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CHAPTER 1

Introduction to Apache 
Spark for Large-Scale 
Data Analytics
Apache Spark started as a research project at the UC Berkeley AMPLab in 2009. It 

became open source in 2010 and was transferred to the Apache Software Foundation in 

2013 and boasts the largest open source big data community.

From its genesis, Spark was designed with a significant change in mind, to store 

intermediate data computations in Random Access Memory (RAM), taking advantage 

of the coming-down RAM prices that occurred in the 2010s, in comparison with Hadoop 

that keeps information in slower disks.

In this chapter, I will provide an introduction to Spark, explaining how it works, the 

Spark Unified Analytics Engine, and the Apache Spark ecosystem. Lastly, I will describe 

the differences between batch and streaming data.

1.1  What Is Apache Spark?
Apache Spark is a unified engine for large-scale data analytics. It provides high-level 

application programming interfaces (APIs) for Java, Scala, Python, and R programming 

languages and supports SQL, streaming data, machine learning (ML), and graph 

processing. Spark is a multi-language engine for executing data engineering, data 

science, and machine learning on single-node machines or clusters of computers, either 

on-premise or in the cloud.

© Alfonso Antolínez García 2023 
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Spark provides in-memory computing for intermediate computations, meaning 

data is kept in memory instead of writing it to slow disks, making it faster than Hadoop 

MapReduce, for example. It includes a set of high-level tools and modules such as 

follows: Spark SQL is for structured data processing and access to external data sources 

like Hive; MLlib is the library for machine learning; GraphX is the Spark component 

for graphs and graph-parallel computation; Structured Streaming is the Spark SQL 

stream processing engine; Pandas API on Spark enables Pandas users to work with large 

datasets by leveraging Spark; SparkR provides a lightweight interface to utilize Apache 

Spark from the R language; and finally PySpark provides a similar front end to run 

Python programs over Spark.

There are five key benefits that make Apache Spark unique and bring it to the 

spotlight:

• Simpler to use and operate

• Fast

• Scalable

• Ease of use

• Fault tolerance at scale

Let’s have a look at each of them.

 Simpler to Use and Operate
Spark’s capabilities are accessed via a common and rich API, which makes it possible 

to interact with a unified general-purpose distributed data processing engine via 

different programming languages and cope with data at scale. Additionally, the broad 

documentation available makes the development of Spark applications straightforward.

The Hadoop MapReduce processing technique and distributed computing model 

inspired the creation of Apache Spark. This model is conceptually simple: divide a huge 

problem into smaller subproblems, distribute each piece of the problem among as many 

individual solvers as possible, collect the individual solutions to the partial problems, 

and assemble them in a final result.

Chapter 1  IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS
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 Fast
On November 5, 2014, Databricks officially announced they have won the Daytona 

GraySort contest.1 In this competition, the Databricks team used a Spark cluster of 206 

EC2 nodes to sort 100 TB of data (1 trillion records) in 23 minutes. The previous world 

record of 72 minutes using a Hadoop MapReduce cluster of 2100 nodes was set by 

Yahoo. Summarizing, Spark sorted the same data three times faster with ten times fewer 

machines. Impressive, right?

But wait a bit. The same post also says, “All the sorting took place on disk (HDFS), 

without using Spark’s in-memory cache.” So was it not all about Spark’s in-memory 

capabilities? Apache Spark is recognized for its in-memory performance. However, 

assuming Spark’s outstanding results are due to this feature is one of the most common 

misconceptions about Spark’s design. From its genesis, Spark was conceived to achieve a 

superior performance both in memory and on disk. Therefore, Spark operators perform 

regular operations on disk when data does not fit in memory.

 Scalable
Apache Spark is an open source framework intended to provide parallelized data 

processing at scale. At the same time, Spark high-level functions can be used to carry 

out different data processing tasks on datasets of diverse sizes and schemas. This is 

accomplished by distributing workloads from several servers to thousands of machines, 

running on a cluster of computers and orchestrated by a cluster manager like Mesos 

or Hadoop YARN. Therefore, hardware resources can increase linearly with every new 

computer added. It is worth clarifying that hardware addition to the cluster does not 

necessarily represent a linear increase in computing performance and hence linear 

reduction in processing time because internal cluster management, data transfer, 

network traffic, and so on also consume resources, subtracting them from the effective 

Spark computing capabilities. Despite the fact that running in cluster mode leverages 

Spark’s full distributed capacity, it can also be run locally on a single computer, called 

local mode.

1 www.databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large- 
scale-sorting.html
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If you have searched for information about Spark before, you probably have read 

something like “Spark runs on commodity hardware.” It is important to understand the 

term “commodity hardware.” In the context of big data, commodity hardware does not 

denote low quality, but rather equipment based on market standards, which is general- 

purpose, widely available, and hence affordable as opposed to purpose-built computers.

 Ease of Use
Spark makes the life of data engineers and data scientists operating on large datasets 

easier. Spark provides a single unified engine and API for diverse use cases such as 

streaming, batch, or interactive data processing. These tools allow it to easily cope with 

diverse scenarios like ETL processes, machine learning, or graphs and graph-parallel 

computation. Spark also provides about a hundred operators for data transformation 

and the notion of dataframes for manipulating semi-structured data.

 Fault Tolerance at Scale
At scale many things can go wrong. In the big data context, fault refers to failure, that is to 

say, Apache Spark’s fault tolerance represents its capacity to operate and to recover after 

a failure occurs. In large-scale clustered environments, the occurrence of any kind of 

failure is certain at any time; thus, Spark is designed assuming malfunctions are going to 

appear sooner or later.

Spark is a distributed computing framework with built-in fault tolerance that takes 

advantage of a simple data abstraction named a RDD (Resilient Distributed Dataset) 

that conceals data partitioning and distributed computation from the user. RDDs are 

immutable collections of objects and are the building blocks of the Apache Spark data 

structure. They are logically divided into portions, so they can be processed in parallel, 

across multiple nodes of the cluster.

The acronym RDD denotes the essence of these objects:

• Resilient (fault-tolerant): The RDD lineage or Directed Acyclic Graph 

(DAG) permits the recomputing of lost partitions due to node failures 

from which they are capable of recovering automatically.

• Distributed: RDDs are processes in several nodes in parallel.

Chapter 1  IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS
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• Dataset: It’s the set of data to be processed. Datasets can be the result 

of parallelizing an existing collection of data; loading data from an 

external source such as a database, Hive tables, or CSV, text, or JSON 

files: and creating a RDD from another RDD.

Using this simple concept, Spark is able to handle a wide range of data processing 

workloads that previously needed independent tools.

Spark provides two types of fault tolerance: RDD fault tolerance and streaming 

write-ahead logs. Spark uses its RDD abstraction to handle failures of worker nodes 

in the cluster; however, to control failures in the driver process, Spark 1.2 introduced 

write-ahead logs, to save received data to a fault-tolerant storage, such as HDFS, S3, or a 

similar safeguarding tool.

Fault tolerance is also achieved thanks to the introduction of the so-called DAG, 

or Directed Acyclic Graph, concept. Formally, a DAG is defined as a set of vertices and 

edges. In Spark, a DAG is used for the visual representation of RDDs and the operations 

being performed on them. The RDDs are represented by vertices, while the operations 

are represented by edges. Every edge is directed from an earlier state to a later state. This 

task tracking contributes to making fault tolerance possible. It is also used to schedule 

tasks and for the coordination of the cluster worker nodes.

1.2  Spark Unified Analytics Engine
The idea of platform integration is not new in the world of software. Consider, for 

example, the notion of Customer Relationship Management (CRM) or Enterprise 

Resource Planning (ERP). The idea of unification is rooted in Spark’s design from 

inception. On October 28, 2016, the Association for Computing Machinery (ACM) 

published the article titled “Apache Spark: a unified engine for big data processing.” 

In this article, authors assert that due to the nature of big data datasets, a standard 

pipeline must combine MapReduce, SQL-like queries, and iterative machine learning 

capabilities. The same document states Apache Spark combines batch processing 

capabilities, graph analysis, and data streaming, integrating a single SQL query engine 

formerly split up into different specialized systems such as Apache Impala, Drill, Storm, 

Dremel, Giraph, and others.

Spark’s simplicity resides in its unified API, which makes the development of 

applications easier. In contrast to previous systems that required saving intermediate 

data to a permanent storage to transfer it later on to other engines, Spark incorporates 

Chapter 1  IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS
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many functionalities in the same engine and can execute different modules to the 

same data and very often in memory. Finally, Spark has facilitated the development of 

new applications, such as scaling iterative algorithms, integrating graph querying and 

algorithms in the Spark Graph component.

The value added by the integration of several functionalities into a single system 

can be seen, for instance, in modern smartphones. For example, nowadays, taxi drivers 

have replaced several devices (GPS navigator, radio, music cassettes, etc.) with a single 

smartphone. In unifying the functions of these devices, smartphones have eventually 

enabled new functionalities and service modalities that would not have been possible 

with any of the devices operating independently.

1.3  How Apache Spark Works
We have already mentioned Spark scales by distributing computing workload across a 

large cluster of computers, incorporating fault tolerance and parallel computing. We 

have also pointed out it uses a unified engine and API to manage workloads and to 

interact with applications written in different programming languages.

In this section we are going to explain the basic principles Apache Spark uses to 

perform big data analysis under the hood. We are going to walk you through the Spark 

Application Model, Spark Execution Model, and Spark Cluster Model.

Spark Application Model
In MapReduce, the highest-level unit of computation is the job; in Spark, the highest- 

level unit of computation is the application. In a job we can load data, apply a map 

function to it, shuffle it, apply a reduce function to it, and finally save the information 

to a fault-tolerant storage device. In Spark, applications are self-contained entities that 

execute the user's code and return the results of the computation. As mentioned before, 

Spark can run applications using coordinated resources of multiple computers. Spark 

applications can carry out a single batch job, execute an iterative session composed of 

several jobs, or act as a long-lived streaming server processing unbounded streams of 

data. In Spark, a job is launched every time an application invokes an action.

Unlike other technologies like MapReduce, which starts a new process for each task, 

Spark applications are executed as independent processes under the coordination of the 

SparkSession object running in the driver program. Spark applications using iterative 

Chapter 1  IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS
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algorithms benefit from dataset caching capabilities among other operations. This is 

feasible because those algorithms conduct repetitive operations on data. Finally, Spark 

applications can maintain steadily running processes on their behalf in cluster nodes 

even when no job is being executed, and multiple applications can run on top of the 

same executor. The former two characteristics combined leverage Spark rapid startup 

time and in-memory computing.

Spark Execution Model
The Spark Execution Model contains vital concepts such as the driver program, 

executors, jobs, tasks, and stages. Understanding of these concepts is of paramount 

importance for fast and efficient Spark application development. Inside Spark, tasks 

are the smallest execution unit and are executed inside an executor. A task executes 

a limited number of instructions. For example, loading a file, filtering, or applying a 

map() function to the data could be considered a task. Stages are collections of tasks 

running the same code, each of them in different chunks of a dataset. For example, the 

use of functions such as reduceByKey(), Join(), etc., which require a shuffle or reading 

a dataset, will trigger in Spark the creation of a stage. Jobs, on the other hand, comprise 

several stages.

Next, due to their relevance, we are going to study the concepts of the driver program 

and executors together with the Spark Cluster Model.

Spark Cluster Model
Apache Spark running in cluster mode has a master/worker hierarchical architecture 

depicted in Figure 1-1 where the driver program plays the role of master node. The Spark 

Driver is the central coordinator of the worker nodes (slave nodes), and it is responsible 

for delivering the results back to the client. Workers are machine nodes that run 

executors. They can host one or multiple workers, they can execute only one JVM (Java 

Virtual Machine) per worker, and each worker can generate one or more executors as 

shown in Figure 1-2.

The Spark Driver generates the SparkContext and establishes the communication 

with the Spark Execution environment and with the cluster manager, which provides 

resources for the applications. The Spark Framework can adopt several cluster 

managers: Spark’s Standalone Cluster Manager, Apache Mesos, Hadoop YARN, or 

Kubernetes. The driver connects to the different nodes of the cluster and starts processes 
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called executors, which provide computing resources and in-memory storage for RDDs. 

After resources are available, it sends the applications’ code (JAR or Python files) to the 

executors acquired. Finally, the SparkContext sends tasks to the executors to run the 

code already placed in the workers, and these tasks are launched in separate processor 

threads, one per worker node core. The SparkContext is also used to create RDDs.

In order to provide applications with logical fault tolerance at both sides of the 

cluster, each driver schedules its own tasks and each task, running in every executor, 

executes its own JVM (Java Virtual Machine) processes, also called executor processes. 

By default executors run in static allocation, meaning they keep executing for the entire 

lifetime of a Spark application, unless dynamic allocation is enabled. The driver, to keep 

track of executors’ health and status, receives regular heartbeats and partial execution 

metrics for the ongoing tasks (Figure 1-3). Heartbeats are periodic messages (every 10 s 

by default) from the executors to the driver.

Figure 1-1. Apache Spark cluster mode overview
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Figure 1-2. Spark communication architecture with worker nodes and executors 

This Execution Model also has some downsides. Data cannot be exchanged between 

Spark applications (instances of the SparkContext) via the in-memory computation 

model, without first saving the data to an external storage device.

As mentioned before, Spark can be run with a wide variety of cluster managers. 

That is possible because Spark is a cluster-agnostic platform. This means that as long as 

a cluster manager is able to obtain executor processes and to provide communication 

among the architectural components, it is suitable for the purpose of executing Spark. 

That is why communication between the driver program and worker nodes must be 

available at all times, because the former must acquire incoming connections from the 

executors for as long as applications are executing on them.

Figure 1-3. Spark’s heartbeat communication between executors and the driver
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1.4  Apache Spark Ecosystem
The Apache Spark ecosystem is composed of a unified and fault-tolerant core engine, 

on top of which are four higher-level libraries that include support for SQL queries, data 

streaming, machine learning, and graph processing. Those individual libraries can be 

assembled in sophisticated workflows, making application development easier and 

improving productivity.

 Spark Core
Spark Core is the bedrock on top of which in-memory computing, fault tolerance, and 

parallel computing are developed. The Core also provides data abstraction via RDDs 

and together with the cluster manager data arrangement over the different nodes of the 

cluster. The high-level libraries (Spark SQL, Streaming, MLlib for machine learning, and 

GraphX for graph data processing) are also running over the Core.

 Spark APIs
Spark incorporates a series of application programming interfaces (APIs) for different 

programming languages (SQL, Scala, Java, Python, and R), paving the way for the 

adoption of Spark by a great variety of professionals with different development, data 

science, and data engineering backgrounds. For example, Spark SQL permits the 

interaction with RDDs as if we were submitting SQL queries to a traditional relational 

database. This feature has facilitated many transactional database administrators and 

developers to embrace Apache Spark.

Let’s now review each of the four libraries in detail.

 Spark SQL and DataFrames and Datasets
Apache Spark provides a data programming abstraction called DataFrames integrated into 

the Spark SQL module. If you have experience working with Python and/or R dataframes, 

Spark DataFrames could look familiar to you; however, the latter are distributable across 

multiple cluster workers, hence not constrained to the capacity of a single computer. Spark 

was designed to tackle very large datasets in the most efficient way.

A DataFrame looks like a relational database table or Excel spreadsheet, with 

columns of different data types, headers containing the names of the columns, and data 

stored as rows as shown in Table 1-1.
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Table 1-1. Representation of a DataFrame as a Relational Table or Excel 

Spreadsheet

firstName lastName profession birthPlace

antonio dominguez Bandera actor Málaga

rafael nadal parera tennis player Mallorca

amancio ortega gaona Businessman Busdongo de arbas

pablo ruiz picasso painter Málaga

Blas de Lezo admiral pasajes

Miguel Serveto y Conesa Scientist/theologist Villanueva de Sigena

On the other hand, Figure 1-4 depicts an example of a DataFrame.

Figure 1-4. Example of a DataFrame

A Spark DataFrame can also be defined as an integrated data structure optimized 

for distributed big data processing. A Spark DataFrame is also a RDD extension with 

an easy-to-use API for simplifying writing code. For the purposes of distributed data 

processing, the information inside a Spark DataFrame is structured around schemas. 

Spark schemas contain the names of the columns, the data type of a column, and its 

nullable properties. When the nullable property is set to true, that column accepts 

null values.

SQL has been traditionally the language of choice for many business analysts, data 

scientists, and advanced users to leverage data. Spark SQL allows these users to query 

structured datasets as they would have done if they were in front of their traditional data 

source, hence facilitating adoption.
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On the other hand, in Spark a dataset is an immutable and a strongly typed data 

structure. Datasets, as DataFrames, are mapped to a data schema and incorporate type 

safety and an object-oriented interface. The Dataset API converts between JVM objects 

and tabular data representation taking advantage of the encoder concept. This tabular 

representation is internally stored in a binary format called Spark Tungsten, which 

improves operations in serialized data and improves in-memory performance.

Datasets incorporate compile-time safety, allowing user-developed code to be error- 

tested before the application is executed. There are several differences between datasets 

and dataframes. The most important one could be datasets are only available to the Java 

and Scala APIs. Python or R applications cannot use datasets.

 Spark Streaming
Spark Structured Streaming is a high-level library on top of the core Spark SQL engine. 

Structured Streaming enables Spark’s fault-tolerant and real-time processing of 

unbounded data streams without users having to think about how the streaming takes 

place. Spark Structured Streaming provides fault-tolerant, fast, end-to-end, exactly-once, 

at-scale stream processing. Spark Streaming permits express streaming computation 

in the same fashion as static data is computed via batch processing. This is achieved 

by executing the streaming process incrementally and continuously and updating the 

outputs as the incoming data is ingested.

