we leverage SDN and NFV technologies to enhance the flexibility
and programmability of the LoRaWAN. As shown in Fig. 5.1, we present a network
slicing architecture over SDN-based LoRaWAN. The architecture runs on open-
spec commodity compute and networking hardware and connects with the LoRa
gateways. All the network functions are built on micro-services, hosted into
containers, and orchestrated with Kubernetes. In our architecture, it contains three
layers, named Application Plane, Control Plane, and Infrastructure Plane.

Application Plane In this plane, the applications can issue their QoS requirements
and desired network behavior to the control plane via northbound application
program interfaces. Meanwhile, it can leverage network information (e.g., network
topology, network state) for its internal decision-making purposes. According
to different QoS, the applications can be classified into three types, including
best effort (BE), reliability aware (RA), and urgency and reliability aware (UR).
The URA application requires the highest priority. Examples include emergency
alerting and robot arm control. The RA applications require lower priority (e.g.,
security systems), while the BE requires the lowest priority (e.g., smart metering
applications) [12].

Control Plane The control plane is composed of multiple SDN controllers. The
controller can translate the application requirements to the infrastructure plane and
provide global network abstractions of the LoRaWAN to the application plane [13].
According to the complete knowledge of network state and applications QoS, the
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Fig. 5.1 Network Slicing Architecture over SDN-based LoRaWAN

controller can split physical network resources (e.g., channels on LoRa gateways)
for different slices and assign IoT devices to the corresponding slice.

Infrastructure Plane The infrastructure plane consists of end devices, LoRa gate-
ways, network servers, and applications servers. The LoRa gateways are connected
in a star of star network topology. The network servers and application servers are
hosted into containers. Each gateway will reserve channels resources for each slice
according to the configuration issued by the SDN controller. And the container-
based network server will be dynamically orchestrated according to controller
commands [14].

5.1.1.2 System Model

Consider a network consisting of a set of LoRa gateways .G = {1, . . . ,G}, and a
set of industrial IoT devices .D = {1, . . . , D}. We assume that each device will
be assigned to a specified network slice .j ∈ J = {1, . . . , J } of the closest gateway
according to its QoS. Each gateway will reserve its channel resource .C = {1, . . . , C}
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for each slice, where .cj,g denote the channel associated with the slice j on the
gateway g. Each channel has its corresponding bandwidth .b ∈ B = {1, . . . , B}.
To evaluate the slice performance, we design three evaluation metrics, named
Throughput&Delay Metric, Energy Efficiency Metric, and Reliability Metric. We
will detail the design in the following.

Throughput and Delay Metric

The first evaluation indicator is throughput and delay. In LoRaWAN, each device
adopts a specific spreading factor (varying between 7 and 12) for message transmis-
sion, which means each symbol will be encoded into .2SF signals (chips). Thus, the
LoRa modulation data rate can be formulated as:

.rd = SF · bj,g

2SF
· CR bits/s,∀d ∈ Dj,g, (5.1)

where .rd denotes the LoRa modulation bit rate of device d, CR denotes the code
rate, and .bj,g denotes the bandwidth assigned for slice j on the gateway g. Then,
the transmission delay can be expressed as:

.td = L

rd
seconds,∀d ∈ Dj,g, (5.2)

whereL is the packet length. Based on this, we define a QoSmetric .u
Dj,g

QoS to measure
the delay and throughput of slice j , which can be formulated as:

.
u
Dj,g

QoS =
∑

d∈Dj,g

(r̄d + (1 − t̄d )), (5.3)

where .r̄d and .t̄d indicate the normalized value of throughput and transmission delay,
respectively.

Energy Efficiency Metric

Another evaluation metric of slice performance is energy efficiency. The energy
consumption consists of two states, including active mode consumption .P ac

j,g and

sleep mode .P
sleep
j,g . Hence, the energy consumption of slice j during a slicing

interval time T can be described as:

.P tt
j,g = P ac

j,gTactive + P
sleep
j,g Tsleep, (5.4)
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where .Tactive is related to the .rd and .P ac
j,g is related to the transmission power.

According to pervious works [15], we formulate the unit power consumption as:

.u
Dj,g

EE =
∑

d∈Dj,g

(1 − ¯P tt
j,g), (5.5)

where . ¯P tt
j,g is the normalized energy consumption.

Reliability Metric

The third evaluation indicator is reliability. Configuring low SF and TP values may
cause packet loss due to sensitivity, inter-SF, and intra-SF interference. To evaluate

the reliability of transmission, we design the packet success rate metric .u
Dj,g

REL, which
can be formulated as:

.

u
Dj,g

REL =
∑

d∈Dj,g

P SRd,j ,

with PSRd,j = PRtra
d,j + PRtre

d,j + PRsen
d,j ,

(5.6)

where .PSRd,j , .PRtra
d,j , .PRtre

d,j , and .PRsen
d,j are binary variable. The .PRtra

d,j indicates
the packets lost caused by collisions that occur between two end devices configured
with the same SF . According to the random access formula, the .PRtra

d,j can be
described as:

.PRtra
d,j = 1 − e−2GSF , (5.7)

where .GSF is the number of packets generated when one packet is transmitted.
The .PRtre

d,j indicates the packets lost due to the inter-SF interference. The devices
experience a signal-to-interference-plus-noise ratio (SINR), which can be described
as:

.SINRi,j = P rx
i

σ 2 + ∑
n∈∂j

P rx
n,j

, (5.8)

where .P ac
i is the transmission power with .SF = i, and .σ 2 is the white Gaussian

Noise. The below matrix denotes the minimum signal power margin threshold with
other SF configuration [16].
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⎛

⎜⎜⎜⎜⎜⎜⎝

SF7 SF8 SF9 SF10 SF11 SF12

SF7 −6 16 18 19 19 20
SF8 24 −6 20 22 22 22
SF9 27 27 −6 23 25 25
SF10 30 30 30 −6 26 28
SF11 33 33 33 33 −6 29
SF12 36 36 36 36 36 −6

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Hence, the .PRtre
d,j can be formulated as:

.PRtre
d,g =

{
0, if packet survives interference

1, Otherwise
.

In addition, the .PRsen
d,j indicates the packets lost when a packet is transmitted to

the gateways below sensitivity, which can be expressed as:

.PRsen
d,g =

{
0, if packet successfully reaches j ∈ J
1, Otherwise

.

5.1.1.3 Problem Formulation

At this stage, we can formulate a multi-objective optimization problem. We search
for the optimum SF and TP configuration that can simultaneously enhance the slice’s
QoS, energy efficiency, and reliability. This optimization problem can be formulated
as:

.max uDj,g = u
Dj,g

QoS + u
Dj,g

EE + u
Dj,g

REL, (5.9)

subject to the following constraints:

.C1 : dj,g

⋂
dj ′,g = ∅,∀j, j ′ ∈ J,∀g ∈ G. (5.10a)

C2 : dj,g

⋂
dj,g′ = ∅,∀j ∈ J,∀g, g′ ∈ G. (5.10b)

C3 : 0 ≤ P ac
j,g ≤ P max, . (5.10c)

C4 :
∑

d∈Dj,g

rd ≤ Rmax
j,g . (5.10d)

The constraint C1 ensures that one device can only be allocated to one slice. C2
ensures that one device can only be allocated to one gateway. C3 ensures that the
transmission power is limited to the maximum power. And C4 ensures that the total
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Table 5.1 List of main notations

Parameter Definition

SF Spreading factor

T P Transmission power

G Number of gateways

J Number of slices

C Number of channel

D Number of industrial IoT devices

.rd The LoRa modulation data rate of device d

.bj,g The bandwidth assigned for slice j on the gateway g

.P tt
j,g The energy consumption of slice j during a slicing interval time T

.PRtra
d,j The packets lost caused by intra-SF collisions

.PRtre
d,j The packets lost caused by inter-SF collisions

.PRsen
d,j The packets lost when a packet is transmitted to the gateways below sensitivity

.u
Dj,g

QoS The satisfaction rate of slice j in terms of delay and throughput

.u
Dj,g

EE The satisfaction rate of slice j in terms of energy efficiency

.u
Dj,g

REL The satisfaction rate of slice j in terms of reliability

transmission power is limited to the maximum rate [17]. As shown in Table 5.1, we
list the notations of this paper.

5.1.2 Transfer Multi-agent Reinforcement Learning

In this paper, we introduce the DDPG algorithm to search the optimal SF and TP
parameters of each slice. Then, to accelerate the learning rate, the transfer learning
framework is introduced.

5.1.2.1 Markov Decision Process

The slice optimization problem can be described as an independent Markov
Decision Process (MDP) [18]. Formally, an MDP can be formalized as a 4-tuple
.< S,A, π,R >, where S is the state space, A is the action space, .� is the policy
space, and R is the immediate rewards. At each step, the slice agent takes an action
.a ∈ A according to current policy .π(a|s) and its observation .s ∈ S. Then, the
underlying environment will generate an immediate reward R, and the state s will
transit to a new state .s′ ∈ S. Specifically, in our scenario, we will define the three
components of MDP in the following.
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State Definition

In this paper, we define the environment state as the device information and packet
information. The device information includes spreading factors, transmission power,
bandwidth, and energy consumed (ENY). And the packet information includes
signal-to-noise ratio (SNR), received signal strength indicator (RSSI), and the total
number of packets during a unit time (Num). These values are encoded in an one-hot
format, which can be represented as:

.S = ( ¯SF , ¯T P , ¯BW, ¯ENY, ¯SNR, ¯RSSI, ¯Num). (5.11)

All the values are average values over an interval period.

Action Definition

In this paper, we define the action as:

.A = (SF, T P ). (5.12)

In LoRa, the SF’s value range is .{7, 8, 9, 10, 11, 12}, and TP’s value range is {2, 5,
8, 11, 14 dBm}. Therefore, there exist 30 actions in the action space.

Reward Function

In this paper, the optimization goal needs to consider throughput, energy efficiency,
and reliability simultaneously. Thus, we define the reward function as:

.R(a, s) = uDj,g = αu
Dj,g

QoS + βu
Dj,g

EE + γ u
Dj,g

REL, (5.13)

where .α, .β, and .γ are system weight parameters. Different values indicate different
preferences of the slice QoS requirement. For example, a larger .γ should be adopted
in the URA slice for the sake of better transmission reliability.

5.1.2.2 Deep Deterministic Policy Gradient

In this paper, we introduce the DDPG to learn the optimal slice configuration policy.
DDPG is a model-free off-policy RL algorithm that combines the deep Q-Network
(DQN) algorithm and deterministic policy gradient (DPG) algorithm [19]. As shown
in Fig. 5.2, it is composed of two neural network components, termed as critic and
actor. The actor function .μ(s|θμ) specifies action a given the current state s of
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Fig. 5.2 The DDPG algorithm

the environments. Critic value function .Q(s, a|θQ) specifies a signal (TD Error) to
criticize the action made by the actor.

For the actor network, the objective function can be described as:

.J (θμ) = Eθμ [r1 + γ r2 + γ 2r3 + . . .]. (5.14)

The actor network will update the parameters .θμ toward the direction of increasing
.J (θ). The gradient of the objective .J (θμ) can be expressed as:

.
∂J (θμ)

∂θμ
= Es

[
∂Q(s, a|θQ)

∂a

∂μ(s|θμ)

∂θμ

]
. (5.15)

For the critic network, it calculates the Q-value of the observation-action pair
.(s, a) to measure the profit of action a under a specific state s. The update of the
critic network .θQ can be described as:

.
∂L(θQ)

∂θQ
= E

s,a,r,s
′
[
(T argetQ − Q(s, a|θQ))

∂Q(s, a|θQ)

∂θQ

]
, (5.16)

where

.T argetQ = r + γQ
′
(s

′
, μ(s

′ |θμ
′
)|θQ

′
). (5.17)
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Besides, to stabilize the training process, DDPG adopts the Experience Replay
and Target Networks scheme.

Experience Reply Experience Replay is a replay memory technique, where agent’s
experiences are stored as a tuple of .[st , at , rt , st+1] in a replay buffer D. During the
training, the RL agent randomly drew a minibatch of experience from D to train
the network. Such storage-sampling act effectively addresses the unstable training
problem caused by the autocorrelation among training data [20].

Target Network During the training, since the learning object constantly changes,
the value TD estimations can easily spiral out of control. To mitigate that risk,
the target network is introduced. The target network’s weights are fixed during the
learning process and periodically reset to the original network’s values.

In DDPG, we define the target critic network and target actor network to calculate
the Q-value for the next state in TD-error computations:

.policy network

⎧
⎨

⎩

online : μ(s|θμ) : gradient update θμ

target : μ(s|θμ
′
) : sof t update θμ

′ (5.18)

.Q network

⎧
⎨

⎩

online : Q(s, a|θQ) : gradient update θQ

target : Q(s, a|θQ
′
) : sof t update θQ

′ . (5.19)

In DDPG, the weights of targets are updated based on the main networks
periodically, which can be formulated as:

.sof t update :
⎧
⎨

⎩
θQ

′ ← τθQ + (1 − τ)θQ
′

θμ
′ ← τθμ + (1 − τ)θμ

′ (5.20)

5.1.2.3 Transfer Reinforcement Learning

As discussed above, the DDPG agent can learn from its experience and improve its
performance by exploring the environment. However, such learning mechanism has
to take a large number of training episodes to converge the optimal value. Especially
in our scenario, multiple slice agents are co-existed. Each RL agent has to learn from
scratch and therefore reduce the system utility.

To accelerate the learning process across multiple agents, the transfer learning
techniques are integrated into our method to facilitate the learning process. Transfer
learning is a machine learning method that the learned models trained from a task
are reused as the starting point for new models on another task [21]. Different from
the isolated learning paradigm, transfer learning exploits the knowledge acquired
from previous tasks to improve generalization and learning rate about related ones.
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Fig. 5.3 Transfer reinforcement learning

Combining with the transfer learning methods, as shown in Fig. 5.3, we propose
a transfer multi-agent Deep Deterministic Policy Gradient (TMDDPG) scheme. At
the first stage, the centralized controller gathers the data experience .[st , at , rt , st+1]
from the distributed gateways to construct a replay buffer and train the model. After
convergence, the well-trained network models will be issued to each gateway and
used as the starting point on local slice optimization tasks. Moreover, the experience
memory pool of each slice agent is imported by well-trained model experience in
the SDN controller.

The slice optimization policy of the TMDDPG algorithm is shown in detail in
Algorithm 5.1.

5.1.3 Experiments and Simulation Results

In this section, we present the simulation results to evaluate the validity of the
proposed algorithm. Our experiments simulate Ubuntu 16.04 with 32g RAM, Nvidia
RTX 2060, and intel i7-10875H. We use OMNET.++ for building the LoRaWAN
simulation environment, and PyTorch 1.4.0 for implementing neural networks.
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Algorithm 5.1 The TMDDPG based slicing optimization algorithm
Import pre-trained model and replay buffer data from SDN controller
Initialized online network weights θQ, θμ

Initialized target network weights θQ
′ ← θQ, θμ

′ ← θμ

for step = 1 to maximum episode length do do
Observe initial state s0
for step = 1 to maximum episode duration do
Takes an action according to the current policy:

at = μ(st |θμ) + Nt

Execute action at and receive a new state st+1
Storage the transition in R

Sample a batch of experiences
R × (s, a, r, s′) from replay buffer
Calculate TD target of Q-network:

yi = ri + γQ
′
(si+1, μ

′
(si+1|θμ

′
)|θQ

′
)

Update online Q-network by minimizing the loss:
L = 1

N

∑
i

(yi − Q(si, ai |θQ))2

Update online policy network with:
∇θμJ ≈ 1

N

∑
i

∇aQ(s, a|θQ)∇θμ |s=si ,a=μsi μ(s|θμ)|si
Update the target networks by:

θQ
′ ← τθQ + (1 − τ)θQ

′

θμ
′ ← τθμ + (1 − τ)θμ

′

end for
end for

5.1.3.1 Simulation Settings

In our experiment, we simulate a LoRa-based network with 4 gateways (i.e., .G = 4).
The number of slices on each gateway is 3, and the number of industrial IoT device
assigned to each slice range from 100 to 1000. We assume that gateways and devices
are uniformly distributed in a cell of a 10 km radius. In addition, the number of
channels per slice varies from 1–3 and each channel Bandwidth is 125 kHz. The SF’s
value range is .{7, 8, 9, 10, 11, 12}, and TP’s value range is {2, 5, 8, 11, 14 dBm}.
The detailed parameters setting can be found in Table 5.2.

5.1.3.2 Convergence Analysis

First, we evaluate the convergence of our proposed algorithm. We adopt two other
reinforcement learning algorithms, DDPG and DQN, as the baseline algorithms.
The configuration of TMDDPG, DDPG, and DQN are shown in Table 5.3.
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Table 5.2 Simulation parameters

Parameter Value

Number of gateways 4

Number of slice 3

Number of devices per slice 100–1000

Number of channels per slice 1–3

Channel bandwidth 125 kHz

Gateways and devices distribution Uniform distribution

Training batch size 25000 steps

Spreading factor 7–12

Transmit power 2–14 dBm

Table 5.3 TMDDPG .&
DDPG .& DQN configuration

Parameter Value

Episode maximum duration 100 s (100 steps)

Maximum episode 20,000 episodes

Discount factor (.γ ) 0.95

Learning rate (.α) 0.01

Training batch size 25,000 steps

Replay buffer size 100

Minibatch size 10

Hidden layer size 64

Step duration (.τ ) 1 s

As shown in Fig. 5.4a, the learning process of three algorithms is demonstrated.
We notice that three algorithms can all converge to a near reward. This demonstrates
that reinforcement learning is capable of improving policy performance through
interacting with the environment. Also, we notice that TMDDPG exhibits a better
convergence compared to the DDPG and the DQN. The TMDDPG can obtain stable
reward around 500 episodes, while DQN around 1300 episodes and DDPG around
1700 episodes. This is because TMDDPG acquires knowledge from previous tasks,
without having to restart training from the scratch.

5.1.3.3 Performance Analysis

In this part, we evaluate the algorithm performance in terms of network reliability.
Two classical SF-TP adjust algorithms, termed dynamic random (DR) algorithm and
dynamic adaptive (DA), are set as the baseline, where the DR configure the SF and
TP values randomly, and DA configure the SF and TP values based on link quality
with specific SF-TP pair, including (7 dbm, 2 dbm), (8 dbm, 5 dbm), (9 dbm, 8 dbm),
(10 dbm, 11 dbm), (11 dbm, 14 dbm) and (12 dbm, 14 dbm).
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Fig. 5.4 Convergence performance analysis. (a) The convergence analysis. (b) The performance
evaluation
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As shown in Fig. 5.4b, we present the packet loss rate (PLR) of the different algo-
rithms. With the number of devices increasing, the PLR increases. This is mainly
caused by the increase of inter- and intra-collision probability with the number
of devices increasing. Besides, we notice that reinforcement learning algorithms
exhibit better performance than DA and DR algorithms. This demonstrates the
validity and effectiveness of our proposed algorithm.

5.1.3.4 Slice Performance Analysis

In this part, we will evaluate the different kinds of slice’s performance in terms
of delay, energy efficiency, and packet loss rate. As discussed above, we define
three types of slices, i.e., UR, RA, and BE. Each type agent adopts different weight
parameters in the reward function for meeting the QoS preference, where .α indicates
the QoS weight, .β indicates the energy efficiency weight, and .γ indicates the
reliability weight. We detail the parameter’s value in Table 5.4.

Delay Evaluation

Firstly, we evaluate the delay performance of different slices. As shown in Fig. 5.5a,
with the number of devices increasing, the delay also increases. This is caused by
inter- and intra-interference. With the collision probability increasing, the gateway
has to set higher SF and TP values to enhance system reliability. Hence, the data
rate will decrease and the transmission delay will increase.

Also, we notice that the UR and RA’s delay is always lower than the BE slice. The
reason is that UR and RA slices’ reward functions are configured with the higher .α

and .γ . The agent will gain more profit with the higher throughput and lower delay.

Energy Evaluation

Then, we present the energy consumption of different slices. As shown in Fig. 5.5b,
with the number of devices increasing, the total energy consumption also increases.
That is because more participants will bring more energy consumption to the total
consumption. Besides, we notice that the energy consumption of UR is always lower
than the RA and BE. This is because that UR’s reward function adopts a higher
value of .γ , which forces the agent to take a higher TP value compared to the RA
and BE for higher reliability. And increasing SF and TP values will increase energy
consumption. In addition, the BE’s reward adopts the highest .β, which drives the
agent to adjust its policy to the lower consumptions direction.
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Fig. 5.5 Slice performance analysis. (a) The delay in different slices. (b) The Energy consumption
in different slices. (c) Packet loss rate in different slices
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Table 5.4 Slice parameters
configuration

Slice .α value .β value .γ value

UR 0.4 0.1 0.5

RA 0.4 0.2 0.4

BE 0.3 0.4 0.3

Packet Loss Rate Evaluation

We plot the PLR performance in Fig. 5.5c. With the devices increasing, the PLR will
also increase subsequently. This is because that more packets will be transferred at
the same time and therefore aggravated the inter- and intra-problem. Besides, the
PRL of UR is lower than the RA and BE, and there are obvious reasons for that.

These results demonstrate that the TMDDPG can dynamically optimize slice
performance by adjusting the SF and TP parameters configuration. Besides, the
reward function design can directly affect the performance in terms of delay, energy
efficiency, and reliability. The slice agent can adjust the reward’s weights (i.e., .α, .β,
.γ ) for acquiring different performance preferences.

5.2 Reinforcement Learning-Based Continuous-Decision
Virtual Network Embedding

Network Virtualization (NV) has attracted more and more attention [22–24], which
allows multiple virtual networks to share limited resources on the same substrate
network. Specifically, a new business model Infrastructure as a Service (IaaS) is
enabled by the Internet Service Providers (ISPs), which hosts multiple network
services on its infrastructure. Therefore, embedding decision-making has become
one of the important tasks for ISP, because an optimal embedding decision can
provide services for more virtual networks and make resource utilization more
effective [25]. For the sake of simplification, a virtual network can be modeled
as multiple virtual nodes, which are connected by virtual links. The purpose of
virtual network embedding is to map virtual networks to shared physical networks
while providing sufficient computation and bandwidth resources for requests.
Virtual Network Embedding (VNE) has played a critical role in network resource
allocation problems, which is considered as the main implementation method of
NV [26, 27]. To elaborate a little further, SPs embed virtual network requests into
the substrate network and offer the corresponding services for the sake of obtaining
revenue. Additionally, the substrate network is comprised with substrate nodes with
computational capability as well as substrate links with certain bandwidth. By
contrast, the virtual network contains nodes having requirement of computational
resources and links with requirement of transmission bandwidth.

Specifically, VNE process can be divided into two phases, i.e., node embedding
and link embedding. Moreover, different optimization objectives and constraints in
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different contexts may formulate different VNE problems, which have been proved
to be NP-Hard [27]. Liu et al. [28] concluded that solving VNE problems mainly
relied on direct solutions and heuristic solutions. However, direct solutions such as
Integer Linear Programming (ILP) aim at finding the optimal embedding results
yet with high computational complexity, which are not suitable for large-scale
networks. Additionally, most of the heuristic algorithms [29–32] are based on static
decision-making process, where network parameters cannot be adaptively optimized
corresponding to dynamic network states.

With the development of artificial intelligence and machine learning [33], more
and more intelligent algorithms have been taken into account for solving the
VNE problems. In comparison to the heuristic algorithms, machine learning [34]
algorithms can intelligently adjust network parameters relying on available data
and make predictions for the future. Moreover, as one famous member of machine
learning family, reinforcement learning [35, 36] methods are characterized with
self-adaptivity in which the agent interacts with the environment to perform
specific actions. Combining with the deep neural network [37], Deep Reinforcement
Learning (DRL) algorithms are proposed for extracting and analyzing information
of the substrate network relying on the perception of the neural network. Inspired
by these, in this paper, the seq2seq model1 is applied to formulate the node
embedding process. Furthermore, a Continuous-Decision VNE scheme relying
on Reinforcement Learning (CDRL) algorithm is proposed for solving the VNE
problem and for optimizing their performance.

5.2.1 System Model and Evaluation Metrics

5.2.1.1 System Model

As mentioned above, VNE is the process of assigning virtual network requests to
the substrate network according to their resource requirements. For the sake of
analysis, the substrate network can be formulated by an undirected graph .GS =
(NS, LS,AS

N,AS
L), where .NS and .LS denote substrate nodes and links, while .AS

N

and .AS
L represent the computational capability of nodes and the bandwidth of links,

respectively. Moreover, let .P S represent a set of acyclic paths in the substrate
network. Similarly, we also utilize an undirected graph .GV = (NV ,LV ,CV

N ,CV
L )

to formulate a virtual network, where .NV and .LV are nodes and links in .GV ,
while .CV

N and .CV
L are computational resource requirements of nodes and bandwidth

requirements of links, respectively. Relying on the symbols defined above, the VNE
process can be easily expressed by .M : GV (NV ,LV ) → GS(N

′
, L

′
), where

1 The seq2seq is a common model in the field of Natural Language processing (NLP), which is a
widely used architecture for machine translation and summarization relying on a recurrent neural
network as one of its building blocks [38, 39].
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.N
′ ⊂ NS and .L

′ ⊂ LS . In our resource allocation problem, one objective is to
find the node embedding relation .X = {xij | ni ∈ NV , nj ∈ NS}, which can be
formulated by:

.

∣∣NS
∣∣∑

j=1

xij = 1, (5.21)

where .xij = 1 denotes that the virtual node .ni is embedded to the substrate node
.nj , and we have .ni ∈ NV , nj ∈ NS . Hence, another objective is to find the link
embedding relation .Y = {yij | li ∈ LV , lj ∈ LS}, which can be given by:

.

∣∣LS
∣∣∑

j=1

yij ≥ 1, (5.22)

where .yij ≥ 1 means that link .li is embedded to one or more substrate links, and we
have .li ∈ LV , lj ∈ LS . If a virtual network request .GV is eligible to be successfully
embedded to the substrate network, it needs to satisfy the constrain of computational
capability, which can be expressed by:

. xij · CV
ni

≤ xij · AS
nj

, (5.23)

where .AS
nj

denotes the actual computational capability of .nj , while .CV
ni
denotes the

node resource requirement of .ni , and we have .ni ∈ NV , nj ∈ NS . Furthermore, the
bandwidth constrain also needs to be satisfied, which can be given by:

. yij · CV
li

≤ yij · AS
lj
, (5.24)

where .AS
lj

denotes the actual bandwidth of .lj , while .CV
li

denotes the bandwidth

requirement of .li , and we have .li ∈ LV , lj ∈ LS .
For the sake of simplification, figures in Fig. 5.6 are used to clarify our VNE

process. Figure 5.6 is consisting of request 1 and request 2 as well as a substrate
network, where request 1 has 2 virtual nodes and 1 virtual links, while request 2 has
4 virtual nodes and 2 links. Moreover, the value on the line represents the bandwidth
requirement of link, while the value next to the node denotes the computational
resource requirement of node. Furthermore, for the substrate network in Fig. 5.6,
the value on the line represents the actual bandwidth of substrate link, while the
value next to the node denotes the actual computational capability of substrate
node. Whatever the case is, different embedding algorithms all aim at looking for
an optimal embedding strategy, in which less resource is consumed in the case of
successful embedding and ISPs gain much more revenue.
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Fig. 5.6 Embedding results from the virtual network requests to the substrate network. Virtual
nodes a, b are embedded to the substrate nodes A, B while the virtual link ab is embedded to the
substrate link AB, and virtual nodes c, d, e, f are embedded to the substrate nodes A, C, D, F

while the virtual links cd, df , ef , ce are embedded to the substrate paths AC, CF , DF , AD. With
the aid of criterion of consuming less resource to achieve embedding result, it can be easily found
that the bandwidth consumed by AC and DF are not optimal. Furthermore, After virtual nodes c,
d, e, f are transferred to the substrate nodes B, C, F , G some bandwidth resources are saved for
accepting other virtual network requests

5.2.1.2 Evaluation Metrics

The revenue of ISP, namely .R(GV , t, td), is computed in line with the duration time
.td of virtual network request, consumed node computational resources .CPU(nV )

as well as the link bandwidth .BW(lV ). Hence, the revenue can be formulated by:

.

R(GV , t, td) =

td

⎡

⎣wc

∑

nV ∈NV

CPU(nV ) + wb

∑

lV ∈LV

BW(lV )

⎤

⎦ ,
(5.25)

where .CPU(nV ) is the node computational resources consumed by the virtual node
.nV , while .BW(lV ) is the bandwidth consumed by the virtual link .lV . Furthermore,
.wc and .wb are revenue weights of nodes and links in the substrate network,
which are only determined by the ISP. Specifically, some ISPs pay more attention
to the benefits from consuming computational resources of nodes, then .wc is
correspondingly a little bit higher. By contrast, if ISPs care much more about
benefits from consuming bandwidth of links, .wb is correspondingly a little bit
higher.
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After a virtual network request is successfully embedded to the substrate
network, the resource consumption can be calculated by:

.

C(GV , t, td) =

td

⎡

⎣
∑

nV ∈NV

CPU(nV ) +
∑

lV ∈LV

∑

lS∈LS

BW(f lV

lS
)

⎤

⎦ ,
(5.26)

where .BW(f lV

lS
) is the bandwidth consumed by .lV in the substrate link .lS , while

.CPU(nV ) denotes the computational resources consumed by .nV . Moreover, during
the link embedding stage, a virtual link .lV may be assigned to multiple substrate
links, so the total bandwidth consumption of .GV needs to be calculated.

For the sake of easy comparison, there are generally three metrics to evaluate
the performance of different VNE algorithms. The first metric is the .long −
term average revenue, which calculates the average revenue over an infinite
period of time to evaluate the overall impact of a VNE algorithm. We have:

. Rev = lim
T →∞

∑T
t=0 R(GV , t, td)

T
, (5.27)

where T denotes the elapsed time. As mentioned above, VNE aims at getting as
much revenue as possible with limited resource consumption, which gives us a
second evaluation metric, namely .long − term average revenue to cost ratio.
It can be calculated by:

. Rev2Cos = lim
T →∞

∑T
t=0 R(GV , t, td)

∑T
t=0 C(GV , t, td)

, (5.28)

where a higher .long − term average revenue to cost ratio indicates a higher
resource utilization efficiency to meet the resource requirements of more virtual
network requests. The last evaluation metric is the .long − term acceptance ratio,
which calculates the percentage of all virtual network requests that are successfully
embedded. We have:

. Acp = lim
T →∞

∑T
t=0 Acp (GV , t, td)

∑T
t=0 All (GV , t, td )

, (5.29)

where .Acp (GV , t, td) denotes the number of accepted virtual network requests over
time horizon T . Furthermore, we utilize these three metrics to evaluate performance
of our proposed CDRL algorithm with other algorithms in following sections.
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5.2.2 Embedding Algorithm

In this section, our CDRL algorithm and seq2seq model are described in detail. The
reinforcement learning agent is applied to extract the information of nodes in the
substrate network and form a feature matrix as the input of the seq2seq model. Then
the model outputs the node embedding results of current virtual network request.
The policy gradient algorithm is utilized to update the network parameters, and
finally a model with a good embedding mechanism is produced.

5.2.2.1 Seq2seq Model

The seq2seq model is commonly utilized to solve some sequence-to-sequence
problems such as machine translation, QA system, etc. It is divided into two parts,
as shown in Fig. 5.7, the encoder and decoder part, respectively. Each cell in two
parts has a hidden vector .ht , which is related to the input vector .xt and the hidden
vector of the previous cell .ht−1. The .ht can be calculated by:

. ht = f (xt , ht−1), (5.30)

where f is a nonlinear activation function tanh or sigmoid. For the sake of
simplification, we assume that a pair of source-target vectors is represented by
.(A,B,C) → (W,X, Y,Z). Specifically, in encoder part, the source vectors
.(A,B,C) are integrated into a encode vector E, which is actually the last hidden
vector .ht in encoder part and represents the semantics of all input vectors. Then
vector E and the target vectors .(SOS,W,X, Y,Z) are used as the input of the
decoder part, where SOS is the start signal of the decoder part. Furthermore, the
training process of seq2seq model aims at making the output of the decoder part
get close to the target vectors .(W,X, Y,Z,EOS), where EOS is the end signal
of the decoder part. In comparison to the VNE, we found the VNE problem can
also be considered as a sequence-to-sequence problem in which information of the
substrate network is encoded in the encoder part and be sent to the decoder part

Fig. 5.7 The seq2seq model
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for decoding. As a result, we can get continuous node embedding results of current
virtual network request.

In order to explain this process more clearly, here we define an input sequence
.x1, x2, . . . , xt and an output sequence .y1, y2, . . . , yt . Hence, for the seq2seq
model, the purpose is to maximize the probability:

.

T∏

t=1

P(yt | v, y1, . . . , yt−1), (5.31)

where v denotes the input vector .x1, x2, . . . , xt . Different from the encoder part,
the hidden vector .ht in decoder part is calculated by:

. ht = g(v, yt−1, ht−1), (5.32)

which is related to the output .yt−1 of the last cell, where g denotes a nonlinear
activation function. In order to prevent the numerical underflow problem of Eq.
(5.31), the objective function of the seq2seq model can be rewritten as a log
likelihood conditional probability function, which can be formulated by:

. max
θ

1

T

T∑

t=1

logPθ(yt | xt ), (5.33)

where .θ denotes the parameters of the seq2seq model.

5.2.2.2 Information Extraction

In order to vectorize the global state information of the substrate network, we need to
extract the state information of each substrate node and link. Nodes in the substrate
network have a range of characteristics such as remaining computational capability,
bandwidth of adjacent links as well as the connection degree. Generally speaking,
the more that features are extracted by the reinforcement learning agent, the more
that the feature matrix can represent the entire substrate network. However, if the
dimension of the feature matrix is large enough, it will lead to a high complexity, and
hence will be likely to be over-fitting. As for the benchmark algorithm RLVNE [40],
Yao et al. extracted four types of state information, including the computing
capacity, degree, sum of bandwidth and average distance to other host nodes, which
take into consideration the positions where other virtual nodes in the same request
are embedded. However, as for our seq2seq model, it continuously outputs the
embedding results of all virtual nodes in current virtual network each time, so we
cannot take the average distance to other host nodes into account. Hence, three
pieces of general information of the substrate network can be extracted in order
to formulate the feature matrix, i.e.:
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1. Computational capability (CPU ): The remaining computational capability has a
great impact on embedding results during the node embedding process, so this
dimension needs to be taken into account in our feature matrix. The CPU can
be given by:

.
CPU(ns) = CPU(ns)

′ −
∑

nv→ns

CPU(nv), (5.34)

where .CPU(ns) denotes the initialization CPU value of .ns , while .
∑

nv→ns

CPU(nv) represents the sum of CPU value of all virtual nodes embedded to
.ns .

2. Degree (DEG): The degree is the number of links directly connected to
the substrate node, which reflects the connectivity of the substrate network.
Furthermore, the higher the degree, the easier it is to find the path between the
other nodes. The DEG can be calculated as:

.
DEG(ns) =

∑

n∈Ns

L(ns, n), (5.35)

where .L(ns, n) is equal to 1 when .ns and n are connected, 0 when not connected.
3. Sum of Bandwidth (SUM): Each substrate node may be connected to more than

one link, we calculate the sum of bandwidth of all links connected to it, which
can be formulated as:

.
SUM =

∑

ls∈Lns

BW(ls), (5.36)

where .Lns
denotes the substrate links connected to node .ns , while .ls denotes one

of the .Lns
. Moreover, a higher SUM means more likely to complete the link

embedding in this substrate node.

