How to level up as a software engineer

Yuri Karabatov

Contents

1

Introduction 1

1.1 Whothisbookisfor. 1

12 Howlcanhelp 2

The point of reference 4

2.1 “Developer”or“engineer”? 5

22 Goingmeta L e 6

2.3 Typicaldescriptions e 6

2.4 VYearsofexperience 10

2.5 ComputerSciencedegree 12

251 Credentials 13

252 Knowledge 15

253 Skills 17

2.5.4 Ifyoudon’t have a Computer Sciencedegree 19

2.6 Theseniorengineermindset. 20

2.6.1 Youarenotpaidtowritecode 21

2.6.2 Exponentiallearning, 25

2.6.3 Youarenotyourrole., 32

2.6.4 Developmentisateamsport 38

2.7 Knowyourplace e 42
2.7.1 Thesenior engineer has sufficient knowledge to work indepen-

dently 44

2.7.2 Theseniorengineerwritesgoodcode 45

2.7.3 The senior engineer knows the software development process 48

2.7.4 The senior engineer enables others to make decisions efficiently 52

2.7.5 The senior engineer is continuously improving 53

Junior to Senior

3 What you can do now

3.1
3.2
3.3
3.4
3.5

4 Levelingup
4.1 Therealworld

4.3

4.4
4.5

Where do you want to go?
Help your company teach you
Considerate communication
Unknown unknowns
Code mimicry

4.3.1

Interesting people
The interview game

45.1
4.5.2

......

Role + company

The rules
Front-load the work

5 Prevention and control

5.1
5.2

5.3 Procrastination

Burnout
Impostor syndrome

6 Growing as a developer

6.1 Complementary knowledge

6.2 Advice from notable engineers
6.3 Recommended reading

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5

“Elegant” code

Paradigms and programming languages

“Not invented here” syndrome

Becoming an early adopter . .

Mentorship

.................

.....

.................

56
56
59
67
74
77

83
83
86
91
93
94
97
99
101

106
107
110
113

118
118
119
120
122
123
124
127
129

Yuri Karabatov

1 Introduction

Thank you for buying this book. It means a lot to me. Read it, live it, get excited, and if
you have any questions, feel free to email me at yuri@norikitech.com. | read every
email.

1.1 Who this book is for

The earlier you are in your software engineering career, the more you will get out of this
book. If you have just started a new job after a programming bootcamp, have recently
completed your Computer Science degree, or even have been working in software
for a year or two, you will learn some insights that usually come with several years of
experience, or not at all if you don’t care to pay attention. | have some strong words to
say about “years of experience,” but let’s leave it for later.

There is much to learn in software development that is not about writing code. Being
successful in commercial software development is often not about writing code at all.
At the same time, the more junior your role is, the more you are judged by how well
you write code and how many libraries you’re familiar with. That is what programming
bootcamps are all about: in your short time there, they teach you how to code, and
not much else.

Don’t get me wrong, programming skills are important. They can get you impressively
far in the workplace and in your career, and there are certain domains where sheer
programming ability (the time to deliver or the amount of practice in one knowledge
domain) can make all the difference for the business. But most of us are not superstar
programmers and even if we were, we rarely work alone. You will likely work on a team,
and with other people: designers, testers, managers. If you’re lucky you’ll even work
directly with customers.

mailto:yuri@norikitech.com

Junior to Senior

This book is for you if you want to find out what it means to be an engineer in commer-
cial software development, what other skills besides programming the companies are
looking for, and how to advance your career in a systematic way by knowing how the
game is played.

1.2 How | can help

I’ve been in the beginner’s shoes, too, everyone has been. | have always loved to find
out why and how people do the things they do, and for many years I've been learning
both the technical skills and more importantly, what it means to be a professional
engineer. | don’t know it all, and | don’t have thirty years of experience, but | have ten,
and I've spent a lot of time seeking out and working on teams with true craftsmen that
helped me learn and improve. Now | want to share what I've learned with you.

This book won’t teach you the best libraries to use, or what size your functions should
be but I’'ll recommend some books that will. These are the technicalities that you can
learn at any time or find on the internet. | will show you something better: timeless
skills that you can use now to launch your career and by applying them repeatedly,
become a valued member of your team. | will show you how professionals think about
their place in the company and the code they’re writing, and why it matters.

You will learn three things in particular: how to navigate the workplace, how to navigate
the field of software development and how to navigate your career. By knowing where
you are, where you can go and how to go there, you will be in charge of your software
engineering career.

You don’t need to learn any of that on purpose to have a long and successful career in
software development. There are lots of programmers in the world and if you work
in a profession for many years, just by handling different situations you learn what
is expected from a professional. It happens naturally but it takes too damn long. You
don’t have to spend ten years working for an insight to go off in your head, your brain
finally matching the pattern that you have seen dozens of times. Glean the insight
from a book. Start with this one, and read others.

The trouble with time travel—skipping the years of experience and learning from a
book—is that when you’re just beginning the journey, you don’t understand why you

Yuri Karabatov 2

Junior to Senior

should follow that one bit of advice. You think you don’t need it or it doesn’t apply
to you at all. Give it time. A lot of the professional’s behavior patterns are reinforced
neural pathways firing in the brain, and thinking hard will not emulate them. You just
don’t have the experience (again, that pesky word!). | try to give you advice that you
can use at any pointin your career.

Experts often share advice that looks simple—but is too advanced for a beginner—in
tight little books. A couple that spring to mind are Steven Pressfiend’s “Turning Pro” and
Alex Hillman’s “The Tiny MBA.” If you are not seasoned in a field (for Pressfield, creative
work, and for Hillman, online business) the advice they give will likely do you no good.
It’s too high-level to be actionable, requires knowledge and failed attempts under
your belt to understand why they say what they say. For professionals, it’s a handy
reference of what can go wrong that they can quickly skim and find inspiration and
focus. As learning tools these books produce more questions than answers. That’s why
I’m aiming to give you some of the high-level vision that distinguishes the professional
from the beginner, without losing the beginner along the way.

Yuri Karabatov 3

2 The point of reference

“Would you tell me, please, which way | ought to go from here?”

“That depends a good deal on where you want to get to,” said the Cat.

“I don’t much care where-" said Alice.

“Then it doesn’t matter which way you go,” said the Cat.

“~so long as | get somewhere,” Alice added as an explanation.

“Oh, you’re sure to do that,” said the Cat, “if you only walk long enough.”

To get anywhere, you need a map. To plot your way on the map, you need to know
where you are. To make the trek, you need to know how to cross difficult terrain. I think
the map metaphor works well for what we’re trying to learn. The map is the field of
software development, your location is what you know (and what you can do), and the
terrain is the workplace and all the people you have to talk to on your way to become
a senior engineer.

The junior engineer James has a low-resolution paper map, with big chunks of it blank,
edges marked with “Here be dragons.” The senior engineer Susan has a dedicated
GPS unit with a color screen that also shows heights and points of interest. The junior
wears sandals and a T-shirt. The senior has packed a rain jacket and trekking shoes for
the rocky path ahead.

The question is: could the junior bring an umbrella? Yes, if he cared to look at the
weather forecast. The thought never crossed his mind.

By knowing what’s available and what’s missing from your arsenal of knowledge, you
get a superpower: you’ll know what doesn’t let you make better decisions, and then
you will go out and learn it. Next time when it’s going to rain, you’ll stay dry.

Junior to Senior

2.1 “Developer” or “engineer”?

Some advice on the internet warns against calling yourself a developer, and only ever
writing “software engineer” on your résumé. The developer is considered a lesser
species than the lofty engineer. “A developer simply writes code,” they say, “but an
engineer... engineers!” (hand waving commences). As if code was something you
didn’t touch. After seeing some people’s code, | agree: there is code that you shouldn’t
touch.

To be serious, this debate is completely irrelevant in the context of getting programming
jobs. Nobody will discriminate against you if you put one on your résumé or the other.
Some companies call their software engineers “software developers” while others
have “engineers.” Don’t call yourself a “software ventriloquist” and you’ll be golden
(though that’s one cool title).

This advice has a core of truth. As Patrick McKenzie brilliantly explains in his essay
“Don’t Call Yourself a Programmer,” if we take a bird’s eye view of the company, de-
velopers are very expensive “resources” and in many companies it’s hard to directly
link the value that the developers produce to the revenue of the business. Hence,
the managers want to decrease these costs and aren’t interested in educating and
retaining good engineers. From the business point of view, it makes sense: a business
must generate profit to stay afloat, and one way to generate more profit is to cut costs.
Patrick’s advice is to position yourself as someone who can increase the revenue of
the business, rather than someone who “writes code.”

Understanding the business side of things is yet another level of the career game and
involves another set of skills that are mostly orthogonal to those of a software engineer.
If you want to know more, read what Patrick has to say and follow his pointers because
in this book | only touch briefly on navigating your career, and I’'m mostly talking about
becoming a better software engineer—the foundation from which you can take your
career where you see fit. We must learn to walk before we can fly.

Yuri Karabatov 5

https://www.kalzumeus.com/2011/10/28/dont-call-yourself-a-programmer/

Junior to Senior

2.2 Going meta

Onething we can learn from thisis that there is almost always a deeper, more advanced,
more high-level way of looking at everything you do. Math or physics is the same:
people use a formula for decades or even centuries and then some genius comes along
and explains that the formula is only a special case (this is called a generalization). In
geometry, the square is a special case of the rectangle, the rectangle is a special case
of the quadrilateral (a polygon with four edges and four vertices).

You can learn these new ways of seeing by seeking out expertsin your field and learning
what they know by talking to them and reading their work. The outcome is that it
completely changes your behavior. You now know your previous destination to have
been a mirage, with the actual place you want to arrive somewhere to the side, or
behind a hill that you never knew existed. It can be discouraging because it devalues
some of the knowledge that you’ve worked to earn but at the same time unlocks new
paths where there have been none.

How are you supposed to follow their advice if it’s so meta? There is no simple way.
Treat what you find as a high-level map and fill in information as you learn. Come back
to these books (blog posts, courses) again and again and they will reward you with
new insights. Our brain is perpetually looking for new patterns and if you are stuck on
a problem, by rereading an advanced book you are likely to notice new connections or
a path to the solution that you haven’t noticed before.

2.3 Typical descriptions

Each company defines its levels of software engineers differently (or doesn’t have
them at all), but we can find some common threads that | will use, so that we have
shared context when we speak about being a “junior,” “middle” or “senior” software
engineer.

In my mind, we can place all levels on two axes: responsibility and impact, every level
having more of each than the previous. Responsibility is how much the engineer stays
in the confines of their role, and impact is what weight they have within the company,
or what the consequences of their actions will mean to the company. Let me explain.

Yuri Karabatov 6

Junior to Senior

IMPACT

® SENIOR

o MIDDLE

® JuNIOR

——
RESPONSIBILITY

Fig. 1: Responsibility and impact.

The junior engineer James does not have much of either responsibility or impact. The
job description of the junior is to learn, and he is under supervision from a more senior
engineer. His responsibility is low because he does not step far from his role of writing
code. He does not decide what problems to solve—they are handed to him by his
project manager or a senior engineer, who is responsible for grading the problems’
difficulty and assigning them to the team.

Often the junior engineer does not even decide how to solve a problem. His solutions
are not ideal and after code review a senior engineer will tell him how to solve the
problem, because the senior engineer is responsible for shipping the best solutions.

The junior engineer’s impact is also low because he is handed low-priority “learning”
problems that are not critical to the product or the company. If the problem were
critical, it would more likely be solved by a senior engineer.

Yuri Karabatov 7

Junior to Senior

That paints a bleak picture, doesn’t it? For a lot of us the experience would have been
(oris) completely different: we are given complicated work that makes a difference to
the company, and our opinion on product features is valued. Giving “stretch” projects
is the best way to grow the engineers’ skills while keeping them engaged, and that’s
how we get the knowledge to level up in most companies. But when we cut everything
non-essential to the role, the junior engineer has low impact because the tasks he
does are simple and can’t break the product, and he has low responsibility, because
he does little to decide the direction or performance of the product.

What about the middle software engineer (let’s call her Mary)? Mary has significantly
more responsibility and impact than James, the junior engineer. Her job description is
to “do the work” and implement whatever is needed for the product. She is not (or
lightly) supervised and works independently, thus she is responsible for any mistakes
that she makes.

She has medium responsibility because aside from writing code, she ventures into
other roles: helping with design and architecture decisions, and of course she decides
how to solve the tasks that she is given. At the same time, she rarely (if ever) makes any
but minor software architecture decisions, or what goes into the product. Her impact
is much higher than the junior engineer’s, because her implementation decisions are
most often her own—reviewed, but rarely given by more senior engineers. That means
she has the means to break the product, and if she does, she will also likely be the one
responsible to fix it.

The senior engineer Susan has even more responsibility and impact, sometimes as
much as the company’s size allows. In smaller to medium-sized companies, there are
few if any purely technical roles higher than the senior software engineer. Even if the
senior engineer does not call the final shots on new technology or major architectural
changes, she is most likely the one driving these changes.

Her responsibility reaches far from her technical role. As a technical expert, she can
make design and technology decisions that impact the whole product or its major
pieces, because she has the knowledge whether some design is feasible, if the platform
supports what has been proposed by marketing, or if implementing something is
possible at all, and at what cost. The senior engineer is responsible for these decisions,
and if something doesn’t work out, she is to bear the consequences. She is often
also responsible for any work that is produced by the junior engineers—they aren’t

Yuri Karabatov 8

Junior to Senior

responsible if something doesn’t work, instead she is.

What about her impact? Depending on the size of the company, the senior engineer’s
work and decisions influence the whole product or its major parts, and any mistakes
can result in outages and financial loss. Often there is nobody else (besides the other
senior engineers, if there are any) who is expert enough to review the senior engineer’s
code, or rather, what is implemented—the subject matter.

There are other technical roles that have even more responsibility and impact, and they
mostly start to appear in companies with at least several dozens of software engineers.
In smaller companies, the role itself might exist virtually: there will be no dedicated
person, but, for example, the project’s architecture would be decided by the team lead
and a senior engineer.

Some other mostly technical roles that you are likely to encounter are the tech lead, the
team lead, the principal engineer and the software architect. | will not talk much about
them because their technical skills as a software developer are unlikely to be better,
and are often worse than those of a senior engineer. | don’t say that in contempt,
this is simply the nature of these roles. The role of the senior software engineer is
primarily to produce code, while the tech lead and the team lead’s roles are more
about managing the people and how the work is done. The principal engineer’s and
the software architect’s roles are more about coordinating and directing technical
effort while focusing on the business needs. Here’s Yan Cui describing his experience as
a principal engineer in his post “How to Break the ‘Senior Engineer’ Career Ceiling”:

...my personal output as an individual contributor was the lowest it has ever been.
And that’s OK, it’s kinda the point—you need to optimize for your impact on the
business. Sometimes that means sacrificing your personal output as an individual
contributor.

| have been a nominal team lead in one of the companies | worked for, but I like to
write code and think about mostly technical things, so early in my career I’'ve made a
conscious decision to avoid “breaking the career ceiling” and going into management
or other roles that are technically more senior (but less technical, if you get my drift).

There are lots of industries in the world that need highly skilled software engineers, and
there are lots of skills to master in the field of software development to keep your career
interesting without going “higher” in the company hierarchy. By carefully choosing the

Yuri Karabatov 9

https://theburningmonk.com/2019/11/how-to-break-the-senior-engineer-career-ceiling/

Junior to Senior

companies and teams you work for, and in which industry, you can significantly raise
the salary ceiling as well. If you augment your software development skills with some
business savvy, becoming an independent contractor or creating software products on
the internet can increase your earning potential even further—all while being primarily
an engineer and not a manager.

2.4 Years of experience

Almost every job posting has the line “X years of experience” in the Requirements
section (that usually comes right after “Bachelor’s degree in Computer Science”—but
we’ll talk about that later). Usually it mentions a specific technology, such as “5 years
of experience in Java and Spring,” but sometimes you see a more general “3 to 5 years
of software development experience.” That may look disheartening if you’ve only been
working for one and half years, but have already mastered your job and start to feel
bored.

What do these companies really want when they ask for a certain amount of years of
experience? Thatis simply an easy filter for the HR department to reject people who
may be qualified (which means “can do the job”), but don’t have the credentials (which
means the recruiter will have to spend extra time to look at their other skills to see if
they match the job description). What this filter represents is the average rate at which
even the slowest learners accumulate the skills necessary to do the job. It is very much
like the system at school: school is designed to accommodate the slowest learners, so
that by the end of the school year, everyone has learned enough. But if you sort the
children by ability, you will find that those who are “gifted” can learn much faster.

So, after two or three years in the workplace even the junior engineers who learn very
slowly will get enough excess knowledge to qualify for a promotion and become a
middle software engineer. Same with the middle engineers, just by doing the work
(even without much interest) and just spending the time encountering various situa-
tions at work, after a few years they will gain enough knowledge and skills (at least in
their main role) that they would be able to become a senior engineer. Of course, that
heavily depends on the industry you’re in and the nature of the work you’re doing, but
that is the average. | think that is soothing. You can know with certainty that even if

Yuri Karabatov 10

Junior to Senior

you are not outstanding at your job, or not particularly interested, if you come to work
every day and do your part, in five to seven years you can become a senior software
engineer.

Your knowledge and skills will accumulate naturally because you will be handed harder
tasks to do (at least, that’s how it usually happens). As you work, you will discover that
you have more aptitude for one type of work than for others, or become interested
in another part of the business, and eventually little by little you’ll take more respon-
sibility. You’ll be able to do more because you’ve mastered what you’ve been doing
before.

Don’t let the line “X years of experience required” prevent you from applying. Some
people don’t apply to jobs unless they believe they satisfy all of the requirements,
which is usually impossible in software. The job posting frequently is a bag of facts
describing the ideal candidate who simply doesn’t exist.

On top of that, knowing all the technologies listed in the job posting is often not
required as well. Again, it’s almost impossible to find a person skilled in the exact stack
the company is using, and it’s much easier to teach a good candidate than to spend
time looking for the ideal candidate. In the first couple of months nobody expects
much performance from new hires anyway, so they can learn whatever they’re missing
while already working, and it’s very common.

Later in the book, in the section about interviews, | will talk about how to step around
this and other filters you might find in a job posting. They are designed for the low-
est common denominator, the weakest candidates, so the applicants can be quickly
rejected without even looking at them closely. If you are dedicated to improving and
are excited about software development (and you must be since you are reading this
book), you can learn much faster than that and get your required “years of experience”
twice as fast.

Consider the direction of your learning and the Pareto principle (that moving 20%
towards the goal gives you 80% of the total benefit). Compared to the average, you
will likely know much better which direction you want to go in your career. That will
inform what exactly you learn and how far you will go in a subject before only tracing
the contours of what you don’t yet know, to learn later if you need it. In my experience,
itis far more important to know the “shape” of a subject and know its basic principles—

Yuri Karabatov 11

Junior to Senior

because there are many such nuggets of knowledge in software development that
you’ll want to know—than spend an inordinate amount of time learning something
and never using it again. Are the school memories coming back? It’s a little different at
school, because children don’t yet know what they will need (and let’s be honest, us
adults often don’t know either), but at work you’re free to learn as much or as little
about a subject as you want.

2.5 Computer Science degree

Ah, the elephant in the room, a Computer Science degree. I'll come right out and say
that | don’t have a degree at all, even though | spent four years studying. | spent two
years studying physics at one university and then two years studying English at another.
Then I met my future wife, dropped out and moved to another city. C’est la vie.

Well, do you need it? The answer is: yes and no. It depends. The “CS degree” is actually
three things, or “three kids in a trench coat”: the credentials (the face), the knowledge
(the torso) and the skills (the feet). Let’s look at each of them in turn.

| will be talking primarily from the point of view of an application developer, be it web
or mobile, and simple backend development, all of which are typical first roles for
self-taught software engineers. | started with web development and later moved into
mobile. Do | say these fields are “easy”? No. The skills and knowledge ceiling is quite
high, especially when high performance is involved and is critical to the product. But
application development is undeniably accessible: you can start with a text file and a
web browser.

If we look at other fields, like finance or math-heavy industries, you will need more
knowledge and skills even in the entry-level positions, which is why in those fields
there are fewer self-taught software engineers. Read on and remember I’'m talking
about a field with a low-ish barrier of entry, where a lot of the knowledge a CS degree
provides will be unused at the start.

Yuri Karabatov 12

Junior to Senior

2.5.1 Credentials

This is the only part for which you have to go to a university. You can get the knowledge
and the skills on your own, but you can’t get the credentials without attending the
university. Now you don’t even need to attend in person, there are online universities
like the Open University and a few others. They are not free, but the price for a year
is reasonable. Still, the curriculum is paced in such a way that you will have to spend
almost or just as much time getting the degree as if you were attending in person. |
don’t think you can go lower than three years for a Bachelor’s.

Having the credentials will help you open some doors, and by being a student, you
can get early job offers and start a career right after graduation (Joel Spolsky makes
a case in his post “Finding Great Developers”), not to mention have a great time and
make some lifelong friends. But we are only talking about what the degree gets you.

The degree gives you much better chances at getting an entry-level software develop-
ment role, since by the virtue of getting it, you are passing through the filter where a
person with the same knowledge and skills, but no degree, would be rejected. Your
degree tells your potential employer that you have at least some aptitude for program-
ming and you know how to write code, that you can persevere and complete tasks that
are assigned to you, on time, and that you probably know the bare minimum on how
computers work because you’ve studied networks, computer architecture and other
things.

If you have a CS degree and relevant work experience, you will be one of the first
candidates the company looks at, and that can help you land much better jobs than if
you didn’t have one. So far it’s been pretty obvious and logical.

Where it gets interesting is at or around the senior level. Your degree (you may have
other credentials by this time: certifications, etc.) becomes much less important,
because after five, seven, ten years the knowledge has eroded. | can vouch for that:
I’'ve been out of the university for thirteen years and | don’t remember much at all. Of
course, if you were using something, you’d remember it, but here we come to the next
point.

The actual work experience at the senior level becomes much more important, because
by this time the self-taught software engineer has learned whatever they’ve been
missing and needed for work. So at the five, or seven, or ten-year mark, the person

Yuri Karabatov 13

http://www.openuniversity.edu/
https://www.joelonsoftware.com/2006/09/06/finding-great-developers-2/

Junior to Senior

with a degree would only remember what they needed for work, and the person without
a degree would have learned what they needed for work. In the end, the amount of
general, non domain-specific “computer science” knowledge both of these people
have is the same.

What starts to differentiate these people is the amount and quality of work experience
they have accumulated, and the specific personal aptitudes they have discovered
e.g. one likes to write documentation, and the other can deliver prototypes quickly—
one of which may be significantly more important for the specific role they are applying
to, than the other.

Another (huge) door that a Computer Science degree can open for you is getting work
visas if you decide to work abroad. Software engineering is an international profes-
sion and besides having the skills, you only really need to know English to get hired
anywhere in the world. Getting hired is one thing, but actually getting a work visa
and moving is another. The requirements are different in different countries and for
different nationals, but generally in order to get a “skilled professional” or “engineer”
visa that allows you to work as a software engineer, you will need to have a computer
science, mathematics or mechanical/electrical engineering degree.

For example, as a Russian national | need a technical degree to get the German “Blue
Card” visa or to get a Japanese working visa. Even if | passed the interview with a
foreign company and they wanted to hire me (based on my skills), | would be unable to
get a work visa and actually move into the country, and the company would be unable
to legally hire me (based on my credentials, or rather lack of them).

The visa issue is probably my biggest regret for not getting a Computer Science degree,
because | probably could have. But at the time, when | was sixteen and was choosing
which university to enter, | wanted to be a translator and study English, and | only stud-
ied physics for two years because that’s where | managed to enroll, before transferring
to my preferred university and program. Anyway, my English degree, even if | managed
to graduate, would not have helped me. Oh well.

| considered getting a Computer Science degree from Open University, but decided
that spending four years purely to get around some red tape was not my cup of tea.
It would be somewhat valuable for the knowledge, but I’'m no stranger to learning by
myself. The knowledge is available on the internet for free if you have the discipline to

Yuri Karabatov 14

Junior to Senior

study. There are ways around working visa restrictions, and I’ve chosen to keep the
four years and learn other things. In the end, if | exhaust other options, it’s never too
late to learn, and four years is not that much time.

On that personal note, let’s move on to the next one. If we were to learn everything
that is on the Computer Science degree curriculum, what would that be worth?

2.5.2 Knowledge

All the knowledge that you are supposed to get when studying for a Computer Sci-
ence degree is available—for free—on the internet. And not just knowledge, but the
curriculum and video course lectures from the best universities like Stanford and MIT.
Commit, spend the time and you will learn the same things and in the same way, as if
attending the same lectures. Isn’t that cool?

The website “Teach Yourself Computer Science” offers several options you can choose
from. There are also Open Source Society University, Awesome CS Courses, The Open
Source Computer Science Degree and more.

The university teaching system is similar to that at school, but in a different sense to
what | said earlier (catering to the slowest learners). The top universities are particular
about filtering out slow students, so the amount and breadth of material you will need
to master is enormous. That is the problem. For a Computer Science degree, you will
study algorithms and data structures (in depth), networks (in depth), 3D graphics (also
in depth, like Stanford CS348C) and then graded based on how well you’ve learned
all of it. It’s mostly due to the breadth and depth of material that the typical degree
takes four years of study (if you don’t go for the Master’s). The typical coding bootcamp
takes four months. It’s about paring down the material you have to learn to the barest
essential skills you will use at work.

If you already know what you are working with and are studying yourself, you can
skip learning the parts of the degree that are irrelevant to what you are doing, like
3D graphics if you only intend to do backend programming. There are concepts you
can learn from 3D graphics programming that you can use in backend programming,
but let’s not get into that now :) Everything is a learning experience for something
else if you choose so. By skipping parts that are irrelevant you can cover the material

Yuri Karabatov 15

https://teachyourselfcs.com/
https://github.com/ossu/computer-science
https://github.com/prakhar1989/awesome-courses
https://github.com/ForrestKnight/open-source-cs
https://github.com/ForrestKnight/open-source-cs

Junior to Senior

WHAT YOV

COMPLETE .:“:' VSE AT woRK:

WHAT You NEED To LEARN

Fig. 2: The crossover between what you need at work and a complete CS degree.

that you do need in more detail and finish sooner. On top of that, if you were to self-
learn, you wouldn’t need to pass the final exam, and so you could avoid cramming and
remembering all the details, and practice only the essentials while learning about—but
not closely studying—the advanced details.

By following this method, you can learn everything that is relevant to you and your
work from a general CS degree in a matter of months, rather than years. Would you be
worse off than a fresh graduate who has actually spent the time cramming the deeper
details? Maybe, but does it matter if you would never use them? If and when you do
need the details, by being aware of their existence, you can go and learn them without
spending the time up front.

The graduate, when she needs the details, will have to refresh them in her memory too,
because we forget what we don’t practice. In a few years, both you and the graduate
will be in the same position, where you will be aware of the deeper details (because
you’ve read about them and the graduate studied them), but both of you will have

Yuri Karabatov 16

Junior to Senior

to spend the time learning them (in the graduate’s case, again, because by that time
they will likely be forgotten). After a few more years we end up in the situation that I've
described in the section Credentials about the two senior engineers, where the amount
of knowledge would be roughly the same for you and our imaginary graduate.

Please don’t get me wrong, | certainly don’t devalue getting a degree, and bear in mind
I’m only talking about Bachelor’s. If you look at a Master’s degree or even further, that’s
a tremendous amount of knowledge that | wouldn’t dream of, being self-taught, if only
because | don’t spend all my time learning and learning and learning.

How much of that knowledge you’ll be able to apply at work also heavily depends on
the industry. I just said you could learn most of what you’ll need in a matter of months,
but | was talking mostly about software developments jobs with a lower barrier to
entry, like simple web or backend development (where deployment and maintenance
is often performed by other people), where you don’t need much domain knowledge
and mainly need to be skilled with the tools.

If you wanted to start working in a more knowledge-demanding industry or part of the
stack, such as anything high-performance or math-heavy, or both, like high-frequency
financial trading, you would need multiple years of self-study, not months, to acquire
all the knowledge—credentials notwithstanding—that is required even at the entry
level in roles like these.

Is there anything specific that even the junior engineers should know, and can learn
quickly? We’ll talk about that in the section Know your place.

2.5.3 Skills

We know how the technical interview often goes: you are at the whiteboard, writing
code to invert a binary tree. Is this the skill you learn by getting a Computer Science
degree? No, itisn’t. This “interview coding” is much closer to competitive program-
ming, which is completely different to the skills you have as a CS graduate. / don’t have
a Computer Science degree, so | won’t make an actual list of things that a graduate is
supposed to know, and anyway, all the universities and countries are different, so the
exercise would be futile.

We can make a generalization. Straight out of the university an average graduate,

Yuri Karabatov 17

Junior to Senior

compared to someone who is self-taught, would have multiple hundred hours worth
of programming (likely in multiple languages), have practice decomposing tasks and
completing projects, and have some experience designing systems.

