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Preface

If we measure "market shares" of all programming languages in some 
way and plot the data as a pie chart, the functional programming 
languages, all of them combined, would not even show up as a wedge
shaped slice on the pie chart.

Despite their general importance, and practical usefulness, functional 
programming is still considered a niche in the software industry. There 
can be many reasons for this, but one of the main reasons is lack of good 
educational materials. There are also a lot of misinformation out there 
regarding functional programming. Many software developers consider 
functional programming "difficult", which can be done only by the 
"elitist" programmers. That cannot be further from the truth.

Functional programming is different from imperative programming. But, 
not necessarily more difficult. Unfamiliarity breeds

Haskell is one of the most widely used functional programming 
languages. Haskell has been around for over 30 years, and it has 
influenced the language designs of numerous (modern) programming 
languages, including many popular imperative languages such as



Python, JavaScript, C#, Julia, and Rust to name a few.

Haskell is a pure functional programming language. This means that we 
primarily, and almost exclusively, use the mathematical principle of 
function applications and function compositions as the primary means of 
computation. This also means that more traditional imperative 
programming styles using side effects cannot be generally used while 
programming in Haskell (with a few important exceptions).

When programmers with the imperative programming background start 
learning functional programming languages like Haskell, they generally 
face two main challenges. First, they will need to learn pure functional 
programming, which requires a rather different mindset. This can be the 
hard part for some people who have been trained in imperative 
programming for many years. Second, languages like Haskell use 
somewhat different syntax from most of the main stream languages. In 
fact, functional programming languages all tend to use more terse 
syntax, for example, and this trips over many beginning Haskell 
programmers. However, this is the easy part.

Books like this can help you learn Haskell language syntax so that you 
can focus more on learning high-level functional programming styles. 
As a matter of fact, this mini reference will not teach you how best to 
program in a functional style, but rather it will only teach you the 
essentials of the Haskell programming language. If you are looking for a 
tutorial on functional programming, this book may not be the right one 



for you. If you are a complete beginner, then you will not find this book 
very useful.

This book is specifically written for the people

Who have some exposure to functional programming and would like to 
learn Haskell,

Who are learning functional programming in Haskell and making a 
rather slow progress due to its somewhat unfamiliar syntax, or

Who are experienced in procedural programming and want to get a 
quick taste of the Haskell language.

For this intended target audience, this mini reference will provide an 
excellent overview of the Haskell functional programming language.

This book is largely based on the official "Haskell 2010 Language 
Report", but it is not an authoritative language reference. We 
recommend the readers refer to the original Report for more precise and 
more detailed information whenever there is any ambiguity in the 
descriptions in the book.



Dear Readers:

Please read this before you purchase, or start reading and investing your 
time on, this book.

This book is a language reference, written in an informal style. It is one 
of the books in a series which cover different programming languages 
that are widely used. These books are not meant to teach you how to 
program in those languages in a tutorial style, however.

Going through this kind of language reference-style books once in a 
while, at various stages of your learning, can boost your programming 
skills dramatically. But, you will only learn so much based on what you 
already know. We learn incrementally. Do not try to boil the ocean at 
your first reading unless you are a truly experienced developer.

These mini references are intended to be read quickly, or even just 
browsed, in a few hours or a few days. If you feel like you are struggling 
with every paragraph, on the other hand, then this book is clearly not a 
right one for you. We suggest you look for an alternative book that is 
more suitable to you. If you have already purchased this book, you can 
return it if it’s still within the return time window.



Otherwise, here’s a quick suggestion. First of all, you do not have to 
understand or remember Just quickly go through the book from 
beginning to end, and see which parts you are more familiar with and 
which parts you are not. Then, come back to this book later, say, after 
practicing programming for a little while, and read it again. Do you find 
the book a bit easier to read?

You can repeat these steps once in a while. We all tend to forget things, 
and a quick refresher is always a good idea. You will learn, or re-learn, 
something "new" every time.

Good luck!



1. Introduction

The Haskell programming language is based on lambda calculus at its 
core. In fact, all syntactic structures in Haskell are formally defined 
through translations of those structures into the lambda calculus-based 
core part, known as the Haskell kernel.

However, you do not need to be familiar with lambda calculus to use 
Haskell. Haskell is a high-level general purpose programming language 
that supports, and encourages, pure functional style programming. If you 
are new to functional programming, then Haskell is the best language to 
learn functional programming with.

Despite some common misconceptions, functional programming styles 
are widely used in modern programming. For example, many developers 
are now used to programming styles using higher order functions like 
map, filter, and reduce. Pattern matching has been adopted by virtually 
all modern languages. Immutability is considered a holy grail even in 
imperative programming nowadays, especially in the multi-core 
concurrent programming environments.

It may still require some time and practice to transition to pure 



functional programming, but as indicated in the Preface, we do not 
believe that is the main reason why functional programming languages 
like Haskell are not as much widely used.

It is most likely the unfamiliar syntax that is what keeps many 
programmers from trying out functional programming languages. 
Therefore, we hope that books like this one that focuses on the language 
grammar can help developers get into functional programming more 
easily and more willingly.

Other than that, the case for (pure) functional programming is 
overwhelming, and we will not make any effort to convert you in this 
book.



1.1. Example Haskell Program

Merge sort is one of the most functional algorithms. Here’s a simple 
implementation of merge sort in Haskell.

Listing 1. MergeSort.hs

module ®

divide :: Ord a => -> ® divide xs = splitAt xs + xs

merge :: Ord a => -> -> ® merge [] s2 = ® merge si []
= si merge ®

| x > y = y : merge s1 ys

| otherwise = x : merge xs s2

sort :: Ord a => -> ® sort [] = [] sort = sort list =



let = divide ®

in merge

®

This line declares a module MergeSort and exports a function Module 
imports and exports are explained in the Modules chapter.

®

This line denotes a type signature for the function whose 
implementation follows in the next line. Notice the general syntax, name 
:: separated by double colons splitAt is a "built-in" function, included in 
the Haskell Standard Prelude. Types and functions are two of the most 
important concepts in Haskell programming, and they are explained 
throughout this book.

®

Likewise, a type declaration of the function,

®

The and functions are implemented using pattern which is described in 
detail in the later part of the book. Pattern matching was first introduced 
by Haskell, and it is now becoming a core part of virtually every modern



programming language, thanks to its intuitive syntax and expressive 
power.

®

Recursion is at the heart of functional programming. One of the unique 
features of Haskell is that, lexically, Haskell programs can be written in 
layout-sensitive or layout-insensitive formats. For instance, the 
expression written in three lines in this example can be written in one 
line as well. The layout rule is described in the Lexical Structure 
chapter, in the very beginning of the book.

®

The sort function also uses pattern matching and recursion. Notice the 
common pattern in the way that functions are defined over multiple 
patterns (and, over multiple lines) in Haskell.

®

Unlike some popular beliefs, even pure functional programming uses 
"variables" (albeit The let in expression is explained in the main part of 
the book, in particular, in the Let and Where chapter. Note that this let in 
expression captures the essence of the merge sort algorithm.

Here’s a sample program using this sort function:

Listing 2. Main.hs



module Main where ®

import MergeSort (sort) @

main :: IO () ®
main = do @

print $ sort [7, 5, 8, 6, 4, 9] ®

®

Every Haskell program needs a Main module, which includes a value 
named This is similar to the way C-style languages work, in which the 
"main" function is the entry point to a program.

®

Importing the sort function from the MergeSort module. Notice the lack 
of semicolons throughout this code example. Again, this is explained in 
the context of layout

®

The type of main is which is an instance of the Monad class. Types and 
classes (or, typeclasses) are explained throughout this reference. The 
class is briefly described in the Monads chapter, primarily for 
completeness. Note that, only through monads, we can include (non- 
pure) actions in pure functional programs.

®

In the monadic context, the do expression can be used for "sequential 
programming". Do expressions often include multiple statements, e.g., 



expressions and declarations. The expression in this particular line will 
output [4,5,6,7,8,9] to standard output, or the terminal.

If you do not fully understand this program at this point, then read on. 
This book will teach you how to read Haskell programs, at least in terms 
of all essential syntax.



1.2. Functional Programming

Pure functional programming is about computing (desired) values 
through applications of functions. (In this book, and in functional 
programming in general, a function means a pure function, that is, a 
mathematical function.) You get an input, a value, and you produce an 
output, another value, through pure computations. There are no 
imperative statements involved like "do this and do that".

Although there is no general consensus as to what exactly is functional 
programming (FP), FP is often characterized by a few tenets, if you will:

In FP, functions are the main building blocks of programs.

FP only deals with values, and values are by definition immutable.

FP does not cause side effects (that is, unless explicitly intended).

In addition, Haskell has a few important characteristics that are not 
necessarily considered an intrinsic part of FP. For example,

Haskell has a strong static type system, with support for parametric 
polymorphism.



Haskell supports universal type inference, and hence type declarations 
are (almost) optional.

Haskell supports lazy evaluation of expressions by default, which can 
lead to code optimization.

Haskell supports user-defined operators, which is much more powerful 
than the "predefined operator overloading" mechanism found in other 
programming languages.

Haskell supports powerful pattern matching, which plays an essential 
role in virtually every aspect of Haskell programming.

In Haskell, all functions take one value and return one value, through 
what is known as currying.

In Haskell, every function is a value. And, every value is a function.

Haskell isolates pure functions and non-pure actions using Monads 
(which originated from category theory).

As a high-level programming language, Haskell runtimes support 
automatic memory management, e.g., garbage collection.



Haskell programs can be either dynamically interpreted, or they can be 
compiled to executables.

Haskell has such a strong static type system that the Haskell compiler 
removes all type information when building an executable. That is, there 
is no need for runtime type information for Haskell programs after they 
have been verified by the static type checker. Furthermore, despite the 
pervasive misconceptions that FP languages are "slow", the leading 
Haskell compiler can produce highly optimized code which are 
comparable to those generated by other "fast" imperative languages.



1.3. Book Organization

We start the book with a quick introduction to the Haskell software 
development in particular, using the Cabal - GHC toolchain. This is 
included primarily for completeness, especially for absolute beginners, 
and it can be skipped if you have some experience with Haskell 
programming.

In fact, this book assumes that the reader has some exposure to Haskell, 
or other similar functional programming languages.

In the next chapter, we briefly go through the lexical structure of Haskell 
programs, again for completeness. This book, by its very nature, 
emphasizes breadth more than depth. This chapter can also be skipped, 
maybe except for the layout rules section, unless you are completely 
new to Haskell. The rest of the book is organized more or less in a top 
down fashion.

A Haskell program comprises one or more Modules are generally used 
to manage namespaces and organize large programs. Names can be 
shared among different modules through Haskell’s import-export 
mechanism. All Haskell programs include a special module which 
includes a value named main with the type This is the entry point to any 
Haskell program.



A Haskell module consists of a collection of declarations for entities like 
ordinary values, datatypes, and type classes, and for fixity information. 
Some declarations can only be used at the module-, or top-, level, and 
they are described in the top-level declarations chapter. Some other 
kinds of declarations, on the other hand, can be included both at the top
level and at some nested context. They are described in the nested 
declarations chapter.

We also go through some basics of Haskell’s type system in these two 
chapters, including data types, newtype types, and type synonyms.

As with other programming languages, Haskell includes a number of 
primitive, or "builtin", We go through some of them, such as booleans, 
numbers, characters, and strings in this chapter, and we further discuss 
user-defined data types and type classes later in the book.

Haskell is a pure functional programming language, and hence it does 
not have constructs comparable to the "statements" in other imperative 
programming languages, whose main purpose is to generate side effects. 
At the level below the modules and declarations are as described in the 
next several chapters. An expression denotes a value and has a static 
type. Expressions are the bread and butter of Haskell functional 
programming.



It may seem somewhat ironic, because many developers consider 
functional programming languages like Haskell "complex", but the 
Haskell’s language grammar is much simpler than those of other widely 
used programming languages. In fact, the Haskell language itself 
includes only a few different kinds of expressions (again, no side effect 
causing statements), and the rest of the language constructs (e.g., 
operators) are included in the standard library. Some of them are part of 
"the Standard Prelude", and they are no different from the "built-in" 
language syntax for all intents and purposes.

As is the case with virtually all functional programming languages, 
functions are the most important construct in Haskell. In the Functions 
chapter, we review how to define a function, how to invoke a function, 
and how to compose two or more functions in Haskell. We also 
introduce lambda functions in this chapter.

Other than the primitive types like Bool and and numbers, lists are the 
most important types in Haskell, as in many functional programming 
languages. Functional programming often involves manipulating lists. 
Tuples are also important compound data types that deserve a careful 
study if you are new to Haskell. Tuples provide a light-weight syntax for 
user-defined data types, which are discussed later in the book.

All expressions in Haskell have static types. Haskell can deduce the 
broadest possible type for any expression, which is called its "principal 
type". Otherwise, that is, if Haskell cannot deduce the principal type, 
then it is not a valid expression, i.e., not a valid Haskell code. The



expression type signature syntax can be used to specify a type narrower 
than the principal type. Or, it can sometimes be used to make an 
otherwise-invalid expression valid by explicitly specifying the type.

As with any high-level programing language, Haskell supports 
conditional with the familiar if - then - else syntax. Unlike in many other 
languages, however, both then and else clauses are required in Haskell.

Functional programming languages also use "variables". But they have 
different meanings, and they play different roles, in functional 
programming languages like Haskell. In particular, variables in Haskell 
do not imply "storage locations" in memory as in imperative 
programming languages. (Pure) functional programming languages only 
deal with "values". Variables are just names for values. In the next 
chapter, Let and we go through the basic syntax of the let expressions. 
We also discuss the where syntax in this chapter, which itself is not an 
expression but can be used in a somewhat similar fashion to e.g., to 
define variables.

If we have to pick one particular feature that is the most important in 
Haskell, it would be the pattern matching. In Haskell, it is almost the 
foundation of all other expressions. Virtually everything is built on top 
of pattern matching. The case expressions play the fundamental role in 
this regards. Other pattern matching syntax is ultimately translated to 
case expressions. A case expression can include one or more alternative 
patterns, and each pattern can include zero or more Boolean guards.



In the following chapter, we go through each of the pattern types 
supported by Haskell. This is a somewhat artificial classification, and in 
practice, we mostly use some combinations of these patterns.

In Haskell, there is little distinction between functions and operators. 
Operators are just a special kind of functions (e.g., which take two 
arguments). In the chapter, Core we describe a few of the "built-in" 
functions and operators from the Prelude.

In the next chapter, List we go through other "built-in" functions that are 
used to manipulate lists. There are quite a few, and they are all 
important, to varying degrees. We only briefly cover each of these 
functions, but it is essential to understand and "internalize" all these 
functions in order to be able to use Haskell effectively. One thing to note 
is that Haskell comes with other standard libraries beyond the Prelude, 
but we do not cover those in this book.

Haskell supports a rather powerful polymorphic type system. After 
having gone through all important expressions, we now go back to a few 
important kinds of declarations, namely, the data type and class 
declarations.

Needless to say, types are important in modern programing. This is 
especially so in languages like Haskell which provide strong type-safety 



checks at build time. It is pretty much impossible to have type-related 
errors at run time. It does not mean that if you can build it, it runs 
without errors, but it is pretty close. Haskell makes it rather easy to 
create and use custom types through the data type declaration syntax. A 
data type is defined by declaring one or more constructors, with 
positional fields. Haskell also supports the record syntax for data 
constructors, e.g., using labeled fields. The record syntax is now widely 
adopted by many other programming languages.

Haskell’s polymorphic type system is based on type We briefly discuss 
the class declarations, instance declarations, and the deriving syntax in 
the following chapter. The Standard Prelude includes a few predefined 
classes, such as and other numeric classes like We briefly go through 
some of these classes in the next chapter, Standard

Whether justifiable or not, Functors and (especially) Monads are 
generally considered the most difficult topics in Haskell. This (short) 
book will not be able to convince you otherwise if you are in that camp. 
But, nonetheless, we briefly cover each of these builtin classes. Learning 
is about recognizing patterns. If you have some experience in 
programming, then you will realize that Functors and Monads are just 
simple abstractions over some familiar programming patterns. If not, no 
worries. You do not have to understand precisely what these terms mean 
to be able to program in Haskell.

In the monadic context, one can use sort of "imperative-style 



programming, which a majority of programmers are more used to, even 
in Haskell. This is briefly explained in the next chapter, do

The most important beneficiary of the Monad class is the I/O related 
actions. In fact, Haskell, as a pure functional programming language, did 
not initially have support for I/O for many years. Now, through 
Input/Output can be easily incorporated into Haskell programs. The IO 
type is one of the most important instances of

In the next, and final, chapter, IO Functions we go through some of the 
I/O related functions defined in the Prelude. These are core functions to 
be able to do basic IO in any Haskell programs.

It should be noted that, as indicated earlier, we do not cover any of the 
Haskell Standard libraries in this book, in the interest of space and the 
reader’s time. This book is a mini language reference.



2. Haskell Software Development

The Haskell programming language was originally created over 35 years 
ago. But there have been only two official releases in terms of the 
language specifications. The Haskell language definition was first 
publicly released in 1998, which is known as Haskell The second and 
currently most up-to-date spec was released in 2010, which is officially 
called the Haskell 2010 Language

At this point, there does not appear to be an ownership of the language 
by any particular organizations. That does not mean Haskell is dead or 
abandoned. Some day, there might be formed another Haskell 
Committee, and they will produce the next version of the language, if 
necessary. Meanwhile, the GHC team (originally, of the University of 
Glasgow) has the de-facto stewardship of Haskell. They create and 
distribute the most widely-used Haskell compiler and interpreter, called 
ghc and respectively. And, their build tools support an extensive set of 
"language extensions", which are essentially additions to the language 
beyond the Haskell 2010 Report.

Although this book’s main focus is the Haskell language itself, we will 
briefly discuss in this chapter the particular toolings provided by the 
GHC team, to the benefit of the people who are new to Haskell software 



development.



2.1. Development Tools

The most important tool in programming is clearly the compiler (or, the 
interpreter). But, the modern software development is aided by various 
tools. Haskell is no exception. We briefly go through some of the GHC- 
related development tools in this section, without attempting to be 
complete or exhaustive.



2.1.1. GHCup

GHCup is an optional tool that allows easy management of other 
Haskell build and package management tools. You can download it from 
the GHCup Installation Although it is not required, it is often the best 
and easiest way to manage Haskell tools such as and

For example, you can easily manage these tools using the tui command:

$ ghcup tui

(If you have used RustUp for Rust development, for instance, these two 
tools are comparable to each other. In fact, there are many similar tools 
across different programming languages.)