After these three features are extracted, their normalized values are connected
into a feature matrix A, which can be given by:

. A = [CPU,DEG, SUM]. (5.37)

The matrix A is used as the input of the seq2seq model and is updated as the state
of the substrate network changes.

5.2.2.3 Markov Decision Process

For our VNE problem, we have no way to obtain sufficient embedding data with
labels, so we cannot solve this problem by using supervised learning algorithms.
Hence, we introduce the reinforcement learning algorithm [42] to solve this prob-
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lem. As is well known, the reinforcement learning algorithm is a method which is
learned in practice and judges the performance of the current operation based on the
value of a reward signal. For the sake of simplification, the process of reinforcement
learning is usually assumed that there is Markov property between state probability
transitions, and hence we use a Markov Decision Process (MDP) to model the
reinforcement learning. In our model, the node embedding is considered as a
continuous decision process, where the decision-making agent aims at collecting
information of the substrate network to make node embedding decisions and the
revenue can be obtained after the embedding. Therefore, the node embedding
process of all virtual network requests can be simulated as (S,A,P ,R,.γ ), where S

and A represent two finite sets of states and actions, while P represents the state
transition probability. It can be given by:

. P a
ss′ = P [St+1 = s′ | St = s, At = a], (5.38)

where .St and .At are state and action at time t . Moreover, R is the reward function,
which can be expressed by:

. Ra
s = E [Rt+1 | St = s, At = a], (5.39)

where .Ra
s denotes the reward after action a is performed at state s, while .γ ∈ [0, 1]

is a discount factor when the total discounted reward .Gt is calculated from time t .
The .Gt can be formulated by:

. Gt = Rt+1 + γRt+2 + . . . =
∞∑

k=0

γ kRt+k+1, (5.40)

where .Gt reflects the impact on all subsequent states after action a is performed,
which is reduced over time. Furthermore, action policy .π is a distribution of actions
at state s, which can be expressed by:

. π(a|s) = P [At = a | St = s]. (5.41)

Additionally, the task of the decision-making agent is to find the best policy .π

which can be achieved by maximizing the reward. For MDP, there are two value
functions including the state-value as well as the action-value. Moreover, the state-
value function .Vπ(s) is only related to the current state s, which can be formulated
by:

. Vπ(s) = Eπ [Gt | St = s]. (5.42)

Similarly, the action-value function .qπ(s, a) is related to current action a as well as
the state s, which can be expressed by:
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. qπ(s, a) = Eπ [Gt | St = s, At = a]. (5.43)

According to the expression of the value function, we can derive the recursive
relationship of the value function. For example, for the state-value function .vπ(s),
we have:

. vπ(s) = Eπ [Rt+1 + γRt+2 + γ 2Rt+3 + . . . | St = s] (5.44)

. = Eπ [Rt+1 + γ (Rt+2 + γRt+3 + . . . | St = s] (5.45)

. = Eπ [Rt+1 + γGt+1| St = s] (5.46)

. = Eπ [Rt+1 + γ vπ(St+1)| St = s]. (5.47)

Obviously, there is a recursive relationship between the state .St and .St+1, which
can be given by:

. vπ(s) = Eπ [Rt+1 + γ vπ(St+1)| St = s]. (5.48)

This recursive equation is generally called the Bellman equation, which indicates
that the state-value of a state is composed of the reward of the state and the
subsequent state-value combined in a certain ratio. In the same way, we can get
the Bellman equation of the action-value function .qπ(s, a):

. qπ(s, a) = Eπ [Rt+1 + γ qπ(St+1, At+1)| St = s, At = a]. (5.49)

According to the above definition, we can easily conclude the translation
relationship between .Vπ(s) and .qπ(s, a), which can be given by:

.
Vπ(s) =

∑

a∈A

π(a|s)qπ (s|a), (5.50)

.
qπ(s, a) = Ra

s + γ
∑

s′∈s

P a
ss′Vπ(s′). (5.51)

Suppose now the decision-making agent receives a virtual request with p

numbers of nodes, it has to make p numbers of embedding decisions at time t to
embed these nodes to the substrate network. Obviously, .St can be expressed by the
feature matrix which is inputted to the model at time t . Moreover, the action .At at
time t is:

. At = {(nv
t , ns

t ) | ns
t ∈ NS

t ∩ NS(ns
t )}, (5.52)
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where .NS(ns
t ) denotes the substrate nodes which meet the CPU requirement of .ns

t .
After action .at is performed, the decision-making agent receives a reward signal .Rt .

However, if we use the value-based reinforcement learning algorithms such as
Q-learning algorithm [43] to make embedding decisions, we need to calculate the
reward obtained by executing different actions under each state and choose the
action with the largest reward. Obviously, the value-based algorithm does not fit
our problem well. Because our state space is made up of continuous values and we
cannot get the transition probability distribution between different states. Hence,
we introduce a policy-based algorithm to address with the MDP, which directly
optimizes the policy of actions. Furthermore, details of the policy gradient algorithm
are introduced in the next section.

5.2.2.4 Policy Gradient

Policy gradient [44] algorithm is a reinforcement learning algorithm which opti-
mizes the policy of actions directly. At the beginning, the policy .π can be described
as a function containing the parameter .θ :

. πθ(s, a) = P(a|s, θ) ≈ π(a|s). (5.53)

After the policy function is represented as a continuous function, we can use
continuous function optimization methods such as gradient descent algorithm to
optimize the strategy. The optimization function can be expressed by:

. J (θ) =
∑

s

dπθ (s)
∑

a

πθ (s, a)Ra
s , (5.54)

where .θ denotes the parameters of policy gradient algorithm, while .dπθ (s) is the
probability distribution of states. Moreover, when gradient of the optimization
function .J (θ) is calculated, there is a little trick named likelihood ratio, which is:

.

∇θπθ (s, a) = πθ(s, a)
∇θπθ (s, a)

πθ (s, a)

= πθ(s, a)∇θ logπθ (s, a).

(5.55)

Relying on the likelihood ratio, gradient of the objective function .J (θ) can be
formulated by:

.

∇θJ (θ) =
∑

s∈S

d(s)
∑

a∈A

πθ (s, a)∇θ logπθ (s, a)Ra
s

= Eπθ [∇θ logπθ (s, a)r],
(5.56)
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where r is the total reward over the entire process. Furthermore, according to the
policy gradient theorem [45], under the multi-step MDP, we have:

. ∇θJ (θ) = Eπθ [∇θ logπθ (s, a)Qπθ (s, a)], (5.57)

where .Qπθ (s, a) denotes the sum of multi-step reward. During the actual optimiza-
tion process, unbiased sampling is performed on .Qπθ (st , at ). Then we can get .vt ,
and the parameters can be updated by the form of:

. θ = θ + α∇θ logπθ (st , at )vt . (5.58)

5.2.2.5 Training and Testing

The training process of our model is shown in Fig. 5.8, and network parameters of
the seq2seq model need to be initialized at the beginning. In the training process,
we input the feature matrix of the substrate network extracted by the reinforcement
learning agent and get the encode vector E. Furthermore, the encode vector E and
the start signal SOS are inputted into the decoder part. Let the output .N1 represent
the location where the first virtual node is embedded to the substrate network. Then,
it is calculated by a softmax function, which can be expressed by:

. pi = ehi

∑
j ehj

, (5.59)

Fig. 5.8 The seq2seq training model. During the training process, the start decoding signal SOS
and hand-crafted labels .N∗

1 , .N
∗
2 ,.., .N

∗
v are inputted to the decoder part. The output is the decoding

result .N1, .N2,.., .Nv and the end decoding signal EOS. Each output vector N corresponds to the
location of the substrate network node to which the current virtual node is embedded
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where h denotes the output vector of each cell in decoder part. Actually, parameters
in our model are randomly initialized, and the node with the highest probability
may not be the best result. Therefore, according to the probability of the output
in the softmax layer, we select one node from the set of nodes with sufficient
available resources as the host node. Moreover, after all the virtual nodes of the
current virtual network are embedded, the Breadth-First-Search (BFS) algorithm is
applied to find the path with the optimal bandwidth consumption between each pair
of virtual nodes [46].

Furthermore, as for the supervised learning, each piece of data corresponds to a
specific label. And the label is compared with the output of training process, where
the cross-entropy or Mean Squared Error (MSE) formulation is used to calculate
the error between them. Then some algorithms are used to minimize this error and
update the parameters of the model. However, the reinforcement learning algorithm
is a completely different algorithm from the supervised learning. Specifically, the
reinforcement learning agent determines the effectiveness of each action based on
the reward signal. If current action brings a large reward signal, it means the action
is valid and will be encouraged to happen in next epoch. By contrast, if the current
action brings a small or even negative reward signal, this action will be tried to avoid
to happen in next epoch. Therefore, the reward signal is significant for agent to train
the model and make embedding decisions. So in our experimental settings, we take
the long-term average revenue to cost ratio as the reward signal, which is because
this metric reflects the utilization efficiency of the substrate resources, and it also
has a significant impact on the other two metrics.

To implement our algorithm, we need to assign a label to each output of the
decoder part, and then update the parameters based on the error between the
label and the specific output. Therefore, we use the hand-crafted label which is
determined by an .|ns | dimensions vector .yi to denote the label of virtual node,
where is the number of substrate nodes. Specifically, if the label of a virtual node is
set as the i-th substrate node, the i-th dimension of .yi is set to 1, while the other
dimensions are set to 0. Moreover, the error between .yi and output vector .pi can be
calculated by:

.
L(y, p) = −

∑

i

yi log(pi), (5.60)

and the cross-entropy of the decoder part can be given by:

. loss =
|NV |∑

i=1

Li(y, p). (5.61)

Then we use the gradient descent algorithm to calculate the gradient .gf of loss,
then multiply the reward signal r and the learning rate .α to get the parameter update
formula of our model, which can be given by:
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Fig. 5.9 The seq2seq testing model. During the testing process, we can find that when the start
decoding signal SOS is inputted to the decoder part, the decoding process begins. Obviously, the
output of the previous cell is used as the input to the next cell, and the decoding process ends when
the output is EOS

. g = α · r · gf . (5.62)

The learning rate .α is a significant parameter in the process of updating the
model parameters, which determines the speed of network updates. If .α is set
incorrectly, it may cause over-fitting or under-fitting of the network, affecting the
final performance of the model. Hence, we need to find a moderate .α to keep a stable
update process and converge speed. The batch gradient descent algorithm is applied
to update the network, which is beneficial in terms of improving the converge speed
as well as making the network stable. Specifically, during the training process, we
created a gradient stack to temporarily store these calculated gradients instead of
using them immediately. When the number of storage reaches the batch amount, the
model parameters are updated. However, if the link embedding process fails because
of insufficient bandwidth, .gf will be deleted as we are unable to identify the reward
signal. Our training algorithm is represented in Algorithm 5.2.

In testing process, the performance of our network is tested with the online virtual
network requests which are slightly different from training process. The testing
model is shown in Fig. 5.9, which shows that the output of each cell in decoder
part is applied as the input of the next cell. The embedding result adopts a beam
search strategy [47], where the nodes with the highest product of probabilities are
chosen as host nodes. Algorithm 5.3 is our testing algorithm.

5.2.2.6 Computational Complexity

For our CDRL algorithm, the computational complexity is .O(v(mr + p + q)),
where v and m are the number of virtual network requests and the substrate nodes,
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Algorithm 5.2 Training process
Input:

Number of epochs epochNum; Training data trainingSet ; Batch size;
Output:

Trained parameters in seq2seq model;
1: Initialize all the parameters in seq2seq model;
2: while epoch < epochNum do
3: count=0
4: for request ∈ trainingSet do
5: input feature matrix of the substrate network to the seq2seq model;
6: get output of seq2seq model and select host nodes;
7: if embedded (∀ node ∈ request) then
8: compute gradient gf of request and add to stack;
9: link embedding process;

10: end if
11: if embedded (∀ node ∈ request , ∀ link ∈ request) then
12: compute the revenue to cost ratio as the reward signal;
13: multiply reward signal and gf to compute the final gradient;
14: else
15: delete gf ;
16: end if
17: ++count
18: if count equals to the batch size then
19: update network parameters;
20: count=0;
21: end if
22: end for
23: + + epoch;
24: end while

p and q are the maximum number of nodes and links in virtual network requests,
respectively. Moreover, r is the dimension of the feature matrix.

Proof: for every virtual network request, the computational complexity of
computing the feature matrix is O(mr). After the feature matrix of the substrate
network is inputted to our seq2seq model, the computational complexity is O(p).
Furthermore, when virtual nodes are successfully embedded, the computational
complexity of the link embedding process is O(q). Hence, for all v numbers of
virtual network requests, the computational complexity is .O(v(mr + p + q)).
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Algorithm 5.3 Testing process
Input: : Testing data testingSet ; Trained parameters in seq2seq model;
Output: : Long-term average revenue; Long-term average acceptance ratio; Long-

term average revenue to cost ratio;
1: for request ∈ testingSet do
2: input feature matrix of the substrate network to the trained seq2seq model;
3: get output of the seq2seq model;
4: select host nodes using beam search strategy;
5: if embedded (∀ node ∈ request) then
6: link embedding process;
7: else
8: return FALSE;
9: end if

10: if embedded (∀ node ∈ request , ∀ link ∈ request) then
11: return embedding result;
12: else
13: return FALSE;
14: end if
15: end for

5.2.3 Experiments and Simulation Results

5.2.3.1 Experiment Setup

We used the GT-ITM tool [48] to generate a substrate network of 100 nodes and
550 links, which belongs to a medium ISP scale. The computational capability of
nodes satisfies the uniform distribution between .(50, 100), while the bandwidth of
links satisfies the uniform distribution between .(20, 50).

After the substrate network is generated, 2000 numbers of virtual networks will
be produced. Furthermore, in these 2000 numbers of virtual networks, the training
set consists of the first 1000 virtual networks, while the remaining 1000 virtual
networks form the testing set. Specifically, every virtual network request has 2-
10 nodes and the computational capability satisfies a uniform distribution between
(0, 50), while the bandwidth of each link satisfies a uniform distribution between
(0,50). The connection probability between virtual nodes is 0.5, which means the
average number of links is .

(n(n−1))
4 , where n represents the number of virtual nodes.

The arrival speed of virtual network requests obeys a Poisson distribution, where 4
requests will be reached within 100 time units, while the duration time of virtual
network requests follows an exponential distribution with an average duration of
1000 time units. Hence, we have built a timeline with a length of 50,000 time units.

We apply the TensorFlow [49] frame to build the seq2seq model. Specifically,
the encoder part has 100 LSTM cells which represent 100 substrate nodes, while
the number of cells in the decoder part is determined by the number of virtual
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nodes in the current virtual network request. In general, the number of nodes in
the encoder part is fixed, while the number of nodes in the decoder part varies
with different virtual requests. Network parameters are initialized according to the
normal distribution.

5.2.3.2 Training Performance

In comparison to the supervised learning, the converge speed of the reinforcement
learning is slower, which is because it has no accurate label and network parameters
need to be updated based on the hand-crafted labels and reward signal. During the
training process, we utilized the training set with 1000 virtual requests to train
the seq2seq model with random parameters initialization for 100 epochs. From
the loss changing process in Fig. 5.10, we can conclude that the model converges
well. Furthermore, Fig. 5.11 shows these three metrics changing processes within
100 epochs. Furthermore, we can find at the beginning of the training process,
every metric is relatively low because the parameters are randomly initialized. As
the training process continues, the reinforcement learning agent applies the policy
gradient algorithm to update the network according to the reward signal, where the
embedding policies are adjusted according to the magnitude of the reward signal.
With the constant update of network parameters, the model performance is getting
better. Furthermore, after 100 epochs, because of the limitation of the resources of
the substrate network, these three metrics have reached a certain point.

Fig. 5.10 Loss on the training set
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Fig. 5.11 The algorithm
performance on the training
set. (a) The changing process
of the long-term average
revenue. (b) The changing
process of the long-term
average Rev2Cost ratio. (c)
The changing process of the
long-term average acceptance
ratio

(a)

(b)

(c)
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5.2.3.3 Simulation Result

From figures of the training performance, we can conclude that our CDRL algorithm
can be applied to the training set well. However, our optimization goal is not only
perform well on the training set but also on the online virtual network requests.
This requires us to test our algorithm on the testing set which is different from the
training set. Moreover, if our CDRL algorithm performs well in both training and
testing sets, it proves that our proposed algorithm is robust and our research topic is
meaningful.

In testing process, the node with the highest probability is selected. In order to
test our algorithm performance convincingly, the contrast experiments with other
three algorithms are conducted, which includes two heuristic algorithms as well as a
reinforcement learning aided algorithm. The first is the baseline algorithm proposed
in [29], which introduced the path splitting and migration to the link embedding part.
The second algorithm is the NodeRank algorithm proposed in [31], which calculated
.H(ns):

.
H(ns) = CPU(ns)

∑

ls∈L(ns)

BW(ls), (5.63)

to rank substrate nodes, where the .H(ns) represents the resource availability of node
.ns . The last algorithm is RLVNE algorithm proposed in [40], which introduced
a policy network based on the reinforcement learning to make node embedding
decisions. The policy network architecture is shown in Fig. 5.12.

In order to avoid interference caused by random initialization of neural network
parameters, the CDRL and RLVNE algorithms need to run for 30 different

Fig. 5.12 The RLVNE model
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initializations and to apply the testing set for the sake of evaluating the algorithm
performance. The evaluation metrics of four different algorithms are shown in
Figs. 5.8, 5.9, and 5.10. Furthermore, we added the error bar for each time slot.
As we can see from Fig. 5.13a–c, the long-term average revenue and acceptance
ratio are relatively high in previous epochs, because the substrate network has more
available resources at the beginning. As the testing process continues, available
substrate resources are gradually consumed, which results in the decrease of the
long-term average revenue and acceptance ratio. By contrast, the long-term revenue
to cost ratio has no particularly substantial fluctuation from the beginning to the end,
because it has no relationship with the available resources. Moreover, as we can see
from the average metric figures and error bars, we can conclude that our algorithm
has significantly improved these three evaluation metrics.

For the sake of determining whether our algorithm is better than RLVNE, a sta-
tistical hypothesis test is performed based on 30 testing results. The Wilcoxon [50]
testing method is chosen and the average value over all time slots is regarded as the
testing data. Furthermore, the original hypothesis .H0 is set as: RLVNE and CDRL
algorithms have no significant difference on performance, while the alternative
hypothesis .H1 is set as: CDRL algorithm performs better than RLVNE. According
to the calculation results, the one-sided significance value P .< 0.05, so .H0 is rejected
and .H1 is accepted. Therefore, we can conclude that our algorithm is better than
RLVNE.

5.3 Multi-agent Reinforcement Learning Aided Service
Function Chain

The past decade has witnessed an exponential growth of IoT applications ranging
from daily consumption to industrial production [18]. Billions of IoT devices (e.g.,
smart cameras, smart speakers) around the world are connected to the Internet.
According to Gartner’s prediction, the number of IoT devices will expand to more
than 25 billion by 2025. Yet, at the same, such growth of IoT devices also poses
great challenges to network service providers [51]. To meet different applications’
requirements, diverse network proprietary hardware (i.e., firewall, code conversion,
and network address translation) have to be implemented in the network. This rigid
paradigm greatly reduces the scalability and flexibility of network system.

Recently, another breakthrough technology, network functions virtualization
(NFV), offers significant opportunities to address these challenges [52]. NFV is a
way to replace the dedicated appliance hardware with virtual machines [53]. These
functions can be instantiated in virtual machines (VMs) running on standardized
compute nodes (i.e., X86 servers), allowing them to be updated, patched, or replaced
with ease [54]. Such a way can effectively reduce cost and accelerate service
deployment with no more wholesale replacement of network hardware [55].
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Fig. 5.13 Comparison of
four algorithms. (a) Average
revenue. (b) Average
Rev2Cost ratio. (c) Average
acceptance ratio

(a)

(b)

(c)
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In a NFV-enabled IoT network, service providers can deploy new services in a
fast, reliable, and cost-effective way to draw support from the service function chain
(SFC) [56]. SFC is a mechanism that allows a sequence of heterogeneous VNFs to
be connected to form a service enabled carrier for satisfying the different Quality of
Service (QoS) [57]. It can flexibly meet the special demands of IoT business [58].
However, how to embed multiple SFCs requirements into a shared NFV-enabled
network becomes a pivotal challenge [59].

Recently, an increasing amount of literature has investigated SFC deployment
problem [60]. These methods can be classified into centralized solutions and
distributed solutions. For centralized solutions, a controller is used to collect users’
requirements and network state, calculate the optimal deployment policy, and
then configure SFC in the network. For example, in [61], Ren et al. adopted a
multicriteria-based arrangement scheme to orchestrate SFC in a software-defined
network (SDN)-IoT network systems and designed a genetic algorithm (GA)-based
method to optimize the service performance and resource consumption. However,
the centralized solutions require the global information to calculate the deployment
policy, which may incur privacy and scalability issues [62]. Recently, distributed
solutions also have attracted lots of attention from academia [63]. For example,
in [54], D’Oro et al. leveraged the non-cooperative game theory to implement
a distributed scheme that can deal with scalability and privacy issues. However,
distributed algorithms may suffer serious non-convergence problems. How the
distributed network nodes can learn globally optimal deployment policy becomes
a critical problem to distributed algorithms design.

Inspired by the success of reinforcement learning (RL), we try to use distributed
RL to optimize the SFC deployment problem [64]. RL allows distributed agents to
explore the environment and learn from their experiences without human heuristics
[65, 66]. In this paper, we propose a distributed RL-based SFC deployment
algorithm. To enhance the convergence efficiency, we design a hybrid control
architecture and adopt a centralized learning and distributed execution framework.
The centralized platform can simplify the learning process with global network
information, whilst agents can make decisions based on their local observations
in a distributed manner. Moreover, we propose an actor-critic-based multi-agent
deep deterministic policy gradient (MADDPG) reinforcement learning algorithm
to optimize the SFC deployment problem.

5.3.1 System Model and Problem Formulation

In this section, we first discuss the system model and problem formulation. Then,
we model the SFC deployment problem as a multi-user competition game.
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Fig. 5.14 The general architecture of IoT network

5.3.1.1 System Model

As shown in Fig. 5.14, we present a NFV-enabled IoT network. We model the
network as a connected undirected graph .G = {V,E} along with .n = |V| server
nodes and .m = |E| links, where server node .v ∈ V has a resource capacity (i.e.,
CPU, memory), and link .e ∈ E has a transmission capacity (i.e., bandwidth). We
set the resource capacity of server node v as .C(v) = (CCPU

v , Cmem
v ). For each link

.e ∈ E, .C(e) denotes the transmission resources between server node .vi and .vj ,
where .i, j ∈ n.

As discussed above, SFC is a set of VNFs that are arranged in a given order [67].
In this paper, we use .F = {F1, F2, . . . , Ff } to define the SFC, where .f = |F|,
VNFs are deployed in the ordered sequence. Each SFC consists of a subset VNFs:
.VF = {vF1 , vF2 , . . . , vFf

}, where .vFf
denotes that the server node deploys the f -

th VNF. Note that when the j -th VNF is executed on the server node, the server
node’s resource capacity .c(Fj ) (i.e., computing resource, memory resource) will be
consumed.

5.3.1.2 Multi-user Competition Game Model

As shown in Fig. 5.14, when a new request is arriving, the SFC orchestrator will
dynamically deploy the SFC according to the user’s demands. However, due to the
privacy issue, the global orchestrator is not always available. Multiple users have to
compete with the network resource to satisfy their demands. In this part, we model
the SFC deployment problem among multiple users as a multi-user competition
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game. A network service (NS) composes of multiple VNFs. NS provider determines
how to deploy these VNF instances in the network. We consider a group of users .N
that requires .N = |N| different network services. The business traffic is generated
by different network user .i ∈ N. We assume that the traffic is injected into the
network through server node .vi and leaves from server node .vj . Each network user
i requests a specific set of VNFs, which can be described as an ordered VNF chain
.F = {F1, F2, . . . , Ff }. We use .wi = (w1

i , w
2
i , . . . , w

f
i ) to denote the network

service configuration of user i, where .w
f
i � vj represents that user i’s f -th VNF

will be deployed in the server node .vj .
Then, we formulate the SFC deployment problem from the game-theoretic

perspective. We model it as a non-cooperative game among a set of users .N. When
the user i generates traffic and requests a network service, the SFC deployment
decision .wi will be chosen from a finite action space .Wi which includes all possible
SFC deployment schemes of user i. The game model .� can be defined by the
following triple

.� = (N,G,WN, (Cv, Ce)v∈V,e∈E), (5.64)

where .WN represents the users’ action space. We assume that the user gains .ψ(wi )

by performing action .wi . And we can define the optimization objective as

.max
wi

ψ(wi ),∀wi ∈ Wi ,∀i ∈ N. (5.65)

In the Eq. (5.65), if .∀i ∈ N and .∀wi ∈ Wi , there exists an action .wi
∗ that satisfies

.ψ(wi
∗) � ψ(wi ). (5.66)

Then, we define the strategy set .(w∗
1,w

∗
2, . . . ,w

∗
N) as the Nash Equilibrium. As

shown in Fig. 5.15, multiple users need the network resources to provide services at
the same time. Three users need to deploy the service chain on the service provider’s
infrastructure. For convenience, we denote user 1 deploys VNF .F1 on the server
as “U1-V1.” Each user will compete for resources to get more network resources.
Service providers not only need to provide users with the best deployment strategy
but also make rational use of network resources.

5.3.1.3 Problem Formulation

The total latency consists of two parts: processing delay and transmission delay.
We define the processing delay of VNF as .d(vFf

), which includes calculation delay
and caching delay. We define the transmission latency between server node .vi and
server node .vj as .d(evi ,vj

). Then, the total latency of the SFC in the network can be
formulated as
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Fig. 5.15 An illustrative example of the competition between users for network resources

.d(s, a) = dα ·
∑

d(evi ,vj
) + dβ ·

∑
d(vFf

), (5.67)

where .dα and .dβ(dα, dβ > 0) are the constant reward coefficient. s is the remaining
resource of network and .d(s, a) is the total delay obtained by executing action a.

As discussed above, network resources will be consumed when the SFC is
deployed. Therefore, the capacity resources constraints must be satisfied

.

∑

F
c(Fj ) ≤ C(vi),∀i = 1 . . . n,∀j = 1 . . . f. (5.68)

Similarly, the bandwidth resources constraints can formulate as

.

∑

F
c(e) ≤ C(e),∀e ∈ E. (5.69)

When multiple SFC requirements arrive, how to distribute the load across the
whole network is another problem. In this paper, the availability utilization of
network server node .vi can be defined as

.u(vi) = C(vi) − ∑
F c(Fj )

C(vi)
,∀i = 1 . . . n,∀j = 1 . . . f. (5.70)
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Similarly, we can define the availability utilization of link e as

.u(e) = C(e) − ∑
F c(e)

C(e)
,∀e ∈ E. (5.71)

For balancing network load, we design a general weight objective function:

.min
∑

vi∈V
‖u(vi)‖2 +

∑

e∈E
‖u(e)‖2. (5.72)

We assume .u1 + u2 + . . . + un as a constant. According to Cauchy–Bunyakovsky–
Schwarz Inequality, when .u1 = u2 = . . . = un, the minimum value of .u21 + u22 +
. . . + u2n can be obtained. The smaller the value of Eq. (5.72), the more balanced
the utilization of network resources. Service providers are more inclined to select
server nodes and links with more resources to execute the action. When the SFC is
deployed successfully, the revenue function can be described as

.revenue(s, a) =
f∑

F∈F

CvF

CF

+
∑

L∈L

BeL

BL

, (5.73)

where .CF represents the resources needed to deploy virtual network function F and
.BL represents the transmission resources needed to deploy in link L. We denote
the SFC link deployed in the underlying network link as .eL. Let .CvF

and .BeL

represent the available resources of the mapping server node and link, respectively.
The service provider inclines to select server nodes and links with more resources.
It can be inferred from Eq. (5.73) that the network needs to consider load balancing
issues when performing task processing.

In this paper, we consider the load-balanced problem and the service delay
minimization problem at the same time. Therefore, the objective function of the
SCF placement problem can be formalized as

.max ξ1 · revenue(s, a) − ξ2 · d(s, a), . (5.74)

s.t. CF ≥ 0,∀F ∈ F
BL ≥ 0,∀L ∈ L

u(vi) ≥ 0,∀vi ∈ V
u(e) ≥ 0,∀e ∈ E

, (5.74a)

where .ξ1 and .ξ2 (.ξ1, ξ2 > 0) are tunable parameters. As shown in Table 5.5, we list
the important notations of this paper.
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Table 5.5 List of main notations

Parameter Description

.G The network model as a connected graph with n server nodes and m links

.V The set of server nodes in network graph, .∀v ∈ V

.E The set of links in network graph, .∀e ∈ E
v The server node in network graph

e The link in network graph

.F The service function chain model

.Fi The i-th VNF in SFC model .F

.VF The server node which the VNF deployed

.vFi
The server node which the i-th VNF deployed in

.N The set of network users

.wi Action selected by user i

.ψ(wi ) Revenue from select action .wi

.WN The set of users .N ’s action space

.C(∗) Resources capacity of network

.d(s, a) The total latency of a SFC in the network

.c(∗) Resources capacity required to deploy network functions

.u(∗) The utilization of network resources

5.3.2 Multi-Agent Reinforcement Learning

In this section, we propose a centralized training and distributed executing rein-
forcement learning approach to solve the SFC deployment.

5.3.2.1 The Hybrid Control Framework

As discussed above, centralized optimization algorithms incur too much overhead in
both communication and computation. The controller must continually monitor the
global information of the network and reconfigure the network hardware to deploy
new service functions. In contrast, as a distributed system, distributed algorithms
suffer serious non-convergence problems. Therefore, learning the optimal policy is a
very difficult problem, especially with the localized observation of the environment.
How to learn the global optimal scheduling strategy of distributed schemes becomes
a critical problem.

In this part, we design a hybrid multi-layer control architecture. As shown in
Fig. 5.16, the architecture can be divided into three layers: a super control layer,
a user control layer, and a virtual network function placement layer. The user
control layer is responsible for selecting the deployment action of SFC. And the
virtual network function placement layer will execute the decisions of the multi-
user controller. The super control layer is responsible for gathering and learning
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Fig. 5.16 The multi-layer control architecture

from network environment information and all controller behaviors of the user. And
it is responsible for the user controller to optimize the execution strategy.

Consider a scenario that multiple network users want to establish service
function chains from source to destination. Each user controller will make decisions
according to its local observations. The user controller considers the problem from
the aspect of the user and strives for the local maximum benefit. Multiple users
compete with the network resource to satisfy their demands. The super controller
will get the state information of each user controller. On account of the current
policy of all user controllers, the super controller guides each user controller to
optimize strategy until the game converging.

5.3.2.2 Markov Game Model

The SFC can be formulated as Markov decision process (MDP). When action a is
executed in state s, the expected .Ra

ss′ can be formulated as

.Ra
ss′ = E{rt+1|st = s, at = a, st+1 = s′}. (5.75)
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In Markov game, each user plays in a sequence. The Markov game can be
formulated as: a finite set of users .N that each user .i ∈ N has an action set
.Wi ; a state space S as a the possible environment of all users; a group of actions
.a1, a2, . . . , aN and observations .o1, o2, . . . , oN , where .N = |N|. With the Markov
property, each user i will use a transition probability .P to choose actions, where
.P(s′

i |si,Wi ) is the probability that the next state is in .s′
i given the current state

.si and the current action space .Wi , and obtains rewards r as a function of the
state s and agent’s action a. Each agent expects the maximum overall reward value
.Ri = ∑T

t=0 γ t rt
i where .γ represents a discount factor and T represents the time

horizon. Specifically, in our scenario, we define the three components of a Markov
game model as follows.

State

In the t-th time, we define the state .st ∈ S as the remaining resource (i.e., CPU,
memory, bandwidth) of the network, which can be described as

.st = (CV, CE), (5.76)

where .CV is the set of server node’s remaining resource capacity and .CE is the set
of the link’s remaining transmission resources capacity. The state at time t indicates
the environmental issues that need to be considered when providing SFC tasks to
users.

Action

The agent has to decide how to deploy service function chain tasks. It includes two
steps: assign server nodes resource to VNFs and choose suitable links to connect.
As we mentioned above, there are n server nodes and m links in the network
topology. The available resource of the network state can be obtained easily. Agent
executes an action .a ∈ (A,L) at each step, where .A = 0, 1, 2, . . . , n is the set of
server node indexes. With the mapping of VNF, the action also considers forming a
corresponding link L for the SFC task, where .L ∈ E.

Reward Function

In this paper, the optimization goal needs to consider both the load-balanced and
service delay minimization. Thus, the reward function can be formulated as

.r(a, s) = rα · revenue(s, a) − rβ · d(s, a), (5.77)
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where .rα and .rβ(rα, rβ > 0) are the custom constant, namely the reward coefficient.
We can set the parameters according to the actual network environment. The larger
the value of the function in Eq. (5.77), the smaller the total delay of SFC and the
more balanced the network resource allocation.

5.3.2.3 Multi-agent Reinforcement Learning Approach

Multi-agent reinforcement learning can achieve excellent performance in the multi-
agent system environment [68]. In this paper, we introduce a multi-agent reinforce-
ment learning algorithm named MADDPG to solve our problem [69]. We design a
centralized training and distributed implementation framework. In our framework,
the centralized “critic” collects the data of all actors, while the actors can choose
the actions guided by the critic. With such a learning process, SFC policy can be
updated steadily and smoothly. The framework does not impose restrictions on the
environment, in which each agent can have its reward function mechanism and
determine to collaborate or compete. For each agent, only the current state data
is required to make predictions during running, and the status of the environment is
not persistently consistent.

As shown in Fig. 5.17, the actor executes the action after obtaining the observa-
tion from the environment. Each actor collects data .(s, a, r, s′) and stores it in replay
buffer memory. When the number of buffer pools exceeds the warm-up threshold,

Fig. 5.17 The multi-agent system
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the learning starts. The critic samples data from memory for training. The actor in
each agent can interact with the environment independently, while the critic in the
centralized controller can guide the actor to revise the strategy learning process.
Note that each actor and each critic update their policy parameter separately. This
training process will repeat until the policy converges. The specific algorithm is
shown in Algorithm 5.4.

We denote the strategies as .π = {π1, . . . , πN } of .N = |N| agents, and let .θ =
{θ1, . . . , θN } represent the parameters of all agents. For users in the SFC deployment
process, we define the policy gradient of the cumulative expected reward of the i-th
agent as:

.