It isimportant in commercial software development that you know the language and
relevant libraries as intimately as possible, can work under supervision and produce
production-grade code that fits well with the existing codebase. Working under super-
vision and knowing the programming language are probably the two skills that have
the most crossover with those of a CS graduate.

The set of libraries and tools a company works with is likely to be different to what has
been taught at the university, and the graduate has little experience writing code that
is considered “production-grade” or fits a certain style. The programming students
do in the academic setting (short-term personal projects with little quality assurance,
written once and forgotten forever) is very different from programming in a commercial
setting (long-term projects continuously worked on by a group of people with strict
quality and maintainability requirements).

In the end, both the graduate and the self-taught developer will have to learn most
of their “work” skills at work, and while the skills that you get acquiring a CS degree
will certainly give you a headstart, it is not that significant compared to someone
self-taught, who has purposefully studied the language, the frameworks, libraries and
tools they will be using at their job. Again, this is the result of directional learning. A
CS degree gives a broader set of skills applicable to many industries, but if you know
beforehand where you want to work and in what language, you can learn only that
and be immediately productive in the workplace.

That is the main selling point of Lambda School who spend about a year teaching
their students to be software developers, from zero. A year is much longer than the
usual four-month coding bootcamp, and their program and reviews prove that it’s
enough time to get the knowledge and skills necessary to be successful even at top-tier
real-world companies. Are they missing some skills the graduates of a traditional CS
degree would have? Absolutely. But as I’'ve said earlier, you can get those skills later
when you actually need them, and have them fresh.

As long as you spend some time programming what you want to program at work, and
practice good coding habits that you won’t have to unlearn, you will not lose much in

Yuri Karabatov 18

https://lambdaschool.com

Junior to Senior

practical development skills compared to someone with a CS degree.

2.5.4 If you don’t have a Computer Science degree

[t’s not the end of the world.

Companies need good software engineers who have the skills to do the work. An
incredible amount of great software engineers do not have a CS degree. Some don’t
have any degree at all: John Carmack is a dropout (well, he’s also a genius, but still). A
Computer Science degree does not automatically make you a great developer. What
makes you a great developer is that you care about the craft and what you make, you
come to work to learn, and you know what you don’t know (more on this in the section
Unknown unknowns).

| often hear the argument “But you wouldn’t want to be operated by a surgeon without
a medical degree!” | wouldn’t, but surgery is different from software engineering.
A surgeon is a specialist, performing the same few operations over and over again
according to well-known best practices, on people who are all extremely similar. Itis the
same with construction or building bridges: the physics of the process is well-known
and there are established, standardized practices.

Yet after all the years of writing software, there are still no proven, universally accepted
practices of constructing software projects, it’s all ad-hoc. On top of that, the realm
of software engineering is so broad and deep that it’s impossible to apply the same
practices everywhere. Software written by degree holders is not provably, objectively
better than software written by self-taught developers, and the degree curriculum
doesn’t have any esoteric knowledge that a self-taught developer wouldn’t be able to
grasp when necessary.

| believe that a software engineer is much more like a writer than a surgeon. The world
needs writing in a multitude of styles and languages, and many successful authors
with great English do not have literary degrees. Could their writing be improved by
getting one? Perhaps, but then they probably wouldn’t have gotten the experience
that has become the subject of their writing.

Now that we have consoled ourselves that a CS degree is not that important, how do
you convince your potential employer, and what can you do about it?

Yuri Karabatov 19

Junior to Senior

There are specialized job boards like “No CS OK,” and even Google has recently removed
the requirement to have a CS degree (or any degree) in their job postings. In my
experience, as long as you can show that you have the skills and can do the job, the
fact that you don’t have a CS degree doesn’t matter. We will talk about applying to jobs
later, but generally you will be the preferred candidate if your skills are up to scratch.
In one of my past jobs, the engineers who decided if the candidate was worth being
invited to an interview never even saw the candidate’s résumé, only their test project,
and as far as | know, the candidates were never picked based on their credentials over
how they handled themselves in the interviews.

You can get most of the skills by simply programming and working on projects, and as
for “whiteboard programming,” that is a skill you’ll want to train separately anyway—
and there’sa high chanceyouwon’t need it. There are no universal practicesin software,
and interviewing is all over the place too. Recently there has been a rise in the number
of companies that don’t make you study LeetCode for weeks, you just talk about what
you’ve done and maybe write some code, similar to what you’ll be working on, which
is much less stressful.

As for the knowledge that comes with a CS degree, you can get a “fast-track” by studying
the public material yourself. How exactly do you do that? We’ll talk about it in the
section Exponential learning.

2.6 The senior engineer mindset

The senior software engineer has skills and knowledge that far exceed that of a junior,
but to me, the main difference they have is their mindset, or how they see their placein
the company and in the team, because that directly informs what they do. By changing
the beliefs that you use to navigate work and your career, you will gradually change
your behavior, and | think, for the better. What you learn here will help you move up,
just as it has let me. Some of this may be obvious or simple to you, but not all things
need to be complicated.

There are many traits that we may assign to the senior engineer, and | could give you a
list of ten, twenty thought patterns and nuggets of knowledge that someone who is
more advanced in their career has, compared to someone who is more junior. Instead,

Yuri Karabatov 20

https://nocsok.com/

Junior to Senior

I’'ve chosen four, which | think are critical to how you see yourself.

Note that these are not skills or things that you do, but something more like a set of
criteria or values that are integral to your behavior in the workplace. Every action you
are about to do can be run and validated against this list. As cheesy as this sounds,
these values are not set in stone and | don’t preach following them at all times, not at
all. It is simply a framework that you can keep in mind as you think about what you
want to do at work and in your career.

2.6.1 You are not paid to write code

How many software engineers think about themselves: “I go to work to write code”?
Do you?

Code is easy to see (it’s right there on your screen), easy to count and get statistics
about, so it’s easy to fall into the habit of making code your KPI, and be content in
building a solid green wall in GitHub Contributions. How much code we write, and
how fast we can move those Jira tickets across the board, becomes our measure of
success, because that is what lies within our control. We simply focus on what needle
we can move, and that, in our mind, becomes the measure of our work.

The job you applied for had writing code as one of the primary requirements. During
your job interview, your future colleagues tested how well you could write code. Your
job description might say that your job is to write code. That means you are paid to
write code, doesn’t it? How come you are not?

There’s a well-known saying “the best code is no code at all.” Kelsey Hightower has
a parody repo on GitHub and Jeff Atwood has a post urging to write as little code as
possible. Butitis a saying mostly about maintenance, the tactical level. Let’s move
up and consider what it means to be a software engineer working at a company. (If
you’ve read Patrick McKenzie’s blog post I've linked to earlier, you’ll know what comes
next.)

Why does a company hire software engineers? Certainly not to write code: if the
company could buy or use a product that would allow having fewer engineers, it
would, and companies do that all the time, especially smaller ones. They can use
Stripe and not have someone write billing code for them, they can use Ghost to make

Yuri Karabatov 21

https://github.com/kelseyhightower/nocode
https://blog.codinghorror.com/the-best-code-is-no-code-at-all/
https://blog.codinghorror.com/the-best-code-is-no-code-at-all/
https://www.kalzumeus.com/2011/10/28/dont-call-yourself-a-programmer/

Junior to Senior

their website and not hire someone to make one for them from scratch, and not have
someone to configure hosting. They can use React Native and avoid hiring mobile
engineers who can do only Android or iOS.

The goal of a business is to generate profit, and software engineers are very expensive.
They generate a lot of value for the business, which means profit, but sometimes the
connection is not direct and it’s quite hard to see, so the top managers may always be
on the lookout for cheaper alternatives to in-house software engineering.

Companies generate profit by providing services (or selling products) to customers,
even if those customers are other companies. In other words, companies provide value
to their clients. If no value was created, there would be no clients and no profit for
the business. Software engineers who create the company’s products or help provide
services are among the people who are creating value for the company’s clients. What
is this ephemeral “value” anyway? It is simply something that helps customers solve
their problems quicker and easier, than if they did that themselves—if they could do it
on their own at all.

Ultimately, your first duty as a software engineer is to the customer and the product.
Does it mean you have to take on the roles of the product manager, the designer,
the user researcher? If we take a more cynical view, what does it mean if you make
the company’s product better—you’ll get paid the same salary anyway? None of the
additional profit you create for the company will end up in your pockets. What if you
are working in a role very far from the customer, making some line-of-business (read
“boring”) application, that is only used by a division of your company? What can you
do and what’s the payoff?

What you get out of it is both tangible and intangible. The tangible stuff is what you
put on your résumé: by how much you improved something, how you decreased the
company’s costs on running cloud services, how tools you made helped your coworkers
move quicker. That’s what gets you promoted, or given more stock options, or helps
you overcome the competition for your next job, or all of that and more. Then there is
the intangible. Thinking about how you can improve the way you work, what you’re
working on, and finally the life of people using what you’ve made gives additional
meaning to what you do. Work is more fun when it’s more than a stream of tasks that
need to be done this sprint and the next.

Yuri Karabatov 22

Junior to Senior

| believe that you can add value (that is, make someone’s life better) anywhere in
your process. From your unique position in the trenches you can spot problems and
opportunities and devise solutions that will help your coworkers, the company and
its clients. As an application or web developer, it is somewhat easier to focus directly
on the end product or the customers, but if working on the backend or the database,
there are also many things you can do: you can speed up existing queries, suggest a
new DB schema that will slash response time, introduce better deployment practices
that would decrease downtime, and on and on.

Paraphrasing a reaction to Paul Graham’s “How to Get Startup Ideas”: “l wonder why
people keep ‘looking for an idea.’ Just look around you, nothing is done. Start improv-
ing everything.” It is the same in any company—nobody has the perfect process, the
most efficient code, the best UX or the fastest load time. Everything can be improved
when you start to pay attention.

When working on a feature or part of a process, | try to look at the big picture and
see where it fits. You can notice amazing things this way. Think about how our junior
engineer James and senior engineer Susan write code. For the junior, the feature he’s
working on is often a tabula rasa, he has no awareness how it fits within the product or
the codebase. All the time, he gets tripped by the question, “What is the best way to
do X?”

The senior engineer has the whole codebase and the whole product in her head. She
looks at the big picture and notices patterns and can spot problems that nobody has
thought about when designing the new feature. Designers sometimes think in distinct
flows and separate screens, not how they work together in a big app or in what other
contexts this particular screen is used, or how the new flow can disrupt the user’s
mental map of the app that they’ve had before. Are the designers and the product
owners who have come up with the new feature in the first place bad at their job? No,
of course not, they simply have a different view of the product than the engineers who
are working on it.

By being in this unique position of the person implementing the product and the
platform expert, standing right next to the customer, you can support and help your
product people and designers, but in order to do that effectively, you’ll have to refine
your skills to support your instincts (as the singer Linda Ronstadt said). You don’t need
to become a product manager or a designer, but you need to be able to talk to them in

Yuri Karabatov 23

http://paulgraham.com/startupideas.html

Junior to Senior

their own words, and bring facts to the table that prove you are right. Here we come
back to the responsibility and impact that you have in your role. By stepping outside
and getting some skills of the other roles around you, you get more responsibility, and
by pushing your ideas through and working on them you get more impact. After that
we get to do the fun part: implement what you’ve suggested.

When are you supposed to do your work, if all you’re thinking about is how to “add
value” and get promoted? This all sounds very selfish. Indeed, but isn’t our goal to
make the best product possible and get the most profit for the company? It’s a win-
win situation. The company hired you not to write as much code as you could as
quickly as possible, but to improve the product it’s making to get more profit from its
customers.

You find things to improve by doing your work, it’s not one or the other. Thinking about
what you do, how and why you do it is the mark of the senior engineer. The same
principle lies at the root of kaizen (continuous improvement), made popular by the
Toyota Production System. When they let every worker suggest improvements to the
manufacturing process, the workers did, and now over 80% of their suggestions are
implemented every year. In their 1973 report, Toyota said:

The value to Toyota (and eventually to the public) of this well-functioning em-
ployee suggestion program is incalculable, both in terms of monetary savings
efficiency and employee morale.

We are trying to do the same thing.

“Continuous improvement” and “adding value” sound a lot like corporate values that
have been made up by a committee during a six-hour-long meeting. It doesn’t mean
that we can’t have fun doing it. People work better and are more productive when
they’re having fun. At least for me, twirlingideasin my head is a fun thing to do. Infusing
humanity and humor into your work is already improving it. It puts a smile on your
coworkers’ faces. When you find your work meaningful, you start caring more about it,
and it shows. It’s the same with the code you write: you want it to be elegant, efficient
and fit well within your codebase, so that your colleagues’ code could be better too.

Let’s get back to the beginning of this section. Now we know that you’ve been hired
because you can write code, not to write code. You are a specialist and an expert who

Yuri Karabatov 24

https://global.toyota/en/detail/7756353

Junior to Senior

happens to be able to program. Out of respect for yourself and your craft, start thinking
about what and why you are programming. It just might happen that you will code
yourself out of your job—instead of implementing the same stuff again and again,
you’ll notice a pattern and implement a system to be operated by other people who
are not developers. You’ve just become a 10x developer by thinking about what you
do and empowering other people in the process. Now you can sit back and look for
more fun things to do.

A final note. If you feel stuck or feel the onset of burnout (How does it feel? Read in
the section Burnout), buried under an endless stream of tickets to do, come back to
this section. Take a deep breath. (Just kidding, it doesn’t really help when you’re stuck.
But try breathing anyway.) Remember there’s more meaning to your work than writing
more and more code. And if you can’t find any even if you try, maybe it’s time to start
looking for another job. Out of respect for yourself and your craft, no less.

2.6.2 Exponential learning

As we start to work in software engineering, we soon discover that we simply can’t
learn everything that tickles our fancy—there’s too much. As we continue working,
the mountain of Things We Will Never Learn™ only grows, along with the number of
things we need to learn. Every new subject that you get into unlocks two more that are
new, that you’re excited about and eager to learn. At least this has been my experience.
How about you? I like to know how things work, and why they ended up the way they
are. That provides an endless stream of questions that sometimes require extensive
research.

A simple “How do | write better code?” can lead you on a trek learning the history of
programming languages, discovering best practices and whole books written on the
topic, endless Hacker News threads and blog posts summarizing what people learned,
comparisons of paradigms and approaches, and the latest research into code analysis
and developer productivity. Every topic can be drilled down endlessly. Chasing down
a bug, you might end up in the bowels of your system you never knew existed. Where
to stop, and how much is enough?

Then there is the other side of the coin: what if you only learn what’s in front of you?
In “A Scandal in Bohemia,” Holmes asks Watson how many steps lead up to their

Yuri Karabatov 25

https://github.com/danluu/debugging-stories
https://github.com/danluu/debugging-stories

Junior to Senior

Baker Street flat. Watson doesn’t know because he’s been using the staircase, not
thinking about how it works. But is the number of steps on a staircase knowledge
worth pursuing, even if you see no use for it?

If I run with the metaphor a little more, and liken the staircase to a library (the one that
you use in code, not the one with books), then Watson already knows that there are
straight and spiral staircases, that you put harder wood or stone on top of the steps to
decrease wear, and all the other facts about the construction and use of a staircase.
(A fact he probably doesn’t know: in castles, staircases are often winded right so that
it’s easier for the defenders to fight down attackers by holding the handrails with their
left hands, and the attackers’ sides would be exposed when they try to fight back.)
He wouldn’t know the number of steps of the one he’s using at home because it’s
irrelevant to his use case. As long as the steps are in order and it’s not creaking, he does
not see the reason to care. If a hypothetical user discovers a bug (one of the steps is
creaking, or users sometimes fall over and break their necks), then Watson will see the
need to examine that staircase slash library more closely, count the number of steps
and check if either of them is creaking or making the users stumble. That’s a practical
approach and | admire people who have the restraint to not go off on tangents and
learn everything in sight.

In both cases, we know that there is always more to learn about the thing in front of
us. We have good reasons to believe that it will allow us to do our job better. But if
we spend all day reading about this stuff, there won’t be any time left to do the work.
Thus, we must use several mental rules to give shape and direction to our search.

What does it have to do with being a senior software engineer, specifically? | think most
people who reach the senior level (or are simply good engineers) are, first, curious
enough about programming to have stayed in the field and gained the knowledge
necessary to solve bigger problems, and second, have mental frameworks that allow
them to effectively choose what to research and how much, so that they can use itin
their work and not be overwhelmed. Quite often you are dropped into a new project
running on a technology you don’t know. Where do you start and how much do you
learn before you can make calculated decisions?

Others may do it differently, but I’ll tell you how / do it. If you go back to the beginning
of this section, I'm definitely the first type, not the second: | can go down rabbit holes
for a long time before feeling assured enough to make any judgements on a subject

Yuri Karabatov 26

Junior to Senior

or make progress on a project, especially if the project is personal and | don’t have
time pressure to release it. Obviously, this is different at work where you have time
constraints, so over time | learned to limit the amount of wandering | do when looking
into new subjects to reasonable levels (reasonable for other people until they start
screaming at me for doing nothing).

| use two components that I’m giving names to for the first time (just for you). They
are directive frameworks and tree shapes. In the ocean of knowledge, tree shapes are
my ring buoy and the directive frameworks are my oar. It won’t help if a shark decides
to have you for dinner, but it’s something.

2.6.2.1 Directive frameworks

A directive framework is a set of facts and beliefs you know about a subject that is
enough to allow you to make decisions that you consider informed and move forward
(e.g. write code). Like a GPS navigator, it will tell you “Turn left here!” because to the
right is a dead end. Like a compass, it may point to the true north, but there will be a
deep gorge between you and your destination. That’s fine, as we know, you can’t know
everything. The gorge is a signal that you need to learn something else to reach your
destination. Don’t forget to look under your feet.

When starting to learn a new topic or practicing new skills—writing code in a new
programming language, learning a new framework—my first order is to build a mental
directive framework for this new topic, so that | can take further steps by practicing
and adjustitas | go. It can be tiny in the beginning and expanded later. It provides a
frame (the purpose of a _frame_work!) on which you can attach additional rules and
facts as you move.

Let’s see how it works by trying to learn a programming language, for example a
flavor of Lisp since it has a simple syntax. The first two facts that you learn are that
every invocation is surrounded by parentheses, and that function calls follow a postfix
notation, meaning that, inside the parentheses, you first put the function name and
then the arguments. You learn that to add two numbers you should say (+ 2 2).

Here it’s important to look at the definition of a directive framework in more detail. It
is “a set of facts and beliefs,” because what’s in your head is not necessarily true, it’s

Yuri Karabatov 27

Junior to Senior

only what you believe. You may even know something to be false, but for the purpose
of the framework it does not matter as long it allows you to move forward.

This is a built-in unblocking mechanism, and very similar to writing a program. You
may believe your program to be free of bugs and are expecting it to run flawlessly, but
that is not necessarily true. Most programs have bugs, and that is fine. As long as you
find them and fix them, you can move forward. If you wanted to produce a program
that you knew for a fact had no bugs, you wouldn’t be able to write anything.

Itis much easier to fix something that is not working quite right than to build something
that is absolutely perfect. It is the same with building a directive framework that only
contains incontrovertibly true facts. In theory, it’s possible, but it’s slow and some
facts turn out to be true under some circumstances and false under others.

The next important bit in our definition is about making “decisions that you consider
informed.” The framework should give you enough information so that you are able to
make decisions based on the facts and beliefs contained in the framework. Otherwise
it would not be directive—it wouldn’t allow you to make decisions, meaning that it
was incomplete and you needed to expand it first.

Coming back to our Lisp example, if you were asked to multiply two numbers, based on
the facts you had in the framework you would reasonably write (x 2 2). Sinceyou’ve
already seen the example with a +, the framework allows you to make an educated
guess, to move forward and write some code that you expect to be correct.

Beliefs, compared to facts, often come from guidelines like “If you do X, then Y will
not happen” which you can encounter in beginner texts and tutorials. You don’t have
enough knowledge yet to fact-check them, and even if you tried you probably wouldn’t
understand the explanation. They are good for a beginner, but generally stop working
when you venture into more advanced territory. But often we carry these along and
we never check some of them again. “If | use new and don’t forget to delete I won'’t
leak memory.” “If | always use weak self then myiOS app will never crash.”

When you’re using your directive framework, pay attention to how you make decisions.
Are you guided by facts or beliefs? Do you know the reasons behind the guideline?
Guidelines are masking knowledge and facts behind a facade, and one day, when your
framework has grown, you should look behind the curtain.

We learned that we need a directive framework in order to make decisions, but how do

Yuri Karabatov 28

Junior to Senior

we know when it’s time to stop growing it before moving on to something else? When
learning a new programming language or a library, how deep do you have to go on
your first pass? If you’ve been working with something for a couple of years, when is it
time to learn more about how it works, and what exactly should you look at? “Peeking
under the hood” is not very useful advice if you don’t know where to peek.

If a directive framework is your compass, a tree shape is your map.

2.6.2.2 Tree shapes

A tree shape is a fractal mind map of a subject that contains both the big picture and
the details. The big picture is the overall “shape” of a subject, the trunk and the leaf
crown. Imagine a child drawing a tree: a straight line for the trunk and a circle for the
leaves. It looks like a tree even from a distance. That’s the big picture. The details are
in the branches, twigs and leaves.

Ever noticed the subtle fanning of lines on the leaves? Sometimes we have to get down
to that level of detail. The tree is, by its nature, fractal, or self-similar: every branch is
also a (smaller) tree, with a trunk and its branches and leaves, and it follows the same
rules. Start with the big picture, and trace the branches and leaves as you go.

How is this useful? When drawing a (generic) tree (in summer) you can’t have leaves
without branches, or branches and leaves without a trunk to put them on, or a trunk
with branches and no leaves (it’s summer, and we’re not in a horror movie). It is the
same with any subject you’re learning. By starting with the tree shape we know that
before looking at the small details, we must first have an overview and put all the
major parts in place, build a structure so that our tree can support itself and look
unmistakably like a tree from any distance. After we’ve done that, we can fill in the
biggest branches, and when we’re sure the tree won’t fall over, then we can start looking
at the twigs and the leaves and inspect the inside of the big hollow in the middle.

By knowing that the tree shape is there we can avoid missing critical but non-obvious
information, or having gaping holes in our knowledge years after we’ve started working
with a technology. We will talk more about this in the section Unknown unknowns.

While a directive framework is mostly about practice and things that you can do, a tree
shape is more about general knowledge—because general knowledge makes up the

Yuri Karabatov 29

Junior to Senior

DETAILING A TREE SHAPE

Fig. 3: Detailing a tree shape.

big pieces. The facts that you discover while filling in the details of the tree shape end
up in your directive framework for that subject, helping you make better decisions.

Learning a new programming language fits well for both of these metaphors. This year |
decided to make a cross-platform game in C++ (yeah) so | needed to learn the language
and a few libraries | wanted to use. | know a bit of C and C# and I’'ve been curious
about C++ for a while, so it’s not like | went in blind, but | didn’t know much, and cer-
tainly couldn’t write anything but the simplest program. Knowing that std: : vector
existed was the extent of my knowledge of the C++ standard library.

By virtue of the fractal nature of tree shapes, C++ was just another hastily scribbled
twig on the branch “programming languages | barely know” in my head, but | could
use everything | learned about learning other languages and add detail to it.

| usually start by reading a thick book to get my bearings and for some languages, there
is the book that you start with, like K&R for C (even though it’s outdated in style, it
gives you the structure that you can fill later). The books branch had nothing to hold
on to, so | read a few quick start guides first and reviews from experienced people to

Yuri Karabatov 30

Junior to Senior

draw the basic tree shape. C++ has got some positive changes in recent years, and
there are several standards that are adopted to various degrees in different industries.
You can’t use a newer standard than that which the compiler on your target platform
supports. C++is, in a lot of ways, about speed and the efficient use of memory, and is
notorious for being complicated. The newer standards make it significantly less painful,
but these new “facilities”—a frequent word in Bjarne Stroustrup’s books—completely
change how you use the language. | read how they differed and watched a couple of
conference talks on what it now meant to write “modern” C++, so at least | knew what
| needed to look for in a book. That meant some of the better books were outdated,
and by reading them | would learn bad habits. That helped prune the list further and
| started with Bjarne Stroustrup’s “Programming: Principles and Practice Using C++”
that was updated for the newer standards.

Reading a book might not be your cup of tea, and | don’t blame you. | know many
people start with writing simple programs, doing Advent of Code or Project Euler and
looking up things they need, like how to use arrays and dictionaries, as they go along.
That’s fine if you want to write some code and poke at a language. | prefer to learn how
to write code first, what is available to me in the standard library, and how to use it.
| usually start writing code in a new language when | start working on a project, and
there is a lot of simple code to write to learn the basics as | go.

Anyway, | usually read programming language books quickly and without doing any of
the exercises—they are fun but | can play with the language later. I’'m reading to fill the
big holes in my drawing and create the initial tree shape. Code examples in the book
show you how a programmer should approach problems in the language and some
idiomatic ways to write code. Reading a book is interesting, but unless | start using the
language soon after, | tend to forget most of the details after not much more than a
week.

After finishing the book | researched what else | was missing for creating the types of
projects | wanted, and it was relevant for any programming language you would learn:
what IDE or editor to use, how you build projects, how to install and use libraries on
macOS, Windows and Linux, what libraries were available and relevant to what | was
trying to do, and if it was even possible to compile the project for all the platforms |
wanted to target (mobile, desktop, and consoles like a stretch goal).

Starting with a project that you want to do gives you an easier time to fill out your tree

Yuri Karabatov 31

https://adventofcode.com
https://projecteuler.net

Junior to Senior

shape since it will guide what parts of the tree you want to fill out first. It took a couple
of weeks to read the first book while researching everything else, but at the end | was
satisfied that | hadn’t missed anything obvious since | had done a good job drawing my
tree shape and filling in some of the detail for C++. | was ready to start coding.

The actual process of writing code is guided by the directive framework. Since | was
not practicing the language before that, | was very slow. The number of facts and best
practices | collected during my research phase was significant, but they weren’t clear
or automatic enough for me to write anything complicated. They were enough to give
me ideas and the general approach | should use, and after starting to write code, | used
the references | had gathered to look things up when | got stuck, and debugging the
mistakes | made helped me commit the details to memory.

By using this approach, | didn’t quickly “jump into coding,” and of course | didn’t write
perfect code. You learn by doing, not reading a book. But what all the research gave
me was a glimpse into the expert’s head and how experienced practitioners used the
language. | think you’ve heard the joke “You can write Java in any language”? That’s
what happens when you don’t take the time to learn a new language for what it is,
instead starting to use your existing directive framework for a language you already
know in lieu of building up a new one. It doesn’t mean that none of your knowledge of
other programming languages is transferable—it is. You will see better how to apply it
after you build a solid foundation by first filling out the tree shape. The foundation in
place, you will be able to reach the advanced language concepts faster, because you’ll
build on the foundation for that language, not jerry-rigged bits and pieces on top of
the tree shape for another language that you know.

2.6.3 You are not your role

Earlier in the book I've talked about how as you get more responsibility, you step more
and more outside of the pure requirements for your role of the software engineer (that
is, writing code). Well, this section is not about that at all.

When you have worked in software development for a few years, especially if you are

2«

self-taught, it is common to think about yourself as a “web developer,” “iOS engineer,”
or a “Java programmer.” As we get more skills and learn the platform we’re working on,

we start to appreciate its depth and the variety of complementary skills and knowledge

Yuri Karabatov 32

Junior to Senior

that are relevant to this platform. We follow industry blogs and look at trends. We feel
in control.

What if after a few years you discover that you’re falling out of love with your main
technology? The platform may have shifted in a direction you don’t like. Your stable
job has turned out to be too stable and you’re bored of writing essentially the same
code over and over. You discover that the only jobs available in your industry for your
technology are in sweatshops. Whatever the reason, you simply want changes more
drastic than updating your IDE’s major version every year.

You look out to the job market and your heart sinks. Even in your industry, companies
want 3 years experience with a set of libraries completely different than those you’ve
been using at work. They want you to know a different programming language that
has quietly gained popularity. In other industries, they want you to know multiple
languages at a professional level and have hands-on experience with several acronyms.
For some, “experience with X” means “long-time contributor to X.” You look at your
blog—the last post published three years ago, about a library that has been obsolete
for two years. You think you will never find another job.

I may have painted it a bit too black, but this is close to the experience of someone
coming into the software industry as well. The job requirements seem insane. For a
junior, two years experience and a list of technologies that doesn’t fit on your screen.
It’s just as daunting if you’re a middle engineer in your first software role and want to
switch industries.

The reality is that not all is lost. As we will talk later in the section Reconnaissance,
the job postings are often describing ideal candidates who do not exist, that is, the
requirements are a kitchen sink of every technology a company is using. Most often
you neither need to have worked with a half of them, nor be an expert in the other
half—you’ll still be able to do your job, because you won’t be productive in your first
couple of months anyway and you can use that time to catch up on everything that
you’re missing. But the more soothing fact is that big chunks of your knowledge are
transferable if you get it the right way.