With Spark 2.3, a new low-latency processing mode called continuous processing 

was introduced, achieving end-to-end latencies of as low as 1 ms, ensuring at-least- 

once2 message delivery. The at-least-once concept is depicted in Figure 1-5. By default, 

Structured Streaming internally processes the information as micro-batches, meaning 

data is processed as a series of tiny batch jobs.

Figure 1-5. Depiction of the at-least-once message delivery semantic

2 With the at-least-once message delivery semantic, a message can be delivered more than once; 
however, no message can be lost.
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Spark Structured Streaming also uses the same concepts of datasets and DataFrames 

to represent streaming aggregations, event-time windows, stream-to-batch joins, etc. 

using different programming language APIs (Scala, Java, Python, and R). It means 

the same queries can be used without changing the dataset/DataFrame operations, 

therefore choosing the operational mode that best fits our application requirements 

without modifying the code.

Spark’s machine learning (ML) library is commonly known as MLlib, though it is not 

its official name. MLlib’s goal is to provide big data out-of-the-box, easy-to-use machine 

learning capabilities. At a high level, it provides capabilities such as follows:

• Machine learning algorithms like classification, clustering, 

regression, collaborative filtering, decision trees, random forests, and 

gradient-boosted trees among others

• Featurization:

• Term Frequency-Inverse Document Frequency (TF-IDF) 

statistical and feature vectorization method for natural language 

processing and information retrieval.

• Word2vec: It takes text corpus as input and produces the word 

vectors as output.

• StandardScaler: It is a very common tool for pre-processing steps 

and feature standardization.

• Principal component analysis, which is an orthogonal 

transformation to convert possibly correlated variables.

• Etc.

• ML Pipelines, to create and tune machine learning pipelines

• Predictive Model Markup Language (PMML), to export 

models to PMML

• Basic Statistics, including summary statistics, correlation between 

series, stratified sampling, etc.

As of Spark 2.0, the primary Spark Machine Learning API is the DataFrame-based 

API in the spark.ml package, switching from the traditional RDD-based APIs in the 

spark.mllib package.
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 Spark GraphX
GraphX is a new high-level Spark library for graphs and graph-parallel computation 

designed to solve graph problems. GraphX extends the Spark RDD capabilities by 

introducing this new graph abstraction to support graph computation and includes a 

collection of graph algorithms and builders to optimize graph analytics.

The Apache Spark ecosystem described in this section is portrayed in Figure 1-6.

Figure 1-6. The Apache Spark ecosystem

In Figure 1-7 we can see the Apache Spark ecosystem of connectors.

Figure 1-7. Apache Spark ecosystem of connectors
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1.5  Batch vs. Streaming Data
Nowadays, the world generates boundless amounts of data, and it continues to augment 

at an astonishing rate. It is expected the volume of information created, captured, 

copied, and consumed worldwide from 2010 to 2025 will exceed 180 ZB.3 If this figure 

does not say much to you, imagine your personal computer or laptop has a hard disk of 

1 TB (which could be considered a standard in modern times). It would be necessary for 

you to have 163,709,046,319.13 disks to store such amount of data.4

Presently, data is rarely static. Remember the famous three Vs of big data:

• Volume

The unprecedented explosion of data production means that 

storage is no longer the real challenge, but to generate actionable 

insights from within gigantic datasets.

• Velocity

Data is generated at an ever-accelerating pace, posing the 

challenge for data scientists to find techniques to collect, process, 

and make use of information as it comes in.

• Variety

Big data is disheveled, sources of information heterogeneous, and 

data formats diverse. While structured data is neatly arranged 

within tables, unstructured data is information in a wide variety 

of forms without following predefined data models, making it 

difficult to store in conventional databases. The vast majority of 

new data being generated today is unstructured, and it can be 

human-generated or machine-generated. Unstructured data is 

more difficult to deal with and extract value from. Examples of 

unstructured data include medical images, video, audio files, 

sensors, social media posts, and more.

3 www.statista.com/statistics/871513/worldwide-data-created/
4 1 zettabyte = 1021 bytes.
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For businesses, data processing is critical to accelerate data insights obtaining deep 

understanding of particular issues by analyzing information. This deep understanding 

assists organizations in developing business acumen and turning information into 

actionable insights. Therefore, it is relevant enough to trigger actions leading us 

to improve operational efficiency, gain competitive advantage, leverage revenue, 

and increase profits. Consequently, in the face of today's and tomorrow's business 

challenges, analyzing data is crucial to discover actionable insights and stay afloat and 

profitable.

It is worth mentioning there are significant differences between data insights, data 

analytics, and just data, though many times they are used interchangeably. Data can be 

defined as a collection of facts, while data analytics is about arranging and scrutinizing 

the data. Data insights are about discovering patterns in data. There is also a hierarchical 

relationship between these three concepts. First, information must be collected and 

organized, only after it can be analyzed and finally data insights can be extracted. This 

hierarchy can be graphically seen in Figure 1-8.

Figure 1-8. Hierarchical relationship between data, data analytics, and data 
insight extraction

When it comes to data processing, there are many different methodologies, though 

stream and batch processing are the two most common ones. In this section, we will 

explain the differences between these two data processing techniques. So let's define 

batch and stream processing before diving into the details.
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 What Is Batch Data Processing?
Batch data processing can be defined as a computing method of executing high-volume 

data transactions in repetitive batches in which the data collection is separate from 

the processing. In general, batch jobs do not require user interaction once the process 

is initiated. Batch processing is particularly suitable for end-of-cycle treatment of 

information, such as warehouse stock update at the end of the day, bank reconciliation, 

or monthly payroll calculation, to mention some of them.

Batch processing has become a common part of the corporate back office processes, 

because it provides a significant number of advantages, such as efficiency and data 

quality due to the lack of human intervention. On the other hand, batch jobs have some 

cons. The more obvious one could be they are complex and critical because they are part 

of the backbone of the organizations. As a result, developing sophisticated batch jobs 

can be expensive up front in terms of time and resources, but in the long run, they pay 

the investment off.

Another disadvantage of batch data processing is that due to its large scale and 

criticality, in case of a malfunction, significant production shutdowns are likely to occur. 

Batch processes are monolithic in nature; thus, in case of rise in data volumes or peaks of 

demand, they cannot be easily adapted.

 What Is Stream Data Processing?
Stream data processing could be characterized as the process of collecting, 

manipulating, analyzing, and delivering up-to-date information and keeping the state of 

data updated while it is still in motion. It could also be defined as a low-latency way of 

collecting and processing information while it is still in transit. With stream processing, 

the data is processed in real time; thus, there is no delay between data collection and 

processing and providing instant response.

Stream processing is particularly suitable when data comes in as a continuous 

flow while changing over time, with high velocity, and real-time analytics is needed 

or response to an event as soon as it occurs is mandatory. Stream data processing 

leverages active intelligence, owning in-the-moment consciousness about important 

business events and enabling triggering instantaneous actions. Analytics is performed 

instantly on the data or within a fraction of a second; thus, it is perceived by the user as 

a real-time update. Some examples where stream data processing is the best option are 
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credit card fraud detection, real-time system security monitoring, or the use of Internet- 

of- Things (IoT) sensors. IoT devices permit monitoring anomalies in machinery and 

provide control with a heads-up as soon as anomalies or outliers5 are detected. Social 

media and customer sentiment analysis are other trendy fields of stream data processing 

application.

One of the main disadvantages of stream data processing is implementing it at scale. 

In real life data streaming is far away from being perfect, and often data does not flow 

regularly or smoothly. Imagine a situation in which data flow is disrupted and some 

data is missing or broken down. Then, after normal service is restored, that missing or 

broken-down information suddenly arrives at the platform, flooding the processing 

system. To be able to cope with situations like this, streaming architectures require spare 

capacity of computing, communications, and storage.

 Difference Between Stream Processing 
and Batch Processing
Summarizing, we could say that stream processing involves the treatment and analysis 

of data in motion in real or almost-real time, while batch processing entails handling and 

analyzing static information at time intervals.

In batch jobs, you manipulate information produced in the past and consolidated in 

a permanent storage device. It is also what is commonly known as information at rest.

In contrast, stream processing is a low-latency solution, demanding the analysis of 

streams of information while it is still in motion. Incoming data requires to be processed 

in flight, in real or almost-real time, rather than saved in a permanent storage. Given 

that data is consumed as it is generated, it provides an up-to-the-minute snapshot of the 

information, enabling a proactive response to events. Another difference between batch 

and stream processing is that in stream processing only the information considered 

relevant for the process being analyzed is stored from the very beginning. On the other 

hand, data considered of no immediate interest can be stored in low-cost devices for 

ulterior analysis with data mining algorithms, machine learning models, etc.

A graphical representation of batch vs. stream data processing is shown in Figure 1-9.

5 Parameters out of defined thresholds.
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Figure 1-9. Batch vs. streaming processing representation

1.6  Summary
In this chapter we briefly looked at the Apache Spark architecture, implementation, and 

ecosystem of applications. We also covered the two different types of data processing 

Spark can deal with, batch and streaming, and the main differences between them. 

In the next chapter, we are going to go through the Spark setup process, the Spark 

application concept, and the two different types of Apache Spark RDD operations: 

transformations and actions.
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CHAPTER 2

Getting Started with 
Apache Spark
Now that you have an understanding of what Spark is and how it works, we can get you 

set up to start using it. In this chapter, I’ll provide download and installation instructions 

and cover Spark command-line utilities in detail. I’ll also review Spark application 

concepts, as well as transformations, actions, immutability, and lazy evaluation.

2.1  Downloading and Installing Apache Spark
The first step you have to take to have your Spark installation up and running is to go to 

the Spark download page and choose the Spark release 3.3.0. Then, select the package 

type “Pre-built for Apache Hadoop 3.3 and later” from the drop-down menu in step 2, 

and click the “Download Spark” link in step 3 (Figure 2-1).

Figure 2-1. The Apache Spark download page

© Alfonso Antolínez García 2023 
A. Antolínez  García, Hands-on Guide to Apache Spark 3, https://doi.org/10.1007/978-1-4842-9380-5_2
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This will download the file spark-3.3.0-bin-hadoop3.tgz or another similar name 

in your case, which is a compressed file that contains all the binaries you will need to 

execute Spark in local mode on your local computer or laptop.

What is great about setting Apache Spark up in local mode is that you don’t need 

much work to do. We basically need to install Java and set some environment variables. 

Let’s see how to do it in several environments.

 Installation of Apache Spark on Linux
The following steps will install Apache Spark on a Linux system. It can be Fedora, 

Ubuntu, or another distribution.

 Step 1: Verifying the Java Installation

Java installation is mandatory in installing Spark. Type the following command in a 

terminal window to verify Java is available and its version:

$ java -version

If Java is already installed on your system, you get to see a message similar to the 

following:

$ java -version

java version "18.0.2" 2022-07-19

Java(TM) SE Runtime Environment (build 18.0.2+9-61)

Java HotSpot(TM) 64-Bit Server VM (build 18.0.2+9-61, mixed mode, sharing)

Your Java version may be different. Java 18 is the Java version in this case.

If you don’t have Java installed

 1. Open a browser window, and navigate to the Java download page 

as seen in Figure 2-2.
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Figure 2-2. Java download page

 2. Click the Java file of your choice and save the file to a location (e.g., 

/home/<user>/Downloads).

 Step 2: Installing Spark

Extract the Spark .tgz file downloaded before. To unpack the spark-3.3.0-bin-hadoop3.tgz file 

in Linux, open a terminal window, move to the location in which the file was downloaded

$ cd PATH/TO/spark-3.3.0-bin-hadoop3.tgz_location

and execute

$ tar -xzvf ./spark-3.3.0-bin-hadoop3.tgz
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 Step 3: Moving Spark Software Files

You can move the Spark files to an installation directory such as /usr/local/spark:

$ su -

Password:

$ cd /home/<user>/Downloads/

$ mv spark-3.3.0-bin-hadoop3 /usr/local/spark

$ exit

 Step 4: Setting Up the Environment for Spark

Add the following lines to the ~/.bashrc file. This will add the location of the Spark 

software files and the location of binary files to the PATH variable:

export SPARK_HOME=/usr/local/spark

export PATH=$PATH:$SPARK_HOME/bin

Use the following command for sourcing the ~/.bashrc file, updating the 

environment variables:

$ source ~/.bashrc

 Step 5: Verifying the Spark Installation

Write the following command for opening the Spark shell:

$ $SPARK_HOME/bin/spark-shell

If Spark is installed successfully, then you will find the following output:

Setting default log level to "WARN".

To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use 

setLogLevel(newLevel).

22/08/29 22:16:45 WARN NativeCodeLoader: Unable to load native-hadoop 

library for your platform... using builtin-java classes where applicable

22/08/29 22:16:46 WARN Utils: Service 'SparkUI' could not bind on port 

4040. Attempting port 4041.

Spark context Web UI available at http://192.168.0.16:4041
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Spark context available as 'sc' (master = local[*], app id = 

local-1661804206245).

Spark session available as 'spark'.

Welcome to

      ____               __

      / __/__  ___ _____/ /__

      _\ \/ _ \/ _ `/ __/  '_/

   /___/ .__/\_,_/_/ /_/\_\   version 3.3.0

      /_/

Using Scala version 2.12.15 (Java HotSpot(TM) 64-Bit Server VM, 

Java 18.0.2)

Type in expressions to have them evaluated.

Type :help for more information.

scala>

You can try the installation a bit further by taking advantage of the README.md file 

that is present in the $SPARK_HOME directory:

scala> val readme_file = sc.textFile("/usr/local/spark/README.md")

readme_file: org.apache.spark.rdd.RDD[String] = /usr/local/spark/README.md 

MapPartitionsRDD[1] at textFile at <console>:23

The Spark context Web UI would be available typing the following URL in your 

browser:

http://localhost:4040

There, you can see the jobs, stages, storage space, and executors that are used for 

your small application. The result can be seen in Figure 2-3.
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Figure 2-3. Apache Spark Web UI showing jobs, stages, storage, environment, and 
executors used for the application running on the Spark shell

 Installation of Apache Spark on Windows
In this section I will show you how to install Apache Spark on Windows 10 and test the 

installation. It is important to notice that to perform this installation, you must have a 

user account with administrator privileges. This is mandatory to install the software and 

modify system PATH.

 Step 1: Java Installation

As we did in the previous section, the first step you should take is to be sure you have 

Java installed and it is accessible by Apache Spark. You can verify Java is installed using 

the command line by clicking Start, typing cmd, and clicking Command Prompt. Then, 

type the following command in the command line:

java -version

If Java is installed, you will receive an output similar to this:

openjdk version "18.0.2.1" 2022-08-18

OpenJDK Runtime Environment (build 18.0.2.1+1-1)

OpenJDK 64-Bit Server VM (build 18.0.2.1+1-1, mixed mode, sharing)
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If a message is instead telling you that command is unknown, Java is not installed or 

not available. Then you have to proceed with the following steps.

Install Java. In this case we are going to use OpenJDK as a Java Virtual Machine. You 

have to download the binaries that match your operating system version and hardware. 

For the purposes of this tutorial, we are going to use OpenJDK JDK 18.0.2.1, so I have 

downloaded the openjdk-18.0.2.1_windows-x64_bin.zip file. You can use other Java 

distributions as well.

Download the file, save it, and unpack the file in a directory of your choice. You can 

use any unzip utility to do it.

 Step 2: Download Apache Spark

Open a web browser and navigate to the Spark downloads URL and follow the same 

instructions given in Figure 2-1.

To unpack the spark-3.3.0-bin-hadoop3.tgz file, you will need a tool capable of 

extracting .tgz files. You can use a free tool like 7-Zip, for example.

Verify the file integrity. It is always a good practice to confirm the checksum of a 

downloaded file, to be sure you are working with unmodified, uncorrupted software. In 

the Spark download page, open the checksum link and copy or remember (if you can) 

the file’s signature. It should be something like this (string not complete):

1e8234d0c1d2ab4462 ... a2575c29c    spark-3.3.0-bin-hadoop3.tgz

Next, open a command line and enter the following command:

certutil -hashfile PATH\TO\spark-3.3.0-bin-hadoop3.tgz SHA512

You must see the same signature you copied before; if not, something is wrong. Try 

to solve it by downloading the file again.

 Step 3: Install Apache Spark

Installing Apache Spark is just extracting the downloaded file to the location of your 

choice, for example, C:\spark or any other.
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 Step 4: Download the winutils File for Hadoop

Create a folder named Hadoop and a bin subfolder, for example, C:\hadoop\bin, and 

download the winutils.exe file for the Hadoop 3 version you downloaded before to it.

 Step 5: Configure System and Environment Variables

Configuring environment variables in Windows means adding to the system 

environment and PATH the Spark and Hadoop locations; thus, they become accessible 

to any application.

You should go to Control Panel ➤ System and Security ➤ System. Then Click 

“Advanced system settings” as shown in Figure 2-4.

Figure 2-4. Windows advanced system settings

You will be prompted with the System Properties dialog box, Figure 2-5 left:

 1. Click the Environment Variables button.

 2. The Environment Variables window appears, Figure 2-5 top-right:

 a. Click the New button.
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 3. Insert the following variables:

 a. JAVA_HOME: \PATH\TO\YOUR\JAVA-DIRECTORY

 b. SPARK_HOME: \PATH\TO\YOUR\SPARK-DIRECTORY

 c. HADOOP_HOME: \PATH\TO\YOUR\HADOOP-DIRECTORY

You will have to repeat the previous step twice, to introduce the 

three variables.

 4. Click the OK button to save the changes.

 5. Then, click your Edit button, Figure 2-6 left, to edit your PATH.

Figure 2-5. Environment variables
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 6. After that, click the New button, Figure 2-6 right.

And add these new variables to the PATH:

 a. %JAVA_HOME%\bin

 b. %SPARK_HOME%\bin

 c. %HADOOP_HOME%bin

Configure system and environment variables for all the 
computer’s users.