∇θi
J (δi) =E�,a∼D[∇θi

δi(ai |oi)×
∇ai

∂δ
i (�, a1, . . . , an)|ai=δi (oi )],

(5.78)

Algorithm 5.4 The multi-agent reinforcement learning for SFC deployment
Input: observation o, reward r

Output: action a

1: Initialize the actor and critic neural network parameters
2: Setting replay buffer memory size and batch size
3: for eachepisode = 1, 2, 3 . . . do
4: Initialize IoT network system network environment
5: for eachstep = 1, 2, 3 . . . do
6: for each agent do
7: Obtain IoT network observation o

8: Choose an optimal action a and deploy VNFs in IoT network
9: Get reward r for performing action a, and obtain the next IoT network

observation o′
10: end for
11: if replaysize ≥ settingsize then
12: Remove the oldest data in replay buffer
13: end if
14: Package (o, a, r, o′) and add it to the replay buffer
15: end for
16: for each agent do
17: Randomly take out a batch of data from replay buffer according to the

preset batch size
18: Update critic neural network parameters with batch size data
19: Update actor neural network parameters under the guidance of critic
20: end for
21: Update each agent’s neural network parameters
22: end for
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where the .� = {o1, o2, . . . , oN } represents the observation sets, .ai , .∀i = 1 . . . N

represents the action of i-th agent, and .θi represents the parameters of the actors.
We set D as the replay buffer memory, where the data sample structure is
.(�, a1, . . . , an, r1, . . . , rn, �

′). Since .∂i of each agent is learned separately, they have
optimization objectives. The update function of .∂i can be described as

.L(θi) = E�,a,r,�′ [(∂δ
i (�, a1, . . . , an) − y)2], (5.79)

where

.y = ri + γ ∂i
δ′
(�′, a′

1, . . . , a
′
n)|a′

j =δ′
j (oj ), (5.80)

where .δ′ = [δ′
1, δ

′
2, . . . , δ

′
n] is the set of target policies with delayed parameter .θ ′

j ,

and .∂i
δ′
represents the target action-value function. The .γ represents the discount

factor.
The core method of this algorithm is that the critic of each agent will get the

information of all agents. The critic is trained in a centralized model, and the actor
is executed in distributing. The critic with global information can guide the training
process of actors. In the running phase, only actors with local observations are
used to perform actions. Centralized training is adopted off-line and decentralized
execution is adopted online. The common point of the combination of online and
off-line is that participants only need to use the observed local information.

In reality, the agent cannot always obtain the strategies of other agents timely.
Therefore, each agent needs to maintain the strategy approximation function of other
agents. We define .δ̂

φ
j
i

to represent the functional approximation of the i-th agent

strategy to the j -th agent. Then, the cost function can be described as

.L(φ
j
i ) = −Eoj ,aj

[logδ̂
φ

j
i

(aj |oj ) + λH(δ̂
φ

j
i

)], (5.81)

where .H(δ̂
φ

j
i

) is the entropy regularizer function. The approximate cost function

is a logarithmic cost with an entropy regularizer. As long as minimizing the log
probability of agent j ’s cost function, other agent strategies will be obtained.

Therefore, with the approximate policies, the value y in Eq. (5.80) can be
replaced as follows

.y = ri + γ ∂̄δ′
i (�′, δ̂′1

φ
j
i

(o1), . . . , δ̂
′n
φ

j
i

(on)), (5.82)

where .γ is cumulative discount factor and .δ̂
′n
φ

j
i

uses neural networks to approximate

.δ̂
φ

j
i

. Before updating .∂δ
i , the algorithm uses the sampled data of replay buffer to

update the parameters of .φ
j
i .
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The unstable environment caused by the policy changes of agents is another
problem in multi-agent reinforcement learning. The problems that arise in com-
petitive tasks are particularly serious, which can lead to over-fitting of the strategy
by the agent. When a competitor’s strategy is updated and changed, it will reduce
the generalization ability of the agent. To improve the generalization ability of the
agent’s strategy, a strategy set mechanism is proposed in the algorithm. The strategy
of the i-th agent is composed of K sub-strategies, and only one of the sub-strategies
.u

(k)
i is used in each training epoch. The maximum reward of the agent’s strategy set

is defined as

.Je(δi) = E
k∼unif (1,K),s∼ρδ,a∼δ

(k)
i

[ ∞∑

t=0

γ t ri,t

]
. (5.83)

We construct a replay buffer memory .Di(k) for sub-strategy k of agent i. In order
to optimize the overall performance, the gradient of each sub-strategy .θ

(k)
i of agent

i is updated to

.∇
θ

(k)
i

J (δi) = 1

K
E

�,a∼D
(k)
i

[�], (5.84)

where

.� = ∇
θ

(k)
i

δ
(k)
i (ai |oi)∇ai

∂δi (�, a1, . . . , an)|ai=δ
(k)
i (oi )

. (5.85)

As shown in Table 5.6, we list the important notations of this section.

Table 5.6 List of main notations

Parameter Description

.ai The action of the i-th agent

.oi The observation of the i-th agent

.� The observation sets of all agents

.ri The reward of the i-th agent

.θi The parameters of the i-th agent

D The replay buffer memory

.∂i The target action-value function of the i-th agent

.γ The discount factor

.δ The set of target policies

.H(∗) The entropy regularizer function

.δ̂
φ

j
i

The functional approximation of the i-th agent strategy to the j -th agent
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Fig. 5.18 The 14-nodes NSFNET topology

5.3.3 Experiments and Simulation Results

In this section, we will simulate the proposed algorithm and analyze its performance.
The CPU uses an Intel (R) Core (TM) i5-8500 CPU @ 3.00GHz. The software
environment is python 3.7.6 and PyTorch 1.4.0.

5.3.3.1 Simulation Setup

We evaluate the proposed algorithm using the 14-nodes NSFNET topology [70],
as shown in Fig. 5.18, which contains 44 fiber links. We assume that the service
resource capacity of each server node ranges in .[30, 50]. The latency between two
server nodes is related to their distance. We assume that each server node can deploy
all types of VNFs. If there is no special statement, we construct 5 different types
of virtual network function, where each SFC with the number of VNFs randomly
ranges from 3 to 5. The number of network users is .N = 4, and all network users
receive the same network service at the same moment. As shown in Table 5.7, we
list the major parameter settings in the simulation.

5.3.3.2 Convergence Evaluation

First, we evaluate the training performance of our algorithm. In the simulations,
we change the users’ number and the number of VNFs contained in each SFC.
Figure 5.19a shows rewards of the proposed SFC deployment algorithm with the
different number of agents, where the numbers are 2 and 4, respectively. And the
number of VNFs contained in each SFC is randomly ranged from 2 to 3 and from
3 to 5. Each episode in our algorithm includes 100 SFC deployment processes.
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Table 5.7 The parameter settings in the simulation

Parameter Value Description

.|V| 14 The number of server nodes

.|E| 44 The number of fiber links

.C(v) .[30, 50] The resource capacity of server nodes

.C(e) .[80, 100] The transmission capacity of links

.|F| .[2, 5] The number of VNFs in one SFC

N .[2, 4] The number of users

batchsize .100 The number of training examples in one forward

.critic − lr .1 ∗ 10−3 How much adjusting the weights of critic network

.actor − lr .1 ∗ 10−4 How much adjusting the weights of actor network

To demonstrate the result more clearly, we use a simple 5-step moving average
of the data. As shown in Fig. 5.19a, when the number of users is large, the network
convergence speed will obviously slow down. For the same number of users, the less
the number of VNFs, the more stable the network output result will be. However,
no matter how the number of users and VNFs changes, the algorithm can always
achieve a better convergence performance.

To evaluate the learning process, we present the loss value of one actor.
Figure 5.19b shows the learning loss of the proposed multi-agent reinforcement
learning SFC deployment algorithm with different batch sizes, in which the batch
size values are 20, 100, and .1 ∗ 103, respectively. As mentioned earlier, to
demonstrate the results clearly, we use a simple 100-step moving average of the
data. As shown in the result, the batch size affects the value of the loss and learning
efficiency with the increase of learning iterations. When the batch size is small, the
convergence speed of the algorithm cannot reach an ideal result. With the increase
of batch size, the convergence effect of the neural network is better and faster.
Although the resource consumption of .batchsize = 1 ∗ 103 is much larger than
that of .batchsize = 100, the training speed is not significantly improved.

Similarly, we compare the effect of learning rate on convergence as shown in
Fig. 5.19c. When the learning rate of actor and critic is set to .1 ∗ 10−4 and .1 ∗ 10−5,
the training situation will not achieve the expected results. However, when they
are set to .1 ∗ 10−2 and .1 ∗ 10−3, respectively, neural networks may cause non-
convergence. In the following experiments, we will set the batch size and learning
rate of the multi-agent reinforcement learning algorithm to the optimal value, which
are the parameters listed in Table 5.7.

5.3.3.3 Performance Evaluation

We take the deep Q-network (DQN) algorithm and deep deterministic policy
gradient (DDPG) algorithm as the benchmark algorithm. DQN uses neural networks
to approximate the target strategy value function. After calculating the target
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Fig. 5.19 Convergence
evaluation. (a) Convergence
of proposed algorithm. (b)
The impact of loss in different
batch size. (c) The impact of
loss in different learning rate
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strategy value function through the neural network, DQN adopts a .ε−greedy policy
to execute action. Although DDPG draws on the main idea of DQN (memory replay
and target network). It uses an actor-critic algorithm based on determining action
strategies. DDPG ensures that parameters can be updated slowly through “soft”
target updates, to achieve the effect of improving learning stability similar to that
of DQN updating parameters regularly. At the same time, we also implement a
distributed algorithm based on DQN (DQN-D) for experimental comparison. There
are two sets of data selected for analysis: users’ average reward and the calculation
time.

Performance Analysis of Reward

We compare the performance of our algorithm with the benchmark methods as the
number of SFCs ranges from 50 to 150. As shown in Fig. 5.20a, the performance of
distributed algorithm DQN-D is the worst among the experimental results. Although
the effect is not as well as the centralized algorithm (DQN algorithm and DDPG
algorithm), the distributed algorithm can improve the response speed and the robust-
ness of the placement system. In our proposed algorithm, a centralized platform
simplifies the learning process with global network information whilst agents can
make decisions based on their local observations in a distributed environment. It
can get the global optimal solution, to get a more efficient deployment scheme in
the SFC deployment.

At the same time, we present the simulation results of average revenue and delay.
According to our previous definition, average revenue can be used to represent the
utilization of network resources. The more the average revenue, the more balanced
the resource utilization of the network. As shown in Fig. 5.20b, compared with
other existing methods, MADDPG can make uniform use of network resources and
achieve better results in reducing delay.

Complexity and Performance Analysis of Runtime

We assume that the execution time complexity of a single actor neural network is
.O(Te). Then the time complexity of the centralized algorithm is .O(N ∗ Te) and
the distributed algorithm is .O(Te), where N represents the number of agents. For
MADDPG, the time complexity of training is .O(E ∗ BTc ∗ N), where .O(BTc)

represents the time complexity of training an actor-critic network in batch size B,
and E represents the epoch size. The training time complexity of DDPG is also
approximately equal to .O(E∗BTc∗N). The training time complexity of centralized
DQN method is .O(E ∗ BTa ∗ N), where .O(BTa) represents the time complexity
of training a single neural network in batch size B. Similarly, the training time
complexity of distributed DQN method is .O(E ∗ BTa).

In the SFC deployment process, we only need to consider the execution process,
rather than the training process. In our algorithm, the neural networks of actor
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Fig. 5.20 Performance
evaluation. (a) Average
service reward. (b) Average
revenue and delay. (c)
Average service runtime
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and critic can run separately. Therefore, in the runtime comparison part, we only
consider the problem of choosing the substrate network for the execution algorithm.
Figure 5.20c plots the runtime of the four algorithms to analyze their performance.
As mentioned above, although the reward value obtained by distributed algorithm
DQN-D cannot achieve outstanding performance, it has the best performance
of response speed. From another perspective, centralized algorithms can better
integrate network resources and improve network resource utilization. Compared
with the centralized algorithm, the response speed of the proposed algorithm has
obvious advantages. Moreover, it can observe the overall situation and achieve a
globally optimal result. Based on the experimental results, our algorithm can achieve
ideal results in the SFC deployment process.

5.4 Summary

In this chapter, we discuss the main challenge of IoT network resource scheduling
and introduced several reinforcement learning algorithms. We first design a network
slicing architecture over the SDN-based long-range wide area network. Then, a
Continuous-Decision virtual network embedding scheme relying on Reinforcement
Learning (CDRL) is proposed. Finally, we propose a hybrid intelligent control archi-
tecture, which adopts the centralized training and distributed execution paradigm.
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Chapter 6
Mobile Edge Computing Enabled
Intelligent IoT

Abstract The proliferation of the number of IoT devices, the ever-increasing
computation intensive applications pose great challenges on resource allocation
and offloading. In this chapter, to address spectrum sharing and edge computation
offloading problems in SDN-based ultra dense networks, we propose a second-
price auction scheme for ensuring the fair bidding for spectrum rent, which enables
the MBS edge cloud and SBS edge cloud to occupy the channel in cooperative
and competitive modes. Then, a novel deep reinforcement learning (DRL)-based
network structure is proposed to jointly optimize task offloading and resource
allocation. Finally, we propose two pervasive scenarios including single edge scene
and multiple edge scenes. In the single edge scenario, a novel deep reinforcement
learning (DRL)-based framework is invoked for collaboratively optimizing the task
scheduling, transmission power, and CPU cycle frequency under metabolic channel
conditions. Meanwhile, we propose a multi-agent aided deep deterministic policy
gradient (MADDPG) algorithm to alleviate interference in multiple edge scenarios.

Keywords Mobile edge computing · Computing offloading · Ultra-dense
networks · Multi-agent aided deep deterministic policy gradient

The proliferation of the number of IoT devices, the ever-increasing computation
intensive applications pose great challenges on resource allocation and offloading.
In this chapter, to address spectrum sharing and edge computation offloading
problems in SDN-based ultra dense networks, we propose a second-price auction
scheme for ensuring the fair bidding for spectrum rent, which enables the MBS edge
cloud and SBS edge cloud to occupy the channel in cooperative and competitive
modes [1]. Then, a novel deep reinforcement learning (DRL)-based network
structure is proposed to jointly optimize task offloading and resource allocation [2].
Finally, we propose two pervasive scenarios including single edge scene and
multiple edge scenes. In the single edge scenario, a novel deep reinforcement
learning (DRL)-based framework is invoked for collaboratively optimizing the task
scheduling, transmission power and CPU cycle frequency under metabolic channel
conditions [3]. Meanwhile, we propose a multi-agent aided deep deterministic
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policy gradient (MADDPG) algorithm to alleviate interference in multiple edge
scenarios.

6.1 Auction Design for Edge Computation Offloading

With the rapid growth of wireless communication demand [4, 5], the transmis-
sion rate and network capacity of traditional networks are facing unprecedented
challenges. In addition, novel increased business scenarios in the next-generation
networks (5G) [6, 7], e.g., vehicular networking, augmented virtual reality, and
industrial Internet of things [8, 9], propose a higher requirement for the delay, energy
efficiency, and other performance. In order to cope with the increasingly severe
challenges above, ultra dense networks (UDNs) [10] empower 5G tremendous
access capability, composed of extensive macro base stations (MBSs) and small-
cell base stations (SBSs). Additionally, edge computing [11] technology promises
the potential to provide available computation service ability for countless devices.
It can effectively shorten the data transmission distance between the user equip-
ment (UEs) and the data center as well as avoid the network congestion. With
the assistance of edge computing, UDNs are capable of providing computation
service for UEs, which is implemented by the MBS edge cloud and SBS edge
cloud. Considering the severe channel interference of computation offloading in
UDNs [12], therefore, cooperative and incentive spectrum management plays a
significant influence in supporting of computation offloading between MBS edge
cloud and SBS edge cloud.

To achieve rapid configuration as well as effective management in ultra dense
networks, software-defined networking (SDN) has been considered as an efficient
network architecture to promise the potential to realize flexible network control
and management. Recently, the concept of SDN has been applied into UDNs,
which is termed as SDN-based ultra dense networks [13]. In this case, the primary
computation and control functions are decoupled from the distributed SBS edge
cloud and MBS edge cloud. Specifically, the control function is integrated at the
centralized SDN controller [14]. The SDN controller [15] is capable of collecting
information from UEs and edge clouds, as well as perceive network state from a
global perspective. There is a technical challenge for MBS edge cloud working in
the unlicensed spectrum that can degrade service quality without appropriate coop-
erate channel interference management. In LTE networks, two main mechanisms
are focusing on this issue: carrier-sensing adaptive transmission (CSAT) scheme and
listen-before-talk (LBT) scheme. However, CSAT cannot deal with the response to
on–off cycling, and LBT is difficult to assign proper backoff time and transmission
length. Therefore, it is an emergency to explore an effective spectrum management
mechanism for the cooperation between MBS edge cloud and SBS edge cloud [16].
As a result, according to the decision instruction of the SDN controller, the channel
is allocated to the MBS edge cloud or SBS edge cloud for providing computation
offloading service for multiple users.
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With the assistance of SDN controller, spectrum management and computation
offloading for the MBS edge cloud and SBS edge cloud can be effectively dealt
with. Besides, we focus on the issue on how to achieve an efficient negotiation
between the MBS edge cloud and the SBS edge cloud with competition mode
and cooperation mode in this network architecture. Mitsis et al. [17] employed
SDN and mobile edge computing technology to manage end-users computing
demands in 5G networks. A non-cooperative game model among the end-users is
formulated and the Nash Equilibrium is verified. However, they did not consider
the scenario of MBS edge cloud and multiple edge clouds. Game theory has been
applied into spectrum sharing recently. Duan et al. [18] determined the prices of
femtocell and macrocell services and modeled it as a Stackelberg game. Duan et
al. [19] provided the analysis of cooperative spectrum sharing between primary
user and secondary user by contract theory. However, both references do not focus
on the models in computing offloading scenario. To avoid the malicious bidding
in the market and guarantee fair and efficient spectrum resource sharing, a second
auction theory [20, 21] is employed to provide an appropriate allocation scheme for
spectrum management in this paper. Specifically, the MBS edge cloud is denoted as
the auctioneer (the buyer), and the SBS edge clouds are set as the channel owners
(the sellers). In this paper, we only consider communication resource in computation
offloading. Moreover, we analyze the SBS edge clouds’ equilibrium strategies under
the MBS edge cloud’s offloading rate.

6.1.1 Architecture of SDN-Based Ultra Dense Networks

In traditional network architecture, control function and forwarding function are
integrated at nearby network nodes. To overcome the high complexity of network
management, researchers at Stanford University proposed the concept of SDN [22–
24]. The idea of SDN separates control function from data forwarding layer, and
the controller is capable of perceiving network topology, computing forward path,
etc. Consequently, SDN greatly simplifies the infrastructure and enables network
operators to manage and control the overall nodes more effectively. Recently, SDN
technology is applied into wireless networks, which is termed as software-defined
wireless networks (SDWN) [25]. SDWN consists of software-defined cellular
network [26], software-defined mobile network [27], SDN-Wi-Fi [28], and SDN-
based ultra dense networks.

In general, SDWN architecture is divided into three planes: application plane,
control plane, and infrastructure plane. Specifically, as shown in Fig. 6.1, in this
paper we focus on introducing the application plane, control plane, infrastructure
plane, and interfaces. Afterwards, we will introduce the architecture of SDN-based
ultra dense networks as follows.
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Fig. 6.1 Architecture of SDN-based Ultra dense networks

Application Plane Service providers are capable of developing various applications
on the application plane, as well as realizing the different requirements of users, e.g.,
network traffic control, load balance, energy control, etc.

Control Plane The function of the control plane includes flow table control, strat-
egy distribution, and the acquisition of network-wide information. After receiving
the requirement from the application plane, the control plane transforms them into
instructions that can be executed by the infrastructure plane, as well as sends
them to the infrastructure plane through the flow table. Control plane connects to
infrastructure plane by southbound interface [29, 30] and connects to application
plane [31].

Infrastructure Plane The infrastructure plane is composed of the MBS, SBS, and
UE. Moreover, MBS and SBS connect with mobile edge computing server, termed
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Table 6.1 Description of notations

Notation Definition

.N = {1, 2, . . . , N} Set of the SBS edge clouds

N Number of the SBS edge clouds

N Number of channels for the SBS edge clouds

.rn(t) Transmission rate for SBS edge cloud n at time t

.f (r) Probability distribution function of transmission rate r

.F(r) Cumulative distribution function of transmission rate r

.σMBS Discounting factor of the MBS edge cloud in
competition mode

.σSBS Discounting factor of SBS edge cloud in competition
mode

.rMBS(t) Transmission rate of the MBS edge cloud

R Maximum data offloading rate of the MBS edge cloud

.Dj Available offloading rate in channel j

.rcompensation(t) Guaranteed offloading rate

.bn(t) Bidding strategy of SBS edge cloud n

J Minimum bidding strategy

.UMBS(b, R, t) The expected utility of the MBS edge cloud

.UMBS
n (b, R, t) The expected utility of SBS edge cloud n

as the MBS edge cloud and the SBS edge cloud, respectively. By contrast, the
SBS edge cloud is closer to UEs and can provide faster computation service via
wireless link. UEs include smart devices (e.g., laptops and cell phones) connected to
different application scenarios in the wireless networks. In addition, communication
model in edge computing is from the resource allocation model in wireless access
networks [32].

6.1.2 System Model

In this SDN-based ultra dense networks scenario, we consider one MBS edge cloud
and a set .N = {1, 2, . . . , N} of SBS edge cloud, which provides computation
offloading service for users. The n-th SBS edge cloud exclusively occupied channel
n, (.n ∈ N). The MBS edge cloud is capable of providing a larger service area
including different SBS edge clouds. In this case, it can work in channel n,
which causes interference to the corresponding channel of the SBS edge cloud.
Furthermore, we consider the auction between the MBS edge cloud and SBS edge
cloud in timeslot .[t1, t2]. Each auction is conducted after the last timeslot relying on
the offloading rate in the last timeslot. As shown in Table 6.1, we list the notations
of this section.
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6.1.2.1 SBS Edge Clouds’ Transmission Rate

In this paper, we consider a full-offloading mechanism in SBS edge clouds.
Moreover, SBS edge cloud n occupies channel n, and the number of channels is
equal to the number of the SBS edge clouds. Specifically, .rn(t) represents the value
of the transmission rate at time t , which is the private information of SBS edge cloud
n. In addition, for the following timeslot, the transmission rate dynamically changes
with time. The other .N − 1 SBS edge clouds and MBS edge cloud only obtain the
probability distribution of .rn. To be specific, .rn is assumed as a continuous random
variable which generate in the range .[rmin, rmax], and .rmin is the minimal value of .rn
and .rmax is the maximal value of .rn. Additionally, it obeys a probability distribution
function .f (r) as well as a cumulative distribution function .F(r). In this case, all .rn
is assumed to follow the same distribution.

6.1.2.2 MBS Edge Cloud’s Cooperative and Competitive Modes

In this system, the MBS edge cloud should provide its computation service by
occupying one of the channel N . Each SBS edge cloud has only one channel for its
computation offloading service, but it cannot always be working which causes the
consumption of channel. Besides, this scheme helps MBS edge cloud and SBS edge
cloud cooperate with the channel and makes the transmission channel be utilized
in an appropriate way. Furthermore, the competitive mode motivates the SBS to
cooperate because each edge cloud will earn more profit in this mode. Specifically,
the computation offloading service is operated in the following modes:

Competition Mode In this mode, the MBS edge cloud will choose a random channel
with an equal probability. As a result, the MBS edge cloud will provide service in
the channel at the case of SBS edge cloud n. Meanwhile, this will cause interference
between the MBS edge cloud and SBS edge cloud n. We assume the original edge
cloud in this channel will suffer more serious interference, which decreases the
service quality of this edge cloud. In this case the transmission rate decreases by
a certain discount. Because the discounting factors are not easy to be acquired in
the real world, we denote .σMBS ∈ (0, 1) as the discounting factor of the MBS
edge cloud and .σSBS ∈ (0, 1) as the discounting factor of the SBS edge cloud,
respectively. In this mode, the computational complexity is O(N), and N is the
maximal number of SBS edge clouds.

Cooperation Mode In this mode, the MBS edge cloud will achieve the agreement
with SBS edge cloud n, the transmission channel n will be occupied by the MBS
edge cloud and SBS edge cloud n. Specifically, there is no interference in channel n

and the transmission rate of the MBS edge cloud is set as .rMBS . As a compensation,
the MBS edge cloud will serve the UEs of the SBS edge cloud in a timeslot with
the guaranteed offloading rate .rcompensation(t) ∈ [0, rMBS]. In addition, the other
.N −1 SBS edge clouds are not interfered by this channel occupied by the MBS edge
cloud. In this mode, the computational complexity is O(1), the MBS edge cloud will
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choose the SBS edge cloud with agreement. In the case of two modes, edge clouds
prefer to choose cooperation mode when the channel is available. Nevertheless,
when the channel is occupied, the competition mode is a reasonable way to assist
edge computing.

6.1.2.3 Second-Price Auction Design

In the real world, different SBS edge clouds belong to different operators, and it is
difficult to coordinate with each other. From the system model, the SDN controller
has the ability to control the spectrum allocated to different SBS edge clouds. This
can make it possible to complete the spectrum sharing in this architecture. The
rules of the second-price auction are basically the same as the traditional bidding.
The only difference is that the price paid by the winner is no longer his bid,
but the second highest bid, so it is also termed as the “sub-highest price bidding
method.” Jehiel and Moldovanu [33] gave a comprehensive research of second-
price forward auction, which characterized bidding strategies for general payoff
functions. Bagwell et al. [34] researched auction bidding strategies in the WTO
system. Nevertheless, both references only consider two bidders and not apply to
the scenario with multiple bidders.

As shown in Fig. 6.2, a second-price auction mechanism is designed, which the
MBS edge cloud is the buyer and the SBS edge clouds are denoted as the sellers.
Each SBS edge cloud owns only one channel and tries to sell it. In addition, the
bidding price is changing with different timeslots, and we assume that in a timeslot
the bidding price does not change. When the SBS edge clouds are interested in the
auction, they send their intentional bids to the controller. Afterwards, the controller
determines the lowest price of the SBS edge cloud with the auction rule and
delivers this information to the MBS edge cloud and the SBS edge clouds. With
the assistance of the controller, two kinds of edge clouds need not communicate
with each other directly. Moreover, we consider this auction in a timeslot and it
can be termed as a differential game problem. In this case, we assume that the
MBS edge cloud cannot occupy more than one channel simultaneously, therefore
the MBS edge cloud is only interested in the winning seller of the SBS edge cloud.
The MBS edge cloud will provide the offloading rate .rcompensation(t) ∈ [0, rMBS]
as the compensation.

The auction operation includes two stages: In the first stage of the auction, the
MBS edge cloud announces its maximum data offloading rate R, which serves the
winning the SBS edge cloud’s users. In addition, in the second stage of the auction,
after obtaining the data offloading rate R, SBS edge cloud n submits a bid .bn(t) ∈
[0, R] ∪ ∅. Meanwhile, .bn(t) ∈ [0, R] represents the data offloading rate that SBS
edge cloud n requests the MBS edge cloud to serve SBS edge cloud n’s users at time
t . In addition, .bn(t) = ∅ indicates that at time t SBS edge cloud n does not provide
sell service.
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Fig. 6.2 Auction model of computation offloading

6.1.2.4 Auction Outcomes

In the following we will discuss the outcomes of auction for different values of b

and R. Then the minimum bid .J is defined as the following equation .J = {j ∈ N :
j = argminn∈N

∫ t2
t1

bn(t) dt} and it has the following three possible outcomes:

(1) .|J| = 1. In this case, SBS edge cloud j is the winner and channel j is
sold to the MBS edge cloud. The MBS edge cloud works in the coopera-
tion mode. Then according to the principle of second-price auction theory,
the transmission rate of the MBS edge cloud served SBS edge cloud j is
.rcompensation = min{R,

∫ t2
t1

b1(t) dt, . . . ,
∫ t2
t1

bj−1(t) dt,
∫ t2
t1

bj+1(t) dt, . . . ,

.
∫ t2
t1

bN(t) dt}. Specifically, allocated transmission rate .rcompensation is larger
than the minimum SBS edge cloud’s bid.

(2) .|J| ≥ 2. In this case, the MBS edge cloud works in the cooperation mode and
it will choose a channel for minimum bid .J with possibility .

Dj

�
|J|
i=1Di

, where .Dj

is the available offloading rate in channel j . In the real scenario, the offloading
rate plays an important role in the chosen possibility. The MBS edge cloud
prefers to choose a channel with a higher service quality. Therefore, we define
the chosen possibility with different values according to their offloading rates.
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The more offloading rate can be provided, the higher the service quality will
be, and the larger possibility the channel will be chosen. To be specific, the
MBS edge cloud serves SBS edge cloud j ’s users with the data offloading rate
.rcompensation = minn∈N

∫ t2
t1

bn(t) dt . Allocated transmission rate .rcompensation

equals the minimum SBS edge cloud’s bid.
(3) .|J| = 0. In this case, there is no SBS edge cloud that is willing to sell the

channel to the MBS edge cloud, the MBS edge cloud chooses the competition
mode and it will occupy a random channel with probability .

1
K

. Specifically, the
chosen channel will be shared by both providers.

Based on the above outcomes of three different cases, the .rcompensation can
be given as

.

rcompensation(b, R, t)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A, if |J| = 1, j = min
n∈N

∫ t2
t1

bn(t)dt,

min

{

R, min
n∈N

∫ t2
t1

bn(t)dt

}

, if |J| ≥ 2,

0, if |J| = 0,

(6.1)

where .A denotes .min{R, min
n∈N\{j}

∫ t2
t1

bn(t)dt}. The utility of the MBS edge

cloud obtained from offloading is defined as

.

UMBS(b, R, t)

=
{

R − rcompensation(b, R, t), if |J| ≥ 1,

σMBSR, if |J| = 0,

(6.2)

where if .|J| ≥ 1, the MBS edge cloud works in the cooperation mode and its
utility is denoted as .R − rcompensation(b, R, t). In addition, if .|J| = 0, the MBS
edge cloud works in the competition mode, and then the utility is influenced by
the interference of channel and it can be denoted as .σMBSR.

Then relying on the analysis above, the expected utility of SBS edge cloud n

can be formulated as

.

USBS
n (b, R, t)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ t2
t1

rn(t)dt, if
∫ t2
t1

bn(t)dt > min
j∈N

∫ t2
t1

bj (t)dt,

B, if
∫ t2
t1

bn(t)dt = min
j∈N

∫ t2
t1

bj (t)dt,

C, if min
j∈N

∫ t2
t1

bj (t)dt = ∅,

(6.3)
where B represents .

Dj

�
|J|
i=1Di

r
compensation

(b, R, t) + (1 − Dj

�
|J|
i=1Di

)
∫ t2
t1

rn(t)dt and

C denotes .
1
N

σSBS
∫ t2
t1

rn(t)dt + (1 − 1
N

)
∫ t2
t1

rn(t)dt . In the case of .bn >
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minj∈N
∫ t2
t1

bj (t) dt , the MBS edge cloud occupies the other channel except
channel n and SBS edge cloud n can provide its users with original transmission
rate .

∫ t2
t1

rn(t) dt . In the case of .bn = minj∈N
∫ t2
t1

bj (t) dt , the MBS edge
cloud occupies channel n in the cooperation mode. Therefore, the SBS edge
cloud’s users can obtain the transmission rate .

Dj

�
|J|
i=1Di

rcompensation(b, R, t)+(1−
Dj

�
|J|
i=1Di

)
∫ t2
t1

rn(t) dt . In the case of .bn = minj∈N
∫ t2
t1

bj (t) dt = ∅, there is no

SBS edge cloud that is willing to sell its channel and the MBS edge cloud will
chose a random channel in competition mode. As a result, the transmission rate
of computation offloading service is .

1
N

σSBS
∫ t2
t1

rn(t) dt + (1 − 1
N

)
∫ t2
t1

rn(t) dt .

6.1.3 SBSs’ Equilibrium Bidding Strategies

6.1.3.1 Definition of the Symmetric Bayesian Nash Equilibrium

Assume the maximum data offloading rate R of the MBS edge cloud in Stage I is
given, and the SBS edge clouds’ equilibrium bidding strategies will be analyzed
and discussed. In the following subsections, we analyze the SBS edge clouds’
equilibrium bidding strategies by taking into account different intervals of R.

The definition of the symmetric Bayesian NASH equilibrium (SBNE) is first
given in the following Definition 6.3.

Definition 6.3 Given data offloading rate of the MBS edge cloud, a bidding strategy
.b∗(rn(t), R, t), .rn(t) ∈ [rmin, rmax], t ∈ [t1, t2] constitutes the SBNE if .sn ∈ [0, R]∪
∅, .∀rn(t) ∈ [rmin, rmax] at time t , it holds that:

.

Er−n

{
USBS

n (b ∗ (r1(t), R, t), . . . , b ∗ (rn−1(t), R, t),

b ∗ (rn(t), R, t), b ∗ (rn+1(t), R, t),. . ., b ∗ (rN(t), R, t)

|rn(t))}

≥ Er−n

{
USBS

n (b ∗ (r1(t), R, t),. . ., b ∗ (rn−1(t), R, t),

sn, b ∗ (rn+1(t), R, t), . . . , b ∗ (rN(t), R, t)|rn(t))} .

(6.4)

Inequality (6.4) shows the SBNE of the SBS edge clouds, and all the SBS edge
clouds adopt the identical bidding strategy .b∗(rn(t), R, t) owing to the symmetric
equilibrium. The left side of (6.4) represents the expected utility of SBS edge cloud
n. Moreover, all the other SBS edge clouds’ types are unknown to SBS edge cloud
n. This inequality implies that SBS edge cloud n is not capable of obtaining a better
utility when changing its strategy from .b∗(rn(t), R, t) to .∀sn ∈ [0, R] ∪ ∅.

In the following, we will analyze the symmetric Bayesian NASH equilibrium for
bidding strategies when offloading rate R in different intervals. The intervals are

constituted of .[0, N−1+σSBS

N
rmin], .(N−1+σSBS

N
rmin, rmin), .[rmin, rmax), .[rmax,+∞).
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First, we will introduce the case in .R ∈ [rmin, rmax), and a detailed proof will be
described. Similar to this case, the proof in other cases will be presented in general.

6.1.3.2 Equilibrium for R ∈ [rmin, rmax)

First of all, we consider the most complex equilibrium analysis for the SBS edge
clouds’ equilibrium bidding strategies in the case of .R ∈ (rmin, rmax]. To be specific,
other cases are capable of being discussed in the same method. The following
Lemma 6.1 is introduced to help analyze the SBS edge clouds’ equilibrium bidding
strategies.

Lemma 6.1 There exists at least one solution .r(t) in the range .(R, rmax] meeting
the following equation:

.�N
n=1C

n
N−1

(∫ t2

t1

∫ r(t)

R

f (r (t)) d (r(t)) dt

)n

×
(∫ t2

t1

∫ ∞

r(t)

f (r(t))d(r(t))dt

)N−1−n
∫ t2
t1

[R − r(t)]dt

n + 1
(6.5)

+
(∫ t2

t1

∫ ∞

r(t)

f (r(t))d(r(t))dt

)N−1(

R− N − 1 + σSBS

N
r(t)

)

= 0.

Specifically, we denote .F(r(t)) as the CDF of random variable .rn(t) at time t .
Furthermore, the solutions .rn(t) in .(R, rmax] are denoted as .r̃1(R, t), r̃2(R, t), . . . ,

r̃K(R, t), where .K = {1, 2, . . . , Kmax} represents the number of solutions and .Kmax
is the maximal number of solutions. To be specific, the proof of Lemma 6.1 is
provided in the following.

Proof In the following we will give the proof that there is at least one solution
.r(t) that satisfies (6.5). First, the function of left hand side of equation is defined as
.Z (r(t)), and then we can obtain that

.Z (r(t))

= �N
n=1C

n
N−1

(∫ t2

t1

[F(r(t))−F(R)]dt

)n

×
(∫ t2

t1

[1−F(r(t))]dt

)N−1−n
∫ t2
t1

[R − r(t)]dt

n + 1
(6.6)

+
(∫ t2

t1

[1 − F(r(t))]dt

)N−1 (∫ t2

t1

[

R − N − 1 + σSBS

N
r(t)

]

dt

)

,
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where function .Z (r(t)) is continuous for .rn(t) in .(R, rmax]. Then we can obtain
that

.