2.1.2. Cabal

Cabal is one of the most essential tools for professional Haskell software 
development. It is a project and package management tool, and it is also 
a high-level build tool (which uses the ghc compiler underneath). You 
can scaffold a simple Haskell project using the init command. For 
instance,

$ cabal init -i

You can build a Cabal project using cabal or you can build and run 
using cabal run during development. For example,

$ cabal run --verbose=0 ®

®

The verbose flag can be used to change the verbosity of the build output 
messages.

You can also install any Haskell packages (available on Hackage) using 
cabal cabal --help will print out some common usages of the cabal



command.



2.1.3. Stack

Stack is a (newer) alternative to That is, you can manage and build a 
Haskell project using Stack instead of Some people prefer one tool over 
the other, but it is really a matter of preference.

It should be noted that Stack is also integrated into the Haskell Cabal 
infrastructure. The relationship between Stack and Cabal is comparable 
to that of Gradle vs Maven in Java, for instance.



2.1.4. HLS

or "Haskell Language Server", is used to add Haskell language support 
to IDEs or other programs that understand the language server protocols. 
VS Code, along with the third-party provided extensions, provides good 
dev support for a wide range of programming languages (e.g., syntax 
highlighting, intellisense, static code analysis during development, etc.). 
If you install then you can use VS Code, for example, for Haskell 
development,



2.1.5. GHC

GHC stands for "Glasgow Haskell Compiler". As stated, it is the de- 
facto standard compiler for Haskell. If you develop production-quality 
software in Haskell, you will most likely have to use either directly or 
indirectly.

In practice, the ghc command is rarely used directly. Most developers 
use the aforementioned high-level (project-oriented) build tools like 
Cabal or



2.1.6. GHCI

If you are new to Haskell programming, or to functional programming 
in general, REPL is one of the most important tools during software 
development. It is rather hard to theorize precisely why REPL plays a lot 
more important roles in functional programming than in imperative 
programming, but it is not uncommon to see Haskell programmers 
always keep the REPL terminal open during development.

The ghci command, the REPL that comes with the GHC toolchain, does 
not compile the Haskell program like Rather it interprets the given 
expressions, one at a time, in the interactive mode. (The runghc 
command also interprets a given Haskell program, but in the non
interactive mode.) You can start a Haskell REPL by simply invoking the 
command,

$ ghci
GHCi, version 9.4.4: https://www.haskell.org/ghc/ :? for help 
ghci> ®

®

The default GHCI prompt, waiting for the next command.

https://www.haskell.org/ghc/


You can see a list of all available commands using the :h command. For 
example, :info, or :i, displays information about the provided names, and 
:type, or :t, shows the type of a given expression.

ghci> :i map
map :: (a -> b) -> [a] -> [b] 
ghci> :t "Hello World" 
"Hello World" :: String 
ghci> :t 42
42 :: Num a => a

-- Defined in ‘GHC.Base’

®

®

Numeric literals are polymorphic in Haskell. We explain what this 
notation means later in the book.



2.1.7. Haskell source code

As with most programming languages, Haskell programs are generally 
written in files as text. Haskell programs can be coded in two different 
forms, a normal program style and a "literate" style. The Haskell source 
code file written in the regular style is generally saved in a file with the 
.hs extension. This represents a normal code, as is commonly done in 
any other programming languages.

On the other hand, in the literate programming style, Haskell code 
should be prefixed with (Or, alternatively, code blocks can be enclosed 
within LaTex style tags.) All other text is considered a comment in the 
literate style code. Literate source code is generally saved in the files 
with the extension



2.2. Language Extensions

As mentioned, the GHC toolchain provides an extensive set of language 
extensions. You can selectively turn on or off each of these extensions, 
e.g., using the ghc command line options or using the compiler 
LANGUAGE pragmas (which we do not discuss in this book). Note 
that, in Glasgow Haskell, the baseline for the language definition is 
Haskell 98, and not Haskell 2010. That is, you will need to enable all 
necessary language extensions (or, "features") if you plan to use Haskell 
2010.

Luckily, GHC also provides a small number of meta-extension options 
which include other options. For example, there are currently three 
predefined values, e.g., as of GHC 9.4, Haskell98 (e.g., no extensions 
enabled), and

We will always be using Haskell2010 with ghc in this book unless 
otherwise specifically noted. When there is any uncertainty or conflict, 
the Haskell 2010 Language Report should be the authoritative reference. 
As for what language extensions are available and how to use them, we 
recommend the readers refer to the GHC User’s Guide.



3. Lexical Structure

Haskell uses the Unicode character set. A Haskell program can only 
include graphic characters and whitespaces. A comment is lexically 
considered a whitespace.



3.1. Comments



3.1.1. Line comments

An ordinary line comment begins with a sequence of two consecutive 
dashes (e.g. and extends to the end of the line, including the newline. 
(Note that, in Haskell, the double dashes can also be part of lexically 
legal operator symbols, e.g.,

-- This is comment.
— This is also comment.



3.1.2. Nested comments

A nested multiline comment begins with {- and ends with Nested 
comments may be nested to any depth. Any occurrence of the character 
sequence {- within the nested comment starts a new nested comment, 
terminated by Within a nested comment, each {- is matched by a 
corresponding occurrence of

{--
{
I am a comment inside another comment.
-}
--}



3.2. Identifiers

An identifier consists of a letter followed by zero or more letters 
(including underscores digits, and single quotes One or more single 
quotes are often used at the end of an identifier to denote alternative 
versions of the given entity with the same identifier but without the 
single quote suffix. Identifiers are case sensitive.

Haskell identifiers are lexically distinguished into two namespaces:

Variable identifiers - The identifiers that begin with a lowercase letter, 
which denote variables or functions, and

Constructor identifiers - The identifiers that begin with an uppercase 
letter, which denote types or constructors.

Underscore _ is treated as a lowercase letter, and it can occur wherever a 
lowercase letter is syntactically allowed. The identifier, by itself is a 
reserved identifier, which is used as the wildcard in Haskell generally 
offers warnings for declared but unused identifiers. However, these 
warnings are suppressed against the identifiers that start with 
underscores, by convention. This, for example, allows programmers to 
use names like _foo or _bar as a placeholder (that they expect to be



unused).



3.3. Reserved Words

The following 20 identifiers are reserved in Haskell:

case class data deriving
do else if import
in infix infixl infixr
instance let of module
newtype then type where



3.4. Operators

Operator symbols consist of one or more symbol characters, and they 
are classified into two distinct namespaces.

An operator symbol with two or more characters starting with a colon : 
is a constructor.

An operator symbol starting with any other character is an ordinary 
identifier.

All operators are infix by default, and they can be used in a



3.4.1. Reserved operator symbols

|
<- -> @ ~ =>



3.5. Layout Rules

Haskell uses curly braces and semicolons for the purposes of grouping, 
etc., just like many other programming languages. Haskell, however, 
also supports layout-based style of coding without requiring braces and 
semicolons in many places. These layout-sensitive and layout
insensitive styles of coding can be freely mixed within one program. 
Although the layout rules include many details, it is based on rather 
straightforward indentation rules, and in practice, curly braces and 
semicolons are rarely used in Haskell programs.



3.5.1. Braces and semicolons

Statements written in the layout-based style can be converted to layout
insensitive style by adding braces and semicolons in places determined 
by the layout rules.

In general, semicolons demarcate the end of an expression, and curly 
braces represent scope. For example,

cube x = c where { c = x * x * x; }

Note that an explicit open brace must be matched by an explicit close 
brace. Within these explicit braces, no layout processing, as described 
next, is performed.



3.5.2. Layout processing

The braces and semicolons are inserted as follows.

When an open brace is omitted after the keyword or a new layout starts:

First, the omitted open brace is inserted at the indentation of the next 
token, and then

For each subsequent line,

If it contains only whitespace or is indented more, then the previous item 
is continued.

If it is indented by the same amount, then a semicolon is inserted and a 
new item begins, and

If it is indented less, then a close brace is inserted and the current layout 
list ends.

When the indentation of the next token after a or of is less than or equal 
to the current indentation level, then



Instead of starting a layout, an empty item {} is inserted, and

Layout processing occurs for the current level.

(Note: If you are a beginner, you do not have to memorize these rules.
Haskell’s layout rules are rather flexible, and it will all come naturally.)



4. Modules

A module defines a collection of entities such as values, and in an 
environment created by a set of imports. A module, in turn, can make 
some of these entities available to other modules by exporting them. 
Modules are used for namespace control, and they are not first class 
values.

A Haskell program comprises one Main module and possibly zero or 
more other modules. The Main module exports a value named which 
must be an expression of type IO T for some type The value of the 
whole program is the value of



4.1. Module Names

A module name is a sequence of one or more separated by dots Each 
identifier must begin with a capital letter.

Although it is not part of the language definition, module names can be 
thought of as being arranged in a hierarchy in which appending a new 
component (with a dot creates a child of the original module name.

Modules in standard libraries and other widely used modules tend to use 
a standardized set of "top-level" module names such as and etc. and 
other related modules are organized "under" this top-level module 
names such as etc. It should be emphasized, however, that it is purely a 
naming convention, and Haskell does not support "submodules" or other 
relationships among the modules.



4.2. Module Structure

Generally speaking, a module and a source code file in Haskell has a 
one-to-one correspondence. A Haskell module consists of two parts.

A module begins with a header:

The keyword

The module name,

A list of entities to be exported (enclosed in parentheses), and

The keyword and the header is followed by

A module body:

A possibly-empty list of import declarations that specify the modules to 
be imported into the current module, and

A possibly-empty list of top-level



In case of the Main module, the module declaration header can be 
omitted. In such a case, the header is assumed to be module Main(main)



4.3. Export Lists

An export list identifies the entities to be exported by a module 
declaration such as functions, types, and constructors.

If an export list is not provided, then all values, types, and classes 
defined in the module are automatically exported, and they will be 
available to anyone importing the module. Note that the entities 
imported from other modules are not exported in this case.

module MyModule where

Limiting the names exported is done by adding a parenthesized list of 
names after the module name:

module MyModule (MyTypel, MyClassA, myFuncX) where

Note that all instance declarations are automatically exported with 
associated and they cannot be explicitly specified in the export list.

If a module imports another module, it can also export that module,



using the module prefix:

module MyModule (module Data.Set, module Data.Char) where

import Data.Set
import Data.Char



4.4. Import Declarations

An import declaration brings into scope the entities exported by another 
module. The import declaration specifies the name of a module, and it 
may optionally include the specific entities to be imported from that 
module. Imported names serve as top level declarations in the current 
module.

For each entity imported, both the qualified and unqualified names of 
the entity is brought into scope. If the import declaration uses the 
qualified keyword, however, only the qualified names of the entities are 
brought into scope.

An as clause may be used with both qualified and unqualified import 
statements to provide local aliases.



4.4.1. Importing all

If no specific entities are specified after the imported module name, then 
all the entities exported by that module are imported, including 
functions, data types and constructors, classes, and other re-exported 
modules. For instance, using the following module M as an example,

module M(X(..), y) where
data X = X
y = 1

The following import declaration imports both X and

import M

These names can be used either as qualified, e.g., M.X and or 
unqualified, e.g., X and

For a qualified import, however,

import qualified M



Only the qualified names are available in the importing module, e.g.,
M.X and M.y in this example. Or, we can use an as alias,

import M as M2

Or,

import qualified M as M2

In these two cases, the names M2.X and M2.y are brought into scope, in 
addition to X and y in the case of unqualified import.

Note that it is legal for more than one module in scope to use the same 
alias provided that all names can still be resolved unambiguously. For 
example,

module Main where
import qualified M as M2
import qualified N as M2

This is valid as long as the module N does not export names X and



4.4.2. Importing some or none

The imported entities can be specified explicitly by listing them in 
parentheses. The list may be empty, in which case only the instances are 
imported, if any. When the (..) form of import is used for a type or class, 
the (..) refers to all of the constructors, methods, or field names exported 
from the module.

Using the same example module

import M(X(..)) ®
import M as M2(y) @
import qualified M(X(..)) ®
import qualified M as M2(X(..), y) @

®

The names M.X and X are imported.

®

The names M2.y and y are imported.

®

The name M.X is imported.



®

The names M2.X and M2.y are imported.

The following import declaration, on the other hand, imports no names 
from the module

import M()



4.4.3. Importing all but some

As a variation of the method for importing all exported names, one can 
explicitly exclude some names by using the form import moduleM 
hiding(import1, ..., This import declaration specifies that all entities 
exported by the named module should be imported except for those 
specifically named in the list.

For example,

import M hiding () ®
import M hiding (X) ®
import qualified M hiding () ®
import qualified M hiding (y) @
import qualified M as M2 hiding(X) ®

®

This brings the names and M.y into scope.

®

This imports the names y and

®

This imports the names M.X and



®

This imports the name

®

This imports the name



5. Top-Level Declarations

A Haskell module can include

Zero, one, or more top-level declarations,

type synonym

newtype

data type

class

instance

default and

Other declarations that can be included in both top-level and nested 
scopes (e.g., within a let expression), which comprise



Type

Fixity

Function and

Pattern

These declarations can also be classified into three groups:

User-defined data e.g., and data declarations,

Type classes and e.g., and default declarations, and

The rest nested e.g., type signatures, fixities, and value bindings for both 
functions and patterns.

Haskell’s builtin types, such as integers and floating-point numbers, and 
other primitive types are described in the Basic Types chapter.



5.1. Types and Classes

Haskell uses a polymorphic type system augmented with type Idiomatic 
haskell programming styles are often based on manipulating 
parametrized types (aka, generic types).



5.2. Haskell Type System

Haskell’s type system attributes a type to each expression during 
compilation. The type of an expression depends on an environment that 
determines the types of the variables in the expression. It also depends 
on a class environment if types are instances of In general, a type is 
defined over a context for a set of type variables, typically denoted by 
(one letter) lowercase alphabets. For example,

Eq a => a -> a

This denotes a function which takes a value of type a and returns a value 
of the same type a -> The type constraint Eq a states that this function 
type can only be defined on the types which are instances of type class 
The most general type that can be assigned to a particular expression 
(e.g., in a given environment) is called its principal The Haskell type 
system can infer the principal types of all valid expressions. Therefore, 
explicit type signatures for expressions are usually not necessary.



5.3. Typeclasses

A class declaration introduces a new type class and a set of overloaded 
operations, called class An instance type of that class must support those 
operations. An instance declaration declares a new type of a given type 
class, and it (generally) includes the implementations of the class



5.4. Contexts and Class Assertions

A context consists of zero or more class assertions, with a general form ( 
C1 u1, ..., Cn un where Ci ui is a class assertion. Ci represents a type 
class identifier, and ui can be either a type variable, or the application of 
type variable to one or more types. (e.g., Eq a in the above example.) 
When there is only one type assertion, the outer parentheses can be 
omitted. A class identifier begins with an uppercase letter whereas a type 
variable begins with a lowercase letter.

In general, we write cx => t to indicate the constraint that the type t is 
restricted by the context When the context is empty, we just write t 
without



5.5. Type Syntax

Type values are built from type constructors. The names of type 
constructors start with uppercase letters just like data But, unlike data 
constructors, infix type constructors are not allowed, other than Type 
expressions have the following four main forms:

Type Variables
Type variables (or, "generic type parameters", as they are called in some 
other programming languages) are written as identifiers beginning with 
a lowercase letter, as just indicated.

Type Constructors
Here are some examples of type constructors. (Note that they are 
generally called "generic types" in other languages.)

The built-in and Bool are type constants. (That is, they are not 
"generic".)

Maybe and IO are unary type constructors.

Either is a binary type constructor.



The T ... or newtype T ... introduce the type constructor

Haskell provides special syntax for certain built-in type constructors:

The unit type constant is written as and it has one value

The binary function type constructor is written as (->) (as a prefix). A 
function type (->) t1 t2 can also be written, using the infix notation, as t1 
-> Function type arrows are right-associative just like in expressions. 
For instance, Int -> Char -> Bool is equivalent to Int -> (Char ->

The list type constructor is written as A list type [] t can also be written 
as It denotes the type of lists with the element type

The tuple type constructors (with two or more components) are written 
as and so on. A tuple type (, .,) t1 . tk can also use the special syntax 
(t1, ., It denotes the type of k-tuples with its component types t1 
through

Type Applications
A type application t1 t2 is a type expression of types t1 and

Parenthesized Types
A parenthesized type of a form (t) is identical to the type 



Notice that Haskell supports consistent syntax for expressions and their 
corresponding types. For example, if t1 and t2 are the types of 
expressions e1 and respectively, then a function e1 -> a tuple (e1, and a 
list [e1] have the function type t1 -> the tuple type (t1, and the list type 
respectively.



5.6. User-Defined Types

There are three primary constructs in Haskell through which a new type 
or type alias can be introduced:

The data declaration for creating a new algebraic datatype,

The newtype declaration for creating a new type based on an existing 
type, and

The type declaration for creating a type synonym for another type.



5.6.1. The data declarations

A new algebraic datatype can be declared with the data keyword. along 
with the record are described later in the book.

Here’s a simple example:

data Cat = Cat Int Bool ®

®

The Cat on the left hand side is a type constructor (with no type 
variables), whereas the Cat on the right hand side is a data constructor. 
A data type can be defined with one or more constructors. When a data 
type has only one constructor, it is conventional to use the same name 
for the type itself and its (only) data constructor. The Cat constructor, in 
this example, includes two fields of Int and Bool types.



5.6.2. The newtype declarations

A new type can be introduced whose representation is the same as an 
existing type using the newtype keyword:

newtype cx => T u1 ... uk = N t

This declaration creates a new type T u1 ... uk based on, but distinct 
from, the type N newtype does not change the underlying representation 
of an object.

For example,

newtype Age = Age Int
newtype Weight = Weight Float

A newtype declaration may use the record syntax with one For example,

newtype Age = Age { unAge :: Int }



The declaration brings into scope both a constructor and a de
constructor:

Age :: Int -> Age 
unAge :: Age -> Int



5.6.3. The type declarations

A type synonym declaration introduces a new type that is equivalent to 
an old type.

type T u1 ... uk = t

This type declaration introduces a new type constructor, For example,

type LastName = String 
type Perhaps = Maybe Int 
type Both a = Either a a



6. Nested Declarations

Nested declarations may be used in any declaration list, e.g., either at the 
top-level of a module or within a where or let construct.



6.1. Type Signatures

A type signature declaration specifies types for variables, e.g., patterns 
and functions. A type signature has the following general form, for one 
or more variables v1 ...

v1, ..., vn :: cx => t

cx refers to a context and t represents a type variable or type This is 
equivalent to

v1 :: cx => t
III 
vn :: cx => t

Although Haskell can deduce the principal type of any variable, it is 
conventional to include the type signature declarations for top-level 
variables, especially functions, in a program. In many cases, the type 
you want to use for a variable may not be the broadest principal type 
(which is generally polymorphic in Haskell).