 7. If you want to add those variables for all the users of your 

computer, apart from the user performing this installation, you 

should repeat all the previous steps for the System variables, 

Figure 2-6 bottom-left, clicking the New button to add the 

environment variables and then clicking the Edit button to add 

them to the system PATH, as you did before.

Figure 2-6. Add variables to the PATH
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Verify the Spark installation.
If you execute spark-shell for the first time, you will see a great bunch 

of informational messages. This is probably going to distract you and 

make you fear something went wrong. To avoid these messages and 

concentrate only on possible error messages, you are going to configure 

the Spark logging parameters.

Go to your %SPARK_HOME%\conf directory and find a file named log4j2.

properties.template, and rename it as log4j2.properties. Open the file with Notepad 

or another editor.

Find the line

rootLogger.level = info

And change it as follows:

rootLogger.level = ERROR

After that, save it and close it.

Open a cmd terminal window and type spark-shell. If the installation went well, 

you will see something similar to Figure 2-7.

Figure 2-7. spark-shell window
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To carry out a more complete test of the installation, let’s try the following code:

val file =sc.textFile("C:\\PATH\\TO\\YOUR\\spark\\README.md")

This will create a RDD. You can view the file’s content by using the next instruction:

file.take(10).foreach(println)

You can see the result in Figure 2-8.

Figure 2-8. spark-shell test code

To exit spark-shell, you can press Ctrl-D in the Command Prompt window or 

type :q.

Open a web browser and type the URL http://localhost:4040/. You can also use the 

name of your computer, instead of localhost. You should see an Apache Spark Web UI 

similar to the one shown in Figure 2-9. The following example shows the Executors page.
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Figure 2-9. Apache Spark Web UI

If you have Python installed, you can run PySpark with this command:

pyspark

The PySpark Command Prompt window can be closed using quit().

2.2  Hands-On Spark Shell
Apache Spark comes with a series of command-line utilities through which you can 

interact with Spark’s APIs. Spark provides shell utilities for several programming 

languages such as spark-shell for Scala, pyspark for Python, spark-sql for SQL, and 

sparkR for the R language.

Spark also supplies other specialized command-line tools like spark-submit, 

run- example, and spark-class. You can use spark-submit to execute self-contained 

applications written in Java, Scala, Python, or R using the Spark API and submit them 

to the different Spark cluster managers (YARN, Kubernetes, Mesos, and Standalone), 

supplying execution time options and configurations. Apache Spark comes with several 

examples coded in Scala, Java, Python, and R, which are located in the examples 

directory. The shell spark-example can be used to run examples written in Scala 

and Java:

#For Scala and Java examples:

$ $SPARK_HOME/bin/run-example SparkPi
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For examples written in Python or R, you can use spark-submit directly:

#For Python examples:

$ $SPARK_HOME/bin/spark-submit examples/src/main/python/pi.py

#For R examples:

$ $SPARK_HOME/bin/spark-submit examples/src/main/r/dataframe.R

 Using the Spark Shell Command
The Spark shell is an interactive command-line environment to interact with Spark 

from the command line. The Spark shell is known as a REPL (Read-Eval-Print Loop) 

shell interface. A REPL interface reads each input line, evaluates it, and returns the 

result. It is mostly used to run ad hoc queries against a Spark cluster. The Spark shell is 

a very convenient tool to debug your software and explore new features while getting 

immediate feedback. There are specific shell scripts for different languages such as 

spark-shell to launch the Spark Scala shell; pyspark for Spark with Python, also called 

PySpark; and sparkr to submit R language programs to Spark.

 The Scala Shell Command Line

One of the main features of the Spark shell is that it creates the SparkSession and 

SparkContext for you. You can access the SparkSession and SparkContext through their 

objects, spark for the former and sc for the latter.

Remember you can start the spark-shell script by executing

$SPARK_HOME/bin/spark-shell

~ % spark-shell

Setting default log level to "WARN".

To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use 

setLogLevel(newLevel).

Spark context Web UI available at http://192.168.0.16:4040

Spark context available as 'sc' (master = local[*], app id = 

local-1662487353802).

Spark session available as 'spark'.

Welcome to
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      ____              __

      / __/__  ___ _____/ /__

      _\ \/ _ \/ _ `/ __/  '_/

   /___/ .__/\_,_/_/ /_/\_\   version 3.3.0

      /_/

Using Scala version 2.12.15 (Java HotSpot(TM) 64-Bit Server VM, 

Java 18.0.2)

Type in expressions to have them evaluated.

Type :help for more information.

scala>

This automatically instantiates the SparkSession as spark and SparkContext as sc:

scala> :type spark

org.apache.spark.sql.SparkSession

scala> :type sc

org.apache.spark.SparkContext

You can access environment variables from the shell using the getenv method as 

System.getenv('ENV_NAME'), for example:

scala> System.getenv("PWD")

res12: String = /Users/aantolinez

spark-shell also provides online help by typing

scala> :help

All commands can be abbreviated, e.g., :he instead of :help.

:completions <string> output completions for the given string

:edit <id>|<line>     edit history

:help [command]       print this summary or command-specific help

:history [num]        show the history (optional num is commands to show)

:h? <string>          search the history

...

...

:save <path>          save replayable session to a file

:settings <options>   update compiler options, if possible; see reset
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:silent               disable/enable automatic printing of results

:warnings             show the suppressed warnings from the most recent 

line which had any

scala>

Please, do not confuse the inline help provided by :help with spark-shell runtime 

options shown by the spark-shell -h option.

The -h option permits passing runtime environment options to the shell, allowing 

a flexible execution of your application, depending on the cluster configuration. Let’s 

see some examples in which we run Apache Spark with Apache Hudi; set the cluster 

manager (YARN), the deployment mode, and the number of cores per executor; and 

allocate the memory available for the driver and executors:

$SPARK_HOME/bin/spark-shell \

--master yarn \

--deploy-mode cluster \

--driver-memory 16g \

--executor-memory 32g \

--executor-cores 4  \

--conf "spark.sql.shuffle.partitions=1000" \

--conf "spark.executor.memoryOverhead=4024" \

--conf "spark.memory.fraction=0.7" \

--conf "spark.memory.storageFraction=0.3" \

--packages org.apache.hudi:hudi-spark3.3-bundle_2.12:0.12.0 \

--conf "spark.serializer=org.apache.spark.serializer.KryoSerializer" \

--conf "spark.sql.catalog.spark_catalog=org.apache.spark.sql.hudi.catalog.

HoodieCatalog" \

--conf "spark.sql.extensions=org.apache.spark.sql.hudi.

HoodieSparkSessionExtension"

In the next example, we define at runtime the database driver and version we would 

like to be used:

$SPARK_HOME/bin/spark-shell \

--master yarn \

--deploy-mode cluster \

--driver-memory 16g \
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--executor-memory 32g \

--executor-cores 4  \

--driver-class-path /path/to/postgresql-42.5.0.jar \

--conf "spark.sql.shuffle.partitions=1000" \

--conf "spark.executor.memoryOverhead=4024" \

--conf "spark.memory.fraction=0.7" \

--conf "spark.memory.storageFraction=0.3" \

Another important spark-shell feature is that, by default, it starts using local[*] 

as master and assigns a spark.app.id with local-xxx schema and a spark.app.

name="Spark shell". All the properties set by default and environment variables used in 

the running environment can be examined by looking at the Web UI launched by spark- 

shell and accessible via the URL http://localhost:4040/environment/ as can be seen in 

Figure 2-10.

Figure 2-10. The Apache Spark Web UI on port 4040

As mentioned before, you can run interactive applications by typing your code in the 

command line. For example, let’s create a dataframe from a data sequence:

scala> import spark.implicits._

import spark.implicits._

scala> val cars=Seq(("USA","Chrysler","Dodge","Jeep"),("Germany","BMW","VW",

"Mercedes"),("Spain", "GTA Spano","SEAT","Hispano Suiza"))
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cars: Seq[(String, String, String, String)] = 

List((USA,Chrysler,Dodge,Jeep), (Germany,BMW,VW,Mercedes), (Spain,GTA 

Spano,SEAT,Hispano Suiza))

scala> val cars_df = cars.toDF()

cars_df: org.apache.spark.sql.DataFrame = [_1: string, _2: string ... 2 

more fields]

scala> cars_df.show()

+-------+---------+-----+-------------+

|     _1|       _2|   _3|           _4|

+-------+---------+-----+-------------+

|    USA| Chrysler|Dodge|         Jeep|

|Germany|      BMW|   VW|     Mercedes|

|  Spain|GTA Spano| SEAT|Hispano Suiza|

+-------+---------+-----+-------------+

The following is a practical example of how spark-shell can be used to retrieve 

information from a production database:

scala> val df_postgresql = spark.read.format("jdbc").option("url", 

"jdbc:postgresql://ec2-52-77-8-54.us-west-1.compute.amazonaws.com:5432/

db").option("driver", "org.postgresql.Driver").option("dbtable","schema.

table").option("user","user_password").option("password", "your_db_

password_here").load()

df_postgresql: org.apache.spark.sql.DataFrame = [category_id: smallint, 

category_name: string ... 2 more fields]

scala> df_postgresql.show()

+-----------+--------------+--------------------+-------+

|category_id| category_name|         description|picture|

+-----------+--------------+--------------------+-------+

|          1|     Beverages|Soft drinks, coff...|     []|

|          2|    Condiments|Sweet and savory ...|     []|

|          3|   Confections|Desserts, candies...|     []|

|          4|Dairy Products|             Cheeses|     []|
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|          5|Grains/Cereals|Breads, crackers,...|     []|

|          6|  Meat/Poultry|      Prepared meats|     []|

|          7|       Produce|Dried fruit and b...|     []|

|          8|       Seafood|    Seaweed and fish|     []|

+-----------+--------------+--------------------+-------+

Finally, to leave spark-shell, you just need to type :q.

 The Pyspark Shell Command Line

If you prefer programming with Python, you can invoke the pyspark shell. As with 

spark-shell, you can run it by typing in a terminal:

$SPARK_HOME/bin/pyspark

~ % pyspark

Python 3.6.12 (default, May 18 2021, 22:47:55)

[GCC 4.8.5 20150623 (Red Hat 4.8.5-28)] on linux

Type "help", "copyright", "credits" or "license" for more information.

SLF4J: Class path contains multiple SLF4J bindings.

SLF4J: Found binding in [jar:file:/usr/share/aws/glue/etl/jars/glue- 

assembly.jar!/org/slf4j/impl/StaticLoggerBinder.class]

...

...

22/09/07 16:30:26 WARN Client: Same path resource file:///usr/share/aws/

glue/libs/pyspark.zip added multiple times to distributed cache.

Welcome to

      ____               __

      / __/__  ___ _____/ /__

      _\ \/ _ \/ _ `/ __/  '_/

   /__ / .__/\_,_/_/ /_/\_\   version 3.3.0

      /_/

Using Python version 3.6.12 (default, May 18 2021 22:47:55)

SparkSession available as 'spark'.

>>>
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As with spark-shell, the pyspark shell automatically creates a SparkSession 

accessible as spark and a SparkContext available through the variable sc. It also sets 

up a shell Web UI server with URL http://localhost:4040/. By default, it uses port 4040; 

however, if this port couldn’t bind, ports 4041, 4042, and so on will be explored until one 

is found that binds.

As mentioned before with spark-shell, you can run interactive applications in 

spark by typing your code in the command line. In the following example, we create a 

dataframe from a list of tuples:

>> cars = [("USA","Chrysler","Dodge","Jeep"),("Germany","BMW","VW", 

"Mercedes"),("Spain", "GTA Spano","SEAT","Hispano Suiza")]

>> cars_df = spark.createDataFrame(cars)

>> cars_df.show()

+-------+---------+-----+-------------+

|     _1|       _2|   _3|           _4|

+-------+---------+-----+-------------+

|    USA| Chrysler|Dodge|         Jeep|

|Germany|      BMW|   VW|     Mercedes|

|  Spain|GTA Spano| SEAT|Hispano Suiza|

+-------+---------+-----+-------------+

The pyspark shell also admits runtime configuration parameters. The following is an 

example of pyspark executed with configuration options:

$SPARK_HOME/bin/pyspark \

--master yarn \

--deploy-mode client \

--executor-memory 16G \

--executor-cores 8 \

--conf spark.sql.parquet.mergeSchema=true \

--conf spark.sql.parquet.filterPushdown=true \

--conf spark.sql.parquet.writeLegacyFormat=false Hands_On_Spark3_Script.py 

> ./Hands_On_Spark3_Script.log 2>&1 &

Unlike spark-shell, to leave pyspark, you can type in your terminal one of the 

commands quit() and exit() or press Ctrl-D.
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 Running Self-Contained Applications 
with the spark- submit Command
If you look at the $SPARK_HOME/bin directory, you will find several spark-submit scripts. 

Spark provides different scripts for distinct operating systems and purposes. Therefore, 

for Linux and Mac, you need the spark-submit.sh script file, while for Windows you 

have to employ the spark-submit.cmd command file.

The spark-submit command usage is as follows:

~ % $SPARK_HOME/bin/spark-submit --help

Usage: spark-submit [options] <app jar | python file | R file> [app 

arguments]

Usage: spark-submit --kill [submission ID] --master [spark://...]

Usage: spark-submit --status [submission ID] --master [spark://...]

Usage: spark-submit run-example [options] example-class [example args]

Some of the most common spark-submit options are

$ $SPARK_HOME/bin/spark-submit \

  --master <master-url> \

  --deploy-mode <deploy-mode> \

  --class <main-class> \

  --conf <key>=<value> \

  --driver-memory <value>g \

  --executor-memory <value>g \

  --executor-cores <number of cores>  \

  --jars  <comma separated dependencies>

  ... # other options

  <application-jar> \

  [application-arguments]

Now, we are going to illustrate how spark-submit works with a practical example:

$ $SPARK_HOME/bin/spark-submit \

--deploy-mode client \

--master local \

--class org.apache.spark.examples.SparkPi \

/$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80
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If you have run this piece of code as it is, you would have surely seen some stuff like 

this coming out to your console:

22/08/30 22:04:30 WARN Utils: Your hostname, MacBook-Pro.local resolves 

to a loopback address: 127.0.0.1; using 192.168.0.16 instead (on 

interface en0)

22/08/30 22:04:30 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to 

another address

22/08/30 22:05:00 INFO SparkContext: Running Spark version 3.3.0

. . .

. . .

22/08/30 22:05:03 INFO DAGScheduler: Job 0 finished: reduce at SparkPi.

scala:38, took 1.174952 s

Pi is roughly 3.142520392815049

22/08/30 22:05:03 INFO SparkUI: Stopped Spark web UI at 

http://192.168.0.16:4043

22/08/30 22:05:03 INFO MapOutputTrackerMasterEndpoint: 

MapOutputTrackerMasterEndpoint stopped!

22/08/30 22:05:03 INFO MemoryStore: MemoryStore cleared

22/08/30 22:05:03 INFO BlockManager: BlockManager stopped

22/08/30 22:05:03 INFO BlockManagerMaster: BlockManagerMaster stopped

22/08/30 22:05:03 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpo

int: OutputCommitCoordinator stopped!

22/08/30 22:05:03 INFO SparkContext: Successfully stopped SparkContext

22/08/30 22:05:03 INFO ShutdownHookManager: Shutdown hook called

22/08/30 22:05:03 INFO ShutdownHookManager: Deleting directory /

private/var/folders/qd/6ly2_9_54tq434fctwmmsc3m0000gp/T/spark-30934777- 

e061-403c-821d-0bbaa2e62745

22/08/30 22:05:03 INFO ShutdownHookManager: Deleting directory /private/

var/folders/qd/6ly2_9_54tq434fctwmmsc3m0000gp/T/spark-3e2e234c-7615-4a9c-

b34f- 878d149517e2

“Pi is roughly 3.142520392815049” in bold is the information you are really 

interested in.
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As we mentioned before in “Step 5: Configure System and Environment Variables,” to 

avoid such a bunch of information that makes it difficult to find the final outcome of your 

application, you can tune your Spark configuration a little bit to show you just ERROR 

messages, removing INFO lines.

Assuming you are using Apache Spark 3.3.0, in a terminal window, do the following:

$ ls $SPARK_HOME/conf

fairscheduler.xml.template    spark-defaults.conf.template

log4j2.properties.template    spark-env.sh.template

metrics.properties.template    workers.template

Rename the log4j2.properties.template file, and name it as log4j2.properties:

$ mv $SPARK_HOME/conf/log4j2.properties.template $SPARK_HOME/conf/log4j2.

properties

Edit the log4j2.properties file:

$ vi $SPARK_HOME/conf/log4j2.properties

Find the following line

# Set everything to be logged to the console

rootLogger.level = info

And change it to

# Set everything to be logged to the console

rootLogger.level = ERROR

Save the file, and run the Spark example application again:

$ $SPARK_HOME/bin/spark-submit \

--name "Hands-On Spark 3" \

--master local\[4] \

--deploy-mode client \

--conf spark.eventLog.enabled=false \

--conf "spark.executor.extraJavaOptions=-XX:+PrintGCDetails  

 -XX:+PrintGCTimeStamps" \
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--class org.apache.spark.examples.SparkPi \

/$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80

Pi is roughly 3.1410188926273617

$

This time you will see a clean exit.

Let’s now review the meaning of the most common options.

 Spark Submit Options

You can get all spark-submit options available by running the following command:

$ $SPARK_HOME/bin/spark-submit --help

Let’s explain the most relevant spark-submit options and configurations used with 

Scala and Python—PySpark.

 Deployment Mode Options

The --deploy-mode option specifies whether the driver program will be launched 

locally (“client”) or will be run in a cluster (“cluster”). Table 2-1 describes the meaning of 

each option.

Table 2-1. The Apache Spark Deployment Modes

Option Description

cluster in cluster mode, the driver program will run in one of the worker machines inside 

a cluster. Cluster mode is used to run production jobs.

client

(default option)

in client mode, the driver program runs locally where the application is submitted 

and the executors run in different nodes.