Z (R)

=
(∫ t2

t1

[1 − F(R)]dt

)N−1(∫ t2

t1

[

R− N − 1 + σSBS

N
R

]

dt

)

=
(∫ t2

t1

[1 − F(R)] dt

)N−1 (∫ t2

t1

[

R − 1 − σSBS

N
R

]

dt

)

.

(6.7)

And since .F(rmax) = 1, we can obtain that

.

Z (rmax)

= �N
n=1C

n
N−1

(∫ t2

t1

[F(rmax)−F(R)]dt

)n

×
(∫ t2

t1

[1−F(rmax)]dt

)N−1−n
∫ t2
t1

[R − rmax]dt

n + 1

+
(∫ t2

t1

[1 − F(rmax)]dt

)N−1 (∫ t2

t1

[

R − N − 1 + σSBS

N
rmax

]

dt

)

=
(∫ t2

t1

[1 − F(rmax)]dt

)N−1 ∫ t2

t1

R − rmax

N
dt.

(6.8)

According to the property of cumulative distribution function, we have .F(R) ≤
1. Then we will give the proof of .F(R) is not equal to 1.

Assumed that .F(R) = 1, and since .R ∈ [rmin, rmax), there can be found a .ζ

definitely, which holds .R + ζ ∈ [rmin, rmax]. Moreover, we have .F(R + ζ ) ≤ 1.
Because .F(R) = 1, .F(R + ζ ) only is equal to 1.

In conclusion, .F(R + ζ ) = F(R) = 1. Since .F(r) is a cumulative distribution
function, then .F(R + ζ ) − F(R) = 0 contracts with the property of this function.
Ultimately, we can obtain that .F(R) < 1.

Since .F(R) ≤ 1 and .R ∈ [rmin, rmax), we can conclude that .Z (r) > 0 and
.Z (rmax) < 0. Relying on the intermediate value theorem, there is at least one
solution .r(t) in .(R, rmax] satisfying (6.5). This completes the proof.

Relying on Lemma 6.1, the SBS edge clouds’ equilibrium bidding strategies can
be provided in Theorem 6.1.

Theorem 6.1 Consider that there is a .r̃x(R, t) submitted to .{r̃1(R, t), r̃2(R, t)}, . . . ,
r̃K(R, t), then we can obtain the following bidding strategies .b∗(rn(t), R, t) that
constitute the SBNE for SBS edge cloud n.
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.

b∗(rn(t), R, t)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

any value ∈ [0, rmin], rn(t) = rmin;
rn(t), rn(t) ∈ (rmin, R];
R, rn(t) ∈ (R, r̃x(R, t));
R or ∅, rn(t) = r̃x(R, t);
∅, rn(t) ∈ (r̃x(R, t), rmax].

(6.9)

From (6.9), in the case of .rn(t) = rmin, the optimal bidding strategy for SBS edge
cloud n is to choose any value in the range .[0, rmin]. When .rn(t) ∈ (rmin, R],
.b∗(rn(t), R, t) should be .rn(t). In addition, when .rn(t) ∈ (R, r̃x(R, t)), the best
strategy for SBS edge cloud n is R. When .rn(t) = r̃x(R, t), it may be .R or ∅.
Ultimately, when .rn(t) ∈ (r̃x(R, t), rmax], the optimal bidding strategy for SBS
edge cloud n should be .∅.

In conclusion, when the other SBS edge clouds choose their strategies in (6.9),
the optimal strategy for SBS edge cloud n is to adopt .b∗(rn(t), R, t) in (6.9). To be
specific, the proof of Theorem 6.1 will be given in the following.

Proof In the following we will give the proof that the bidding strategies
.b∗(rn(t), R, t) constitute the SBNE for SBS edge cloud n. For SBS edge cloud
n, suppose that all the other SBS edge clouds choose strategy .b∗(rn(t), R, t), and
then the following proof will give the maximum utility of SBS edge cloud n, which
consists of four cases.
Case I .rn(t) ∈ [rmin, R] Supposed that when time is t , the data offloading rate at
SBS edge cloud n satisfies .rn(t) ∈ [rmin, R], then we can obtain the following two
situations.

(1) .b−n
min ∈ [0, R]. In this case, the MBS edge cloud can always find a SBS edge

cloud to cooperate with offloading data. If .b−n
min < rn(t), then the expectation

utility of SBS edge cloud n is .
∫ t2
t1

rn(t)dt . Moreover, when .b−n
min = rn(t), the

expectation utility of SBS edge cloud n is .ωb−n
min + (1 − ω)

∫ t2
t1

rn(t)dt =
∫ t2
t1

rn(t)dt . Hence, bidding .
∫ t2
t1

rn(t)dt is the optimal strategy of SBS edge
cloud n.

To be specific, when .rn(t) = rmin, we can obtain that .b−n
min > rmin with

possibility one. Therefore, for SBS edge cloud n, bidding any value in .[0, rmin)

has the equivalent utility with bidding .rmin. In other words, bidding any value
in .[0, rmin] is the optimal strategy of SBS edge cloud n.

(2) .b−n
min = ∅. In this case, If SBS edge cloud n bids, its utility will be

.
N−1+σSBS

N

∫ t2
t1

rn(t)dt . Since .
N−1+σSBS

N

∫ t2
t1

rn(t)dt <
∫ t2
t1

rn(t)dt , bidding .rn(t)

is one of the optimal strategy of SBS edge cloud n. In addition, when .rn(t) =
rmin, bidding any value in .[0, rmin] is the optimal strategy of SBS edge cloud n.

As a result, when the other SBS edge clouds choose their strategies in (6.9), the
optimal strategy for SBS edge cloud n is to adopt .b∗(rn(t), R, t) in (6.9). To be
specific, when .rn(t) = rmin, the optimal bidding price for SBS edge cloud n is any
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value in the range .[0, rmin]. In addition, in the case of .rn(t) ∈ (rmin, R], the optimal
bidding price should be the value of .rn(t).
Case II .rn(t) ∈ [R, r̃x(R, t)] We assume that the data offloading rate at SBS edge
cloud n satisfies .rn(t) ∈ [R, r̃x(R, t)]. To be specific, we will analyze this case with
the following two situations.

(1) Comparison between R and .∅. When bid R, the utility of SBS edge cloud n can
be obtained as follows.

.

USBS
n (bn = R,R, t)

=
∫ t2

t1

(1 − (1 − F(R))N−1)rn(t)dt+
∫ t2

t1

(1 − F(r̃x(R, t)))N−1Rdt

+ �N−1
n=1

∫ t2

t1

Cn
N−1(F (r̃x(R, t)) − F(R))n

× (1 − F(r̃x(R, t)))N−1−n R + nrn(t)

n + 1
dt.

(6.10)
When bid .∅, the utility of SBS edge cloud n can be obtained as follows:

.

USBS
n (bn = ∅, R, t)

=
∫ t2

t1

(1 − (1 − F(R))N−1)rn(t)dt+
∫ t2

t1

(1 − F(r̃x(R, t)))N−1

× N − 1 + σSBS

N
rn(t)dt+�N−1

n=1

∫ t2

t1

Cn
N−1(F (r̃x(R, t))

− F(R))n(1 − F(r̃x(R, t)))N−1−nrn(t)dt.

(6.11)

Then we can conclude that

.

USBS
n (bn = R,R, t) − USBS

n (bn = ∅, R, t)

=
∫ t2

t1

(1−F(r̃x(R, t)))N−1
(

R−N − 1 + σSBS

N
rn(t)

)

dt

+ �N−1
n=1

∫ t2

t1

Cn
N−1

(

F(r̃x(R, t))−F(R))n(1−F(r̃x(R, t))

)N−1−n

× R − rn(t)

n + 1
dt.

(6.12)
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It is simple to realize that .USBS
n (bn = R,R, t) − USBS

n (bn = ∅, R, t) is a
decreasing function and it is larger than 0. Hence, choose to bid R can obtain a
higher utility than biding .∅.

(2) Comparison between R and any value belongs to .[0, R). Assume that there is a
value .ξ ∈ [0, R), we will analyze different cases, which are .b−n

min ∈ (ξ, R) and
.b−n

min = R. The concreted description will be presented in the following.

• .b−n
min ∈ (ξ, R). If SBS edge cloud n choose to bid R, the utility is

.
∫ t2
t1

rn(t)dt . Moreover, if SBS edge cloud n choose to bid .temp_a, the utility

is .
∫ t2
t1

b−n
mindt . Since .b−n

min < R ≤ rn(t), the strategy to bid R is the optimal
choice.

• .b−n
min = R. If SBS edge cloud n choose to bid R, the utility is belonged

to .(R, rn(t)). Furthermore, if SBS edge cloud n choose to bid .temp_a, the
utility is belonged to R.

• .b−n
min = ξ . If SBS edge cloud n choose to bid R, the utility is .

∫ t2
t1

rn(t)dt .
Moreover, if SBS edge cloud n choose to bid .temp_a, the utility is
.
∫ t2
t1

b−n
mindt . Since .b−n

min < R ≤ rn(t), the strategy to bid R is the optimal
choice.

Therefore, when the other SBS edge clouds choose their strategies in (6.9),
the optimal strategy for SBS edge cloud n is to adopt .b∗(rn(t), R, t) in (6.9).
Specifically, when .rn(t) ∈ (R, r̃x(R, t)), the optimal bidding price for SBS edge
cloud n should be the value of R. In the following cases, we will introduce the case
when .rn(t) = r̃x(R, t), and the analysis is as same as Case II, the detailed proof
will be neglected.

Case III .rn(t) = r̃x(R, t) Similar like the analysis in Case II, we can obtain
that bidding R has the same utility with bidding .∅. Consequently, when the other
SBS edge clouds choose their strategies in (6.9), the optimal strategy for SBS edge
cloud n is to adopt .b∗(rn(t), R, t) in (6.9). To be specific, when .rn(t) = r̃x(R, t),
the optimal bidding price for SBS edge cloud n may be the value of R or not
participating in this bidding.

Case IV .rn(t) ∈ [r̃x(R, t), rmax] Similar like the analysis in Case II, we will
consider the two situations when bid R and bid .∅. We assume that the data offloading
rate at SBS edge cloud n satisfies .rn(t) ∈ [r̃x(R, t), rmax]. To be specific, we will
analyze this case with the following situation.

Comparison between R and .∅. When bid R, the utility of SBS edge cloud n can
be obtained as follows.
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.

USBS
n (bn = R,R, t)

=
∫ t2

t1

(

1 −
(∫ ∞

r̃x (R,t)

f (rn(t))d(rn(t))

)N−1
)

rn(t)dt

+
∫ t2

t1

(∫ ∞

rmax

f (rn(t))d(rn(t))

)N−1

Rdt + �N−1
n=1

∫ t2

t1

Cn
N−1

×
(∫ rmax

r̃x (R,t)

f (rn(t))d(rn(t))

)n(∫ ∞

rmax

f (rn(t))d(rn(t))

)N−1−n

R + nrn(t)

n + 1
dt

=
∫ t2

t1

(1 − (1 − F(r̃x(R, t)))N−1)rn(t)dt

+
∫ t2

t1

(1 − F(rmax))
N−1Rdt+�N−1

n=1

∫ t2

t1

Cn
N−1(F (rmax)−F(r̃x(R, t)))n

× (1 − F(rmax)
N−1−n R + nrn(t)

n + 1
dt.

(6.13)
When bid .∅, the utility of SBS edge cloud n can be obtained as follows.

.

USBS
n (bn = ∅, R, t)

=
∫ t2

t1

(

1 −
(∫ ∞

r̃x (R,t)

f (rn(t))d(rn(t))

)N−1
)

rn(t)dt

+
∫ t2

t1

(∫ ∞

rmax

f (rn(t))d(rn(t))

)N−1
N − 1 + σSBS

N
rn(t)dt

+ �N−1
n=1

∫ t2

t1

Cn
N−1

(∫ rmax

r̃x (R,t)

f (rn(t))d(rn(t))

)n

×
(∫ ∞

rmax

f (rn(t))d(rn(t))

)N−1−n

rn(t)dt

.

=
∫ t2

t1

(1−(1−F(r̃x(R, t)))N−1)rn(t)dt

+
∫ t2

t1

(1−F(rmax))
N−1 N − 1 + σSBS

N
rn(t)dt + �N−1

n=1

∫ t2

t1

Cn
N−1(F (rmax)

− F(r̃x(R, t)))n(1 − F(rmax))
N−1−nrn(t)dt.

(6.14)
Then we can conclude that
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.

USBS
n (bn = R,R, t) − USBS

n (bn = ∅, R, t)

=
∫ t2

t1

(1 − F(rmax))
N−1

(

R − N − 1 + σSBS

N
rn(t)

)

dt

+ �N−1
n=1

∫ t2

t1

Cn
N−1(F (rmax) − F(r̃x(R, t)))n

× (1 − F(rmax))
N−1−n R − rn(t)

n + 1
dt.

(6.15)

According to (6.15), we can obtain that .USBS
n (bn = R,R, t) < USBS

n (bn =
∅, R, t). Therefore, choose to bid .∅ will obtain a higher utility for SBS edge cloud
n.

Relying on the four cases above, when the other SBS edge clouds choose
their strategies in (6.9), the optimal strategy for SBS edge cloud n is to adopt
.b∗(rn(t), R, t) in (6.9). To conclude, we have provided the concrete proof of
Theorem 6.1.

6.1.3.3 Equilibrium for R ∈ [0, N−1+σSBS

N
rmin]

Second, we analyze that when the offloading rate .R ∈ [0, N−1+σSBS

N
rmin], the

optimal bidding strategy is provided in the following theorem.

Theorem 6.2 In the case of .R ∈ [0, N−1+σSBS

N
rmin], the optimal strategy for SBS

edge cloud n is to adopt .b∗(rn(t), R, t) = ∅. In addition, when .R = N−1+σSBS

N
rmin,

the optimal strategy form is presented as follows.

.

b∗(rn(t), R, t)

=
{

any value ∈ [0, R] or ∅, rn(t) = rmin;
∅, rn(t) ∈ (rmin, rmax].

(6.16)

To conclude, when the other SBS edge clouds choose their strategies in (6.16), the
optimal strategy for SBS edge cloud n is to adopt .b∗(rn(t), R, t) in (6.16). To be
specific, when .rn(t) = rmin, the optimal strategy for SBS edge cloud n is to choose
any value in the range .[0, R] or not participate in this bid. In the case of .rn(t) ∈
(rmin, rmax], it is the optimal strategy not to participate in this bid.

6.1.3.4 Equilibrium for R ∈ (N−1+σSBS

N
rmin, rmin)

Third, we discuss the optimal strategy for SBS edge cloud n when .R ∈
(N−1+σSBS

N
rmin, rmin). Then we introduce Lemma 6.2 for the following analysis.
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Lemma 6.2 There exists at least one solution .rn(t) ∈ (rmin, rmax) satisfying the
following equation.

.

�N−1
n=1

∫ t2

t1

Cn
N−1F

n(r(t))(1−F(r(t)))N−1−n R − r(t)

n + 1

dt+
∫ t2

t1

(1−F(r(t)))N−1
(

R− N − 1 + σSBS

N
r(t)

)

dt

= 0,

(6.17)

where .F(rn(t)) is the cumulative distribution function of random variable .rn(t).
Moreover, the solutions are denoted as .r̃1(R, t), r̃2(R, t), . . . , r̃L(R, t), where .L =
{1, 2, . . . , Lmax} which represents the number of solutions and .Lmax is the maximum
number of solutions.

Proof The function of left hand side of equation is defined as .R(r(t))

.

R(r(t))

� �N−1
n=1

∫ t2

t1

Cn
N−1F

n(r(t))(1 − F(r(t)))N−1−n R − r(t)

n + 1
dt

+
∫ t2

t1

(1 − F(r(t)))N−1
(

R − N − 1 + σSBS

N
r(t)

)

dt,

(6.18)

where function .R(r(t)) is continuous for .rn(t) in .(rmin, rmax). In particular,
.F(rmin) = 0 for .rn(t) ∈ (−∞, rmin], and .F(rmax) = 1 for .rn(t) ∈ [rmax,+∞).
Then we can obtain that

.

R(rmin)

= �N−1
n=1

∫ t2

t1

Cn
N−1F

n(rmin)(1 − F(rmin))
N−1−n R − r(t)

n + 1
dt

+
∫ t2

t1

(1−F(rmin))
N−1
(

R− N − 1 + σSBS

N
rmin

)

dt

×
∫ t2

t1

(

R − N − 1 + σSBS

N
rmin

)

dt.

(6.19)

And since .F(rmax) = 1, we can obtain that
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.

R(rmax)

= �N−1
n=1

∫ t2

t1

Cn
N−1F

n(rmax)(1 − F(rmax))
N−1−n R − r(t)

n + 1
dt

+
∫ t2

t1

(1−F(rmax))
N−1

(

R− N − 1 + σSBS

N
rmax

)

dt

×
∫ t2

t1

R − rmax

N
dt.

(6.20)

Since .
N−1+σSBS

N
rmin < R < rmin < rmax, we can conclude that .R(rmax) > 0 and

.R(rmax) < 0. Based on the intermediate value theorem, there is at least one solution

.r(t) in .(N−1+σSBS

N
rmin, rmin) satisfying (6.17). The proof is completed.

To be specific, the proof of Lemma 6.2 is provided in the above. Based on
Lemma 6.2, we can obtain the following theorem.

In the following we will give an analysis when .R ∈ (N−1+σSBS

N
rmin, rmin), first

an optimal bidding strategy will be presented in Theorem 6.3, then its detailed proof
will be described.

Theorem 6.3 In the case of .R ∈ (N−1+σSBS

N
rmin, rmin), assuming that there is a

.r̃y(R, t) ∈ (R, rmax) subject to .{r̃1(R, t), r̃2(R, t), . . . , r̃L(R, t)}, we can obtain the
following bidding strategies .b∗(rn(t), R, t) constitute the SBNE for SBS edge cloud
n,

.

b∗(rn(t), R, t)

=
⎧
⎨

⎩

R, rn(t) ∈ [rmin, r̃y(R, t)];
R or ∅, rn(t) = r̃y(R, t);
∅, rn(t) ∈ (r̃y(R, t), rmax].

(6.21)

Similar to the analysis of Theorem 6.1, Theorem 6.3 presents that when the other
SBS edge clouds choose their strategies in (6.21), the optimal strategy for SBS edge
cloud n is to adopt .b∗(rn(t), R, t) in (6.21). To be specific, the proof of Theorem 6.3
is provided in the following.

Proof
Case I .rn(t) ∈ [rmin, r̃y(R, t)] We assume that the data offloading rate at SBS

edge cloud n satisfies .rn(t) ∈ [R, r̃x(R, t)]. To be specific, we will analyze this case
with the following situation.

Comparison between R and .∅. When bid R, the utility of SBS edge cloud n can
be obtained as follows.
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.

USBS
n (bn = R,R, t)

=
∫ t2

t1

(

1−
(∫ ∞

rmin

f (rn(t))d(rn(t))

)N−1
)

rn(t)dt

+
∫ t2

t1

(∫ ∞

r̃y (R,t)

f (rn(t))d(rn(t))

)N−1

Rdt

+ �N−1
n=1

∫ t2

t1

Cn
N−1

(∫ r̃y (R,t)

rmin

f (rn(t))d(rn(t))

)n

×
(∫ ∞

r̃y (R,t)

f (rn(t))d(rn(t))

)N−1−n

R + nrn(t)

n + 1
dt

=
∫ t2

t1

(1−(1−F(rmin))
N−1)rn(t)dt+

∫ t2

t1

(1−F(r̃y(R, t)))N−1Rdt

+ �N−1
n=1

∫ t2

t1

Cn
N−1(F (r̃y(R, t))−F(rmin))

n

× (1 − F(r̃y(R, t)))N−1−n R + nrn(t)

n + 1
dt.

(6.21)

When bid .∅, the utility of SBS edge cloud n can be obtained as follows:

.

USBS
n (bn = ∅, R, t)

=
∫ t2

t1

(

1−
(∫ ∞

rmin

f (rn(t))d(rn(t))

)N−1
)

rn(t)dt

+
∫ t2

t1

(∫ ∞

r̃y (R,t)

f (rn(t))d(rn(t))

)N−1
N − 1 + σSBS

N
rn(t)dt

+ �N−1
n=1

∫ t2

t1

Cn
N−1

(∫ r̃y (R,t)

rmin

f (rn(t))d(rn(t))

)n

×
(∫ ∞

r̃y (R,t)

f (rn(t))d(rn(t))

)N−1−n

rn(t)dt
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.

=
∫ t2

t1

(1−(1−F(rmin))
N−1)rn(t)dt+

∫ t2

t1

(1−F(r̃y(R, t)))N−1

× N − 1 + σSBS

N
rn(t)dt+�N−1

n=1

∫ t2

t1

Cn
N−1(F (r̃y(R, t))

− F(rmin))
n(1 − F(r̃y(R, t)))N−1−nrn(t)dt.

(6.21)

Then we can conclude that

.

USBS
n (bn = R,R, t) − USBS

n (bn = ∅, R, t)

=
∫ t2

t1

(1 − F(r̃x(R, t)))N−1
(

R − N − 1 + σSBS

N
rn(t)

)

dt

+�N−1
n=1

∫ t2

t1

Cn
N−1(F (r̃y(R, t))−F(rmin))

n(1−F(r̃y(R, t)))N−1−n

× R − rn(t)

n + 1
dt.

(6.21)
It is simple to realize that .USBS

n (bn = R,R, t)−USBS
n (bn = ∅, R, t) is a decreasing

function and it is larger than 0. Hence, choose to bid R can obtain a higher utility
than biding .∅.

Case II .rn(t) = r̃y(R, t) Similar like the analysis in Case I, we can obtain that
bidding R has the same utility with bidding .∅. Consequently, when the other SBS
edge clouds choose their strategies in (6.21), the optimal strategy for SBS edge
cloud n is to adopt .b∗(rn(t), R, t) in (6.21).
Case III .rn(t) ∈ [r̃y(R, t), rmax] Similar like the analysis in Case I, we will consider
the two situations when bid R and bid .∅. We assume that the data offloading rate at
SBS edge cloud n satisfies .rn(t) ∈ [r̃y(R, t), rmax]. To be specific, we will analyze
this case with the following situation.
Case IV .rn(t) > rmax Similar like the analysis in Case I, we will consider the two
situations when bid R and bid .∅. We assume that the data offloading rate at SBS
edge cloud n satisfies .rn(t) ∈ [r̃y(R, t), rmax]. To be specific, we will analyze this
case with the following situation.

Comparison between R and .∅. When bid R, the utility of SBS edge cloud n can
be obtained as follows:

.

USBS
n (bn = R,R, t)

=
∫ t2

t1

⎛

⎝1 −
(∫ ∞

r̃y (R,t)

f (rn(t))d(rn(t))

)N−1
⎞

⎠ rn(t)dt

+
∫ t2

t1

(∫ ∞

rmax

f (rn(t))d(rn(t))

)N−1

Rdt + �N−1
n=1

∫ t2

t1

Cn
N−1
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.

×
(∫ rmax

r̃y (R,t)

f (rn(t))d(rn(t))

)n(∫ ∞

rmax

f (rn(t))d(rn(t))

)N−1−n

R + nrn(t)

n + 1
dt

=
∫ t2

t1

(1−(1−F(r̃y(R, t)))N−1)rn(t)dt+
∫ t2

t1

(1−F(rmax))
N−1Rdt

+ �N−1
n=1

∫ t2

t1

Cn
N−1(F (rmax)−F(r̃y(R, t)))n

× (1 − F(rmax)
N−1−n R + nrn(t)

n + 1
dt.

(6.22)

When bid .∅, the utility of SBS edge cloud n can be obtained as follows:

.

USBS
n (bn = ∅, R, t)

=
∫ t2

t1

⎛

⎝1 −
(∫ ∞

r̃y (R,t)

f (rn(t))d(rn(t))

)N−1
⎞

⎠ rn(t)dt

+
∫ t2

t1

(∫ ∞

rmax

f (rn(t))d(rn(t))

)N−1
N − 1 + σSBS

N
rn(t)dt

+ �N−1
n=1

∫ t2

t1

Cn
N−1

(∫ rmax

r̃y (R,t)

f (rn(t))d(rn(t))

)n

×
(∫ ∞

rmax

f (rn(t))d(rn(t))

)N−1−n

rn(t)dt

=
∫ t2

t1

(1−(1−F(r̃y(R, t)))N−1)rn(t)dt

+
∫ t2

t1

(1−F(rmax))
N−1 N − 1 + σSBS

N
rn(t)dt + �N−1

n=1

∫ t2

t1

Cn
N−1(F (rmax)

− F(r̃y(R, t)))n(1 − F(rmax))
N−1−nrn(t)dt.

(6.23)
Then we can conclude that

.

USBS
n (bn = R,R, t) − USBS

n (bn = ∅, R, t)

=
∫ t2

t1

(1−F(rmax))
N−1
(

R− N − 1 + σSBS

N
rn(t)

)

dt
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.

+ �N−1
n=1

∫ t2

t1

Cn
N−1(F (rmax) − F(r̃y(R, t)))n

× (1 − F(rmax))
N−1−n R − rn(t)

n + 1
dt.

(6.24)

According to (6.24), we can obtain that .USBS
n (bn = R,R, t) < USBS

n (bn =
∅, R, t). Therefore, choose to bid .∅ will obtain a higher utility for SBS edge cloud
n. This completes the proof.

6.1.3.5 Equilibrium for R ∈ [rmax,+∞)

Ultimately, we analyze the case of offloading rate .R ∈ (rmax,+∞), and the form of
SBNE is presented in Theorem 6.4.

Theorem 6.4 When the offloading rate .R ∈ (rmax,+∞), the optimal bidding
strategy .b∗(rn(t), R, t) for SBS edge cloud n is provided as

.

b∗(rn(t), R, t)

=
⎧
⎨

⎩

any value in [0, rmin], rn(t)=rmin;
rn(t), rn(t)∈[rmin,rmax];
any value in [rmin, R] or ∅, rn(t)=rmax.

(6.25)

As a result, when the other SBS edge clouds choose their strategies in (6.25), the
optimal strategy for SBS edge cloud n is to adopt .b∗(rn(t), R, t) in (6.25). When
.rn(t) = rmin, the optimal price strategy for SBS edge cloud is any value in .[0, rmin].
When .rn(t) ∈ [rmin, rmax], the optimal price strategy is .rn(t). Furthermore, when
.rn(t) = rmax, the optimal price strategy for SBS edge cloud is any value in .rmin, R

or giving up bidding.

6.1.4 MBS Edge Cloud’s Expected Utility Analysis

In this section, we will investigate the optimal expected utility of the MBS edge
cloud based on the above analysis in Sect. 6.1.2. In addition, we assume that there
is a unique solution in (6.5) and (6.17), respectively.

In the following we will prove (6.5) has one solution when .N = 2. The
cumulative distribution function is .F(r(t)) = r(t)−rmin

rmax−rmin
, where .r(t) ∈ [rmin, rmax].

Relying on the expression of (6.5) and the number of the SBS edge cloud is 2, then
the equation can be

.
r(t) − R

rmax − rmin

R − r(t)

2
+ rmax − r

rmax − rmin

(

R−1 − σSBS

2
r(t)

)

= 0. (6.26)



294 6 Mobile Edge Computing Enabled Intelligent IoT

After transformation of equation, we obtain that

.
σSBS

2
r(t)2−

(
1 + σSBS

2

)

rmaxr(t)+rmaxR− R2

2
=0. (6.27)

Then the left side of equation above can be defined as

.

H(r(t)) �σSBS

2
r(t)2−

(
1 + σSBS

2

)

rmaxr(t)+rmaxR

− R2

2
.

(6.28)

Because this function is a quadratic, the derivative function of the equation above
can be shown as

. d(H(r(t)))/d(r(t))=σSBSr(t)−
(

1 + σSBS

2

)

rmax. (6.29)

Let the derivative function above be equal to zero, we can obtain that in this case
the solution of .r0(t) can be

. r0(t) =
(

1 + σSBS

2σSBS

)

rmax. (6.30)

When the solution .r(t) < r0(t), i.e., the derivative function .< 0, the quadratic
function .H(r(t))) is a decreasing function. We will analyze the range of .r(t) as
follows.

It is obvious that when .r(t) ∈ [rmin,
1+σSBS

2σSBS rmax), the quadratic function

.H(r(t))) decreases with .r(t). Since .
1+σSBS

2σSBS > σSBS+σSBS

2σSBS > 1, we can obtain

that .rmin < r(t) < rmax < 1+σSBS

2σSBS rmax. Then it can be concluded that .H(r(t)))

decreases with .r(t) in its range.

Moreover, when .r(t) = R, .H(R)) = 1−σSBS

2 (rmax − R)R > 0, and .r(t) = rmax,
.H(rmax)) = − 1

2 (rmax − R)2 < 0. Based on the above analysis, (6.5) has only one
solution when .N = 2. In addition, when .N > 2, we will give the function curve in
Sect. 6.1.5.1 to verify its uniqueness.

Remarks The uniqueness of solution for (6.17) is proved like (6.5), therefore the
proof is omitted in detail.

For now, we have obtained the uniqueness of solution for (6.5) and (6.17), then in
the following subsections the expected compensation .rcompensation and the expected
utility of the MBS edge cloud .

∫ t2
t1

UMBS(b, R, t)dt in different cases of R can be
formulated.
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6.1.4.1 Definition of MBS Edge Cloud’s Expected Utility

Definition 6.4 First, we define the MBS edge cloud’s expected utility as

.
UMBS(b, R, t)�E{USBS(b∗(r1, R, t),b∗(r2, R, t),. . .,

b∗(rN , R, t)), R},
(6.31)

where b∗(rn, R, t), n ∈ N represents the optimal bidding strategy for each SBS
edge cloud under the offloading rate R. Based on the different intervals of offloading
rate R, the MBS edge cloud’s expected utility has variant forms.

6.1.4.2 MBS Edge Cloud’s Optimal Expected Utility

The MBS edge cloud’s optimal offloading rate should satisfy

.

max
∫ t2

t1

UMBS(b, R, t)dt;

s.t. bmax(R) ≤ rMBS;
t ∈ t1, t2.

(6.32)

Case I .R ∈ [rmin, rmax) Then we compute the probability distribution of .b−k
min. The

cumulative distribution function of .b−k
min is denoted as .H(·) and it can be computed

as

. H(·) = 1 − (1 − F(rn(t)))
N−1, rn(t) ∈ [rmin, rmax]. (6.33)

Therefore, the probability distribution function of .b−k
min can be computed as

.

h(rn(t)) = dH(·)
dr(t)

=(N − 1)f (rn(t))(1 − F(rn(t)))
N−2,

rn(t) ∈ [rmin, rmax].
(6.34)

Then the expected compensation received by SBS edge cloud n. Specifically, SBS
edge cloud n is capable of winning the auction under the following three cases:

(1) .rn(t) ∈ [rmin, R) and .b−k
min ∈ [rn(t), R). In this case, SBS edge cloud n is

capable of receiving .b−k
min from the MBS edge cloud.

(2) .rn(t) ∈ [rmin, R) and .b−k
min = R or ∅. In this case, SBS edge cloud n is capable

of receiving R from the MBS edge cloud.
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(3) .rn(t) ∈ [r̃x(t), R) and .b−k
min = R or ∅. In this case, SBS edge cloud n can

receive the expected compensation from the MBS edge cloud depends on the
number of the SBS edge clouds bidding R.

Relying on the analysis above, the expected compensation that SBS edge cloud
n received is

.

rcompensation =
∫ R

rmin

r(t)g(r(t))F (r(t))dr(t)+RF(R)(1−G(R))

+ (F (r̃x(R))−F(R))�N−1
n=0 Cn

N−1(F (r̃x(t))

− F(R))n(1 − F(r̃x(t)))
N−1−n R

n + 1
.

(6.35)

Furthermore, we can hold that

.

1

N
((1 − F(R))N − (1 − F(r̃x(t)))

N)

= (F (r̃x(R)) − F(R))�N−1
n=0 Cn

N−1(F (r̃x(t)) − F(R))n

× (1 − F(r̃x(t)))
N−1−n R

n + 1
.

(6.36)

Relying on (6.33), (6.34), and (6.36), we can transfer (6.35) to the following
equation:

.

rcompensation = (N − 1)

∫ R

rmin

r(t)f (r(t))F (r(t))(1 − F(r(t)))N−2dr(t)

+ RF(R)(1 − F(R))N−1 + 1

N
R
(
(1 − F(R))N

−(1 − F(r̃x(t)))
N
)

.

(6.37)
The maximal expected utility of the MBS edge cloud can be concluded as the
minimal .rcompensation. Then consider there is N the SBS edge clouds, the total
expected compensation can be summarized as

.

r̃compensation = N(N − 1)

∫ R

rmin

r(t)f (r(t))F (r(t))(1 − F(r(t)))N−2dr(t)

+ NRF(R)(1 − F(R))N−1

+ R
(
(1 − F(R))N − (1 − F(r̃x(t)))

N
)

.

(6.38)
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Considering that the distribution of the SBS edge clouds offloading rate can be
obtained by the MBS edge cloud, moreover, relying on the proof above, no matter
how many numbers of the SBS edge clouds, the solution of (6.5) is only one. In
addition, the utility of the MBS edge cloud is defined as (6.2). Then we can obtain
the expected utility of the MBS edge cloud as

.

E

(∫ t2

t1

UMBS(b, R, t)dt

)

=
∫ t2

t1

(

(F (r̃x(R, t))NσMBSR

+ (1 − F(r̃x(R, t))N )R − r̃compensation

)

dt.

(6.39)

Case II .R ∈ [0, N−1+σSBS

N
rmin] In this case, the SBS edge clouds work with the

MBS edge cloud in the competition mode, and expected utility of the MBS edge
cloud is

. E

(∫ t2

t1

UMBS(b, R, t)dt

)

=
∫ t2

t1

σMBSrMBSdt. (6.40)

Case III .R ∈ (N−1+σSBS

N
rmin, rmin) In this case, the SBS edge clouds choose to bid

R or .∅ with possibility, and expected utility of the MBS edge cloud is formulated as

.

E

(∫ t2

t1

UMBS(b, R, t)dt

)

=
∫ t2

t1

(

(1 − F(r̃y(R)))NσMBSrMBS

+ (1−(1−F(r̃y(R)))N)(rMBS −R)

)

dt.

(6.41)

Case IV .R ∈ (rmax,∞) In this case, the SBS edge clouds choose to bid .[0, R] in
the cooperation mode, and expected utility of the MBS edge cloud is formulated as

.

E

(∫ t2

t1

UMBS(b, R, t)dt

)

=
∫ t2

t1

(

rMBS −N(N−1)

∫ rmax

rmin

r(t)f (r(t))F (r(t))

× (1−F(r(t)))N−2d(r(t))

)

dt.

(6.42)

6.1.4.3 MBS Edge Cloud’s Optimal Offloading Rate

The optimal expected utility of the MBS edge cloud is clarified in the following
theorem, which satisfying the assumption in Sect. 6.1.2.
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Theorem 6.5 The optimal offloading rate of the MBS edge cloud is denoted as .R∗,
which has the following properties.

Case I If .rMBS ≤ N−1+σSBS

N(1−σMBS)
rmin, offloading rate .R∗ can be the value from range

.[0, N−1+σSBS

N
rmin].

Case II If . N−1+σSBS

N(1−σMBS)
rmin < rMBS ≤ rmax, offloading rate .R∗ can be any value from

.(N−1+σSBS

N
rmin, rMBS].