Note that, although it is syntactically not required, the type signature



declaration of a variable (almost always) immediately precedes the 
binding declaration of the variable.

A variable cannot be declared with more than one type signature even if 
the signatures are identical.



6.2. Fixity Declarations

A fixity declaration gives the fixity (or, "associativity") and binding 
precedence of one or more A fixity declaration may appear anywhere 
that a type signature appears and, like a type signature, it declares a 
property of a particular target operator.

Also like a type signature, a fixity declaration can only occur in the 
same sequence of declarations as the declaration of the operator itself, 
and no more than one fixity declaration may be given for any operator. 
There are three kinds of fixity:

Non-associativity -

Left-associativity - and

Right-associativity -

There are ten precedence levels, 0 to from binding least tightly to 
binding most tightly. If the level is omitted, 9 is assumed. Any operator 
without an explicit fixity declaration is assumed to be infixl E.g., 



infixl 6 'plus' 
a 'plus' b = a + b



6.3. Function Bindings

A function binding binds a variable to a function value. A function 
binding declaration for variable f has the following general form with n 
clauses, n >=

f p11 ... plk matchl 
III 
f pnl ।।। pnk matchn

where each pij is a pattern each matchi is of the general form:

| gsil = eil
III
| gsimi = eimi 
where { declsi }

The expressions, gsi1 through are called the guards, and they are 
evaluated to the Boolean values. Pattern matching is further discussed 
throughout this book, especially in the case expressions and patterns 
chapters.

In case when matchi has a single guard that is merely it can be simply 
written as follows:



= ei where { declsi }

Note that

All clauses defining a function must be contiguous, and

The number of patterns in each clause must be the same.

For example,

fun : : Int -> Int -> String ®

fun 0 0 = "Origin" ®

fun x 0 ®

1 x > 0 = "Positive x-axis"
1 x < 0 = "Negative x-axis"

fun 0 y ®

1 y > 0 = "Positive y-axis"
1 y < 0 = "Negative y-axis"

fun _ = "Not so special" ®

®

The general type signature declaration syntax is discussed earlier in this 
chapter. We further discuss what this particular signature means for 
functions later in the book. As indicated, it is a universal convention that 
the type signature for a top-level function binding is placed immediately 
before the biding declaration.



®

This clause is equivalent to fun 0 0 | True =

®

This clause includes a pattern and a match with two guards.

®

Ditto. After the function name, 0 y is a pattern, and the rest is a match.

®

The underscore symbol _ is a wildcard The two juxtaposed patterns, in a 
function binding declaration as in this example, effectively represent a 
tuple pattern (e.g., for the two function arguments), as we further discuss 
later, in the context of case



6.4. Pattern Bindings

A pattern binding declaration binds variables to values. The general 
form of a pattern binding is p where a match is the same structure as for 
function bindings.

p | gsl = el 
| gs2 = e2 
III
| gsm = em 
where { decls }

The pattern p is matched "lazily" as an irrefutable as if there were an 
implicit ~ in front of it.

In case when the guard is simply the pattern binding has the simple 
form:

p = e

For example,

x :: Int ®



X = 3 ®

a, b :: Int
(a, b) | x > 0 = (3, 4) ®

| x < 0 = (-3, -4)
| otherwise = (0, 0)

®

A type signature declaration for the following pattern binding. Note that 
Int is the type of the value of the expression 3 in this example. We 
discuss what is an "expression" in Haskell throughout the book.

(2)

A simple pattern binding. Note that, in other more traditional 
programming languages this kind of syntax may be called a variable 
declaration and/or variable assignment, etc. In Haskell, the expression 
on the left-hand side is a pattern (which is clearly more general and 
more flexible than just using "names" in other languages). This 
particular pattern binding declaration is equivalent to x | True =

®

A slightly more general pattern binding example. The value otherwise is 
a synonym for



7. Basic Types

The Haskell Prelude contains predefined classes, types, and functions 
that are implicitly imported into every Haskell program.

The following types are defined in the Prelude:

The boolean type,

Numeric types, and etc.,

Char and 

and

IO and IOError Types.

In addition, Haskell defines the unit () datatype, which represents a void 



value, and an implicit type "Bottom" which is included in every type.



7.1. Booleans

The boolean type Bool is an

data Bool = False | True 
deriving (Read, Show, Eq, Ord, Enum, Bounded)



7.1.1. Boolean functions

The basic boolean functions are && (and), || (or), and The name 
otherwise is defined as True to make guarded expressions more 
readable.

(&&) :: Bool -> Bool -> Bool 
(||) :: Bool -> Bool -> Bool 
not :: Bool -> Bool 
otherwise :: Bool

For example,

ghci> [True && True, True && False, False && True, False && False] 
[T rue,False,False,False]
ghci> [True || True, True || False, False || True, False || False] 
[True,True,True,False]
ghci> [not True, not False]
[False,True]
ghci> otherwise
True



7.2. Characters

Haskell’s character type Char is an enumeration whose values represent 
Unicode characters. Character literals, e.g., and are nullary constructors 
in the datatype

Type Char is an instance of the classes and The toEnum and fromEnum 
functions, from the Enum class, map characters to and from the Int type, 
respectively. For example,

ghci> toEnum 65 :: Char 
'A'
ghci> fromEnum 'a' :: Int
97



7.3. Strings

String in Haskell is an alias for a list of chars. That is,

type String = [Char]

For example,

ghci> h = "hello world" 
ghci> import Data.Char 
ghci> map toUpper h 
"HELLO WORLD"

A string literal may include a "gap", that is, a pair of backslashes 
enclosing one or more whitespace characters, including newlines. Gaps 
are ignored, which allows writing "multi line" strings in Haskell. For 
example,

ghci> :{ ®
ghci| truth = "It's not enough @
ghci| to speak,
ghci| but to speak true."
ghci| :}
ghci> putStrLn truth ®



®

GHCI accepts multi-line commands with this syntax, using a pair of 
opening and closing symbols, :{ and

®

Note that there are three backslash characters. The first two match and 
form a gap. The third one pairs with the one at the beginning of the next 
line.

®

This will output It’s notenough to speak, but to speak true.



7.4. Numbers

The Prelude defines a few basic numeric types:

Fixed sized integers

Arbitrary precision integers

Single precision floating and

Double precision floating

Other numeric types such as rationals and complex numbers are defined 
in libraries. The class Num of numeric types is a subclass of since all 
numbers may be compared for equality. Its subclass Real library is also 
a subclass of since the order comparison operations apply to all but 
complex numbers.



7.4.1. Numeric operators

The following operators for arithmetic computations are defined in the 
Prelude:

:: Integral => a -> b -> a :: Integral => a -> b -> a :: Floating a => a -> a
-> a

:: Num a => a -> a -> a :: Fractional a => a -> a -> a quot :: Integral a => 
a -> a -> a :: Integral a => a -> a -> a :: Integral a => a -> a -> a :: 
Integral a => a -> a -> a

:: Num a => a -> a -> a :: Num a => a -> a -> a

and (**) are exponent operators. Note that and 'mod' are usually used as 
infix



7.4.2. Numeric functions

In addition, the following functions are also defined in the Prelude for 
numeric types:

subtract :: (Num a) => a -> a -> a
even, odd :: (Integral a) => a -> Bool
gcd :: (Integral a) => a -> a -> a
lcm :: (Integral a) => a -> a -> a
fromIntegral :: (Integral a, Num b) => a -> b 
realToFrac :: (Real a, Fractional b) => a -> b

What these functions do should be rather self-evident even if you 
haven’t used Haskell before. gcd and lcm stand for greatest common 
divisor and least common multiple, respectively. Note that the 
distinction between operators and functions is rather subtle in Haskell. 
This is discussed later in the Expressions chapter.



7.5. The Unit Datatype

The unit type () is an enumeration with one nullary constructor Type () 
is an instance of and

ghci> [() == (), () /= ()] 
[T rue,False]
ghci> [minBound :: (), maxBound :: ()]
[(),()]
ghci> fromEnum () :: Int 
0 
ghci> toEnum 0 :: () 
()



7.6. Maybe

The Maybe datatype, defined in the Prelude, consists of two constructors 
Nothing and Just

data Maybe a = Nothing | Just a 
deriving (Eq, Ord, Read, Show)

The Maybe type derives from and In addition, Maybe is an instance of 
classes and

The Prelude also includes maybe function, which takes a value a 
function and a value of Maybe type and returns the first value n if the 
Maybe value is Nothing or f x if the Maybe value is Just

maybe :: b -> (a -> b) -> Maybe a -> b

For example,

ghci> maybe 0 (+ 10) Nothing
0
ghci> maybe 0 (+ 10) (Just 2)
12





7.7. Either

The Either datatype consists of two constructors Left and and it derives 
from and

data Either a b = Left a | Right b 
deriving (Eq, Ord, Read, Show)

The either function takes two functions and a value of and it invokes the 
first function or the second function depending on whether the given 
value is the Left or Right variant, respectively.

either :: (a -> c) -> (b -> c) -> Either a b -> c 
either f g (Left x) = f x 
either f g (Right y) = g y

For example,

ghci> either (* 2) (+ 10) (Left 3) 
6
ghci> either (* 2) (+ 10) (Right 5) 
15



7.8. Ordering

data Ordering = LT | EQ | GT
deriving (Eq, Ord, Enum, Bounded, Read, Show);

The Ordering datatype is used to represent "greater than", "less than", 
and "equal to" relationships. For example,

[LT,GT,EQ]

ghci> :{
ghci| cmp :: Int -> Int -> Ordering
ghci| cmp x y
ghci| | x > y = GT
ghci| | x < y = LT
ghci| | otherwise = EQ
ghci| :}
ghci> [cmp 1 3, cmp 3 1, cmp 3 3]



7.9. Bottom

The pseudo-type "Bottom" _|_ is a subtype of all types in Haskell. It is 
an empty type. That is, it does not have a value of its own kind. The 
bottom refers to a computation which does not return a value in Haskell, 
e.g., due to some kind of errors, or because the computation never 
terminates (and, hence does not return a value). The undefined value can 
be used in situations where a value of bottom is needed.



7.10. The IO Type

The IO type serves as a tag for operations (actions) that interact with the 
outside world. IO is a unary type and it is an abstract No data 
constructors are visible to the user. IO is an instance of the Functor and 
Monad classes. We discuss the basic I/O and I/O-related functions at the 
end of the book.



7.11. The IOError Type

lOError is also an abstract representing errors raised by I/O It is an 
instance of the Show and Eq classes. Values of this type are constructed 
by various I/O including the userError function defined in the Prelude.



8. Expressions

Haskell is based on lambda calculus. But, as a high-level programming 
language, it provides syntax for expressions and what not. In the 
following few chapters, we describe the syntax and informal semantics 
of Haskell expressions.



8.1. Variables

Haskell, as a pure functional programming language, has no concept of 
"updating". That is, a value does not contain any mutable state.
Variables are bound to values via the pattern binding The same variable 
can be bound to different values, even within the same scope. The new 
binding "shadows" the earlier bindings.



8.2. Literals

In Haskell, numeric literals are polymorphic.

An integer literal is a syntactic shorthand for applying fromInteger to the 
given value of type

A floating point literal is a shorthand notation of an application of 
fromRational to the given value of type



8.3. Operators

Haskell provides special syntax for "operators". An operator is a 
function that can be applied using infix notation, or partially applied 
using a An operator is either an operator symbol, e.g., or is an ordinary 
identifier in back quotes, e.g., That is, x 'op' y is semantically equivalent 
to op x In reverse, an operator symbol can be converted to an ordinary 
identifier by enclosing it in parentheses.

Haskell’s "builtin" operators (e.g., from the Prelude) have the following 
fixity declarations (operator precedence and associativity):

infixr 9 . ®
infixr 8 A, AA, **
infixl 7 *, /, 'quot', 'rem', 'div', 'mod'
infixl 6 +, -
infix 4 ==, /=, <, <=, >=, >
-- infixr 5 : @
infixr 3 &&
infixr 2 ||
infixl 1 >>, >>=
infixr 1 =<<
infixr 0 $, $!, 'seq'

®

This is a function composition In Haskell, the function application 
syntax (which is not an operator) has the highest precedence (it’s



literally off the chart ), and it is left-associative. The next in line is the 
function composition, which is right-associative (as indicated by

®

The cons operator : is also a builtin syntax, and not a declared operator. 
But, if a fixity declaration were given, it would be infixr 5 The fixity 
declaration syntax (e.g., for user-defined operators) is explained later in 
the book.

A lot of beginning Haskell programmers find Haskell difficult. They 
generally attribute this difficulty to FP. That is, however, most likely not 
the case. The initial difficulty that beginners face is the syntax, not the 
functional For instance, these fixity rules are, although trivial in a sense, 
one of the most difficult to learn, or to get used to. In imperative 
programming, this is not that significant, in which we rarely use long 
expressions. In functional programming, on the other hand, we deal with 
(only) expressions. Sometimes, long expressions. Despite this, or 
possibly because of this, the use of parentheses are generally 
discouraged in Haskell when they are not necessary. Therefore, you will 
have to know these fixity rules by heart to be able to read (and, write) 
Haskell code.



8.4. Errors

Errors during expression evaluation, denoted by | are 
indistinguishable by a Haskell program from non-termination. Since 
Haskell is a non-strict language, all Haskell types include That is, a 
value of any type may be bound to a computation that, when demanded, 
results in an error. When evaluated, errors cause immediate program 
termination and cannot be caught by the user.



8.5. The error and undefined Functions



8.5.1. The error function 

error stops execution and displays an error message.

error :: String -> a



8.5.2. The undefined value

When undefined is used, the error message is created by the compiler.

undefined :: a 
undefined = error "Prelude.undefined"



9. Functions

A function is an abstract type, and they do not have constructors. A 
function value is created by declaring its name, zero or more parameters, 
and an equal sign followed by an expression, which is the definition of 
the function. All function names must start with a lowercase letter or For 
example,

incrByl :: Int -> Int ®
incrByl x = x + 1 @

®

A type immediately preceding the function

®

This notation suggests that if you apply the function incrByl to its value 
will be x +



9.1. Function Applications

Function application is written as, e1 Application associates left. That is, 
x y z is equivalent to (x y) for instance. This syntax is somewhat unusual 
in that, in mathematics, and in fact in the vast majority of programming 
languages, function application uses the parentheses notation. However, 
the Haskell syntax, based on lambda calculus, is the most efficient 
notation for function application, which is at the heart of everything else 
in Haskell.

For example,

fl :: Int -> Int -> Int -> Bool
fl x y z = (x > y) && (y > z) ®

main = do @
print $ fl 5 4 3 ®
print $ f1 3 3 1 @

®

As described in the Nested Declarations chapter, a function binding uses 
patterns. In this example, the triple x y after the function name is an 
(implicit) tuple pattern comprising three variable This is an irrefutable 
meaning that any valid application will match this clause, and we do not 
need, and cannot have, any other clauses below this line.



®

As indicated the value main has a polymorphic type IO In all examples 
in this book, which is also generally the case in practice, the type of 
main is almost always IO Hence, we will generally omit the type 
signature for main in this book. The do notation is explained near the 
end of the book, in the context of the I/O. But, in effect, do allows us to 
use "imperative style" programming. In this example, the do expression 
includes two print expressions, which are processed sequentially one 
after the other. Note that we almost always use the layout-sensitive 
coding That is, the curly braces enclosing these two print expressions in 
this example are omitted by using the indentation rules.

®

An example of function application, f1 5 4 Note the similarity between 
the function binding pattern and the function application syntax. This 
application evaluates to in this example. print is one of the builtin I/O 
functions that we use throughout this book without first defining them. It 
prints the given value to the terminal. The lazy infix application operator 
$ is explained later in the Core Functions chapter. Since function 
applications are left-associative, print f1 5 4 3 would have had a 
different meaning (and, in fact, syntactically invalid). We could have 
done print (f1 5 4 but the syntax with fewer parentheses is generally 
preferred in Haskell.

®

f1 3 3 1 evaluates to As we will discuss the f1 function can be either 



viewed as taking three arguments (and returning a value), or it can be 
viewed as taking one argument (and returning a function). f1 3 3 (f1 3) 3 
and ((f1 3) 3) 1 are all syntactically equivalent, and they are also 
semantically equivalent through



9.2. Operator Applications

Application of a binary operator op on e1 and e.g., (op) e1 e2 can be 
written as infix application, e1 op Likewise, application of a binary 
function, e.g., f el can be also written with an infix form, el 'f' Note 
that, lexically, operators belong to two categories, operator symbols and 
ordinary identifiers.

Here are a couple of example functions to demonstrate the infix-based 
function application syntax:

(+*+) :: Int -> Int -> Int
x +*+ y = x + 2 * y ®

mold :: Int -> Int -> Int
x 'mold' y = x * (y + 2) ®

®

Alternatively, (+*+) x y = x + 2 * Note that Haskell allows defining any 
arbitrary operators, in particular, using operator symbols. But, as the 
saying goes, with the great power comes the great

®

Or, mold x y = x * (y +



Then, we can use them as follows, for instance:

main = do
print $ 5 +*+ 10

® 
®

print $ (+*+) 10 5
print $ mold 1 2
print $ 2 'mold' 1

®

As indicated, the main function signature main :: IO () is always omitted 
in this book.

®

These four print function applications will output and to the terminal.



9.3. Lambda Abstractions

Functions can also be declared anonymously. For example, an 
expression, \x -> x * defines a function which takes one argument and 
returns its squared value. Anonymous functions, also called lambdas or 
lambda expressions, are useful for simple functions that need not be 
separately declared first.

As with (regular) functions, a lambda is just a value in Haskell, which 
has a function type. For example,

squareAll :: [Int] -> [Int]
squareAll = map (a -> a * a) ®
biggerThan :: [Int] -> ([Int] -> [Int]) ® 
biggerThan n = xs -> filter (> n) xs ®

®

The map function takes two arguments. In this example, only one (e.g., a 
lambda function) is given. This is called the partial application. It is 
useful for currying and for example.

®

Note that the part in the parentheses in this type signature is the type of 
the lambda function on the right hand side of the function binding in the



next line. The parentheses in this example is redundant, as we discuss 
next.

®

This is for illustration only. Lambdas are typically declared at the point 
of use, and they are rarely given names. Note that, by convention, the 
variables that end with s are E.g., zss could refer to a list of lists 
(because it ends with two The builtin filter function is discussed later. (> 
n) is a

A general lambda abstraction can be written as

pl ... pn -> e

where the pi are Note that the backslash character in the lambda syntax 
is supposed to represent the Greek Lambda character. An example 
lambda function with two arguments:

main = do
let lamb = x y -> 2 * x + y ®
print $ lamb 5 10 ®

®

Again, for illustration only. This let binding with a lambda function is 
the same as a function binding, lamb x y = 2 * x + Note that, unlike in 
the case of regular functions, a lambda function cannot have more than



one pattern clause.