 Cluster Manager Options

The --master option specifies what cluster manager to use and the master URL for the 

cluster to run your application in. You can see the different cluster managers available 

and how to use them in Table 2-2.
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Table 2-2. The Apache Spark Cluster Managers

Option Template Description

Standalone spark://ip:pOrt UrL of the master node, ip address, and port, which is 

7077 by default.

Mesos mesos://host:port the master UrLs for Mesos.

Yarn --master yarn Cluster resources managed by hadoop Yarn.

kubernetes k8s://https://host:port kubernetes host and port:

k8s://https://<k8s-apiserver-host>:<k8s-apiserver-port>

Local local run Spark locally with no parallelism and just one worker 

thread (i.e., at all).

local[k], run Spark locally with k number of cores or worker threads.

local[k,F] run Spark locally with k worker threads and F maxFailures 

or number of attempts it should try when failed.

local[*]

(default: local[*])

run Spark locally with as many worker threads as logical 

cores are available.

Here are a few examples of these common options:

# Run application locally on 4 cores

(base) aantolinez@MacBook-Pro ~ % $SPARK_HOME/bin/spark-submit \

 --class org.apache.spark.examples.SparkPi \

 --master local[4] \

 /$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80

zsh: no matches found: local[4]

Note if you are using the zsh, also called the Z shell, you would have to escape 
[4] in --master local[4] \ with "\", like --master local\[4] \; 
otherwise, you will get the following error message:

zsh: no matches found: local[4]
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(base) aantolinez@MacBook-Pro ~ % $SPARK_HOME/bin/spark-submit \

 --class org.apache.spark.examples.SparkPi \

 --master local\[4] \

 /$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80

# Spark standalone cluster and a Python application

$SPARK_HOME/bin/spark-submit \

  --master spark://192.168.1.3:7077 \

/$SPARK_HOME/examples/src/main/python/pi.py

# Spark standalone cluster in client deploy mode and 100 cores

$SPARK_HOME/bin/spark-submit \

  --class org.apache.spark.examples.SparkPi \

  --master spark://192.168.1.3:7077 \

  --executor-memory 20G \

  --total-executor-cores 100 \

/$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80

# Spark standalone cluster in cluster deploy mode with supervised option.

# --supervise automatically restarts the driver if it fails with a non-zero 

exit code.

$SPARK_HOME/bin/spark-submit \

  --class org.apache.spark.examples.SparkPi \

  --master spark://192.168.1.3:7077 \

  --deploy-mode cluster \

  --supervise \

  --executor-memory 20G \

  --total-executor-cores 100 \

  /$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80

# Spark on a YARN cluster in cluster deploy mode

export HADOOP_CONF_DIR=PATH_TO_HADOOP_CONF_DIR

$SPARK_HOME/bin/spark-submit \

  --master yarn \

  --deploy-mode cluster \

  --class org.apache.spark.examples.SparkPi \

  --executor-memory 10G \
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  --num-executors 20 \

  /$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80

# Run on a Mesos cluster in cluster deploy mode

$SPARK_HOME/bin/spark-submit \

  --class org.apache.spark.examples.SparkPi \

  --master mesos://207.184.161.138:7077 \

  --deploy-mode cluster \

  --executor-memory 16G \

  --total-executor-cores 64 \

  /$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80

# Spark on a Kubernetes cluster in cluster deploy mode

$SPARK_HOME/bin/spark-submit \

  --class org.apache.spark.examples.SparkPi \

  --master k8s://xx.yy.zz.ww:443 \

  --deploy-mode cluster \

  --executor-memory 20G \

  --num-executors 50 \

  /$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80

 Tuning Resource Allocation

When submitting an application to your cluster, you can pay attention to its execution 

performance, thus making your Spark program run faster. The two main resources 

Apache Spark cares about are CPU and RAM. To take advantage of what a Spark cluster 

can offer, you can control how much memory and cores the driver and executors 

can use.

The options enumerated in this section not only affect Spark performance but 

the cluster in which it could be running as well. For example, they influence how the 

resources requested by Spark will fit into what the cluster manager has available.

In Table 2-3 you can see which parameters to tune and their technical description.
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Table 2-3. The Apache Spark Driver and Executor Resource Management Options

Option Description

--executor-cores • number of CpU cores to be used by the Spark driver for the executor process.

•  the cores property controls the number of concurrent tasks an executor can run.

•  --executor-cores 5 means that each executor can run a maximum of five 

tasks at the same time.

--executor- 

memory

•  amount of raM to use for the executor process.

•  this option affects the maximum size of data Spark can cache and allocate 

for shuffle data structures.

•  this property impacts operations performance like aggregations, grouping, 

and joins.

--num-executors 

(*)

it controls the number of executors requested.

--driver-memory Memory to be used by the Spark driver.

--driver-cores the number of CpU cores given to the Spark driver.

--total-executor- 

cores

the total number of cores granted to the executor.

(*) Note Starting with Cdh 5.4/Spark 1.3, you can bypass setting up this 
parameter with the spark.dynamicallocation.enabled property, turning on dynamic 
allocation. dynamic allocation permits your application to solicit available 
executors while there are pending tasks and release them when unused.

 Dynamically Loading Spark Submit Configurations

In general it is recommended to avoid hard-coding configurations in your application 

using the SparkConf if your application could be run in different cluster configurations 

such as different cluster managers, distinct amounts of memory available, etc. 

because it cannot be modified by the user once a SparkConf object has been passed to 

Apache Spark.
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Thus, instead of establishing SparkContext configuration in your source code, as 

you can see in the following code snippet, it is better to leave that configuration ready to 

receive dynamic parameters when the program is called:

// Hard-coding cluster configuration parameters in Scala

// Create Spark configuration

val conf = new SparkConf()

           .setMaster("local[4]")

           .setAppName("Hands-On Spark 3")

           .set("spark.executor.memory", "32g")

           .set("spark.driver.memory", "16g")

// Create Spark context

val sc = new SparkContext(conf)

#Hard-coding cluster configuration parameters in PySpark

conf = SparkConf()

conf.setMaster("spark://localhost:7077")

conf.setAppName("Hands-On Spark 3")

conf.set("spark.executor.memory", "32g")

conf.set("spark.driver.memory", "16g")

sc = SparkContext(conf=conf)

The SparkContext is created only once for an application; thus, another more flexible 

approach to the problem could be constructing it with a void configuration:

// SparkContext with a void configuration in Scala

val sc = new SparkContext(new SparkConf())

# SparkContext with a void configuration in PySpark

conf = SparkConf()

sc = SparkContext(conf=conf)

Then you can dynamically pass configuration parameters to your cluster at runtime:

$SPARK_HOME/bin/spark-submit \

--name "Hands-On Spark 3" \

--master local[4] \

--deploy-mode client \
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--conf spark.eventLog.enabled=false \

--conf "spark.executor.extraJavaOptions=-XX:+PrintGCDetails  

 -XX:+PrintGCTimeStamps" \

--class org.apache.spark.examples.SparkPi \

/$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80

Spark submit allows you to fine-tune your cluster configuration with dozens of 

parameters that can be sent to the SparkContext using the --config/-c option or by 

setting the SparkConf to create a SparkSession.

These options control application properties (Table 2-4), the runtime environment 

(Table 2-5), shuffle behavior, Spark UI, compression and serialization,   memory 

management, execution behavior, executor metrics, networking, scheduling, barrier 

execution mode, dynamic allocation (Table 2-6), thread configurations, security, and 

runtime SQL configuration, among others (Table 2-7). Next, we will explore some of the 

most common ones.

Table 2-4. Spark application properties

Property Description

spark.app.name

(default value, none)

the name of your application.

spark.driver.cores

(default value, 1)

in cluster mode, the number of cores to use for the driver process 

only.

spark.driver.memory

(default value, 1g)

amount of memory to use for the driver process. in client mode, it 

should be set via the --driver-memory command-line option or 

the properties file.

 Application Properties
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Table 2-6. Spark allocation resources

Property Description

spark.dynamicAllocation.

enabled

(default value, false)

whether to use dynamic resource allocation to adjust the 

number of executors processing your application based on 

existing workload.

spark.dynamicAllocation.

executorIdleTimeout

(default value, 60 s)

if dynamic allocation is enabled, an executor process will be 

killed if it has been idle for a longer time.

spark.dynamicAllocation.

cachedExecutorIdleTimeout

(default value, infinity)

if dynamic allocation is enabled, an executor process will 

be killed if it has cached data and has been idle for a longer 

time.

 Runtime Environment

Table 2-5. Spark runtime environment

Property Description

spark.driver.

extraClassPath

(default value, none)

extra classpath entries to prepend to the classpath of the driver. in client 

mode, it should be set via the --driver-class-path command-line 

option or in the default properties file.

the option allows you to load specific Jar files, such as database 

connectors and others.

 Dynamic Allocation
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Table 2-7. Other Spark options to control application properties 

Property Description

spark.sql.shuffle.partitions

(default value, 200)

number of partitions to use when shuffling data 

for joins or aggregations.

spark.rdd.compress

(default value, false)

whether to compress serialized rdd partitions 

saving considerable space at the cost of extra 

CpU processing time.

spark.executor.pyspark.memory

(default value, not set)

if set, the amount of memory to be allocated to 

pySpark in each executor. this option has different 

behaviors depending on the operating system.

spark.executor.memoryOverhead

(executorMemory * spark.executor.

memoryOverheadFactor), minimum of 384

amount of additional memory allocated per 

executor process.

the maximum memory to run per executor is 

determined by the sum of spark.executor.

memoryOverhead, spark.executor.memory, 

spark.memory.offHeap.size, and spark.

executor.pyspark.memory.

 Others

The following is an example of the use of some of these options in the command line:

$SPARK_HOME/bin/spark-submit \

--master yarn \

--deploy-mode cluster \

--conf "spark.sql.shuffle.partitions=10000" \

--conf "spark.executor.memoryOverhead=8192" \

--conf "spark.memory.fraction=0.7" \

--conf "spark.memory.storageFraction=0.3" \

--conf "spark.dynamicAllocation.minExecutors=10" \

--conf "spark.dynamicAllocation.maxExecutors=2000" \

--conf "spark.dynamicAllocation.enabled=true" \

--conf "spark.executor.extraJavaOptions=-XX:+PrintGCDetails  

 -XX:+PrintGCTimeStamps" \
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--files /path/of/config.conf, /path/to/mypropeties.json \

--class org.apache.spark.examples.SparkPi \

/$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80

Configuration can be passed to Spark in three different ways. Hard-coding, taking 

advantage of SparkConf properties, overrides others, taking the first order of priority:

  val config = new SparkConf()

config.set("spark.sql.shuffle.partitions","500")

val spark=SparkSession.builder().appName("Hands-On Spark 3").config(config)

The second order of priority would be via spark-submit, as part of its --config 

attributes. And finally, the last one is through the  $SPARK_HOME/conf/spark-defaults.

conf file. The last has the advantage that the configuration established in this file applies 

globally, meaning to all Spark applications running in the cluster.

In the following, we show an example of a user-developed application and how it can 

be submitted to Apache Spark.

Let’s develop a small program called Functions, which performs a single operation, 

adding two numbers:

object Functions {

   def main(args: Array[String]) = {

      agregar(1,2)

   }

      val agregar = (x: Int, y: Int) => println(x+y)

}

Save the file as Functions.scala and compile it as follows. We assume you have Scala 

installed on your computer:

~ % scalac ./Functions.scala -d Functions.jar

Then, submit the JAR file to your Spark installation:

 ~ % spark-submit --class Functions ./Functions.jar

3

You can see the number 3 as program output.
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2.3  Spark Application Concepts
Hitherto, you have downloaded and configured Apache Spark, gotten familiar with 

the Spark shell, and executed some small examples. Now, let’s review some important 

terminology of the Spark application necessary to understand what is happening when 

you execute your code:

• Spark application is a user-developed program on top of Spark that 

uses its APIs and consists of an executor running on a cluster and a 

driver program.

• SparkSession is the entry point to communicate with Spark and 

allows user interaction with the underlying functionalities through 

Spark APIs.

• Tasks are the smallest execution unit and are executed inside an 

executor.

• Stages are collections of tasks running the same code, each of them 

in different chunks of a dataset. The use of functions that require a 

shuffle or reading a dataset, such as reduceByKey(), Join() etc., will 

trigger in Spark the creation of a stage.

• Jobs comprise several stages and can be defined as entities that 

permit the execution and supervision of applications in a Spark 

cluster.

 Spark Application and SparkSession
As we have mentioned before, the SparkSession is the entry point to communicate 

with Spark and to have access to its functionalities available via the Spark Dataset and 

DataFrame APIs. The SparkSession is created using the SparkSession.builder() 

constructor, and creating a SparkSession is the first statement in an application.

The SparkSession was introduced with Spark 2.0, and the new class org.apache.

spark.sql.SparkSession was provided to replace SparkContext, SQLContext, 

StreamingContext, and HiveContext, contexts available prior to version 2.0.

The number of SparkSessions is pretty much unbounded; it means that you can have 

as many SparkSessions as needed. This is particularly useful when several programmers 

are working at the same time on the same cluster or when you want to logically segregate 
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your Spark relational entities. However, you can only have one SparkContext on a single 

JVM. New SparkSessions can be created using either SparkSession.builder() or 

SparkSession.newSession().

 Access the Existing SparkSession
In environments that have been created up front, if necessary, you can access the 

existing SparkSession from your application using the SparkSession.Builder class with 

the method getOrCreate() to retrieve an existing session. In the following there are two 

code snippets in Scala and PySpark showing you how to do it:

// Know about the existing SparkSession in Scala

import org.apache.spark.sql.SparkSession

val currentSparkSession = SparkSession.builder().getOrCreate()

print(currentSparkSession)

// SparkSession output

org.apache.spark.sql.SparkSession@7dabc2f9

# Know about the existing SparkSession in PySpark

currentSparkSession = SparkSession.builder.getOrCreate

print(currentSparkSession)

# SparkSession output

pyspark.sql.session.SparkSession object at 0x7fea951495e0

You can get the active SparkSession for the current thread, returned by the builder, 

using the getActiveSession() method:

# The active SparkSession for the current thread

s = SparkSession.getActiveSession()

print(s)

You can also create a new/another SparkSession using the newSession() method. 

This method will create a new session with the same app name, master mode, and 

SparkContext of the active session. Remember that you can have one context for each 

Spark application:
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// Create a new SparkSession

val aNewSession = spark.newSession()

print(aNewSession)

org.apache.spark.sql.SparkSession@2dc9b758

Out[6]: aNewSession: org.apache.spark.sql.SparkSession = org.apache.spark.

sql.SparkSession@2dc9b758

Get the Current Spark Context Settings/Configurations

Spark has a certain number of settings and configurations you might be interested 

in specifying, including application properties and runtime parameters. You can use the 

following code in Scala or PySpark to collect all the current configurations:

// Get all Spark Configs

val configMap:Map[String, String] = spark.conf.getAll

The output you will receive could be similar to this:

configMap: Map[String,String] = Map(spark.sql.warehouse.dir -> file:/

Users/.../spark-warehouse, spark.executor.extraJavaOptions -> -XX:+Ignore

UnrecognizedVMOptions --add-opens=java.base/java.lang=ALL-UNNAMED --add- 

opens=java.base/java.lang.invoke=ALL-UNNAMED --add-opens=java.base/java.

lang.reflect=ALL-UNNAMED --add-opens=java.base/java.io=ALL-UNNAMED --add- 

opens=java.base/java.net=ALL-UNNAMED --add-opens=java.base/java.nio=ALL- 

UNNAMED --add-opens=java.base/java.util=ALL-UNNAMED --add-opens=java.

base/java.util.concurrent=ALL-UNNAMED --add-opens=java.base/java.util.

concurrent.atomic=ALL-UNNAMED --add-opens=java.base/sun.nio.ch=ALL-UNNAMED  

 --add-opens=java.base/sun.nio.cs=ALL-UNNAMED --add-opens=java.base/sun.

security.action=ALL-UNNAMED --add-opens=java.ba...