Case III If .rMBS > MAX{rmax,
N−1+σSBS

N(1−σMBS)
rmin}, offloading rate .R∗ can be any

value from .(N−1+σSBS

N
rmin, rmax].

In the case of .rMBS ≤ N−1+σSBS

N(1−σMBS)
rmin, the MBS edge cloud is not capable

of providing enough service to the SBS edge cloud. To be specific, .rMBS ≤
N−1+σSBS

N(1−σMBS)
rmin ⇒ (1 − σMBS)rMBS ≤ N−1+σSBS

N
rmin. Relying on the above

analysis, .
N−1+σSBS

N
rmin should be the lower bound of the computation offloading

rate, which the SBS edge cloud can request from the MBS edge cloud. As a

result, when .rMBS ≤ N−1+σSBS

N(1−σMBS)
rmin, the MBS edge cloud cannot meet the request

from the SBS edge cloud under cooperation mode. Therefore, it chooses .R∗ ∈
[0, N−1+σSBS

N
rmin] in the competition mode.

In the case of .
N−1+σSBS

N(1−σMBS)
rmin < rMBS ≤ rmax, the offloading rate capacity can

hold the request from the SBS edge clouds. Therefore, the MBS edge cloud chooses

.
N−1+σSBS

N
rmin as the lowest bound of .R∗. Moreover, the offloading rate should not

be larger than .R∗, otherwise, it does not satisfy the SBS edge cloud with the largest
bidding value.

In the case of .rMBS > MAX{rmax,
N−1+σSBS

N(1−σMBS)
rmin}, because the maximum

bidding value from the SBS edge cloud is .rmax, the MBS edge cloud always
provides enough service ability to meet the SBS edge cloud’s request. Meanwhile,

the offloading rate chooses .R∗ from the interval of .(N−1+σSBS

N
rmin, rmax].

6.1.5 Experiments and Simulation Results

We will discuss the influence of parameters on the MBS edge cloud optimal
offloading rate, the expected utility of the MBS edge cloud and the SBS edge cloud
in this section. Specifically, we verify the effectiveness of our proposed scheme in
SDN-based ultra dense networks. To be specific, we simulate our proposed scheme
in Matlab 2013. We consider one MBS edge cloud and the number of the SBS edge
clouds N is determined in the concrete experiment. The timeslot .t ∈ [0, 2] and the
transmission rate .rn(t) submit to the normal distribution with .N (rn(t)), where the
mean value is 125 Mbps and the standard deviation is set as 50 Mbps. In addition,
.rmin = 50 and .rmax = 200. The discounting factor of the MBS edge cloud and the
SBS edge cloud will be given in the following subsections.
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6.1.5.1 Uniqueness of r̃x(t)

In this subsection, we present the proof that the uniqueness of .r̃x(t) for (6.5). It
includes two part, the first experimental result gives the numerical curve of (6.5)
at the case of different values of R. The second one presents the numerical curve
of (6.5) for different values of N . Relying on the proof, we can conclude that the
numerical curve decreases gradually and it has only one solution when this function
is equal to zero.

From Fig. 6.3a, we choose .N = 3, σMBS = 0.3, σ SBS = 0.8, .t ∈
[0, 2] and .rn(t) submits to the normal distribution with .N (rn(t)) ∼
[125 Mbps, 2500 Mbps2]. Moreover, the computation offloading service rate of
the MBS edge cloud R is set as {60, 80, 100} Mbps, respectively, and it is plot
with Fig. 6.3a. We can see that, with the changing values of R, there is an unique
solution for (6.5). In other words, there is only one .r̃x(t) for this equation at the
different cases of R. To be specific, the increase of R results in a higher function
value of (6.5), as well as the zero-point value of .rx(t) increases with a larger R.

As shown in Fig. 6.3b, we choose .R = 60, σMBS = 0.3, σ SBS =
0.8, t ∈ [0, 2] and .rn(t) submits to the normal distribution with .N (rn(t)) ∼
[125 Mbps, 2500 Mbps2]. In addition, the number of the SBS edge clouds N is
denoted as {3, 4, 5} respectively, and it is shown with Fig. 6.3b for (6.5) with
different N . In other words, the number of the SBS edge clouds does not have any
effect on the number of .r̃x(t). Specifically, the zero-point values of three curves
are in touching distance. The larger the numerical value of N , the faster the curve
descends.

6.1.5.2 Impact on Offloading Rate R∗

In this subsection, we implement the experiment to verify the impact of different
discounting factors for the SBS edge cloud and the MBS edge cloud. To be specific,
we choose the number of the SBS edge clouds as 3, and the distribution of .rn(t)

is the same as Sect. 6.1.5.1. As shown in Fig. 6.4a, the discounting factor of the
MBS edge cloud is set as 0.3. Moreover, the discounting factor of the SBS edge
cloud is denoted as .{0.1, 0.3, 0.5, 0.7}. For different pairs of discounting factors,
the offloading rate for the MBS edge cloud .R∗ is increasing with the change of
.rMBS .

From Fig. 6.4a, we can see that .R∗ is constant when .rMBS does not exceed

.
N−1+σSBS

N
. Afterwards, when .rMBS is above .

N−1+σSBS

N
, .R∗ increases with .rMBS .

Specifically, the higher the discount factor of the SBS edge cloud .rMBS is, the more
.R∗ the MBS edge cloud is able to provide. It can prove that the difference of .rMBS

has a great impact on .R∗.
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Fig. 6.3 Uniqueness of .r̃x (t). (a) Function value for different R. (b) Function value for different N
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Fig. 6.4 Performance
analysis. (a) Impact on
offloading rate. (b) Utility of
the MBS edge cloud. (c)
Giving up bidding rate of the
SBS edge cloud
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6.1.5.3 Expected Utility of MBS Edge Cloud

In this subsection, we investigate the expected utility in different parameters. In
Fig. 6.4b, we plot the expected utility of the MBS edge cloud against .rMBS in the
case of different discounting factors. First, we can obviously obtain that, at the first

stage, the expected utility of MBS does not change with .rMBS is below .
N−1+σSBS

N
.

Specifically, in the latter stage, with an increase of .rMBS the expected utility of
the MBS edge cloud increases rapidly. This is because that a higher .rMBS enables
the MBS edge cloud to set a higher computation offloading rate, which results in
a larger possibility of cooperation between the SBS edge cloud and the MBS edge
cloud. Moreover, the increase of .σSBS helps deteriorate the expected utility of the
MBS edge cloud increases slightly.

6.1.5.4 Utility Analysis of SBS Edge Cloud

As shown in Fig. 6.4c, the giving up bidding rate of the SBS edge clouds against
.rMBS is presented in the case of different parameters. We set the number of SBS
as 10, the discount factor of the MBS edge cloud is 0.3, and the discount factor
of the MBS edge cloud is chosen from .{0.1, 0.3, 0.5, 0.7}. It is obviously obtained
that, with the increase of .rMBS the giving up bidding rate of total SBS edge clouds
decreases rapidly in the latter stage. In the initial stage, the SBS edge clouds
choose to give up bidding because of the low offloading rate when .rMBS is below

.
N−1+σSBS

N
. A larger .rMBS helps the SBS edge clouds cooperate the bidding between

the SBS edge clouds and the MBS edge cloud in a larger possibility. Furthermore,
the increase of .σSBS helps reduce the giving up bidding rate of total SBS edge
clouds.

6.2 Edge Intelligence-Driven Offloading and Resource
Allocation

Recently, the efforts and initiatives from standard bodies have started to concep-
tualize the sixth generation mobile networks (6G) [35] and 6G may become an
unparalleled transformation to revolutionize the wireless communication systems.
Furthermore, intelligent industrial Internet of things (IIoT) in 6G [36] has received
considerable attention from both academic and industrial field. In the last decade,
the industrial standards and infrastructures have evolved substantially due to the
amalgamation of Internet of things (IoT) [37] paradigm with some industrial units
and equipment. Sometimes, IIoT is also known as the “Internet of really important
stuff, the objects, and machines that powers our life.” There may be massive
devices connected by the IoT at the end of 2020 [38]. Furthermore, the connected
IIoT infrastructures (e.g., actuators, vehicles, and industrial controllers) generate
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a humongous amount of data that require real-time analysis and evaluations with
heterogenous characteristics in terms of size and modes [39]. Specifically, IIoT
connects different kinds of industrial assets in industrial environments to enable
intelligent operations, such as industrial monitoring, automation, and intelligent
control [40]. However, the proliferation of the number of IIoT devices and the ever-
increasing computation-intensive applications including augmented reality (AR),
real-time online gaming, and ultra-high-definition (UHD) pose great challenges
on data processing, architecture rigidity, and resource allocation. To address the
aforementioned challenges, it is important to analyze data. Consequently, joint task
offloading and resource management have attracted the significant focus from IIoT
systems [41, 42].

Generally, mobile cloud computing (MCC) provides a proper paradigm that
wireless devices execute the computation offloading in the cloud server [43, 44].
Thus, some wireless devices choose to offload application tasks [45] to the remote
cloud server to ameliorate computational velocity, spectrum efficiency, and energy
efficiency, which can be utilized widely in the past decade. Nevertheless, due to
remote distance between the cloud server and local wireless devices, the long
propagation delay, limited channel capacity, and task queuing delay make it hard
to process latency-critical and computation-intensive application tasks relying on
centralized methods [46].

To address the complex problems, the concept of edge intelligence [47] is
conceived for offering powerful computational processing and massive data acqui-
sition at the edge networks. Specifically, the edge server is closer to wireless
devices, and hence the offloading scheme for computing tasks can enormously
decrease transmission delay and save backhaul bandwidth between cloud servers
and wireless devices [48]. At the same time, artificial intelligence (AI) is a promising
trend for extracting information from large-scale data and for making efficient
resource scheduling strategies in complex environment. By integrating AI into edge
networks, the radio networks with service and resource awareness can dynamically
adapt to the resource orchestration, which can be viewed as a beneficial remedy for
data processing and resource allocation issues [49] in complex IIoT environment.
To elaborate a little further, multi-access edge computing (MEC) servers can
help alleviate latency, reduce energy consumption, and guarantee the quality of
experience (QoE).

6.2.1 System Model

Figure 6.5 shows the network model that consists of multiple IIoT devices (IIoTD)
and one BS with the MEC server. In this network model, IIoTD can be defined
by .N = {1, 2, . . . N}. Besides, the MEC server and the BS are connected with a
wired connection (e.g., optical fiber), in which transmission delay between them
can be ignored significantly [51]. Each IIoTD has large numbers of application
tasks to be processed locally or offloaded to the MEC server with BS. Without
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Fig. 6.5 The service scenario for IIoT

loss of generality, assuming that there are Z independent tasks, denoted by .Z =
{1, 2, . . . Z}, and the computation of each task could not be split for partial
offloading or partial computing. That is to say, the task can only be computed in
local IIoTD or offloaded to the MEC server but not both. We assume that .ln,z is the
task size including programming codes and general parameters, and .ln,z is the .zth
task of the .nth IIoTD. These parameters are related to features of the task and they
can be estimated through task types. Each IIoTD .n can choose whether to offload its
own computation-intensive task .z to the MEC server or not. We define the offloading
decision vector .A, which can be given by

.A = [a1,1, a1,2, . . . an,z, . . . aN,Z] , (6.43)

where .n ∈ {1, 2, . . . N} and .z ∈ {1, 2, . . . Z} represent the IIoTD and task,
respectively. .an,z represents the offloading decision and it belongs to .{0, 1}. In detail,
.an,z = 1 represents the IIoTD .n chooses to offload the task .z to the MEC server,
and .an,z = 0 means that IIoTD .n decides to carry out the task .z locally. In this way,
we can take advantage of parallel computing of IIoTD and MEC servers, which
results in a decrease of total delay and energy consumption. We consider .Bn,z as
the optimized wireless channel bandwidth of the .zth task of the .nth IIoTD. Due to
the fact that there only exists one BS, so the interval interference between the BS
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could be overlooked[52]. Simultaneously, we consider that the assigned channel of
application tasks from each agent is orthogonal to each other in the IIoT system
model through orthogonal frequency division multiple access (OFDMA). As there
is only one BS coverage area and nature characteristics of OFDM, we ignore the co-
channel frequency and adjacent channel interference. In terms of Shannon’s theory
[53], the achievable uplink transmission rate for each task .z of the .nth IIoTD can be
obtained by

.cn,z = Bn,zlog2

(

1 + P n
tran|hn,z|2

σ 2

)

, (6.44)

where .P n
tran means the transmission power from the IIoTD, and .hn,z represents

the channel gain which follows Rayleigh flat fading under the allocated channel
bandwidth. .σ 2 is noise.

6.2.1.1 Computation Offloading Mode

The MEC server starts to process the task .ln,z after it has fully received the IIoTD’s
task and feeds back information after the entire task .z is computed [50]. Because
the data size of the feedback message is small in general [54], the feedback energy
consumption and delay can be neglected. Subsequently, we formulate transmission
time and processing time. Specifically, for the task .z of the IIoTD .n, the transmission
time caused by the uplink channel can be described as

.T
n,z
tran = an,zln,z

cn,z

. (6.45)

Similarly, the transmission energy consumption for the task .z of the IIoTD .n can be
denoted by

.E
n,z
tran = T

n,z
tranP

n
tran. (6.46)

The computation time at the MEC server via the BS can be represented by

.T n,z
pro = an,zln,zen,z

F total
server

, (6.47)

where .en,z represents the number of required CPU cycles, and .F total
server denotes

the computational power. At the same time, we assume that MEC server is pretty
powerful and can process all received application tasks concurrently. Furthermore,
we model the computational processing energy consumption as the linear function
.ln,z [55], and it can be written as

.En,z
com = βln,z, (6.48)
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where .β can be defined as the task weight factor relative to the computational energy
consumption from the MEC server and the unit of .β is joule per bit. It depends on
the application task size and diverse MEC servers. So the total delay can be denoted
as

.T s
n =

Z∑

z=1

(
T

n,z
tran + T n,z

pro

)
. (6.49)

In addition, the total energy consumption at the computation offloading mode for
each IIoTD .n is formulated as

.Es
n =

Z∑

z=1

(
E

n,z
tran + En,z

com

)
. (6.50)

6.2.1.2 Local Computing Mode

Next, we formulate the case that each IIoTD decides to execute its task locally.
Specifically, the processing energy consumption .bl

n can be represented as

.bl
n = k

(
f l

n

)2
, (6.51)

where .f l
n is the CPU cycle frequency for each IIoTD, and .k is a constant interrelated

to the hardware performance. So the local processing energy consumption for task
.z of each IIoTD .n can be given by

.E
n,z
local = (1 − an,z

)
ln,zb

l
n. (6.52)

At the same time, the local processing time can be defined by

.T
n,z
local = ln,zen,z(1 − an,z)

f l
n

. (6.53)

Thus, given the task offloading choice .an,z, the total local processing delay for each
IIoTD .n can be denoted as

.T l
n =

Z∑

z=1

T
n,z
local . (6.54)

Meanwhile, the total local processing energy consumption can be depicted as

.El
n =

Z∑

z=1

E
n,z
local . (6.55)
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6.2.1.3 Problem Formulation

In this section, we formulate the joint offloading decision and wireless trans-
mission rate allocation for IIoT system with MEC server as a multi-objective
optimization problem. To minimize the total delay and energy consumption, the
total cost function .V (L,A,C) can be defined as the weighted sum of the task
delay and energy consumption, where .L = [l1,1, l1,2, . . . ln,z, . . . lN,Z] and .C =
[c1,1, c1,2,...cn,z, . . . cN,Z]. Hence, the total cost function can be denoted as

.V (L,A,C) =
{

λ

N∑

n=1

(T l
n + T s

n ) +
N∑

n=1

(El
n + Es

n)

}

, (6.56)

where .λ represents the weight on delay relative to total energy consumption. The
unit of .λ is joule per second and we can adjust .λ to attach different importance
to delay and energy consumption for various application tasks. In short, the
optimization objective can be expressed as

. min{L,A,C} V (L,A,C), . (6.57)

s.t. an,z ∈ {0, 1}, . (6.58)

N∑

n=1

Z∑

z=1

cn,z ≤ Ctotal, . (6.59)

cn,z > 0. (6.60)

Then, we minimize the total cost function .V (L,A,C) via choosing the optimal
offloading decision vector .A and allocating uplink wireless transmission rate vector
.C under different application tasks .L. In fact, .L is one state constant vector
in the optimization problem and it is diverse in different time slots for network
environments. Furthermore, we regard it as the input state vector in the optimization
problem. At the same time, decision vector .A and transmission rate vector .C are
considered as two optimized variables. Next, there exist some constraints about
minimizing the total cost function .V (L,A,C). .(16) means offloading decision
belongs to 0 or 1, which represents the task is executed locally or the task is
offloaded to the MEC server. As the total wireless channel bandwidth is limited for
all IIoTD, .(17) means that the sum of the achievable transmission rate allocated
for each task .z must not exceed the maximum .Ctotal . Additionally, wireless
transmission rate .cn,z is closely related to the required channel bandwidth .Bn,z,
so optimizing the transmission rate .cn,z is equivalent to solving the optimal channel
bandwidth .Bn,z. .(18) indicates the achievable transmission rate should be positive
since each IIoTD is supposed to access the BS with MEC server to guarantee the
QoE. In the next section, we show an effective and efficient algorithm based on DRL
to resolve this problem. The detailed parameter settings are described in Table 6.2.
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Table 6.2 Summary of notations

Notation Description

.L Application task vector

.A Offloading decision vector

.C Transmission rate vector

.N The number of IIoTD

.Z The number of independent application tasks for each IIoTD

.ln,z The task size for .zth task of .nth IIoTD

.an,z The offloading decision for .zth task of .nth IIoTD

.Bn,z The optimized wireless channel bandwidth for .zth task of .nth
IIoTD

.P n
tran Transmission power from the IIoTD

.hn,z Channel gain

.σ 2 The variance of AWGN channel

.cn,z Uplink transmission data rate for .zth task of .nth IIoTD

.F total
server MEC server computational capacity

.en,z The number of cycles required to process each task bit

.β The task weight factor relative to computational energy
consumption

.k A constant interrelated to the hardware performance

.f l
n CPU cycle frequency for each IIoTD

.λ The delay weight factor relative to the total energy consumption

.π The DRL agent policy function

.w Neural network parameter

.K A distance parameter related to the activation function

.M The number of action aggregations

.P Incremental constant in optimal action aggregations

6.2.2 System Optimization

In this section, we firstly introduce a novel DRL-based framework to solve our
proposed problems. Then we present the detailed process of how to generate
required offloading policy through the DRL framework and give the 2AGT to
approximate offloading action .an,z. Next, after obtaining the initial offloading
action, we transform our proposed initial problem into a convex objective problem
and calculate the optimal offloading action by parallel computing in terms of
substantial application tasks. Besides, we provide a 3AUS method for setting the
number of action aggregations parameter. At the same time, we introduce a DRL
network parameter update policy to strengthen the network stability and reduce the
over-fitting. The detailed procedures are just shown as follows.
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Fig. 6.6 The proposed DRL network structure

6.2.2.1 Deep Reinforcement Learning Framework

As shown in Fig. 6.6, the DRL agent brings the control strategy via interacting with
the network environment (e.g., the application tasks) without a precise transition
probability and adjusts own behavior depending on the outcomes of actions [56]
in order to maximize the discounted reward functions. So DRL means a new
exemplification through trial-and-error and delayed incentive mechanism to achieve
an optimal behavior policy [57]. While obtaining the application tasks, our DRL
network framework contains offloading decision generation, 2AGT optimization,
and 3AUS parameters settings. At the same time, the network framework can
compute the convex optimization problem in order to select current optimal
action aggregation. Each detailed part of the novel DRL agent network framework
structure can be illustrated as follows.

6.2.2.2 Offloading Policy Generation

(1) Offloading decision: For the proposed MINPP, our purpose is to generate the
offloading action by the DRL agent interacting with the environment (i.e., the
application tasks from IIoTD). Specifically, given DRL agent’s initial policy
function π , we input the application task L to DRL agent, and it can be defined
as

.π : πw(A|L) . (6.61)
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Fig. 6.7 The detailed agent internal structure

The detailed internal network structure of the DRL agent is presented in Fig. 6.7.
In this agent network structure, the network structure between different hidden
layers employs full connection and we can see that the offloading action
depends on the policy function πw(A|L) which is implanted DNN parameter w,
i.e., the weights that connect neural neurons between different network layers.
In addition, the output layers generate the offloading decision A based on the
current policy function πw(A|L). Next, we describe an isotone optimization
method in terms of the generated offloading action.

(2) 2AGT optimization: Suppose that we obtain the application task Ls in sth step.
The offloading decision As can be denoted as

.As = {0 ≤ as
i,j ≤ 1|i ∈ [1, 2, . . . N], j ∈ [1, 2, . . . Z]} . (6.62)

Then we start to introduce an isotone action method. Inspired by the quantitative
technology from signal coding [58], we transform the offloading decision As to
massive action sets for the sake of obtaining optimal action A∗

s . The number of
action aggregations is 1 ≤ M ≤ NZ + 1. As1 can be derived just as follows:

.As1 = {as1
ij } =

{
1, if as

ij ≥ K,

0, if as
ij < K,

(6.63)

where K is equal to a discriminant value for offloading decision, and we set
it as 0.5 in order to quantify the offloading decision equally. Subsequently,
the agent generates other M − 1 offloading aggregations with respect to the
distance parameter K and reshuffle the originally generated actions, which can
be defined by |as

11 − K| ≤ |as
12 − K| . . . ≤ |as

NZ − K|. Then, the remaining
M − 1 offloading aggregations are recalculated according to 2AGT, which can
be denoted as two cases.
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Case 1: When as
ij > as

m−1m−1 or as
ij = as

m−1m−1, am−1m−1 < K , the
quantitative action value asm

ij can be represented as

.asm
ij = 1. (6.64)

Case 2: When as
ij < as

m−1m−1 or as
ij = as

m−1m−1, am−1m−1 ≥ K , the
quantitative action value asm

ij can be represented as

.asm
ij = 0. (6.65)

In terms of above two cases, the total quantitative action aggregations can be
calculated as

.Asm = {asm
ij }, (6.66)

where m = 2, 3, 4 . . . M , and we can see that there are NZ offloading actions
for all application tasks. In addition, we can generate at most NZ + 1 action
aggregations. Next, by solving the convex optimization problem, the optimal
offloading action A∗

sm can be denoted as:

.A∗
sm = arg min V ∗

Asm

(Ls, Asm,C) . (6.67)

In the next section, we discuss how to adjust the action aggregations parameter.
(3) 3AUS parameter setting: Intuitively, by setting more action aggregations M , a

lower total cost function can be calculated followed with higher computational
complexity. Instead, setting a proper M may reduce the potential computational
complexity without losing the system performance. According to the rolling
horizon control (RHC) theory [59], we can update the action aggregations
parameter per δ steps. Specifically, when the step s is the integer times of the
δ, the DRL agent can choose to renew the aggregations parameter. When s=1,
RHC parameters are

.Ms = NZ + 1. (6.68)

When s mod δ=0, the update parameter is

.Ms = min(max(m∗
s−δ+1,m

∗
s−δ+2, . . . m

∗
s−1) + P,NZ + 1) , (6.69)

where m∗
s−δ+1 represents the index of optimal action aggregations. P is a

constant in order to allow the number of aggregations to increase during the
update period and if it does not reach the update steps δ for other steps, it can
be the same as the previous value.

(4) Convex optimization function: According to the 2AGT and 3AUS schemes,
we can transfer the initial problem into convex objective [60], as illustrated
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in Fig. 6.14. After obtaining the value of offloading action aggregations, the
original problem is

. min{L,C} V (L,C), . (6.70)

s.t.

N∑

n=1

Z∑

z=1

cn,z ≤ Ctotal, . (6.71)

cn,z > 0. (6.72)

Evidently, it is a convex optimization problem and we can solve the Karush–
Kuhn–Tucker (KKT) conditions to obtain current optimal cost function.

Proof To demonstrate the optimization problem (6.72) as the convex problem,
we need to prove the V (L, C), constraint (6.73), and (6.74) as convex function,
respectively. Firstly, as L is the time-varying state vector, so the function V (L, C)

is only related to the optimization variable C. Next, combined with (31) and (32), as
N∑

n=1

Z∑

z=1
cn,z − Ctotal and −cn,z are affine functions, it must be the convex function.

Additionally, after obtaining the offloading decision-making, the optimization
objective V (L, C) can be simply reformulated as

.V (L, C) = λ

(
N∑

n=1

Z∑

z=1

an,zln,z

cn,z

)

+
N∑

n=1

Z∑

z=1

an,zln,zP
n
tran

cn,z

. (6.73)

Lemma 6.3 For two convex functions f1(x) and f2(x), the summation of f1(x) and
f2(x) is still convex function.

Proof For any convex function f (x),

.f (λx1 + (1 − λ)x2) ≤ λf (x1) + (1 − λ)f (x2) . (6.74)

Let g (x) = f1(x) + f2(x), where f1(x) and f2(x) are two convex functions.
Hence,

.g (λx1 + (1 − λ)x2) = f1(λx1 + (1 − λ)x2). (6.75)

+ f2(λx1 + (1 − λ)x2). (6.76)

≤ λf1(x1) + (1 − λ)f1(x2) + λf2(x1) + (1 − λ)f2(x2). (6.77)

=λ(f1(x1) + f2(x1)) + (1 − λ)(f1(x2) + f2(x2)). (6.78)

= λg(x1) + (1 − λ)g(x2), (6.79)
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which demonstrates that the summation of f1(x) and f2(x) is still convex function.
As an,z, ln,z and P n

tran are known for V (L, C), V (L, C) can be regarded as
the summation of multiple convex functions for optimization variable cn,z. Hence,
V (L, C) can be proved as a convex function in terms of Lemma 1. Finally, the
formulated optimization problem is convex. Then, we choose an action aggregation
A∗

sm from the optimal total cost function to start to update network parameters. In
the next section, we show how to update the network parameters.

6.2.2.3 Network Parameters Update

After the agent obtains the optimal action aggregation .A∗
sm, the agent can update

the network parameters (i.e., the offloading policy .πw(A|L)). In detail, since the
experience of the DRL agent is interrelated, randomly selecting a batch of training
samples from replay memory can decrease the interrelation among agent experience
and this may help the DRL agent utilize comprehensive experience in order to learn
better. So we adopt the experience replay technology [61] to update the network
parameters by using the stored data pairs .

(
Ls,A

∗
sm

)
. Firstly, we keep an empty

memory structure. Then the structure supplies new data pairs, and once the memory
structure is full, the newly generated data pairs can displace the old. The DRL agent
randomly selects several generated data pairs .

(
Ls,A

∗
sm

)
in .sth step from memory

structure to reduce the over-fitting, which can be characterized by total steps .St . We
define the cross-entropy just as follows:

.O(ws) = − 1

|St |
∑

s

[(A∗
sm)

T log(πws(As |Ls)

+ (1 − A∗
sm)T log(1 − (πws(As |Ls)))] , (6.80)

where .|St | represents the total number of sampling steps, and the superscript
.T means the transpose operator. In our simulations, we update our network
parameters each .ε while collecting enough new data pairs. Meanwhile, the DRL
agent only updates from the most recent data pairs, which are produced by a new
offloading strategy. The detailed algorithm procedure is described in Algorithm 6.1,
where the computational complexity of the proposed algorithm can be derived as
.O
(
SL + SMNZ + S

K

)
.

6.2.3 Experiments and Simulation Results

6.2.3.1 Experimental Settings

In this section, the number of IIoTD can be denoted as .N = 10 and there
are .Z = 5 tasks to be performed. Simultaneously, the channel bandwidth and
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Algorithm 6.1 The proposed DRL algorithm
Input:

Each task Ls ;
Initially the neural network parameter w;

Output:
The agent outputs A∗

sm;
The cost function V (L,A,C);

1: for {1, 2, . . . S} do
2: Obtain the offloading decision As via 2AGT and DRL network structure;
3: Choose appropriate Ms in terms of 3AUS;
4: if s mod δ =0 then
5: Start to choose the new the number of action aggregations from 3AUS;
6: end if
7: Extend action sets As into {As1, As2, . . . Asm};
8: for {1, 2, . . . |Ms |} do
9: Calculate V (Ls,As, C) for all {As1, As2, . . . Asm} ;

10: Select A∗
sm = arg min

{As1,As2,...Asm}
V (Ls,As, C) ;

11: end for
12: Add the action pairs {Ls,A

∗
sm} into buffer pool;

13: if s mod ε =0 then
14: Stochastically selecting K tuples {Ls,A

∗
sz} and update the DRL agent.

15: end if
16: end for

transmission power are 100 Mbps and .0.2 W, respectively. The task size .ln,z obeys
the uniform distribution between .(5 MB, 35 MB) and the CPU cycle frequency fol-
lows the uniform distribution between .(0.6e8 cycle/s, 2.5e8 cycle/s) [62]. Further,
.en,z is uniformly distributed between .(1000 cycle/bit, 3000 cycle/bit) and .F total

server is
.6.5e9 cycle/s. We set .σ 2 = 1 ∗ 10−9. We utilize the PyCharm community edition
as the programming environment for constructing DNN with TensorFlow, and the
number of hidden layers is 3 where DNN uses full connection.

6.2.3.2 Convergent Performance Analysis

In this simulation, we input the application tasks .Ls into the DRL agent in each
step .s, where the sample complexity includes .30,000 training samples and .10,000
test samples. After proper time intervals, the DRL agent is retrained again in order
to improve its convergent performance. Finally, we obtain a quasi-optimal gain rate
and total system cost subject to enumerating actions.

(1) The DRL cost function: As shown in Fig. 6.8a, when the number of training
steps increases, the error function of predicted value and optimal value gradu-
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Fig. 6.8 DRL cost function and gain rate. (a) The loss function in terms of lr .= 0.01. (b) The DRL
gain rate with lr .= 0.1
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ally decreases to the minimum value. In fact, when in approximately .250 steps,
the cost of the DRL agent is close to .0, which validates that our proposed
algorithms have fast convergent speed. At the same time, while receiving
different application tasks, the DRL agent has a stronger generalization ability
and reduces over-fitting, which demonstrates the effectiveness of buffer pool
and stochastically selecting.

(2) Gain Rate: As illustrated in Fig. 6.8b, we can see that the agent will not converge
to optimal solutions despite enough training steps. In other words, once more
than .250 steps, the agent cannot obtain the optimal offloading action and the
gain rate is less than .0.9. It means that the system utility is lower. Further,
we have to choose proper network parameters and achieve trade-off between
performance and computational complexity. Next, we show the system gain
rate with different network parameters settings.

As shown in Fig. 6.9a, we set some different learning rates to illustrate the
relationship between gain rate and training steps. For better comparison, the contrast
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scheme is the optimal solution in terms of extensive search method. Generally, if
the learning rate is higher, the convergent speed of the DRL agent can be faster.
However, the figure shows that when the learning rate is higher, the gain rate cannot
be optimal. If we set a higher learning rate, the DRL agent may obtain a local
optimal policy rather than the global optimal. Accordingly, we must select a proper
learning rate in terms of a specific network environment.

In Fig. 6.9b, we study the effect of different batch sizes on gain rate. In addition,
we can see that a small batch size (e.g., size .= 32) cannot utilize all data pairs in the
memory size, which leads to slow convergent speed. However, if the selected batch
size is large enough (e.g., size .= 256), the agent can frequently use the old data pairs
and may reduce the system performance. Hence, we must choose the proper batch
size according to the environment states.

Figure 6.9c shows the interrelation between gain rate and different replay
experience sizes. At the same time, we set the batch size as 128. We can see
that the gain rate is close to 1 when the number of replay experience size is 512
and 1024. Further, as the number of replay experience size is 1024, its convergent
speed is faster than others. However, the DRL agent cannot converge to optimal
solutions once the replay experience size is 256, since the selected training data pairs
are interrelated and lead to a local optimal solution. In addition, when the replay
experience size is 2048, the convergent speed of the DRL agent is slow as it cannot
fully utilize the collected data pairs to reduce the error loss. Hence, we are supposed
to choose the proper replay experience size in terms of different application tasks.

6.2.3.3 3AUS Parameter Interval

In Fig. 6.9d, it shows the interrelation between gain rate and RHC intervals. If the
update interval is proper, the aggregation parameter .Ms can be renewed frequently,
which means the DRL agent decreases its computational complexity with a small
aggregation parameter. As the number of RHC interval increases, the gain rate is
gradually descendent since the big RHC interval causes the higher computational
complexity for the total cost function, which means that the DRL agent must renew
the number of action sets with a relatively small RHC interval instead of the big.
Hence, we are supposed to choose a proper RHC interval while maintaining system
performance.

6.2.3.4 System Performance

In this section, we compare our proposed DRL-based 2AGT method and 3AUS
strategy with some benchmarks under a variety of system settings. Simulation
results demonstrate the effectiveness of our proposed DRL-based algorithm.

(1) CPU clock speed: As illustrated in Fig. 6.10a, it shows the total system cost
of the IIoT model considering the MEC server’s CPU clock speed. From
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Fig. 6.15c, our proposed method is a quasi-optimal solution compared with
extensive search algorithm. Also, there is a small gap between our proposed
method and extensive search. At the same time, the full local represents that
all application tasks from IIoTD are executed in local devices, while the
full offloading indicates that all tasks are offloaded to the MEC server to
reduce energy consumption and delay. We can see that our proposed method
outperforms the full offloading and local execution. Further, the full local
execution is not able to change with the CPU speed clock. This is because the
local execution cannot depend on the MEC server resources [63], whereas the
full offloading mode decreases the total system cost with the increase of the
CPU clock speed. More importantly, we compare our proposed method with
two conventional DRL-based algorithms, i.e., conventional deep Q network
(C-DQN) and deep deterministic policy gradient (DDPG), which show that
our proposed method can further reduce the total system cost in contrast
with C-DQN and DDPG. Hence, we can utilize the MEC server’s powerful
computational resources to help handle the application tasks in terms of our
proposed method.

(2) Delay weight factor: In Fig. 6.10b, we plot the total system cost in terms of
delay weight factor .λ. The delay weight factor reveals the weight on delay
relative to total energy consumption in terms of different application tasks from
IIoTD. In general, delay weight is more significant than energy consumption
for some current IIoT application tasks [64]. Specifically, with the increase of
delay weight factor, we compare our proposed method with other offloading
strategies including extensive search, full local, full offloading, intelligent C-
DQN and DDPG for the total system cost. Under different delay weight factors,
we can observe that our proposed method outperforms the full offloading and
full local execution schemes in terms of the system cost. Further, our proposed
method has lower total system cost than C-DQN and DDPG, which validates
the progressiveness and intelligence of our proposed method. Finally, it is also
close to extensive search, which means our proposed method can achieve quasi-
optimal total system cost.

(3) Task weight factor: In Fig. 6.11a, we show the interrelationship between the
total system cost and task weight factor .β with different strategies. In detail,
the task weight factor suggests the task size is related to the computational
energy consumption from the MEC sever. Different task weight factors mean
the various application tasks from IIoTD. In general, the larger the task size
is, the larger the task weight factor is. From Fig. 6.11a, we can see that our
proposed method is superior to the full offloading and full local schemes in
terms of the total system cost. Further, our proposed method outperforms C-
DQN and DDPG when task weight factor increases, which demonstrates the
effectiveness and intelligence of our proposed method compared with C-DQN
and DDPG. In addition, when the task weight factor increases, the total system
cost is higher for all schemes. Finally, our proposed DRL-based algorithm
is close to extensive search for total system cost, which represents that our
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proposed strategy can achieve a better sub-optimal solution and have superior
intelligence.