®

This will print out 20 to the terminal.



9.4. Curried Applications

As indicated, function applications are left-associative in Haskell, and a 
function that takes n arguments, e.g., f el e2 ... is equivalent to a 
function that takes n-1 arguments, e.g., g e2 . if f el == The expression 
f e1 is called partial

Hence, f can be viewed as a function that takes one argument and 
returns a function that takes n-l arguments . Likewise, function 
application of g that takes n-l arguments, g e2 . is equivalent to h e3 
. en if g e2 == Therefore, again the function g can be viewed as a 
function that takes one argument and returns another function that takes 
n-2 arguments . We can continue this process down to the level where 
the last function takes one argument and returns a simple value (e.g., a 
function takes zero arguments).

(In pure functional programming languages like Haskell, a function that 
takes zero arguments must return a constant value. There are no other 
options, unlike in other impure languages, as you can easily convince 
yourself. Hence, there is a one-to-one correspondence between a simple 
value and a nullary function that returns that value. In fact, they are 
equivalent in Haskell.)



Converting a function that takes n arguments, n >= to a functional form 
that takes one argument and returns one value, i.e., a function, is called 
"currying". In Haskell, there is little difference between these two forms, 
and in fact we do not need "conversion". Syntactically, Haskell does not 
really distinguish these two interpretations. Therefore, we consider all 
functions in Haskell take one argument and return one value. This is 
manifested, for example, in the function type notations. All functions in 
Haskell are curried functions.



9.4.1. An informal illustration

As an example, let’s consider the following three functions, and which 
have different arities, e.g., 1, 2, and 3, respectively.

fl :: Int -> Int 
fl c = 5 + 3 * c

f2 :: Int -> Int -> Int 
f2 b c = 1 + 2 * b + 3 * c

f3 :: Int -> Int -> Int -> Int 
f3 a b c = a + 2 * b + 3 * c

As indicated, the function application is left-associative, whereas the 
arrows in the function type signatures associate right in Haskell. (This 
illustration will show you why that is chosen to be the case.)

The type signature of f3 is, therefore, equivalent to f3 :: Int -> (Int -> Int 
-> In this (curried) interpretation, the f3 function takes one argument of 
type Int and returns one value of type Int -> Int -> which happens to be 
the type of the function

The type of f2 is f2 :: Int -> (Int -> which indicates that f2 takes one 
value of Int and returns one value of Int -> which happens to be the type 
signature of The f1 function also takes one value (of type and returns



one value (of type

We have deliberately chosen the implementations of these three 
functions. Now, let’s trace back. The f3 function takes three arguments 
and returns one value, in the conventional (non-curried) view:

f3 :: Int -> Int -> Int -> Int ®
f3 a b c = a + 2 * b + 3 * c

®

Haskell could have chosen different notations for multi-argument 
functions (e.g., something like (Int, Int, Int) -> but they didn’t. The 
illustration in this section will convince you why that was not necessary.

This is, however, equivalent to

f3 :: Int -> (Int -> Int -> Int) 
(f3 a) b c = a + 2 * b + 3 * c

That is, the partial application f3 a is a function that takes two Int 
arguments and returns an Int value. f3 a happens to be the same as f2 
when a happens to be Likewise,

f2 :: Int -> (Int -> Int) 
(f2 b) c = 1 + 2 * b + 3 * c



The partial application f2 b is a function that takes an Int value and 
returns an Int value. f2 b happens to be the same as f1 when b == 2 
(again, in this deliberately constructed example). That is,

fl :: Int -> Int 
fl c = 5 + 3 * c

Hence, there is no difference between which takes two arguments b and 
c and returns one Int value and (f2 which returns a function that takes 
one argument c and in turn returns an Int value. Likewise, there is no 
difference between which takes three arguments and c and returns one 
Int value and (f3 which returns a function that takes two arguments b 
and c and returns an Int value.

Note also that the left-associativity of function applications and the 
right-associativity of arrows in the function types dovetail well with 
each other. (Notice the respective positions of the (optional) parentheses 
we’ve added in these examples.)



9.5. Sections

Sections are a syntactic shorthand for partial application of binary 
operators. For example, using the multiplication * operator,

triple = (*) 3 ®

main = do
print $ triple 10 @

®

triple is a function that takes one argument since the other argument (of 
the binary has been partially applied with a value Note that this pattern 
binding is essentially equivalent to a function binding with one clause, 
triple x = ((*) 3) x (which is in turn equivalent to triple x = 3 * Its type 
signature is triple :: Int -> As one can easily see, the syntactic difference 
between pattern bindings and function bindings are somewhat 
superficial.

®

This will print

Now, using triple instead of (*) 3 has some syntactic convenience since 
we do not have to use many parentheses, e.g., triple 10 vs ((*) 3) Section 



provides this syntactic convenience without having to create a new 
binding. For example, this triple function can be written as (3 (Note the 
order.)

Another, possibly more important, advantage of sections is that we can 
supply the argument either on the left or right hand side, unlike in the 
case of general partial in which arguments are consumed from left to 
right. That is, (op e1) and (e1 op) are generally two different sections. 
(Multiplication happens to be commutative, and hence (e *) and (* e) are 
effectively the same function.)

Formally, given a binary operator op and an expression a right section is 
written as

e op ®

®

This is equivalent to the normal partial application form, (op) (Note the 
difference between the infix and prefix notations.)

Likewise, a left section for op and e is written as

op e ®



®

This form has no corresponding partial application form.

The right section (e op) is syntactically valid if and only if (e op x) 
parses in the same way as ( (e) op x Likewise, the left section (op e) is 
syntactically valid if and only if (x op e) parses in the same way as ( x 
op (e)



9.6. Function Composition

Function composition plays as an essential role as function application 
in Haskell. The builtin function composition operator . composes two 
given functions.

(.) :: (b -> c) -> (a -> b) -> (a -> c)

Composing a function h -> with g -> i.e., g . yields a function from a to c
-> (Note the order.)

(g . h) x is defined to be g (h That is, if we set f = g . then f x = g (h Note 
that a function (partial) application g h would have associated left. That 
is, for a given argument the function application would have been (g h) 
or g h x (which is syntactically invalid in this example). On the other 
hand, g . h applied to x would yield a different value, g (h For example,

fnOne :: Int -> Int
fnOne x = x + 1
fnTwo :: Int -> Int
fnTwo x = 2 * x
fnCombo :: Int -> Int 
fnCombo = fnTwo . fnOne

main = do
print $ (fnTwo . fnOne) 3 ®



print $ fnCombo 3 ®

®

This will print

®

The same. Note that fnCombo x = 2 * (x + The power of function 
composition often comes from the fact that we can manipulate, and 
compute, functions without applying them first to any specific values.



10. Lists

The list literal, [el, ..., represents a list of k expressions, ... through The 
empty list is denoted

In Haskell, the list data constructor is a special operator : (or, "cons"). 
Lists are an instance of classes, and Standard operations on lists defined 
in the Prelude are included later in the book.



10.1. List Constructors

Lists are an algebraic datatype with two constructors, albeit with special 
syntax. The first constructor is the null list, written [] ("nil"), and the 
second is : ("cons"). For example,

main = do
let a = [] :: [Int]
print a
let b = 1 : ([] :: [Int]) 
print b
let c = 'a' : ['d', 'e', 'f'] 
print c 
let d = 'g' : c
print d

®

®

®

®

®

A nil constructor for [Int] list. a is an empty list of type The print 
function in the next line will print

®

A cons constructor with two arguments, 1 and an empty [Int] list. b is

®

A cons constructor with 'a' and a [Char] list, ['d', 'e', c is or ['a', 'd', 'e',



®

Another cons constructor example. d is

Note that, for example, [1, 2, 3, 4] is the same as 1 : 2 : 3 : 4 : which is 
the same as 1 : (2 : (3 : (4 : (The builtin cons operator is right- 
associative.) In general, a list literal is a shorthand for the constructor 
expressions with each element subsequently added to the head.

main = do
print $ 'L' : 'i' : 's' : 't' : [] ®

®

This will print



10.2. Enumerations

Haskell supports a special syntax for creating a list with enumerable 
elements. This is called the "arithmetic sequences" (or, "ranges" or 
"enumerations", etc.). Syntactically, it can take one of the following four 
forms:

[ expl .. ]
[ expl, exp2 .. ]
[ expl .. exp3 ]
[ expl, exp2 .. exp3 ]

That is, exp2 and exp3 are optional, while it requires [ exp1 .. The 
expressions, and should be of type which is an instance of class Any of 
these arithmetic sequences denotes a list of type They are defined as 
follows:

[exp1 ..] == enumFrom exp1 

[exp1, exp2 ..] == enumFromThen exp1 exp2 

[exp1 .. exp3] == enumFromTo exp1 exp3



[exp1, exp2 .. exp3] == enumFromThenTo exp1 exp2 exp3

When exp3 is omitted, it is assumed to be the biggest element for the 
given Enum type Otherwise, the semantics of arithmetic sequences are 
entirely dependent on the type In cases of numeric types, exp1 is the 
first element, and exp2 - exp1 represents the "step". For example,

main = do
print [5 .. 10]
print [2, 4 .. 11]
print $ take 5 [1 .. ]
print $ take 5 [2.0, 5.0 .. ]

® 
® 
® 
®

®

This will print Note that the last element is inclusive.

®

This will print

®

This will print Note that [1 .. ] is an infinite list, with the Integer element 
type.

®

This will print

Another example, using Char elements,



main = do
print ['d' .. 'h' ]
print ['d', 'f' .. 'k' ]
print $ take 10 ['w' .. ]
print $ take 10 ['t', 'v' .. ]

® 
® 
® 
®

®

This will print

®

This will print

®

This will print Note that Char type is bounded. That is, ['w' .. ] is not an 
infinite list.

®

This will print



10.3. List Comprehensions

List comprehensions are now widely supported by many different 
programming languages, including Scala and Python.

A list comprehension in Haskell has the following general syntax:

[ exp | q1, ..., qi, ..., qn ]

Here n is equal to, or bigger than, and each qualifier qi can be one of the 
following three forms:

Generators of the form pat <- where pat and exp are patterns and 
expressions of types t and respectively,

Boolean expressions known as to filter preceding generators, and

Local let bindings that are to be used in the generated expression exp or 
subsequent boolean guards and generators.

A list comprehension evaluates the target expression exp in the 



successive environments, from left to right, which are created by 
evaluating the generators in the qualifier list.

Note that, in the list comprehension, pattern matching in a generator is 
simply used for filtering. That is, if a match fails then that element of the 
list is just excluded from the resulting list.

Here are some examples:

main = do
let cl = [x * x | x <- [1 ..]] ®
print (take 5 cl :: [Integer]) @

®

An infinite list of squared integer values. This list comprehension
includes one generator, x <- [1 which uses the enumeration

(2)
This will output [1,4,9,16,25] to the terminal.

divisors :: Int -> [Int]
divisors n = [d | d <- [1 .. n], 

n 'mod' d == 0] ®

main = do 
print (divisors 10, divisors 12) @

®



A Boolean guard. This guard is used as a filter for the "divisors" of the 
given Int argument.

®

This line will print

main = do
let c2 =

[ (a, b)
| a <- [1 ... 5] : : [Int]
, b <- [1 ... 5] : : [Int]
, let s = a + b ®

, s >= 3 ®

, s <= 4 ®

]
®print c2

®

A local let binding, whose value is used in the subsequent guards.

®

A Boolean guard.

®

Another guard. These two guards could have been combined as one 
guard s >= 3 && s <= 4 in this example.

®

The output:



11. Tuples

Tuples are algebraic data types with special syntax, (el, ..., A tuple size 
must be equal to, or greater than, but there is no preset upper bound, 
other than practical limitations. A compliant Haskell implementation is 
required to support tuples up to size

All tuples are instances of and that is, as long as all their component 
types are.

For example,

apply :: (t -> a, t -> b) -> t -> (a, b) 
apply (fl, f2) list = (fl list, f2 list)

main :: IO () 
main = do 

print (True, 'A', "Haskell") ®
print $ apply (head, tail) [1, 2, 3] @

®

(True, 'A', "Haskell") is a 3-element tuple of a a and a

(2)



(head, tail) is a 2-element tuple of functions. Note the definition of apply 
which takes a pair of functions as its first argument.



11.1. Tuple Constructors

The constructor for an n-tuple is written as (, ... ,) with n-1 commas, 
e.g., by omitting the expressions surrounding the commas in an n-tuple. 
Hence, for instance, (,,) a b c constructs a tuple (a, b,

Likewise, the tuple type constructor has a similar syntax, as described 
earlier in the book. For instance, (,,) Bool Char Int denotes the same type 
as (Bool, Char,

As an example,

main = do
let x = (,,) 'a' True 'z' 
print x

® 
®

®

Variable x has a type (Char, Bool, or (,,) Char Bool

®

This will print



11.2. Tuple Functions

The following functions are defined in the Prelude for pairs (2-tuples):

fst :: (a,b) -> a
snd :: (a,b) -> b
curry :: ((a, b) -> c) -> a -> b -> c
uncurry :: (a -> b -> c) -> (a, b) -> c



11.2.1. The fst and snd functions

The fst function takes a pair and it returns its first element, e.g., fst (x,y) 
returns

The snd function takes a pair and it returns its second element, e.g., fst 
(x,y) returns

For example,

main = do
let pair = ("Hello", 42 :: Int)
print $ fst pair 
print $ snd pair

® 
®

®

The output: "Hello"

®

The output: 42



11.2.2. The uncurry and curry functions

The uncurry function takes a (curried) function that accepts two 
arguments and converts it to a function which takes a single argument of 
a pair type. That is, uncurry f pair is defined to be f (fst pair) (snd (Note 
that, since function applications are left-associative, uncurry f pair is the 
same as (uncurry f)

The curry function converts an uncurried function that takes a pair into a 
(regular) curried function. That is, curry ucf x or (curry ucf) x is defined 
to be ucf (x,

For instance,

addFn :: Int -> Int -> Int ®
addFn a b = a + 2 * b

uncurriedAddFn :: (Int, Int) -> Int @ 
uncurriedAddFn = uncurry addFn

pairFn :: (Int, Int) -> Int ®
pairFn (a, b) = 2 * a - b

curriedPairFn :: Int -> Int -> Int @ 
curriedPairFn = curry pairFn

®



A "regular" function.

®

An uncurried version of

®

A function that takes a pair.

®

A curried version of

Here are a few simple examples of using these functions:

main = do
print $ addFn 1 2 ®
print $ uncurriedAddFn (1, 2) @
print $ pairFn (1, 2) ®
print $ curriedPairFn 1 2 @

®

The output: 5

®

The same output: 5

®

The output: 0



®

The same output: 0



11.3. The Unit and Parenthesized Expressions

The unit expression () has type whose only member is () (other than the 
bottom () can be thought of as the "nullary tuple" (with zero elements). 
(That is, the unit notation using the tuple-like syntax is not a 
coincidence.)

Haskell does not support one-element tuple types unlike in some other 
programming languages. The form ( exp ) is simply a parenthesized 
expression, and it is equivalent to From the viewpoint of algebraic data 
types, a single element tuple type is no different from the element type 
itself. That is, a (hypothetical) type (t) must be the same type as and a 
single element tuple cannot be a distinct type in Haskell.



12. Expression Type Signatures

Expression type signatures have the following two forms:

exp :: t 
exp :: cx => t

where exp is an expression and t is a type. The context cx is optional, as
in normal type signature

Expression type signatures may be used

To explicitly type an expression, or

To resolve ambiguous typings due to

As with normal type signatures,

The declared type may be more specific than the principal type derivable 
from but



It is illegal to give a type that is more general than, or not comparable to, 
the principal type.

For example,

addTwoNums :: Num a => a -> a -> a ® 
addTwoNums x y = x + y

main = do
print $ addTwoNums (1 :: Int) 2 @
print $ addTwoNums (1.0 :: Float) 2.0 ®
-- addTwoNums (1 :: Int)(2 :: Integer) @

®

A type signature for the addTwoNums function. Note that it uses the 
most general type which supports addition + for the operands and return 
values. This is also the function’s principal type.

®

The integer 1 is polymorphic, but we explicitly declare it as Int using the 
expression type signature syntax. Note that, in this example, 2 is also of 
the Int type (without requiring another explicit expression type 
signature).

®

Likewise, 1.0 and 2.0 are both of the Float type.



®

This will cause a compile error since the type annotation is not 
consistent with the type signature of the addTwoNums function.

Here’s another example, in which ambiguity arises as to what type 
Haskell is supposed to use for an expression whose type is not explicitly 
specified in the type signature declaration. This is the so-called "show . 
read" problem.

readAndShow :: String -> String
-- readAndShow x = show (read x) ®
readAndShow x = show (read x :: Int) @

main = do
print $ readAndShow "300" ®
print $ readAndShow "abc" @

®

Haskell cannot compile this function because it does not know the type 
of read We must limit the type through an annotation.

®

We use an explicit expression type signature to indicate that the type of 
read x is Note that because of the precedence rules, read x :: Int is the 
same as (read x) :: The function application binds most tightly in
Haskell.

®

This will print



®

This will return an error, type: Prelude.read: no



13. Let and Where



13.1. The let - in Expression

A let expression introduces a nested and possibly mutually-recursive list 
of declarations, with the following general form:

let { dl ; ... ; dn } in exp

Here, exp is an expression. The value of exp is the value of the overall 
let expression.

Each declaration di is translated into an equation of the form pi = where 
pi and ei are patterns and expressions, respectively. The let declarations 
are lexically-scoped.

For example, in its simplest form,

multiples :: Int -> [Int]
multiples x =

let mult n = n * x ®
in map mult [1 .. 10] @

main = do
print $ multiples 10 ®



®

This let expression binds mult n to an expression n *

®

This "local function" mult is used in the expression of the in part. The 
map function is a list function defined in the Prelude, and it is described 
later in the list functions chapter.

®

This will print



13.1.1. Deconstruction

As another example, a pattern on the left hand side of a declaration in a 
let expression can be used to destructure the expression on the right 
hand side of the declaration.

For instance, the following function would extract the first two 
characters from a string whose length is at least 2:

firstTwoChars :: String -> [Char] 
firstTwoChars str =

let (a:b:_) = str ®
in "First two chars: " ++ [a, ',', b]

main = do
print $ firstTwoChars "hello world" @

®

str needs to have at least 2 characters for this pattern to work.