#  Get current configurations via PySpark

configurations = spark.sparkContext.getConf().getAll()

for conf in configurations:

      print(conf)

The output you will receive could be similar to this:

('spark.driver.extraJavaOptions', '-XX:+IgnoreUnrecognizedVMOptions  

 --add-opens=java.base/java.lang=ALL-UNNAMED --add-opens=java.base/java.

lang.invoke=ALL-UNNAMED --add-opens=java.base/java.lang.reflect=ALL-  
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UNNAMED --add-opens=java.base/java.io=ALL-UNNAMED --add-opens=java. 

base/java.net=ALL-UNNAMED --add-opens=java.base/java.nio=ALL-UNNAMED  

 --add-opens=java.base/java.util=ALL-UNNAMED --add-opens=java.base/java.

util.concurrent=ALL-UNNAMED --add-opens=java.base/java.util.concurrent.

atomic=ALL-UNNAMED --add-opens=java.base/sun.nio.ch=ALL-UNNAMED --add- 

opens=java.base/sun.nio.cs=ALL-UNNAMED  --add-opens=java.base/sun.security.

action=ALL-UNNAMED --add-opens=java.base/sun.util.calendar=ALL-UNNAMED  

 --add-opens=java.security.jgss/sun.security.krb5=ALL-UNNAMED')

('spark.app.submitTime', '1662916389744')

('spark.sql.warehouse.dir', 'file:/Users/.../spark-warehouse')

('spark.app.id', 'local-1662916391188')

('spark.executor.id', 'driver')

('spark.app.startTime', '1662916390211')

('spark.app.name', 'PySparkShell')

('spark.driver.port', '54543')

('spark.sql.catalogImplementation', 'hive')

('spark.rdd.compress', 'True')

('spark.executor.extraJavaOptions', '-XX:+IgnoreUnrecognizedVMOptions  

 --add-opens=java.base/java.lang=ALL-UNNAMED --add-opens=java.base/java.

lang.invoke=ALL-UNNAMED --add-opens=java.base/java.lang.reflect=ALL-  

UNNAMED --add-opens=java.base/java.io=ALL-UNNAMED --add-opens=java. 

base/java.net=ALL-UNNAMED --add-opens=java.base/java.nio=ALL-UNNAMED  

 --add-opens=java.base/java.util=ALL-UNNAMED --add-opens=java.base/java.

util.concurrent=ALL-UNNAMED --add-opens=java.base/java.util.concurrent.

atomic=ALL-UNNAMED --add-opens=java.base/sun.nio.ch=ALL-UNNAMED --add- 

opens=java.base/sun.nio.cs=ALL-UNNAMED --add-opens=java.base/sun.security.

action=ALL-UNNAMED --add-opens=java.base/sun.util.calendar=ALL-UNNAMED  

 --add-opens=java.security.jgss/sun.security.krb5=ALL-UNNAMED')

('spark.serializer.objectStreamReset', '100')

('spark.driver.host', '192.168.0.16')

('spark.master', 'local[*]')

('spark.submit.pyFiles', '')

('spark.submit.deployMode', 'client')

('spark.ui.showConsoleProgress', 'true')
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In a similar way, you can set the Spark configuration parameters during runtime:

// Set the Spark configuration parameters during runtime in Scala

spark.conf.set("spark.sql.shuffle.partitions", "30")

# Set the Spark configuration parameters during runtime in PySpark

spark.conf.set("spark.app.name", "Hands-On Spark 3")

spark.conf.get("spark.app.name")

Output: 'Hands-On Spark 3'

You can also use the SparkSession to work with the catalog metadata, via the catalog 

variable and spark.catalog.listDatabases and spark.catalog.listTables methods:

// List Spark Catalog Databases

val ds = spark.catalog.listDatabases

ds.show(false)

+-------+----------------+----------------------------------------+

|name   |description     |locationUri                             |

+-------+----------------+----------------------------------------+

|default|default database|file:/Users/.../spark-warehouse         |

+-------+----------------+----------------------------------------+

// List Tables Spark Catalog

val ds = spark.catalog.listTables

ds.show(false)

+------------+--------+-----------+---------+-----------+

|name        |database|description|tableType|isTemporary|

+------------+--------+-----------+---------+-----------+

|hive_table  |default |null       |MANAGED  |false      |

|sample_table|null    |null       |TEMPORARY|true       |

|table_1     |null    |null       |TEMPORARY|true       |

+------------+--------+-----------+---------+-----------+
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 SparkSession in spark-shell

The SparkSession object is created by the Spark driver program. Remember we 

mentioned in a previous section that the SparkSession object is automatically created for 

you when you use the Spark shell and it is available via the spark variable. You can use 

the spark variable in the Spark shell command line like this:

scala> spark.version

Spark Version : 3.3.0

 Create a SparkSession Programmatically

The more secure way of creating a new SparkSession in Scala or PySpark is to use the 

object org.apache.spark.sql.SparkSession.Builder with the constructor builder() 

while at the same time calling the getOrCreate() method. Working this way ensures that 

if a SparkSession already exists, it is used; otherwise, a new one is created:

// Scala code to create a SparkSession object

import org.apache.spark.sql.SparkSession

object NewSparkSession extends App {

  val spark = SparkSession.builder()

      .master("local[4]")

      .appName("Hands-On Spark 3")

      .getOrCreate();

  println(spark)

  println("The Spark Version is : "+spark.version)

}

org.apache.spark.sql.SparkSession@ddfc241

The Spark Version is : 3.3.0

# PySpark code to create a SparkSession object

import pyspark

from pyspark.sql import SparkSession

spark = SparkSession.builder.master("local[4]") \

                    .appName("Hands-On Spark 3") \

                    .getOrCreate()
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print(spark)

print("Spark Version : "+spark.version)

Spark Version : 3.3.0

2.4  Transformations, Actions, Immutability, 
and Lazy Evaluation

The Spark core data structures, RDD (Resilient Distributed Dataset), and dataframes 

are immutable in nature; it means once they are created, they cannot be modified. In 

this context, immutable is a synonym of unchangeable. Spark operations in distributed 

datasets are classified as transformations and actions.

 Transformations
Transformations are operations that take a RDD or dataframe as input and return a new 

RDD or dataframe as output. Therefore, transformations preserve the original copy of the 

data, and that is why Spark data structures are said to be immutable. Another important 

characteristic of the transformations is that they are not executed immediately after they 

are defined; on the contrary, they are memorized, creating a transformations lineage 

as the one shown in Figure 2-11. For example, operations such as map(), filter(), and 

others don’t take effect until an action is defined.

Figure 2-11. Example of a transformations lineage
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A transformations lineage means the sequence of operations applied are recorded in 

a diagram called a DAG (Directed Acyclic Graph) (Figure 2-12) and executed only when 

an action is triggered. This idea of deferring transformations until an action takes place is 

what it is known as lazy evaluation of the transformations. Put in a simple way, when you 

define operations as those mentioned before, nothing happens until you instruct Spark 

what to do with the data. Lazy evaluation is the way Spark optimizes operations, because 

it allows Spark to select the best way to execute them when the complete workflow is 

defined.

Figure 2-12. An example of a Directed Acyclic Graph

The following are some basic transformations in Spark:

• map()

• flatMap()

• filter()

• groupByKey()

• reduceByKey()

• sample()

• union()

• distinct()

Transformations can define narrow dependencies or wide dependencies; therefore, 

Spark implements two types of transformations, narrow transformations and wide 

transformations.
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 Narrow Transformations
Narrow transformations are operations without data shuffling, that is to say, there is 

no data movement between partitions. Thus, narrow transformations operate on data 

residing in the same partition as can be seen in Figure 2-13.

Figure 2-13. Example of narrow transformations

Narrow transformations are the result of functions such as map(), mapPartition(), 

flatMap(), filter(), or union().

 Wide Transformations
Wide transformations are operations involving data shuffling; it means there is data 

movement between partitions as can be seen in Figure 2-14.

Figure 2-14. Example of wide transformations

Wide transformations are more costly in terms of computing and network resources 

because they implicate shuffle operations, meaning data must be moved across the 

network or at least between partitions.
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Wide operations are the result of functions such as groupByKey(), join(), distinct(), 

aggregateByKey(), aggregate(), repartition(), or intersect().

 Actions
Actions, on the other hand, are Spark operations returning a single value—in other 

words, operations not returning another data structure, RDD, or dataframe. When an 

action is called in Spark, it triggers the transformations preceding it in the DAG.

Examples of functions triggering actions are aggregate(), collect(), count(), fold(), 

first(), min(), max(), top(), etc.

2.5  Summary
In this chapter we have covered the more essential steps to have Spark up and running: 

downloading the necessary software and configuration. We have also seen how to 

work with the Spark shell interface and how to execute self-contained applications and 

examples using the Spark shell interface. Finally, we went through the Spark concepts 

of immutability, lazy evaluation, transformations, and actions. In the next chapter, 

we explain the Spark low-level API together with the notion of Resilient Distributed 

Datasets (RDDs).
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CHAPTER 3

Spark Low-Level API
Although the term application programming interface (API) is mostly used regarding 

web services or resources shared through the Web, when it comes to Apache Spark, 

it possesses an additional meaning, referring to the way users can interact with the 

framework.

Spark has several APIs for different purposes. In this chapter we are going to study the 

so-called low-level API or Spark Core API, which facilitates users’ direct manipulation of 

the Spark Resilient Distributed Datasets (RDDs), which are the Spark building blocks for 

the other Spark data structures of higher level such as DataFrames and datasets.

3.1  Resilient Distributed Datasets (RDDs)
The Resilient Distributed Datasets (RDDs), datasets, DataFrames, and SQL tables are 

the Spark core abstractions available; nevertheless, RDDs are the main Spark core 

abstraction. RDDs are immutable collections of objects, meaning once they are created, 

they cannot be changed. Immutable also means that any operation over an existing RDD 

returns a new RDD, preserving the original one.

Datasets handled as RDDs are divided into logical partitions (as seen in Figure 3-1) 

that can be processed in parallel across different nodes of the cluster using a low-level 

API. To manage parallel processing and logical partitioning, RDDs provide the concept 

of abstraction; thus, you do not have to worry about how to deal with them. Other Spark 

data entities such as dataframes and datasets are built on top of RDDs. The operations 

supported by Spark RDDs are transformations and actions.

Additionally, RDDs are fault-tolerant entities, meaning they possess self-recovery 

capacity in case of a failure. RDDs operate over fault-tolerant file systems like GFS, HDFS, 

AWS S3, etc. If any RDD partition breaks down, operations can continue, recovering 

the data from another one. On top of that, when Spark runs in a cluster like YARN, for 

example, it provides additional failure protection as Spark can recuperate from disasters.
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RDDs can be created by parallelizing already existing collections or from external 

datasets, such as text, sequence, CSV, and JSON files in a local file system, HDFS, AWS S3, 

HBase, Cassandra, or any other Hadoop-compatible input data source.

We are going to explore the three methods of creating Spark RDDs.

 Creating RDDs from Parallelized Collections
Parallelized collections can be created by calling the parallelize method of the 

SparkContext on an existing collection of the driver program. In doing this, the collection 

of elements are transformed into a distributed dataset and can be processed in parallel. 

You can use the sparkContext.parallelize() function to create RDDs from a collection 

of elements.

In Figure 3-2 it is graphically shown how the sparkContext.parallelize() function 

works when transforming a list of elements into a RDD.

Figure 3-1. RDD logical partitions
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Figure 3-2. Creating a RDD using sparkContext.parallelize()

Next, you can see how you can implement the RDD depicted in Figure 3-2 with 

PySpark:

alphabetList = ['a','b','c','d','e','f','g','h','i','j','k','l']

rdd = spark.sparkContext.parallelize(dataList, 4)

print("Number of partitions: "+str(rdd.getNumPartitions()))

Number of partitions: 4

The following is another example, this time in Scala, of how to create a RDD by 

parallelizing a collection of numbers:

// A Scala example of RDD from a parallelized collection

val myCollection = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

val rdd = spark.sparkContext.parallelize(myCollection)

Remember from the previous chapter the PySpark shell automatically provides the 

SparkContext “sc” variable; thus, we can use sc.parallelize() to create a RDD:

# A PySpark RDD from a list collection

rdd = sc.parallelize([1,2,3,4,5,6,7,8,9,10])
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Now rdd is a distributed dataset that can be manipulated in parallel. Therefore, you 

can use RDD functions to operate the array of elements:

scala> rdd.reduce(_ + _)

res7: Int = 55

scala> rdd.reduce(_ min _)

res8: Int = 1

scala> rdd.reduce(_ max _)

res9: Int = 10

One important parameter when parallelizing collections is the number of partitions 

to slice the dataset into. Spark sets this parameter automatically according  

to the cluster available; nevertheless, you can always specify your own number of 

partitions, passing the number as a second parameter to sc.parallelize()  

(e.g., sc.parallelize(myCollection, 4)).

 Creating RDDs from External Datasets
Spark can create a RDD from any Hadoop-compatible source, for example:

• Local file system

• HDFS

• Cassandra

• HBase

• AWS S3

• Etc.

Spark supports numerous file formats like

• Text files

• Sequence files

• CSV files

• JSON files

• And any Hadoop input format
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A RDD can be created from a text file using the SparkContext’s textFile method. This 

method takes as parameter the URL of the file, either its path in case of using a local file 

system or a URI gs://, hdfs://, s3://, etc. in case of accessing it from a distributed file 

system. For example, here’s for a file located in your local file system:

scala> val readmeFile =

sc.textFile("/YOUR/SPARK/HOME/README.md")

readmeFile: org.apache.spark.rdd.RDD[String] =

/YOUR/SPARK/HOME/README.md MapPartitionsRDD[7] at textFile at <console>:26

If you are using a file located in your local file system, it must be available on the 

same path to all the nodes. Thus, you have two options: either you copy it to each worker 

node or use a network-shared file system such as HDFS. The following is an example of 

how you can load a file located in a distributed file system:

scala> val myFile = sc.textFile("gs://${BUCKET_NAME}/FILE.txt")

When working with files, it is common to distribute the information across multiple 

files because appending all the information to just one of them could result in a size 

difficult to manage, or you can be interested in splitting the information among different 

files, because every file could have a meaningful name and so on. This often results in 

folders with files that should be operated collectively to have meaningful information. 

To facilitate this operation, all of Spark’s file-based input methods support folders, 

compressed files, and wildcards. For example, the method textFile() shown before can 

be used as textFile("/path/"), textFile("/path/*.csv"), textFile("/path/*.gz"), 

etc. When multiple files are used as input, the order of the partitions created by Spark 

depends on the order the files are uploaded from the file system.

You can also control the number of partitions a read file is divided into. For example, 

the textFile() method accepts a second parameter to specify the number of partitions, 

as you can see in the following example:

scala> val myFile = sc.textFile("/YOUR/SPARK/HOME/README.md", 10)

By default, Spark will split the file’s data into chunks of the same number as file blocks, 

but as you have just seen, you can request Spark to divide your file into more partitions. 

However, what you cannot do is to request from Spark fewer partitions than file blocks.

Apart from the textFile() method, the Spark Scala API also supports other 

input data formats. For example, the wholeTextFiles() method can be used to read 

multiple small UTF-8-encoded text files from HDFS, a local file system, or any other 
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Hadoop- compatible URI. While textFile() reads one or more files and returns one 

record per line of each file processed, the wholeTextFiles() method reads the files 

returning them as a key-value pair (path of the file, file content), hence preserving the 

relationship between the content and the file of origin. The latter might not happen 

when textFile() processes multiple files at once, because the data is shuffled and split 

across several partitions. Because the process of sequentially processing files depends 

on the order they are returned by the file system, the distribution of rows within the file 

is not preserved.

Since each file is loaded in memory, wholeTextFiles() is preferred for small file 

processing. Additionally, wholeTextFiles() provides a second parameter to set the 

minimum number of partitions.

The Apache Spark API also provides methods to handle Hadoop sequence files. 

This Hadoop file format is intended to store serialized key-value pairs. Sequence files 

are broadly used in MapReduce processing tasks as input and output formats. The 

sequence file format offers several advantages such as compression at the level of record 

and block. They can be used to wrap up a large number of small files, thus solving the 

drawback of some file systems in processing large numbers of small files.

Apache Spark also provides a method to save RDDs as   serialized Java objects, 

a format similar to the Hadoop sequence files mentioned just before. RDD.

saveAsObjectFile and SparkContext.objectFile methods can be used to save and 

load RDDs. saveAsObjectFile() uses Java serialization to store information on a file 

system and permits saving metadata information about the data type when written to 

a file. The following is an example of how saveAsObjectFile() and SparkContext.

objectFile() can be employed to save and recover a RDD object:

scala> val list = sc.parallelize(List("España","México","Colombia","Perú","

Ecuador"))

list: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[20] at 

parallelize at <console>:23

scala> list.saveAsObjectFile("/tmp/SpanishCountries")

scala> val newlist = sc.objectFile[String]("/tmp/SpanishCountries")

newlist: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[24] at 

objectFile at <console>:23

scala> newlist.collect

res9: Array[String] = Array(Ecuador, España, México, Colombia, Perú)
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 Creating RDDs from Existing RDDs
Remember RDDs are immutable; hence, they cannot be changed. However, also 

remember we can produce new RDDs by applying transformations to the original one. A 

RDD can be created from another one taking advantage of transformations, for example: 

map(), filter(), count(), distinct(), flatMap(), etc.

The following is an example of how to create a new RDD from an existing one. In our 

first step, we create a sequence of seasons. In the second step, we create a RDD from the 

previous sequence using parallelize() and divide it into four partitions. In the third step, 

we produce the findSeasons RDD from the seasonsParallel one, by extracting the first 

letter of the previous elements. Finally, we show the content of the findSeasons RDD and 

check the number of partitions findSeasons is split into. We use the collect() method 

to first bring the RDD elements to the driver node:

scala> val seasonsCollection = Seq("Summer", "Autumn", "Spring", "Winter")

seasonsCollection: Seq[String] = List(Summer, Autumn, Spring, Winter)

scala> val seasonsParallel =spark.sparkContext.parallelize(seasons 

Collection,4)

seasonsParallel: org.apache.spark.rdd.RDD[String] = 

ParallelCollectionRDD[4] at parallelize at <console>:23

scala> val findSeasons= seasonsParallel.map(s => (s.charAt(0), s))

findSeasons: org.apache.spark.rdd.RDD[(Char, String)] = MapPartitionsRDD[5] 

at map at <console>:23

scala> findSeasons.collect().foreach(c => println(c))

(S,Spring)

(W,Winter)

(S,Summer)

(A,Autumn)

scala> println("Partitions: " + findSeasons.getNumPartitions)

Partitions: 4
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The use of collect() is dangerous because it collects all the RDD data from all the 

workers in the driver node; thus, you can run out of memory if the size of the whole 

dataset does not fit into the driver memory. It is very inefficient as well, because all the 

data from the cluster has to travel through the network, and this is much slower than 

writing to disk and much more inefficient than computation in memory. If you only want 

to see some samples from your RDD, it is safer to use the take() method:

scala> findSeasons.take(2).foreach(c => println(c))

(S,Summer)

(A,Autumn)

3.2  Working with Key-Value Pairs
Some Spark RDD operations are only available for key-value pair data formats. These 

operations are called pair RDD operations, and for them, Spark provides various Pair 

RDD Functions, members of the PairRDDFunctions class, to handle RDD key-value 

pairs. The prototypical pair RDDs are those that imply distributed reorganization of 

data including Pair RDD Transformation Functions related to grouping or aggregating 

elements by their keys.

On the other hand, a key-value pair is a data type represented by a collection of two 

joined data elements: a key and a value. The key is a unique identifier of a data object. 