Time for another gross oversimplification. Nowadays, a lot of the frontend work (both
web and mobile) is taking some JSON, possibly putting it into a local database, and
transforming it into a set of controls in the view hierarchy, a tree of nodes. The trend of

Yuri Karabatov 33

Junior to Senior

the last few years is using unidirectional data flow and declarative Ul frameworks. A lot
of the respective backend work is querying a database and exposing REST endpoints
that serve JSON for web and mobile.

Most of the time we work with all that through specialized libraries that make the work
quicker and simpler, because nobody likes to write boilerplate. The junior engineers
are expected to learn and use these libraries to do the tasks that they’re assigned, and
knowing the libraries is important, since that’s where we do the bulk of our work as
software engineers: we’re using libraries for the abstractions they provide that let us
accomplish the work we’re doing.

If you only know how to use a library, you’re in trouble. Please don’t make a disservice
to yourself and learn the concepts and the protocol behind the library you’re using. By
knowing what the library works over and how, you unlock the transferable knowledge
that you can use when switching to another platform or even another industry. There
is a deep learning experience in discovering how the tools that you’re using work under
the hood.

Let’s look at something as simple as JSON. Imperfect but acceptable both for humans
and machines, its complete spec fits on a short single page. Did you ever read the spec
for it, or relied on how much JSON you had seen to decide if a particular example is
correct or wrong? Every programming language has at least one JSON library, so you
may have never felt the need to closely look at the format. It just works, the library
does its thing and you get objects to work with in your language of choice. Do you
know how JSON parsing libraries work?

What can we discover by looking at JSON in learning mode? Just by reading the spec,
we see that JSON’s syntax is described by grammar, and learning to read notation
like this is helpful when you come across any other interchange formats like Google’s
Protocol Buffers. We learn about the Backus-Naur form (BNF) that is often used to write
programming language grammars, and by practicing reading it, you can understand
the grammar used to describe your favorite language. Instead of scouring the docs
for a rarely-used language construct, you can check the grammar reference now and
again and find what you’re looking for quicker, because now you can read it.

Since JSON grammar is so simple, there are lots of libraries, and reading the source
of some can be a gentle introduction about parsing in general, why exactly you need

Yuri Karabatov 34

https://www.json.org/json-en.html
https://developers.google.com/protocol-buffers/docs/reference/proto3-spec

Junior to Senior

a library, how they differ, and tradeoffs between speed, memory and convenience.
You might learn that it’s possible to write a streaming JSON parser, that is, one that
doesn’t have to load the whole payload into memory. On mobile, where your app can
be killed by the OS if you use too much memory, or in embedded development, where
the amount of RAM is extremely limited, a streaming parser can have a great effect
on the speed and responsiveness of your project. We can come across an article such
as “An Intuition for Lisp Syntax” that shows how JSON can be used as a “code is data”
structure. If you follow that trail, who knows where it might bring you?

Writing parsers, knowing how they work, reading BNF grammars, evaluating the
sources of third-party projects are all transferable skills that you will use in any in-
dustry and in any role as a software engineer. We can learn much more than that if we
simply become a little curious what lies behind the default library that the language
we work in gives us.

This technique can be used for any library, tool or technology. Learning the concepts
behind the tools you’re using will not only help you potentially switch industries or
technologies later, but will elevate your mental model to a new level. This is exactly
the same as what I’'ve talked about earlier—the improved mental model will change
your behavior. For example, when debugging, knowing how a library works will help
you instantly pinpoint the likely failure points and eliminate hours of poking around if
you only knew how to use a library. You will be considered very smart indeed.

When the time comes to learn a completely new technology, the concepts that you’ve
learned will help you understand the new domain much quicker because, for instance,
you’ll be able to map the API of a new library to the concepts you already know. Essen-
tially, you’ll already be able to manipulate the concepts, and the only thing to learn
would be a bit of new syntax.

The longer you work in software engineering, the more you realize that transferable
skills are what matters for your career, while specific technologies that you use are
transient. It’s unlikely that you will use the same libraries and the same programming
language in the same way even five years from now, even if you’re working at the same
company. New, better libraries are developed, older ones are expanded, platforms
move to different programming languages (like Android from Java to Kotlin, iOS from
Objective-C to Swift).

Yuri Karabatov 35

https://stopa.io/post/265

Junior to Senior

Experienced professionals whose career spans decades are likely to have programmed
in a dozen or more programming languages. As polyglots know, the more languages
you learn, the easier it becomes—especially if we look at the history of programming
languages. They are much closer to each other than human languages, and the er-
gonomic improvements from one language often end up in another not long after.
People change technologies and tools they use all the time, and it’s not such a big deal
to learn something new, as long as you look under the surface and recognize some of
the patterns underneath.

That brings us to the realization that you are not your role. You may be a “Java program-
mer” or a “web developer” now, but this role does not define you. There’s much more
that you know and can do in other fields and industries, given some time to learn. Do
not despair that you will never be able to start programming something else. As we’ve
seen earlier, even if you “stay in place” and don’t make a conscious effort to expand
your toolkit, the libraries and languages you use in five or ten years are likely to be
different.

Everyone goes through this process, but if you start being more curious about your
tools, you can speed it up (and have fun doing it). Knowing that you are not chained to
what you do now is a liberating feeling. Experienced hiring managers also know that
good engineers pick up new languages and libraries quickly, and if you can show that
you can and have done that, you’ll be able to find work in another domain or another
industry entirely.

Now, let’s not get too excited. There are still hard skills and knowledge that you should
have if you want to start working in another industry. How do you breach that gap
without taking a year or two off from work to learn the required skills?

My approach and advice for changing industries is what | call transitional roles. These
are a series of successive roles with overlapping skills, where each gives your more
skills on your way to the role you want. You know that Wikipedia game where they find
the shortest distance from one article to another by following links in them?

Of course, some roles and industries are easier to break into than others, and for some
thereis no realistic way, so you’ll have to take the time to learn the skills by yourself. But
for some the transition can be quick. It’s also much easier if your company encourages
internal transfers. In some companies management understands that to retain good

Yuri Karabatov 36

Junior to Senior

SKILLS YOU USE

— /N

® ® ®
> B> @~ @
Jd ® @ 6
Ingé\l- TRANRSEE;:NAL Tﬁgﬁf"

Fig. 4: Transitional roles.

engineers is more valuable as a long-term strategy even if they change roles, than to
let them go and hire and train new ones.

Let’s say you work in iOS and decide to work in DevOps. First you could assume build
and deployment automation responsibilities which share some skills and tools with the
DevOps skill set. If your company was supportive, you could become an “intern” on the
DevOps team and either help with simple tasks or gradually take over the infrastructure
for mobile projects. After working like this for a while, you will be able to completely
switch to perform DevOps duties. The transition would be harder if you needed to
switch companies because showing the other company that you can quickly gain the
necessary skills is harder—they haven’t seen what you’re capable of.

Another technique that will help you switch roles and companies quicker is to become
an early adopter of some new technology, like a new programming language or a new
major framework. Since the number of people having any experience with it will be
smaller, you can do with less experience than for an established technology, and so
stand out among other candidates. We will discuss this in the section Becoming an

Yuri Karabatov 37

Junior to Senior

early adopter.

2.6.4 Developmentis a team sport

The junior software engineer may have noticed companies looking for “ninjas” or
“rockstar developers.” At one point it became so widespread that it became a meme.
Ninjas and rockstars work alone, other people are a hindrance. The senior software
engineer knows that the overwhelming majority of modern software development
happens on teams. There is a shared codebase with multiple engineers contributing,
there are other teams that have their own projects and sometimes changes should be
synced, there’s management and architects and designers. Like in construction, one
person can sometimes do it and design and build a bridge all by themselves, but at the
scale and the necessary speed of commercial development, nobody has time to wait
for twenty years until one person does it. The company needs the bridge next year.
(Now, let’s not start the discussion about “The Mythical Man-Month” and how more
people is not always better, that is an exercise for the reader.)

The junior engineers think that their technical skills are what matters most when look-
ing for a job, and they may be right, because juniors are usually not expected to have
experience working in a team setting, besides not force-pushing to master—sorry,
ma-in—on a Friday night. But starting even from the middle level, as long as you’re
sufficiently proficient technically, how well you work on a team defines your success as
a software engineer. You may pass the interviews on technical skills alone, especially
if you’re interviewing for a company looking for “rockstars,” but it’s unlikely you will
stay at the company for long unless you can work effectively with other people.

What does this mean, exactly? Whatimmediately comes to mind is your manager telling
you to “take one for the team” and clock in overtime while taking all the credit and
being promoted. That... totally happens, but we’ll discuss company culture later.

Bad freelancers are the perfect counterexample to being a good team player. How
are they team players at all if they work alone? The client is their team. Software
development doesn’t happen for its own sake in a vacuum, a freelancer (let’s call him
Frank) is working with his client just as the software engineers are working with their
manager, ultimately beholden to the company’s customers.

Yuri Karabatov 38

Junior to Senior

What is it like to work with a bad freelancer if you’re a client? He doesn’t comment on
your spec or your references, he says he can do it. When you ask a question, he doesn’t
answer for three days and when he replies, it’s as if he’s read a different question, or
doesn’t give any specific information. He agrees to a deadline or a milestone, and if
there are multiple, he misses every one of them, and only emails you after the fact, or
after you remind him. When (and if!) he delivers the work, it’s missing a critical feature,
and is slow and buggy. You email him about it, and you never hear from him again.
The other freelancer (who happens to be good—Ilet’s call her Gwen) says that’s the
worst code she’s ever seen and rewrites it from scratch in half the time. In other words,
working with a bad freelancer is the source of endless frustration for you, the client.
Perhaps you’ve had coworkers like this? Imagine how frustrating it is to have someone
like that on your team. What if that’s you? x1le gaspx*

The “rockstar” engineer (they are always male, so let’s call him Rick) is more dangerous
because he’s actually good. Silicon Valley startups keep looking for that 10x developer,
and they do exist. In Joel Spolsky’s post “Hitting the High Notes” there is some data
supporting the fact that some engineers are much, much faster than others, and
produce code that works great. In the startup world, where speed of execution trumps
everything and technical debt will never need to be paid off unless the startup gains
traction, hiring an engineer like that makes a lot of sense, even when they cannot work
with other people.

But when the company grows, one person can’t do it all, and the “rockstar” ends up
working on a team, and that’s where trouble begins. He considers himself the smartest
person in the room (often, rightly so) and dismisses the other engineers’ suggestions
or approaches, demanding that they do as he says. He can be rude and condescending,
but the team and the company has to keep him since he has such a big impact on
the product. His code, even if it’s performing well, can be hard to read, obscure and
complicated (and he may produce more of it every day), a nightmare to maintain.
Eventually he may end up working on some business-critical, but isolated components
that nobody needs to ever touch again (since nobody wants to talk to him), before
getting bored and leaving to bootstrap another startup. I’m sure Paul Graham has an
essay praising this type of person, but | can’t be bothered to look it up.

Companies that care about retaining and evolving their engineers and have long-term
software projects—companies you want to work for—are specifically checking for this

Yuri Karabatov 39

https://www.joelonsoftware.com/2005/07/25/hitting-the-high-notes/

Junior to Senior

aspect in their interviews. That’s why you’re asked questions like “How did you handle
conflict?” and “Tell me about a time when X.” Even if a candidate was extremely skilled
technically but unable to communicate in a team setting, it would likely be a hard pass.
Nobody wants jerks on their team. You’re a professional, so act like one.

I’ll say it again: being a good team player is a prerequisite, just as your technical skills,
to be on software engineering teams that value and nurture their engineers, places
where you will grow and help others grow. Being able to learn effectively is a trait of
good software engineers, so if you show yourself to be capable of learning quickly,
the technical requirements can be significantly relaxed. But nobody expects that you
unlearn being a jerk. There is no second chance to make the first impression, so having
the qualities of a good team player will be what wins or loses you the job.

What are those qualities and what does it mean to be a “good team player”? First of
all, it’s acting like a decent human being. (You are one, right?) We have seen in the
previous examples how you shouldn’t act if you want to be considered a professional,
and | will talk about it in the section Considerate communication—things that you can
do at any stage of your career. If you start doing that, you will immediately improve
your communication up a notch and other people will like dealing with you. For code,
this will be the section Code mimicry, and this is also something you can start doing at
any time.

As for behavior specific to a team, there is a project called “Contributor Covenant” that
defines the code of conduct for open-source projects. The central pledge is “to act and
interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy
community,” and the same applies to building an engineering team with the same
qualities. Some examples of this positive behavior, quoted from Babylon Health’s
“Code Review Etiquette”, but it’s really about any team communication:

» ” «

« Avoid selective ownership of code (“mine,” “not mine,” “yours”). Prefer referring
to it as our code.

« Use “we” instead of “you,” unless asking for someone’s opinion (“What do you
think...?” but “Here we are doing ... Whatif we ...?”).

« Do not expect your comments to be answered immediately. If you need an answer
fast, talk directly with the person (the same applies to instant messaging).

« Accept that it’s fine to have disagreements and it’s hard to please everyone.

Yuri Karabatov 40

https://www.contributor-covenant.org/version/2/0/code_of_conduct/
https://github.com/babylonhealth/ios-playbook/blob/master/Etiquette/CODE_REVIEW.md

Junior to Senior

For me the most profound has been the shift from personal to shared ownership of
code, and using “we” when referring to shared goals. A simple change, but consider
going from the mental model of a product, assaulted by competing pull requests that
sometimes change the parts you’ve been working on, to one where the product is
owned by the whole team, and every code change is seen, first of all, as an improvement
of the shared whole. Where in the former model engineers would dunk and even insult
each other (“my” code versus “their” code), in the latter the engineers’ intent is to treat
their colleagues’ code as if it were theirs, and to offer positive, constructive critique
instead of ridicule.

We’ve got a nice fuzzy feeling in our stomachs, but if you want to improve as a software
engineer, do you want to be on a positive team? Does all this positive communication
and inclusiveness translate to better code and a more successful product? Besides
clearly letting you focus on work and not petty workplace squabbles, a positive work-
ing environment, according to an article about employee empowerment in Forbes,
strongly correlates with increased feelings of empowerment and engagement, which
results in better decisions made, more creative work solutions and better results for
the business, which, in turn, means that the product is better in the end.

This positive team environment is conducive to learning and improving yourself, since
instead of being judged you’ll be encouraged. Improving our skills and getting more
knowledge is exactly what we want, isn’t it? If we get stuck, which inevitably happens,
more so as juniors since we don’t know what we’re doing, we can take from the team
what we bring into it. We can directly ask for help, and this is the fastest way to learn
things that we didn’t know about the codebase, the project architecture and more. We
only need to ask, and someone who understands the project better will explain how
the part that we’re struggling with works, and why. Immediately getting expert help is
the dream.

Let’s go back to the beginning. Where a junior software engineer might imagine com-
mercial programming as a group of loner coders, finding flaws in each other’s code,
the senior engineer knows that a high-performing software development team is an
environment focused on mutual improvement, where people are empowered to do
their best work without hand-holding, don’t hesitate to ask for help when stuck, and
treat their product as a shared effort that everyone owns.

Yuri Karabatov 41

https://www.forbes.com/sites/joefolkman/2017/03/02/the-6-key-secrets-to-increasing-empowerment-in-your-team/

Junior to Senior

2.7 Know your place

The last thing to find out is to discover where you fall on the scale. The gap between a
junior and a senior engineer is not only about pure domain and programming know!-
edge (the what), a lot of it is also the senior engineer’s behavior when developing
software (the how).

For a start, let’s get the question of domain and general computer science knowledge
out of the way. A hill I will die on is my strong belief that there is not one piece of
knowledge that is critical for each and every one of the software engineers, at any level.
The beauty of software engineering, and what makes it so accessible to people from so
different educational backgrounds, is that you need very little hard knowledge to start
“tinkering” and go from there. Undoubtedly, general knowledge is important as your
projects become more serious, but as long as you’re willing to learn and are aware of
what you’re missing (and know where to find the details when you need them), you’ll
be fine. The real liability is the software engineer who does not want to learn.

Seeing tables like Sijin Joseph’s “Programmer Competency Matrix” exposes this
domain-agnostic approach to measuring knowledge. A “Level 3” engineer is supposed
to have knowledge of data structures like B-trees, red-black trees, tries and more. |
can honestly say that after ten years of programming professionally, | don’t know
how to invert a binary tree, because in the industries that I’ve been working in it’s
simply not something you do. If | needed it, I'd look it up. | don’t remember the SQL
syntax because | haven’t written any SQL for years, despite it being on the list of
What Every Software Engineer Should Know™. Note that it doesn’t mean that | don’t
know anything about SQL. | know enough to learn more when | need to. Instead,
I’m intimately familiar with the platform I’'m working on and the theory behind it.
At the same time, a software engineer just starting to work on any project involving
efficient search would need to know tries and red-black trees—because that’s what
the knowledge domain requires.

I’m not ashamed to admit that | would promptly fail a whiteboard interview for “real”
software engineers because of the gaps in my knowledge. First, because I’m aware of
them—I know what | don’t know—and second, because I’m confident in the knowledge
| do have and that it is both relevant and sufficient to produce effective code for the
platform ’'m on and the industry I’'m in. If | wanted to change industries and program-

Yuri Karabatov 42

https://sijinjoseph.netlify.app/programmer-competency-matrix/

Junior to Senior

ming languages, | would use the process | described in Exponential learning to identify
what was required and fill the gaps in my knowledge.

The most comprehensive—and unreadable—attempt at collecting and presenting all
available software development knowledge is the “Software Engineering Competency
Model” (SWECOM) produced by the IEEE Computer Society. In its 168 pages you’ll find
everything from theory to software lifecycle and even human-computer interaction
skills, split into five levels: Technician, Entry Level, Practitioner, Tech Lead and Senior
Software Engineer. It is high-level, more of an overview, but you can use the gap
identification worksheets it provides to get a rough idea of where you are on the
software development map, and use the terms as pointers to learn more and how the
gaps apply to your particular industry (and if they apply at all).

I’ve said in the beginning that the difference between the junior and the senior software
engineer was in the knowledge they had and in their behavior. Let’s try to expand our
definition in a way that you can use for inspiration. The junior software engineer needs
guidance. The senior software engineer has enough domain knowledge and skills to
reliably perform any software development work a project may require (from planning
to release and maintenance) by producing efficient code that fits well with the project.
If necessary, the senior engineer could work independently and find out whatever was
necessary to perform the task on her own, but by asking the team for help and helping
others improve, she’s creating an open and honest environment that lets the team as
a whole perform better. (That didn’t turn out quite as short as | imagined.)

In other words, the senior engineer is simply a great engineer that others can trust
and rely on, and there is abundant research that we can draw on to see what makes a
software engineer great, versus ordinary or beginner, and what skills the fresh gradu-
ates are missing. Two papers that | found the most useful were “What distinguishes
great software engineers?” (2019, by Paul Luo Li, Amy J. Ko and Andrew Begel) and
“Investigating the skill gap between graduating students and industry expectations”
(2014, by Alex Radermacher, Gursimran Walia and Dean Knudson). Actually, there was
a third one: “Towards a theory of software development expertise” (2018, by Sebastian
Baltes and Stephan Diehl).

How does this all help us understand what the senior engineer knows and can do that
the junior doesn’t? Let me make a list of characteristics—based on my own experience
and the research above—that make a real difference, and how you can bridge the

Yuri Karabatov 43

https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model

Junior to Senior

gap.

2.7.1 The senior engineer has sufficient knowledge to work
independently

The main reason why the senior engineer is so reliable is that she has the ability to
write the code for the whole project on her own. This entails several things at once,
but the central one is that she has enough knowledge to start working on any part of
the project without getting blocked, and if she does hit a snag, she can independently
identify what’s missing, find the information and get the task done.

We have touched on the general map of the knowledge that you may acquire as a
software developer, but here come the specifics. What knowledge, exactly, does a
senior engineer have that a junior doesn’t in your industry and on your project? We
can describe it as the knowledge that is required to effectively solve all of the typical
tasks that you can get in this role.

You can make a detailed map of this “sufficient” knowledge, first of all, by asking
the experts in your company. I’'m sure they will be happy to describe in detail what
exactly you need to know to successfully solve any task that you may work on. That
will become your curriculum to learn and practice, and by getting these skills, you’ll
become self-reliant and will be able to work independently.

For your industry in general, making a map of this knowledge is more difficult because
of the differences of the approaches of different companies, but you can still do a good
job by closely reading job postings and interview questions for the senior roles in your
industry. Job postings frequently contain all the tools and frameworks that the engi-
neers work with. The interview questions (not the general software development ones,
but those specific to the role) contain all the key concepts and advanced techniques
that the company is looking for in their senior engineers. By making this map, you
will discover what you need to know and be familiar with to be able to learn any other
details that come up on your own.

Why do | keep saying “work independently” when I’ve made such a big fuss about
being a good team player? These concepts are orthogonal and complement each other.
If you are unable to work on your own (you get blocked often and cannot move forward

Yuri Karabatov 44

Junior to Senior

without the team’s help) then the team has to spend their time helping you, and you are
unlikely to help anyone on the team with their problems. Conversely, if more people
on the team are self-reliant and can work completely independently, the team spends
time unblocking people less often, and you are more likely to help others by virtue of
having more knowledge. This way the team as a whole can move quicker.

Having this knowledge is also a matter of professional pride. Other people in the
company seek the expertise of the senior software engineer, and you want to be able
to answer their questions and give advice. Saying “l don’t know” is fine, as long as you
add “but | can find out.”

This expertise—the ability to know or find answers to other people’s questions and
to work on all implementation or debugging tasks that may come up in the course of
a project—is what distinguishes the senior software engineer from the junior. Others
know that they can depend on the senior software engineer to get the work done. By
making the knowledge map and working towards acquiring it, you will come closer to
being self-reliant and dependable.

2.7.2 The senior engineer writes good code

The crucial trait that gives the senior software engineers their title is their ability to
write “good code.” What specifically makes the code “good” is the subject of many
discussions, and can be extremely different from company to company, even in the
same industry. We will also talk about this later in the section “Elegant” code.

Code does not exist in a vacuum, and if a software engineer writes beautiful code that
does the wrong thing, it doesn’t matter how beautiful or performant it is. Code exists
to solve a problem, and as we’ve seen earlier, sometimes the best thing one can do
is not to write any code at all. If a senior software engineer writes code, then what it
does first is it solves the problem (implements a feature, fixes a bug). Only then does it
have merit as “good code,” otherwise it’s useless.

Even though everyone argues about specifics, research shows that expert-level pro-
grammers define three traits that make code good: it has clear structure, it is maintain-
able, and it is performant. The opposite is the textbook definition of “spaghetti” code:
slow, tangled, and unmaintainable. Let’s look at each of them in turn.

Yuri Karabatov 45

Junior to Senior

Clear structure of the code, like clear writing, reflects the clarity of thought. Code that
is clearly structured is more likely to have a well thought-out (and correct!) design than
code thatis disorganized and hard to read. Structure doesn’t only mean how neatly the
files are organized in a directory, it’s also the construction of interfaces and functions,
clear variable names and consistent formatting. Well-structured and uniform code is
much easier to read for humans (the compiler doesn’t care), and that takes us to the
next trait: maintainability.

The only constant in software is change. Maintainable code means code that is expected
to be changed, and makes it easy for the next person to change it. Maintenance doesn’t
sound interesting, but this is simply an umbrella term for the continuous improvement
of software. Maintenance is not only patching legacy code, it’s also implementing new
features in an actively developed codebase while running the project in production.
Any software is being worked on while it is used. The software that doesn’t get any
changes is likely unused and dead.

The senior software engineer writes code that is expected to be changed with minimal
effort. That is achieved (for example) by decoupling so that one object can be changed
independently of another, using small pure functions so that you don’t have to think
about mutating global state, separation of concerns so you don’t have to change surface
Ul codeifyou change a part of deeply buried network code, and a lot of other techniques
and tricks that all make code easier to change. More often than not, code written using
these techniques is also simpler because the context in which its components work is
smaller and easier to reason about. When the next person—this could be yourself in
six months when you don’t remember anything about it—comes to change the code,
they perform the task quickly and move on without untangling any spaghetti.

If we start the project with code that is easy to change, and every change we add is
simple and also primed for change, then by induction after many such changes the
project will still be maintainable. This is the core of the approach called “Simplicity-
Oriented Design” embodied in the very successful open-source project ZeroMQ.

On the contrary, if we add code that is complicated and hard to change, after a while
the project will become unmaintainable, that is, extremely hard to change without
breaking something else. These complicated and hard-to-change additions are what
we call technical debt, code that is known to be bad, and maintainable code is the
opposite of it. | like the sound of technical investment, because unlike debt, you don’t

Yuri Karabatov 46

https://zguide.zeromq.org/docs/chapter6/#Simplicity-Oriented-Design
https://zguide.zeromq.org/docs/chapter6/#Simplicity-Oriented-Design

Junior to Senior

have to pay it back in the future, it only brings dividends shared equally by everyone
on the team.

Performant code simply means code that only does the necessary work. In rare cases,
when the performance is critical, we need to use magic tricks and hardware-specific
hacks, but for common applications, writing plain, idiomatic code while using appro-
priate data structures is enough. Computers are fast, and you don’t need to introduce
hacks anticipating a bottleneck before it’s proven to exist.

Benjamin Franklin said: “If | had more time, | would have written a shorter letter,” and
that is broadly true of the well-structured, maintainable and fast code of the senior
software engineers. Rarely does code like this get written on the first attempt, and
even if itis, it comes from experience and thinking through the problem. More often it
is the result of invisible iteration. Kent Beck’s quote “Make it work, make it right, make
it fast” reflects this process well. The first version of the senior engineers’ code, and
the second, might just be barely functional. What makes them senior is they don’t stop
at that and produce the final version that has all of the traits that make it good code.

On top of that, in research two attributes of great software engineers trumped all oth-
ers: paying attention to coding details (with examples being error handling, memory,
performance, style) and being mentally capable of handling complexity (the ability to
comprehend multiple interacting software components).

These two attributes are directly responsible for producing “good code” that the senior
software engineer is praised for. The junior engineers’ code is often inconsistent and
missing critical details specifically because they did not pay attention to some details,
while in the senior engineer’s code, every line is accounted for and the implementation
completely solves the task.

Again, it doesn’t mean the senior engineer’s attention span is longer or better than the
junior’s, but her attention is more focused on the final version of the code change. It
is the same with handling complexity: the senior engineer often has all the software
components of a project in a working mental model that she uses to anticipate the
effect of her changes on the project as a whole, while the junior engineer can only
think about a few components at a time.

I’ve read somewhere that as musicians learn their craft, it becomes easier for them to
remember music because they start thinking in musical phrases instead of individual

Yuri Karabatov 47

Junior to Senior

notes. It’s similar to how a software engineer thinks about a large software project. The
ability to consider multiple software components at a time is not exclusive to the senior
engineers, it comes with practice, just as knowing where to pay attention in a code
change so that it’s as coherent as possible. We will discuss how you can deliberately
improve in this area in the section Code mimicry.

2.7.3 The senior engineer knows the software development
process

New graduates and junior software engineers have little to no experience with the
process of commercial software development and when they start a job, they quickly
learn how much they’re missing. Writing code is the crucial skill of a software engineer,
but in the scope of a software project and shipping a product, writing code takes only
a small part.

Susan, our senior software engineer, is keenly aware of her place (and her impact) in
the process of creating software and continuously getting the product ready for release.
To put things into perspective, let’s take a brief and very simplified look at how the
software sausage is made, from the perspective of a software engineer.

Let’s say the user researchers have identified a new customer need, and Engineering
is tasked with solving it. Software engineers can be involved as early as this stage,
because as experts in the platform and the inner workings of the product, they can
help the product owner and designers decide which approach to take, and its tradeoffs.
For example, a backend engineer would be able to say what data was available at
which stage, and how quickly it could be retrieved. If some query was known to be
inherently slow, the approach using it could be discarded early. Without any software
engineering input, a “new feature” cooked up only by Marketing could be completely
infeasible and would make the product, the user experience, server costs (or all of that
at the same time) worse.

After the approach has been chosen, a new feature is fleshed out and split into tasks.
Again, the expertise of the software engineers who are going to work on it can provide
a better direction early and save a lot of unnecessary (and expensive) rewriting later.

Then the software engineers do their work implementing the new feature. Depending

Yuri Karabatov 48

Junior to Senior

on how the team is using version control, it can be completely separate from the main
project until it’s complete, or added bit by bit in a way that is walled-off from the
customers. Tests are written, and code is reviewed to be “production-grade,” primarily
meaning that it’s efficient and all the possible errors have been handled.

The feature as a whole is deployed to a testing environment for, you guessed it, testing.
Acceptance testing—which compares a feature against a set of pre-agreed criteria—
is often performed by people other than the software engineers themselves, both
because it can be time-consuming (there are a lot of permutations of configuration,
etc.) and because the software engineers are myopic when verifying their own code.
After several rounds of finding and fixing bugs, the feature is ready for release.

The release is usually the same code being marked in version control and deployed to
yet another environment: production, the one used by customers, with real data and
often higher load. Inevitably, some more bugs are found and categorized, from trivial
to critical, sometimes resulting in the whole feature being rolled back, or disabled for
a portion or all customers by a remote feature switch (a setting in the backend that
controls whether users can see a particular feature in the product or not).