®

This will print "First two chars:



13.2. Where Clauses

Similar to where can be used to declare bindings in function declarations 
and case For example,

summation :: Int -> Int
summation m = aux m 0
where ®

aux n acc @
| n <= 0 = acc 
| otherwise = aux (n - 1) (n + acc)

main = do 
print $ summation 10 ®

®

A "local function" aux is declared in the where clause. Note that the aux 
function is "tail recursive".

® 

acc is an

®

This will print

Unlike let bindings, the scope of the where bindings can extend over 



several guarded equations. For instance,

piecewise :: Float -> Float -> Float
piecewise x y

1 y > z = z
1 y < z = -z 
| otherwise = 0
where 

z = x * x

main = do
print $ piecewise 3

® 
®

®

16 @
print $ piecewise 4 16 ®
print $ piecewise 5 16 ®

®

z is defined in the where clause below.

®

The same z is used in a different guarded equation. Note that this cannot 
be done with a let expression, which only scopes over the expression 
which it encloses.

®

Note that where is part of the syntax of function declarations and case 
expressions, and they do not for separate expressions like let 
expressions.

@

This will print



®

This will print

®

This will print



14. Conditional Expressions

A conditional expression has the form if e1 then e2 else It first evaluates 
the Boolean expression and if its value is True or then it returns the 
value of e2 or respectively. Otherwise, it returns Note that the type of e2 
and e3 must be the same, which is also the type of the overall if 
expression.

For example,

summation :: Int -> Int
summation n =

if n <= 0 ®
then 0
else n + summation (n - 1)

main = do
print $ summation 10 ®

®
An if - then - else expression. Notice the layout. The then and else 
clauses have the same indentations.

(2)



This will print

This summation function is equivalent to the following definition, using 
the Boolean

summation' :: Int -> Int
summation' n 

| n <= 0 = 0 
| otherwise = n + summation' (n - 1)



15. Case Expressions

A case expression has the following general form:

case e of { pl matchl ; ... ; pn matchn }

Each alternative pi matchi consists of a pattern pi and its match, Each 
match in turn consists of a sequence of pairs of guards gsij and bodies 
eij (expressions), followed by optional where bindings,

| gsil -> eil
III
| gsimi -> eimi 
where declsi

When there is only one guard that always evaluates to e.g., pat | True -> 
then it can be omitted for an alternative short hand form, pat ->

A case expression must have at least one alternative, and all bodies must 
have the same principal type, which is the type of the whole case 
expression.



A case expression is evaluated by pattern matching the expression e 
against the individual alternatives, from top to bottom. If e matches the 
pattern of an alternative, then the guarded expressions for that 
alternative are tried sequentially from top to bottom. If the guard 
succeeds, then the corresponding body is evaluated. If all guards fail, 
then this guarded expression fails and the next guarded expression is 
tried. If none of the guarded expressions for a given alternative succeed, 
then matching continues with the next alternative. If no alternative 
succeeds, then the value of the case expression is

The conditional if el then e2 else for example, can be written as follows, 
using the case expression:

case el of
True -> e2
False -> e3

The function declaration using patterns is a shorthand syntax for using a 
case expression. That is, for instance,

f pll ... plk = el
■ ■■
f pnl ■■■ pnk = en

This function definition for f is equivalent to the following:



f x1 x2 ... xk =
case (x1, x2, ..., xk) of ®

(p11, ..., plk) -> el ®
...
(pnl, ..., pnk) -> en

®

The matching expression is a tuple when k >= consisting of the function 
arguments, in the given order. Otherwise it’s a single

(2)

The pattern on the left-hand side is a tuple

Here are a couple of examples:

not' :: Bool -> Bool ®
not' x = case x of
True -> False ®
False -> True ®

®

The not function is defined in the Prelude, and hence we use a different 
name for illustration.

(2)

If a given argument evaluates to the not' function returns The value True 
in this example is called a literal



®

Otherwise, that is, when x == it returns

This not' function is equivalent to the following:

not'' :: Bool -> Bool
not'' True = False 
not'' False = True

The above two definitions of the not function are semantically 
equivalent. Likewise, the following two definitions of the isZero 
function are equivalent to each other.

isZero :: Int -> Bool
isZero :: Int -> Bool
isZero x = case x of

0 -> True ®
_ -> False @

®

If the value of x is then the isZero functions returns

®

Otherwise, it returns The underscore _ is a wildcard and it matches any 
Int value in this example.



isZero' :: Int -> Bool
isZero' 0 = True
isZero' = False

Pattern matching is described in more detail in the next



16. Patterns

The case expressions are used with patterns, as described in the previous 
chapter. Patterns can also appear in lambda function pattern list and do 
which are all ultimately translated into case expressions.



16.1. Pattern Matching

Patterns are matched against values. Attempting to match a pattern can 
result in one of the following three results:

It may succeed, returning a binding for each variable in the pattern,

It may fail, or

It may diverge (i.e. return

Pattern matching proceeds from left to right, and outside to inside. We 
describe each of the valid patterns in Haskell in the following sections.



16.2. Wildcard Patterns

The wildcard pattern _ is an irrefutable and it matches any value. It is 
similar to a variable but there is no binding. Hence, the _ patterns are 
useful when some part of a pattern is not referenced on the right-hand
side. For example,

wildcardpatterns :: String -> Char 
wildcardpatterns x = 

case x of 
"" —> ‘ ‘ 

-> '!' ®

®

The wildcard pattern _ matches any non-null string in this example.



16.3. Literal Patterns

A numeric, or String literal pattern p matches against a value v if v == In 
case of numeric literals,

An integer literal pattern can only be matched against a value in the 
class and

A floating literal pattern can only be matched against a value in the class

For example,

literalpatterns :: Int -> Int 
literalpatterns x =

case x of
33 -> 30
-44 -> -50

-> 0

® 
®

®

x = 33 matches this literal pattern. The value of the case expression is

®

x = -44 matches this negative number literal pattern. The case 



expression returns -50 in this case.



16.4. Constructor Patterns

Haskell supports a few different forms of constructor patterns. The 
"record pattern" is described in the next section. A constructor pattern is 
a nested and the arity of a constructor must match the number of sub
patterns associated with it.

The pattern F {} matches any value built with constructor whether or not 
F was declared with record syntax.

When the constructor is defined by matching the pattern con patl ... 
patn depends on the value:

If the value is of the form con v1 . sub-patterns are matched from left 
to right against the components of the data value.

If all matches succeed, the overall match succeeds.

Otherwise, the first to fail or diverge causes the overall match to fail or 
diverge, respectively.

If the value is of the form con' v1 . vm with con and con' two different 
constructors, then the match fails.



If the value is then the match diverges.

For example,

data Boring = Empty | Vacant

nullaryPatterns :: Boring -> Bool
nullaryPatterns x =

case x of
Empty -> True ®

-> False ®

main = do
print $ nullaryPatterns Empty ®

print $ nullaryPatterns Vacant ®

®

A nullary constructor pattern.

®

The wildcard pattern. In this particular example, it only matches the 
other nullary constructor Vacant of the Boring type. Hence, _ -> False is 
equivalent to Vacant ->

®

This will print True to the terminal.

®

This will print



consPatterns :: Either Int String -> Int
consPatterns x = 

case x of
Left 1 -> 100 ®
Right "Five" -> 500 @

-> 0

main = do
print $ consPatterns $ Left 1 ®
print $ consPatterns $ Right "Ten" @

®

A constructor pattern. The Either type is defined with two data 
constructors, Left and

(2)

Another constructor pattern.

®

This will print

®

The argument Right "Ten" matches neither constructor pattern in this 
example, and hence it matches the wildcard pattern and the function 
returns

When the constructor is defined by the pattern con pat matches against a 
value as follows:



If the value is of the form con then pat is matched against

If the value is then pat is matched against

For example,

newtype Truth = Truth Bool ®

newtypePatterns :: Truth -> Int 
newtypePatterns x = 

case x of 
Truth True -> 1000000 ®

-> 0 

main = do 
print $ newtypePatterns $ Truth True ® 
print $ newtypePatterns $ Truth False @

®

A newtype Truth is created with Note that the Bool type has two nullary 
constructors, True and

(2)

A constructor pattern.

®

This will print



®

This will print

Binary data constructors can also use the infix syntax. For instance,

data Sum = Sum Int Int ®

infixPatterns :: Sum -> Int
infixPatterns x = 

case x of
1 'Sum' 2 -> 3 ®

-> 0

main = do
print $ infixPatterns (Sum 1 2) ®
print $ infixPatterns $ 1 'Sum' 2
print $ infixPatterns (Sum 2 2) ®

®

The type Sum has a single data constructor which takes two Int 
arguments.

(2)

An infix constructor pattern. This pattern 1 'Sum' 2 is equivalent to the 
normal constructor pattern Sum 1

®

This will print

®
Same as above. This will output 3 to the terminal.



®

This will print



16.5. Labeled Patterns

In the ordinary constructor patterns, pattern matching occurs based on 
the position of arguments in the value being matched. When matching 
against a constructor using labeled the fields are matched based on their 
names, and in the order they are listed in the pattern. Otherwise, these 
two constructor patterns work more or less the same way. Fields not 
named by the pattern are ignored. That is, they are matched against

data Color =
Color { red, gray, blue :: Int } ®

labeledPatterns :: Color -> String 
labeledPatterns x = 

case x of
Color {red = 0} -> "Not so red" @
Color {blue = 255} -> "Full of blue" ® 

—> "" 

main = do 
print $ labeledPatterns
Color {red = 0, gray = 0, blue = 255} @
print $ labeledPatterns
Color {red = 1, gray = 0, blue = 255} ® 
print $ labeledPatterns
Color {red = 1, gray = 1, blue = 254} ®

®

A constructor with labeled fields. The record syntax is explained later in 
the book.



®

A labeled field constructor pattern. This pattern matches as long as the 
value of the field "red" is 0 regardless of values of other fields.

®

Another labeled pattern. This pattern matches as long as the value "blue" 
is

®

Since patterns are tested from top to bottom, this will match the first 
pattern Color {red = 0} in the case expression.

®

This will match the second labeled pattern, Color {blue =

®

This will match the wildcard pattern, which is an irrefutable



16.6. Variable Patterns

Pattern matching also allows values to be assigned to variables. For 
example, matching a pattern var against a value v always succeeds and 
binds var to This is called the variable pattern. It is similar to the 
wildcard pattern in that both are irrefutable that is, they will match any 
value.

For example,

variablepatterns :: Char -> String
variablepatterns 

case x of
x =

'0' -> "None found" ~’

c -> "Found:

main = do

" ++ [c] ®

print $ variablePatterns 'a' ®

print $ variablePatterns 'z' @

®

A character literal

®

A variable pattern. This pattern will match any x other than the null 
character, in this example.



®

This will print "Found:

®

This will print "Found:



16.7. As-Patterns

Patterns of the form var@apat are called as-patterns, and allow one to 
use var as a name for the value being matched by That is, matching an 
as-pattern var@apat against a value v is the result of matching apat 
against v and, if the match is successful, binding var to If the match of 
apat against v fails or diverges, then so does the overall match of the as- 
pattern. For example,

asPatterns :: String -> (Char, Int) 
asPatterns x = 

case x of 
"" -> ('0', 0) 
w@(c:_) -> (c, length w) ®

main = do 
print $ asPatterns "Hello, world" @ 
print $ asPatterns "Bonjour le monde" ®

®

An as-pattern. The pattern (c: ) matches a string with at least one 
character, in this example, and it binds a to the first character of the 
matched string. The string itself is bound to a variable w through this as- 
pattern.

®

This will print c and w are bound to 'H' and "Hello, respectively.



®

This will print



16.8. Tuple Patterns

A tuple pattern provides a convenient syntax over what is essentially a 
constructor Wildcard patterns are often used to ignore certain elements 
in pattern matching. As nested other (sub-)patterns are also commonly 
used in the element positions of the tuple patterns. For example,

tuplePatterns :: (Int, Char, Bool) -> Int
tuplePatterns x = 
case x of

(1, _, _) -> 1
(_, c, True) -> fromEnum c 

-> 0

main = do
print $ tuplePatterns (1, 'a', False) ®
print $ tuplePatterns (2, 'A', True) @
print $ tuplePatterns (3, 'a', False) ®

®

The value (1, 'a', False) will match the first pattern, and this expression
will print 1 to the terminal through IO

®

This will print The ASCII code of the English uppercase letter 'A'
happens to be 65. fromEnum is a method of the Enum



®

This will print



16.9. List Patterns

Haskell also provides some convenient pattern syntax for matching lists, 
which essentially amounts to some variations of the constructor similar 
to how the tuple patterns work.

In particular, you can match with the nil constructor, or an empty list, or 
you can match with the cons : constructor, where x represents a single 
element, or the "head", and xs refers to the rest of the list, or the "tail" 
list, which can be empty. The patterns like (x:xs) or etc. can only match 
lists with at least one element. (Note that parentheses () are not part of 
the list patterns.) Alternatively, one can also use the complete cons 
pattern by repeatedly applying the cons operator on each of the elements 
in a list, e.g., or its syntactically sugared version, which will match a list 
with three elements.

Or, one can even use syntax somewhere between the two. For example. 
a pattern (x:y:zs) will match a list with at least two elements, with zs 
matching a list with zero or more elements after removing the first two 
elements in a value. For example,

listPatterns :: [Int] -> String 
listPatterns x = 

case x of
[] -> "Empty" ®



[c] -> "Uno: " ++ [toEnum c :: Char] @ 
[c, d] -> "Dos: " ++ show (c, d) ®
(c:_) -> "Mas: " ++ show c ++ " etc" @

main = do
print $ listPatterns [] ®
print $ listPatterns [100] ®
print $ listPatterns [200, 250] ®
print $ listPatterns [40, 50, 60, 70] ®

®

The empty list pattern [] matches an empty list.

(2)

The list pattern [c] will match any single element list. Note that the sub
pattern c included in this list pattern is a variable pattern, which is 
irrefutable.

®

The list pattern [c, d] will match any two-element list.

®

The pattern (c:_) will match any list with at least 1 element. In this 
example, however, it will match a list with 3 or more elements since the 
previous patterns match all lists with fewer than 3 elements.

®

This will print

®



This will print "Uno: The ASCII code of 'd' happens to be 100. toEnum 
is also a method of the Enum

®

This will print "Dos:

®

This will print "Mas: 40

Here are a few more examples of pattern matching in declaring some 
commonly used functions in Haskell programming, As stated, lists are 
one of the most important data structures in Haskell programming, and 
likewise, the list patterns are one of the most widely used patterns. Note 
that all three functions are defined recursively.

elem' :: (Eq a) => a -> [a] -> Bool ® 
elem' _ [] = False
elem' e (x:xs) = (e == x) || elem' e xs @

®

The elem' function takes two values of type a and a list type and it 
returns True if the first value is an element of the second value/list. 
Otherwise, it returns Note that the context specifies that a must be an 
instance of the Eq

®



Although we mostly use case expressions to demonstrate various 
patterns in this chapter, Haskell allows a special syntax for function 
declaration with pattern matching, as indicated This kind of function 
pattern binding syntax is more widely used, especially for simple 
functions. This particular function declaration is, for instance, equivalent 
to the following:

elem'' :: (Eq a) => a -> [a] -> Bool 
elem'' ex list = 

case (ex, list) of 
(_, []) —> False 
(e, x:xs) -> (e == x) || elem'' e xs ®

®

Note that, in the first example, the list pattern x:xs is enclosed in 
parentheses. This is because function application has a higher 
precedence than the cons constructor : in the pattern. In general, list 
patterns are often combined with parenthesis patterns because the cons 
operator has a generally rather low fixity. In this particular example, 
however, the parentheses are not needed since it is an element of a tuple

The following function, uses the elem function (e.g., from the Prelude), 
and removes all duplicates in a given list.

dedupe :: (Eq a) => [a] -> [a] 
dedupe [] = [] 
dedupe (x:xs)

| x 'elem' xs = dedupe xs
| otherwise = x : dedupe xs

® 
® 
®



®

The elem function requires the type a to be an instance of the Eq class.
Hence, dedupe has the same requirement.

®

We handle an empty list here.

®

Then, we can assume that all lists have at least one element at this point. 
This pattern includes two guards. The implementation is 
straightforward.

The following function, takes a list of elements of an Ord type and it 
returns True if all elements in the given list is sorted in the ascending 
order. Otherwise, it returns

isAsc :: (Ord a) => [a] -> Bool
isAsc [] = True ®
isAsc [_] = True @
isAsc (x:y:xs) = ®

(x <= y) && isAsc (y : xs) ®

®

When a list includes no elements, should it be considered sorted?

®



What about a list with one element?

®

At this point, we can assume that the list we are matching has at least 
two elements, and hence x:y:xs is a valid pattern. (Note that xs can still 
be an empty list.)

@

The implementation is straightforward.



16.10. Parenthesized Patterns

Pattern matching can extend to nested values, e.g., as we have seen 
some examples so far, and as we will discuss further at the end of this 
section. Parenthesized patterns are used for grouping purposes. For 
example,

data Me = Me (Maybe Int) (Maybe String) ®

parenPatterns :: Me -> Int 
parenPatterns x = 

case x of
Me (Just n) (Just s) -> n + length s @
Me (Just n) _ -> n ®

-> 0 

main = do 
print $ parenPatterns $

Me (Just 1) (Just "hi") @
print $ parenPatterns $

Me Nothing (Just "hi") 
print $ parenPatterns $

Me (Just 1) Nothing 
print $ parenPatterns $

Me Nothing Nothing

®

A data type with one constructor, which consists of two fields.

®

Constructor patterns can be In this case, the overall pattern is a



constructor Both of its arguments are parenthesized patterns, each of 
which contains a constructor pattern.

®

Similarly, a constructor pattern with two sub-patterns, a parenthesized 
pattern over another constructor pattern and the wildcard

®

These four print expressions will output and 0 to the terminal.



16.11. Nested Patterns

Patterns can be nested. In particular, constructor patterns, list patterns, 
and tuple patterns, along with parenthesized patterns, can include other 
sub-patterns, some of which can in turn include other sub-patterns, and 
so on. Here are some more examples of nested patterns.

addTuples :: (Num a, Num b) =>
(a, b) -> (a, b) -> (a, b) ®

addTuples (x1, y1) (x2, y2) = @
(x1 + x2, y1 + y2)

®

The addTuples function take two pairs and return their sum.