(4) Transmission power: As shown in Fig. 6.11b, we explore the relationship
between different transmission power and total system cost. As DDPG only
explores the optimal offloading decision and transmission rate, it has higher
computational cost. Additionally, C-DQN can better adapt to the network
environments compared with DDPG. However, as we propose 2AGT opti-
mization and 3AUS scheme to help dispose the computation offloading and
resource allocation, the total system cost is lower than C-DQN. Additionally,
our proposed DRL-based network structure is quasi-optimal compared with
extensive search, which further demonstrates the effectiveness and reliability
of our proposed method.

6.3 Multi-Agent Driven Resource Allocation for DEN

Since the fifth generation (5G) wireless communication networks cannot meet all
requirements for future application scenarios [65], both academic and industrial
communities have launched to explore beyond 5G and conceptualize 6G [66]. Com-
pared with foregoing wireless networks, the next-generation networks may undergo
unimaginable transformation for promoting wireless communication evolvement
from connecting things to connecting intelligence, which can support more rigorous
quality of service (QoS) demands, such as extremely high transmission rates
(.>1 Tera bit/s), ultra low latency (.<1 ms), ultra-high reliability (.>99.99999%) [67],
etc. The burgeoning extensive service metrics derive from the explosive ascent
of mobile data and applications from computation-intensive and latency-sensitive
tasks, such as mixed reality (XR) [68], industrial control, intelligent health-care,
and other cases of Intelligent-of-Everything (IoE) [69, 70].

Deep edge networks (DENs) not only provide computation and decision-making
to the edge node but also enable deep integration of wireless communication and
computation resources via real-time adaptive collaboration to achieve the prospect
of universal intelligence [35]. Moreover, the key capability of DENs is native
artificial intelligence (AI), which includes data acquisition, transmission, storage,
processing, analysis [72, 73], etc. Additionally, DENs have the ability to push highly
distributed intelligence to network edge nodes, which can help to reduce costs,
latency, and task risk. Traditional mobile cloud computing [74] structure can process
data and tasks from agents through a centralized approach in the cloud server.
However, it can cause severe delay and network congestion in terms of massive
network traffic and application tasks, which leads to poor quality of experience
(QoE). Fortunately, multi-access edge computing (MEC) in DENs can alleviate
network traffic pressure and reduce task execution latency by deploying edge cloud
server proximal to agents [38, 76].

There have been some existing works about MEC enabling computation offload-
ing and resource scheduling to achieve the network convergence. To illustrate
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further, Zhang et al. [77] theoretically proposed the structure of mobile center cloud
computing to minimize energy consumption in terms of stochastic channels. Zhang
et al. [78] proposed an energy-percept task scheduling method to cooperatively
process the resource allocation. Besides, Mao et al. [79] illustrated a novel MEC
paradigm for the sake of harvested energy and executed an efficient task scheduling
strategy. Hong et al. [80] jointly proposed a QoS-aware task scheduling algorithm
in robot swarms relying on Stackelberg game theory, which investigated the task
scheduling and routing planning for the sake of minimizing the latency while
maximizing the energy efficiency. Furthermore, Liu et al. [81] presented a novel
mobile vehicle-mounted edge mechanism, which aimed to maximize completed
tasks of vehicle-mounted edge with sensitive latency by a gap-adjusted branch and
bound algorithm. Lyu et al. [82] established a disturbed Lyapunov optimization
model to maximize the performance gain for the sake of balancing the throughput
and fairness, which asymptotically optimized the task schedules subject to out-of-
date network background [83]. However, some of the above-mentioned methods
cannot process complex conditions (e.g., variable channel conditions). Secondly,
some of them have high computational complexity for real-time task offloading in
the context of complex networks.

6.3.1 System Model

Figure 6.12 shows that DENs are composed of one macro base station (MBS) and
multiple collaborative wireless access points (AP), where .M can be represented
as .M = {1, 2, . . . . . . , M}. Additionally, we consider .N can be denoted as .N =
{1, 2, . . . . . . , N} in each AP coverage area, where each agent processes one task.
We assume that each AP is overlaid by the intelligent MBS. Besides, we ignore
the transmission delay cost [84]. Furthermore, the agent receives a task .Am,n =
{Lm,n,Wm,n, T

d
m,n}. Here .Lm,n denotes the task size to be computed, including

programming codes and data parameters. .Wm,n denotes the required CPU cycles
and .T d

m,n means the maximum latency, which means that execution latency for each
task should not exceed the maximum predefined value. The three parameters of each
application task can be evaluated by task profiles, so they may be various among
different task types.

Currently, with the rising of parallel computing in the computer networks,
executing the task in the local agent or the MEC server has attracted huge attention
[85–87]. In this paper, assuming that each computation-intensive task is processed
by full offloading or local execution. Additionally, we denote that .bm,n ∈ {0, 1} is
the task scheduling, where .bm,n = 1 represents the task can be performed at edge
cloud, while .bm,n = 0 means that the task is executed locally on the agent.
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Fig. 6.12 The novel service scenario for DENs

6.3.1.1 Single Edge Network for DENs

(1) Local Execution Mode: We denote that the single edge network is the special
scenario of DENs and the number of edge network is M = 1, i.e., there is
only one edge network area overlaid by one intelligent MBS. Moreover, we
formulate f l

n as the computation capability of each agent. The local computation
delay can be represented as

.t ln = Wn

f l
n

. (6.81)

Similarly, we can calculate the local execution energy consumption

.el
n =

Wn∑

wn=1

ε
(
f l

n

)2
, (6.82)

where ε is the efficient switch electric capacity coefficient, which relies on the
chip architecture for each agent [88]. For the local execution, we can configure
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the CPU clock speed utilizing the scalable frequency technology [89] for the
sake of reducing the total cost. Furthermore, we assume that the CPU cycle
frequency remains unchanged during processing one task.

(2) Computing Offloading Mode: For the single edge network, when the agent
chooses to offload the task to edge cloud through the AP, we ignore the
transmission cost and delay between AP and edge cloud [90]. Besides, we
ignore the channel assignment for each agent for executing the task. Hence,
the uplink transmission rate can be written by:

.cn = w log

(

1 + pn|hn|2
σ 2

)

, (6.83)

where pn and hn represent the transmission power for each agent and channel
gain between AP and agent, respectively. σ 2 is the noise power. Also, we
assume that the total system bandwidth is B and the number of channel is O

in each edge network. So the allocated channel bandwidth is w = B/O. For
the sake of simplicity, we consider there are massive channels and the channel
allocation can be ignored (i.e., O � N ). Next, the transmission delay from
each agent to the edge cloud can be denoted as

.te1
n = Ln

cn

. (6.84)

Similarly, the execution latency on the edge cloud can be represented as

.te2
n = Wn

Ftotal

, (6.85)

where Ftotal is running speed of the edge cloud, which processes the computa-
tional tasks by parallel computing. Hence, the total latency in the computation
offloading mode can be represented as

.t
edge
n = te1

n + te2
n . (6.86)

Additionally, the transmission energy consumption from the agent can be
calculated as

.e
edge
n = pnt

e1
n . (6.87)

In this case, we ignore the task return delay from the edge cloud due to the fact
that the task size is very small after being processed via the edge cloud [54].

(3) Optimization Problem Formulation: As illustrated above, we consider the total
overhead including latency and energy consumption for the single edge network
and the optimization problem can be formulated as follows:
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.

P 1 : min
p,b,f

{
N∑

n=1

[λt
nt

l
n + λe

ne
l
n](1 − bn)

}

+
{

N∑

n=1

[λt
nt

edge
n + λe

ne
edge
n ](bn)

}

s.t. C1: bn ∈ {0, 1},
C2: 0 < f l

n ≤ f max
n ,

C3: 0 < pn ≤ pmax
n ,

C4: (1 − bn)t
l
n + bnt

edge
n ≤ T d

n

C5: (1 − bn)e
l
n + bne

edge
n ≤ Emax

n ,

(6.88)

where λt
n represents the delay weight factor and λe

n means the energy weight
factor. It can be defined by various agents in terms of different application task
demands [92]. More specifically, the constraint C1 represents the offloading
decision with executing the task. C2 means the local CPU cycle frequency
cannot exceed the maximum value of the agent. C3 means the transmission
power of each agent is limited. C4 guarantees the task completion delay
should be under the maximum tolerant delay. C5 ensures that the total energy
consumption executing the task cannot exceed the maximum battery capacity
of each agent. Furthermore, hn is the time-varying channel gain and it can be
generated by interacting with network environments.

6.3.1.2 Multiple Edge Networks for DENs

Different from the single edge network, the multiple edge scenes contain many edge
network areas overlaid by one MBS with edge cloud. Furthermore, we consider the
interference management for each agent.

(1) Local Processing Mode: The delay can be formulated as:

.t lm,n = Wm,n

f l
m,n

. (6.89)

Similarly, the local processing energy consumption is

.el
m,n =

Wm,n∑

wm,n=1

ε
(
f l

m,n

)2
. (6.90)

(2) Computing Offloading Mode: In this case, each agent employs the orthogonal
frequency division multiple access (OFDMA). Hence, the uplink transmission
rate is:
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.cm,n,o = w log

(

1 + pm,n,o|hm,n,o|2
σ 2 + Dm,n,o

)

, (6.91)

where .pm,n,o and .hm,n,o denote different power and channel gain, respectively.
.Dm,n,o defines the same frequency interference suffering from other proximate
areas [90] and the disturbance is

.Dm,n,o =
M∑

k=1,k =m

N∑

n=1

αk,n,opk,n,o|hk,n,o|2, (6.92)

where .αk,n,o ∈ {0, 1} means each channel .o can be allocated to .n for .kth edge
network in order to offload the task to the access point, and .αk,n,o = 1 represents
.o is assigned to .n, if not, .αk,n,o = 0. At the same time, there is no interference
in the same area for different agents because they access the channel through
OFDMA. Additionally, .pk,n,o and .hk,n,o are allocated power and channel state
in terms of neighboring networks. Also, the information transmission rate can
be expressed as

.cm,n =
O∑

o=1

αm,n,ocm,n,o. (6.93)

Hence, the delay in the offloading mode is

.tem1
m,n = Lm,n

cm,n

. (6.94)

Similarly, the execution delay in this case is

.tem2
m,n = Wm,n

Ftotal

. (6.95)

Hence, when the task is processed, the total task delay can be written by

.tEDGE
m,n = tem1

m,n + tem2
m,n . (6.96)

Furthermore, the transmission power is defined as

.pm,n =
O∑

o=1

αm,n,opm,n,o. (6.97)

Moreover, the consumed energy in the offloading mode is

.eEDGE
m,n = pm,nt

em1
m,n . (6.98)
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(3) Optimization Problem Formulation: As mentioned above, we jointly consider
the task delay and energy consumption for all agents in the multiple edge
networks environment. Additionally, with offloading the task to the access
point, we consider the interference management from other edge networks and
channel allocation for each agent, and the optimization problem in multiple
edge networks is

.

P 2 : min
p,b,f,α

{
M∑

m=1

N∑

n=1

[
λt

m,nt
l
m,n + λe

m,ne
l
m,n

]
(1 − bm,n)

}

+
{

M∑

m=1

N∑

n=1

[
λt

m,nt
EDGE
m,n + λe

m,ne
EDGE
m,n

]
bm,n

}

s.t. C1: bm,n ∈ {0, 1},
C2: 0 < f l

m,n ≤ f max
m,n ,

C3: 0 < pm,n ≤ pmax
m,n ,

C4: (1 − bm,n)t
l
m,n + bm,nt

EDGE
m,n ≤ T d

m,n ,

C5: (1 − bm,n)e
l
m,n + bm,ne

EDGE
m,n ≤ Emax

m,n ,

C6:
O∑

o=1

αm,n,o ≤ 1,

C7: Dm,n,o ≤ Dmax.

(6.99)

Different from the single edge scenario, C6 indicates n is allocated to one
channel in total. C7 indicates that n has interference from other areas and
the value cannot exceed the maximum predetermined threshold .Dmax. Other
constraints are similar to the single edge network.

6.3.2 Algorithm Design in Single Edge Network

In this section, we firstly formulate a novel DRL-based algorithm framework in
terms of extremum methods to tackle our proposed single edge network problem.
Generally, the proposed DRL-based framework contains three parts, including
offloading decision, CPU cycle allocation, and transmission power assignment.
Furthermore, the complete network structure can be found in Fig. 6.13. Specific
solutions are explained as follows.
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Fig. 6.13 The novel DRL network structure

6.3.2.1 Offloading Decision Generation

As the channel gain is variable in different time slots, we regard the channel gain
as the state vector in the DRL agent and formulate the DRL agent as multiple DNN
structures. After the channel gain is transferred into the DRL agent, numerous DNNs
can generate different offloading decisions according to the channel gain and the
process is illustrated as follows.

.h → bz, (6.100)

where .bz = {b1, b2, . . . bZ} denotes the offloading decision for each agent and .z =
1, 2, . . . Z. At the same time, we set the number of DNN as Z and each DNN can
generate the whole offloading decisions for all agents.

6.3.2.2 Optimal Local Execution Overhead

After obtaining the offloading decisions, the original single edge network problem
can be transformed into two subproblems: one is local overhead, and the other is
edge cloud execution overhead. Consequently, the local overhead can be shown as
follows.

.min
f

[λt
nt

l
n + λe

ne
l
n]. (6.101)

s.t. 0 < f l
n ≤ f max

n , . (6.102)

t ln ≤ T d
n , . (6.103)

el
n ≤ Emax

n . (6.104)



6.3 Multi-Agent Driven Resource Allocation for DEN 329

We assume that .F1(f
l
n) = λl

nt
l
n + λe

ne
l
n = λl

n
Wn

f l
n

+ λe
nε(f

l
n)

2
Wn, where the local

execution overhead for each agent is only related to local CPU cycle frequency.
Additionally, the extremum point can be denoted as follows

.f l∗
n = 3

√
λt

n

2λe
nε

. (6.105)

At the same time, the function .F1(f
l
n) monotonously increases when .f l

n > f l∗
n ;

otherwise, the function can decrease monotonously with the increase of .f l
n. Thus,

the value .f l∗
n is the extremum point. Next, we start to observe the constrains from

.(22) to .(24). The constraint .(23) can be transformed into

. f l
n ≥ Wn

T d
n

. (6.106)

Likewise, the constraint .(24) can be denoted as

.f l
n ≤

√
Emax

n

εWn

. (6.107)

Combining (22), (26) with (27), the constrains for the local overhead problem can
be transferred as

.f
′ = max

{

0,
Wn

T d
n

}

.. (6.108)

f
′′ = min

{√
Emax

n

εWn

, f max
n

}

. (6.109)

Consequently, according to the obtained extremum and CPU cycle range, the
optimal local execution overhead about energy consumption and latency should be
calculated as

.F ∗
1 (f l

n) =
⎧
⎨

⎩

F ∗
1 (f

′
), if f l∗

n ≤ f
′
,

F ∗
1 (f l∗

n ), if f
′
< f l∗

n ≤ f
′′
,

F ∗
1 (f

′′
), if f l∗

n > f
′′
.

(6.110)

6.3.2.3 Optimal Edge Cloud Execution Overhead

Once the agent decides to offload the task to the edge cloud, the execution overhead
in the remote edge cloud can be denoted as
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. min
p

[λt
nt

edge
n + λe

ne
edge
n ]. (6.111)

s.t. 0 < pn ≤ pmax
n , . (6.112)

t
edge
n ≤ T d

n , . (6.113)

e
edge
n ≤ Emax

n . (6.114)

Similar to the local execution overhead, we define the function .F2(pn) = λt
nt

edge
n +

λe
ne

edge
n , where the remote execution overhead can be calculated as follows

.F2(pn) = Ln(λ
t
n + λe

npn)

wlog2(1 + pn|hn|2
σ 2 )

+ λt
nWn

Ftotal

. (6.115)

We can observe that the function is only related to the transmission power .pn, and
we define

.f2(pn) = Ln(λ
t
n + λe

npn)

wlog2(1 + pn|hn|2
σ 2 )

. (6.116)

Proposition 1: The function .f2(pn) is unimodal [93].
As the function .f2(pn) is unimodal, there is only one extremum. Furthermore,

the constraint .(33) can be represented as

.pn ≥
⎛

⎜
⎝2

Ln

w(T d
n − Wn

Ftotal
)

− 1

⎞

⎟
⎠

σ 2

|hn|2 = p1. (6.117)

Next, the constraint .(34) can be simplified as

.
pn

log2(1 + pn|hn|2
σ 2 )

≤ Emax
n w

Ln

. (6.118)

Denoting that the left part of constraint .(38) is subject to proposition 1, the feasible
solution for constraint .(38) is .pn ∈ [pl, ph], where .pl and .ph are the lower bound
and upper bound for the constraint .(38). Similarly, combining (32), (37) with (38),
the feasible region for function .f2(pn) can be transformed into

.p
′ = max{p1, pl}, . (6.119)

p
′′ = min{pmax

n , ph}. (6.120)

Next, the minimum remote execution overhead for the agent can be represented as
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.F ∗
2 (pn) =

⎧
⎪⎪⎨

⎪⎪⎩

f2(p
′
)+λt

nWn

Ftotal
, if p∗

n ≤ p
′
,

f2(p
∗
n) + λt

nWn

Ftotal
, if p

′
< p∗

n ≤ p
′′
,

f2(p
′′
) + λt

nWn

Ftotal
, if p∗

n ≥ p
′′
,

(6.121)

where .p∗
n is the extremum point for the function .f2(pn) when the derivative is equal

to zero.

6.3.2.4 Training Methods

Next, in terms of the obtained offloading decision b, CPU cycle frequency f , and
transmission power p, the agent can compute the total overhead. As there are Z

DNNs totally, each DNN can compute the overall overhead for all agents. The
optimal overhead for each DNN can be calculated as

.F ∗(h, b, f, p) =
N∑

n=1

F ∗
1 (f l

n) + F ∗
2 (pn). (6.122)

Then, the agent can compare the obtained total overhead for each DNN, and it
can select the current optimal offloading decision .b∗ in terms of different DNNs
.{1, 2, . . . Z}. Next, the agent can store the state–action pairs into experience replay
memory and retrain the DNN in order to update the network parameters after
certain steps. Hence, the proposed DRL-based algorithm framework for offloading
decision, transmission power, and CPU cycle frequency assignment is illustrated in
Algorithm 6.2. The computational complexity of Algorithm 3.1 is in the order of
.O(T ∗ D2 ∗ Z3), where D represents the dataset size.

6.3.3 Algorithm Design in Multiple Edge Networks

In the multiple edge scenes, we jointly intend to optimize the task scheduling,
channel assignment, and resource allocation in terms of volatile channel gain.
However, the problem P2 is a non-convex and NP-hard problem. To efficiently
solve the problem, we firstly transform the problem P2 into P2.1 by optimizing
the local CPU cycle frequency, and then utilize the proposed MADDPG for the sake
of optimizing the task scheduling, channel allocation, and transmission power.

6.3.3.1 DRL Background Knowledge

In term of the conventional reinforcement learning, we consider that there are state
space .S = {s1, s2, . . . sT } and action space .A = {a1, a2, . . . aT }. The agent can
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Algorithm 6.2 Optimal cost of single edge network
Input:

Task: Am,n = {Lm,n,Wm,n, T
d
m,n};

Channel Gain: h (channel state of each agent).
Output:

task scheduling b∗
z ; local CPU cycle frequency f ; transmission power p;

optimal overhead for all agents.
1: while 1, 2, . . . , T do
2: Obtain the task scheduling bz on the basis of the scheme (20), where {z =

1, 2, . . . Z};
3: if bz == 0:

Compute the optimal local execution overhead according to (30) and obtain
the total overhead for each agent;

4: else
Compute the optimal cloud execution overhead by (41) and obtain the total
overhead for each agent.

5: Compute and compare all DNN overhead from 1 to Z and select the optimal
offloading decision b∗

6: Choose the current channel gain h in time slot t and optimal offloading action
b∗ to retrain the all DNN from 1 to Z;

7: Finally, when the number of iterations is T , obtain the optimal offloading
decision b∗, local CPU cycle f , transmission power p and total overhead
F ∗(h, b, p, f ) for all agents;

8: end while

observe the state .st and takes one action .at , and then it obtains a reward .rt by
interacting with the environment. Next, the agent comes to a new state .st+1. In the
RL process, the formulation can be represented as

.at = π(st ). (6.123)

When the agent interacts with the environment, the aim is to maximize the total
reward from .t = 1 to T . The total reward .Rt can be represented as

.Rt =
T∑

k=0

γ krt+k+1, (6.124)

where .γ ∈ [0, 1] is a discount factor. Furthermore, combined DNN with RL, DQN
is a novel structure to approximately represent Q-function, and it can be represented
by

.Q(st , at ) = Eπ [Rt |st , at ] (6.125)
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which is considered as a Q-function in the RL domain. Then, the loss function of
DNN can be calculated as

.L(w) = E[yt − Q(st , at )|w], (6.126)

where w is the network parameter from DNN and .yt can be formulated as

.yt = rt + γQ(st+1, at+1|w′), (6.127)

where .st+1 and .at+1 are the next state and action of the agent, respectively.
Next, to make the DNN more stable and have faster convergent speed, the agent
adds the experience replay memory and enables the target network with the same
structure. The experience replay memory is to retrain the DNN by randomly
sampling a batch of transitions. Simultaneously, the target network can reduce the
correlations between current Q-value and target Q-value and it is updated at certain
steps. However, the current DQN cannot process the continuous action control
problems. Fortunately, the popular actor-critic based deep deterministic policy
gradient (DDPG) algorithm can solve the continuous action control problem more
easily. Specifically, DDPG consists of two actor networks and two critic networks,
and actor network can generate the action and critic network obtains the Q-value
function to update the actor network parameters. The policy gradient method can be
formulated as

.∇θJ = E
[∇aQ(s, a|w)s=st ,a=π(st )

∇θπ(s|θ)s=st

]
, (6.128)

where the current critic network can be updated by the loss function (46).

6.3.3.2 MADDPG Algorithm Framework

In this part, we propose a MADDPG method for the sake of minimizing the total
cost in the multiple edge networks. Firstly, we optimize the local processing speed
and transform the original problem P2 into P2.1. Next, we envision a MADDPG
structure in order to obtain the sub-optimal offloading decision, channel allocation,
and transmission power for each agent. The optimization process is presented as
follows.

(1) CPU Cycle Frequency Optimization: Similar to the single edge network, the
CPU frequency is calculated as

.min
f

[λt
m,nt

EDGE
m,n + λe

m,ne
EDGE
m,n ]. (6.129)

s.t. 0 < f l
m,n ≤ f max

m,n , . (6.130)

t lm,n ≤ T d
m,n, . (6.131)
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el
m,n ≤ Emax

m,n . (6.132)

Combined with constrains (50), (51), (52), the constraint can be transformed
into

.f l′
m,n = max

{
Wm,n

T d
m,n

, 0

}

, . (6.133)

f l′′
m,n = min

{

f max
m,n ,

√
Emax

m,n

εWm,n

}

. (6.134)

Assuming that .F l
m,n = [λt

m,nt
EDGE
m,n + λe

m,ne
EDGE
m,n ], the point is

.f ∗ = 3

√
λt

m,n

2ελe
m,n

. (6.135)

The optimal local execution overhead can be formulated as

.F l∗
m,n(f

l
m,n) =

⎧
⎪⎨

⎪⎩

F l
m,n(f

l′
m,n), if f ∗ ≤ f l′

m,n,

F l
m,n(f

∗), if f l′
m,n < f ∗ ≤ f l′′

m,n,

F l
m,n(f

l′′
m,n), if f ∗ > f l′′

m,n.

(6.136)

Next, the problem P2 is changed into P2.1

.

P 2.1 : min
h,p,b,α

{
M∑

m=1

N∑

n=1

F l∗
m,n(1 − bm,n)

}

+
{

M∑

m=1

N∑

n=1

[
λt

m,nt
EDGE
m,n + λe

m,ne
EDGE
m,n

]
bm,n

}

s.t. C1: bm,n ∈ {0, 1},
C3: 0 < pm,n ≤ pmax

m,n ,

C4: (1 − bm,n)t
l
m,n + bm,nt

EDGE
m,n ≤ T d

m,n ,

C5: (1 − bm,n)e
l
m,n + bm,ne

EDGE
m,n ≤ Emax

m,n ,

C6:
O∑

o=1

αm,n,o ≤ 1,

C7: Dm,n,o ≤ Dmax.

(6.137)

(2) MADDPG Algorithm Framework:

We propose the MADDPG structure for the sake of solving P2.1. Assuming that
there are .M ∗N agents interacting with the environments totally in the multiple edge
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Algorithm 6.3 Optimal cost in terms of MADDPG architecture
Input:

Each task Am,n = {Lm,n,Wm,n, T
d
m,n}.

Output:
Calculate the total cost of multi-agents.

1: while each agent do
2: Initialize all four network parameters πn(θ), Qn(w), πn(θ

′
) and Qn(w

′
),

where θ
′ = θ,w

′ = w.
3: end while
4: while 1, 2, . . . , T do
5: while 1, 2, . . . ,M do
6: while 1, 2, . . . , N do
7: We can obtain the state hm,n(t) of each agent;
8: end while
9: end while

10: Obtain all states Ht ;
11: while 1, 2, . . . ,M do
12: while 1, 2, . . . , N do
13: Each agent starts to execute action am,n(t) = πn(hm,n(t)|θ) + ε.
14: end while
15: end while
16: Obtain all actions At ;
17: while 1, 2, . . . ,M do
18: while 1, 2, . . . , N do
19: We can obtain the reward rm,n(t) and next state hm,n(t + 1);
20: end while
21: end while
22: Obtain all next states Ht+1;
23: while 1, 2, . . . ,M do
24: while 1, 2, . . . , N do
25: Each agent can store {H(t), A(t), rm,n(t),H(t + 1)} into E;
26: if learning time reaches then
27: Each agent can collect K samples from E;
28: θ

′
=τθ + (1 − τ)θ

′
;

29: w
′ = τw + (1 − τ)w

′
;

30: end if
31: end while
32: end while
33: end while
34: Calculate the total cost on the basis of energy consumption and latency.
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Fig. 6.14 The novel agent network structure

networks, the structure of the agent n is shown in Fig. 6.14. The state .S = {st , t ∈
(1, 2, . . . T )} includes the private state .hm,n(t) of each agent and other information
known by one agent. Additionally, a few actions .A = {at , t ∈ (1, 2, . . . T )}
consist of private action .am,n(t) = {bm,n(t), αm,n,o(t), pm,n(t)} of each agent
and some information from other agents. Next, each agent extracts own private
information .hm,n(t) and then takes own action .am,n(t). At the same time, each
agent obtains its reward .rm,n(t). Furthermore, the network environment can be
transformed into next new state. As shown in Fig. 6.14, each agent has four network
structures including actor current network .am,n(t) = πn(hm,n(t)), actor target
network .am,n(t + 1) = πn′

(hm,n(t + 1)), critic current network .Qn(H(t), A(t)),
and critic target network .Qn′

(H(t + 1), A(t + 1)). Then, each agent n stores the
transition buffer .{H(t), A(t), rm,n(t),H(t +1)} into the experience replay memory.

Explanation: The proposed MADDPG structure is a centralized-training and
distributed execution method. During the training process, each agent takes action
.am,n(t) on the basis of private state .hm,n(t) in terms of network environment, and
the state .H(t) and action .A(t) are the set of state and action from all agents. In
the meantime, all agents can give their own information each other to calculate
the reward functions. Additionally, the critic current and target network can receive
all states and actions from agents to enable the critic network to train. For the
distributed execution period, each agent can obtain its own action .am,n(t) by private
state information .hm,n(t).
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Therefore, we define the private state, action, and reward function of each agent
as follows:

(1) .hm,n(t) can be represented as

.hm,n(t) = [hm,n,1, hm,n,2, . . . hm,n,O

]
. (6.138)

(2) Action .am,n(t): we define the action of each agent as

.am,n(t) = {bm,n(t), αm,n,o(t), pm,n(t)}. (6.139)

(3) .rm,n(t) is defined as

. rm,n(t) = −
{

M∑

m=1

N∑

n=1

F l∗
m,n(1 − bm,n)

}

− . (6.140)

{
M∑

m=1

N∑

n=1

(λt
m,nt

EDGE
m,n + λe

m,ne
EDGE
m,n )bm,n

}

. (6.141)

Then, the absolute state and action are as follows.

(1) H is defined by .H = {hm,n(t),∀m, n}.
(2) Action A: The absolute action consists of the action from all agents, which is

expressed as .A ={am,n(t),∀m, n}.
Next, we depict the network structure of the agent n in Fig. 6.14. The agent

obtains the state .hm,n(t) and chooses the current optimal action .am,n(t). Fur-
thermore, the agent obtains the Q-value from critic current network .Qn(w).
Additionally, its target action and target Q-function can be calculated by .πn(θ ′)
and .Qn

(
w′), respectively. The transition buffer is

.E={H(t), A(t), rm,n(t),H(t + 1)}, (6.142)

which can be stored into experience replay memory. At the same time, we calculate
the temporal difference (TD) error as

.�n = rm,n(t) + . (6.143)

γQn′
(H(t + 1), A(t + 1)|w′

) − Qn(H(t), A(t)|w). (6.144)

Furthermore, the loss function in Fig. 6.14 is

.G(L(w)) = E

[
(�n)

2
]
. (6.145)

Then, the policy gradient can be denoted as
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Table 6.3 Summary of
simulation parameters

Notation Description

.Ftotal 5e9 cycle/s

.Wm,n [0.2e9 cycle, 1e9 cycle]

.Lm,n [500 KB, 1200 KB]

.T d
m,n [0.5s, 5s]

.M 3

.N 2

.f l
m,n [0.3e9 cycle/s, 1e9 cycle/s]

.pmax
m,n 0.2 W

.w 0.5 MHz

.O 10

.∇θJ=E
[∇θπ

n(hm,n(t)|θ)∇am,n(t)Q(H(t), A(t)|w] . (6.146)

As shown in Algorithm 2, the computational complexity is in the order of

.O
(
MN(1 + T + (1 + 1

K
)T D

′ + T D
′′)

, where .D
′

and .D
′′

denote the dataset size

of actor network and critic network, respectively.

6.3.4 Experiments and Simulation Results

In order to demonstrate the utility of the proposed schemes in single edge and
multiple edge scenes, we test and validate our analysis by numerous results. Relying
on [93], we denote the simulation parameters. Firstly, the coverage area of each edge
network is 120 m in radius. Simultaneously, the server speed is set as 6e9 cycle/s and
the required CPU cycles are randomly generated from .0.3e9 to 1e9. Additionally,
the task size and tolerant delay are randomly distributed from [600 KB, 1200 KB]
and [0.2 s, 5 s], respectively. The CPU cycle frequency of each agent is also
randomly distributed at [.0.4e9, 1e9]. Besides, the transmission power is subject to
.0.2 W. We set that there exist 10 dimensions for channel vectors, i.e., 10 channels
in multiple edge networks. Next, we set the channel bandwidth as .0.5 MHz. The
detailed simulation parameters are shown in Table 6.3.

6.3.4.1 Single Edge Network Scene

As illustrated in Fig. 6.15a, through adjusting proper hyperparameters of DNN, the
DNN total loss function gradually decreases with the increase of the number of
training steps when learning_rate is 0.01. Additionally, each interval represents 500
training steps in the x-axis. When the number of training steps is approximately up
to 200, the total loss of DNN is close to .0.1 and it remains stable in the next training
steps, which validates that our proposed algorithm has faster convergent speed and
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Fig. 6.15 The total agent
overhead versus analysis. (a)
The number of training steps.
(b) Delay aware factor. (c)
MEC server speed
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stronger generalization ability. Furthermore, our proposed algorithm can adapt to
the time-varying network environments better.

To corroborate the utility of our proposed schemes, we compare it with some
baseline algorithms. The details are illustrated as follows.

• All mobile edge computing (ALL-MEC): The tasks from agents are performed
in remote edge cloud.

• Random offloading (RO): While executing the tasks, the agent randomly selects
the offloading decision, i.e., 0 or 1.

• Intelligent deep Q network (I-DQN): I-DQN represents that the number of DNN
is 1, which is different from our proposed DRL-based algorithm.

• Centralized deep deterministic policy gradient (C-DDPG): C-DDPG means
that all agents implement the computation offloading via centralized global
information.

We compare the performance of five different algorithms in Fig. 6.15b. Delay
weight factor and energy weight factor are limited to (0, 1) and their sum is 1.
Additionally, if delay weight factor is larger than energy weight factor, it means
that the delay of task for each agent is more important than energy consumption.
As the delay aware factor increases, it consumes more overhead for all agents, due
to the fact that each agent receives more latency-sensitive application tasks. As the
delay aware factor increases, DRL-based can undertake the overhead pressure, while
I-DQN and ALL-MEC have higher total overhead because they cannot adapt to
the time-varying channel conditions better. Additionally, RO has lower efficiency
because of randomly choosing different offloading decision. Moreover, C-DDPG
can adapt to the dynamic network states, but it is difficult to obtain optimal CPU
cycle frequency and transmission power, which causes higher system overhead.
Hence, based on the proposed DRL-based algorithm, we can reduce the system
overhead and adapt to the various network environments.

Next, Fig. 6.15c shows the impact of the MEC server cycle frequency on the
total agent overhead in terms of five different algorithms. Certainly, higher MEC
server cycle frequency can reduce the execution latency and total agent overhead.
Furthermore, the RO algorithm has higher overhead in terms of different MEC
processing speed, while other four schemes can reduce the overhead better. This is
because RO cannot find the optimal computation offloading strategy. Additionally,
from 3*10e9 to 5*10e9 in terms of MEC server speed, we can clearly see that DRL-
based algorithm has better performance gain than I-DQN, ALL-MEC, and C-DDPG
algorithms since it can help choose better offloading decision-making and allocate
CPU cycle frequency and transmission power, which demonstrates the superiority
and effectiveness of our proposed DRL-based algorithm.

Furthermore, we validate the effect of Agent_num on the total overhead in terms
of five different algorithms in Fig. 6.16a. Firstly, as the number of agents increases,
the total overhead can become higher, which is inevitable because more agents
bring severe energy consumption and latency. Furthermore, we set the number of
agents as 5, 10, 20, and 30 in the single edge network with adequate channels,
and the proposed DRL-based algorithm shows better performance than other four
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Fig. 6.16 Performance
versus the number of agents.
(a) The total agent overhead.
(b) The average delay. (c)
The energy efficiency
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schemes, which is because the DRL-based algorithm can help more agents adapt to
the dynamic network environments.

Next, we continue to explore average delay in terms of different agent_num. As
shown in Fig. 6.16b, it has lower average delay compared with four other schemes,
which means that each agent can acquire lower execution delay. Simultaneously, for
certain latency-sensitive application tasks, we can utilize our proposed DRL-based
scheme to allocate computational resources for each agent, which can guarantee the
quality of experience (QoE).

Figure 6.16c shows the impact of the number of agents on energy efficiency.
In this paper, the energy efficiency refers to the ratio of total bits of offloaded
tasks to energy consumption. As illustrated in Fig. 6.16c, the proposed DRL-based
algorithm has better performance gains, which is because DRL-based framework
can orchestrate proper computational resources for each agent. However, as the
number of agents increases, energy efficiency is gradually decreasing, which
demonstrates centralized processing scheme is not suitable for large-scale agents
scenario. Hence, it is vital to choose appropriate number of agents in the single
edge network.