After the feature is released, the team switches to the next one, while fixing issues from
previous releases. Depending on the number of developers and the size of the project,
multiple features can be developed at the same time, all being in different stages of
development, all in the same codebase and often touching the same code, so another
team changing code your team relies on can mean new bugs in your feature :) On and
on goes this process, and the codebase lives for years, or even decades.

This is my best approximation of the software development process in product compa-
nies, so your experience in your industry may be slightly (or vastly) different. There are
many approaches to developing large projects, but the one I’'ve described, | think, is
the most common. This process is not without flaws, and I’m sure many companies
have their own.

The process is not a ritual inherited from ancestors and revered (as some Scrum cargo
cult meetings may feel), but something that should be tweaked or changed completely.
Your duty as a software engineer is to the customer and the product, and the develop-
ment process is just a tool, not a temple. Raise it and build it anew if your team feels
the need to. For example, the team at Basecamp have done just that and named their

Yuri Karabatov 49

Junior to Senior

process “Shape Up.”

The junior software engineer or the new graduate don’t have experience with any of
that. They have only worked with what we may call “side projects”—software written
from scratch by one person, often released once and never worked on again. Code
quality was never an issue, and the extent of using version control was making some
commits. Nowonder they struggle when thrown in the middle of an established process
in a company.

According to research, the skills found to be most lacking in new graduates were com-
munication, knowledge of environments, version control, and testing. That confirms
my own experience. Let’s look at each in turn and see how you can catch up.

Communication is the first and trickiest. The junior engineers don’t know how to talk
about their work, and the work of others. In the section Development is a team sport
we have seen how to improve communication within a team, but there is also the
matter of writing good emails, and various documentation, and explaining your ideas
during meetings, and talking to other departments in their language. We will look
at this in more detail in the sections Help your company teach you and Considerate
communication.

Knowledge of environments (testing, staging, pre-production, production) and how
the code that you write is deployed, and in what configuration, is fundamental to the
senior engineers’ ability to predict how their code will perform in the real world, and
what kinds of errors may happen.

Just like a piece of software is never “finished,” a large project with many moving
parts doesn’t exist as a single “version” that everyone is using. On the contrary, itis a
sprawling web of versions that not only have different code, but their configuration and
available data is also different in different environments, and on each of the engineers’
machines because they’re all working on different features or fixing issues. Under-
standing and predicting how a certain code change will perform takes the knowledge
of how it propagates through this web.

This concept is, of course, closely tied to using version control. For the senior engineer,
version control is two things: the first is the actual version control system that the
company is using, and the second is the meta-level of code changes.

The version control system, for better or for worse, is most likely to be Git. You may

Yuri Karabatov 50

https://basecamp.com/shapeup

Junior to Senior

(.—0- f"'.-\ - S -

\ 1 (4

vidl vl \
- - '--.—!— [):
l

1 11 { 1
. 1 i | \\
1 =
"PRob | ITEST: Aev) "rERTORe 8
s--- \---' i ._—.FEATURE%
e HOTFIX »—= BUGFIX

Fig. 5: Environments and product versions.

not like it, but it won (for now), and until something better comes along, we are going
to use it. The best we can do about this situation is to learn the concepts and some
inner workings of Git so that it’s easier to understand and remember the commands,
and what they are doing. The simplest way to do so is to read the free book “Pro Git”
and use it for reference later. For the junior engineer, who has only worked on small
projectsin isolation, going from the occasional git commit tothe commercial usage
of Git can be daunting.

The senior engineers, especially if they are working on a release, will work on the level
of code changes, rather than individual “in-progress” commits. Code changes can be
sets of commits, or (squashed) individual commits, but in the end they are units of
work shipped by software engineers to be integrated (merged) into the project. These
code changes are the building blocks of the product, and a set of them, put together
from the very first line, is the product.

In different environments, different sets of these changes coexist, and to assemble
them, the software engineer needs to join them together, which often causes conflicts
because they are touching the same code. They need to be marked and tallied to be
included in the next release and the changelog. Afterwards, some may be rolled back,
and the coexisting versions of the product with different sets of these changes may
need to be reassembled in a different order or joined.

Working with changesets, the meta-level, can be done over any version control system,

Yuri Karabatov 51

https://git-scm.com/book

Junior to Senior

but in order to perform this work, the software engineer needs to be skilled with the
particular system that the company is using. That’s why you can often see on the
job postings that version control experience is required, but with any version control
system, because the meta-level works over any of them, and you can learn another
tool to perform the same process when necessary.

2.7.4 The senior engineer enables others to make decisions
efficiently

Since the amount of knowledge the senior engineer has about the project and the
domainin generalis high, she uses that knowledge by helping others answer questions
and solve problems, often proactively, because she’s on the lookout for inefficiency in
the company’s process. This is the opposite of passively waiting for someone else to
tell you what to do.

To make a decision is to resolve ambiguity. Theodore Roosevelt said: “In any moment
of decision ... the worst thing you can do is nothing.” A variation of this quote is
popular in business, since the only certain thing in business is uncertainty. Perfect
information to make a decision will never be available, there are too many factors and
too many unknowns. This is also true even at the level of writing code. Junior software
engineers can spend days or whole weeks trying to decide which implementation path
to pick. Designers will make multiple prototypes of a feature, some of which could be
eliminated early. If only a project expert was available who could help them make a
decision quicker... The senior software engineer is that expert, lending her knowledge
to those who need it.

By being proactive and helping other people answer their questions and make de-
cisions quicker by literally being the expert around whom they can ask, and giving
advice when she notices problems, the senior software engineer can save an enormous
amount of the other specialists’ and her fellow software engineers’ potentially wasted
time. Wasted time directly translates to slower product development and lost profit
for the company.

The senior software engineer knows this even from her own work. Writing code is an
exercise of balancing tradeoffs and constraints. Accommodating every constraint and

Yuri Karabatov 52

Junior to Senior

external requirement involves making a decision. Making these decisions can have
high costs for the project, since the senior engineer’simpact on the product is high (that
is, the consequences of her decisions can be dire). She is actively looking for anything
that can de-risk these decisions by providing supporting and convincing information—
an expert in the problem domain is the best source of this help and advice. It’s like
having your personal Google that knows the answers to all of your questions. Knowing
that, the senior engineer seeks to offer her help to everyone around her who is in need
of it orin denial.

2.7.5 The senior engineer is continuously improving

We have already seen in the section You are not your role that even if you don’t make a
particular effort at improving your repertoire of skills, with time your role will change
naturally, most likely towards what you’re better at. This is a low-resistance way of
improving your skills by simply using them. But, by doing that, you will likely not move
far in your software development career, or do it quickly. If that has never been your
goal, that’s fine. That’s less stressful and rational, but | personally find it unexciting.
Besides, we’re here to learn how great software engineers approach their work and
how we (the merely ordinary, I’'m not pretending I’m smart) can try acting the same.

Someone said: “One engineer will have five years of experience, and the other will have
one year of experience five times,” describing how different people improve at work.
That’s a keen observation—it’s also been around for decades, in different industries—
and it’s also true for other skills: playing the guitar, running, writing. After reaching a
certain level of competence that is sufficient for work, we have to consciously apply
effort in order to improve our skill further.

This is very evident in learning a foreign language, especially in immigrants. After a few
years, most people learn enough to be competent and stop improving. You can hear
their original accent a decade and more later, making the same mistakes, even though
they are speaking their new language every day. They are not trying to improve and so
they don’t. Good for them. Who likes extra language lessons?

We know from the research of K. Anders Ericsson that experts become experts and
reach the height of their performance by engaging in deliberate practice—a tight loop
of practicing a particular component of a skill with the desire to improve, followed

Yuri Karabatov 53

Junior to Senior

by feedback, changing how they perform the skill and practicing again. You can learn
much more about it by reading the book that summarizes 30 years of his research,
“Peak: Secrets from the New Science of Expertise” (co-authored with Robert Pool). The
10,000-hour rule, popularized by Malcom Gladwell in his book “Outliers,” was based
on Ericsson’s research, but oversimplified it.

Well, most people have never heard of deliberate practice but stillimprove and become
great software engineers, right? That’s true, partly because software developmentisa
skill that is itself similar to deliberate practice. When programming, we have a mental
image of what we want to achieve, we write some code, run it and get immediate
feedback, fix any errors or add more code and run it again, and so on. This loop of
trying to achieve a result with almost instantaneous feedback that we can immediately
act upon is deliberate practice.

As our projects become more complicated and we get more responsibility, and as we
get more competent, we engage in this loop much less often than early in our careers,
and almost never do it on purpose. Invariably, our progress slows down. Also bear
in mind that even the sheer volume of programming we do helps improve our skill,
compared to how bad we’ve been in the beginning.

So, people areimproving unconsciously. Butremember how I’'ve said about the average
number of years (five or more, depending on the industry) it takes to become a senior
engineer? If we consciously engage in deliberate practice, we can speed up this process
and grow more than if we haven’t. Some people do it, and companies that care about
their software engineers encourage it by giving them learning opportunities, more
responsibility and stretch projects, specifically designed to allow the engineers to work
on growing their skills.

Finally, working to improve your skills is more fun because it gives you a moving target,
or rather, a series of targets that you keep hitting, which is good for motivation. And,
what’s even better, you don’t have to spend your free time doing that, you can do it at
work. Deliberate practice involves a skill you already have—programming—and you
can do it while working, these are not separate exercises that you do during lunch, or
at home.

As Patrick McKenzie says, you can work on cutting-edge technology and become a
great engineer, all by working nine to five and being home at six. Even if you want to

Yuri Karabatov 54

Junior to Senior

improve quicker, you don’t have to work on side projects or code in your free time if
you don’t find it fun. In the long run, having an active life outside of work and relaxing
will help you focus and learn better when you are at work.

Yuri Karabatov 55

3 What you can do now

Phew, that was a lot to process. The senior software engineers, especially if they’re
great engineers, are expected to know and do so much. But even knowing the destina-
tion, it’s hard to imagine how to get there. What can you do right now that will set you
on the path to leveling up?

You can see some advice in this section as making an impression of a better engineer,
rather than actually getting better. Impressions and how they’ve felt are what people
remember about you. You can feel that you are “deceiving” people or “wearing a mask”
by changing what you would say otherwise, but you are not—you are simply being
professional. Doing the work to make an impression does make you better because
you do additional research, think a few steps ahead and read others’ code to improve
yours. Remember what we’ve talked about in the section Development is a team sport.
Cultivating a positive team atmosphere takes work on everyone’s part, and it’s good
for everyonein return.

The advice in this section will help software engineers of all levels to become better
members of their team, while both improving their technical skills and making other
people’s work easier. I’'m not telling you what exactly you should learn (well, maybe a
little bit), but rather, how to give yourself more space and potential to grow, so that
you can get to your destination quicker.

But first, you need to decide what you want.

3.1 Where do you want to go?

The biggest threat to your improvement as a software engineer is not knowing what
you want. That doesn’t mean you have to decide and commit to a 30-year career

56

Junior to Senior

(just yet), but knowing your preferences and options for the short term (months) and
the longer term (years) can do a lot to steer your efforts in the direction that you find
meaningful.

This is all part of the navigation theme I’'ve been bringing up. “Going with the flow”
and just working at your job may feel less stressful, but often it’s like drifting in the
sea, you can go this way and then that way. It’s in your best interest to at least check
occasionally that the direction you’re going is aligned with your interests.

What if you do not want to learn anything and just want a stable job? Maybe after read-
ing the previous sections you’ve decided you’re disinterested in software development
in general and want to do something else? That’s... fine, | guess. There is space in
tech for everyone, and it’s not your obligation to be excited about your work. I’'ll only
say that being disinterested and unimpressed, even hostile, can be a sign that you’re
too tired. Chronic weariness is common in software development, and we will talk
more about it in the section Burnout. If you have ever felt excitement about learning
programming, this feeling can be brought back.

Software development in general is just another job (no matter how much some pro-
grammers consider themselves superior to other people), and it’s not fun all the time.
In fact, most of the time it’s tedious, and if you don’t like code and programming, work
can be seriously boring. But some programming jobs are far more boring than others,
and by following some of the advice that follows (yeah...) you can have a better time
at work, or change your role or company to something that doesn’t feel so tedious.
Being on a good team can make all the difference.

With that said, | assume you want to improve, and before going further, you’ll be well-
served by trying to answer some questions that will help you establish direction. In
my experience, having at least a vague goal that you’re drifting towards is better than
having none since it gives an anchor to your efforts and lets you decide what you do or
don’t do based on whether that moves you closer to your goal or not.

We’ll use both positive (what you want) and negative (what you don’t want) questions
because some people find one type easier that the other.

« What are parts of your job that you like and don’t like doing? We want to do more
of what we like and possibly leave what we don’t like to people who are better at
it.

Yuri Karabatov 57

Junior to Senior

« Forpartsthatyou don’tlike (like “designing a new API” or “giving public talks”), do
you not like them because you’re bad at them and don’t like the feeling of being
inadequate? Imagine if you were good, would you feel the same? Whether you
dislike the activity or your own inadequacy is an important distinction explained
in detail by Josh Kaufman in his book “The First 20 Hours.” In short, you can learn
to be better and discover that you enjoy the activity—being good feels good.

« When writing code, what are the areas you’re struggling with most often? These
could be design decisions, being confused by library APIs, difficulty coming up
with what to test, and so on.

« During code review, what kinds of comments do you get? Do you fail to include
some details, is your code structure confusing, do you write too many comments
or too few, does your style match the project? Code review, as long as it’s con-
structive, is a great source of ideas for improvement because it’s other people’s
assessment, not just something you think.

+ Areyou happy with the industry you’re in and the product you’re building? Do you
know if the common ways of working in other industries are different from yours,
and if your project follows good engineering practices? Are you empowered to
change the process that your team is following? Note that having no process is a
process too.

« Do you have a positive environment at least in your team? Are engineers encour-
aged to learn? Being on a toxic team, or led by a toxic manager can make you feel
trapped and useless, but as we’ve talked in the section You are not your role, it’s
in your power to change your team or switch to another company.

« Are you satisfied with your level of income, your working conditions, is there a
clear track and timeline for a promotion?

Given these examples, I’'m sure you can come up with more things to consider that
are important to you. The baseline is simply to become better at the work that you do
and treat people around you well. Even by doing just that, you will improve faster than
someone who doesn’t have any goals at all, nothing to look forward to. Work can be
more than a place where you come to spend the day.

Yuri Karabatov 58

https://first20hours.com/

Junior to Senior

3.2 Help your company teach you

Learning is at the core of being a great software engineer, as we’ve seen in the section
The senior engineer is continuously improving. The job description of the junior software
engineer is to learn and gradually take more responsibility and have more impact
by working on bigger tasks. The company as a business benefits from educating
its software engineers so that they can create a better product for the company’s
customers (and let’s be honest, compensation often lags behind responsibility so it’s
also cheaper).

But the company is often inept at teaching, and the software engineers themselves are
not doing a good job learning. The company, because unless there are people who
are specifically working on improving teaching, the process goes downhill, and the
software engineers, because, as we know, many software engineers think their job is
to write code.

Here’s a common scenario when the company hires James, our junior software engi-
neer. Heis given a couple of “simple” tasks and told to ask questions to his “onboarding
buddy” Betty (a senior software engineer) if he has them. If he is lucky, there is some
outdated project documentation that he can read. The senior engineer is a bit shy and
has a lot of work of her own, so she also tells the junior engineer to ask questions when
he has them.

The junior engineer spends the week trying to code a solution to the simple problem.
On Friday he has a short meeting with the senior engineer to check in on his progress.
Betty looks at his code which is not finished and has a lot of temporary hacks (because
James is trying to make sense of the project) so she gives him a couple of pointers, and
suggests to use the same solution like in that other module.

The junior engineer spends the next week trying to understand how the other module
works and adjusts his code. Next Friday the senior engineer asks if he has considered
this and that (non-obvious cases that are impossible to discover) and asks him to
handle them. When next week the junior makes his first pull request, he gets enough
code review comments to spend another week fixing them.

The juniors often don’t know what they are supposed to learn, or to what end. They are
given as much time as they want to work on their tasks, because they are “learning.”

Yuri Karabatov 59

Junior to Senior

Junior Software Engineer in an average small company

Fig. 6: Junior Software Engineer in an average small company.

They get stuck and can spend days looking here and there for a solution, and never
asking other software engineers for help, because they think they’re supposed to figure
everything out themselves. The seniors are too busy working on their own tasks to
pay enough attention to steer the juniors in the right direction and give them enough
information to get unstuck. The senior engineers aren’t managers after all, they aren’t
supposed to know this stuff, right? This sight is so typical that it’s ended up as a meme
of a dog walking itself.

Senior software engineers can also become myopic to the benefits of talking to other
people and asking for help sooner. Earlier in my career, | have left companies over
lack of learning, but looking back, | understand that I could have had more learning
freedom in a familiar project and in a company that trusted me.

Yuri Karabatov 60

Junior to Senior

Let’s see how we can reclaim time before it’s lost, from the small things to the large.

If we had perfect knowledge, by definition we would be perfectly equipped to answer
all the questions we may have and make any decision. We don’t, and we are left to
either get the knowledge ourselves, or ask others to give it to us. If we tried to get
all of the necessary knowledge from others, they would feel they are making all the
decisions for us, and we just take their (valuable) time. So we must have balance
between looking for knowledge and asking for it. How we ask for help is also important
since it shows our peers if we have done any work first.

Let’s imagine software development as a series of tasks you should perform by writing
some code. This is generally true for any level of software developer. As you begin
working on a task, you start asking yourself questions because you need to make some
implementation decisions. Debugging is a little different, but can also be reduced to a
series of questions. Senior engineers tend to have higher-level questions (“Do | extract
some functionality | need from another module for this new feature I’'m writing?”)
because they can answer the simpler, lower-level questions that the junior engineers
have (“Is there a function to do X already implemented in the codebase, or maybe
I need to do Y instead?”). Junior engineers usually have more questions they have
trouble answering, so they get stuck more often.

Getting stuck is the key concept here and your main indicator of when you need to seek
help from somebody else. My rule of thumb is that if you don’t make any progress for
about an hour, you are stuck. “No progress” means that you haven’t written any code
because you are unsure what to do; you’ve written some code, it hasn’t quite worked
and you don’t know why; you’ve been debugging a problem and don’t understand it
better than an hour ago. The common thread here is that you are unsure or don’t know
something, that is, you have a question without an answer. Often you don’t know what
the question is.

But noticing that you are stuck is not yet time to ask for help. First, we must try to bring
some clarity by asking ourselves a few questions. Here are some that | ask myself:

« What exactly am | trying to do? If you’ve been “trying to make your code work,”
this can help you snap back to your actual problem and notice that you arein a
dead end, the question you are trying to answer is unnecessary, and you can go
back and try an alternative from two questions back.

Yuri Karabatov 61

Junior to Senior

« Can | solve a simpler problem first? I’'m guilty of trying to satisfy all the require-
ments in my head at once before writing a single line of code, so | can sit and
stare at the screen for an hour, thinking. Mathematicians, when trying to prove
something, solve embarrassingly simple problems first before adding details, and
it’s a good approach to relax your requirements. Write a solution for a simpler
problem first, and from that vantage point you will likely discover a possible
solution that you haven’t considered before.

« Is there an alternative approach | haven’t considered? Maybe if it doesn’t work,
you’re doing something too complicated. To answer this question, it helps to look
at what pieces you have of the solution in isolation. When working on a problem,
we write some code, change some, but rarely look at only the changes we’ve
made, as if we were to make a pull request. Seeing only the new code you’ve
written often helps you come up with something else, or see where you’ve gone
on the wrong path.

+ Is my problem already solved somewhere in the project? Well, you should ask
yourself this before starting to write code, but it also works when you are stuck
trying to solve a sub-problem of a problem. Here it helps to know what you
are trying to do (the first question). Try to look around the codebase and see if
someone has already come up with a solution.

That last one is also useful for code style questions, but we’ll discuss code style in the
section Code mimicry. Now | can say that if you get stuck on code style (“Should I write
it this way or that way?”), just pick one that works and that you feel better about (for
any definition of “better”) and finish your task.

Now that we’ve tried to solve our problem ourselves, it’s time to start thinking about
asking for help. But our peers won’t appreciate it if we message them saying “Hey,
can you help me with something?”—they are working on their own tasks, and asking a
question like this doesn’t help them help you at all. When writing to someone at work,
the best thing you can do is to not make their job any harder. We’ll talk about this in
detail in the section Considerate communication.

Briefly describe the problem you are solving (give links if available), the approach
you’ve taken and the reasons for it, the specific problem you are stuck on and why you
think it’s not working. Finish with a question. Aim for no more than half a page of text
in total (even that is stretching it). Your message can look like this:

Yuri Karabatov 62

Junior to Senior

I’m working on the ticket T (link). | found a similar implementation in module M
but I also need to update the user field F. The API X that I’'m using doesn’t provide
this field. I tried injecting AP1Y but it needs an extra dependency Z that | don’t have
access to in this module. Is there another way to update the field F [the problem
you’re stuck on] or there’s another APl | can use [question your overall approach]?

Why do all this extra work when you can just come up to the person or Slack them
and let them ask you questions? First, the act of describing your problem helps you
clarify to yourself what you’re missing, and you may understand in the process that
your approach is wrong, or you don’t know why you’ve made the decision to use this
approach. Second, the goal of this exercise is to create shared context between you
and the person whom you are asking for help, so that after this first message they
can immediately help you, because they already know what you’re trying to do, what
you’ve tried, and why.

In reply to your previous message, they can say: “I’ve had the same problem when
working on module K. Try using API W instead, it returns the field you need and has the
same dependencies as X so you won’t have to inject anything else.” You thank them
and both of you continue working. Instead of a 20-minute back-and-forth where they
try to understand what you’re doing and get increasingly frustrated, you spend a little
time up front to compose a message that helps them help you, they spend a minute
typing up their answer (because you’ve asked a specific question) and can go back
to their own work. A minor distraction for them, and you’ve shown respect for their
time. They will be happy to help you again later. For a little extra, tell the person that
it’s worked after you implement their advice.

Even doing just that, spending a reasonable time trying to solve a problem on your
own, noticing that you’re stuck, clarifying what exactly you’re stuck on and respectfully
asking for help by asking a good question, will let you learn quicker and teach you how
to work more independently by trying to answer your own questions first.

Sometimes you’re completely stuck and asking a question will start a discussion, which
can naturally transition into a pair programming session, when another person (who
is usually a senior software engineer, able to solve the problem you’re having) helps
you with your code.

Some people consider pair programming to be the best for learning, even when it’s

Yuri Karabatov 63

Junior to Senior

two similarly skilled engineers working together on a feature, exchanging ideas. |
haven’t got to do much of it, and | find it hard to talk and think at the same time, so it
doesn’t work too well for me. It’s fine if something that works for many people doesn’t
really work for you, like learning from a book, or watching lectures on Coursera, or pair
programming. Everyone is wired differently and the trick is to find what works better
for you and do more of it.

But even | can vouch that pair programming is especially good when it’s one person
trying to help another with a problem they’re having. For a junior engineer, it’s like
borrowing the knowledge of an expert and immediately having all the answers, and
the reasons behind them. When working with a person who is more familiar with the
project than you, you get to learn their mental map of the project, discover code that
you haven’t seen before, learn the concepts they use to think about the codebase,
and you can ask them to explain how some parts of the project work that you don’t
understand.

If pair programming is practised at your company, don’t hesitate to use the opportunity.
Start the practice at your company if you don’t have it. Pair programming is similar to
the Ancient Greek practice of a mentor having an educated discussion with his pupils.
It worked for them and it will work for you.

On the question of borrowing expert knowledge, an invaluable habit is to have people
tell you exactly what you need to know before you spend any time trying to discover
what you need to learn on your own. This is the most valuable when you are just
starting on a project, and there are already people on it who are experts.

Usually you know what you are going to work on, so you can come to them and ask: “If
I’m going to work on X, what are some essential things and concepts | need to know?
Is there anything non-obvious?” They tell you and you take notes of everything they
say, and ask to clarify if you don’t understand something at all, and confirm if you
understand correctly: “So to use X, you first have to pipe data through Y and filter
with Z, is that right?” When they’ve finished, ask: “Who else should | talk with about
that?”

You’re new at the job and don’t know who is responsible for what. Some knowledge
is not in the codebase, but in the heads of other people, whom you don’t know yet,
but who can give you insights why something has been done the way it is and give you

Yuri Karabatov 64

Junior to Senior

useful data for reference. Aim for 30 minutes to an hour of talking with each person,
not more, otherwise you’ll be overloaded with information. | can’t believe | have to
say it, but don’t forget to thank them for their time.

In one of my past jobs, one the first things | did after | started was to sit down with
another senior engineer and have him walk me through the concepts behind the part
of the project’s architecture | was supposed to work on. There was also no documented
overview for it, so | took my notes and turned them into a guide on all the moving
parts involved in creating a new user-facing feature (with short code samples). By
writing it up in the form of documentation, | learned more myself and helped the other
engineers who joined after me to have an overview they could refer to from the very
beginning.

By asking existing experts, in hours you get instant expert knowledge (just like instant
coffee) and a mental map of the essential concepts behind the project that would take
you months to discover on your own (if ever). If the project is well-documented, a lot
of the expertise and the right way to look at things are still locked in people’s heads,
and asking them to share this knowledge with you unlocks it.

Even if we are talking only about code, on a project that is larger than a few hundred
thousand lines you are likely to never touch some major components, only use them
(if that), and so never learn how they work. But the expert, who has probably written
this code, will tell you how they think about it and what you need to know about its
inner workings.

Does that all make you an expert? Of course not. What it does is allows you to start
building the tree shape of the project in your head, and what knowledge and skills you
will need to work on it. You still have to do the work of filling in the details.

After you’ve settled in, work becomes less challenging as you learn more. In my experi-
ence, this happens after three to six months after you start in a new role.This is a good
moment to reassess your position and adjust your compass. What did you learn? Did it
bring you closer to your goals? What are you still struggling with at work? Do you like
what you are doing and the part of the project you are working on?

When you are not new at your role and are used to your usual work, opportunities for
learning come in the form of doing different or more challenging work, usually called
“stretch projects.” These are fixed-length tasks that are more involved than what you

Yuri Karabatov 65

Junior to Senior

usually do, but are not so difficult that you won’t be able to do them. Such difficult
but not impossible tasks “stretch” your skills and let you scout new territory, filling in
more areas in your tree shapes.

This is usually done in coordination with your manager. Companies that care about
helping their software engineers improve are proactive about this. Even if you're
interested in a different role, this can be arranged as long as people are happy with
how you perform. Doing quality work is a prerequisite for getting more responsibility. In
any case, you should let your peers (and your manager) know that you want to improve
and become a better software engineer, and what direction you want to focus.

The “stretch projects” don’t necessarily have to be some huge tasks that affect the
whole codebase (even if you are a senior engineer), but can be, for example, tasks from
other teams working on the same project but in an area you’re interested in. They will
be harder for you and a learning experience because you’re unfamiliar with that part
of the codebase. It could also be an experiment completely outside the scope of the
project, like trying out a new technology, doing performance tests on new approaches
and reporting the results, working on qualitative test improvement and so on.

Again, you should think about going further only after you’ve begun to master your
current role. If you are a junior software engineer and want to refactor a whole module
and get rid of legacy code, you will likely be refused, because you have mastered
neither the scope nor the necessary skills to perform this type of work. A more fitting
project for junior engineers would be to let them participate in design discussions and
take a new feature from design completely through implementation (with occasional
help), thus proving that they can work independently and now have enough skills to
work without hand-holding.

If you are worrying that you are going to be refused, such personal development is
not encouraged at your company (why?) and your manager insists that you should
focus on doing your work, either you are not ready (but you think you are—check
yourself against other software engineers) or you can take it into your own hands and
do learning forays while working on your regular tasks—by now you should roughly
know what you need to learn. There is much to learn even when you’re adding a button
in a boring line-of-business application.

We have touched briefly on how to talk with other people, now let’s look at it in more

Yuri Karabatov 66

Junior to Senior

detail.

3.3 Considerate communication

The formula “don’t make their job any harder” that | mentioned in the previous section
is the central principle of considerate communication and can be applied in a variety
of contexts. The primary objective is to value other people’s time. The secondary
objective is to answer other people’s questions before they have them. The result
is that you are building a reputation of being dependable (you do what you say you
will do, cultivating trust) and pleasant to work with (you don’t waste anybody’s time).
People take you seriously and you become an authority (a trusted expert).

Being taken seriously doesn’t mean that you get to have no fun. A trusted expert isn’t
someone sour-faced. As long as you have a mutual understanding with people and
your style is appropriate for the context, you’ll be fine. Knowing what is appropriate
and predicting the reaction of people you are writing or talking to is also a part of
considerate communication.

In the same way, valuing people’s time does not mean that you have to value their
time over yours. It is not a zero-sum game, where if someone wins, the other loses. Itis
acknowledging that the work other people are doing is important, just as yours is, and
you are communicating in a way that lets them do their work by doing yours. Often it
is simply a matter of efficiency.