®

As indicated, this pattern is the same as a tuple of two tuples, with each 
tuple containing two variable patterns.

main = do
print $ addTuples (1.0, 3) (2.0, 0) ®

®



This will print

data Point a b = Origin | Point a b ® 
deriving(Show)

addPoints :: (Num a, Num b) =>
Point a b -> Point a b -> Point a b

addPoints Origin Origin = Origin @
addPoints Origin (Point x2 y2) =

Point x2 y2
addPoints (Point x1 y1) Origin =

Point x1 y1
addPoints (Point x1 y1) (Point x2 y2) = 

Point (x1 + x2) (y1 + y2)

®

A datatype with two constructors.

®

All patterns in this function binding are tuples of two constructors, one 
of which comprises two variable patterns.

main = do
print $ addPoints Origin Origin ®
print $ addPoints Origin (Point 3 4.0) ®

®

This will print

(2)

This will print Point 3



addLists :: (Num a, Num b) =>
[(a, b)] -> [(a, b)] -> [(a, b)] ®

addLists [][] = []
addLists [] ((x2, y2):ws) = ®

(x2, y2):ws
addLists ((x1, y1):zs) [] =

(x1, y1):zs
addLists ((x1, y1):zs) ((x2, y2):ws) =

(x1 + x2, y1 + y2) : addLists zs ws

®

This addLists function takes two lists of pairs and returns a list of pairs 
by adding their corresponding elements.

®

All four of these patterns are implicitly top-level tuple patterns (when 
converted to a case expression). In this particular case, the second 
element pattern is a list pattern enclosed in parentheses. The inner 
parentheses are part of the tuple pattern.

main = do
print $ addLists [(1, 2)] [(2, 4), (6, 8)] ®

®

This will print [(3,6),(6,8)] to the terminal.



16.12. Irrefutable Patterns

The following patterns are irrefutable:

A variable pattern,

A wildcard pattern,

A lazy in the form of where apat ia another pattern, which is described 
further at the end of the section,

An as-pattern of the form var@apat where apat is irrefutable, and

N apat where N is a constructor defined by newtype and apat is 
irrefutable.

All other patterns are refutable. Matching an irrefutable pattern is non- 
strict. That is, the pattern matches even if the value to be matched is 
Matching a refutable pattern is, on the other hand, strict. That is, if the 
value to be matched is then the match diverges.



16.13. Lazy Patterns

A lazy pattern has the form where apat ia another pattern, which may or 
may not be irrefutable.

Matching the pattern ~apat against a value v always succeeds. But, no 
actual matching evaluation is done on a ~apat pattern until one of the 
variables in apat is used. At that point the entire pattern is matched 
against the value, and the free variables in apat are bound to the 
appropriate values if matching apat against v would otherwise succeed. 
If the match fails or diverges, so does the overall computation.



17. Core Functions

The Haskell Standard Prelude includes a number of "builtin" functions.



17.1. The id Function

id :: a -> a

The builtin identity function id for a given value x returns the same 
value

main = do 
print $ id "Hello, Haskell!" ®

®

This will print "Hello,



17.2. The const Function

const :: a -> b -> a

The builtin constant function const takes two arguments, and it returns 
the value of the first argument, ignoring the second argument.

main = do
print $ const 'a' 'b'
print $ const 42 "Irrelevant"

® 
®

®

This will print

®

This will print



17.3. The flip Function

flip :: (a -> b -> c) -> b -> a -> c

The builtin flip function takes a function of two arguments as an 
argument, and it return another function which works like the given 
function, but taking the two arguments in the reverse order. That is, flip 
f x y = f y

fnPower :: Int -> Int -> Int
fnPower a b = a A b
fnPowerFlipped :: Int -> Int -> Int
fnPowerFlipped = flip fnPower

main = do
print $ fnPower 2 3
print $ fnPowerFlipped 2 3

® 
®

®

This will print

®

This will print



17.4. The seq Function

seq :: a -> b -> b

The builtin seq function takes two arguments, and it makes both 
arguments to be evaluated. Its return value is the value of the second 
argument unless the first argument is in such a case it returns

_|_ 'seq' b = _|_ 
a 'seq' b = b



17.5. The Lazy Infix Application Operator

($) :: (a -> b) -> a -> b

The lazy infix application operator $ takes a function and returns the 
same function. That is, ($) f == or f $ x == f The $ operator is right- 
associative, and it is primarily used in continuation-passing style. For 
example, the following two print expressions are the same:

main = do
print (sum (map (* 2) [1, 2, 3])) ®
print $ sum $ map (* 2) [1, 2, 3] ®

®

This will print

(2)

The same These two expressions are semantically equivalent.



17.6. The Eager Infix Application Operator

The eager infix application operator $! takes a function and returns a seq 
function with the same function as its second argument. That is, ($!) f 
== seq _ or f $! x == x 'seq' f The $! operator is right-associative, like 
Using the same example above,

main = do
print $! sum $! map (* 2) [1, 2, 3] ®

®

This will print The only difference between $ and $! is their strictness. 
That is, $ preserves the default laziness whereas $! uses the seq function 
to force eager evaluation of arguments.



17.7. The until Function

until p f yields the result of applying f until p holds.

until :: (a -> Bool) -> (a -> a) -> a -> a

For example,

main = do 
print $ until (> 10) (* 2) 1 ®

®

This will print



17.8. The asTypeOf Function

asTypeOf is a type-restricted version of Its typing forces its first 
argument to have the same type as the second.

asTypeOf :: a -> a -> a

For example,

main = do
print $ asTypeOf 3 (5 :: Int) ®

®

The type of the literal 3 is



18. List Functions

The Prelude defines the following list-related functions:

null, !!, length, ++, concat, reverse
head, tail, last, init
take, drop, splitAt, takeWhile, dropwhile, span, break
map, concatMap, filter, any, all
foldl, foldl1, scanl, scanl1, foldr, foldr1, scanr, scanr1
iterate, repeat, replicate, cycle
zip, zip3, zipWith, zipWith3, unzip, unzip3
lines, words, unlines, unwords
and, or, elem, notElem, lookup, maximum, minimum, sum, product



18.1. Basic List Functions

This section describes and



18.1.1. The null function

null :: [a] -> Bool

The list null function returns True if a given list is empty. Otherwise, it 
returns For example,

main = do
print $ null ([] :: [Char]) ®
print $ null ['a', 'b', 'c'] @

®

It prints

®

It prints



18.1.2. The index !! operator

(!!) :: [a] -> Int -> a

The index operator !! takes a list and a non-negative index of type Int 
and it returns the value at the given index. When the index is outside the 
valid index range for the given list, it throws an error. For example,

main = do
print $ ['a', 'b', 'c'] !! 1 ®
-- print $ ['a', 'b', 'c'] !! (-1) @
-- print $ ['a', 'b', 'c'] !! 4 ®

®

This outputs List indexes are

®

It raises an error. Prelude.!!: negative

®

It raises an error. Prelude.!!: index too



18.1.3. The length function

length :: [a] -> Int

The list length function returns the length of a given list as an This 
function does not terminate when the given list is not finite.

main = do
print $ length [] ®
print $ length ['a' .. 'z']
-- print $ length [1 .. ] ®

®

It prints

(2)

This function call does not return.



18.1.4. The append ++ operator

(++) :: [a] -> [a] -> [a]

The list append operator ++ concatenates two given lists.

main = do
print $ ([] :: [Char]) ++ ['a', 'b'] ®
print $ ['a', 'b'] ++ ['e', 'f', 'g'] @

®

The resulting list is the same as ['a',

®

The resulting list is the same as ['a', 'b', 'e', 'f',



18.1.5. The concat function

concat :: [[a]] -> [a]

The list concat function takes a list of lists, and it returns the 
concatenation of all elements of the list.

main = do
print (concat [[1], 

[5, 6, 7], 
[11]] :: [Int]) ®

print $ concat ["Hello", 
", ", "Dr. Haskell", 
" and ", "Mr. Highly Functional!"] @

®

This prints out

®

Since String is this prints out "Hello, Dr. Haskell and Mr. Highly



18.1.6. The reverse function

reverse :: [a] -> [a]

The list reverse function returns the elements of a given list in reverse 
order. The argument list should be finite.

main = do
print (reverse [1, 2, 3] :: [Int]) ®
- - print $ reverse [1 ..] @

®

This prints out

®

This will not terminate.



18.2. Head and Tail Functions

This section describes the and init functions.



18.2.1. The head function

head :: [a] -> a

The list head function takes a non-empty list and returns the first 
element of the list.

main = do 
print $ head ['a', 'b', 'c'] ®
- - print $ head ([] :: [Char]) @

®

It prints

®

It raises an error, Prelude.head: empty



18.2.2. The tail function

tail :: [a] -> [a]

The list tail function takes a non-empty list and returns a list of the 
remaining elements of the given list after the first element, which can be 
an empty list.

main = do
print $ tail ([1, 2, 3] :: [Int]) ®
- - print $ tail ([] :: [Int]) @

®

It prints

®

It raises an error, Prelude.tail: empty



18.2.3. The last function

last :: [a] -> a

The list last function takes a non-empty and finite list and returns the last 
element of the list.

main = do 
print $ last ['a', 'b', 'c'] ®
- - print $ last ([] :: [Char]) @

®

It prints

®

It raises an error Prelude.last: empty



18.2.4. The init function

init :: [a] -> [a]

The list init function takes a non-empty and finite list and returns a list 
of the remaining elements of the given list before the last element.

main = do
print $ init ([1, 2, 3] :: [Int]) ®
- - print $ init ([] :: [Int]) @

®

It prints

®

It raises an error, Prelude.init: empty



18.3. Take and Drop Functions

This section describes the and break functions.



18.3.1. The take function

take :: Int -> [a] -> [a]

The list take function takes an Int n and a list and it returns the prefix of 
xs of length It return xs itself if n > length

main = do
print (take 2 [1, 2, 3, 4] :: [Int]) ®
print (take 5 [1, 2, 3] :: [Int]) ®

®

It prints

(2)

It prints



18.3.2. The drop function

drop :: Int -> [a] -> [a]

The list drop function takes an int n and a list and it returns the suffix of 
xs after the first n elements. Or, it return an empty list [] if n >= length

main = do
print (drop 2 [1, 2, 3, 4] :: [Int]) ®
print (drop 5 [1, 2, 3] :: [Int]) ®

®

It prints

(2)

It prints



18.3.3. The splitAt function

splitAt :: Int -> [a] -> ([a],[a])

The splitAt n xs function is defined as (take n xs, drop n

main = do
print $ splitAt 0 ([1, 2, 3] :: [Int]) ®
print $ splitAt 2 ([1, 2, 3] :: [Int]) ®
print $ splitAt 4 ([1, 2, 3] :: [Int]) ®

®

It prints

(2)

It prints

®

It prints



18.3.4. The takeWhile function

takeWhile :: (a -> Bool) -> [a] -> [a]

The takeWhile function, applied to a predicate p and a list returns the 
longest (possibly empty) prefix of xs of elements that satisfy



18.3.5. The dropWhile function

dropwhile :: (a -> Bool) -> [a] -> [a]

The list dropWhile function, applied to a predicate p and a list returns 
the remaining suffix after the longest (possibly empty) prefix of xs of 
elements that satisfy



18.3.6. The span function

span :: (a -> Bool) -> [a] -> ([a],[a])

The span p xs function is equivalent to (takeWhile p xs, dropWhile p
For example,

main = do
print $ takeWhile (<= 2) [1, 2, 3, 1] ®
print $ dropwhile (<= 2) [1, 2, 3, 1] ®
print $ span (<= 2) [1, 2, 3, 1] ®

®

It prints

(2)

It prints

®

It prints



18.3.7. The break function

break :: (a -> Bool) -> [a] -> ([a],[a])

The break p function is the same as span (not .

main = do
print $ break (>= 2) [1, 2, 3, 1] ®

®

It prints



18.4. Map and Filter Functions

This section describes the and all functions.



18.4.1. The map function

map :: (a -> b) -> [a] -> [b]

The list map function takes a function f and a list and it returns a list 
obtained by applying f to each element of That is, map f [x1, x2, .., xn] 
evaluates to [f x1, f x2, ..., f

For example,

mapDouble :: [Int] -> [Int] 
mapDouble = map (* 2) ®

®

A partial application of map to The mapDouble function takes a list of 
Int and it returns another list by doubling all elements in the given list.

main = do
print $ mapDouble [] ®
print $ mapDouble [1, 2, 3] @



®

It prints

®

It prints



18.4.2. The concatMap function

concatMap :: (a -> [b]) -> [a] -> [b]

The list concatMap function is defined to be a composition of map and 
concat functions, e.g., concat . That is, concatMap first applies map to a 
function of type a -> [b] and a list of type and then it (or, flattens) the 
resulting list of type [[b]] to get the final list of type For example,

initial :: [String] -> [Char]
initial = concatMap (take 1) ®

®

The initial function takes an argument of a list of list of and it returns a 
list comprising the first Char of each element list.

main = do
print $ initial ["John", "F", "Kennedy"] ® 
print $ initial ["Martin", "Luther", "King"] @

®

It prints



®

It prints



18.4.3. The filter function

filter :: (a -> Bool) -> [a] -> [a]

The list filter function takes a predicate and a list, and it returns a list 
including only elements that satisfy the predicate. That is, filter p xs is 
the same as [ x | x <- xs, p x using a list For example,

evenInts :: [Int] -> [Int]
evenInts = filter even

main = do
print $ evenInts [1, 2, 12, 13, 14] ®

®

This prints



18.4.4. The any function

any :: (a -> Bool) -> [a] -> Bool

The list any function takes a predicate and a list, and it returns True if 
any element in the given list satisfies the predicate. It returns False 
otherwise. That is, any p is equivalent to or . map

For instance,

anyOdd :: [Int] -> Bool
anyOdd = any odd ®

®

The anyOdd xs function is equivalent to or (map odd

main = do
print $ anyOdd [10, 11, 12] ®
print $ anyOdd [12, 14, 16] ®

®



It prints

®

It prints



18.4.5. The all function

all :: (a -> Bool) -> [a] -> Bool

The list all function takes a predicate and a list, similar to the any 
function, and it returns True if all elements in the given list satisfy the 
predicate. Otherwise, it returns That is, all p is equivalent to and . map 
Or, all p xs is equivalent to and (map p

For example,

allOdds :: [Int] -> Bool 
allOdds = all odd ®

®

The allOdds xs function is equivalent to and (map odd

main = do
print $ allOdds [10, 11, 12] ®
print $ allOdds [11, 13, 15] ®
print $ all (> 5) [6, 8, 10, 20] ®



®

It prints

®

It prints

®

It prints



18.5. Fold and Scan Functions

This section describes the and scanr1 functions.



18.5.1. The foldl function

foldl :: (a -> b -> a) -> a -> [b] -> a

The list foldl function takes a binary operator, a starting value (typically, 
the left-identity of the operator), and a list, and it reduces the list using 
the binary operator, from left to right. That is, foldl f z [x1, x2, .., xn] is 
equivalent to (...((z 'f' x1) 'f' x2) ...) 'f' For example,

main = do
print $ foldl (++) ""

["To", "Be", "Or", "Not"] ®
print $ foldl (+) 0

([1, 2, 3, 4, 5] :: [Int]) ®

®

The output: "ToBeOrNot"

(2)

The output: 15



18.5.2. The foldl1 function

foldll :: (a -> a -> a) -> [a] -> a

The list foldl1 function is a variant of fold1 that has no starting value 
argument. It throws an error when it is applied to an empty list. For 
example,

main = do
print $ foldll (++)

["To", "Be", "Or", "Not"]
print $ foldl1 (+)

([1, 2, 3, 4, 5] :: [Int])

®

®

®

The output: "ToBeOrNot"

®

The output: 15



18.5.3. The scanl function

scanl :: (a -> b -> a) -> a -> [b] -> [a]

The list scanl function is similar to but returns a list of successive 
reduced values from the left. That is, scanl f z [x1, x2, ...] is equivalent 
to [z, z 'f' x1, (z 'f' x1) 'f' x2, Note that foldl f z xs is the same as last 
(scanl f z

main = do
print $ scanl (++) ""

["To", "Be", "Or", "Not"]
print $ scanl (+) 0

([1, 2, 3, 4, 5] :: [Int])

®

®

®

The output: ["","To","ToBe","ToBeOr","ToBeOrNot"]

®

The output: [0,1,3,6,10,15]



18.5.4. The scanl1 function

scanll :: (a -> a -> a) -> [a] -> [a]

The list scanl1 function is similar to but again without the starting 
element. scanll f [x1, x2, ...] is equivalent to [x1, x1 'f' x2,

main = do
print $ scanll (++)

["To", "Be", "Or", "Not"]
print $ scanl1 (+)

([1, 2, 3, 4, 5] :: [Int])

®

®

®

The output: ["To","ToBe","ToBeOr","ToBeOrNot"]

®

The output: [1,3,6,10,15]



18.5.5. The foldr function

foldr :: (a -> b -> b) -> b -> [a] -> b

The foldr function takes a binary operator, a starting value (typically the 
right-identity of the operator), and a list, and it reduces the list using the 
binary operator, from right to left. foldr f z [..., xnl, xn] is equivalent to 
(... 'f' (xnl 'f' (xn 'f'

For example,

main = do
print $ foldr (++) ""

["To", "Be", "Or", "Not"]
print $ foldr (+) 0

([1, 2, 3, 4, 5] :: [Int])

®

®

®

The output: "ToBeOrNot"

®

The output: l5



18.5.6. The foldr1 function

foldrl :: (a -> a -> a) -> [a] -> a

The list foldr1 function is a variant of foldr that has no starting value 
argument. It raises an error when it is applied to an empty list.

main = do 
print $ foldrl (++)

["To", "Be", "Or", "Not"] ®
print $ foldr1 (+)

([1, 2, 3, 4, 5] :: [Int]) ®

®

The output: "ToBeOrNot

®

The output: 15



18.5.7. The scanr function

scanr :: (a -> b -> b) -> b -> [a] -> [b]

The list scanr function is similar to but it returns a list of successive 
reduced values from the right. That is, scanr f z [..., xnl, xn] is 
equivalent to [., xnl 'f' (z 'f' xn), z 'f' xn, Note that foldr f z xs is the 
same as head (scanr f z For example,

main = do
print $ scanr (++) ""

["To", "Be", "Or", "Not"]
print $ scanr (+) 0

([1, 2, 3, 4, 5] :: [Int])

®

®

®

The output: ["ToBeOrNot","BeOrNot","OrNot","Not",""]

®

The output: [15,14,12,9,5,0]



18.5.8. The scanr1 function

scanrl :: (a -> a -> a) -> [a] -> [a]

The list scanr1 function is similar to but again without the starting 
element. scanrl f [..., xn2, xnl, xn] is equivalent to [..., xn2 'f' (xnl 'f' 
xn), xnl 'f' xn,

main = do
print $ scanrl (++)

["To", "Be", "Or", "Not"]
print $ scanr1 (+)

([1, 2, 3, 4, 5] :: [Int])

®

®

®

The output: ["ToBeOrNot","BeOrNot","OrNot","Not"]

®

The output: [l5,l4,l2,9,5]

This book can be rather "dense", depending on your background. It 
covers a lot of topics, but possibly not with enough depth. For example, 
the folding functions discussed in this section are very important tools in



Haskell, and it will require some deliberate studies if you haven’t used 
this kind of functional programming style before. Although we claim 
that Haskell is a much simpler language, syntactically, than other 
widely-used programming languages, learning still takes time. The 
readers are encouraged to go through each of the above examples, step 
by step, so that you understand how "left folding" vs "right folding" 
work, etc.