The value is a variable belonging to the dataset. An example of key-value pairs could 

be a telephone directory, where a person’s or business’s name is the key and the phone 

number(s) is the value. Another example could be a car’s catalog in which the car could 

be the key and its attributes (model, color, etc.) could be the values. Key-value pairs are 

commonly used for log and configuration files.

 Creating Pair RDDs
Pair RDDs can be created using the map() function that returns a key-value pair. 

However, the procedure can change depending on the language. In Scala, for example, 

to be able to take advantage of the Pair RDD Functions, you need to have your data in the 

form of tuples. In the following you can see a Scala example of how to get it:
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val spark = SparkSession.builder()

   .appName("Hands-On Spark 3")

   .master("local[2]")

   .getOrCreate()

val currencyListRdd = spark.sparkContext.parallelize(List("USD;Euro;GBP; 

CHF","CHF;JPY;CNY;KRW","CNY;KRW;Euro;USD","CAD;NZD;SEK;MXN"))

val currenciesRdd = currencyListRdd.flatMap(_.split(";"))

val pairRDD = currenciesRdd.map(c=>(c,1))

pairRDD.foreach(println)

(USD,1)

(Euro,1)

(GBP,1)

(CHF,1)

(CHF,1)

(JPY,1)

(CNY,1)

(KRW,1)

(CNY,1)

(KRW,1)

(Euro,1)

(USD,1)

(CAD,1)

(NZD,1)

(SEK,1)

(MXN,1)

The preceding code first creates a session of name “Hands-On Spark 3” using the 

.appName() method and a local cluster specified by the parameter local[n], where  

n must be greater than 0 and represents the number of cores to be allocated, hence the 

number of partitions, by default, RDDs are going to be split up into. If a SparkSession 

is available, it is returned by getOrCreate(); otherwise, a new one for our program is 

created.
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Next, the same example is reproduced but using PySpark this time:

currencyList = ["USD;Euro;GBP;CHF","CHF;JPY;CNY;KRW","CNY;KRW;Euro;USD", 

"CAD;NZD;SEK;MXN"]

currencyListRdd = spark.sparkContext.parallelize(currencyList, 4)

currenciesRdd = currencyListRdd.flatMap(lambda x: x.split(";"))

pairRDD = currenciesRdd.map(lambda x: (x,1))

sampleData = pairRDD.take(5)

for f in sampleData:

      print(str("("+f[0]) +","+str(f[1])+")")

(USD,1)

(Euro,1)

(GBP,1)

(CHF,1)

(CHF,1)

If you want to show the full list, use the collect() method instead of take() like this:

sampleData = pairRDD.collect()

But be careful. In large datasets, this could cause you overflow problems in your 

driver node.

 Showing the Distinct Keys of a Pair RDD
You can use distinct() to see all the distinct keys in a pair RDD. First, we show a Scala 

code snippet revealing the distinct keys in a list of currencies:

pairRDD.distinct().foreach(println)

(MXN,1)

(GBP,1)

(CHF,1)

(CNY,1)

(KRW,1)

(SEK,1)

(USD,1)
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(JPY,1)

(Euro,1)

(NZD,1)

(CAD,1)

Now, here’s another code snippet in PySpark to get the same result:

# Returning the distinct keys.

sampleData = pairRDD.distinct().collect()

for f in sampleData:

      print(str("("+f[0]) +","+str(f[1])+")")

(GBP,1)

(MXN,1)

(CNY,1)

(KRW,1)

(USD,1)

(Euro,1)

(CHF,1)

(JPY,1)

(CAD,1)

(NZD,1)

(SEK,1)

As you can see in the preceding example, keys are not necessarily returned sorted. If 

you want to have your returned data ordered by key, you can use the sorted() method. 

Here is an example of how you can do it:

sampleData = sorted(pairRDD.distinct().collect())

for f in sampleData:

      print(str("("+f[0]) +","+str(f[1])+")")

(CAD,1)

(CHF,1)

(CNY,1)

(Euro,1)

(GBP,1)

(JPY,1)
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(KRW,1)

(MXN,1)

(NZD,1)

(SEK,1)

(USD,1)

 Transformations on Pair RDDs
In this section we are going to review several of the more important transformations that 

can be executed on pair RDDs.

We have already mentioned RDDs are immutable in nature; therefore, 

transformation operations executed on a RDD return one or several new RDDs without 

modifying the original one, hence creating a RDD lineage, which is use by Spark to 

optimize code execution and to recover from a failure. Apache Spark takes advantage of 

RDD lineage to rebuild RDD partitions lost. A graphical representation of a RDD lineage 

or RDD dependency graph can be seen in Figure 3-3.

Figure 3-3. Example of Apache Spark RDD lineage

 Sorting Pair RDDs by Key

The method sortByKey() sorts a pair RDD. In Scala, it could be written like this:

pairRDD.sortByKey().foreach(println)

  (KRW,1)

(KRW,1)
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(CNY,1)

(CNY,1)

(GBP,1)

(NZD,1)

(JPY,1)

(MXN,1)

(Euro,1)

(Euro,1)

(SEK,1)

(USD,1)

(USD,1)

(CAD,1)

(CHF,1)

(CHF,1)

sortByKey() admits two parameters, ascending (true/false) sorting and the 

numPartitions, to set the number of partitions that should be created with the results 

returned by sortByKey():

pairRDD.sortByKey(true).foreach(println)

In PySpark, we can use the following code snippet to achieve the same result:

sampleData = pairRDD.sortByKey().collect()

for f in sampleData:

      print(str("("+f[0]) +","+str(f[1])+")")

(CAD,1)

(CHF,1)

(CHF,1)

(CNY,1)

(CNY,1)

(Euro,1)

(Euro,1)

(GBP,1)

(JPY,1)

(KRW,1)

(KRW,1)
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(MXN,1)

(NZD,1)

(SEK,1)

(USD,1)

(USD,1)

 Adding Values by Key in a RDD

The Spark PairRDDFunction reduceByKey() is a wide transformation that shuffles the 

data of all RDD partitions. It merges the values of each key in a RDD using an associated 

reduction function. The reduceByKey() is optimized for large datasets, because Spark 

can combine the output by key before shuffling the information.

The reduceByKey() syntax is as follows:

sparkContext.textFile("hdfs://")

                 .flatMap(line => line.split("ELEMENT_SEPARATOR"))

                 .map(element => (element,1))

                 .reduceByKey((a,b)=> (a+b))

To illustrate the power of this function, we are going to use a portion of the Don 

Quixote of La Mancha to have a larger dataset. You have already seen how to load files 

and transform them into RDDs. So let’s start with an example in Scala:

val DonQuixoteRdd = spark.sparkContext.textFile("DonQuixote.txt")

DonQuixoteRdd.foreach(println)

// You would see an output like this

saddle the hack as well as handle the bill-hook. The age of this

In a village of La Mancha, the name of which I have no desire to call

gentleman of ours was bordering on fifty; he was of a hardy habit,

spare, gaunt-featured, a very early riser and a great sportsman. They

to mind, there lived not long since one of those gentlemen that keep a

will have it his surname was Quixada or Quesada (for here there is some

lance in the lance-rack, an old buckler, a lean hack, and a greyhound

difference of opinion among the authors who write on the subject),

for coursing. An olla of rather more beef than mutton, a salad on most

although from reasonable conjectures it seems plain that he was called

nights, scraps on Saturdays, lentils on Fridays, and a pigeon or so

Quexana. This, however, is of but little importance to our tale; it
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extra on Sundays, made away with three-quarters of his income. The rest

of it went in a doublet of fine cloth and velvet breeches and shoes to

will be enough not to stray a hair's breadth from the truth in the

telling of it.

match for holidays, while on week-days he made a brave figure in his

best homespun. He had in his house a housekeeper past forty, a niece

under twenty, and a lad for the field and market-place, who used to

val wordsDonQuixoteRdd = DonQuixoteRdd.flatMap(_.split(" "))

val tupleDonQuixoteRdd = wordsDonQuixoteRdd.map(w => (w,1))

val reduceByKeyDonQuixoteRdd = tupleDonQuixoteRdd.reduceByKey((a,b)=>a+b)

// Finally, you can see the values merged by key and added.

// The output has been truncated.

reduceByKeyDonQuixoteRdd.foreach(println)

(Quesada,1)

(went,1)

(under,1)

(call,1)

(this,1)

...

(made,2)

(it,4)

(on,7)

(he,3)

(in,5)

(for,3)

(the,9)

(a,15)

(or,2)

(was,4)

(to,6)

(breeches,1)

(more,1)

(of,13)

println("Count : "+reduceByKeyDonQuixoteRdd.count())

Count : 157
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As usual, you can achieve the same results employing PySpark code. Let me show 

it to you with an example. In this case most of the outputs have been suppressed, but 

believe me the final result is the same:

DonQuixoteRdd = spark.sparkContext.textFile("DonQuixote.txt")

DonQuixoteRdd2 = DonQuixoteRdd.flatMap(lambda x: x.split(" "))

DonQuixoteRdd3 = DonQuixoteRdd2.map(lambda x: (x,1))

DonQuixoteRddReduceByKey = DonQuixoteRdd3.reduceByKey(lambda x,y: x+y)

print("Count : "+str(DonQuixoteRddReduceByKey.count()))

Count : 157

 Saving a RDD as a Text File

Though saving an existing RDD to a file is an action rather than a transformation, we are 

going to introduce it here, to take advantage of the DonQuixote RDD to show you how to 

save in-memory data to a fault-tolerant device.

You can save your RDDs as a string representation of elements using the 

saveAsTextFile() method. saveAsTextFile() will store the RDD as a text file.

saveAsTextFile(path: str, compressionCodecClass: Optional) can take 

two parameters. One of them is mandatory, path, which according to the official 

documentation represents “path to text file”; however, in fact it is a folder. Spark writes 

the RDD split into different files along with the success file (_success). The files are 

named part-00000, part-00001, and so on.

compressionCodecClass permits specifying a compression codec to store your data 

compressed.

Following with our DonQuixote example, let’s write our RDD to a file:

reduceByKeyDonQuixoteRdd.saveAsTextFile("RDDDonQuixote")

You can also create a temporary directory to store your files, and instead of letting 

your operating system decide where to make that directory, you can have control over 

those parameters. Here is an example in PySpark:

import tempfile

from tempfile import NamedTemporaryFile

tempfile.tempdir = "./"

RDDDonQuixote = NamedTemporaryFile(delete=True)
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RDDDonQuixote.close()

DonQuixoteRdd3.saveAsTextFile(RDDDonQuixote.name)

print(RDDDonQuixote)

print(RDDDonQuixote.name)

# Output

<tempfile._TemporaryFileWrapper object at 0x7f9ed1e65040>

/Users/aantolinez/tmp906w7eoy

from fileinput import input

from glob import glob

''.join(sorted(input(glob(RDDDonQuixote.name + "/part-0000*"))))

# Output

"('(for', 1)\n('An', 1)\n('Fridays,', 1)\n('He', 1)\n('I', 1)\n 

('In', 1)\n('La', 1)\n('Mancha,', 1)\n('Quesada', 1)\n('Quexana.', 1)\n 

('Quixada', 1)\n('Saturdays,', 1)\n('Sundays,', 1)\n('The', 1)\n 

('The', 1)\n('They', 1)\n('This,', 1)\n('a', 1)\n('a', 1)\n('a', 1)\n 

('a', 1)\n('a', 1)\n('a', 1)\n('a', 1)\n..."

In the preceding example, we have used the NamedTemporaryFile() function to 

create a file with a visible name in the file system. The delete parameter can take True/

False values. Setting it to False, we can close the file without it being destroyed, allowing 

us to reopen it again later on.

 Combining Data at Each Partition

One of the most common problems when working with key-value pairs is grouping 

and aggregating values by a standard key. In this section, we are going to use the 

aggregateByKey() function for aggregating data at each partition.

As with reduceByKey(), in aggregateByKey() data is combined by a common key at 

each partition before it is shuffled; however, reduceByKey() is kind of a particular case 

of aggregateByKey() in the sense that the result of the combination inside individual 

partitions is of the same type as the values combined. The final result, after merging 

the outputs of these individual combinations, is of the same type as the values of the 

individual combinations as well.
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aggregateByKey() merges the values of a dataset by keys, and the output of this 

merge can be any user-defined object. With aggregateByKey() you specify how values 

are combined at the partition level (inside each worker) and, then, how the individual 

outputs from these partitions are assembled together across the nodes of the cluster to 

provide a final outcome.

We are going to explain this concept and the difference between reduceByKey() and 

aggregateByKey() with an example.

Let’s assume you have the following dataset: ((“a”, 1), (“a”, 3), (“b”, 2), (“a”, 5),  

(“b”, 4), (“a”, 7), (“b”, 6)).

First of all we are going to create a RDD out of the preceding data:

val pairs = sc.parallelize(Array(("a", 1), ("a", 3), ("b", 2), ("a", 5), 

("b", 4), ("a", 7), ("b", 6)))

pairs: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[82] 

at parallelize at <console>:25

If you just want to add the values by key performing a sum, both reduceByKey and 

aggregateByKey will produce the same result. You can see an example in the following:

val outputReduceByKey = pairs.reduceByKey(_ + _)

outputReduceByKey.collect

outputReduceByKey: org.apache.spark.rdd.RDD[(String, Int)] = 

ShuffledRDD[87] at reduceByKey at <console>:28

res49: Array[(String, Int)] = Array((a,16), (b,12))

val outputAggregateByKey = pairs.aggregateByKey(0)(_+_,_+_)

//_+_ operation inside partition, _+_ operation between partitions

outputAggregateByKey.collect

outputAggregateByKey: org.apache.spark.rdd.RDD[(String, Int)] = 

ShuffledRDD[88] at aggregateByKey at <console>:27

res50: Array[(String, Int)] = Array((a,16), (b,12))

Let’s now assume you are interested in a different sort of operation, implying the 

values returned are of a different kind than those of the origin. For example, imagine 

your desired output is a set of values, which is a different data type than the values 

themselves (integers) and the operations inside each partition (sum of integers returns 

another integer).
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Next, we explain this idea with an example:

val outcomeSets = pairs.aggregateByKey(new HashSet[Int])(_+_, _++_)

// _+_ adds a value to a set

// _++_ joins the two sets

outcomeSets.collect

res52: Array[(String, scala.collection.mutable.HashSet[Int])] = 

Array((a,Set(1, 5, 3, 7)), (b,Set(2, 6, 4)))

 Merging Values with a Neutral ZeroValue

The foldByKey() aggregation is a kind of reduceByKey() with an initialization zero 

value that should not impact your final results. Like reduceByKey() it uses an associated 

function to combine values for each RDD’s key, but additionally it gives the possibility 

of providing a neutral initialization value for each partition, such as 0 for addition, 1 for 

multiplication, or an empty list in case of concatenation of lists, that can be added to the 

final result an arbitrary number of times without affecting the final outcome. The zero 

value is initialized per key once per partition.

In the following you can see a few examples of foldByKey() usage:

val pairs = sc.parallelize(Array(("a", 1), ("a", 3), ("b", 2), ("a", 5), 

("b", 4), ("a", 7), ("b", 6)))

pairs: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[82] 

at parallelize at <console>:25

pairs.foldByKey(0)(_+_).collect // With init value 0

res66: Array[(String, Int)] = Array((a,24), (b,18))

pairs.foldByKey(1)(_+_).collect // With init value 1

res68: Array[(String, Int)] = Array((a,20), (b,15))

pairs.foldByKey(2)(_+_).collect // With init value 2

res66: Array[(String, Int)] = Array((a,24), (b,18))

 Combining Elements by Key Using Custom Aggregation Functions

In this section we will explain the Spark combineByKey() generic function to 

combine the elements of pair RDDs by each key using custom aggregation functions. 

combineByKey() is a wide transformation as it requires a shuffle in the last stage.  

Chapter 3  Spark Low-LeveL apI



86

This function turns a RDD[(K, V)] into a result of type RDD[(K, C)], for a “combined 

type” C, where C is the result of any aggregation of all values of key K.

In the following you can see a PySpark example of how to use combineByKey():

pairs = sc.parallelize([("a", 1), ("a", 3), ("b", 2), ("a", 5), ("b", 4), 

("a", 7), ("b", 6)])

def to_list(x):

      return [x]

def append(x, y):

      x.append(y) # The append() method adds the y element to the x list.

      return x

def extend(x, y):

      x.extend(y) # The extend() method adds the elements of list y to the 

end of the x list.

      return x

sorted(pairs.combineByKey(to_list, append, extend).collect())

[('a', [1, 3, 5, 7]), ('b', [2, 4, 6])]

 Grouping of Data on Pair RDDs

When working with datasets of key-value pairs, a common use case is grouping all values 

corresponding to the same key. The groupByKey() method returns a grouped RDD by 

grouping the values by each key. The groupByKey() requires a function that is going to 

be applied to every value of the RDD.