Like we’ve seen in the previous section and the example of asking for help, putting
your thoughts in order before asking questions helps both of you. You get help quicker,
and the other person spends less time distracted from their work. On your side, you
would spend the same amount of time if you asked for help first and then answered
questions about what exactly you needed help with, but the other person would need
to spend all this time extracting information about your problem, unable to help. Why
would you willingly choose to waste people’s time at work if you knew a quicker way
that would save time for both of you?

Perhaps, the simplest example of considerate communication is “No Hello,” a single-
post website that asks to avoid saying “Hi!” in chat, waiting for the other person to
reply, and only then typing your question.

Yuri Karabatov 67

http://nohello.com

Junior to Senior

It’s as if you called someone on the phone and said “Hi!” and then put them on
hold!

Instead, it suggests putting your greeting and the question you have in the same
message. You can also ask for permission and clarify in the same message: “Hi! If |
may ask a question: X? If you’re not the right person to answer this, could you please
suggest whom I can talk to?” Treat your first message like an email, not requiring the
other person to be present, and ask the question right away so they can start thinking
about your question at once and not wait for you to type it up.

If you don’t ask the question and have to leave the chat, it can get completely ridicu-
lous:
[12:02] You: Hi!
(You get a sudden call at 12:05.)
[12:10] Coworker: Hello!
(Coworker leaves for a meeting at 12:15.)
[12:35] You: Sorry, | was in a meeting. Could you help me with X?
[12:50] Coworker: Same, half an hour meeting. What do you need?
[12:51] You: (finally asking your question)
[12:52] Coworker: (answers your question)

Instead, if you ask the question right away, you will get a reply sooner, and without the
unnecessary back-and-forth:

[12:05] You: Hi! If you’re not busy, could you help me with X? (your question)
(You manage to type your question before the sudden call at 12:05.)

[12:10] Coworker: Hey! Sure. (answers your question)

(Coworker leaves for meeting at 12:15.)

(You get back at 12:35, your question is already answered.)

[12:35] You: Thank youl!

Only two messages instead of six to get your question answered, and nobody had to
wait on each other, even with the disruptive calls. Again, I’'m not advocating being
robotic and measuring your “communication efficiency” by counting messages. Chat
with your coworkers all you want! But even in this example, you get work out of the

Yuri Karabatov 68

Junior to Senior

way sooner and, having gotten your answer, you can have a chat instead of waiting for
the moment when both of you are available to ask your question.

This is less of a problem when both of you are at the office, but writing gets increasingly
important every year with the rise of inter-company communication tools (that are
not email) and remote work. Even if you and the person you want to talk to are in the
same office on different floors, would you walk to their desk every time you wanted to
talk to them? No, you would message them.

Expanding our previous example, imagine if you needed help from three people, and
someone needed yours, and everyone waited on each other to ask questions. You
would spend all day chatting instead of working. That is exactly what happens in a lot
of companies that are forced to work remotely. You get less done, but feel more tired
because you’ve been distracted by chat all day. Battle the distraction by giving people
information they can act upon.

Thanks for coming to my TED talk!

Practicing and getting better at writing is at the heart of considerate communication.
Practice writing by starting with thoughtful Slack responses, then well-researched
emails, then documentation, then posts on the company engineering blog. | found
myself writing this book.

All of that builds your credibility as a software engineer and, what is more important,
through better writing you are making it easier for people to understand what you want
to tell them. That people appreciate what you have written—because they have found
it clear and useful—also helps curb impostor syndrome that many software engineers
struggle with.

William Zinsser in his book “On Writing Well” (my favorite writing book that I highly
recommend) said “Clear thinking becomes clear writing; one can’t exist without the
other.” By noticing that you cannot write clearly about something (or people have to
ask you additional questions), you discover what information you are lacking. The
same principle is behind the advice to teach something to really understand it, because
in order to give a clear explanation, you have to fill in the gaps in your knowledge as
well.

We can get better at composing our messages by practicing for the second objective of
considerate communication—answering other people’s questions before they have

Yuri Karabatov 69

Junior to Senior

them. This applies both to the information you want to convey and the questions you
ask to others.

Let’s go back to our “No Hello” example. Imagine that the question you asked was so
generic and simple, that the answer was the first result when you typed it literally into
Google. Your coworker might answer your question, but no matter how well-written
your message, she would think: “Couldn’t you google that first?”

Nobody likes to answer questions that are the first result on Google (unless you ex-
pressly need their unique summary and opinion). Your coworker would get the impres-
sion that you clearly value your time over hers, or rather, that you don’t value her time
at all (because people think in absolutes). If you do that more than once, how do you
think her opinion of you will change?

If you think this example is too extreme, | assure you people do that all the time. Just
open Stack Overflow, switch to the newest questions, and you’ll see for yourself. |
picked one, copied the title directly into Google and got an existing Stack Overflow
question as the first result, that not only answered the question, but also gave ad-
ditional information about the values (the question was about a Python function
parameter), what sizes were best and why.

Practice improving your writing for other people by trying to answer your questions
yourself first, and by trying to predict what questions other people may ask.

The previous situation with the overly simple question could have been avoided if we
tried to type the question into Google first, and would have required minimal effort.
Answering your own questions (that come up while you’re working) means finding
information, and that is a crucial skill in software engineering. | have explained earlier,
that if you have a poor map of the territory around you and don’t take the time to build
tree shapes of the knowledge you might need, then, essentially, you will be lost and
will be forced to ask for help. Conversely, if you were able to find answers to any of
your questions (let’s consider speed not important for now), then by definition you
would have been an expert.

The quality of questions you ask directly depends on the quality of your knowledge
about a subject. If someone asks simple questions that are easy to answer again and
again, we can conclude that they don’t really know much. In many cases, by looking
for answers before you ask for help, you’re able to solve your problem yourself, and

Yuri Karabatov 70

Junior to Senior

this process of discovery is a much better teacher than if you’ve just been told the
answer.

Predicting other people’s questions in advance is a little more difficult, but the main
trick to remember is to start with a notion that they do not know anything about the
context of your work. If they’re software engineers and your coworkers, then, of course,
they know about the project and its inner workings, but don’t assume they know
anything about what you are trying to do. Our task when composing a message, then,
is, first, to educate the person and second, to explain how what we are doing affects
their work (because people are the heroes of their own stories).

In our thread of convoluted examples, imagine you are about to do some maintenance
on a backend system people are using to run some of their work against. You drop a
message into general chat:

Heads up, there’s system maintenance soon.

Now place yourself in the shoes of another software engineer. Do you remember that
“the senior engineer enables others to make decisions efficiently”? The message that
you have posted does not allow anyone to make any decisions, because it’s lacking
information. The first question that everyone has is “What does it have to do with me?”
Here are some questions other people have that you can answer while composing your
message before you send it:

« Exactly which system is being maintained and for how long?

What is the environment, is it development or production?

When exactly does maintenance start?

Will the system be still online during maintenance?

How long will the outage last?
Will I lose any of the data that I've just loaded into the system?

To you the context may be obvious because you are the one doing it: “soon” means
twenty minutes, “the system” is the one you are working on, “maintenance” is just a
restart. But people who are reading the message don’t have any of that context, so
your task is to educate them, not as if, but because they know nothing. We can rewrite
your message to answer all of those questions:

Yuri Karabatov 71

Junior to Senior

Heads up, backend system B in the DEV environment will be restarted in 15 minutes
(at 12:30) and will be unavailable for 10 minutes. It will be back up at 12:40 with
the same data as just before restart. If you are working on X or Y you can get errors
while the system is down (go get a coffee!). If you are loading something big, let
me know and | will hold the restart for a couple of minutes.

If you send the first message, you will probably spend the same amount of time (but
likely more) answering questions that people send you, as thinking about those ques-
tions and answering them in advance while writing the second message. Including all
the extra information gives people the ability to make a decision whether they have
to do anything about the restart and whether it will affect their work. And you won’t
have to spend more time chatting, answering the same questions that you could have
answered while composing the message.

Predicting what other people want to know (and when) is also important when man-
aging expectations. When you are working on a task that needs to go into the next
release and has a deadline, it’s not hard to predict that your manager will want reg-
ular updates, and will want to know as soon as possible if you are going to miss the
deadline. (The question of programming tasks with deadlines is out of scope for this
discussion.) But remember to answer their (unvoiced) question in your update! If you
write “I’m working on it” on the day of the deadline, how does it help your manager
make any decisions? 1t doesn’t answer their question: “Will it be ready today, and if
not, approximately when?”

My rule of thumb is that if a person has to ask me a question about the progress of
my work, | have failed. This is especially relevant for remote work, because nobody
can see you at your desk working. Even if you are the most dependable person and
are never late with your tasks, people will still have a question in their head: “What if
you’re late this time?” Overcommunicate by default and send more updates than you
think is necessary. Of course, don’t do it so often that it interferes with your work.

For a task, some good points | use are 20%, 50%, 75% and 90% of its completion. If
you expect to work on a task for a week, on Tuesday you say “no big problems,” on
Wednesday “about halfway done, should be finished by Friday,” on Thursday “mostly
working, final touches” and early on Friday “need to finish X and Y and I'll be done
today.” It doesn’t take much time at all but brings peace of mind to everyone working

Yuri Karabatov 72

Junior to Senior

with you because they know what you are doing. If you post too often, someone will
tell you, don’t worry about that.

What if you made a mistake, your estimate was wrong, you sent out an important email
with incorrect information? Think about the situation in terms of making decisions.
You’ve discovered a mistake, that means you know that some information is wrong.
Other people still believe that this information is correct and will make decisions based
on that information. The longer people believe the information is still correct, the
more bad decisions they will make.

The best thing you can do in this situation is to let the other people know that this
information iswrong, so that they can adjust their decisions. In other words, you should
own up to your mistakes as soon as you discover them. By waiting, you are making
other people’s jobs harder because they will have to adjust more of their decisions.
This is directly related to being considerate—thinking about other people.

Remember that work is not school. You are not given points for correct answers and
blamed for wrong answers (well, maybe a little). Blaming people for their mistakes
is counterproductive because it doesn’t help solve the problem. You were hired as
a software engineer to solve business problems, so making a mistake is just another
problem to solve. By owning up to it early and suggesting (or implementing) a solution
you can even be praised for it, because you have likely avoided a worse outcome.
This happened to me when | discovered and fixed a nasty bug before release: | was
congratulated, but | was also the one who had introduced the bug. It didn’t matter
because | was able to fix it in time and it didn’t affect customers.

What if people are blamed and ostracised for mistakes in your company? This culture
results in problems being ignored and swept under the rug. In relation to software
development, it’s creating technical debt and hoping the bug happens on somebody
else’s shift because then they’ll have to fix it. The culture of blame shuns experimenta-
tion and learning, because that is risk. But you can’t learn without making mistakes,
failure is the best teacher. If you wait until you can write code without bugs, you won’t
be able to write a single line of code. | would start looking for another company.

On the question of company culture, considerate communication is also about cul-
tivating a positive atmosphere in a team. When we compose our messages (or any
other writing, like comments in code review), we must think not only about the way we

Yuri Karabatov 73

Junior to Senior

convey information, but also emotions that other people will have about our writing.

In the section Development is a team sport we have already discussed positive team
environments, how positive teams are more productive, and that you have to expend
additional effort and watch your language to make your tone positive. | have also
linked to Babylon Health’s “Code Review Etiquette,” but there are more good examples
there, and | encourage you to read it.

Sparing people’s feelings does not mean that you can’t have firmly held opinions or will
have to agree with everyone. Not at all. Being intentionally rude, insulting other people
at work and degrading discussions into shouting matches is simply unprofessional.
Practice being calm and considerate ;)

3.4 Unknown unknowns

The meaning of “unknown unknowns” is well-explained in the famous quote by the
United States Secretary of Defense Donald Rumsfield during a Pentagon news briefing
in 2002:

...there are known knowns; there are things we know that we know. We also know
there are known unknowns; that is to say, there are things that we know we don’t
know. But there are also unknown unknowns—the ones we don’t know we don’t
know.

Here | will use this term to mean knowledge in your domain of expertise that you are
not aware about. This is closely related to creating tree shapes that we have discussed
in the section Exponential learning. The unknown unknowns are knowledge that you
have not yet put in your tree shape at all because you don’t know that it exists.

Knowledge that you are aware about (or known unknowns) is something painted in
broad strokes in your tree shape, not too detailed. Finally, known knowns are the
detailed regions in your tree shapes, knowledge that you can use immediately.

The keen reader will notice there can also be unknown knowns, and those can be de-
scribed as things that we know but choose to ignore. But we are trying to become better
software engineers here, not build a psychological framework. If you’re interested, the
framework that has these four quadrants is called the “Johari Window.”

Yuri Karabatov 74

https://github.com/babylonhealth/ios-playbook/blob/master/Etiquette/CODE_REVIEW.md

Junior to Senior

It’s common that our junior engineer James will struggle with a problem for a couple
of days and try different approaches, and then a senior engineer will have one look
at the problem and say: “You should just use X.” That X, for the junior engineer, is an
unknown unknown, because he has not been aware of it.

Now that we know (duh) about this, what can we do?

We must do our due diligence and broadly research the knowledge domain of our
choice, so that even if our map is low on detail, parts of it are not completely blank. In
other words, we must put special care into organizing our knowledge and filling in our
tree shapes.

In more cases than you think, simply being aware of some bit of knowledge or the
existence of an approach is sufficient, because if we’re aware of it and its qualities,
we can go and research it and find more details about it, up to and including using
that approach or that library (or whatever bit of knowledge) in our project. Otherwise,
when facing a task, we are likely to try to apply the approaches that we already know,
not looking for alternatives.

Perhaps this is my personal bias, but | think having an extensive mental library of
patterns and bookmarks (how best to do things and where to find more information) is
more important in software engineering than knowing few things very well and being
good at execution. Is this the difference between a generalist and a specialist? Not
really. You can both be a specialist in one or two domains and have the breadth of
(not very deep) knowledge in others—sometimes called being a “T-shaped developer.”
This is closer to the difference between being a “Java programmer” and not being
interested in other fields (but being able to create generic backends very quickly) and
being a “software engineer” and having enough transferable knowledge to be effective
in any specific role. It is a matter of setting yourself up for success in a long career.

Luckily for us, information about technology (if it’s not too advanced and/or obscure)
can be easily found on the internet, and when necessary, unlocked from the heads of
experts. In the section Tree shapes | have shown how I’ve been learning C++, and here
are some more ways to fill in the detail on your map:

« It’s good to start with several introductory articles and a couple of books, even
by reading only the table of contents. The authors are usually experts who have
taken the time to organize their knowledge, so it’s often a ready-made framework

Yuri Karabatov 75

Junior to Senior

that you can use to research further.

+ Look at awesome-style collections on GitHub to get not pointers, but actual links
to things you can see and read. The better ones are also a good overview of all
the things you can do with a technology because they’ll link to different projects
using it.

« | find recorded conference talks a great source of best practices and mental con-
cepts that you can use to think about a particular technology. Getting knowledge
from an expert, structured in a way that they think about the subject is the next
best thing to having an expert answer your questions.

« Yes, you can have experts answer your questions too. Every technology has hubs,
forums, chats, communities and more where experts hang out discussing the
technology with other experts (because everyone needs help and inspiration
sometimes). By finding them you can not only have your questions answered,
but also get an overview of the latest developments and trends that can tell you
where the technology is headed and what the current problems are.

« On the question of current problems, the easiest (and the most fun) way by far is
looking for memes. Google “X memes” and you will find Twitter accounts, sub-
reddits and other sources. Memes are an outlet for frustration and exaggerated
exposure of problems with the technology. They aren’t a source of truth, but they
are generally true and can guide you to well-researched articles talking in detail
about the same problems (which can often be a deal breaker), that you would
not have found otherwise. | call it Meme-Driven Research™ and it’s surprisingly
effective.

« Books, articles, videos and talking with real people should give you enough
information to start experimenting with the technology by yourself. Pay special
attention to things that are similar to what you know, because their similarity
on the surface (like a similar API to a library from another language) can hide an
“unknown unknown,” some concept of the technology that you miss and that
can come back to bite you later. | especially like to adjust the way | think when
stumbling on some early problems. Often I’'m either doing something wrong
(having a false hypothesis) or don’t have the right mental model, and if it’s this
early, it’s likely that many other people have the same problem, so it’s easy to
find articles that explain some key concepts. For example, you can have a lot of
problems with Git just trying to use it through non-obvious commands. Dealing

Yuri Karabatov 76

Junior to Senior

with it becomes much simpler when you have a mental model of what happens
under the hood (it’s not too complicated), and you can find the commands more
easily when you know what you want to do conceptually.

Don’t skimp on broad research and you’ll be able to work more independently. Doing
research like this is similar to answering questions about your code, only it’s about
concepts rather than specifics, so both of those are really one skill of effectively looking
for information, and one reinforces the other.

Since we’ve started talking about code, let’s see what you can do to get through code
review easier (even if you’re new) and get more familiar with the codebase quicker.

3.5 Code mimicry

Ah, the sight of a new codebase. New to you, of course. The gleaming front door
and the cobwebs in the hall. A whiff of smoke down the corridor. Weirdly shaped
windows. Rooms with “DO NOT ENTER” written on their doors. Hallways ending with
brick walls.

Orienting in an unfamiliar codebase and blending in when contributing code are two
skills that are interdependent on each other and will help you at any stage of your
software development career—and will make an impression on your peers.

If you’re a software engineer, being positive with your coworkers is important and is a
sign of professionalism, but your main skill and your main job function is still writing
code. We have already discussed what good code is in the section Development is a
team sport. We know it should be readable and effective, and that any code you write
should solve the task at hand. Another point that is not less important is that code
exists in the context of the codebase and the project you’re working on. Every project
is unique, and every codebase has its own architecture, style and code practices that
may be different from what you’re used to.

You must have seen discussions on what case to use to name variables, how to name
classes and methods, whether to use tabs or spaces, and more. On a higher level,
developers discuss how to compose functions, the rules for creating library APIs, writ-
ing doc comments, and on and on. Software engineering is like shifting sand, and

Yuri Karabatov 77

Junior to Senior

everything is up for discussion. You may have your own strong opinions on many of
these questions. People often do, hence the existence of many “opinionated” projects
that make certain choices the certain way, and they are not up for discussion in the
context of that project any more.

In general, a sizable part of these discussions is irrelevant or orthogonal to the logical
structure of the code. This is also known as “bikeshedding,” or the “Parkinson’s Law
of Triviality”—meaning that a large amount of time will be spent discussing trivial
technological details that don’t have much weight in the context of the whole project.
My advice is to stay away from these discussions.

Bruce Lee famously said “Be like water” and this will be our approach to anew codebase.
Our job as software engineers is to solve problems for the company and the customers,
most often by producing code that is maintainable by other people. Maintainable code
means it’s easy to read and uniform, and easy to change. To achieve this, it should
follow the principle of least surpise, meaning that it will be structured and look the way
people expect. The best way to make this impression is to have your code follow the
style, formatting and structural conventions that already exist in your project, so that
your newly written code looks as if it has been in the codebase all along.

The codebase you’re working on can have formatting you don’t really like, or have
some weird architectural decisions, but if you try to impose your opinion by ignoring
the existing conventions, you’ll make a disservice to your coworkers. The worst thing
for a project is to be inconsistent, because that brings mental overhead for everyone
working on the code. | don’t mean only the style and formatting, but also conceptual
things like APl design and what patterns you’re using. Experienced programmers will
read any syntax with little overhead since they are used to reading a lot of code, but
when you have to switch gears to a different set of concepts in every file, it becomes
taxing and will slow down the team.

The counter-argument is that a completely different set of concepts and data structures
may fit a particular task or module better. It may, but it severely limits the opportunity
for change, and the ability of different people to work on different parts of the project
at will. As software developers, we work with abstractions wrapped in abstractions.
By having a consistent set of abstractions at a lower level, we can start thinking of
the project at a higher level of abstraction and see patterns that would have not been
apparent had the codebase been a mish-mash of different approaches.

Yuri Karabatov 78

Junior to Senior

That doesn’t mean the project has to be stuck with a particular unfortunate techni-
cal decision forever. This situation can and should be improved through refactoring
(improving the code while preserving its functionality). Shims and wrappers could be
written for legacy code, so that developers don’t have to deal with them directly, or
legacy parts could be replaced by new ones, if it’s worth the effort.

It’s critical that the whole team is aware of these decisions and the direction the project
is taken, again to maintain consistency. If one part of the team refactors one legacy
module one way, and another part of the team refactors another legacy module another
way, both versions end up with “better,” but different APIs. The project will become a
disjointed mess, and it would have been more reasonable to keep the legacy, and for
both teams to work together either to produce API-aligned refactorings, or to write
one wrapper that would fit both legacy modules.

Thankfully, code style is becoming less of a problem—and less of a discussion topic—
with the rise of automated code formatters and linters with rules that can be shared
across the whole team. As long as the majority agrees on a set of rules, code formatting
becomes a non-issue.

Some languages, like Go, have formatting built-in from the beginning and as a feature
of the language, so everyone using the language is using the same style, which makes
it easy to read code by other people in a variety of projects, since they all look the
same. With formatting out of the way, you can focus on understanding the concepts
and data structures (the meat of the project), rather than lament the poor taste of the
authors.

Now that we understand why we want to mimic the existing code, let’s see how we can
doit.

In the section Help your company teach you I've already said about talking to experts.
Ideally, the first step when you start working on a new codebase is to talk to existing
experts and ask them to explain the top-level concepts and the decisions behind the
project’s architecture. Both of these are often missing from the documentation (if there
is any). You will learn the specifics and the details of writing code later. The goal of
this exercise is—you guessed it—to begin making a tree shape of the codebase, and
we start by mapping out the larger moving parts first, before we move on to filling in
details. Knowing the high-level concepts gives you an immediate advantage of the

Yuri Karabatov 79

Junior to Senior

right way of thinking about the specifics.

The next best thing is to read documentation and look at the physical project structure
(directories and files). Projects are usually organized according to their logical structure,
so just by looking at the directories you can discover most of the moving parts and
how they relate. Even if your first task in a new codebase is to work on a small feature,
putting it into the context of the whole project will help you understand where it fits in
the structure.

Before you write any code, read some of the features that are similar to what you’ll be
working on and pay attention, first, to the style and formatting (usually there’s also a
code style document you can read, or a set of rules for a code formatter or linter), and
second, what practices and patterns are used when writing code.

Is the style more imperative or functional? What is the average length of methods?
Is the code more focused on OOP or composition? Do people try to be terse or the
code aims to be simpler and longer? Are there any comments? Most big programming
languages used in commercial software development have a lot of flexibility in how you
can write code, and some teams will use libraries or approaches that can completely
change the “usual” way the language is written.

| hope you like to read code because we will do a lot of reading! Writing code that
looks similar to existing code and uses the same patterns depends on you being closely
acquainted with that existing code via reading a lot of it. To get the most of our time,
we won’t just read the codebase like a book. Armed with the high-level concepts that
we have learned first, we start very close to where we’ll be working within the project.
I’'ve just said to look at some of the similar features, but now we’ll need to look even
closer and read the code that you’ll interact with.

Now we want to understand the local structure and usage. What are the data structures
and classes that are used? Are there any utility functions or helpers? If you notice how
utilities are used in code (and where they are implemented, so you can find more of
them), you’ll get a good idea of what people do often enough that they’ve needed to
write utility functions. What are the dependencies and where does the data that you
work with come from? Notice how simple tasks are accomplished line by line, because
that’s how we write most of our code, trying to accomplish a simple task in a few lines.
Often reading just a few files is enough to see many common patterns that you will use

Yuri Karabatov 80

Junior to Senior

when you begin writing your own code.

For contrast, have a look at some places in the codebase that are far from where you
are going to work. How are they different? Presumably, they have been written by
other people than what you’ve been reading before. Is the code similar to what you’ve
seen? Ifit’s very different, try to understand which of the styles is the older one and
which is preferred. Either look at the file history in version control or ask someone on
your team.

In one of my past jobs, my first task was to implement a feature that was very similar to
an existing one, but after | submitted it for code review, | learned that even though the
feature | had copied wasn’t old or legacy, it used some older patterns and there were
newer ones available that | should have used. If | had looked around the codebase a
little more or have asked my teammates, | would have known about them.

Again, asking existing experts is one of the best things you can do when you have
many implementation questions in your early days with the codebase. Junior software
engineers often submit code for review that does roughly the right things, but they
have reinvented the wheel by not using existing utility code. As long as you are asking
for help in a way that respects other developers’ time, you should do it more often to
resolve the ambiguity about the code you’re writing.

Try writing some form of the solution first and look at similar features again to see
if there is anything that can help with what you’re struggling with. Notice when you
feel like you have to jump through hoops and the solution doesn’t come naturally.
For example, if you need to transform some data and you can do it in a way that is
idiomatic to the programming language in general, and comes naturally, is short and
clear, then there’s no problem and even if there is another way to write it, you can
leave it as is until code review. If, on the other hand, you notice that the code to do
something comes out confusing, or you feel like there should be an easier way to do
what you’re trying to do, there probably is. You did the work by trying first, so you can
ask: “I’m trying to transform data | get from X to do Y, and | have this code: [your
code]. I can’tfind a simpler way, is this approach OK?” Not all code has to come easily,
and someone probably will assure you that you’re doing fine. Maybe there is a helper
to doit, and you can simplify your code.

In larger projects, almost everything you’re trying to do has already been done, and

Yuri Karabatov 81

Junior to Senior

blending in is a matter of finding this code. | don’t necessarily mean whole features
(though that happens too), but rather the small building blocks that you are using
to construct the solution to your problem, like the order of methods within classes,
working with data within functions, what signatures and parameters names to prefer
when writing your own functions, down to how to loop through arrays and do small
data transformations.

All these small details contribute to the “feel” of your code and whether it fits with
the project as a whole. At first you will spend more time looking for code that does
something similar to yours, but that means reading more code, noticing more patterns
and in the end, all of that is a learning experience helping you become more and more
familiar with the codebase, and with time you’ll find things quicker and quicker.

Finally, I’'m not advocating that you have to produce code that perfectly matches the
project on your first try. Write what and how you can. The goal of this section is to
make you aware of a way to approach a codebase that will let you produce better
code sooner. Better, because you’ll be more familiar with the codebase and will use
existing style and approaches instead of having to invent your own for problems that
have already been solved. This ties back to treating the project as shared code that
the whole team is responsible for. Of course, it’s impossible to have the project’s code
look as if it’s been written by one person (and there’s no need to), but keeping the
codebase consistent makes it more maintainable, which lets the team as a whole be
more productive.

You will find that code review will be much smoother if you try to mimic existing code
from the beginning. Instead of being littered with comments “we usually do X instead”
and “restructure thisasinY” and “please rewrite to use existing helper Z”—all related to
the minor details—you will be able to turn your reviewers’ attention to the conceptual
merit of your solution. When all the smaller details are in order, your code starts to
feel like being written by someone who has been on the team for a long time (which is
what we want).

Yuri Karabatov 82

4 Leveling up

In previous chapters, we have learned what it takes to be a senior software engineer,
and here we will see how to become one, either by getting promoted at work, or by
finding another job. Some hot takes in this one...

One thing before we begin. My position is that you can be a senior engineer without
the title Senior Software Engineer. If you are doing senior-level work that lets you
realize your potential, your team is positive, your company invests in learning and
doesn’t skimp on compensation, please be content and don’t chase the title for its
own sake. We are trying to improve as software engineers, and spending several years
in an environment conducive to learning will let you improve much faster, and sets you
up for further success in your career, compared to being Senior in a company where
everything is on fire. This is not fine at all.

4.1 The real world

Welcome to the real world.
Morpheus to Neo

Did | just make a reference to corporations treating workers as living batteries to power
the business, literally draining them of life? Absolutely not! xhuff* Well, maybe a
little.

What does it mean to work for a company in the real world? We already know that
work is not like school. You do not move forward as much or as quickly if you simply
show up and do the work that somebody else has laid out for you. Doing everything
right and getting “good grades” does not mean that your company will automatically
recognize your work and promote you.

83

Junior to Senior

My version is that for a company, we are a business function on its balance sheet, a
“human resource,” but at the same time a company is not sentient and everything that
happens in a company is the result of people making decisions. We are suspended in
the middle between these two notions.

From this definition we can make several conclusions:

« People who make decisions often think in balance sheet terms, not human terms.
Laying off 5% workforce to keep the budget solvent, or hiring two more software
engineers for team X so that it’s able to deliver project Y on time.

« If we want something to happen, we must influence people who can make that
decision.

« People who make decisions can be influenced on a human scale (because they
are people and like or dislike other people) and on a balance sheet scale (because
that’s how they often think).

« To the company, you are one among many and the company cannot be loyal to
you. The company will expunge you from its balance sheet without hesitation.
Thus it’s unnecessary to “prove” your loyalty to the company, because it won’t
show any to you. But:

« People can be loyal and look out for other people within the company.