18.6. Iterate and Repeat Functions

This section describes the and cycle functions.



18.6.1. The iterate function

iterate :: (a -> a) -> a -> [a]

The list iterate function is recursively defined as iterate f x = x : iterate f 
(f which is an infinite list of repeated applications of f to e.g., [x, f x, f (f 
x), For example, 

main = do
print $ take 5 $ iterate (* 2) 2 ®

®

The output: [2,4,8,16,32]



18.6.2. The repeat function

repeat :: a -> [a]

The list repeat function returns an infinite list by indefinitely repeating a 
given argument. That is, repeat x = xs where xs = For example,

main = do 
print $ take 5 $ repeat 21 ®

®

The output: [21,21,21,21,21]



18.6.3. The replicate function

replicate :: Int -> a -> [a]

The list replicate function is defined to be replicate n x = take n (repeat
For example,

main = do 
print $ replicate 5 42 ®

®

The output: [42,42,42,42,42]



18.6.4. The cycle function

cycle :: [a] -> [a]

The list cycle function takes a list and returns the infinite repetition of 
the given list. It returns an error when the list is empty. It returns the 
same list when the list is an infinite list. For example,

main = do
print $ take 10 $ cycle [1, 2, 3] ®

®

The output: [1,2,3,1,2,3,1,2,3,1]



18.7. Zip and Unzip Functions

This section describes the and unzip3 functions from the Prelude, which 
deal with lists of pairs (2-tuples) and triplets (3-tuples).



18.7.1. The zip function

zip :: [a] -> [b] -> [(a,b)]

The list zip function takes two lists and returns a list of pairs, each pair 
comprising the corresponding elements from two lists. If one input list is 
shorter than the other, then excess elements of the longer list are 
discarded.

main = do 
print $ zip [1, 2, 3] ['a', 'b'] ®

®

The output: [(1,'a'),(2,'b')]



18.7.2. The zip3 function

zip3 :: [a] -> [b] -> [c] -> [(a,b,c)]

The list zip3 function takes three lists and returns a list of triplets, by 
taking one element from each list. The length of the resulting list is the 
same as that of the shortest input list.

main = do
print $ zip3 [1, 2] ['a', 'b'] ["hi"] ®

®

The output: [(1,'a',"hi")]



18.7.3. The zipWith function

zipWith :: (a->b->c) -> [a]->[b]->[c]

The list zipWith function takes a binary function and two lists, and it 
returns a new list by applying the given function to the corresponding 
elements in the two input lists.

main = do
print $ zipWith (+) [1, 2, 3] [3, 6] ®

®

The output: [4,8]



18.7.4. The zipWith3 function

zipWith3 :: (a->b->c->d) -> [a]->[b]->[c]->[d]

The list zipWith3 function takes a ternary function and three lists, and it 
returns a new list by combining the corresponding elements in the three 
input lists with the given function.

sum3 :: Int -> Int -> Int -> Int
sum3 x y z = x + y + z ®

main = do
print $ zipWith3 sum3 [1, 2] [2] [3] ®

®

We define a simple ternary function for illustration. The most general 
type for this kind of function would be sum3 :: Num a => a -> a -> a ->

®

The output: [6]



18.7.5. The unzip function

unzip :: [(a,b)] -> ([a],[b])

The list unzip function takes a list of pairs and returns a pair of lists.

main = do
print $ unzip [(1, 2), (3, 4), (5, 6)] ®

®

The output: ([1,3,5],[2,4,6])



18.7.6. The unzip3 function

unzip3 :: [(a,b,c)] -> ([a],[b],[c])

The list unzip3 function takes a list of triplets and returns a triplet of 
three lists.

main = do 
print $ unzip3 [(1, 2, 3), (4, 5, 6)] ®

®

The output: ([1,4],[2,5],[3,6])



18.8. Special Class Functions

Some list functions are defined over particular types or classes.



18.8.1. The Bool list functions

The and and or functions deal with Bool lists.

and, or :: [Bool] -> Bool

The and function returns the conjunction of all elements in a given 
Boolean list. Likewise, the or function returns the disjunction of all 
elements in a Boolean list. For example, 

main = do
print $ and [] ®
print $ and [True, False, False]
print $ and $ replicate 10 True
print $ and (False : repeat True)
print $ and (False : repeat False)
print $ and (True : repeat False)
-- print $ and (True : repeat True) @

®

The outputs are, from the top, and Note that and [] returns

®

This will hang.



main = do
print $ or [] ®

print $ or [True, True, False]
print $ or $ replicate 10 False
print $ or (True : repeat False)
print $ or (True : repeat True) 
print $ or (False : repeat True)
-- print $ or (False : repeat False) @

®

The outputs are, from the top, and Note that or [] returns

®

This will hang.



18.8.2. The Eq list functions

The and lookup functions deal with lists whose elements belong to the

Eq

elem, notElem :: (Eq a) => a -> [a] -> Bool

The elem function takes a value and a list and it returns True if the value 
is an element of the given list. Otherwise, it returns The notElem 
function is a negation of For example,

main = do
print $ elem 3 [1, 2, 3, 4] ®
print $ elem 6 [1, 2, 3, 4] @
print $ notElem 3 [1, 2, 3, 4] ®
print $ notElem 6 [1, 2, 3, 4] @

®

The output: True

(2)
The output: False



®

The output: False

®

The output: True

The lookup function

lookup :: (Eq a) => a -> [(a,b)] -> Maybe b

The lookup function takes a value and an association list (e.g., a list of 
pairs), and if there exists a pair in the list whose first element is the same 
as the given value, then it returns the second element v of the found pair, 
as Just If there are found multiple pairs with the same given value in the 
list, the first pair is used. If no such pair is found, then it returns For 
example, 

main = do 
let dict = [(1, 'a'), (2, 'b'), (5, 'e'), (2, 'v')] 
print $ lookup 1 dict ®
print $ lookup 4 dict @
print $ lookup 2 dict ®

®

The output: Just 'a'



®

The output: Nothing

®

The output: Just Note that there are two pairs with its first element equal 
to



18.8.3. The Ord list functions

The maximum and minimum functions operate on non-empty and finite 
lists whose element types belong to the Ord

maximum, minimum :: (Ord a) => [a] -> a

The maximum and minimum functions return the maximum value or 
minimum value from a given list, respectively. For example,

main = do
print $ maximum [10, -5, 40, 20] ®
print $ minimum [10, -5, 40, 20] @

®

The output: 40

(2)

The output: -5



18.8.4. The Num list functions

The sum and product functions operate on lists whose element types 
belong to the Num

sum, product :: (Num a) => [a] -> a

The sum function computes the sum of a finite list of numbers. The 
product function computes the product of a finite list of numbers. For 
example,

main = do
print $ sum [1, 2, 3, 4, 5] ®
print $ product [1, 2, 3, 4, 5] @

®

The output: 15

®

The output: 120



18.8.5. The string lines and words functions

The and unwords functions deal with String and

lines :: String -> [String] 
unlines :: [String] -> String

The lines function splits a given string into a list of strings using newline 
characters as separators. The unlines function does the reverse. It joins a 
given list of strings into one string, which comprises multiple lines with 
terminating newlines. For example,

main = do
let verse =

"April is the cruellest month, breedingn 
Lilacs out of the dead land, mixingn
Memory and desire, stirringn
Dull roots with spring rain." ®

print $ lines verse @

®

Note the "multiline string" literal syntax.

®

The output: ["April is the cruellest month, breeding","Lilacs out of the 



dead land, mixing","Memory and desire, stirring","Dull roots with 
spring rain."]

main = do 
let stanzas =

[ "Frisch weht der Wind"
, "Der Heimat zu"
, "Mein Irisch Kind,"
, "Wo weilest du?"
]

print $ unlines stanzas ®

®

The output: "Frisch weht der Wind\nDer Heimat zu\nMein Irisch
Kind,\nWo weilest du?\n"

The words and unwords functions

words :: String -> [String]
unwords :: [String] -> String

The words function splits a given string into a list of strings, similar to 
but it uses white spaces as separators. The unwords function joins a 
given list of strings into one string with separating spaces. For example,

main = do
let toBe = "To be or not to be."
print $ words toBe ®
let question = ["That", "is", "the", "question"] 
print $ unwords question @



®

The output: ["To","be","or","not","to","be."]

®

The output: "That is the question"



19. Data Types



19.1. Datatypes

We discuss a few different ways to declare new types or type synonyms 
in Haskell in an earlier part of the book. We describe the top-level data 
declaration syntax in some more detail in this chapter.

An algebraic datatype can be declared with the data keyword. It has the 
following general syntax: 

data cx => T u1 ... uk = 
K1 t11 ... tlkl 
| ... 
| Kn tn1 ... tnkn

This declaration introduces a new data type T with one or more data 
constructors ..., Kn (or, just "constructors"). In this notation, cx denotes 
a and u1 . uk represent type parameters. The type of each constructor 
Ki is (roughly) ti1 -> . -> tiki -> (T u1 . uk) within a proper context. 
For example, 

data Num a => Result a 
= Tie 

| Win a 
| Loss a a



This declaration introduces a new data type Result with three 
constructors, and The type of Tie is Result a for an implicit type variable 
whereas the types of Win and Loss are (Num a) => a -> Result a and 
(Num a) => a -> a -> Result respectively, for any type a that is an 
instance of the Num

The data declaration can optionally include a deriving clause, which is 
discussed in the next chapter, in the context of derived



19.1.1. Field access

A data constructor of arity k creates an object with k components, in the 
specified order. These components are normally accessed positionally, 
e.g, using pattern

For instance, using the above Result datatype,

scored :: Result Int -> Int
scored (Loss s _) = s
scored = error "Not a loss"

This scored function returns the first field of the Loss data constructor.
For example,

main = do
let result = Loss (2 :: Int) (1 :: Int) 
print $ scored result

Alternative to this positional access method, one can assign field labels 
to the components of a data object. This is called a "record". A labeled 
field of a record can be referenced by its label, independently of its 
position within the constructor. The record syntax is described next.



19.2. Record Syntax

A datatype declaration may optionally assign labels to the fields of a 
constructor, using the record syntax, C { ... These field labels can be 
used to construct, select, and update fields. For example,

data Contact = Contact { name, phone :: String, address :: Int, zipCode :: 
String }

These labels are referred to as selector or accessor functions because 
they are used to access the named fields. They must start with a 
lowercase letter or underscore (because they are functions), and they 
cannot have the same name as another function in scope.

This particular data declaration is more or less equivalent to the 
following without using field labels.

data Contact = Contact String String Int String



19.2.1. Field selection

Field labels create selector functions, which are top level bindings in a 
module.

A selector can extract the corresponding field from an object. More 
specifically, a field label f introduces a selector function defined as:

f x = case x of
C1 p11 ... plk -> el 
III
Cn pnl ।।। pnk -> en

where

C1 ... Cn are the constructors of the given datatype that contains a field 
labeled with

pij is y or _ depending on whether f labels the component of and 

ei is y or undefined depending on whether some field in Ci has a label of 
f or not, respectively.



For example, in the following datatype declaration,

data Data
= Consl { fl :: String, f2 :: Int } 

| Cons2 { f2 :: Int, f3 :: Bool }
| Cons3 Int Int

The and f3 labels are field selectors, (implicitly) defined as follows:

fl :: Data -> String 
fl x = case x of
Consl y _ -> y

f2 :: Data -> Int
f2 x = case x of
Cons1 _ y -> y
Cons2 y _ -> y

f3 :: Data -> Bool
f3 x = case x of

Cons2 _ y -> y

Note that, as shown in this example,

Record and non-record syntax constructors can be mixed in a single data 
declaration, and



The same field labels can be used across multiple data constructors as 
long as they have the same types.



19.2.2. Record construction

A record constructor may be used to construct a value by specifying 
their components by name rather than by position, using the curly braces 
syntax. Unlike the braces used in declaration lists, however, the { and } 
characters must be explicitly included, and they cannot be omitted using 
the layout

For instance, using the same Data type,

main = do
let dl = Consl {fl = "Hell", f2 = 333} ®
let d2 = Cons2 {f2 = 666, f3 = False}
let d3 = Cons3 333 666
print (dl, d2, d3) ®

®

Note that the field order is not significant in the record syntax. That is, 
Cons1 {f1 = "Hell", f2 = 333} is equivalent to Cons1 {f2 = 333, f1 =

(2)
The Data type needs to be an instance of Show in order to be able to call 
See the section on



Note that the field selectors can be used just like any other top-level 
functions, as described above. Using the same example,

main = do
let dl = Consl {fl = "Hello", f2 = 333}
print $ fl dl 
print $ f2 dl

® 
®

®

This will print

®

This will print



19.2.3. Updating records

Values of a record syntax constructor of a datatype can be "non- 
destructively updated". That is, one can create a new value based on the 
field values of an exiting value belonging to the same record syntax 
constructor, by selectively updating only some (or, all) of the fields. For 
example,

main = do
let d2 = Cons2 {f2 = 666, f3 = False}
let d2' = d2 {f2 = 999}
print d2' ®

®

d2' has a value {f2 = 999, f3 =



19.3. Abstract Datatypes

The visibility of a datatype’s constructors (outside of the module in 
which the datatype is defined) is controlled by the form of the datatype’s 
name in the export as we explain in the Modules chapter. This 
effectively allows creating abstract datatypes (ADTs) that cannot be 
directly constructed (outside the given module). For example, here’s a 
simple queue data type, defined in a module named

Listing 3. Queue.hs

module Queue
( add
, remove
, empty
) where ®

data QueueType a
= NullQueue

| Queue a (QueueType a)
deriving (Show)

add :: a -> QueueType a -> QueueType a
add = Queue

remove :: QueueType a -> (Maybe a, QueueType a)
remove NullQueue = (Nothing, NullQueue)
remove (Queue v NullQueue) = (Just v, NullQueue)
remove (Queue v q) = (fst qq, Queue v (snd qq)) 
where

qq = remove q

empty :: QueueType a
empty = NullQueue



®

Notice the conventional formatting. There is no difference between this 
and the module declaration written in one line.

In this example, we declare a datatype QueueType with two 
constructors, and define three functions, and Note that we export neither 
the type QueueType nor its constructors, NullQueue and Hence, a value 
of QueueType cannot be directly constructed outside this module. But, 
values of QueueType can still be used using the exported functions. For 
instance,

Listing 4. Main.hs

main = do
let q1 = Queue.add (5 :: Int) $ Queue.add (3 :: Int) Queue.empty
print q1 ®
let (v, _) = Queue.remove q1
print v @

®

This will print Queue 5 (Queue 3

®

This will print Just



20. Classes

The or typeclass, in Haskell is comparable to constructs like interfaces, 
traits, or protocols in other programming languages.

A class in Haskell is essentially a collection of types, just like a type is a 
collection of values. A class specifies a set of functions, or "behaviors". 
A type that belongs to a certain class needs to implement (either 
explicitly or implicitly) all functions of the

Alternatively, another way to look at the class in Haskell is from the 
viewpoint of "function overloading". A function can be defined with 
parameters from certain collection of types, and not just specific types. 
As long as the parameter set belongs to this "collection", they may be 
valid types for the given function.

Haskell accomplishes overloading through class and instance 
declarations.



20.1. Class Declarations

A class declaration introduces a new class and the operations on it, 
called the class Here’s a general syntax:

class cx => C u where cdecls

This declaration introduces a new class with name C and a single type 
variable The context cx specifies the superclasses of if any.

The where clause (e.g., the where cdecls part above), different from the 
where is optional, but if provided, it can contain any of the following 
three declarations.



20.1.1. New class methods

The class declaration introduces new class methods, in the top-level 
namespace. The class methods of a class declaration are those with an 
explicit type signature vi :: cxi => ti in cdecls. E.g.,

class cx => C u where 
v1 :: cx1 => t1 
III 
vn :: cxn => tn

For instance, we can define a class that provides "literate values" for 
numeric types as follows:

class Num a => Value a where 
value :: a -> String ®

®

A class method for the example class Note that this is syntactically more 
or less the same as the type signature declaration for a function binding.
In fact, this introduces a function name, at the top-level scope.



20.1.2. Default class methods

The where clause may contain a default class method implementation 
for any of the class method The default class method for vi is used if no 
binding is given in a particular instance For example,

class Num a => Value a where 
value :: a -> String 
value x = "High"

® 
®

®

An example class method, as above.

®

A default class method for the class method Syntactically, orders are 
significant, but it is typical to put a default class method immediately 
below the corresponding class method, just like we (always) put the 
function binding below its type signature declaration.



20.1.3. Fixity declaration

The class declaration where clause may also contain a fixity declaration 
for any of the class methods. Since class methods declare top-level 
values, the fixity declaration for a class method may alternatively appear 
at top level, outside the class declaration.



20.2. Instance Declarations

An instance declaration which makes the type T to be an instance of 
class C is called a C-T instance For example, for a class C declared as 
class cx => C u where { cbody the general form of the corresponding 
instance declaration for type T is,

instance cx' => C (T u1 ... uk) where { d }

The type (T u1 ... uk) must take the form of a type constructor T applied 
to simple type variables . When the type constructor is nullary, the 
parentheses may be omitted. The declarations d may contain bindings 
only for the class methods of

For instance, using the Value class example from the previous section,

instance Num => Value Int where
-- value :: a -> String 
value x = "High"

® 
®

®

The class method value for the Value class. You cannot redeclare it in 



an instance declaration, but sometimes it is useful to see its signature 
while implementing it in a particular instance. You can put it in a 
comment, as in this example, or you can use a GHC language extension.

®

An example function binding for the class method,

The instance body declarations may not contain any type signatures or 
fixity declarations, since these have already been given in the class 
declaration. The GHC language extension InstanceSigs may be used if 
you want to explicitly include the method’s type signature (the class 
method) in an instance declaration.

If no binding is given for a class method, then the class method of this 
instance is bound to undefined unless the corresponding default class 
method exists in the class declaration.