6.3.4.2 Multiple Edge Networks Scene

In the multiple edge networks scene, we consider multiple edge areas consisting
of many agents and each edge network can share the same spectrum in order
to improve the spectrum utilization. Simultaneously, each edge network has 10
variable channels for each agent. Additionally, in this test scenario, we utilize the
proposed MADDPG structure to reduce the total energy consumption and latency.

(1) Performance Analysis: In the multi-agent environments, to demonstrate the
efficiency of our proposed scheme, other methods are illustrated as follows.

• Random Strategy (RS): RS means it chooses to offload or execute their task
randomly, which is different from proposed MADDPG strategy.

• Equal Power Transmission (EPT): EPT indicates all agents in the multiple
edge networks can employ the same transmission power for offloading the
task to edge cloud.

• Distributed Deep Deterministic Policy Gradient (D-DDPG): D-DDPG repre-
sents that each agent can only acquire the local information instead of global
information.

In Fig. 6.17a, we set different task size for each agent and its range is from 300
to 700 KB. Certainly, larger task size can cause more computational overhead for
all three schemes. However, MADDPG has lower rising speed and fewer compu-
tational overhead in four schemes since it can adjust offloading decision-making,
transmission power, channel allocation, and CPU cycle frequency to adapt to the
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high-dynamic network environments better. Simultaneously, since RS neglects the
interference among different edge networks, this cannot guarantee the channel qual-
ity. D-DDPG can only obtain local decision-making and state information, which
cannot converge to lower system overhead compared with MADDPG. Moreover,
MADDPG can combat the channel interference from neighboring networks and
reduce the system overhead for all agents.

Figure 6.17b means the influence of processing speed on the total overhead.
First of all, we consider 3 edge networks and each edge network has 2 agents in
our simulation parameters. At the same time, we compare our proposed MADDPG
scheme with other three methods. As RS means each agent chooses to execute tasks
randomly, it causes more computational overhead for all agents. Furthermore, EPT
and D-DDPG are close to the proposed MADDPG method. However, MADDPG
is superior to EPT since it can help each agent choose optimal transmission power.
Simultaneously, compared with D-DPPG, MADDPG can obtain global state and
action information, which leads to lower system cost. Additionally, with the increase
of edge cloud speed, multi-agent computational overhead is decreasing, so we can
utilize the edge cloud service to execute the task and improve the QoE.

In Fig. 6.18a, we test the results between the multi-agent total overhead and
energy weight factor. Higher energy weight factor can cause lower multi-agent
overhead because delay weight factor has an important role in total system overhead.
Meanwhile, although EPT employs the equal transmission power and D-DDPG
can adjust the task scheduling and resource allocation schemes in terms of local
information, the proposed MADDPG algorithm framework has better performance
gains than other baseline algorithms since it utilizes the global information and dis-
tributed execution to tailor the orchestration strategy according to various network
environments, which further demonstrates the intelligence and progressiveness of
our proposed algorithm.

(2) Interference Management: For the multiple edge networks scene, there is
too much channel assignment interference from proximal edge networks.
Additionally, compared with RS, MADDPG can minimize the total multi-
agent overhead and guarantee the QoS better since RS cannot ensure the
selected channel quality. Simultaneously, EPT is not able to intelligently
allocate the transmission power for each agent and D-DDPG can only profile the
computation offloading according to local experience. Hence, from Fig. 6.18b,
we can conclude that the proposed MADDPG scheme can face the complex
network conditions, which brings lower system overhead.
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6.4 Summary

In this chapter, we discuss the resource allocation and edge computation offloading
problems in mobile edge networks. We first propose a spectrum sharing and
computation offloading scheme for SDN-based ultra dense networks. In addition,
we propose a novel DRL-based network structure followed with the 2AGT scheme
and 3AUS strategy to jointly optimize the offloading decision and transmission
resource allocation problems in IoT. Finally, we consider single edge and multiple
edge network scenarios. A DRL-based algorithm is presented to reduce the total
energy consumption and latency for multiple agents.
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Chapter 7
Blockchain-Enabled Intelligent IoT

Abstract The past few years have witnessed an exponential growth of diverse
Internet of Things (IoT) devices as well as compelling applications ranging from
industrial production, intelligent transport, and warehouse logistics to medical care.
Dramatic advances in IoT technology not only bring enormous economic opportu-
nities but also challenges. Recently, with the appearance of blockchain technology,
the integration of IoT and blockchain (BCoT) is considered a promising solution to
address these issues. Blockchain provides a secure and scalable data management
framework for IoT devices. However, the huge computation and energy cost of
the consensus process in blockchain prevents it from being directly applied as a
generic platform. To overcome this challenge, we first propose a cloud mining pool-
aided BCoT architecture. Based on this architecture, we study the mining pool
selection problem and analyze the colony behaviors of IoT devices with different
pooling strategies. We propose a centralized evolutionary game-based pool selection
algorithm for the sake of maximizing the system utility. Secondly, to overcome the
power and computation constraints of the IoT devices in the blockchain platform,
we introduce the cloud computing service to the blockchain platform for the sake
of assisting to offload computational task from the IIoT network itself. Also, we
study the resource management and pricing problem between the cloud provider
and miners. And a multi-agent reinforcement learning algorithm is conceived for
searching the near-optimal policy.

Keywords Blockchain · Cloud mining pool · Evolutionary game · Stackelberg
game

The past few years have witnessed an exponential growth of diverse Internet of
Things (IoT) devices as well as compelling applications ranging from industrial
production, intelligent transport, and warehouse logistics to medical care. Dramatic
advances in IoT technology not only bring enormous economic opportunities
but also challenges (e.g., privacy and security vulnerabilities). Recently, with the
appearance of blockchain technology, the integration of IoT and blockchain (BCoT)
is considered a promising solution to address these issues. Blockchain provides
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a secure and scalable data management framework for IoT devices. However, the
huge computation and energy cost of the consensus process in blockchain prevents
it from being directly applied as a generic platform. To overcome this challenge,
we first propose a cloud mining pool-aided BCoT architecture [1]. The IoT devices
can rent the computing resources from the cloud mining pools to offload the mining
process. Based on this architecture, we study the mining pool selection problem and
analyze the colony behaviors of IoT devices with different pooling strategies. We
propose a centralized evolutionary game-based pool selection algorithm for the sake
of maximizing the system utility. Secondly, to overcome the power and computation
constraints of the IoT devices in the blockchain platform, we introduce the cloud
computing service to the blockchain platform for the sake of assisting to offload
computational task from the IIoT network itself [2]. Also, we study the resource
management and pricing problem between the cloud provider and miners. More
explicitly, we model the interaction between the cloud provider and miners as a
Stackelberg game, where the leader, i.e., cloud provider, makes the price first, and
then miners act as the followers. Moreover, in order to find the Nash equilibrium of
the proposed Stackelberg game, a multi-agent reinforcement learning algorithm is
conceived for searching the near-optimal policy.

7.1 Cloud Mining Pool-Aided Blockchain-Enabled IoT

In the past decade, the Internet of things (IoT) has attracted a large amount of atten-
tion from both academia and industry [3]. The IoT refers to the billions of physical
devices that are now connected to and transfer data through the Internet without
requiring human-to-human or human-to-computer interaction. These connected IoT
devices are slowly entering every aspect of our lives ranging from healthcare to
industrial manufacture. According to Gartner’s prediction, it is expected more than
25 billion IoT connections in the future year 2025. However, with the large-scale
IoT deployments, IoT applications are facing challenges in the aspect of scalability,
privacy, and security [4]. The current IoT system adopts a centralized management
platform to authenticate, authorize, and connect a massive of heterogeneous IoT
devices, which will turn into a bottleneck. Besides, unsecured IoT devices provide
an easy target for distributed-denial-of-service (DDoS) attacks, malicious attackers,
and data breaches.

In recent years, another breakthrough technology, blockchain, offers significant
opportunities to address these challenges [5]. The blockchain is a distributed digital
ledger of transactions that is maintained by a community of participants without the
intervention of a trusted third party [6]. Within a blockchain community, any new
transactions or events must be validated upon the agreement among the majority of
the participants through a consensus process (e.g., proof of work (PoW), proof of
stake (PoS)) before they are attached to the chain [7]. Such a process creates tamper-
resistant records of shared transactions and events among the involved parties.
Therefore, no single organization has control over the data generated by IoT devices
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in blockchain, thereby protecting the privacy of data and enhancing scalability [8].
Moreover, blockchain adds a layer of security in terms of encryption, the removal
of a single point of failure, and the ability to quickly identify the weak point in the
network [9]. Recently, a large number of applications combining blockchain and the
IoT can be seen [4]. For example, Deloitte uses blockchain and IoT technology in
supply chain traceability [10].

While blockchain provides a secure and scalable data management framework,
there still exist challenges to be addressed before it can serve as a generic platform
for IoT. As discussed above, the consensus process (e.g., proof of work (PoW))
in the blockchain is particularly computationally intensive and energy-consuming.
The participants, termed miners, have to constantly try to solve a cryptographic
puzzle in the form of the hash computation. Considering that the majority of IoT
devices are too limited in terms of computing, storage, and energy resources, this
computationally intensive process hinders the integration of IoT and blockchain.
While some energy-efficient consensus algorithms (e.g., proof of stake (PoS),
practical byzantine fault tolerance (PBFT)) are developed, the computation and
energy overhead are still inevitable.

To address these challenges, the cloud mining mechanism becomes a viable
option. Cloud computing can empower resource-constrained IoT devices with extra
sufficient storage and computing resource. In this way, more IoT devices are enabled
to participate in the blockchain network, so as to increase the whole system utility.
Recently, a large and growing body of literature has investigated cloud mining-based
BCoT architecture [9, 11, 12]. These works are mainly focusing on the resource
allocation between the devices and cloud servers. For example, in [13], Xiong et al.
formulated the resource allocation problem between cloud services and IoT devices
as a Stackelberg game and implemented a backward induction algorithm to search
the Nash equilibria of this game.

However, with the exponential growth of the number of IoT devices and hash
rate, the probability for a single miner to win the mining competition game tends to
be slim. Only a few fortunate miners would obtain large rewards and the majority
will get no rewards. To seek a steady reward stream, miners are gradually willing to
group into several teams, called mining pools. In the mining pool, miners will share
the rewards according to their contributed hash power (i.e., computing resource).

Therefore, in this paper, we design a cloud mining pool-aided BCoT architecture,
where IoT devices can rent the computing and storage resources from the cloud
mining pool. In terms of this architecture, we discuss the mining pool selection
problem among IoT devices. Assuming that the IoT devices are rational (i.e., profit-
driven), we model the dynamic mining pool selection process as an evolutionary
game. To search the evolutionary stable strategy (ESS), we design a centralized
evolutionary game-based pool selection algorithm, where a centralized controller
is used to synchronize information. Besides, considering the non-cooperative rela-
tionship among miners, we propose a distributed reinforcement learning algorithm,
termed the “WoLF-PHC” algorithm.
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7.1.1 System Model

In this section, we first design a cloud mining pool-aided BCoT architecture. Then,
we present the system model and problem formulation of the mining pool selection
problem.

7.1.1.1 Cloud Mining Pool-Aided BCoT

As discussed above, the blockchain cannot be directly applied to IoT systems. To
fulfill the computing and storage resources required in the consensus process, we
adopt the cloud mining paradigm in this paper, where the IoT devices can use the
computing power of mining equipment hosted in cloud computing servers without
owning or maintaining the equipment. Next, we will detail the mining pool-aided
BCoT architecture in the following.

As shown in Fig. 7.1, in our architecture, there exist two types of nodes to
participate in the blockchain network, including the cloud services nodes and the
IoT devices nodes [4]. The cloud services are responsible for storing the entire
blockchain data (e.g., right now the full Bitcoin blockchain data occupies about
200G large) and undertaking computational intensive operations (e.g., consensus
process), while IoT devices are only responsible for undertaking some simple
operations (e.g., initiating transactions). It is worth mentioning that the IoT devices
still need to keep a partial blockchain local for validating the authenticity of
transactions.

During the initializing phase, the IoT devices first register as a legitimate entity
(i.e., cloud miner) on cloud servers and obtain an identity ID and a public/privacy
key. These cloud miners act as the proxy nodes of the IoT devices to offload their
mining and storage tasks. Then, these miners will group themselves into several
mining pools. In mining process, these pools present themselves to the whole system
as single powerful proxy nodes. Combing with more computing resources, the
mining pools are able to gain a computation advantage over other individual miners.
Note that the miner can choose to redirect its hash power to any other mining pool
at any time. In each pool, the cloud provider will place a coordinator in charge of
managing the miners. They will work as a task scheduler to guarantee the miners
are undertaking different subtasks so that they are not wasting hash power by trying
to solve the same sub-cryptographic puzzle. Once successfully mining a block, the
coordinator will divide the profit to each miner according to its devoted hash power.
We will present the system model in the following.

7.1.1.2 System Model

Consider a set of IoT devices that are interested in participating in the consensus
process, which is denoted as .N = {1, . . . , N}. We assume that these miners are
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Fig. 7.1 Cloud mining pool-aided BCoT architecture

willing to form .M = {1, . . . ,M} mining pools, where each mining pool adopts
a different pooling strategy with different hash power requirement [14]. Let .ωj

represent the hash power required by the pool .j ∈ M. According to consensus
protocol, the probability of winning the mining game is related to the ratio between
local hash power and the total hash power of the entire blockchain network.
Therefore, we define a relative hash power .αj of pool j with respect to the entire
hash power of all miners, which can be described as:

.αj (ω, xj , x−j ) = xjωj
∑

k∈M xkωk

, αj > 0, (7.1)

where .xj represents the pool j ’s population fraction, and the .x−j represents the
sum of pools’ population fraction expect to pool j . Note that .α satisfies following
condition:

.

∑

k∈M
αk = 1. (7.2)
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During the mining process, mining pools compete with each other in a race to
solve the cryptographic puzzle. The appearance of solving the cryptographic puzzle
can be formulated as a Poisson process with a mean random variable .λ = 1

T
, where

T denote the complexity of finding a block (e.g., .T = 600sec in Bitcoin). After
successfully mining a block, the winner needs to propagate its solution to the entire
network for reaching a consensus. Only the first block, which is confirmed by the
majority of the participant, could be accepted as a new block. All other candidate
blocks will be discarded, called orphaning. According to previous works [15], the
propagation time of a block to reach consensus is mainly determined by the set of
transaction size Q included in a block. We denote .τ(Q) = ξ ×Q as the propagation
time. Then, the probability of orphaning can be formulated as:

.P orphan(Q) = 1 − e−λτ(Q). (7.3)

The successful probability of mining pool j to win the mining game can be
formulated as:

.Pj (αj ,Qj ) = αj ×
(
1 − P

orphan
j (Qj )

)
= αj × e−λτ(Qj ). (7.4)

After successfully mining a block, the winner can obtain a reward, which is
composed of a fixed reward .R ≥ 0 and a variable reward .ρQ [16]. The variable
reward linearly increases with the size of the transaction Q in the block, and the .ρ

is the linear coefficient. Therefore, the expected reward for pool j can be expressed:

.uj (αj ,Qj ) = (R + ρQj )αj × e−λτ(Qj ). (7.5)

And the expected profit of the miner .i ∈ N in pool j can be expressed as:

.Ri(αj ,Qj ) = (R + ρQj )

Nxj

αj × e−λτ(Qj ). (7.6)

Besides, since the miners rent the computation resource from the cloud servers,
the miners have to pay for it [17]. We denote the price of each computing resource
unit as p. Thus, the expected reward of the miner .i ∈ N in pool j can be
reformulated as:

.ri(αj ,Qj ) = (R + ρQj )

Nxj

αj × e−λτ(Qj ) − pωj . (7.7)

As shown in Table 7.1, we list the notations of this paper.
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Table 7.1 List of main notations

Parameter Definition

N Number of miners

M Number of pools

.ωj The hash rate required by pool j

.Qj The set of transactions size included in a block

.xj Population fraction of pool j

.αj The relative computing power of pool j with respect to the all system

R The fixed reward when mining a block

p The price of each computing and storage resource unit

.ρQ The variable reward when mining a block

.τ(Q) The time needed for a block to propagation

.Pj (αj ,Qj ) The successful probability of mining pool j to win the mining game

.uj (αj ,Qj ) The expected reward of pool j

.ri (αj ,Qj ) The expected reward of the device i in pool j

7.1.2 Evolutionary Game Formulation

In this section, we apply the evolutionary game to the mining pool selection
problem and present the concepts of replicator dynamics (RD) and evolutionary
stable strategy (ESS) [18]. The evolutionary game defines a framework of contests,
strategies, and analytic into which colony competition can be modeled. It can
capture the strategy adaptation of rational agents according to their fitness. That
is, the agent can slowly adjust its strategy (i.e., evolves) based on the environment
knowledge. Note that we assume all users are rational (i.e., profit-seeking) [19].
Mathematically, for mining pool selection, the evolutionary game can be formulated
as a 4-tuple .G =< N, x,M, R >, where

• Players: Players are the decision-makers with pre-programmed strategies in the
game. In our scenario, each individual miner can be regarded as a player.

• Population: The population .x = [x1, . . . , xM ] ∈ X refers to the set of players in
a mining pool. The population will present variation among competing players.

• Strategy: The strategy is a set of action .M = {1, . . . ,M} that the player can
perform. The different strategies will obtain different rewards. The strategy space
in our scenario is the all available mining pools.

• Payoff: Payoff .rj reflects the player’s expected outcome based on its strategy,

where .ri(αj ,Qj ) = (R+ρQj )

Nxj
αj × e−λQj − pωj . Note that the reward is

determined not only by the local strategy but also by the other players’ strategies.
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7.1.2.1 Replicator Dynamics of Pool Selection

We consider an evolutionary game-based pool selection in a blockchain network
where a set of players select from a set of the available mining pool. Each mining
pool adopts different pooling strategies with different hash rate requirements and
the size of transactions. In the evolutionary game, the game is repeated, and each
player observes the global average payoff and dynamically adjusts their strategy to
obtain a higher expected payoff. To express the evolutionary dynamics in the game,
the replicator dynamics function is introduced. The replicator dynamics function
is a nonlinear game dynamic used to explain learning as well as evolution in
evolutionary game [20]. The core idea of replicator dynamics is that the population
will increase (decrease) if fitness is larger (smaller) than the average fitness. In our
scenario, the replicator dynamics function of pool j can be described as:

.ẋj (t) = σxj (t)(uj (αj (t),Qj ) − ū(x(t))), (7.8)

where .ẋj (t) is the growth rate of the pool j ’s population, .σ is the speed parameter,
and .ū(x) is the network average payoff, which can be formulated as:

.ū(x(t)) =
∑

j∈M
uj (αj ,Qj )xj . (7.9)

The replicator dynamics functions must satisfy the following condition:

.

∑

j∈M
ẋj (t) = 0. (7.10)

From the players’ perspective, the miners will slowly adjust their selection strate-
gies, if their payoff is less than the average payoff, otherwise the miners will keep
their current strategies.

7.1.2.2 Evolutionary Equilibrium and Stability Analysis

As discussed above, the players constantly adjust their strategies (i.e., evolve) for
the sake of a higher expected payoff. Along with the players evolves over time, the
whole system will finally converge to the evolutionary stable strategy (ESS). The
ESS is phenotypes that can persist in populations and cannot be invaded by any
other strategies [21]. We can define that the .x∗ is an ESS if the following condition
is satisfied:

.

∑

j∈M

x∗
j uj ((1 − σ)x∗ + εx′) ≥

∑

j∈M

x′
j uj ((1 − σ)x∗ + σx′), (7.11)

where .x′ is the invade state.
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According to this definition, in the ESS, none of the players is willing to deviate
its selection strategy (i.e., the rate of strategy adaptation is zero). By solving the
replicator dynamics functions (i.e., .ẋj (t) = 0), a set of fixed points can be obtained.
According to [22], these fixed points are stable (i.e., ESS) if all eigenvalues of the
Jacobian matrix have negative real parts. Then, the ESS can be defined as a set of
stable fixed points, which can be described as follows.

Definition A population state .x∗ is an ESS, if the condition .(x − x∗)T R(x∗) = 0
implies that:

.(x∗ − x)T R(x) ≥ 0, (7.12)

where .∀x ∈ B − x∗ is the neighborhood of X. ��

7.1.2.3 Two Mining Pool Study

To demonstrate the evolutionary stable strategy, in this part, we will present a two
mining pools case study. We set the population fraction of two pool as .x1 = x, and
.x2 = 1 − x. Then, we can obtain the Ordinary Differential Equations:

.ẋ1(t) = x1x2

(
ω1k1 − ω2k2

N(x1ω1 + x2ω2)
− p(ω1 − ω2)

)

, (7.13)

.ẋ2(t) = x1x2

(
ω1k1 − ω2k2

N(x1ω2 + x2ω1)
− p(ω1 − ω2)

)

, (7.14)

where

.ki = (R + ρQi) × e−λτ(Qi). (7.15)

By solving the above formulas, we can obtain the fixed points as .(x∗, 1 − x∗),
where .x∗ = ω1k1−ω2k2

pN(ω1−ω2)
2 − ω2

ω1−ω2
. According to the above definition, this fixed

point is ESS if all eigenvalues of the Jacobian matrix have negative real parts. For
this replicate dynamic system, the Jacobian matrix of the replicator dynamics is

.J =
(

∂f (x1)
x1

∂f (x1)
x2

∂f (x2)
x1

∂f (x2)
x2

)

.

After some tedious mathematical manipulations, the rest point with .x∗ =
ω1k1−ω2k2

pN(ω1−ω2)
2 − ω2

ω1−ω2
is an ESS if the following conditions are satisfied:

.

{
ω1k1 − ω2k2 < 0
ω2ω1(k2 − k1)(ω2 − ω1) > 0

.
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7.1.2.4 Delay in Replicator Dynamics

As discussed above, the players can adjust their strategies based on the system’s
average fitness. However, in actual deployment, the latest fitness information may
not be available to all players. They can only rely on historical information to make
decisions. Therefore, in this paper, we introduce a certain period delayed .τ in our
system. The replicator dynamics will be reformulated as:

.ẋj (t) = xj (t − τ)(uj (αj (t − τ),Qj ) − ū(x(t − τ))), (7.16)

which is a delay differential equation. To obtain the solution to this equation, the
Runge–Kutta method can be applied. Besides, the stability of the delay differential
equation has been well studied. In [23], Obando et al. investigated the stability of
the replicator dynamics with the effect of a time delay using the Lyapunov method.
The theoretical results show that the ESS strategy is stable if the time delay is small
enough. The detailed analysis can be founded in [23]. We will evaluate the impact
of delay in the experiment section.

7.1.2.5 Evolutionary Game-Based Pool Selection Algorithm

As discussed above, we apply the evolutionary game to the mining pool selection
problem. The miners continually adjust their strategies based on the system average
fitness for the sake of a higher expected payoff. Along with the players evolves over
time, the whole blockchain network can converge to the ESS. Therefore, in this
paper, we propose a centralized population evolutionary strategy algorithm. In this
approach, a centralized controller is deployed to calculate the average fitness of all
players. Then, the average fitness is issued to each player to evaluate the current
strategy based on its current payoff (i.e., switch their strategies or keep them) [24].
The centralized pool selection algorithm can be described as follows.

7.1.3 Distributed Reinforcement Learning Approach

Thus far, the paper has argued an ideal model where a centralized controller cloud
be placed to guide behaviors of all players. However, in an actual IoT network,
considering the non-cooperative relationship among them, the centralized controller
may not be available [25]. Each player has to adapt its pool selection decision
independently. Therefore, how could the individual devices optimize their strategy
in the non-stationary system (i.e., multi-agent system) is a critical challenge.
Inspired by the recent success of applying reinforcement learning algorithms in
multi-agent system, we introduce a distributed reinforcement learning algorithm,
named “WoLF-PHC” [26].
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Algorithm 7.1 The population evolution approach for pools selection
1: Each pool set .ω,Q.
2: All devices randomly choose the pool.
3: repeat
4: Each device compute the payoff from:

5: .ri(αj ,Qj ) = (R+ρQj )

Nxj
αj × e−λQj − pωi

6: The payoff information is sent to the controller.
7: The centralized controller computes average payoff and broadcast it to all

devices.

8: . ¯r(x) =
�

i∈N
ri (αj ,Qj )

N

9: for .i ∈ N do
10: if .ri < r̄ then
11: if .rand() < (r̄ − ri)/r̄ then
12: Choose other pool.
13: end if
14: end if
15: end for
16: until

7.1.3.1 The Multi-agent System

With the decision-making shift to each miner, these independent miners constitute
a multi-agent system, which can be modeled as a decentralized partially observable
Markov decision process (Dec-POMDP) [27]. Formally, a Dec-POMDP can be
formalized as a 5-tuple .< N, S,Oi,Ai, R >, where N is the set of agents, S is
the global states space, .Oi is the local observations space of agent i, .Ai is the action
space of agent i, and R is the immediate rewards [28]. As shown in Fig. 7.2, at
each step, each agent takes an action .ai according to current policy .πi(ai |oi) and
its local observation .oi . Then, the system will generate an immediate reward R, and
the state s will transit to a new state .s′. Note that compared to the single-agent case
where reward only related to its action, the multi-agent case’s reward is related to
all agents’ behaviors.

Specifically, in our scenario, the observation can be described as .Ot =
[xt−1

1 , . . . , xt−1
M ] (i.e., current mining pools’ state, which is determined by all

agents’ action in the last time .t − 1), the action of each agent can be described as
.At = [M], where M is the set of the mining pools, and the immediate reward can
be formulated as the expected profit .ri . In the following, we will define the three
components of the miners:
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Fig. 7.2 The multi-agent system

Definition The three components of the miners:

• Observation:

.Ot =
[
xt−1
1 , . . . , xt−1

M

]

• Action:

.At = [M]

• Immediate reward:

.Rt
i

(
at
1, a

t
2, . . . , a

t
n

) = (R + ρQj )

Nxj

αj × e−λQj − pωj

Note that the reward is only related to the joint action .(at
1, a

t
2, . . . , a

t
n).
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7.1.3.2 Policy Generation

Learning in a multi-agent system is much more difficult than in a single-agent
system. One of the critical challenges is the moving target problem (i.e., non-
stationary learning problem), which is caused by the noise signal brought by other
agents [29]. Directly applying single-agent reinforcement learning (e.g., Q-learning,
Policy gradient) will suffer seriously no-convergence problem [30]. In this paper,
we introduce an enhanced policy gradient algorithm, termed WoLF Policy Hill
Climbing (WoLF-PHC). It adopts the “wining or learning fast” scheme (i.e., learn
slowly while winning or quickly while losing), where a variety of learning rates are
used to encourage convergence.

In the WoLF-PHC, the updating rule of the Q value can be described as [31]:

. Qi(at ) ← (1 − α)Qi(at ) + α

(

Ri + δmax
a∈A

Qi(at+1)

)

, (7.17)

where .δ ∈ (0, 1] is the discount factor, and .α ∈ (0, 1] is the learning rate. The
discount factor determines the importance of future rewards and the learning rate
determines what extent new knowledge overrides the old knowledge. During the
training process, agents continually update their strategies, i.e., .πi(a) :→ Pr(A),
for the sake of maximizing the cumulative reward by learning from the environment.

To update the .πi(a), the WolF-PHC adopts two learning rates .θwin and .θ lose,
where .θwin > θlose (i.e., learn slowly while winning or quickly while losing).
They are used to update agents’ policy depending upon if the agent is winning
or losing [32]. To determine the winning or loss of current policy, a baseline is
designed. The baseline is the expected reward of the average policy .πi(at ), which
can be formulated as:

.πi(at ) ← πi(at ) + πi(at ) − πi(at )

Ni(t)
, ∀at ∈ A, (7.18)

where

.Ni(t + 1) ← Ni(t) + 1. (7.19)

Then, the .θwin is applied to update the policy cautiously in the condition of win,
otherwise, .θ lose

m is used, i.e.,

.θ =
{

θwin, �,

θ lose, o.w,
(7.20)

where .�:
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.

∑

a∈Ai

πi(at )Qi(at ) >
∑

a∈Ai

πi(at )Qi(at ). (7.21)

In the learning process, the agents constantly learn and adapt their policy toward
maximizing the expected reward, followed by the decrease of the other actions [33].
The update of the pool selection policy of the mining pool can be formulated as:

.πi(at ) ← πi(at ) + �at , ∀a ∈ A, (7.22)

where

.�at =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− min

(

πi(at ),
θi

M − 1

)

,�
′
,

�
a′ �=a

min

(

πi(a
′
t ),

θi

M − 1

)

, o.w,

(7.23)

where

.�
′ : at �= argmax

a′
t∈A

Qi(a
′
t ), (7.24)

and M is a constant coefficient.
Based on this, the WoLF-PHC algorithm based pool selection policy is described

in Algorithm 7.2.

Algorithm 7.2 The WoLF-PHC algorithm for the pool selection

Set .α, δ, θwin, θ lose

Initialization
repeat
for .t = 1, 2, 3 do

Select action .at according to current policy .πi

Each miner observes the immediate reward R

Update .Qi(at ) by:
.Qi(at ) ← (1 − α)Qi(at ) + α(Ri + δmax

a∈A
Qi(at+1))

Update .πi(a) and .πi(a) by:
.πi(at ) ← πi(at ) + πi(at )−πi(at )

Ni(t)
, ∀at ∈ A

.πi(at ) ← πi(at ) + �at , ∀at ∈ A,

end for
until
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7.1.4 Performance Evaluation

In this section, we first analyze the colony behaviors of IoT devices in the
pool selection problem. Then, we present the experiment results to evaluate the
performance of our proposed WoLF-PHC based algorithms.

7.1.4.1 Evolution Analysis

In our experiment, we simulate a blockchain network with 5000 IoT devices (i.e.,
.N = 5000). These resources constrained IoT devices are willing to rent the
computing resource from the cloud services and evolve to form several mining
pools. For the blockchain, we set the fixed rewardR as 1000, and the variable reward
parameter .ρ as .0.01. For the cloud server, we set the price p of computing and
storage resources unites as .0.01. The parameters setting can be found in Table 7.2.

We first investigate the dynamic behavior of the players’ population. In this case,
we deploy two mining pools, where the hash power requirement of two pools is
.ω1 = 10 and .ω2 = 30, and the size of transactions size of both two pools is 100.
As shown in Fig. 7.3, we plot the phase plane of the replicator in our system. The
figure shows that the direction of the adaptation in mining pool selection to the ESS
point (i.e., .Population1 : 0.3, P opulation2 : 0.7). For example, when the initial
population state is .x = [0.5, 0.5], the trajectory of replicator dynamics follows the
arrows to reach the ESS.

7.1.4.2 Evolution Analysis with Different Pooling Strategies

Then, we evaluate the evolution behavior of the players population with different
pooling strategies. In this case, we design three groups of experiments, where the
mining pools’ configuration and the ESS point can be found in Table 7.3. As shown

Table 7.2 List of parameters setting

Parameter Value

Fixed reward R 1000

Number of IoT devices N 5000

Number of agent 30

The price of computation resource unite p 0.01

The variable reward parameter .ρ 0.01

The maximum episode numbers 10,000

The learning rate .α 0.2

The discount factor .β 0.8

The learning rates (win) .θwin 0.0025

The learning rates (lose) .θ lose 0.01
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Fig. 7.3 The phase plane of replicator dynamics

Table 7.3 Experiment configuration

Mining pool Setting ESS point

Pool 1 .ω1 = 10, .ω2 = 30 (0.3, 0.7)

Pool 2 .ω1 = 10, .ω2 = 50 (0.35, 0.65)

Pool 3 .ω1 = 30, .ω2 = 20 (0.4, 0.6)

Pool 4 .ω1 = 30, .ω2 = 200 (1, 0)

in Fig. 7.4, we notice that the miner is more willing to join in the pool with less
hash power requirement. The increasing hash requirement will reduce the number
of players who are willing to joining in. This is mainly caused by the cost of renting
the cloud computing resource. The slim profit gained from mining a block cannot
meet the exorbitant cost of resource renting. Therefore, to attract more miners to
join in, the pool’s coordinator should lower the threshold of the hash requirement
for each miner.

7.1.4.3 Evolutionary Game-Based Pool Selection Algorithm

In this section, we will evaluate the convergence of the centralized evolutionary
game-based pool selection algorithm. The trajectories of players’ strategies adapta-
tion over time are shown in Fig. 7.5. We can find that the players with our algorithm
can quickly converge to the ESS point. This is mainly because that the centralized
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Fig. 7.4 The phase plane of
replicator dynamics with
different pooling strategies.
(a) .ω1 = 10, .ω2 = 50. (b)
.ω1 = 30, .ω2 = 20. (c)
.ω1 = 30, .ω2 = 200
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Fig. 7.5 Convergence
analysis of the evolutionary
game-based pool selection
algorithm. (a) .ω1 = 10,
.ω2 = 50. (b) .ω1 = 30,
.ω2 = 20. (c) .ω1 = 30,
.ω2 = 200
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controller can constantly revise the player behavior. The average payoff .r̄ is issued
to each IoT device to evaluate its current strategy. Then, these players can adjust
their strategies based on their current payoff (i.e., switch their strategies or keep
them).

7.1.4.4 Impact of Delay in Strategy Adaptation

As discussed above, considering the communication latency between miners and the
centralized controller, we investigate a certain period of time delay .τ in our system.
In this section, we evaluate the impact of delay in the process of strategy adaptation.
We set four mining pools in our system with the different hash power requirement,
where .ω1 = 10, .ω2 = 20, .ω3 = 30, and .ω4 = 40. Also, we set three groups of
experiments, where the time delay .τ are separately set as 0, 10, and 20. Note that
the units of .τ are steps in our experiment.

As shown in Fig. 7.6, when the time delay .τ is 0, the trajectory of strategy
adaptation is relatively smooth. The system can quickly converge to the evolutionary
equilibrium. And when the delay is introduced, we notice fluctuating dynamics of
strategy adaptation over time toward the ESS. Especially, with the time delay of .τ

becoming larger, the more fluctuation will be brought. This is because that when
outdated knowledge is used by the players, the decisions tend to be inaccurate. But
although the trajectory of strategy adaptation is fluctuating, the system can also
converge to the near ESS, which means the system still be stable if the time delay is
not very large [34].

7.1.5 Wolf-PHC Based Pool Selection

Then, in this section, we evaluate the performance of the WoLF-PHC based algo-
rithm in the mining pool selection problem.We construct a trading environment with
30 IoT devices (i.e., agents) and two mining pools. The blockchain environment
setting is consistent with previous experiments. We set the maximum training
episode numbers as .10,000, the learning rate .α as .0.2, the discount factor .β as
.0.8, the .θwin as .0.0025 and .θ lose as .0.01.

7.1.5.1 Convergence Performance of WoLF-PHC

Firstly, we evaluate the convergence of our algorithm. We use Q-Learning as the
baseline algorithm, where the learning rate .α and the discount factor .β are also
set as .0.2 and .0.8. 7.17. As shown in Fig. 7.7, the learning process of WoLF-PHC
and Q-learning algorithm are demonstrated. We notice that the agents with the
Q-learning algorithm exhibit a poor convergence performance. This is caused by
the moving target problem in multi-agent system. By contrast, benefiting from the
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Fig. 7.6 The impact of delay
in strategy adaptation. (a)
Delay .= 0. (b) Delay .= 10.
(c) Delay .= 20
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Fig. 7.7 Convergence analysis of Q-learning and WoLF-PHC algorithm. (a) WoLF: .ω1 = 10,
.ω2 = 30. (b) WoLF: .ω1 = 30, .ω2 = 200. (c) Q: .ω1 = 10, .ω2 = 30. (d) Q: .ω1 = 30, .ω2 = 200

“wining or learning fast” scheme, the WoLF-PHC algorithm presents a much better
convergence performance.