This reads like a story of favoritism and office politics, but isn’t that exactly how a lot
of companies work? Clueless manager gets promoted because he’s friends with the
CEO—a balance sheet decision primarily from human-scale influence (a detriment to
the company). A quiet software engineer who has been with the company for eight
years is fired because his unit became unprofitable—a purely balance sheet decision
and a lack of human-scale influence. Another software engineer from the same unit got
transferred to another unit because she has been active on other company projects and
made an argument with her manager that her experience was perfect for accelerating
a project that another unit had just started—a balance sheet decision primarily from a
balance sheet argument (a boon to the company).

Does it mean you have to cozy up to your manager to get promoted or simply not
to be fired? The answer is our favorite answer in software engineering: it depends.
Unfortunately, whether we like it or not, the situation I've described is the reality. It is
foolish to refuse to accept it. Of course, there is a spectrum, and some companies are

Yuri Karabatov 84

Junior to Senior

friendly and care about the wellbeing of their employees, while others are like snake
nests (and both can coexist in a big enough company).

Inthe end, all companies are just a bunch of people working together, and large groups
of people always involve a layer of personal attitudes and relationships. People aren’t
robots performing their “job function.” So even if all we want is to write code, we will
have to deal with people.

| hate office politics with a passion, not only because | prefer to work rather than bicker
and badmouth, but also because people involved in politics make decisions that are
less objective, with detrimental results to the company, the product and ultimately
the customers. In tech, you can often prove that your argument is correct. You can’t
persuade the compiler that its opinion of your code is wrong. Politicking runs across
that.

That is the primary reason | choose to stay at the regular engineering level. A good
engineering manager will shield and protect his or her team and let them focus on
their work. Still, no matter how sheltered we are (and how socially dysfunctional |
sound), it’s our job to get “noticed,” to improve our skills and get promoted if that is
what we want. While it may sound grim, this is actually a blessing: your career and
what you do is not controlled or handed to you by other people (like at school). You
are in control of your career and you can steer it the way you like it.

Fortunately, we can do it ethically, without the need to cozy up to anyone or to bad-
mouth other people. We will talk more about it in the next section, but primarily this is
about knowing your value to the company, talking and working with your superiors
and peers, taking responsibility and following through on your promises. This is a
professional and calm approach. It helps to be friendly, but you don’t have to make
friends if you don’t want to. We will talk more about being closer to other people and
“building a network” in the section Interesting people.

A common story is a manager promising a promotion or a salary increase for years and
never following through. If you have taken more responsibility, improved your skills
and had an agreement with your manager (best do that in writing—more on that later),
then this is plain manipulation of your loyalty to the company. And we already know
that a company can’t be loyal to you. If the spiel “If you work here some more, you’ll
be promoted” repeats again and again, it’s time to leave. Your work and potential is

Yuri Karabatov 85

Junior to Senior

wasted working for a company that doesn’t keep its promises.

I’'ve read the other day on Twitter that it’s a privilege to be able to find software en-
gineering jobs at will, and it’s disingenuous to advise leaving a stable job. | agree,
especially if you don’t have a network, or have not given much thought to career de-
velopment. When you’ve spent more than six months looking for work, it’s extremely
demotivating (speaking from personal experience).

My hope is that by learning and practicing what this book has to offer, you will have
an easier time looking for a job when you need it. Meanwhile, my advice, if you find
yourself in an unfortunate situation at work, is to look for another job while you are
employed. Unless it’s very bad or you have at least six months of savings, you will
be much more confident doing interviews and will have more success if you keep
working.

Finally, you may find that when you ask for more (and deliver what you’ve promised on
your end) you will see more respect, and even get unexpected help from your superiors.
This happens because there aren’t that many bad apples. Normal people like other
people who are ambitious and follow through with their promises. When people trust
and respect you, you are far more likely to get what you ask for. As we’ve learned earlier,
you gain trust and respect by helping other people, and this is exactly the opposite
of undermining their efforts for your own gain, and completely ethical. Hint: if you
think if something is ethical or not, you are probably not a jerk (they use any tactic
they can).

4.2 One company or job-hopping?

If you are a junior or a middle software engineer and you want to become a senior, is it
better to stay and get promoted at one company, or work as a junior engineer in one
company, then as a middle in another, and then get hired as a senior software engineer
in the third one? The answer is, you guessed it, it depends.

Primarily it depends on what kind of company you’re working at and what the promo-
tion history is. Past behavior is often a good predictor of future behavior, and what has
happened at the company a few years ago is likely to happen again. Look at the facts
and try to find answers to some questions:

Yuri Karabatov 86

Junior to Senior

« What is the turnover of software engineers? Do they tend to stay or leave after a
couple of years?

« Have the developers who have the Senior title now been hired as middle or
junior software engineers? How many years did it take them to become senior
engineers? What was the process?

« Does your company have a clear track for promotion, ideally with a timeline? Can
you “jump” the timeline and get promoted quicker if you fulfill the requirements
for a more senior role?

« Have there been any significant changes in hiring and promotions in the past
year that make answers to the questions above irrelevant?

The answers to these questions will help you understand how promotions work in your
company, and if they work at all. Maybe nobody knows how to train junior engineers,
and they leave after a year of doing menial tasks (but we know better than that!).
Maybe, like at larger companies, there is a set track that lets you increase your grade
every three years (but not sooner).

In any case, the answers, if you manage to find them, will give you information to adjust
your expectations, but your particular situation is unique. As long as you can prove you
can do senior-level work, there is no reason for the company not to increase your pay
and give you the Senior title. For the business as a whole, individual salaries are a drop
in the bucket, and the title costs nothing at all, but to you both can be life-changing.

Getting a higher-level title sets a precedent that will have a bigimpact on your career as
a software engineer. Getting promoted from being a junior software engineer becomes
a strong signal for other companies to take you much more seriously, because that
means you can now work with minimal supervision and create more value for them,
while being a junior means the scope of tasks you can do is limited, and someone will
need to keep an eye on you.

The jump is smaller with getting a Senior Software Engineer title (as I've said, some
companies don’t have the senior titles at all), but is still a signal that you have become
an expert and can steer whole projects on your own. Being Senior also means that you
are extremely unlikely to start as a Junior Software Engineer again in any other industry,
because the Senior title implies you have enough transferable skills, knowledge and
the ability to learn new technologies that can be applied in your new role.

Yuri Karabatov 87

Junior to Senior

A major benefit of staying at the same company is that often you can choose what
you work on and evolve your skillset, even to the point of completely transitioning
to a different role. If you were working as a web developer, you would have a hard
time finding a new job as a backend developer in another programming language, but
you could try it out while working at the same company and later make an internal
transition to another team.

This happens all the time in big companies, because as we’ve learned, retaining great
software engineers is often more important than what specifically they’re doing—
they’re great, so they do good work. So if you want to try out other roles than your
own, or if you’re not sure if you want to continue improving in your particular role,
staying at the same company is a relatively safe way to get some skills in other roles.

A major downside of staying at the same company for more than five years, especially
if you’re not closely following industry developments and aren’t proactive about self-
improvement, is that you can find your skillset outdated. Five years is a lot of time in
tech, and if you’ve been working on the same project for five years, doing roughly the
same work, without upgrading it to newer technologies (often there’s no need to do
that), when you decide to look for work you’ll find the job descriptions for your role
have completely changed and you haven’t worked with any of the new tools. You will
have to learn everything from the beginning.

You can both reinvent yourself and become outdated at the same time. We know from
the traits of the senior software engineers that they are continuously improving, so it’s
more likely that you end up reinventing yourself and staying up-to-date with the latest
industry trends. Changing jobs every one or two years will expose you to a much larger
variety of technologies and processes and will force you to learn more, especially if
you choose to work in different industries. This cannot really be replicated if you keep
working at the same company, unless the company is large enough and you have the
freedom to choose what you work on.

Another major benefit of changing jobs more often (but not too often, aim to work
somewhere for at least a year, or you’ll find it harder to get hired), besides the variety
of experience, is that you can dramatically increase how much you earn, much faster
than if you were working at the same company (if it’s not FAANG—but 99.9% of us don’t
work at FAANG). Even though, if you’re good, you can get significant pay raises at one
company, it’s unlikely that you will persuade them to pay you two, three or five times

Yuri Karabatov 88

Junior to Senior

as much as initially.

The salary ceiling for a senior software engineer is quite high if you consider the rise
of remote work. If earlier you have been limited to several companies in your city,
all paying roughly the same, now you can work almost anywhere in the world as a
contractor. | was able to double how much | earned several times by improving my
skills and carefully choosing the companies | worked for. You could also find a company
that paid about the same but allowed you to work from anywhere and move to a lower-
cost area, leaving you with more in the end (though you can also arrange this with the
company you’re already working at).

So, which is better? Here’s my advice.

If you are a junior software engineer, | would suggest staying at the same company
until you are promoted to a middle engineer, and perhaps a year after that. Going
from junior to a middle engineer, in my experience, should not take you more than
one or at most two years, even if you’re new. Follow the advice in the section Help
your company teach you and purposefully work towards becoming less dependent
on external guidance. After you get promoted, stay for a year to really learn what the
company has to teach you, learn to work on your own and try to figure out if you like
what you’re doing. After that you can re-examine the situation and see if what you
want to do aligns with your work at the company.

Talk with your manager early and say: “l want to learn and get promoted to a middle
engineer. What are the requirements, and how soon can | become a middle engineer if
| fulfill them?” Notice that you are not asking to get promoted, you are willing to do the
work so that you can get promoted based on your performance, and not because you’ve
been with the company for some time. This is a business transaction: you perform your
part of the deal (do the work) and the company performs its part (promotes you).

The important bit here is to get the requirements, the timeline and the promise of the
promotion in writing to keep the company accountable. Essentially, it’s a contract.
Go to your manager every week and show how you have progressed towards the
requirements (by showing the work you’ve done and what other engineers say). When
the time comes for the final check-in, you will be in a position of power since you’ve
kept your manager in the loop for six months or more, and you will most likely get your
promotion after the next annual review.

Yuri Karabatov 89

Junior to Senior

Sounds like a fairy tale, and some of you may say that the manager will definitely
manipulate you and feed you with empty promises. That is a possibility (and there are
ways to deal with that, one of them is to get their promise in writing like I've suggested),
but our goal is to improve our skills and get promoted, and get more responsibility, and
the only way to do that is to get people who make these decisions on board, and that
includes our manager. We don’t make threats and it’s a natural desire to improve our
skills in the best possible way, so letting our manager know that we want to be a better
member of the team is logical. Asking for a pay rise may be stressful for a lot of people,
but we’re discussing being more useful to the company and the company raising your
grade to reflect your new skills, that’s all. We are not asking for more money for doing
the same work.

As a middle engineer, you have more options, and what you do depends on what you
want. Revisit the section Where do you want to go? for a list of questions you can ask
yourself. If you’re happy working at a company and you’re learning, then stay. Finding
a good place to work depends a lot on luck, and the rise in pay will not make you
happier if your job is stressful and doesn’t let you improve. Unsurprisingly, you can use
the same tactic of making an agreement with your manager on increasing your pay
conditional on you fulfilling some requirements first, and doing market research.

This is not a negotiation book, just an overview of what you can do, but I'll say this.
| find that you can decrease the stress of discussing your salary at work by doing
thorough market research and agreeing to do the work first. If you follow my earlier
advice and know what skills and knowledge the engineers in your role need, you can
compare what you do at work to other job descriptions and salaries for similar roles in
companies similar to yours. By doing this, you shift the discussion from yourself (“I
want more money”) to objective facts, and this is especially useful if you find you’re
underpaid. Knowing your value helps you prevent your company from manipulating
you. In a similar vein, asking “What do | have to do to get a 5% pay raise?” and having
a written agreement shows that you’re willing to earn a higher salary by doing more
difficult work first and proving that you’re creating more value for the company, rather
than simply asking for a raise.

Now that we started talking about market research, let’s see what you can find out
when you start looking for work.

Yuri Karabatov 90

Junior to Senior

4.3 Reconnaissance

So, you have decided that you are going to look around and try to find a new job, one
that fits your goals better than your current one, or if you have been “let go.” Here I'll
describe my general approach to finding a job that I’'ve learned from several sources
and have used successfully over the years to work at companies and teams that |
enjoyed. I'll say right away that the process is not fast, and if you need work right away,
only some techniques will be useful to you. In return for your time, you get a higher
success rate and a job you know you’ll like (because you’ve done the research).

Reconnaissance in the title of this section means that finding work—or deciding you’re
good where you are—is all about research (also known as “googling a lot”). The central
principle is instead of saying “l want to find a job as X developer” and starting to fire
off the same résumé to a hundred companies, we will find what is already available,
and if it’s available to you. Just like when talking about your promotion, we shift the
focus from you and what you want to facts and data, what jobs are already advertised
and what real companies are looking for in candidates.

This shift is powerful because we are not simply presenting ourselves and looking for
any takers, any company that would hire us. We learn which skills and knowledge
actual companies are already looking for, and can adjust what we offer accordingly by
adding skills that we’re missing and not talking about those that are irrelevant to the
role you’re after.

This research into job postings is almost exactly the same as the research that I've
suggested to find out about the knowledge that companies expect from different levels
of software engineers. We find and read job postings for roles that are similar to yours,
in companies that hire in your area, the area you want to move to, or remotely. What
are we looking for? We need to find patterns and details that we can link to our own
work experience: specific languages and technologies, tasks you are expected to do,
education and certification requirements (if that’s relevant to your industry). By doing
this research, we learn what is relevant to your industry, because each is different. It
can also answer almost any question that we have, and whether we need to know or
learn something or not.

The next step is to take the list of companies that have roles closest to what you’re
after, and find them on LinkedIn (or Xing, or whatever is popular in your country). We

Yuri Karabatov 91

Junior to Senior

do this to find the people working in these companies in roles similar to yours, and
look at their profiles. By doing that, you compare them to your own experience and in
their job history you can find answers to such questions as:

« How often do people get promoted?

Did people get the same or better (or worse?) title when they changed companies?

How long do the people stay in roles similar to yours? Do they leave or get
promoted after that?

What do people do while they’re working in these roles? The description of a role
in someone’s profile can be very different from the job posting.

What are the skills of people in the same role at other companies? Compare them
to the job posting for that company and you will get an idea of what you actually
need to perform the job versus what they list as necessary.

By finding the data about people and companies hiring for the roles you want, you can
objectively compare your skills and knowledge to the trajectories of other people in
the same role. You will know if you can apply to a higher level role and if not, what
exactly you are missing. You will not need to guess and hope.

If you’re a middle engineer and are wondering if it’s worth applying for a senior role
at company X, find the senior engineers on LinkedIn (or from the Team page on the
company website, or on GitHub through the company’s organization, or on Twitter)
and look how they’ve got their title. If you find several people who have been middle
engineers at other companies before they’ve been hired, with experience and skills
similar to yours, there’s your answer.

Does it sound like something a stalker would do? It may, but we are not after any
personal details, and our goal is not chasing people and sending them creepy messages.
We are collecting intelligence (remember the section title?) that will help us make
career decisions by looking through publicly available information, nothing more.

Some companies make it much easier than others by having a public playbook with
their ways of working (so you can know what team culture you’re getting into), an
engineering blog, their engineers speak at conferences and have their contact details
available, and so on. Letting prospective candidates know how cool it is to work at a
company is free advertising and attracts talent.

Why would you spend so much time and effort finding information about a company

Yuri Karabatov 92

Junior to Senior

if in the end you may not even apply, or it doesn’t have any open positions at the
moment? The reason is that the more advanced you become and as you improve
your skills and learn your preferences, the more you choose where you want to work
and have requirements for the company just as the company has requirements for
candidates. Disqualifying a company early through a little research (even though you
could get a job there) saves you time to apply to other companies that do fit your
requirements. Absolutely, this is a privilege, but it’s a privilege you earn through hard
work and improving your skills.

Let’s look at it from a different angle. If you wanted a stable 9-5, would you apply to a
company where software engineers work six months on average before leaving, and
its Glassdoor rating is 2.2? They would gladly hire you. An hour of research will save
you a month submitting your notice and looking for work again. If you are a junior
software engineer, do you apply to a company that only needs headcount to charge
a client more and doesn’t care about personal development? You will only lose time
doing menial tasks. Even if you don’t have a choice and need work, knowing about the
problems in advance can give you leverage during interviews.

4.3.1 Role + company

All this talk about companies is there because your next job will be you workingin a
specific role at a specific company. You’ll find companies that have people in roles like
the one you want by doing research, and by talking to people (more on that in the
section Interesting people).

You know your preferences, and by researching each company in turn you will re-
move all that clearly don’t match and those where you wouldn’t enjoy working. Again,
through your research you will know that your skills and qualifications match those
of other people working in the same role that you want to apply to, and you are not
clearly under- or overqualified.

Starting with several companies from the list gives direction and purpose to your job
search, and knowing for which role you are going to apply, and at which company,
gives you clarity to how exactly you should do it.

Instead of copy-pasting your résumé and sending it to ten companies that you don’t

Yuri Karabatov 93

Junior to Senior

care about, you will edit your résumé so that it’s using the same technologies and
phrases as in the job posting and highlighting that you’ve done similar work in the
past (you know what’s relevant from other people’s profiles). You will write a cover
letter saying why you’re a great candidate and will mention the qualities that you know
the company is looking for. Maybe you’ve found the hiring manager’s blog where he’s
telling exactly what he wants to see in the cover letter and the résumé (this happened
to me, even though | found it after | was hired).

This takes more work than copy-pasting, but the chances that your application will be
noticed among hundreds of others and you’ll be invited for an interview are astronom-
ically higher with this approach. We don’t need to be the most qualified or the best,
we only need to be better than other candidates, and at least 80% don’t care, so you
immediately leave most of your “competition” behind.

Finding people who work at the company you want to apply to often lets you see
if you know someone, or know someone who does. Yes, it is time for the dreaded
“networking.”

4.4 Interesting people

According to some statistics I’'ve seen and some anecdata, between 60 and 80 percent
of all job openings arefilled through networking (which means, the person was referred
by someone they knew at the company). Consider the implications when a job opening
is published: three people known to someone at the company have a 60% chance of
getting the job between them, while the other forty applicants share the remaining
40% chance. Do you want to have a 20% chance of getting hired or 1%?

And that is only for jobs that reach the open job market in the first place. Some, if not
the majority, are never published on a job site, but instead offered to people the team
already knows. Only when the connections are exhausted, the company draws up a
job posting to find external candidates. In our (OK, maybe not “our,” but definitely
“my”) favorite “Don’t Call Yourself a Programmer,” Patrick McKenzie says:

Most jobs are never available publicly... Information about the position travels at
approximately the speed of beer, sometimes lubricated by email. The decision-

Yuri Karabatov 94

https://www.kalzumeus.com/2011/10/28/dont-call-yourself-a-programmer/

Junior to Senior

maker at a company knows he needs someone. He tells his friends and business
contacts. One of them knows someone... Introductions are made, a meeting
happens, and they achieve agreement in principle on the job offer.

With that in mind, how relevant do you think is generic advice on the internet about
how you should format your résumé and how it will get you the job? It completely
misses the point.

What does it mean for us? We have to remember that when we are cold-emailing a
company, no matter how good a fit for the position we are, we have a lower chance of
getting the offer than if someone vouches for us.

Why is it like this? It’s a people thing. Hiring someone is a big risk for the company,
because no matter how long the interview process is and what you talk about with
the candidate, they might not work out and the company loses money. While the
candidate’s technical skills can be tested (up to a point), no amount of behavioral
questions will help the company understand if the candidate is dependable or can be
trusted.

There is not much trust you can develop over a few hours of interviews (and often
just one hour). Because of that, a person familiar to someone in the hiring process
already has the level of trust much higher that anyone unfamiliar can achieve during
the interviews. As a result, if you are technically competent enough to do the job (not
worse than other candidates) but have a higher level of trust than others (that is, the
company believes you have the qualities necessary to do good work on a team and
are dependable), you are likely to get the offer.

People kind of know this through the advice to “build your network,” but it doesn’t

“I

mean adding lots of people on LinkedIn (the phrase “I'd like to add you to my profes-
sional network on LinkedIn” became a meme), or asking random company employees
for jobs, like many believe—partly because this advice misses the point just as the one

about résumés.

Building a network is increasing the level of trust between you and other people (as
technical as this sounds). The level of trust between you and a random stranger is very
low, and there is an infinite number of strangers. The level of trust between you and a
friend is very high, and in this day and age, we have few people we can call real-life (not

Yuri Karabatov 95

Junior to Senior

Facebook) friends. Between these extremes is a long spectrum, and in this spectrum
lies our network, the people who know us.

Building a network, then, is akin to making friends, and that is what makes it scary for
a lot of people. Not only because it’s hard, but also because we don’t want to share
any personal details (other people might hurt us), or go out of our way to talk to other
people. We often don’t talk much to people at work either, nor do we want to.

| propose to dial the expected level of trust (and thus, the risk to ourselves) way down,
because we aren’t looking for friends, or even acquaintances, and focus on bonding
with other people in public spaces over shared interests, ideally related to our work.

What does it mean, exactly? You’re probably interested in something enough to seek
out groups or communities online to talk to other people about it. Software developers,
unsurprisingly, are often interested in programming, and we participate in program-
ming language forums, library communities, contribute to open source, hang out on
community Slacks, and so on. That’s what it means to bond with other people over
shared interests related to work, and that’s what a lot of us are already doing.

If you are doing that, congratulations, you are already building your network just by
talking with other people about something you’re interested in. It’s often fun and
definitely non-threatening, because your goal is to learn and help out other people
with their questions, and in the case of contributing to open-source, directly solving
people’s problems. People get to know you as a member of the community who’s there
to help and is non-abusive. You are building trust.

This is what | call active networking because it requires you to seek out people and
communities, and talk to people. Still, it’s relatively low-maintenance since all of that
isonline, doesn’t require much time, and you don’t have to reveal any details about
yourself that you don’t want. Still, these community relationships can even grow
into friendships as you accidentally find people whose interests are closely aligned to
yours.

The best thing about it is that you would probably still have done it even if you didn’t
want to “build a network,” simply because you’re interested in the subject. And our
goal in this kind of communication is never exploiting people, but learning from them
and helping them. It’s also a wonderful way to de-stress and disconnect from work.
Some of that community participation can be at work, like discussing a programming

Yuri Karabatov 96

Junior to Senior

language issue on its official forums, and is directly related to your career.

Sometimes, though, we don’t have much energy outside of work to participate in
anything else work-related. Don’t feel like you have to. I’'m often very low on energy, so
| usually avoid communities that are strictly technical, since | don’t want to “work” all
day. But I still participate in others, which are about completely different interests, and
chance hasit that a lot of people in those communities are also software developers, so
over the years we’ve got to know each other, and there are some job discussions now
and again. Even by trying to avoid networking on purpose, | still did networking.

What about networking thatis passive? Thisisabout creating and publishing something
interesting (and related to your work), so that other people come to talk with you
because they find you interesting, without you having to lift a finger—well, besides
doing the work. It’s writing a blog, or speaking at meetups and conferences. You can
also do all of that at work. If you speak at a meetup or, even better, a conference, your
talk is not only giving you credibility as an expert, but is also free advertising for your
company, because people get interested in working at a company where you do cool
stuff that you’ve talked about in your presentation.

This passive networking can be both less and more stressful for different people, in
contrast to what I've called active networking. Less stressful, because it doesn’t involve
talking (a lot) to other people or helping them with their problems, it’s simply you
sharing what you’ve learned or done. And at the same time, more stressful, because
public speaking and publishing your opinions for everyone to see is stressful even if
you do it semi-regularly.

By doing both, not with the goal of “building a network” or finding people that can
get you the job you want, but in order to learn and help others by sharing what you
know, by being interested in what other people do and sharing interesting information
for others, in a year, two years, three years you will find that you’ve actually built a
network of people who know and trust you, and you’ll get opportunities that you have
never expected.

4.5 The interview game

Yuri Karabatov 97

Junior to Senior

| want to play a game.
Jigsaw

Even more stressful than networking are the interviews. We don’t change jobs often,
and we’re usually out of practice. We feel like we are weighed and judged. Our perfor-
mance in the interviews often reflects our self-worth. Getting and, most importantly,
doing well in the interviews is another skill we can learn and improve at.

Unfortunately (for us) interviews in tech often don’t allow us to demonstrate our qual-
ities and how well we will do in the actual job. Software development is very rarely
about solving problems on the spot, or talking to strangers about how good you are,
but that’s exactly what the interviews are like. There are perpetual discussions about
how hiring in tech is broken, and every week there’s a new startup promising to fix it.
Still, that is the reality and we have to accept it whether we like it or not. Dreaming
about a perfect world won’t get you your next job.

| find that thinking about the interview stage like a game helps me step away from the
notion that my self-worth is at stake, and that if | fail it means I’'m “bad.” As any game,
it has rules and optimal strategies, and you can’t win every round. If you take the time
to read experiences of people who have been rejected, you’ll find that no matter how
skilled the person is or how well they can perform the role, much of the outcome is due
to chance. The best you can do is shrug, get some feedback and do better next time.

| know that getting an interview is not easy, and sometimes everything is hanging
on whether you do well or not (for example, if you are interviewing at your dream
company). We cannot control the outcome—our interviewer may have been grumpy,
or our hiring manager forgot to make some notes, or any other reason that is not our
performance and is completely out of our control.

What we can control is what we do before and during the interview, and that’s what
we should focus on. All athletes train to win, but in a competition, there is only one
winner. The good thing about interviews is that you only have to be better than others,
and most people make easy mistakes (that you will know to avoid), and don’t prepare
or practice (you will). By getting marginally better, you dramatically increase your
chances.

We already know that through networking, you can partly or completely skip the
interview round, giving you a massive advantage. Let’s look at some other rules.

Yuri Karabatov 98

Junior to Senior

4.5.1 Therules

These rules are heavily based, among other things, on Andrew LaCivita’s book “In-
terview Intervention.” He is a master recruiter who has brilliantly summarized the
whole process, from preparation to negotiation and first days on the job. | consider it
essential reading. I’'ve been collecting my sources and data for several years before
| discovered LaCivita’s work, and he has confirmed and expanded everything | have
known.

« The only purpose of the résumé is to get you invited to an interview. After you’ve
started interviewing, it becomes almost irrelevant, if only being a starting point
for excursions into your past experience.

« By inviting you to an interview, the company is saying that you are qualified for
the job.

« Your goal at an interview is not to get the job (that decision is made much later),
but to get the next interview or an offer.

« The optimal strategy is to uncover and resolve any of the interviewer’s concerns
about you and leave a positive and favorable impression. The main concern is
“Will you do well at the job if hired?”

Notice that this is general enough that it also applies to technical interviews, even
purely whiteboard coding. If you clearly explain what you are doing and achieve the
result the interviewer wants, you are making a positive and favorable impression, and
resolve the concern about your approach to tasks at work under pressure.

There is much to say about interviewing, but | don’t have the space or the time to put
it all here. Again, | strongly suggest that you read “Interview Intervention” because
it teaches much better than | ever could what to remember, how to answer common
interview questions and the general approach, and more.

Let’s unpack the rules a little bit.

Your résumé and your cover letter are what get you the first interview, but that’s about
it. They are used primarily as a filter and are not needed again. Remember that hiring
managers can get hundreds of applications for a position (this is becoming even more
relevant with remote work on the rise because anyone in the world can apply), and
you have about ten seconds before your résumé is rejected as irrelevant.

Yuri Karabatov 99

Junior to Senior

Now consider what matters if you have ten seconds to persuade someone you are
qualified for the position. Does your font or the size of the margins matter? No, as long
as it’s readable. And nobody has time to read your five-page document—if you have
less than ten years of experience, you can fit everything on one page. We’ll look at
what to put on your résumé in the next section.

If you have been invited to an interview, that means you are qualified for the job.
Congratulations. Why would the company invite (on purpose) someone who is not
qualified? Let that boost your confidence. The company wants you to succeed and
confirm its belief that you are competent.

When you are in an interview, think small. It is too early to talk about getting the job,
compensation and how many days off you get—leave it for the day when you get the
offer. The goal of the interview for you is to answer any questions the interviewer
might have for you, and also to have your own questions (prepared in advance) which
help you evaluate the company as it evaluates you. Remember that we choose the
company as much as it chooses us. We have a set of requirements too, and if something
is important to us, we can find that out early on in the process. Beyond that, our only
goal is to make a good enough impression that we are invited to the next interview.

Ah, the positive and favorable impression. It sounds so simple: just come to the
interview and “answer some questions.” But that’s how you bomb. The interview is
a ritualistic dance where every question is a double question, and the interviewer is
actively reading your non-verbal signals. That’s why I’'m saying it’s a game, because
often it makes no sense.

Nevertheless, by doing anything at all you’re making an impression on the interviewer.
We want this impression to be what we want, and for that, we must decode what the
interviewer (let’s call her Irma) wants to hear when she asks where we see ourselves
in five years (everyone’s favorite question). Depending on the position, the company
and your résumé, it might mean anything from the concern if you can even stay at the
company for more than a year (if you’ve changed five companies in the past five years)
or to see if you understand how promotions work in the industry, or what skills you
want to get (and if you can get them at that company).

In any case, behind every question is a concern about you that you must find and
resolve—all while making sure the interviewer is paying attention. Remember that the

Yuri Karabatov 100

Junior to Senior

interviewer is a person, and she might be tired, distracted, busy, any and all of that,
and it’s your job to make sure she doesn’t zone out. If you ramble for ten minutes in
reply to the question “Tell me about yourself,” well... you’re not getting invited to the
next interview.