20.3. Deriving

As indicated earlier, data and newtype declarations can include an 
optional deriving clause. If it is included with one or more classes, then 
derived instance declarations are automatically generated for the 
datatype for each of the specified classes.

Derived instances can be declared for the and Read classes in the 
Prelude, and possibly for other classes in the standard library.



21. Standard Classes

The following type classes are defined by the Haskell Prelude: 

and

Other numeric classes such as etc.

The Functor and Monad classes are explained later in the book, in 
separate chapters. The Applicative for Applicative for short, from the 
GHC language extension, is also widely used, but we do not include it in 
this book.



21.1. The Eq Class

The Eq class defines equality and inequality methods:

class Eq a where 
(==), (/=) :: a -> a -> Bool

All basic datatypes except for functions and IO are instances of this 
class.

Instances of Eq can be derived for any user-defined datatype whose 
constituents are also instances of

For example,

data Fruit = Apple | Orange
instance Eq Fruit where

-- (==) :: Fruit -> Fruit -> Bool
Apple == Apple = True ®
Orange == Orange = True

== = False

®

Note that we provide a binding for but not for in this example. The class



Eq includes default class methods for both (==) and using the negation 
of each other. That is, if a binding is provided for one in an instance, 
then we can rely on the default class method for the other.

Or, using

data Fruit = Apple | Orange 
deriving(Eq)



21.2. The Ord Class

The Ord class is used for totally ordered datatypes:

class (Eq a) => Ord a where
compare :: a -> a -> Ordering
(<), (<=), (>=), (>) :: a —> a —> Bool
max, min :: a -> a -> a

All basic datatypes except for functions, and are instances of this class.

Instances of Ord can be derived for any user-defined datatype whose 
constituent types are in

For example,

data Sound = Do | Re

instance Eq Sound where ®
-- (==) :: Sound -> Sound -> Bool
Do == Do = True
Re == Re = True

== = False

instance Ord Sound where @
-- compare :: Sound -> Sound -> Ordering 
compare Do Do = EQ 
compare Re Re = EQ 
compare Do _ = LT



compare _ Re = LT 
compare Re _ = GT 
compare _ Do = GT

®

Note that, since Eq is a superclass of Sound needs to be an instance of
Eq before it can be an instance of

®

We rely on the default class methods for other methods of



21.3. The Enum Class

Class Enum defines operations on sequentially ordered types:

class Enum a where
succ, pred a -> a
toEnum Int -> a
fromEnum a -> Int
enumFrom a -> [a]
enumFromThen a -> a -> [a]
enumFromTo a -> a -> [a]
enumFromThenTo a -> a -> a -> [a]

For example,

data Ternary = T0 | T1 | T2 
deriving (Show)

instance Enum Ternary where
-- toEnum :: Int -> Ternary 
toEnum x = case x of

0 -> T0
1 -> T1

-> T2

- - fromEnum :: Ternary -> Int 
fromEnum t = case t of
T0 -> 0
T1 -> 1
T2 -> 2



21.4. The Bounded Class

The Bounded class is used to name the upper limit and lower limit of the 
values of a type:

class Bounded a where 
minBound, maxBound :: a

The types and all tuples are instances of

The Bounded class may be derived for any enumeration type.

Bounded may also be derived for single-constructor datatypes whose 
constituent types are in

For example,

data Drink = Tall | Grande | Venti

instance Bounded Drink where
- - minBound :: Drink
minBound = Tall

- - maxBound :: Drink 
maxBound = Venti



21.5. The Show Class

The Show class is used to convert values to strings:

type Shows = String -> String ®

class Show a where 
showsPrec :: Int -> a -> ShowS 
show :: a -> String 
showList :: [a] -> ShowS

®

Declared in the Prelude. Note that ShowS is a function type, which takes 
a string and returns a string.

All Prelude types, except the function types and the IO type, are 
instances of Show. For example,

data Weather = Sunny | Rainy

instance Show Weather where
- - show :: Weather -> String 
show Sunny = "Sunny" 
show Rainy = "Rainy"

Or, by



data Weather = Sunny | Rainy 
deriving(Show)



21.6. The Read Class

The Read class is used to convert values from strings:

type Reads a = String -> [(a,String)] ®

class Read a where 
readsPrec :: Int -> Reads a 
readList :: Reads [a]

®

A convenience type, defined in the Prelude.

All Prelude types, except function types and are instances of For 
example, 

instance Read Weather where
-- readsPrec :: Int -> ReadS Weather

readsPrec _ r =
if r == "Sunny" 

then [(Sunny, "")] 
else [(Rainy, "")]

Or, using



data Weather = Sunny | Rainy 
deriving(Read)



21.7. The Num Class

The Num class is defined as follows:

class (Eq a, Show a) => Num a where 
(+), (-), (*) :: a —> a —> a
negate :: a -> a
abs, signum :: a -> a
fromInteger :: Integer -> a

a -> a -> a
a -> a 
a -> a
Integer -> a

For example, using the following simple datatype,

data Binary = Zero | One 
deriving (Show, Eq)

We can make Binary an instance of

instance Num Binary where
- - abs :: Binary -> Binary 
abs a = a
- - signum :: Binary -> Binary 
signum a = a
- - fromInteger :: Integer -> Binary 
fromInteger n = if n <= 0 then Zero else One
- - negate :: Binary -> Binary 
negate a = a
- - (+) :: Binary -> Binary -> Binary 
Zero + Zero = Zero
_ + _ = One



-- (*) :: Binary -> Binary -> Binary 
One * One = One
_ * _ = Zero



22. Functors

A Functor represents a parametric type that can be mapped over. In fact, 
the list is an archetypical example of parametric types that support 
mapping. For example,

main = do
let x = [1, 2, 3] :: [Int] 
let y = map (* 3) x
print y

Note that, in this example, a value [1, 2, 3] of [Int] (a list of has been 
mapped to another value [3, 6, 9] of the same type, using the map 
function :: (a -> b) -> [a] -> The Functor class is essentially a 
generalization of the types like lists. In addition to lists, IO and Maybe 
in the Prelude are in this class.



22.1. The Functor Class

The types belonging to the Functor typeclass need to support a mapping 
function, defined as follows:

class Functor f where 
fmap :: (a -> b) -> f a -> f b ®

®

If this notation is not very clear to you, f a represents a parametrized 
type f with a type variable e.g., similar to Maybe etc. The most 
commonly used parametrized type in Haskell, namely, the list, has a 
special syntax, This is merely a syntactic sugar for [] which has the form 
f Note the similarity between the list’s map function and fmap function. 
In fact, as indicated, a list is an instance of Functor with fmap defined to 
be the good ol' map function.

In addition, instances of Functor should satisfy the following laws:

fmap id = id
fmap (f . g) = fmap f . fmap g



22.2. Functor Instances



22.2.1. The Maybe functor

Here’s the standard implementation of fmap for

instance Functor Maybe where
-- fmap :: (a -> b) -> Maybe a -> Maybe b 
fmap f Nothing = Nothing 
fmap f (Just x) = Just (f x)

One can easily verify that this implementation satisfies the Functor laws. 
For instance, both fmap $ id Nothing and id Nothing yield and fmap $ id 
$ Just x and id $ Just x yield Just Hence fmap id = id for this fmap 
function. The second law fmap (f . g) = fmap f . fmap g can be likewise 
easily verified.

Some more examples:

main = do
let m1 = Nothing :: Maybe Int
print $ fmap (+ 42) m1 ®
let m2 = Just 624 :: Maybe Int
print $ fmap (+ 42) m2 @

®

This will print



®

This will print Just



23. Monads

The Monad class represents parametric types that support certain 
operations, in particular, binding and return operations,

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b ®
return :: a -> m a @

®

Again, m a refers to a parameterized type m with a type parameter A 
type which is an instance of needs to implement these methods for an 
arbitrary type variable

®

Notice the return function. Haskell does not have the return statement 
which is found in virtually all imperative programming languages. The 
return class method of a Monad type m takes a value of type a and 
returns a value of type m

The binding operation >>= is a generalization of concatMap (or, "flat 
map") defined over a list parametric type,



concatMap :: (a -> [b]) -> [a] -> [b] ®

®

Again notice the similarity between >>= and the list’s concatMap 
function (despite the flip of the two arguments).

For instance,

main = do
let x = [1, 2, 3] :: [Int]
let y = concatMap (e -> [e, 2 * e]) x
print y ®

®

This will output

Informally speaking, the Monad class is a generalization of parametric 
types like lists which support the "mapping and then flattening" 
operation. In the Prelude, in addition to lists, Maybe and IO are 
instances of



23.1. The Monad Class

The Monad typeclass defines the basic operations over a monad:

®

class Monad m where
(>>=) : m a -> (a -> m b) -> m b ®

(>>) : m a -> m b -> m b
return : a -> m a
fail : String -> m a
m >> k = m >>= __ -> k ®

fail s = error s

These top four lines are class

®

The bottom two lines are default class Hence, (>>) and fail need not be 
implemented in instance declarations.

Furthermore, instances of Monad should satisfy the following laws:

return a >>= k = k a 
m >>= return = m 
m >>= (x -> k x >>= h) = (m >>= k) >>= h



Instances of both Monad and Functor should additionally satisfy the 
following law (in addition to the Functor laws):

fmap f xs = xs >>= return . f



23.2. Monad Instances



23.2.1. The Maybe monad

Here’s the standard implementations of the and fail functions for

instance Monad Maybe where 
(Just x) >>= k = k x 
Nothing >>= k = Nothing
return 
fail s

= Just
= Nothing

One can easily verify that these implementations satisfy the Monads 
laws. We will leave it as an exercise to the readers.

Here’s an example use of the bind >>= operator with the Maybe monad:

main = do
let m1 = Nothing :: Maybe Int
print $ m1 >>= Just ®
let m2 = Just 666 :: Maybe Int
print $ m2 >>= Just @

®

This will print Note that although m1 is m1 >>= Just does not fail. It 
merely returns



®

This will print Just



24. Do Expressions

A do expression provides a more conventional, more imperative 
programming-style, syntax in a monadic context. Syntactically, a do 
expression has the following general form:

do { STATEMENTS }

where STATEMENTS can be one or more of any of the following:

An expression,

A monadic assignment of the form, pattern <

A let declaration (without and

An empty statement

The last statement in STATEMENTS must be an expression, which 
becomes the value of the overall do expression. Variables bound by let 



have fully polymorphic types while those defined by <- are lambda 
bound and thus they are monomorphic.

Empty statements are ignored. Otherwise, the do expressions are 
evaluated as follows:

do { exp } is the same as

do { exp; stmts } is evaluated to exp >> do { stmts

do { pat <- exp; stmts } is evaluated to let ok pat = do { stmts }; ok _ = 
fail ... in exp >>=

do { let decls; stmts } is equivalent to let decls in do { stmts

We have been using do expressions throughout this book. We will see 
some more examples in the last chapter on



25. Basic Input/Output

The I/O system in Haskell is purely and yet it has all of the expressive 
power found in imperative programming languages. Haskell uses a 
Monad to integrate I/O operations, or actions, into a purely functional 
context.



25.1. I/O Operations

The IO type is an instance of the Monad The two monadic binding 
functions are used to compose a series of I/O operations:

(>>) :: IO a -> IO b -> IO b
(>>=) :: IO a -> (a -> IO b) -> IO b

The >> operator is used when the result of the first operation is 
uninteresting, for example when it is

The >>= operation passes the result of the first operation as an argument 
to the second operation.

Furthermore, the return function is used to define the result of an I/O 
operation.



25.2. Exceptions

An I/O operation may raise an exception, a value of type instead of 
returning a result. One can use the Prelude userError function to create 
an which is discussed next.

The readers are encouraged to consult the official Report or other 
references if you would like to learn more on the IO Monad and 
exception handling. In the next and final chapter, we discuss some of the 
I/O functions in the Standard Prelude and how to use them.



26. I/O Functions

The Prelude includes the following IO-related functions:

ioError, userError, catch
putChar, putStr, putStrLn, print
getChar, getLine, getContents, interact, readlO, readLn 
readFile, writeFile, appendFile



26.1. Error Functions



26.1.1. The userError function

userError :: String -> lOError

The IO userError function returns an IOError value with a given string 
as an error message. For instance

demoError :: String -> lOError
demoError msg =

userError $ "User Error: " ++ msg



26.1.2. The ioError function

ioError :: lOError -> IO a

The IO ioError function is used to raise an IOError in the IO monad. For 
example,

main = do
ioError $ demoError "Urghh"



26.1.3. The catch function

catch :: IO a -> (lOError -> IO a) -> IO a

The IO catch function takes an IO action and a handler function, and if 
the IO action returns an IOError it raises the error in the IO monad.



26.2. Output Functions



26.2.1. The putChar function

putChar :: Char -> IO ()

The IO putChar function writes a given Char to the standard output 
device.

main = do
putChar 'H'; putChar 'e'; putChar 'l'
putChar 'l'; putChar 'o'; putChar 'n'



26.2.2. The putStr function

putStr :: String -> IO ()

The IO putStr function takes a string argument and it writes it to the 
standard output device.



26.2.3. The putStrLn function

putStrLn :: String -> IO ()

The IO putStrLn function works the same way as but it appends a 
newline character.

main = do 
putStr "Hello " 
putStrLn "Haskell!"



26.2.4. The print function

print :: Show a => a -> IO ()

The IO print function outputs a value of any Show type to the standard 
output device. We have been using the print function in various 
examples throughout this book.



26.3. Input Functions



26.3.1. The getChar function

getChar :: IO Char

The getChar function reads a character from the standard input device. It 
returns the value as IO In the following example, we create a simple 
function which repeatedly reads a character from the terminal and prints 
it back unless it is When 'x' is inputted, we simply return with

echoChar :: IO ()
echoChar = do

c <- getChar ®
case c of

'x' -> return ()
_ -> do putChar c; echoChar @

®

Note that the monadic in the context of the do expression, effectively 
does a safe conversion of IO Char to Char in this example. That is, the 
type of c is

®

We recursively call echoChar in this example.



26.3.2. The getLine function

getLine :: IO String

The getLine function reads a line of text from the standard input device 
and it returns the value as an IO String Monad. Here’s an essentially the 
same function, which "echoes" one line at a time, instead of one 
character at a time.

echoLine :: IO ()
echoLine = do

line <- getLine ®
case line of 

"exit" -> return ()
-> do
putStrLn line
echoLine

®

Using the similar monadic assignment, we effectively convert IO String 
to String in this example.



26.3.3. The getContents function

getContents :: IO String

The getContents function returns all user input as a single string.

main = do 
content <- getContents ®
putStr content

®

The getContents function continues to read the input until it encounters
EOF (e.g., Ctrl+D). Note that this particular do expression is equivalent 
to the following using the monadic binding

main = getContents >>= putStr



26.3.4. The readIO function

readlO :: Read a => String -> IO a

The readIO function reads and parses a string, and it returns an IO 
monad value of a Read type. It raises an exception when the parse fails. 
The repeatNTimes function in the next example reads two strings as an 
Int and a list replicates the list by n times, and returns the result as IO

repeatNTimes :: String -> String -> IO [Int] 
repeatNTimes rep list = do

n <- readlO rep
xs <- readlO list
return $ concat $ replicate n xs

main = do
list <- repeatNTimes "3" "[1, 2, 3]" 
print list ®

®

This will print



26.3.5. The readLn function

readLn :: Read a => IO a

The readLn function combines getLine and For example,

main = (readLn :: IO Int) >>= print ®

®

This read an input as an Int and prints out the value if parse is 
successful. Otherwise, it throws an error.



26.3.6. The interact function

interact :: (String -> String) -> IO ()

The interact function takes a function of type String -> String as its 
argument. The entire input from the standard input device is passed to 
this function as its argument, and the resulting string is outputted on the 
standard output device. For example, here’s another version of the echo 
line function, which converts all input characters to uppercase letters.

import Data.Char (toUpper)

main = interact $ map toUpper



26.4. File Functions

FilePath is declared to be a type synonym for String in the Prelude.



26.4.1. The readFile function

readFile :: FilePath -> IO String

The readFile function reads a file and returns the content of the file as a 
string. For example, using the following function in the current 
directory,

$ cat hello.txt
Hello, world
ditto

main = do 
content <- readFile "hello.txt" ®
print $ lines content @

®

If the named file is not found, it will throw an error.

®

If successful, it will print ["Hello,



26.4.2. The writeFile function

writeFile :: FilePath -> String -> IO ()

The writeFile function takes a file path and content string, and it writes 
the content to the given file. If the file does not exist, it creates a new 
file. If a file with with the given name exists, it overwrites. For example,

main = do
let quote = "The future belongs to those who believe in the beauty of their 

dreams."
writeFile "world.txt" (quote ++ "n") ®
readFile "world.txt" >>= print @

®

This IO action creates a file named world.txt in the current directory, if 
it does not exist, and it writes the string quote to the file.

®

This will print The future belongs to those who believe in the beauty of 
their dreams. to the terminal.



26.4.3. The appendFile function

appendFile :: FilePath -> String -> IO ()

The appendFile function takes a file path and a content string as two 
arguments, and it writes the content at the end of the given file. If the 
file does not exist, it creates a new file. For example,

main = do
let quote2 = "The best way to predict the future is to invent it."
appendFile "world.txt" quote2 ®
future2 <- readFile "world.txt" 
print $ words future2 @

®

We use the same file used in the previous example. This IO action will 
append the given content, quote2 after the current content.

®

Output:

Epilog



Haskell is a beautiful language. That is, once you get to know it. It is a 
shame that only a tiny fraction of the whole developer community end 
up using, and enjoying, programming languages like Haskell.

If you are reading this, congratulations! You passed the most difficult 
part of learning Haskell. Once you become familiar with this relatively 
foreign syntax of Haskell, the world is your oyster. You will quickly 
find out that you can do so much more with so much less with Haskell. 
And, more importantly, you will enjoy programming more, with 
Haskell.

Programming languages are not just for utility, just like natural 
languages are not just for utility. We enjoy Shakespeare, for instance, 
although it has no practical value. In this age of super AI and machine 
learning, when programming, as a human labor, is becoming possibly 
obsolete (although not any time soon), programming can still be useful, 
and enjoyable, like an art.

Haskell is a "higher-level" programming language. Functional 
programming is about rather than In imperative programming, you, as a 
programmer, have to tell exactly how things are done to the computer. 
That is why we, not the computer, learn algorithms and what not.

In the higher level programming, in the near future, we will not have to 
concern ourselves with exactly how. We will just need to tell computers 
(or, AIs) what to do. They will then figure out how best to do it. 
(Hopefully.) In our view, functional programming is a stepping stone to 



that future. Languages like Haskell, which are more abstract and more 
high-level, can be the best tool for our next progress. We will see.

But, for now, go out and do some functional programming!
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