In the following example, we convert a Scala collection type to a Spark RDD:

// Scala collection containing tuples Key-Value pairs

val countriesTuples = Seq(("España",1),("Kazakhstan",1), ("Denmark", 

1),("España",1),("España",1),("Kazakhstan",1),("Kazakhstan",1))

// Converting the collection to a RDD.

val countriesDs = spark.sparkContext.parallelize(countriesTuples)

// Output

countriesTuples: Seq[(String, Int)] = List((España,1), (Kazakhstan,1), 

(Denmark,1), (España,1), (España,1), (Kazakhstan,1), (Kazakhstan,1))
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countriesDs: org.apache.spark.rdd.RDD[(String, Int)] = 

ParallelCollectionRDD[32] at parallelize at <console>:29

countriesDs.collect.foreach(println)

// Output

(España,1)

(Kazakhstan,1)

(Denmark,1)

(España,1)

(España,1)

(Kazakhstan,1)

(Kazakhstan,1)

Now we will group the values by key using the groupByKey() method:

// Applying transformation on Pair RDD.

val groupRDDByKey = countriesDs.groupByKey()

// Output

groupRDDByKey: org.apache.spark.rdd.RDD[(String, Iterable[Int])] = 

ShuffledRDD[34] at groupByKey at <console>:26

groupRDDByKey.collect.foreach(println)

// Output

(España,CompactBuffer(1, 1, 1))

(Kazakhstan,CompactBuffer(1, 1, 1))

(Denmark,CompactBuffer(1))

As you can see in the preceding code, groupByKey() groups the data with respect to 

every key, and a iterator is returned. Note that unlike reduceByKey(), the groupByKey() 

function doesn’t perform any operation on the final output; it only groups the data and 

returns it in the form of an iterator. This iterator can be used to transform a key-value 

RDD into any kind of collection like a List or a Set.
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Now imagine you want to know the number of occurrences of every country and 

then you want to convert the prior CompactBuffer format to a List:

// Occurrence of every country and transforming the CompactBuffer 

to a List.

val countryCountRDD = groupRDDByKey.map(tuple => (tuple._1, tuple._2.

toList.sum))

countryCountRDD.collect.foreach(println)

// Output

(España,3)

(Kazakhstan,3)

(Denmark,1)

Performance Considerations of groupByKey

In some cases groupByKey() cannot be your best option to solve certain kinds of 

problems. For example, reduceByKey() can perform better than groupByKey() on very 

large datasets. Though both functions will give you the same answer, reduceByKey() is 

the preferred option for large datasets, because with the latter, before Spark can combine 

the values by key at each partition, a general shuffle is performed, which as you already 

know involves the movement of data across the network; hence, it is costly in terms of 

performance.   

Let’s have a look in more detail at these performance concerns with a typical word 

count example over a distributed dataset using reduceByKey() first and groupByKey() 

later on:

val countriesList = List("España","Kazakhstan", "Denmark","España", 

"España","Kazakhstan","Kazakhstan")

val countriesDs = spark.sparkContext.parallelize(countriesList)

// Output

countriesList: List[String] = List(España, Kazakhstan, Denmark, España, 

España, Kazakhstan, Kazakhstan)

countriesDs: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[39] 

at parallelize at <console>:28
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val countryPairsRDD = sc.parallelize(countriesList).map(country => 

(country, 1))

val countryCountsWithReduce = countryPairsRDD

  .reduceByKey(_ + _) // reduceByKey()

  .collect()

val countryCountsWithGroup = countryPairsRDD

  .groupByKey() // groupByKey()

  .map(t => (t._1, t._2.sum))

  .collect()

// Output

countryPairsRDD: org.apache.spark.rdd.RDD[(String, Int)] = 

MapPartitionsRDD[51] at map at <console>:27

countryCountsWithReduce: Array[(String, Int)] = Array((España,3), 

(Kazakhstan,3), (Denmark,1))

countryCountsWithGroup: Array[(String, Int)] = Array((España,3), 

(Kazakhstan,3), (Denmark,1))

Both functions will produce the same answer; however, reduceByKey() works better 

on a large dataset because Spark can combine outputs with a common key on each 

partition before shuffling the data across the nodes of the cluster. reduceByKey() uses a 

lambda function to merge values by each key on each node before the data is shuffled; 

after that, it merges the data at the partition level. The lambda function is used again to 

reduce the values returned by each partition, to obtain the final result. This behavior is 

showcased in Figure 3-4.
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Figure 3-4. reduceByKey internal operation

On the other hand, when you use groupByKey(), the key-value pairs on each 

partition are shuffled across the nodes of the cluster. When you are working with big 

datasets, this behavior requires the unnecessary movement of huge amounts of data 

across the network representing an important process overhead.

Another reason to avoid the use of groupByKey() in large datasets are possible out- 

of- memory (OutOfMemoryError) situations in the driver node. Remember Spark must 

write data to disk whenever the amount of it cannot be fitted in memory. The out-of- 

memory situation can happen when a single executor machine receives more data that 

can be accommodated in its memory, causing a memory overflow. Spark saves data 

to disk one key at a time; thus, the process of flushing out data to a permanent storage 

device seriously disrupts a Spark operation.
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Thus, the bigger the dataset, the more likely the occurrence of out-of-memory 

problems. Therefore, in general   reduceByKey(), combineByKey(), foldByKey(), or 

others are preferable than groupByKey() for big datasets.

The groupByKey() internal operational mode is graphically shown in Figure 3-5.

Figure 3-5. groupByKey internal operation
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 Joins on Pair RDDs

You can get the most of your key-value pair RDDs when you combine them with other 

key-value pair RDDs. Combining different datasets can unleash the real analytical 

capabilities of Apache Spark and allow you to find the insights of your data. Joining RDDs 

is probably one of the most typical operations you will have to perform on pair RDDs.

Returning the Keys Present in Both RDDs

The join() returns a RDD after applying a join transformation to two RDDs. The 

returned RDD contains only the keys that are present in both pair RDDs. The RDD 

returned by join() is graphically depicted in Figure 3-6.

Figure 3-6. Result set of join() transformations

val rdd1 = sc.parallelize(Array(("PySpark",10),("Scala",15),("R",100)))

val rdd2 = sc.parallelize(Array(("Scala",11),("Scala",20),("PySpark",75), 

("PySpark",35)))

val joinedRDD = rdd1.join(rdd2)

joinedRDD.foreach(println)

// Output

(Scala,(15,11))

(Scala,(15,20))

(PySpark,(10,75))

(PySpark,(10,35))

The same results can be achieved using PySpark code as you see just in the following:

rdd1 = spark.sparkContext.parallelize([("PySpark",10),("Scala",15), 

("R",100)])

rdd2 = spark.sparkContext.parallelize([("Scala",11),("Scala",20), 

("PySpark",75), ("PySpark",35)])

joinedRDD = rdd1.join(rdd2)
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print(joinedRDD.collect())

# Output

[('Scala', (15, 11)), ('Scala', (15, 20)), ('PySpark', (10, 75)), 

('PySpark', (10, 35))]

Returning the Keys Present in the Source RDD

The leftOuterJoin() returns a pair RDD having the entries of each key present in the 

source (left) RDD. The returned RDD has the key found in the source (left) RDD and a 

tuple, a combination of the value in the source RDD and one of the values of that key in 

the other pair RDD (right). In other words, the leftOuterJoin() returns all records from 

the left (A) RDD and the matched records from the right (B) RDD.

The RDD returned by leftOuterJoin() is graphically depicted in Figure 3-7.

Figure 3-7. Result set of leftOuterJoin() transformations

In the following, you can see how to apply the leftOuterJoin() in Scala:

val leftJoinedRDD = rdd1.leftOuterJoin(rdd2)

leftJoinedRDD.foreach(println)

// Output

(R,(100,None))

(Scala,(15,Some(11)))

(Scala,(15,Some(20)))

(PySpark,(10,Some(75)))

(PySpark,(10,Some(35)))

You will obtain the same result using PySpark code as you see in the following:

rdd1 = spark.sparkContext.parallelize([("PySpark",10),("Scala",15), 

("R",100)])

rdd2 = spark.sparkContext.parallelize([("Scala",11),("Scala",20), 

("PySpark",75), ("PySpark",35)])
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joinedRDD = rdd1.leftOuterJoin(rdd2)

print(joinedRDD.collect())

# Output

[('R', (100, None)), ('Scala', (15, 11)), ('Scala', (15, 20)), ('PySpark', 

(10, 75)), ('PySpark', (10, 35))]

Returning the Keys Present in the Parameter RDD

The rightOuterJoin() is identical to the leftOuterJoin() except it returns a pair RDD 

having the entries of each key present in the other (right) RDD. The returned RDD has 

the key found in the other (right) RDD and a tuple, a combination of the value in the 

other (right) RDD and one of the values of that key in the source (left) pair RDD. In 

other words, the rightOuterJoin() returns all records from the right RDD (B) and the 

matched records from the left RDD (A).

The RDD returned by rightOuterJoin() is graphically depicted in Figure 3-8.

Figure 3-8. Result set of rightOuterJoin() transformations

Let’s see how to apply rightOuterJoin() in a Scala code snippet:

rdd1 = spark.sparkContext.parallelize([("PySpark",10),("Scala",15), 

("R",100)])

rdd2 = spark.sparkContext.parallelize([("Scala",11),("Scala",20), 

("PySpark",75), ("PySpark",35)])

joinedRDD = rdd1.rightOuterJoin(rdd2)

print(joinedRDD.collect())

# Output

[('Scala', (15, 11)), ('Scala', (15, 20)), ('PySpark', (10, 75)), 

('PySpark', (10, 35))]
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Once again, you can get the same results by using PySpark code as you see in the 

following:

rdd1 = spark.sparkContext.parallelize([("PySpark",10),("Scala",15), 

("R",100)])

rdd2 = spark.sparkContext.parallelize([("Scala",11),("Scala",20), 

("PySpark",75), ("PySpark",35)])

joinedRDD = rdd1.leftOuterJoin(rdd2)

print(joinedRDD.collect())

# Output

[('R', (100, None)), ('Scala', (15, 11)), ('Scala', (15, 20)), ('PySpark', 

(10, 75)), ('PySpark', (10, 35))]

 Sorting Data on Pair RDDs

To sort the values of a RDD by key in ascending or descending order, you can use the 

Apache Spark sortByKey() transformation.

The syntax of the Spark RDD sortByKey() transformation is as follows:

RDD.sortByKey(ascending: Optional[bool] = True, numPartitions: Optional[int] 

= None, keyfunc: Callable[[Any], Any] = <function RDD.<lambda>>) → pyspark.rdd.

RDD[Tuple[K, V]]

The Spark RDD sortByKey() transformation ascending option specifies the order of 

the sort (ascending order by default or when set to true); for descending order, you just 

need to set it to false. The numPartitions option specifies the number of partitions the 

results should be split into. The sortByKey() transformation returns a tuple of data.

Let’s now see sortByKey() in action with a practical example:

val rdd2 = sc.parallelize(Array(("Scala",11),("Scala",20),("PySpark",75), 

("PySpark",35)))

rdd1.sortByKey(true).foreach(println) // ascending order (true)

// Output

(R,100)

(PySpark,10)

(Scala,15)
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rdd1.sortByKey(false).foreach(println) // descending order (false)

// Output

(PySpark,10)

(R,100)

(Scala,15)

 Sorting a RDD by a Given Key Function

Another very important Apache Spark transformation is sortBy():

RDD.sortBy(keyfunc: Callable[[T], S], ascending: bool = True, 

numPartitions: Optional[int] = None) → RDD[T]

The sortBy() function accepts three arguments. The first one is a key function 

(keyfunc) provided, which sorts a RDD based on the key designated and returns 

another RDD.

The second one is a flag that specifies whether the results should be returned in 

ascending or descending order. The default is ascending (true).

The third parameter (numPartitions) specifies the total number of partitions the 

result is going to be divided into. numPartitions is an important optimization parameter, 

because sortBy() involves the shuffling of the elements of RDDs, and we have already 

seen it can involve unnecessary data movement.

Let’s now take a look at how sortBy() works with an example, taking advantage of 

the RDD1 created from previous examples:

val rdd1 = sc.parallelize(Array(("PySpark",10),("Scala",15),("R",100)))

rdd1.sortBy(x => x._1).collect().foreach(println)

(PySpark,10)

(R,100)

(Scala,15)

// Output

(PySpark,10)

(R,100)

(Scala,15)
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// Using now the value of the tuple to sort the data

rdd1.sortBy(x => x._2).collect().foreach(println)

// Output

(PySpark,10)

(Scala,15)

(R,100)

 Actions on Pair RDDs
As we explained before in the book, Spark actions are RDD operations returning raw 

values. While transformations on a RDD return a new RDD preserving the original, 

actions return a value. Consequently, any operation performed in a RDD and returning 

anything other than a new RDD is an action.

Then, you have to also remember that RDD actions are able to trigger the effective 

execution of a piece of code defined in a DAG (Directed Acyclic Graph). Thus, while 

Spark transformations are considered lazy, meaning they are not executed right after 

they are defined, actions are not.

Let’s have a look at some of the most important Spark actions.

 Count RDD Instances by Key

The countByKey() counts the number of elements in a RDD for each key and returns a 

DefaultDict[key,int].

A DefaultDict is a dictionary-like object, and trying to access values that do not exist 

in the dictionary will return a 0 instead of throwing an error.

Let’s see how it works with a Scala example. Consider the following pair RDD used in 

previous examples:

val rdd2 = sc.parallelize(Array(("Scala",11),("Scala",20),("PySpark",75), 

("PySpark",35)))

rdd2.countByKey()

// Output

res48: scala.collection.Map[String,Long] = Map(PySpark -> 2, Scala -> 2)
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rdd2.countByKey().foreach(println)

// Output

(PySpark,2)

(Scala,2)

You can access the elements of the elementsCount dictionary just as you would do 

for an ordinary dictionary:

val elementsCount = rdd2.countByKey()

println(elementsCount("Scala"))

// Output

2

Now you are going to see the same example, but this time using PySpark:

rdd2 = spark.sparkContext.parallelize([("Scala",11),("Scala",20), 

("PySpark",75), ("PySpark",35)])

rdd2.collect()

# Output

[('Scala', 11), ('Scala', 20), ('PySpark', 75), ('PySpark', 35)]

# Grouping by the key, and getting the count of each group

rdd2.countByKey()

# Output

defaultdict(int, {'Scala': 2, 'PySpark': 2})

elementsCount = rdd2.countByKey()

print(elementsCount)

#Output

defaultdict(<class 'int'>, {'Scala': 2, 'PySpark': 2})

Now you can access the elements of the elementsCount dictionary just as you would 

do for an ordinary dictionary:

elementsCount['Scala']

# Output

2
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Trying to access values of elementsCount that do not exist will return 0:

elementsCount['SQL']

# Output

0

 Count RDD Instances by Value

The Spark countByValue() method counts each unique value in a RDD returning a 

dictionary of value-count pairs.

In the following, you can see how countByValue() works with a Scala example:

println(rdd2.countByValue())

//Output:

Map((PySpark,35) -> 1, (Scala,11) -> 1, (Scala,20) -> 1, (PySpark,75) -> 1)

Continuing with our previous RDD example, now we are going to see how to use 

countByValue() with PySpark:

rdd2 = spark.sparkContext.parallelize([("Scala",11),("Scala",20), 

("PySpark",75), ("PySpark",35)])

sorted(rdd2.countByValue().items())

# Output

[(('PySpark', 35), 1),

 (('PySpark', 75), 1),

 (('Scala', 11), 1),

 (('Scala', 20), 1)]

 Returning Key-Value Pairs as a Dictionary

The RDD’s collectAsMap() method collects all the elements of a pair RDD in the driver 

node and returns key-value pairs in the RDD as a dictionary.

We are going to see the use of this method in a Scala code snippet:

val rdd1 = sc.parallelize(Array(("PySpark",10),("Scala",15),("R",100)))

val rdd1 = sc.parallelize(Array(("PySpark",10),("Scala",15),("R",100)))

rdd1.collectAsMap()
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// Output

res62: scala.collection.Map[String,Int] = Map(R -> 100, Scala -> 15, 

PySpark -> 10)

However, if you have duplicate keys, the last key-value pair will overwrite the former 

ones. In the following, the tuple (“Scala”,11) has been overwritten by (“Scala”,20):

rdd2.collectAsMap()

// Output

res63: scala.collection.Map[String,Int] = Map(Scala -> 20, PySpark -> 35)

Here is now the same example, but with PySpark this time:

rdd1 = spark.sparkContext.parallelize([("PySpark",10),("Scala",15), 

("R",100)])

rdd2 = spark.sparkContext.parallelize([("Scala",11),("Scala",20), 

("PySpark",75), ("PySpark",35)])

rdd1.collectAsMap()

# Output

{'PySpark': 10, 'Scala': 15, 'R': 100}

Remember that if you have duplicate keys, the last key-value pair will overwrite 

the previous ones. In the following, the tuple (“Scala”,11) has been overwritten by 

(“Scala”,20):

rdd2.collectAsMap()

# Output

{'Scala': 20, 'PySpark': 35}

 Collecting All Values Associated With a Key

The Apache Spark lookup(key) method is an action that returns all values associated 

with a provided key in a list. It takes a key’s name as a parameter:

val rdd2 = sc.parallelize(Array(("Scala",11),("Scala",20),("PySpark",75), 

("PySpark",35)))

rdd2.lookup("PySpark")
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// Output

res66: Seq[Int] = WrappedArray(75, 35)

Another code snippet in PySpark shows the same result:

rdd2 = spark.sparkContext.parallelize([("Scala",11),("Scala",20), 

("PySpark",75), ("PySpark",35)])

rdd2.lookup("PySpark")

# Output

[75, 35]

3.3  Spark Shared Variables: Broadcasts 
and Accumulators

The so-called shared variables are important Spark abstractions. In simple words, shared 

variables are variables you can use to exchange information throughout the workers of 

your cluster or between your driver and the workers. In other words, these are variables 

intended to share information throughout the cluster.

The big data problems require the use of distributed systems. One example of these 

distributed infrastructures is an Apache Spark cluster, in which the driver node and 

executor nodes, usually, run in separate and sometimes remote computers.

In distributed computation, you are very often going to face the problem of sharing 

and synchronizing information across the nodes of your cluster. For instance, when you 

apply a function to your dataset, this function with its variables is going to be copied to 

every executor. As the computation in the executors runs in an independent way, the 

driver has no information about the update of the data contained in those variables; 

hence, the driver cannot track the evolution of variables copied to remote nodes.