As you can see, we are trying to do multiple things at once: look and sound relaxed,
positive and confident, give crisp, detailed answers, keep the interviewer’s attention
and guess what concerns they have about us—all of that while mentally watching how
we perform and course-correcting,.

It’s like juggling burning torches while standing on a balance board, and guess what
happens if you don’t prepare and practice? You fall on your bum and your hair gets
singed. At the same time, a lot of people wing it and sometimes don’t prepare at all,
some because they believe that they don’t own any preparation time to the company,
and the company should accept them how they are. | can get behind that. | have strong
opinions too. You can choose what suits you, I’'m only describing the optimal strategy
to get ahead in a competitive environment. If we want to succeed, we will put in the
work. And by doing that, we’ll dramatically raise our chances by being prepared better
than anyone else.

All of this work for the company, but what does the company do for us? At the interview
stage, the company is in a stronger position, since there are many candidates and only
one offer. Conversely, we are in a stronger position when we reach the offer stage,
when the company likes us more than anyone else and wants us to come work there.
When you have the offer, you have the most leverage and can negotiate, and that is
the time when all your work pays off, but not before.

4.5.2 Front-load the work

What does it mean to be prepared, what do you do exactly, and why? To be prepared is
to be ready to face any challenge we may come across during the interview process, so
that we show our best side and prove to the company that we are the best and most
capable choice for the position.

This preparation starts even before you apply, because you have started researching
the company even earlier. To prove we are the best choice, first we must understand

Yuri Karabatov 101

Junior to Senior

what the company wants, what problems it wants to solve by hiring a person for this
position, what it’s looking for in the perfect candidate, and how we can show that we
will solve these problems.

Our application starts with our résumé. You already know that often you don’t have
much more than ten seconds before it’s rejected. What we want to do is to edit our “full”
résumé in such a way that it provides a clear narrative, directly related to the position
we are applying to. Read the job posting carefully (and anything that tells you what
the company looks for in candidates) and filter your work experience through that.
Decide in advance what impression you want the reader to take away after reading
your résumé. If possible, use words and phrases directly from the job posting.

If you worked at company X and did Y and Z (and a bunch of other things), if Y is in
the job posting, put Y first. We want the reader to immediately notice that we have
successfully done the same work in the past. Be specific and focus on what you have
achieved (ideally, with numbers) rather than what you did. “Led and delivered project
X 15% ahead of schedule” is better than “Worked on project X.” The job posting and
what the company is looking for in candidates will tell you exactly what you need to
mention and highlight. Keep it short and try to fit everything on one page.

Our résumé is a sales document, not a list of everything that you’ve done in your past
jobs. The hiring managers don’t care what you’ve done, they only care if you can do
what the position requires, and more. The reaction we’re looking for is “Wow, | want
this person to achieve the same numbers for my company!”

The purpose of a sales document is to persuade the reader that the advertised services
are exactly what the reader needs to solve their problem. If you are able, discern
specific problems and technical challenges that the company is trying to solve and fit
them into your narrative. For example, if you notice the company has just published
their SDK and the documentation is lacking (as usual), don’t leave out the fact you’ve
been in charge of the documentation effort at one of your past companies.

Compare your thoughtfully written one-page (OK, you can make it two, but no more)
“sales letter” to a five-page “generic” résumé that lists in excruciating detail everything
the person has done (with a list of buzzwords on top). Which do you think is more
likely to attract attention? With the “sales” approach, you’re ten times more likely to
getinvited to an interview.

Yuri Karabatov 102

Junior to Senior

Even if you do not want to spend the time to rewrite your résumé for each company
you’re applying to, at least adjust your “full” one so that it tells a story you want and
leaves an impression of your choice, highlighting the direction you’re moving or what
you enjoy doing: “a front-end engineer with an eye for design,” “a generalist who
has led and shipped popular products,” “a Java developer specializing in high-load

services,” and so on.

o«

Do this once and it will pay back for years because people will have an impression
you control instead of what they choose to pick and notice from your detailed résumé.
If you ask: “Doesn’t it limit my options?”—appealing to everyone rarely works, and
you don’t have to leave out details, just make some more prominent than others and
phrase them differently.

Now, how do we prepare for the interview itself?

The technical one is often about putting in the hours. If it’s a LeetCode-style interview,
drill computer science problems, if it’s more about the work, review what the engineer
of your level should know about the platform and popular libraries, frameworks and
approaches. You will know what kind of technical interview it is from your research
about the company. Don’t skimp on the technical preparation, even though I’'m fussing
about the soft skills all the time. Technical skills get you through the first round or two
of the interview, and as we know, our goal is just to get to the next round.

The thing is, most software engineers’ technical skills are fine, the problems we have
are in the talking department. I’'m making such a focus on soft skills because they are
likely deficient, and by improving them, we increase our chance of success significantly
asthey’rejustasimportant as the technical skills in getting you hired. Having better soft
skills also makes up for some deficiencies in our technical skills that would otherwise
be a problem.

I’m an average programmer, but in a team setting, my communication skills make up
for it because | talk a lot with stakeholders, present technical decisions, write howtos
for non-technical people and extra documentation for the project, and so on. | let
people on the team who have superior programming skills shine in their realm by
taking more of the communication burden myself, and as a result, the team effort is
amplified, a win-win situation for everyone and the company.

What I’'m saying is, the “behavioral” part of the interview is usually more difficult for

Yuri Karabatov 103

Junior to Senior

the software engineers. We prepare for it—you guessed it—by doing more research,
but also by practicing. We can find the lists of popular questions online, and as I've
said earlier, every open question like “Tell me about yourself” or “Why do you want
to work at this company?” is an opportunity for us to dive below the surface, try to
guess what the interviewer actually wants to know, and tell them in a way that leaves
a positive and favorable impression about us.

Among other things, the interviewer will want to know how you handle conflict, prob-
lems, deadlines and other mishaps. You are unlikely to come up with a good answer
on the spot, and what we can do here is to recall and collect some stories from our
experience that illustrate how we behave in these kinds of situations. Write these
stories down, with specific details if possible. You can do this once because we will
reuse them for all interviews.

When getting ready to interview with a specific company, combine the common in-
terview questions with your research about the company, and in a new document,
actually write out potential answers to these questions. They don’t have to be long
and detailed, a few words or a couple of sentences is sufficient if it lets you remember
what you want to say in response.

In your response to “Why do you want to work at this company?” you can outline your
most relevant experience and how the direction you’re moving aligns with the position.
In the response to “Tell me about a time when X” reference one of the stories you’re
written down, the one that is most relevant to the role, or one that shows qualities
that are more important than others. By doing that, we plan our arguments and pick
the right words without time pressure, in a calm environment, where we can be the
most effective in our thinking. When the question comes up at the interview, we smile
because we know exactly what to say.

But we can do more, and very few people actually do that. We can practice as if we are
at an interview, and recite our responses (looking at our reference document) while
watching that we put emotion in our tone, don’t stumble and speak like a person. You
don’t want to sound like a robot reading out a corporate press release—yet that is often
what happens when we’re under stress and are talking to a stranger who’s judging our
every word.

Try to say the response to every question aloud at least a few times. By doing that, we

Yuri Karabatov 104

Junior to Senior

commit the complete responses into our subconscious memory, so that when we’re
on the spot, our brain will feed us just the right words (because we’ve already said
them, more than once).

Remember our juggling analogy? Instead of trying—on the spot—to compose a coher-
ent and smart response to an open-ended question that doesn’t have a clear answer
(but can turn the interview) while watching your body language at the same time, you
can deliver the response that you’ve already practiced and free up some of your brain
juice to watch over how you’re talking, how the interviewer is reacting and what you’re
going to say next.

The research, preparation and practice also give you a large amount of confidence both
in your fit for the role and your interview performance. Fear and nervousness come
from uncertainty. By trying to persuade the company that you’re a perfect candidate,
you persuade yourself. By knowing that you can handle any question the interviewer
asks and knowing exactly what you’ll say, you decrease the uncertainty and will be
much more relaxed (which both makes a better impression and helps you think).

We’re not making a “fake” or untruthful impression of ourselves by practicing interview
responses and working on our body language. On the contrary, | think we are making
a more accurate impression, because the majority of software engineers are simply
lacking the interviewing skills, and by preparation and practice we bring them up to
par.

Finally, we would all prefer to have a casual chat with our future boss and coworkers,
and then get a generous offer, and sometimes this happens (especially if you do net-
working). The unfortunate reality is that we often have to make cold applications to
companies we’d love to fork for, and do interviews, competing with hundreds of other
applicants (because there are many other people who’d love to work there). In this
competitive environment, the interview is a business transaction and a ritual with its
own set of rules and skills, and we must learn to play the game if we want to succeed
and advance in our career.

Yuri Karabatov 105

5 Prevention and control

As software engineers, we have our professional ailments that can prevent us from
being our best at work. | will look at three that | think are the most common and the
most limiting, from the more severe that can completely stop you doing any work
(burnout), to the more benign that can cost you opportunity (impostor syndrome) and
time (procrastination).

Being white-collar workers, we are protected from grave physical injuries, but we
can still cause ourselves permanent physical harm by neglecting the ergonomics of
our workplace. You get neck and back pain, headaches, eye strain from sittingin an
unnatural pose all day, looking at a screen that may be too bright or too dark, often
with text so small that you have to squint. If you’re typing or using your mouse a lot with
a bent wrist, you can get what is called a “repetitive strain injury” (RSI), a near-constant
pain whenever you use the computer. Sitting for long periods of time is not good for
you, either, as regular chairs restrict the blood flow in your legs, not to say how people
are destroying their back by slumping or perching.

Our software development career will likely last for decades, so please take the time
to educate yourself about the basics of ergonomics. If you are working at a desk, when
sitting straight, your eyes should be higher than the center of the screen. Put your
display on a couple of thick books. If you have a laptop, get an external keyboard
and put the laptop on a big box. Having your screen high instantly prevents you from
slumping your shoulders and straining your neck by looking down. To prevent sliding
down in your chair, get something to put your feet on. If you sit straight, your arms at
the keyboard start to look like an L, not like a V, so your wrists are straight too.

| had bad headaches early in my career from eye strain, so | made it a habit to bump up
the size of the fonts | used when writing code, and | never had eye strain again. If you
feel even the slightest tightening around your eyes when you read code, that means

106

Junior to Senior

your eyes are doing extra work.

And that’s it—by following even these few simple rules you don’t unnecessarily strain
your body so you’ll be less tired after work.

Now back to our regular programming.

5.1 Burnout

Earlier I’'ve described burnout as “chronic weariness” but it’s not really that. You don’t
feel particularly tired, or sleepy, or anything like it. It’s hard to notice because it creeps
in gradually, and then you’re already in the red. | burned out (to various degrees)
several times, and even knowing | was susceptible, | didn’t notice for weeks.

What is it, exactly? Burnout is a state of mental exhaustion that results in three things:
you are unable to work, your job feels meaningless and unsatisfactory, and you feel
cynical toward your coworkers. Where once you were productive, enjoyed your job and
felt that you and your colleagues were working towards a common and meaningful
goal, you would become numb and negative. Nothing actually changes about your job
or your coworkers, only your attitude.

I’m saying “unable to work” quite literally. In the later stages, when you try to write
code even for the simplest tasks, nothing comes out. The feeling is surreal. In the
beginning, you have some difficulty focusing on tasks. But we are determined and
resilient, not afraid of setbacks, and we power through. This additional mental effort
required to overcome resistance compounds and exacerbates our exhaustion, until
the resistance is stronger than the additional effort we can muster. It feels like your
mental capacity is limited, and it is, because you’ve drained all the reserves of your
brain juice required for concentration.

Negativity towards coworkers and work becoming meaningless are the two sides of
the same coin—the lack of resources to care (because you’re exhausted). Where earlier
you cared about the quality of your work and the product, cared about your fellow
software engineers by pouring your energy into coding and communication, when
you’ve burnt out, there is nothing left to pour and your brain starts considering work
(that requires concentration and thinking) and talking to other people (that requires

Yuri Karabatov 107

Junior to Senior

compassion) a drain on your internal, mental resources, and shuts both down.

There is not one reason that makes us burn out, there are several and most often they
need to influence us for some time before there is a negative effect. Burnoutis also a
very gradual spectrum, not something you have or don’t. Our mental resources are
like @ well—we drain some water to do our work, and then some water is replenished.
If we drain the well faster that it’s replenished, we have to also spend extra effort to
lower the bucket deeper and deeper, until we hit bottom and the well runs dry.

Let’s look at some of the reasons:

« You work too much. Either you are forced to by deadlines or unrealistic expec-
tations, or you’re passionate and committed to doing the best work you can.
Both result in spending more time working. When companies switch to remote
work, managers fear that people will slack off, and some do. But people who
are excited about their work and motivated (and a lot of software engineers are,
according to Stack Overflow surveys) start working more, not less. It’s too easy to
start checking email during breakfast, skip lunch or stay an extra hour fixing an
elusive bug. “Easy” work becomes a replacement for evening pastime. Do that
enough and it will begin taking its toll. Most people can only do four to six hours
of engaging mental work (like programming) per day before their focus and the
quality of code sharply declines. Eighty-hour weeks have been proven to be net
negative for long-term productivity. You can only do so much extra work before
you need to recharge.

« You don’t sleep enough. We all like to stay up coding, don’t we? Regular sleep
deprivation has been shown to decrease productivity and mental acuity. We often
come up with our best solutions while sleeping. Sleep on that tough programming
problem, and you’ll wake up with a solution. Sleep is also when our well of mental
energy is replenished, and by skipping sleep often, you’re taking out a line of
credit that you won’t be able to repay.

+ You don’t get feedback or recognition at work. As I’'ve said earlier, we can get
submerged in a neverending stream of Jira tickets. We need to rise to the surface
to breathe, and that comes in the form of feedback and recognition of your
work. Some of the toughest time in my career was working on a project and not
knowing how it was doing in the hands of customers. Our management at the
timedidn’t care aslong as we added new features to the project. | cared about the

Yuri Karabatov 108

Junior to Senior

product, but objectively, it didn’t matter if | did shoddy or great work—there was
no feedback. When the hard work you do is not recognized, you feel like you’re
flushing your effort down the drain. It drops your motivation, and again, you
have to spend extra mental effort to do the same work which you now perceive
to be less meaningful.

+ You have goals that are hard or impossible to reach. Impossible deadlines and
crazy requirements are obvious, but even the best teams make the mistake of
constantly trying to hit goals that are a little bit too ambitious. An extra couple
of stories per sprint, a release date that’s a little too soon, a misplanned feature
that turned out to be harder than expected, and instead of hitting a milestone
after milestone, the team gets stuck in a “death march,” always crunching on a
feature that’s a little too late. This brings no satisfaction of a job well done, and
every push takes extra effort which soon drains the team’s resources. Productivity
tanks and people burn out.

Notice that most of these reasons don’t even need any extra source of stress at work,
and happen to great teams too. Now imagine if there is also a toxic manager, malicious
coworkers or a CEO who changes the company direction every two weeks. This all
compounds the effect.

What can you do to prevent and control burnout?

« Watch out for its signs. Pick an online burnout questionnaire that you like and
check yourself every month or so (put it on your calendar). Notice if you start
having trouble doing work (“I just need to work harder”) and feeling demotivated.
For me one of the first symptoms is negativity towards coworkers, | start avoiding
talking to people.

« Leave work at work. It’s a bit easier when working at an office. Even though | had
been working remotely, | was lucky to have a separate computer that | could turn
off at the end of the day. If you only have one computer, you can create another
accountonitjustforwork (orapersonalaccountifit’sa work computer). Mentally
disconnecting to stop thinking about work in the evening is a bit harder, and it
doesn’t help that we software engineers often don’t have much of a life outside
of work. The easiest way to disconnect is to do something else that is engaging
right after you stop working. By doing that you conserve your mental energy for
tomorrow. Working less might seem disingenuous, but trust me, burning outis a

Yuri Karabatov 109

Junior to Senior

bummer and you’re far better served by being more alert and doing less work
consistently every day.

« Work on decreasing your level of stress. | know it’s hard, and that some sources
of stress are out of your control (which is an additional source of stress). Still,
you can do something and that may tip the balance so that you replenish more
resources than you spend. You know the usual drill to begin with: exercise, eat
well and get enough sleep.

If you ever find yourself deeply burnt out, the best remedy is complete rest for at least
ten days, and more if you can afford it. “Rest” doesn’t mean lying in bed all day, you’re
not sick, rather you are not allowed to do any work and even think about it if you can.
Of course, if you like to stay in bed all day, go for it. It also doesn’t necessarily mean
going somewhere for a vacation. Vacation is a change of pace, but you’re exhausted
and need low-stress activities, whichever those might be. Goof around and do what
you feel like doing. People often talk about “recharging their batteries,” and that’s
exactly how it should feel like.

You will know that you’re doing it right when you get a spark of excitement about going
back to work (but don’t think about work too much yet). You will miss your coworkers
because you’ll begin thinking about them as friends again. Your resentment towards
sitting down to work will wane. If you’ve rested enough, you’ll be excited and happy to
be back. Remember this feeling, and how burnout felt “normal.”

Routinely being on the edge of burnout at work is not normal. If there’s so much stress
that you have to consciously expend effort to manage it, consider changing your role if
you have the option, even internally in the company. The field of software development
is huge, and the types and modes of work are many. Often you can offload some work
that is stressing you to other people on the team who are OK with doing it or even
enjoy it. Also please remember that you can ask for help. You don’t have to do it all
alone.

5.2 Impostor syndrome

We know from the section Exponential learning that you can’t know everything you
“need” to know. That also means you can’t learn to do everything. This perceived

Yuri Karabatov 110

Junior to Senior

lack of knowledge and skills becomes the primary reason for what is called “impostor
syndrome”—a capable person fearing they will be discovered and outed as a “fraud”
and discounting their previous accomplishments as misjudged or lucky.

This fear and the resulting self-doubt cause stress, anxiety, even depression, and a
large percent of people is susceptible to it, especially when faced with new tasks and
challenges different from what they’ve done before. In software developers, impostor
syndrome is fairly common because of the extraordinary demands in the breadth of
skills and knowledge that people expect from themselves and others, and how quickly
one’s confidence may be shattered by “simple” tasks.

We can feel we are just flailing and trying random things until something works, or have
no idea how to approach a problem at all, before somehow solving it. We think that
other people know what they’re doing, and only we are struggling. If we are praised
for a solution, we can say: “The task was easy” or “It was obvious in that context”—
ascribing our success to external factors, rather than our skills and experience that
made the task “easy” and “obvious.”

Research has found that what helps is to learn that other people also have these
feelings. In fact, many people have them, and you can find threads on Twitter and tech
forums where accomplished, respected developers say they feel like impostors.

Probably, the key component of self-doubt is that you don’t know if you can successfully
apply your past experience to the tasks that lie ahead. You are not sure you’re up to
the task, and if what let you succeed in the past was luck or chance. But that is the
nature of software development: every task is not like the other. We aren’t chopping
logs. These feelings of self-doubt are normal, but we don’t want to let them block us
from acting. Let’s see how you can try and curb self-doubt.

Consider your past experience. Chances are, you have overcome countless program-
ming tasks before, working alone or with others. How you’ve done it, assuredly or by
flailing, doesn’t really matter as long as you’ve done them—the proof is in the pudding.
What exactly makes you think that you won’t be able to solve the next few tasks ahead
of you, and this time your coworkers will discover you’re “fake”?

All the tasks you’ve faced before couldn’t have been easy, so you have overcome hard
ones too. Let’s try to think constructively. Is it possible that you won’t be able to make
any progress at all on these new tasks you’re facing? Even if they’re in a domain new

Yuri Karabatov 111

Junior to Senior

to you, trust your experience. | know you can do it!

You have options: make some research and extract smaller subtasks, try to answer your
own questions first and ask for help (as we know, asking for help is not declaring defeat),
take some harder details away and try to solve a simpler problem first. In mathematical
proofs, the first case to be proven is so trivial that it’s obvious it is correct. By analyzing
and disassembling the task, you are shifting your thoughts from feelings to logic, and
by making a stair after stair you can ascend a mountain. When you see yourself making
progress on what you have thought insurmountable, you’ll trust yourself more.

Impostor syndrome can also prevent us from stepping on the path to growth—looking
for and accepting more challenging work. If we think we aren’t worthy even of what
we have now, how can we allow ourselves to dream of rising higher to an even more
precarious position? We think that we are less than what other people think of us. We
don’t even bother applying to jobs we want but think we won’t be able to do.

We’re entering the territory where I’m not comfortable giving advice (because I'm a
fraud too, haha), so instead I’ll tell you what / do. I've been working remotely for many
years and most often | work alone (there’s nobody around to help me with the task) and
don’t talk much to other people. I’'m self-taught so | have gaps in my knowledge where
a new graduate wouldn’t. | also struggle with procrastination (the next section—my
favorite) and self-doubt.

| tend to trust my gut feelings a lot and work on training my intuition, but relying on
feelings to make decisions has often gotten mein trouble, and that is the same with the
feeling of being an impostor and low self-esteem. When working alone, | can get stuck
in the cycle of dreading the big problem that | can’t solve instead of attacking it from
different angles. When not talking to anyone, this often produces negative self-talk: “I
can’t do this,” “It’s too hard,” “l don’t really know anything.”

Notice that all of that is pretty vague and usually relates to the problem as a whole,
because | can’t muster the strength to analyze it. I’'ve learned to recognize this (most
of the time) and instead switch to a constructive approach: “OK, | can’t do the whole
problem, but what can 1 do?” Thinking back to past experience also helps: | know | can
tackle some serious problems because I’'ve done it in the past.

| don’t outright consider myself a fraud (disregard the lame joke above), but proba-
bly only because | have done extensive research on what knowledge and skills | can

Yuri Karabatov 112

Junior to Senior

reasonably expect to have in which domains. | know | have gaps in my knowledge,
and in my heart | know I’'m not a “real” programmer because | can’t pass a whiteboard
interview, don’t know much CS theory and | don’t effortlessly think in abstractions.
I’m not afraid that someone will “discover” this because fear comes from uncertainty:
“What if someone asks me? What if they tell others?”

| freely admit my ignorance, but I’'m also certain in the knowledge and skills that | do
have and actually need (and have needed in the past) to do my job. If I'm expected to
have knowledge I lack, I'll start to acquire it before | need it. | know that | can’t know
everything, but | can find and learn whatever I’'m missing.

This confidence that | can tackle almost any problem (eventually... even slowly and
with false starts) lets me treat myself as more capable than | actually am, because |
can find and learn any missing knowledge and skills that | discover by analyzing the
problem. | don’t know if it helps you or not, but it looks like this overconfidence is
my solution to self-doubt. We jumped from impostor syndrome straight to Dunning-
Kruger :) | guess my saving grace is that | know I’'m bad at some things, but | also know
| can get better, and being bad is not permanent.

5.3 Procrastination

We all know what procrastination is: when you need to do something, you choose to do
something else. Do you struggle with it? | know | do, a lot. Over the years I’'ve learned
some tricks, but | can only dream of achieving a decisive victory. It’s devious and smart
and never sleeps (just like me staying up at 5 in the morning reading Twitter).

| define it as your brain being smarter than you and saving precious glucose (the fuel
your brain runs on) by telling you through procrastination that you don’t have a good
plan for what you need to do. You are not lazy or inept, your body simply tries to save
some energy that it thinks you’re about to spend in vain. Why does your subconscious
come to this decision?

« The task is too big and when you try thinking about it, you get overwhelmed. We
can only hold 5 to 9 things in our working memory at the same time (also known
as “Miller’s law”), and if our task has more moving parts than that, we literally

Yuri Karabatov 113

Junior to Senior

can’t think about it. “Add authentication to website” is just four words, but it im-
mediately spawns many questions and considerations, and we’re overwhelmed.

« Thetaskis too vague and has few details. “Write documentation for X” can sit
in our todo list for months because it doesn’t help us begin working. Who is the
target audience? How detailed should it be? Do we have a place to store it? What
is the tone of voice? Without answers to these questions, we can’t start working.

« You don’t know how to start. Do you do X first or Y? Then there’s question Z
that can completely change the implementation, and you have idea W that you
haven’t had time to explore. Sometimes we don’t know where to start at all,
especially with vague tasks.

« You don’t know why this task isimportant. If we’re indifferent to whether the task
is done or not, why should we do it? “Ignore the problem, and it will go away.”

« There is much time until the task is due (or it doesn’t have a due date). Combined
with the previous one, the task is doomed to be delayed until later.

As aresult, you don’t want to do the task right now, because it involves making some
decisions (and making decisions is exhausting to our willpower), so you choose to do
something else that doesn’t involve making decisions. You check your work email and
Slack, and after a few minutes you come back to the task again. You haven’t made any
decisions last time, and now that you’ve been distracted by email, you need to restore
all the task context in your head again. Meh... better go check Twitter.

Remember how | mentioned junior software engineers left to their own devices? That
is an environment ripe for getting distracted. The tasks are often a bit vague (even if
they’re simple) because they assume more knowledge of the project than the junior
has. There is often no deadline. The junior doesn’t really know where to start. If you’re
prone to procrastination, you can spend all week struggling to make progress on a
task.

Almost the same can happen to senior engineers (exhibit A: me). I've learned to handle
it, but still sometimes | can lose an hour or two before | notice I’m not really doing the
task, but thinking about it while being distracted. Why would | let myself get distracted?
Because flesh is weak, and the modern workplace is crazy.

The worst thing is that procrastination is not “doing nothing,” it’s avoiding doing a task
very hard by getting distracted. Every minute you’re trying to make a decision to go
back to the task and make progress, but even if you do, you get distracted again. You

Yuri Karabatov 114

Junior to Senior

are thinking both about what you’re distracted with and about the task, and your brain
is doing double time, while attempting to make some decisions.

It’s exhausting, and if you’re low on energy to begin with, systematically procrastinating
can lead you directly to burnout. You start procrastinating because you’ve worked too
much and don’t have enough energy for decisive action (also known as “getting shit
done”), and procrastination drains even more energy so you get even more exhausted,
and feel bad because you haven’t done much. It’s a vicious cycle.

I’m not saying it happens to everyone, and these examples are pretty extreme, but it’s
useful to be aware that if you feel lazy, unmotivated and let your tasks slip, the issue is
more likely the quality of your tasks, and you’re its victim. When you know that the
problem is not you, you can stop feeling guilty and do something.

I know these descriptions sound a lot like ADD: difficulty focusing, completing tasks and
keeping up with assignments. What’s the difference? | know | don’t have any problems
with concentration—I can read a book for ten hours straight without stopping, or when |
actually get to work on something, | spend four hours coding. Unbroken concentration
like this is a sign of “being in the zone,” or flow, after Mihaly Csikszentmihalyi’s work
and the book with the same name. He defines flow as “a state in which people are so
involved in an activity that nothing else seems to matter; the experience is so enjoyable
that people will continue to do it even at great cost, for the sheer sake of doing it.”
That’s what we are aiming for when programming.

| find that if | can get through the initial resistance when starting to work on a task and
manage to startitin earnest, | get in the zone and work on it without issue. As | began
writing this book, | knew that | would face strong resistance (because “write a book” is
the vaguest todo item in the world), so | used every trick that | knew to help myself
write every day:

« Make other people expect your work. Probably, the best thing | did was to offer
the book for preorder with a set release date. I’'m very serious about my promises
to other people (Rick Astley starts playing). Just the thought that I’ve promised
to do something by some day helps me sit down and do the work. If you only do
something for yourself, you can easily make an excuse and avoid working, but
you can’t go back on your promise and make up an excuse for other people. At
work, | know my teammates expect and rely on the tasks | do, so | try to never let

Yuri Karabatov 115

Junior to Senior

them down. Reputation beats procrastination.

« Remove distractions, at least in the beginning. Often the bump that we need
to cross to begin working on a big task is relatively small, but when there’s a
distraction available without friction, we choose that instead. | write on a very
slow Linux computer that can’t play music, has no internet, and my phoneis on
silent, face down, in another room. There is “fog” in my head when | sit down to
write, and | sit there and stare at the screen for ten minutes. But the fog is me
thinking about how to start and what | want to say in the section. | need those
ten minutes of initial concentration to break through the resistance of the task. If
| had a distraction, | would probably take it. What also helps is having a notebook
that you keep in front of you when starting, so that you can write down what you
want to do about the task first, like a small todo list. | find that after | start, | can
stay in work mode until I’'m done, even through small distractions.

« Have a deadline that feels a little too close. Aggressive deadlines only cause
stress and burn you out because you have to spend extra energy to hit them, and
for whose sake? The trick is to have a due date for the task that will make you feel
like you have to start working on the task now. If a task at work is due tomorrow
and takes a day to get through code review, | know | have to start working on it
right now, or | will be late. When | began writing, | picked the deadline for the
book a month and a half away. For a whole book, it’s ridiculously short (books
take six months or more to write), but if | had a year, | would never finish it. If
| had a week, | wouldn’t finish it too, it’s simply not enough time to write fifty
thousand words. But a little more than a month? It’s a stretch, but doable. I'm
not overexerting myself by writing for twelve hours every day (like | would have
to if had a week), but | know that with the amount of work | need to do, | don’t
have time to procrastinate, only to work. So here | am, writing.