Besides, as shown in Fig. 7.8, we present the trajectories of agents’ strategies
adaptation. In this case, we design three groups of experiments, where the mining
pools’ configuration can be found in Table 7.3. We notice that while the adaptation
process exists fluctuation, after about 400 steps, the system will converge. By
comparing to the phase plane of the replicator dynamics, these convergence points
are the ESS of the system.

Moreover, we evaluate our proposed algorithm in comparison to some other
state-of-the-art reinforcement learning algorithms, including Policy Gradient (PG),
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Fig. 7.8 Convergence
analysis of Wolf-PHC based
pool selection algorithm. (a)
.ω1 = 10, .ω2 = 50. (b)
.ω1 = 30, .ω2 = 20. (c)
.ω1 = 30, .ω2 = 200
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Table 7.4 Convergence
performance

Algorithm Steps Conv point

WoLF-PHC 320 (0.3, 0.7)

Q-learning 860 (0.33, 0.67)

Policy gradient 1020 (0.3, 0.7)

DQL 2470 (0.27, 0.73)

DDPG 1930 (0.3, 0.7)

Deep Q-learning (DQL), and Deep Deterministic Policy Gradient (DDPG). In this
experiment, we set the mining pool’s hash power requirement as .ω1 = 10 and
.ω2 = 30, and the value of learning rate .α and the discount factor .β as .0.2 and .0.8.
The other algorithm parameters setting of DQL and DDPG can be found in [35].
As shown in Table 7.4, we notice that all algorithms can converge to a small
neighborhood of the ESS point .(0.3, 0.7). This demonstrates that reinforcement
algorithms can adapt to the non-stationary system and converge to the system’s ESS
point. But different algorithms present different rates of convergence. The WolF-
PHC algorithms exhibit the best performance. It can converge in around 320 steps.
In contrast, the convergence of DQL and DDPG are the worst. This is because that
they have too many parameters that need to be updated during the learning process.
Therefore, we can draw the conclusion that while the complex neural network
design enables them to solve complex tasks, simple learning algorithms may be
more efficient for simple tasks.

7.1.5.2 The Reward vs. Pooling Strategies

In the following, we evaluate the impact of the pooling strategies to the agent’s
reward. In this case, we fixed the pool1’s hash power requirement as .ω1 = 10, and
the set of transactions size as .q = 100. As shown in Fig. 7.9c, as the hash power
requirement of pool2 .ω2 increases, the total reward reduces. This is caused by the
cost of renting the cloud computing resource. Because the total reward gained from
the blockchain network remains unchanged, renting more computing resources will
reduce the total profit of the miners. Besides, we evaluate the impact of the variable
reward q on the agent’s reward. With the size growing, the more reward will bring
to the whole system and therefore improve the agent’s profit.

7.1.5.3 The Reward vs. The Number of Miners

Next, we evaluate the impact of the number of miners and the number of pools
to the agent’s reward. In this experiment, we design three groups of experiments,
where the mining pools’ configuration can be found in Table 7.5. We set the size of
transactions size in a block of all pools as 30. As shown in Fig. 7.9d, as the number
of miners increases, the agent’s reward reduces, which is caused by the competition
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Fig. 7.9 Performance analysis. (a) The reward vs. the pooling strategies. (b) The reward vs. the
number of miners
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Table 7.5 Experiment configuration

Mining pool Setting

Status 1 .ω1 = 20, .ω2 = 30

Status 2 .ω1 = 20, .ω2 = 30, .ω2 = 40

Status 3 .ω1 = 20, .ω2 = 30, .ω2 = 40, .ω2 = 50

among miners. Due to the total gain from the mining block is constant, the single
agent’s profit will decrease with the number of miners increasing. Besides, we find
that the agent’s reward will increase with the number of pools growing. This result
may be explained by the fact that more pools will offer more opportunities for each
agent. More choices will reduce the competition among miners, therefore improving
the individual agent’s profit.

7.2 Resource Trading in Blockchain-Based IIoT

Recently, Internet of Things has received a large amount of attention from both
academics and industries. It is estimated that there may be a total of 20 billion
connected IoT devices by the end of 2020. Specifically, industrial IoT as a subset
of IoT has shown a significant impact on businesses, safety, and even lives.
Compared to other IoT applications, the industrial IoT is focusing on connecting
machines and devices in a diverse range of industries, including manufacturing,
agriculture, oil and gas, transportation, and health care [36]. However, with the
industrial IoT devices numbers and performance requirement continually growing,
the traditional centralized IoT architecture poses great challenges, such as device
safety, personal privacy, and architecture rigid, especially in the context of the
industrial IoT characterized by frequency information exchange and autonomic
financial transaction [37]. To address this problem, peer-to-peer architecture was
introduced to design trading platform for industrial IoT, where each node can trade
their asset (such as surplus energy in microgrids and weather information in the
meteorological station) with others directly without third-party organization.

In the past few years, the blockchain has shown its world-changing potential in
a range of IoT applications. The blockchain, as an incorruptible digital ledger, is a
tamper-proof, distributed database, which is maintained by network nodes without
identity authentication in a peer-to-peer (P2P) network [38]. It can not only record
financial transactions but also record anything of value using a growing list of the
cryptographic hash block. Meanwhile, the concept of decentralized autonomous
organizations (DAO) became practical with the development of blockchain, which
aims at establishing a fully decentralized and autonomous organization without hier-
archical management [39]. A DAO is operated upon the encoding procedure in smart
contrasts and is capable of tracking the financial transaction in blockchain [38].
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However, the huge computational resources requirement of establishing a DAO
platform based on blockchain prevents lightweight industrial IoT devices and smart
mobile devices from directly participating. To address this issue, the “cloud mining”
mechanism was introduced to provide computation resource (such as CPU, GPU)
for the industrial IoT DAO platform, where lightweight devices can offload their
computational task to cloud providers [40]. Specifically, relying on the cloud
mining, more nodes can participate as the consensus nodes, which is beneficial in
terms of improving the robustness of the blockchain. With the cloud computing
joining in, a resource management and pricing problem between the resource
provider and miners turn up, where the resource provider firstly sets price aiming
at maximizing its own reward, while miners purchase the computational resource
from the provider for the sake of obtaining the “best buys.” Relying on the sequence
of two players’ actions, in this paper, we model the interaction between the resource
provider and miners as a Stackelberg game. In addition, considering the non-
cooperative relationship among miners, we propose a multi-agent reinforcement
learning to search the Nash equilibrium point. Compared with traditional meticu-
lously designed heuristics approaches, the multi-agent reinforcement learning can
converge to the best solution without requiring ideal knowledge about environment
system.

7.2.1 Industrial IoT DAO Platform

In this section, we first design a DAO trading platform for industrial IoT based on
blockchain network aided with cloud mining. Then, we model the computational
resource management and pricing problem between the resource provider and
miners as a Stackelberg game.

7.2.1.1 DAO Platform Assisted by Cloud/Fog Computing

The industrial Internet of Things starts up an industrial revolution industry 4.0.
Considering the vulnerable and brittle defect in a centralized architecture, to design
security and unified distributed platform for billions of devices become reasonable.
The blockchain technology is the security guards of the most valuable cryptocurren-
cies in the world, and its decentralized network and embedded smart contracts are
suitable solutions for industrial IoT’s security and durability concerns [41].

In blockchain networks, achieving distributed consensus is the core problem.
Nakamoto consensus protocol is a decentralized, pseudonymous consensus pro-
tocol [42], where a computation-intensive mechanism Proof-of-Work (PoW) is
introduced for achieving the consensus from all participants. PoW, also termed
as mining, is a process of solving a hash function, which is costly to generate
but easy for others to verify [43]. The aforementioned characteristic of PoW
mechanism needs to meet certain requirements of updating decentralized shared
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Fig. 7.10 The self-organized DAO trading platform for IoT networks

ledger. Additionally, there is a special type of nodes, namely “miners,” which make
the decision to devote their computational resources. They may compete with each
other to produce a new block and obtain rewards relying on the financial intensive
mechanism.

With the aid of PoW, the mobile users in IoT blockchain are incentive to
contributing its computation power to maintain the decentralized shared ledger.
However, given that the mobile users’ power and computational capability are
limited, it is difficult for lightweight nodes to directly participate in the PoW process.
Hence, as shown in Fig. 7.10, we introduce the cloud mining to the blockchain
networks for assisting the nodes to offload their storage and computation task to
computation resource provider. Due to the financial intensive mechanism of PoW,
the nodes prefer to join in the consensus process. When more nodes change their
roles from free riders into consensus nodes, a robust DAO trading platform can
be established. Then, we will describe the operation details of this “cloud mining”
assisted industrial IoT DAO platform.



378 7 Blockchain-Enabled Intelligent IoT

System Initialization In order to ensure the authenticity and integrity of digital
messages, the blockchain system needs to be initialized by the cryptography
technique. In our industrial IoT DAO system, each node registers on a trusted
authority agent deploying on the cloud server to become a legitimate entity with
an identity ID joining the blockchain system and gets the public/privacy key
using elliptic asymmetric cryptography and certificate with curve digital signature
algorithm [39].

Transactions Process Recording the transactions is the core function of the IoT
trading system. The transaction process of blockchain is a transfer of cryptocur-
rency(such as Bitcoin, Ether) value which is broadcast to all system and stored into
new blocks. In our system, the IoT nodes first send their request (such as energy
request and surrounding weather information) to edge computer servers, and edge
servers will broadcast their demand to the whole DAO platform. Then, the relevant
supplier nodes (such as solar panels or wind generators and meteorological station)
will respond to the edge server their inventory and unit price. Based on demand of
consumers and stock of supplier, the edge server will match the trading pairs. Then,
the consumers and supplier can carry on transactions.

Building Block Based on the PoW process, each node needs to compete with each
other to obtain the authority of updating the distributed ledger. With the assisting of
cloud mining mechanism, each node can buy the computer service from the cloud
computing provider and offload the huge computation to cloud servers. In addition,
the more computation power means the more possibility of win financial incentive.
Therefore, there exists resource management and pricing problem between IoT
devices and cloud provider which we will describe below in detail.

Consensus Process The consensus process is to deal with the agreement of the
whole blockchain system onto a truth about their transactions data. Once the
solution of the hash puzzle is obtained by a miner, all transactions in the current
period are packed into a new block and broadcast to the whole blockchain network.
The other nodes in the blockchain apply a hash validation-comparison function and
the longest-chain rule to evaluate if they accept this new block. If so, the new block
will be linked to the main blockchain in the chronological order, and the node’s local
view of the blockchain state is updated [44]. In the blockchain, once the consensus
process accomplished, details of the transaction (such as ownership, price, and time
stamp) are recorded through the distributed ledger guarantees.

7.2.1.2 Problem Formulation

As is described above, a resource management and pricing game between miners
and the resource provider turn up. In this paper, we model this relationship as a
two stages Stackelberg game which is a strategic game in economics. As shown
in Fig. 7.11, the resource provider, termed as the “leader,” takes action first and
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Fig. 7.11 The Stackelberg game model

the miners, termed as the “followers,” take actions afterward. Both the leader and
followers can constantly adjust their strategies for the sake of earning more profit.

In the upper stage, the resource provider sets the pricing strategy .{λ = [λi]i∈N :
0 < λi < λ̄} as the unit price of the computational resource, where .λi is the price
for miner i and .λ̄ is the maximum price. In addition, some other overhead c may
be costed resulting from the electricity consumption, loss of hardware, as well as
operation and maintenance cost. Therefore, the expected reward of the resource
provider can be expressed as:

.Rc = �
i∈N

λiμi − �
i∈N

cμi, (7.25)

where .μi is the service demand of miner i.
By contrast, in the lower stage, there are a set of nodes denoted as .N =

{1, . . . , N} which are interested in purchasing computational service and in compet-
ing with each other to earn financial incentive by mining blocks. Each miner .i ∈ N

decides its computational service demand, which is represented by .μi ∈ [μ, μ̄].
The .μ is represented by the minimum computational power to participate in the
blockchain for data synchronization, while the maximum computational power of
the cloud provider is represented by .μ̄. According to Nakamoto consensus protocol,
the probability of wining the competition among miners who is the first to solve the
PoW-based puzzle is related with the miners’ computational power. Therefore, we
defined .αi to evaluate the corresponding computational power of miner i among the
whole consensus nodes, which can be given by:

.α(μi) = μi
∑

j∈N

μj

. (7.26)
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Furthermore, we define a utility function .Ri to evaluate the expected reward by
acting .μi , and we have:

.Ri = R × α(μi) − λi × μi, (7.27)

where R represents to the fixed reward of a successful mining process, while .λi is
the price of the unit computational resource from cloud provider.

As described above, a sequential decision-making process of cloud provider and
miners is modeled. The cloud providers first predict the total service demand of
miners and set its price to earning more profit. We can formulate the optimization
problem of cloud providers as follows:

.max
λ

Rc(λ|μ)

s.t.

{
λ ≥ 0

�i∈N λiμi ≥ �i∈N cμi.

Furthermore, observing the price strategies of cloud providers, the miners set its
service demand to earn more profit. The optimization problem of miners is denoted
as:

.max
μi

Ri(μi |λi)

s.t.

{
μi ≥ 0

R × α(μi) ≥ λi × μi.

7.2.1.3 Game Analysis

Hence, we have already formulated the mathematical model of two sides in the
Stackelberg game. Both the resource provider and miners are capable of constantly
adjusting their strategies to maximize their reward. Specifically, the objective of
the Stackelberg game is to find the Nash equilibrium. The Nash equilibrium is the
optimal outcome of the game, where no player has an incentive to deviate from
its strategy after considering its opponent’s choice [45]. In our problem, the Nash
equilibrium of the proposed Stackelberg game can be defined as follows.

Definition Let .μ∗ and .λ∗ be the optimal unit price of resource provider and service
demand of each miner, respectively. Then, the point .(μ∗, λ∗) is the Nash equilibrium
point if it satisfies:

.Ri(μ
∗, λ∗) ≥ Ri(μ, λ∗), (7.28)

as well as
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.Rc(μ
∗, λ∗) ≥ Ri(μ

∗, λ). (7.29)

Then, in order to verify the uniqueness and existence of the Nash equilibrium in
our Stackelberg game, we take the second order derivatives of the utility function of
miners Eq. 7.31 with respect to .μi and utility function of Eq. 7.25 with respect to .λ,
which is written as follows:

.
∂2Ri

∂μi
2 = −2R

�j �=iμj

(�j∈Nμj )3
≤ 0, (7.30)

.
∂2Rc

∂λ2
= −2c

λ2

(N − 1)R

N
≤ 0. (7.31)

Therefore, the .Ri and .Rc are strictly concave. Accordingly, the Nash equilibrium
exists in this Stackelberg game.

7.2.2 Multi-agent Reinforcement Learning

In this section, we first introduce the multi-agent reinforcement learning algorithm,
termed as “WoLF-PHC.” Then, we present how the “WoLF-PHC” can be applied to
solve proposed Stackelberg game.

7.2.2.1 The Multi-agent System

The cloud provider and miners constitute a multi-agent system in a Stackelberg
game. Considering the non-cooperation relationship among players, each of them
can only have incomplete information of the underlying game model. Therefore,
it is impractical to implement designed heuristics analysis algorithms, which
require accurate environmental information. Inspired by some successful examples
of applying machine learning algorithms to game theory, we introduce the rein-
forcement learning method for the miners and the cloud provider to obtain their
own optimal reward. Reinforcement learning algorithms are a kind of model-free
algorithms, because the update rule of the policy does not require ideal knowledge
about the environment system. In the context of a single agent, the reinforcement
learning algorithm can learn a policy mapping from the state to the action by
interacting with the underlying environment so as to maximize the cumulative
reward. By contrast, for the multi-agent system, compared to the single-agent case
which aims for maximizing its own cumulative reward, the multi-agent case aims
for maximizing the whole reward of all the agents in the system considering other
agents’ behaviors [46].

To elaborate, in the learning process, the agent observes the environment states
and then takes some actions for getting a reward. Based on such interacting process,
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Fig. 7.12 The architecture of multi-agent reinforcement learning algorithm

the agent can update its policy with the purpose of maximizing the cumulative
reward as shown in Fig. 7.12. In the following, let us, first of all, define three
critical components, i.e., state, action, and immediate reward, of the miners and
cloud provider for our proposed reinforcement learning algorithm.

In our paper, let .μt ∈ Am and .λt ∈ Ac denote the service demand action
of miners and the unit price set by resource provider, respectively, where .Am

represents the action space of the miner, while .Ac represents the action space of
the resource provider. In each time slot, the miners and the resource provider take
actions sequentially.

At the beginning of the time slot t , the cloud provider first sets the price .λt based
on the state .st

c = [μt−1
i ]

i∈N
observed from underling game, where .μt−1

i represents
the service demand of each miner in time slot .(t − 1). The immediate reward is
expressed by:

.Rc = �
i∈N

λt
iμ

t−1
i − �

i∈N
cμi. (7.32)

Similarly, after observing the pricing action of the cloud provider in time slot t ,
each miner decides its service demand action .μt based on the state .st

m = λt , where
.λt represents the pricing action of the cloud provider. Hence, the immediate reward
.Rm = Θ(R)−λt ×μt can be obtained, where the R is the fixed reward of successful
mining and .Θ() is to present whether the miner i success in this time stamp. The
three critical components of our reinforcement learning algorithm are summarized
as follows.
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Definition The three components of the miners:

• State:

.st
m = λt

• Action:

.μt ∈ Am

• Immediate reward:

.Rm = Θ(R) − λt × μt

Definition The three components of the resource provider:

• State:

.st
c =

[
μt−1

i

]

i∈N

• Action:

.λt ∈ Ac

• Immediate reward:

.Rc = �
i∈N

λtμt
i − �

i∈N
cμt

i

7.2.2.2 Policy Generation

The key challenges of multi-agent reinforcement learning are the non-stationary
learning problem due to the noise signal brought by other agent. Directly applying
single-agent reinforcement learning will suffer seriously oscillatory problem and the
learning result is hardly to converge [47]. The WoLF-PHC, as the extension of Q-
learning, adopts the principle of “win or learn fast” to learn the dynamic target [48],
where the variety of learning rates is to effectively encourage convergence of multi-
agent in non-stationary environment. Therefore, in this paper, we apply the WoLF-
PHC algorithm for the miners and the cloud provider to learn their policy in a multi-
agent system.

The updating rule of the Q value is the same as that in the Q-learning algorithm.
Let .αm ∈ (0, 1] denote the learning rate and let .δm ∈ (0, 1] represent the discount
factor. The Q-function of the miner with the service demand .μ in the state .st

m can
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be formulated by .Qm(st
m, μt ). Hence, the update rule of the Q-value can be given

by:

.

Qm(st
m, μt ) ← (1 − αm)Qm(st

m, μt )

+αm(Rm + δmVr(Qm(st+1
m ))),

(7.33)

as well as

.Vr(Qm(st
m)) = max

μ∈Am

Qm(st
m, μ), (7.34)

where .Vr(Qm(st
m)) denotes the maximum Q-value of the miner in the state .st

m.
In the WoLF-PHC algorithm, miners can update their service demand policy,

i.e., .πm :→ Pr(Am), which is a map from the state space to action space, for
maximizing the cumulative reward by interacting with the environment and other
agents [49]. The .πm(st

m, μ) denotes the possibility of choosing action .μ in the state
.st
m. The .πm(st

m, μ) increases the possibility of the current best action .μ∗ based on
the Q-function, which can be expressed as:

.μ∗ = arg max
μ∈Am

Qm(sm,μt ). (7.35)

Relying on the “win or learn fast” mechanism, a current average policy
.πm(st

m, μ) is introduced as a competitor to judge the “win” or “failure” of the
policy .πm(st

m, μ). The miner node chooses its learning parameter .θm from .θwin
m

and .θ lose
m , where .θwin

m < θlose
m , calculated from the result of the competition of the

Q-value of .πm(st
m, μ) and .πm(st

m, μ). In the condition of win, the .θwin
m is used

to update the policy cautiously. Otherwise, .θ lose
m is applied to learn fast from the

“failure” condition, i.e.,

.θm =
{

θwin
m , �,

θlose
m , o.w,

(7.36)

where we have .�:

.

∑

μ∈Am

πm(st
m, μ)Qm(st

m, μ) >
∑

μ∈Am

πm(st
m, μ)Qm(st

m, μ). (7.37)

In order to calculate the current average policy, .Nm(st
m) is introduced to record

and update the occurrence count of states observed by the agent, which can be
calculated by:

.Nm(st
m) ← Nm(st

m) + 1. (7.38)
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Then, the average service demand of the miner node .πm(st
m, μ) can be updated

by:

.πm(st
m, μ) ← πm(st

m, μ) + Δ, ∀μ ∈ Am, (7.39)

where

.Δ = πm(st
m, μ) − πm(st

m, μ)

Nm(st
m)

. (7.40)

In the learning process, the possibility of the miner choosing a service demand
is gradually increased, which can maximize the expected reward, followed by the
decrease of the other actions [48]. Therefore, the update of the service demand
policy of the miner can be given by:

.πm(st
m, μ) ← πm(st

m, μ) + �st
m,μ, ∀μ ∈ Am, (7.41)

where

.�st
m,μ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− min

(

πm(st
m, μ),

θm

M − 1

)

,�
′
,

�
μ′ �=μ

min

(

πm(st
m, μ′), θm

M − 1

)

, o.w.

(7.42)

where we have .�
′
: .μ �= arg max

μ′∈Am

Qm(st
m, μ′) and where M is a constant

coefficient.
As for the complexity of the WoLF-PHC algorithm, during the training process,

the agent updates its strategy according to Eq. 7.33. Hence, the complexity of
training process of each agent is on the order of .O(S2 × A), where S represents
the number of state space and the A represents the number of action space. As for
the complexity of the running process of WoLF-PHC, the most complexity is the
Q-table look-up. Therefore, the complexity of the running process of each agent is
approximate .O(S).

The WoLF-PHC algorithm of pricing policy for the cloud provider is shown in
Algorithm 7.3.

7.2.3 Experiments and Simulation Results

In this section, we show the simulation results to evaluate the convergence per-
formance of our proposed algorithm for the multi-agent system. In addition, by
performing simulation with different number of miners, we evaluate the miners’
and resource provider’s policy.
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Algorithm 7.3 The WoLF-PHC algorithm for the cloud provider

set .αc, δc, θ
win
c , θ lose

c

Initialization
repeat
for .t = 1, 2, 3 do

Observe the current state .st
c

Select action .λt at random with the probability policy .πm(st
m, λ)

Observe the next state .st+1
c and immediate reward .Rc

Update .Qc(s
t
c, λ

t ) and .Vm(sc
m) by:

.Qc(s
t
c, λ

t ) ← (1 − αc)Qc(s
t
c, λ

t ) + αc(Rc + δcVr(Qc(s
t+1
c )))

Update .πc(s
t
c, λ) and .πc(s

t
c, λ) by:

.πc(s
t
c, λ) ← πc(s

t
c, λ) + Δ,∀λ ∈ Ac

.πc(s
t
c, λ) ← πc(s

t
c, λ) + �st

c,λ
,∀λ ∈ Ac

end for
until

7.2.3.1 Convergence Performance of WoLF-PHC

First of all, we evaluate the convergence of the WoLF-PHC algorithm and compare
it with the Q-learning algorithm. In our simulations, for simplicity, let the pricing
action set and service demand action set of the resource provider and miners be
.Am = (10, 11, . . . , 100) and .Ac = (0, 1, . . . , 100), respectively. The quantitative
factor of the cost of the unit resource in cloud provider is .c = 1, and the reward of
the successful mining is .R = 10,000. For simplicity, we assume a uniform pricing
strategy for each miner. In order to ensure that the agent can converge to optimal
policy, we set the maximum episode numbers as 5000 for both Q-learning and
WoLF-PHC algorithm. In addition, the learning rate is .α = 0.2, which determines
the degree to which the modified Q-value overrides the older one. The discount
factor .β = 0.8 quantifies how much importance we focus on future rewards. The
learning parameters .θwin and .θ lose are set as .0.0025 and .0.01, respectively, which
can improve the convergence performance [48]. Our experiment environment is
developed on Python 3.3.

Firstly, we set only one miner and one cloud provider participating in the
blockchain network. We apply the Q-learning and WoLF-PHC algorithm in both
side of the resource provider and the miner for learning the optimal policy.
The Q-learning learning process is demonstrated in Fig. 7.13 where the learning
result cannot converge and shows poor performance. Compared with Q-learning
algorithm, the WoLF-PHC algorithm exhibits a good convergence performance due
to the automatic adjustment of learning rate as shown in Fig. 7.13. Both the cloud
provider and miners converge near to the Nash equilibrium point benefiting from
the “wining or learning fast” mechanism of WoLF-PHC.



7.2 Resource Trading in Blockchain-Based IIoT 387

Fig. 7.13 The convergence performance of both Q-learning and WoLF-PHC algorithm

7.2.3.2 The Number of Miners vs. Service Demand

In the following, we evaluate the impact for both cloud provider’s price and miners’
service demand imposed by the number of miners. It can be obviously seen that
the service demand of each miner is decreased with the increase in the number of
miners in the blockchain. This is because the competition among miners decreases
the possibility of mining a valued block for each miner, which can be explained by
Eq. (7.26). Due to the decrease of expected reward, the miners tend to cut down its
service demand for reducing financial loss. In addition, Fig. 7.14d shows the impact
of the reward. With the increase of the fixed reward from success mining, the service
demand of each miner is also increased. This is due to the fact that the increased
reward can enhance the miner’s expected reward, which stimulates the miner to
purchase more computational service to obtain more profits. Therefore, the Nash
equilibrium point is increased with the increase of the reward value. As illustrated,
we can draw the conclusion that the Nash equilibrium point of service demand is
related to the expected reward of each agent, say the service demand increases with
the expected reward.

In spite of the service demand of each miner decreasing with the growth of
numbers, the total service demand is increasing as shown in Fig. 7.14b. This is
due to the fact that the competition among miners distorts the relationship between
expected reward and service demand. This competition simulates the miners to have
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Fig. 7.14 Service demand
and price analysis. (a) Service
demand versus the number of
miners. (b) Total service
demand versus the number of
miners. (c) Optimal price
versus the number of miners
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higher service demand to obtain more profit. Therefore, the total service demand is
increasing with the competition aggravating.

7.2.3.3 The Number of Miners vs. Price

As for the resource provider, as shown in Fig. 7.14c, the optimal price of the cloud
provider is almost invariable with the increase of the number of miners. That is
because of the negative correlation between the price and the service demand.
With the increase of the number of miners, the total service demand of miners is
increased. Therefore, due to the condition of Nash equilibrium, the price needs to
slightly increase to meet a new Nash equilibrium point. However, due to the default
parameter in our scenario, the optimal price is constrained to the maximum price.
Therefore, the optimal price is always close to the maximum price.

7.3 Summary

In this chapter, we discussed the challenges brought by the dramatic advances in
IoT technology and gave solutions based on the integration of IoT and blockchain
(BCoT). We first propose a cloud mining pool-aided BCoT architecture, where
the IoT devices can rent the computing resource from the cloud services to
offload their mining tasks. Based on this architecture, we discuss the mining
pool selection problem. We proposed a centralized evolutionary game-based pool
selection algorithm. A centralized controller is used to guide the behaviors of
all players. Besides, considering the non-cooperative relationship among miners,
we propose a WoLF-PHC-based pool selection algorithm. We further investigated
the resource management and pricing problem in IIoT-based blockchain networks
with the aid of cloud mining. We established a self-organized trading platform
for presenting how cloud mining can assist the IoT-based blockchain. Moreover,
we formulated the interaction between the cloud provider and cloud miners as a
Stackelberg game. Then, we invoked a multi-agent reinforcement learning algorithm
to achieve the near-optimal policy.
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Chapter 8
Conclusions and Future Challenges

8.1 Conclusions

This book mainly discusses the architectures of the Internet of Things as well as
the possible techniques and challenges. As shown in Fig. 8.1, with the continuous
advancement of global 5G construction and environmental impacts such as smart
city guidance, IoT investment continues to increase [1]. However, with the develop-
ment of the Internet of Things, massive heterogeneous devices and different network
protocols continue to increase [2]. How to design a more efficient, flexible, and
open network control architecture has become the focus of the current academic and
industrial circles. In Chap. 2, as an emerging network mode, the intra-network intel-
ligent driver is a key technology to promote the further development of the Internet
of Things, which can effectively improve the manageability, programmability, and
reusability of the Internet of Things network.

Then, we discuss the possible machine learning methods for IoT network
awareness. With the rapid development of IoT application scenarios such as smart
cities, it is very important to strengthen the management of data traffic in smart
IoT networks [3]. As a critical part of massive data analysis, traffic awareness plays
an important role in ensuring IoT network security and defending traffic attacks.
In Chap. 3, we propose an end-to-end IoT traffic classification method relying on
a deep learning aided capsule network. Moreover, the attention mechanism was
introduced for assisting network traffic classification in the form of the following
two models, the attention aided long short term memory (LSTM) as well as the
hierarchical attention network (HAN). We also design a machine learning-based
in-network DDoS detection framework.

The increasing dynamics and complexity of IoT networks have brought revolu-
tionary changes in its modeling and control, where efficient routing and resource
allocation strategies become beneficial. The growth of IoT devices poses great chal-
lenges to network service providers [4]. To meet different application requirements,
diverse network proprietary hardware have to be implemented in the network. This
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rigid paradigm greatly reduces the scalability and flexibility of the network system.
In order to achieve effective traffic control, in Chap. 4, we first adopt a centralized
training and distributed execution learning paradigm and design a hierarchical
social-based DTN architecture. Then, we design a QoS-oriented adaptive routing
scheme based on Machine Learning. To satisfy different applications’ requirements
in the same IoT network, in Chap. 5, we first design a network slicing architecture
over the SDN-based long-range wide area network. Then, we propose a Continuous-
Decision virtual network embedding scheme relying on Reinforcement Learning.

Based on network control, due to the very limited energy and computing
resources of many IoT devices, such resource-constrained IoT devices are not well-
equipped to perform complex processing; the computational workload is too heavy
for IoT devices. Mobile edge computing (MEC) can provide abundant computing
and storage resources to meet the performance requirements of mobile devices
(MDs); computational tasks have no need to travel through the core network,
allowing IoT data to be processed and results consumed locally with minimal
delay [5]. Therefore, in Chap. 6 we propose a second-price auction scheme for
ensuring fair bidding for spectrum rent. Moreover, a novel deep reinforcement learn-
ing (DRL)-based network structure is proposed to jointly optimize task offloading
and resource allocation. In order to alleviate interference in multiple edge scenarios,
we also propose a multi-agent aided deep deterministic policy gradient (MADDPG)
algorithm to minimize total energy consumption and latency.

However, the issues of privacy and security are vital challenges for computation
offloading in the distributed MEC networks [6]. To be specific, the transmitted
data may contain private data. This raises the risk of privacy leakage and mali-
cious attacks. Due to the decentralization, anonymity, and trust characteristics
of blockchain, the combination of MEC and blockchain has been regarded as
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a promising technology to solve the security and privacy problems in MEC
networks [7]. Specifically, Internet of things applications based on blockchain
technologies are usually based on the clouding computing architecture to allocate
massive computing resources and offload corresponding tasks; this feature further
introduces some intelligent resource allocation algorithms into this field. In Chap. 7,
we first discussed the resource allocation method based on the evolutionary game
approach and, second, introduced resource management and control mechanism
based on the Multi-Agent Reinforcement learning method. Overall, blockchain
technologies have promoted further development and evolution of IoT applications.
Blockchain-enabled intelligent IoT applications have shown good performance in
many fields.

8.2 Future Challenges

8.2.1 IoT Standards and Unified Architecture

NB-IoT and eMTC technologies are oriented towards the 5G mMTC scenario and
are the basis for entering the 5G IoT in the future. At present, 3GPP has adopted
the subsequent evolution of NB-IoT/ eMTC as the technical standard of 5GmMTC.
NB-IoT and eMTC technology have the characteristics of enhanced coverage, large
connection, low power consumption, and low cost. With the rapid development of
information technology industries such as mobile Internet, cloud computing, and the
Internet of Things, information transmission, storage, and processing capabilities
have risen rapidly, resulting in an exponential increase in the amount of data [8].
The current technical standards are not enough to meet the development needs
of the Internet of Things. It is necessary to formulate relevant standards in the
Internet of Things operating system, supporting key applications, and information
technologies such as artificial intelligence and 5G. In addition, the traditional three-
layer architecture of the Internet of Things has been solidified, and it is necessary
to use SDN and network programmable technologies to realize flexible network
control, reorganization, and efficient data transmission.

8.2.2 Adopting Emerging Naming and Addressing in IoT

This paper extensively discusses the application of mobile edge computing and
blockchain technology in the IoT field and gives some detailed implementation
details. However, the application of the above methods in the IoT field mostly relies
on traditional IP network architecture, which only provides a “pipeline” function for
forwarding without understanding the forwarding content [9]. Moreover, the change
of IP address can lead to communication interruption, thus affecting the response
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time of IoT applications and even causing some security problems. Therefore, future
research and challenges will rely on some novel network architectures to explore
Emerging Naming and Addressing mechanisms in IoT. For example, there have
been some related studies on the combination of Named Data Network(NDN) and
IoT applications recently. Those studies decouple the information from the network
terminal and sink into the network, finally realizing the deployment of massive IoT
applications.

8.2.3 Privacy and Security Issues in IoT

Currently, the Internet of Things has a massive number of nodes and devices. These
devices can process data intelligently. The advent of the Internet of Everything era
has promoted social and economic development and made information easier to
collect and track. IoT data privacy protection has become an urgent problem to be
solved. Currently, privacy and security challenges in IoT include data-based privacy
threats. IoT devices pose a significant privacy and security risk due to data leakage
during data collection, transmission, and processing. This is particularly concerning
in the healthcare sector where sensitive patient information is involved, making
Health Privacy Security a top priority. The rapid development of information and
communication technology has led to an increasing number of IoT devices enabling
various e-health scenarios. However, the use of IoT technology in e-health poses
risks related to patient identification and the reliability of collected information,
which may contradict the Privacy Shield Transparency Principles. Unlike websites,
apps, etc., IoT devices and services may not be transparent enough to present their
privacy policies to users [10]. The collection of personal information may also lead
to leakage without being unified by users.

8.2.4 Quality of Service in IoT

The IoT service is a service applied in the IoT environment. Compared with ordinary
services, the biggest difference is that the service faces the IoT environment instead
of the traditional Internet. This change brings new challenges to IoT services that are
different from traditional services. First, they perceive network heterogeneity caused
by different types of devices. Compared with the heterogeneity of the Internet, the
Internet of Things is more prominent in heterogeneity. There are various types of
sensing devices in the Internet of Things, and the amount of continuously generated
sensing data is huge. IoT services are faced with the challenge of massive and
heterogeneous sensing data. Moreover, its own limited capabilities and dynamically
changing environmental factors lead to the dynamic and changeable links and
topology of the Internet of Things, the communication status is very unstable, and
the link quality faces severe challenges. IoT services must meet this challenge.
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Continuous QoS must be provided in response to network dynamics by dynamically
adjusting interactions in the IoT. IoT QoS needs to consider not only the interaction
needs of applications but also the needs of resource providers and nodes supporting
the communication required by the interacting devices [11]. The support of such
multi-dimensional QoS needs to enable a fluent and adaptive framework to support
opportunistic interactions in the emerging IoT.
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