« Work towards a goal for the day. | learned this from the book “Make Time” by
Jake Knapp and John Zeratsky. Pick what you want to accomplish in about two-
three hours and feel that you’ve “done good work.” | often pick a task that can
take the whole day, but you get the point. If you’ve done it, you feel like you’ve
won the day, and everything else you do is a bonus. A large todo list can be
discouraging, but being able to tick off a large, important task makes you feel
incredibly productive, and you get a boost of energy that you can use to do more
work. Writing this book is not the only thing | do, but if I’'ve written what I've

Yuri Karabatov 116

Junior to Senior

planned for the day, | feel in control and calm, because I’ve done the work that
requires the most concentration.

Here we are at fifty thousand words, and I’'ve been writing for more than a month every
day, a sustained effort of unprecedented proportions for me when working on what is
essentially a side project. If | didn’t have a table of contents that | could follow, dozens
of people waiting for the result and a not-too-distant deadline, | would never have
made progress so consistently and intentionally.

Yuri Karabatov 117

6 Growing as a developer

The lyf so short, the craft so long to lerne.
Geoffrey Chaucer

Getting the Senior Software Engineer title is good, but ultimately we aim to grow and
become better software engineers. The title is there only to recognize our skills and
impact in the company and comes after we’ve improved, not before.

Here I’'ve collected some things that are optional but will serve you well even if you’re
fairly advanced, and will be an additional source of inspiration, like advice from soft-
ware engineers many of us know.

I’ll wrap the book with the section Recommended reading, the list of all the books and
articles that have helped me and will help you on your journey to improvement.

6.1 Complementary knowledge

We know that there is always more to learn in software development, no matter how
advanced you are. | couldn’t have written The Book of All Software Engineering™ so in
this book I've tried to distill the advice and knowledge that you’ll find the most useful
in the first years of your software engineering career. But there’s more and | have more
to say about things that are not necessary, but are the subject of questions and you’re
better off learning about them earlier rather than later.

Fun fact: we have already met SWECOM or “The Software Engineering Competency
Model,” but did you know there is also SWEBOK—“The Software Engineering Body of
Knowledge”—which is a standard produced by IEEE with a 300-page “guide” that aims
to describe everything in the field of software engineering? It’s freely available and you
are welcome to peruse it for your own pleasure, or if you have trouble sleeping.

118

Junior to Senior

6.1.1 “Elegant” code

You may have seen pieces of code referred to as “elegant” or someone’s code called
“elegant.” People might have complimented you on an “elegant solution.” Software
engineers seem to intuitively know when code is elegant and when it’s not, and great
software engineers are praised for the elegant code they routinely produce when
working on their tasks.

What does it mean for code to be elegant? Elegance is beauty that shows unusual
effectiveness and simplicity. The natural, economical grace of animal movement is
elegant. An elegant dress is simple, without frills, and fits the wearer perfectly. An
elegant mathematical proof has few simple notions that fit perfectly together, and
is easy to follow. Elegant code, then, is code that surprises us with its simplicity and
effectiveness by being unusually easy to follow. We feel that elegant code is beautiful,
because it logically builds upon itself in a way that we can immediately grasp, all at just
the right level of abstraction, with every snag and bump removed. If code is writing,
then elegant code is poetry.

| consider surprise to be an essential quality of elegant code. It makes a leap of logic
that we haven’t expected, but in our mind it’s like a puzzle fitting together. We learn
something new and appreciate the author’s effort and skill.

Albert Einstein said: “Everything should be made as simple as possible, but no simpler.”
The final part directly relates to elegant code. It uses the level of abstraction that fits the
task at hand. Simplicity alone is not enough. Brainfuck is simple, but it’s not elegant
because code is impossible to follow and everything is tedious to do. Elegant code
uses language constructs and approaches that are not “as simple as possible” to be
more effective and expressive, as long as they’re used in a straightforward way, and
not in the name of terseness. | think we can all agree that terse code is hard to read
and follow. One-liners are cool, but we’re not at IOCCC—elegant code is maintainable
first, clever second.

How do we learn to write code that is elegant, and why would we want to? If you’re
trying to write simple, maintainable code, congratulations, you’re halfway there. Mak-
ing code elegant is often thinking a little more about the problem and finding an even
simpler way of solving it. You can learn to do that by tinkering with small problems like
those found on programming websites, and by reading code written by other software

Yuri Karabatov 119

Junior to Senior

engineers that you consider elegant. It’s mostly a matter of training your intuition.

By trying to find a simpler solution, we gain a deeper understanding of the problem
we’re working on (and might notice some bugs in our code while doing that). By trying
to write elegant code, we directly improve our development skills. All programming
can be reduced to solving small problems at different levels of abstraction, and training
yourself to solve small problems elegantly and efficiently is a transferable skill that
will serve you well in your career.

6.1.2 Paradigms and programming languages

Thereisnothingwrongin knowing only one programming language. Popular languages
like JavaScript and Python are “general-purpose” and “multi-paradigm” for a reason—
you can do almost anything you want, in very different styles, either through language
constructs or with the help of libraries. As you keep working in the industry, you will
naturally pick up at least the basics of a few more languages that may or may not be
similar to those you already know.

| suggest that you try out a few programming languages that are impractical in your
work and are different from what you are usually using. You don’t have to spend much
time, a few days is enough to learn the core concepts and see if you want to continue
(if it’s useful).

Why would you do that? We write code by arranging abstractions in our head first, and
only then committing them to our editor. The programming language you use heavily
influences how you approach solving problems by favoring one style over others, and
certain things being easier to use than others.

Learning a new programming language that is fundamentally different from the one
you are using can result in a fundamental change in your thinking because it will alter
the basic logical concepts that you tend to use. By learning more languages, you’ll have
a stronger mental framework for approaches to problems, and even bring concepts
from one language to another if that makes solving problems easier. It can also not alter
your thinking as we know from the popular phrase “You can write Javain any language.”
Please take the time to learn how to write your new language idiomatically.

For example, Apple’s Swift is not a functional-first language, but it’s flexible enough to

Yuri Karabatov 120

Junior to Senior

be extended. Developers in the community who are familiar with purely functional
languages (like Haskell) and their libraries have created libraries that bring some
operators and functional programming approaches to Swift. These libraries gained
some popularity and it has made the Swift ecosystem better and richer. Learning
another programming language does the same for your mind.

Where do you start? | think it’s useful to be familiar—which means, knowing how
syntax works and being able to read and maybe edit the code a little—with just one
programming language from several big “classes.” This will give you the most benefit
for the least amount of time and effort, and if you like the language, then you can
explore that class more.

So, my advice is to learn:

+ a C-style procedural language. You probably already know one since they’re so
widespread. JavaScript, Java, C or C++, C# are the most popular ones. You'll
come across a lot of random code online written in a C-style language, so it’s
good to know at least one.

« afunctional language. Haskell is your best choice here and perhaps Elixir. The
functional approach to problems is very different from the “default” procedural
style we’re likely used to.

« aLisp. (I hope you like parentheses.) Lisps are programming languages based
on lists, and this choice gives them many interesting properties. Like functional
languages, they will do interesting things to your brain and you will discover
some new unexpected ways to think about problems. If my goal was learning,
| would pick Racket or Common Lisp, primarily because there are some great
books available for both.

« an assembly language. When running your program in a debugger, your crash is
often in system code and you only see the disassembly because you don’t have
the source for the system libraries. Knowing a bit of assembler is useful to have
an idea what’s going on, and sometimes see if your code is compiled effectively
(if you’re working in a compiled language). | suggest starting with the assembly
for the platform where you’re running your code (likely x86 or ARM) to know
the common registers, but you can have much more fun doing it on a GameBoy
emulator (it’s an ARM) or the NES (it’s an 8-bit 6502 CPU). Recently there has been
a resurgence of making games for old platforms directly in assembly, so you can

Yuri Karabatov 121

https://stevelosh.com/blog/2018/08/a-road-to-common-lisp/

Junior to Senior

find many howto articles.

There are a few others that are worth looking into because they either have an inter-
esting philosophy (and hence interesting design decisions) or can teach you another
way of thinking about types, programming style and other things. These are (in no
particular order) Python, OCaml, Go, Rust, Erlang, Forth, Lua, Ruby and SQL (because
it’s declarative and useful and I’m not going to suggest Prolog).

Again, by “learning” | don’t mean being able to write code. | “know” JavaScript and
Python enough to read and understand pieces of code when | come across them, but |
wouldn’t be able to write anything because | don’t remember the details of the syntax—
and once upon a time I’'ve written software for a living in both JavaScript and Python.
Don’t think you have to practice a dozen languages (unless you want to), simply being
able to read code is enough.

6.1.3 “Notinvented here” syndrome

The term “notinvented here”, often abbreviated as NIH, is the tendency of corporations
or institutions to resist ideas from outside. In software development, it’s defaulting
to in-house development and the belief that it’s better and more suited to internal
requirements than some third-party solution. Unsurprisingly, this meaning is negative.
You don’t want to reimplement every library that you need when there are existing
ones that do exactly what you want. There are valid reasons for a corporation to do
that, but we won’t get into those.

What | want to propose is that sometimes, and more often than you think, reimple-
menting a part of a big third-party library that does only what you need the way you
want it is actually a viable solution. We did that all the time in the companies | worked
for, because in mobile, external dependencies can be costly (in various ways) and not
customizable enough. Some are also small enough that you can write your own in a
week.

Writing your own involves some maintenance costs and time up front, butin return you
get much more flexibility and it’s your code you understand and control. A third-party
library can try to please everyone and deprioritize or ignore your main use case, but
yours only has one customer: you. So, if it’s you who is doing the implementation and

Yuri Karabatov 122

Junior to Senior

the amount of work is reasonable, you’ll learn a lot and your company will be better
off using a library that’s perfectly suited for the company’s needs.

Out of the context of work, this is an excellent learning exercise because it lets you
peek under the hood of libraries and functions that you have considered fixtures in
your industry. You learn how something works and understand the existing library
better. This is very similar to an exercise all students do at the university when learning
programming: reimplementing functions and containers from the standard library in
order to understand how they work and learn the language better.

Pick something you’re interested in or want to learn more about, either at work or
personally, and write an alternative implementation to an existing library or function. A
lot of open-source libraries are born this way, they do the same thing but in a different
way, or pick different tradeoffs than the library they’ve originally copied.

For example, | needed to have a particular text layout in my language-learning game,
but the library | used didn’t offer that. | went down a level and by using a font rendering
library created an alternative text layout function that did exactly what | needed, and
which | completely controlled. | found useful options in the rendering library (that
were unavailable through the existing API) and learned a lot about font rendering in
general and the many tradeoffs.

This practice of going down a level and making an alternative implementation always
stretches your skills as a developer because you’re in unfamiliar territory. At the same
time, itis not “new” functionality, and if your implementation doesn’t work out, you
can always fall back to the existing third-party library. If it does work out, you can
drop an external dependency and be happy. In any case, | guarantee that you’ll learn
something new. | think that’s “not invented here” done right.

6.1.4 Becoming an early adopter

It’s a running joke in software that when a new technology or programming language
comes out, companies immediately publish job descriptions looking for people with 5
years experience in it. Nevertheless, there’s a grain of truth here. “Years of experience”
is another term for “expert,” and these companies are looking for people who have

already tried and tested the new tech and have some experience with it.

Yuri Karabatov 123

Junior to Senior

When a new technology becomes available that is likely to become popular, you can
quickly jump a grade by evaluating and learning it, building something and becoming
an expert. It’s hard to become an expert quickly in mature, established technologies
like the JVM, or become a C++ expert simply because of the amount of knowledge
accumulated over the years. There are people around who have decades of good
experience and will run circles around you for years while you’re catching up.

But with a new technology or programming language, everyone starts on square zero
(Lua programmers insist on calling it square one). By starting to learn it early, you are
one of the frontrunners—an early adopter—and because there is so little information
available, you can learn everything there is to know about the new tech. And when in
a couple of years the technology goes mainstream and companies start looking for
people with “5 years experience” (despite the tech being only 2 years old), you’ll be
there among the very few people who have real-world experience. The knowledge you
have gained is scarce and thus valuable.

When Apple’s Swift just came out in the summer of 2014, | saw the potential and
immediately started learning it (like all iOS developers, | was writing Objective-C at the
time). By the end of 2014, | wrote a commercial app for a client in Swift. Early in 2015 |
was able to secure a job writing Swift full-time because | was one of the few people
who had real-world experience and | was already an “expert” (being an expert is simply
knowing more than other people). After a couple of years, everyone on iOS was writing
Swift.

6.1.5 Mentorship

“Find a mentor!” is another piece of clueless advice for software developers who are
just starting out that you can find on the internet. A mentor is touted to be a famous
person who will be our friend and teacher for life. (Epic music starts playing.) Like
Gandalf leading Frodo, our mentor will lead us on the path to enlightenment.

No, no, no and no.

Again, we aren’t at school. A mentor is not a teacher who tells us what to do, so we
don’t even have to think. If we want to improve and grow, we must make decisions,
make mistakes and learn from them. A mentor is someone who is further along on

Yuri Karabatov 124

Junior to Senior

the path of growth that we have chosen, and | consider the role of a mentor not to
tell us what to do, but to save us from making expensive mistakes that can set us back
(because small mistakes teach us and help us move forward) and deliver a swift kick
when we’re stuck.

At first, this can be a purely professional relationship with one (or more) of our peers
at work. More, because we aren’t limited to one “mentor,” there isn’t a slot we fill and
that’sit. We can ask anyone for advice who is in the position to give it—a better software
engineer than we are. Remember that it’s us choosing our path. As we grow, these
relationships will develop primarily because we’ll be able to help our peers back. The
trust we build with people who are helping us and whom we are helping can become a
friendship.

Ideally, a mentor is someone who cares enough about us that they’re willing to help.
A friend first, and a teacher second. If you have some friends who are doing what
you want to do, and are better at it than you, you can start asking them for advice. If
they are good friends, they’ll appreciate that you are seeking their opinion, and will
appreciate it even more if you follow through.

When | was just starting to learn programming, | asked an acquaintance for advice
now and again, and reported back my progress. He was a very experienced developer,
specializing in the field | was trying to get into, and | looked up to him. When | made
some progress, | was able to help him out too. Over time as we talked, our relationship
grew into a friendship. Now | can’t say that he is my mentor, we are simply talking and
helping each other as much as we can (and exchanging memes).

What if you really want a famous software engineer to help you (if that tickles your
fancy)? | remember a situation from some fantasy book I’'ve read where a wise old
wizard tells the young hero: “You’re still too inexperienced, it’s too boring for me to
teach you.” Consider why a well-known person, who is very busy, would spend their
time on you—a stranger? Don’t expect a reply to your email saying “Please be my
mentor!”

Thankfully, a lot of great programmers who are leaders in their fields are active on
Twitter or reply to emails. Experts like to share what they know. So, you can talk to
them and if you’re lucky, they will help you.

Remember what we’ve discussed earlier in the book about asking for help. When trying

Yuri Karabatov 125

Junior to Senior

to get help from a busy person, you must be even more demanding to yourself:

+ Don’t ask a question about yourself. “What programming language should /
learn?” The busy person will reasonably answer: “I don’t know, you decide.”

« Don’task a question that you can answer yourself (even if it’s difficult). The expert
isn’t there to do research for you because you’re lazy.

» Don’t ask a question that is ambiguous or has an answer that won’t help you.
“Do you think technology X or Y is better?” is too vague because it lacks details. If
the expert says Y, what would you do? You’ll try to use Y only to find out it doesn’t
work for your use case because you haven’t cared to mention it in your question.

+ Don’t ask many questions at once. You’re not doing an interview!

Instead, ask one very specific question that is directly related to the expertise and
experience of the famous person and seeks their opinion that will make a difference
(or what they would do). Give enough context and detail, and show you have done
the work before writing. And keep it short, nobody has time to read five-page emails.
For example, your message to a famous compiler developer (working on language X
implemented over LLVM) might be:

Hi! Your work on programming language X has inspired me to get into compilers.
I’ve gone through the Dragon Book and LLVM Cookbook and implemented a C-like
language with reference counting (link). | also made a small contribution to LLVM
(link). What would you suggest | do next if eventually | want to work on a mature
language with an LLVM backend? | consider starting to contribute to X. Thanks!

If they reply, thank them for the advice and promise that you’ll report back after a few
weeks (or months) after you’ve had time to follow their suggestions. Now the most
important thing is to follow through and actually write back with your results (and
what you’ve learned) and thank them again.

After some time, you are likely to have another good question that you can ask the
same expert, so do it. Again, follow through. By doing that, you are showing that you
are worth helping, because you do your homework and don’t waste their time. | assure
you they will appreciate that not only you asked a good question, but also followed
their advice. Perhaps after a while that person will ask you for help with something,
because you have proven that you do the work that you promise and they can trust
you.

Yuri Karabatov 126

Junior to Senior

That’s how you build a relationship based on trust and mutual help. | want to specifi-
cally empathize trust. Trust comes from honesty, and if we base the relationship on
deceit, not only we don’t deserve trust, we will hurt the other person. It’s OK to want
something from the expert (that’s why we’re writing), but please be respectful and
ethical about it. Don’t pretend to be their friend when you aren’t, or claim to like their
work when you don’t.

6.2 Advice from notable engineers

What do some well-known software engineers say about improving as a software
engineer and what does it mean for them to be a good software engineer?

This is certainly a non-exhaustive list, and it’s not in a particular order. If you have a
favorite quote that inspires you to become better, send it to me and I'll include it in the
next edition of this book.

Let’s see what they think and get some inspiration for our own work.

John Carmack (whose clever Doom and Quake code inspired thousands) said in a
tweet:

Write lots of code. Clone existing things as exercises. Learn deeply. Alternate trying
yourself and reading literature. Be obsessive.

Larry Wall (the creator of Perl) wrote in the first “Programming Perl” book:

The three chief virtues of a programmer are: Laziness, Impatience and Hubris.

Alan Perlis (the creator of Algol) said in his “Epigrams on Programming”:

You think you know when you learn, are more sure when you can write, even more
when you can teach, but certain when you can program.

Quoting Joshua Bloch (Chief Java Architect at Google at the time) from the book
“Coders at Work”:

Yuri Karabatov 127

mailto:yuri@norikitech.com

Junior to Senior

...intelligence is not a scalar quantity; it’s a vector quantity. And if you lack em-
pathy or emotional intelligence, then you shouldn’t be designing APIs or GUIs or
languages. What we’re doing is an aesthetic pursuit. It involves craftsmanship
as well as mathematics and it involves people skills and prose skills—all of these
things that we don’t necessarily think of as engineering but without which I don’t
think you’ll ever be a really good engineer.

Donald Knuth said in his 1974 lecture “Computer Programming as an Art”:

We have seen that computer programming is an art, because it applies accumu-
lated knowledge to the world, because it requires skilland ingenuity, and especially
because it produces objects of beauty. A programmer who subconsciously views
himself as an artist will enjoy what he does and will do it better.

Bjarne Stroustrup (the creator of C++) wrote in the introduction to “The C++ Program-
ming Language”:

The purpose of learning a programming language is to become a better program-
mer; thatis, to become more effective at designing and implementing new systems
and at maintaining old ones. For this, an appreciation of programming and design
techniques is far more important than an understanding of details; that under-
standing comes with time and practice.

Richard Stallman said in his 2011 lecture in Paris:

To learn to be a good programmer, you’ll need to recognize that certain ways of
writing code, even if they make sense to you and they are correct, they’re not
good because other people will have trouble understanding them. Good code
is clear code that others will have an easy time working on when they need to
make further changes. ... How do you learn to write good clear code? You do it by
reading lots of code, and writing lots of code.

This selection may be (a little (ahem)) biased, but the common thread is that we become
better at programming primarily by doing programming and striving for excellence
and beauty. Building software out of abstractions is like building a sand castle, and
we’ll only have a brief moment to admire what we’ve built before it has to be changed.
But we’ve learned, and next time we will do it even better.

Yuri Karabatov 128

Junior to Senior

6.3 Recommended reading

The amount of books and articles on programming and software development, even if
we exclude the ones about specific programming languages, libraries and frameworks,
is incredible. Software engineers, it seems, spend a lot of their time writing. But when
do they code?

Anyway, | could have made a huge list of every book that | think you may find useful,
butinstead I've decided to put here only the books (and blog posts) that | have read and
can recommend as practical, that is, likely to inspire a change in how you program and
work. They aren’t only about software development, but also learning, productivity
(in a wide sense), interviews and writing—the complementary knowledge and skills
we need to advance our careers.

What’s not on this list are programming language books, because we all use different
programming languages, and there isn’t one that everyone should learn. At the same
time, | find books about programming languages, especially written by their creators
(like Kernighan and Ritchie’s books on C, Bjarne Stroustrup’s on C++ and so on), en-
joyable to read since the authors not only try to teach you the idiomatic way to use
a language, but also impart their philosophy of building good software, and that’s
always interesting to read.

First, let’s get the two books out of the way that will get you up to speed on the disci-
pline of programming, algorithms and data structures, or what a software engineer
is “supposed” to know. If you’re self-taught, these give you the minimum to close the
biggest gaps in your knowledge. We’re not aiming to replicate a Computer Science
degree, but to revisit or learn the fundamentals. Again, you don’t need to read these or
do the exercises, but both are fun and accessible if you’re diligent, and you can learn a
lot even if you’re more experienced.

« “Structure and Interpretation of Computer Programs” by Harold Abelson and
Gerald Jay Sussman with Julie Sussman. Widely known simply as “SICP” and
praised by many developers, this is an introductory Computer Science course
at MIT turned into a book. It uses a dialect of Lisp for instruction (remember
how useful itis to learn a language different from what you know?) and moves
assuredly and swiftly through some advanced concepts. It is also free online on

Yuri Karabatov 129

Junior to Senior

the MIT Press website.

« “The Algorithm Design Manual” by Steven S. Skiena. It covers everything that
you’d expect, but compared to more academic texts like CLRS or Knuth, | find it
much more readable and clear. There are short summaries, “war stories” with
real-world examples of approaches (and mistakes), and a handy guide for picking
a set of algorithms you need to solve your task. If you can’t buy the book, Skiena’s
lectures are online for free on YouTube. The links are on his website,

In the tools section, we only have one about Git. Version control, and Git in particular,
is probably the only tool useful in any industry and field you might be working in.

« “Pro Git” by Scott Chacon and Ben Straub. Don’t get discouraged by the “Pro” in
the title, it starts off very gently but finally takes you deep into the workings of
Git. | can honestly say that I've read only about a half, but I’'ve learned enough
to understand what happens under the hood. | use it occasionally for reference
since it’s clear, unlike some man pages. The book is free online on the Git website.

The next four are all about the practice of constructing software and writing code
that we can consider “beautiful,” as told by the experts in their own words. We know
that discovering how experts think is one of the best shortcuts to becoming an expert
yourself.

« “Code Complete: A Practical Handbook of Software Construction” by Steve Mc-
Connell. The book takes a complete circle through all aspects of software devel-
opment, focusing specifically on construction and finishing with the qualities
and techniques of a good programmer.

« “The Art of Readable Code” by Dustin Boswell and Trevor Foucher. While this one
may not be well-known, the authors made an outstanding job of creating a book
that’s both useful and entertaining. Experienced programmers may find the tips
and techniques too obvious, but we all have to start somewhere, and the book
clearly lays out exactly what makes code readable with many examples. It’s fairly
short at only 200 pages.

« “Beautiful Code: Leading Programmers Explain How They Think” by Andy Oram
and Greg Wilson. This book is a collection of essays by some big names in pro-
gramming (Brian Kernighan, Douglas Crockford and Simon Peyton Jones among
others) talking about their code and the decisions behind the architectures of

Yuri Karabatov 130

https://mitpress.mit.edu/sicp/
https://www3.cs.stonybrook.edu/~skiena/
https://git-scm.com/book

Junior to Senior

their projects. It’s a mixed bag in terms of quality, so skip the ones you don’t
like. But overall, the book is unique in allowing us to peek at how accomplished,
expert programmers think about the problems they solve with code.

« “Coders at Work: Reflections on the Craft of Programming” by Peter Seibel. This
one is similar to “Beautiful Code,” but the author interviews programmers. From
the description: “Peter Seibel focuses on how his interviewees tackle the day-to-
day work of programming, while revealing much more, like how they became
great programmers, how they recognize programming talent in others, and what
kinds of problems they find most interesting.” The interviews are more about the
ways of working and lessons learned, rather than explaining a piece of code.

The next two entries are about finding work rather than doing it.

« “Interview Intervention: Communication That Gets You Hired” by Andrew
LaCivita. This is an essential book for learning how to ace interviews and work
on your soft skills.

« Patrick McKenzie does a great job explaining the business side of the software
development career in his blog post “Don’t Call Yourself a Programmer, and Other
Career Advice.”

With so much we have to learn to improve, how do we find enough hours in the day to
do our work, study and still have time to rest? The three books that follow each expose
a different angle of the problem, and each lets you pick and choose the techniques
that are most relevant to how you work.

« “Deep Work: Rules for Focused Success in a Distracted World” by Cal Newport.
The author makes an argument that in the modern world and going forward,
the skill to focus and work for extended periods of time without distraction will
become more and more valuable. It’s not a gimmick, but a practical system of
techniques that lets you focus on the work that matters to you, day after day.
If you do that, you’ll discover you can achieve a lot more than you’ve thought
possible, and to have more free time.

« “Make Time: How to Focus on What Matters Every Day” by Jake Knapp and John
Zeratsky. My manager recommended this book to me after | complained | was too
distracted by Slack. Now | recommend it to you. Compared to “Deep Work,” it’s
less dogmatic and is a grab bag of techniques that you can fit around your lifestyle

Yuri Karabatov 131

https://www.kalzumeus.com/2011/10/28/dont-call-yourself-a-programmer/
https://www.kalzumeus.com/2011/10/28/dont-call-yourself-a-programmer/

Junior to Senior

to make progress on the project that you consider important, at or outside of
work.

« “The First 20 Hours: How to Learn Anything... Fast” by Josh Kaufman. This book
presents a set of techniques to jumpstart learning a new skill and get to “good
enough” quicker—we do that a lot in software development. From this book I’'ve
also learned the concept of disliking something because you’re simply bad at it,
and getting a taste once you’ve improved.

We have established that besides writing code, we’ll also write a lot of text: messages,
emails, presentations, blog posts. The quality of your writing will tip the other people’s
opinions in your favor if it’s good.

« “On Writing Well: The Classic Guide to Writing Nonfiction” by William Zinsser is
my favorite book on writing that | must have read at least five times, and have
often referred to for specific advice. | think you’ll love it.

For desert, a couple of blog posts by Joel Spolsky, the co-founder of Fog Creek and the
former CEO of Stack Overflow.

« In “The Duct Tape Programmer” he describes a type of developer who is different
from what you may be used to, and is more focused on shipping than Making
Everything Right™. Software engineers often forget their role is not to write code
and make it more and more byzantine.

« The post “Making wrong code look wrong” shows an interesting technique, but
it also raises the important topic of code locality and that we are humans, and
our cognitive abilities are severely limited, so we must strive to remove any extra
complexity that may slip through our fingers and cause a bug because we haven’t
noticed something.

And one more thing that | almost forgot.

« “The Pragmatic Programmer: From Journeyman to Master” by Andy Hunt and
Dave Thomas. This book is very similar to “Junior to Senior” in the sense that it’s
a “non-technical tech book” as someone called it in their review. Experienced
programmers will know most of the material, but its popularity is proof to how
useful it is for people with less experience.

Yuri Karabatov 132

https://www.joelonsoftware.com/2009/09/23/the-duct-tape-programmer/
https://www.joelonsoftware.com/2005/05/11/making-wrong-code-look-wrong/

	Introduction
	Who this book is for
	How I can help

	The point of reference
	``Developer'' or ``engineer''?
	Going meta
	Typical descriptions
	Years of experience
	Computer Science degree
	Credentials
	Knowledge
	Skills
	If you don't have a Computer Science degree

	The senior engineer mindset
	You are not paid to write code
	Exponential learning
	You are not your role
	Development is a team sport

	Know your place
	The senior engineer has sufficient knowledge to work independently
	The senior engineer writes good code
	The senior engineer knows the software development process
	The senior engineer enables others to make decisions efficiently
	The senior engineer is continuously improving

	What you can do now
	Where do you want to go?
	Help your company teach you
	Considerate communication
	Unknown unknowns
	Code mimicry

	Leveling up
	The real world
	One company or job-hopping?
	Reconnaissance
	Role + company

	Interesting people
	The interview game
	The rules
	Front-load the work

	Prevention and control
	Burnout
	Impostor syndrome
	Procrastination

	Growing as a developer
	Complementary knowledge
	``Elegant'' code
	Paradigms and programming languages
	``Not invented here'' syndrome
	Becoming an early adopter
	Mentorship

	Advice from notable engineers
	Recommended reading