To get around this issue, Spark provides the broadcast and accumulator variables, as 

a way to distribute information between executors and between executors and the driver 

node, allowing the driver to keep in sync with the evolution of the values contained 

in some variables of interest. Accumulators are used for writing data, and broadcast 

variables are used for reading it.
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 Broadcast Variables
Broadcast variables are read-only variables that allow maintaining a cached variable in 

each cluster node instead of transporting it with each task every time tasks are sent to the 

executors. Therefore, each executor will keep a local copy of the broadcast variable; in 

consequence, no network I/O is needed.

Broadcast variables are transferred once from the driver to the executors and used 

by tasks running there as many times as necessary, minimizing data movement through 

the network as a result because that information is not transferred to the executors every 

time a new task is delivered to them.

In Figure 3-9 we explain graphically the difference between using broadcast variables 

and normal variables to share information with the workers.

Figure 3-9. Difference between broadcast variables and normal variables
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If you look at the left side of Figure 3-9, we use a map operation to multiply every 

RDD element by the external multiplier variable. In operating like this, a copy of the 

multiplier variable will be distributed with every task to each executor of the cluster.

On the other hand, if you look at the right side of Figure 3-9, a single copy of the 

broadcast variable is transmitted to each node and shared among all the tasks running 

on them, therefore potentially saving an important amount of memory and reducing 

network traffic.

Broadcast variables have the value() method, to store the data and access the 

broadcasted information.

 When to Use Broadcast Variables

In the preceding section, we have used a simple example with a variable containing 

an integer value. However, imagine a scenario in which the external variable would 

constitute millions of elements. Imagine, as well, several tasks running in the same 

executors will use the same variable. This scenario implies copying the variable data 

together with the task to be executred to every executor. This operation will consume a 

good portion of the memory available and produce a significant network traffic surplus.

Let’s now imagine a scenario like the one in section “Adding Values by Key in a 

RDD” working with our DonQuixote text RDD. Visualize a more exaggerated use case in 

which our map function launches several tasks in each executor and all of them use the 

external variable. In that case, several copies of the same variable would be sent to each 

executor.

In these circumstances, the DonQuixoteRdd text file would have to be copied to all 

the cluster nodes with the associated tasks. In the code snippet shown in that section, we 

sent the whole DonQuixoteRdd text file as a value to our functions. Therefore, working 

in Spark cluster execution mode, passing the whole text as a parameter represents an 

important network overload as it must be copied to every executor node. One of the 

advantages of using broadcast variables is that the data broadcasted by Spark is cached 

in serialized form and deserialized before running the task in each executor.

However, the use of broadcast variables only makes sense when tasks distributed 

across the cluster nodes need the same set of data or when caching data in deserialized 

format is necessary. In situations as the one depicted before, broadcast variables will 

reduce the volume of serialized tasks and the network traffic overhead needed to run 

jobs in a cluster.
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One limitation of broadcast variables is that when data is broadcasted across the 

cluster nodes, it should not be modified if we want to be sure each executor has the exact 

same copy of the data.

 How to Create a Broadcast Variable

A broadcast variable can be created using SparkContext’s broadcast method. Let’s see it 

with an example:

// Scala code for broadcast variables

val bVariable = sc.broadcast(Array(1, 2, 3, 4, 5, 6, 7, 8, 9))

bVariable: org.apache.spark.broadcast.Broadcast[Array[Int]] = 

Broadcast(137)

bVariable.value

res70: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)

# Python code for broadcast variables

bVariable =  spark.sparkContext.broadcast([1, 2, 3, 4, 5, 6, 7, 8, 9])

bVariable.value

# Output

[1, 2, 3, 4, 5, 6, 7, 8, 9]

 Accumulators
Accumulators are variables used to track and update information across a cluster’s 

executors. Accumulators can be used to implement counters and sums, and they can 

only be “added” to through associative and commutative operations.

You can see in Figure 3-10 a graphical representation of the process by which 

accumulators are used to collect data at the executor level and bring it to the driver node.
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Figure 3-10. Accumulator operation

One important characteristic of accumulators is that executors cannot read the 

accumulators’ value; they can only update it. The accumulator value can only be read in 

the driver process.

Next is a code snippet with Scala:

// Accumulator pyspark code snipped

val rdd = spark.sparkContext.parallelize(Array(1, 2, 3, 4, 5))

val acc = spark.sparkContext.longAccumulator("AddAccumulator")

rdd.foreach(x => acc.add(x))

print("Acc value: ", acc.value) //Value collected at the driver

// Output

(Acc value: ,15)

Next is the same code snippet, but this time written with PySpark:

# Accumulator pyspark code snipped

acc = spark.sparkContext.accumulator(0)

rdd = spark.sparkContext.parallelize([1,2,3,4,5])

rdd.foreach(lambda x:acc.add(x))

print("Acc value: ", acc.value) # Value collected at the driver

# Output

Acc value:  15
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Summarizing, we could say that via accumulator variables, Apache Spark provides a 

way to coordinate information among executors, whereas through broadcast variables, 

it provides a method to optimize sharing the same information across the nodes of the 

cluster without data shuffling.

3.4  When to Use RDDs
Though it is considered that in general high-level API data structures like dataframes and 

datasets will allow you to be more productive and work quicker, there are circumstances 

in which you will need to use RDDs. On top of that, as we already said before, high-level 

structures are in fact built on top of these fundamental primitives. Thus, it is important 

to understand how they work because when you work with dataframes or datasets, Spark 

turns them into RDDs under the hood. Therefore, as your code becomes more complex, 

it is important to know the nuances of Spark RDD programming to be able to get the 

most out of it.

Additionally, there are some scenarios in which you will be using RDDs:

• When you need a low-level control of the physical distribution of the 

data partitions across the cluster

• When you need low-level transformations and actions

• When you need to make some custom operation not available in 

high-level APIs

• When accessing data attributes by name or column is no longer 

needed and hence imposing schema to your data is not strictly 

necessary

• When you need to maintain legacy code written using RDDs

Wrapping up, we could say that RDDs give you a more fine-grained control of 

your code.
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3.5  Summary
In this chapter we briefly looked at the concept of the Spark low-level API, the notion of 

Spark Resilient Distributed Datasets (RDDs) as Spark building blocks to construct other 

Spark data structures such as DataFrames and datasets with a higher level of technical 

isolation. We also covered the most essential operations that you can perform using 

RDDs, and finally we also explained the so-called Spark shared variables: broadcasts and 

accumulators. In the next chapter, we are going to focus on the Spark high-level API and 

how to use it in the big data world.
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CHAPTER 4

The Spark High-Level 
APIs
Spark SQL, dataframes, and datasets are Spark high-level API components intended 

for structured data manipulation, allowing Spark to automatically improve storage and 

computation performance. Structured data is information organized into standardized 

structure of schema, which makes it accessible and analyzable without further 

treatment. Examples of structured data are database tables, Excel sheets, RDBMS tables, 

Parquet files, and so on.

Spark’s high-level APIs allow the optimization of applications working with a certain 

kind of data, like binary format files, beyond the limits permitted by Spark’s RDD, for 

example. Dataframes and datasets take advantage of the Spark SQL’s Catalyst Optimizer 

and Spark Project Tungsten, studied later in this chapter, to optimize their performance.

The most important difference between the Dataset API and DataFrame API is 

probably that the Dataset implements type safety at compile time. Datasets enact 

compile-time type safety, whereas DataFrames do not. Spark verifies DataFrame data 

types comply with those defined in its schema at runtime, whereas dataset data types are 

validated at compile time. We will cover the concept of compile-time type safety in detail 

later on in this chapter.

4.1  Spark Dataframes
Introduced in Spark 1.3, seeking improvement in the performance and scalability of 

Spark. The DataFrame API introduced the notion of schema to describe a data structure, 

allowing Spark to optimize shuffle operations by moving data across the nodes in a more 

efficient way. From a visual point of view, dataframes resemble relational database tables 

or spreadsheets as the example you can see in the following:
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+--------+-----------------+-------------------+----+----+

|  Nombre|  Primer_Apellido|   Segundo_Apellido|Edad|Sexo|

+--------+-----------------+-------------------+----+----+

|  Miguel|     de Cervantes|           Saavedra|  50|   M|

|Fancisco|          Quevedo|Santibáñez Villegas|  55|   M|

|    Luis|       de Góngora|           y Argote|  65|   M|

|  Teresa|Sánchez de Cepeda|          y Ahumada|  70|   F|

+--------+-----------------+-------------------+----+----+

From a technical point of view, however, a DataFrame is a sort of view of an untyped 

dataset. In other words, a DataFrame is a dataset organized into columns with a header 

name. In Scala and Java, a DataFrame could be considered an untyped dataset of 

type Row (Dataset[Row]), where a Row stands for an untyped JVM object. They are 

a collection of rows of data organized in named columns of different data types and 

formed into a schema as the one you see next:

root

 |-- Nombre: string (nullable = true)

 |-- Primer_Apellido: string (nullable = true)

 |-- Segundo_Apellido: string (nullable = true)

 |-- Edad: integer (nullable = true)

 |-- Sexo: string (nullable = true)

As you can see in the preceding schema, every dataframe column includes a set 

of attributes such as name, data type, and a nullable flag, which represents whether it 

accepts null values or not.

The Dataframe API is a component of the Spark SQL module and is available for 

all programming languages such as Java, Python, SparkR, and Scala. Unlike RDDs, 

dataframes provide automatic optimization, but unlike the former, they do not provide 

compile-time type safety. This means that while with RDDs and datasets the compiler 

knows the columns’ data types (string, integer, StructType, etc.), when you work with 

dataframes, values returned by actions are an array of rows without a defined data type. 

You can cast the values returned to a specific type employing Scala´s asInstanceOf() or 

PySpark’s cast() method, for example.

Let’s analyze how the implementation of type safety influences Spark application 

behavior with three practical examples.
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For that purpose we are going to use a small dataset populated with just three of 

the most prominent Spanish writers of all times. First of all we are going to show how 

type safety influences the use of a lambda expression in a filter or map function. The 

following is the code snippet.

First of all we create a case class SpanishWritersDataFrame APISpanishWriters including 

four personal writer’s attributes:

//spark.sparkContext.implicits._ grants access to toDF() method

import spark.sqlContext.implicits._

case class SpanishWriters(Nombre: String, Apellido: String, Edad: Int, 

Sexo:String)

For this example we create a small dataset of Spanish writers:

val SpanishWritersData = Seq(SpanishWriters("Miguel", "Cervantes", 

50, "M"), SpanishWriters("Fancisco", "Quevedo", 55, "M"), 

SpanishWriters("Luis", "Góngora", 65, "M"))

In the next step, we create a RDD from the preceding set of data:

val SpanishWritersRDD = spark.sparkContext.parallelize(SpanishWritersData)

Now we use toDF() and toDS() to create a dataframe and a dataset, respectively:

val writersDF = SpanishWritersRDD.toDF()

val writersDS = SpanishWritersRDD.toDS()

Now we are going to see the differences between the data entities when using a 

lambda function to filter the data:

// Dataframe

val writersDFResult = writersDF.filter(writer => writer.Edad > 53)

// Output

error: value Edad is not a member of org.apache.spark.sql.Row val 

writersDFResult = writersDF.filter(writer => writer.Edad > 53)

                                                ^

//Dataset

val writersDSResult = writersDS.filter(writer => writer.Edad > 53)

// Output

writersDSResult: org.apache.spark.sql.Dataset[SpanishWriters] = [Nombre: 

string, Apellido: string ... 2 more fields]
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Please, pay attention to the different output we get when filtering the information 

in both data structures. When we apply filter to a dataframe, the lambda function 

implemented is returning a Row-type object and not an integer value as you probably 

were expecting, so it cannot be used to compare it with an integer (53 in this case). Thus, 

using just the column name, we cannot retrieve the value coded as a Row object. To get 

the Row object value, you have to typecast the value returned to an integer. Therefore, we 

need to change the code as follows:

val writersDFResult = writersDF2.filter(writer => writer.getAs[Int]

("Edad") > 53)

writersDFResult.show()

// Output

+--------+--------+----+----+

|  Nombre|Apellido|Edad|Sexo|

+--------+--------+----+----+

|Fancisco| Quevedo|  55|   M|

|    Luis| Góngora|  65|   M|

+--------+--------+----+----+

The preceding example shows one of the reasons datasets were introduced. The 

developer does not need to know the data type returned beforehand.

Another example of compile-time type safety appears when we query a 

nonexisting column:

// Dataframe

val writersDFBirthday = writersDF.select("Birthday")

// Output

rg.apache.spark.sql.AnalysisException: Column 'Birthday' does not exist. 

Did you mean one of the following? [Edad, Apellido, Nombre, Sexo];

// Dataset

val writersDSBirthday = writersDS.map(writer => writer.Birthday)

// Output

error: value Birthday is not a member of SpanishWriters

val writersDSBirthday = writersDS.map(writer => writer.Birthday)

                               ^
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In the preceding example, you can see the difference between execution time 

(dataframe) and compile time (dataset). The former will throw an error only at runtime, 

while the latter will give you an error message at compile time.

Another case in which we are going to find a different behavior between DataFrames 

and datasets is when we want to revert them to a primitive RDD. In this case DataFrame 

reversion to RDD won’t preserve the data schema, while dataset reversion will. Let’s see 

it again with an example:

// Dataframe reversion to RDD

val rddFromDF = writersDF.rdd

// Output

rddFromDF: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = 

MapPartitionsRDD[249] at rdd at <console>:75

However, we won’t be able to work normally with this reverted RDD, because in fact 

the revision returns a Row of RDD. Let’s use a simple operation like to see the outcome:

rddFromDF.map(writer => writer.Nombre).foreach(println)

// Output

error: value Nombre is not a member of org.apache.spark.sql.Row

Now, we are going to do the same operation, but this time with our dataset:

// Dataset reversion to RDD

val rddFromDS = writersDS.rdd

// Output

rddFromDS: org.apache.spark.rdd.RDD[SpanishWriters] = MapPartitionsRDD[252] 

at rdd at

The revision returns a real RDD, so we can normally use it:

rddFromDS.map(writer => writer.Nombre).foreach(println)

// Output

Luis

Fancisco

Miguel

It proves datasets preserve the data schema when reverted to RDD.
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 Attributes of Spark DataFrames
Like other Apache Spark modules, DataFrames were created from inception to deal 

with big data projects as efficiently as possible. For that reason, Spark DataFrames 

support being distributed across the nodes of a cluster, taking full advantage of the 

Spark distributed computing architecture. User SQL queries and commands sent to the 

DataFrames are managed by the Catalyst Optimizer, which is responsible for finding and 

building the query execution plan that achieves the requested result more efficiently.

Spark DataFrames incorporate many important features. One of them is the 

possibility to create dataframes from external sources—circumstances that are very 

helpful in real life, when most of the time data is going to be given in the form of files, 

databases, etc. Examples of the external file formats supported out of the box by Spark to 

load data into DataFrames can be seen in Figure 4-1.

Figure 4-1. Some out-of-the-box Spark-supported formats to load data into 
DataFrames

Another important feature of DataFrames is their capacity to tackle huge volumes 

of data, from megabytes to petabytes. Thus, Spark DataFrames allow data management 

at scale.

 Methods for Creating Spark DataFrames
DataFrames can be built in very different ways, such as manually, from external 

relational databases (MySQL, PostgreSQL, Oracle, etc.) or structured data files (CSV, 

Excel spreadsheets, Parquet, JSON, among others), from NoSQL databases (Hive tables, 

Cassandra, HBase, or MongoDB), or from already existing RDDs and binary files.
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Spark provides two methods to build DataFrames manually, toDF() and 

createDataFrame(). Taking advantage of these methods, you can create new DataFrames 

from other already existing DataFrames, RDDs, datasets, lists, and sequences.

Although both methods are pretty much equivalent, they have some important 

differences.

 Manually Creating a Spark DataFrame Using toDF( )

To use toDF(), we first have to import Spark’s sqlContext.implicits._ library to have 

an implicit method to convert a RDD to a DataFrame. Let’s see how to transform a RDD 

into a DataFrame using toDF():

val carsData=Seq(("USA","Chrysler","Chrysler 300",292),("Germany","BMW", 

"BMW 8 Series",617),("Spain", "Spania GTA", "GTA Spano",925))

val carsRdd = spark.sparkContext.parallelize(carsData) // Seq to RDD

val dfCars = carsRdd.toDF() // RDD to DF

dfCars.show()

// Output

+-------+----------+------------+---+

|     _1|        _2|          _3| _4|

+-------+----------+------------+---+

|    USA|  Chrysler|Chrysler 300|292|

|Germany|       BMW|BMW 8 Series|617|

|  Spain|Spania GTA|   GTA Spano|925|

+-------+----------+------------+---+

By default, toDF() assigns sequences “_1”, “_2”, “_3”, “_4”, and so on as column 

names and tries to infer data types (string and int) and flags every column as nullable, 

except for the numeric column. You can see this behavior by printing the dfCars 

dataframe schema:

dfCars.printSchema()

// Output

root

 |-- _1: string (nullable = true)

 |-- _2: string (nullable = true)

 |-- _3: string (nullable = true)

 |-- _4: integer (nullable = false)
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The method toDF() accepts an indefinite number of parameters to be used as 

column names: df.toDF(‘col1’, ‘col2’, ..., ‘colN’), as you can see in the following:

val dfBrandedCars = carsRdd.toDF("Country","Manufacturer","Model","Power" )

dfBrandedCars.show()

// Output

+-------+------------+------------+-----+

|Country|Manufacturer|       Model|Power|

+-------+------------+------------+-----+

|    USA|    Chrysler|Chrysler 300|  292|

|Germany|         BMW|BMW 8 Series|  617|

|  Spain|  Spania GTA|   GTA Spano|  925|

+-------+------------+------------+-----+

The conclusion we obtain from the preceding example is that using toDF() we have 

no control over the dataframe schema. This means we have no control over column 

types and nullable flags.

 Manually Creating a Spark DataFrame Using createDataFrame( )

We can take advantage of the createDataFrame() method to construct DataFrames in 

two forms. The first one is coupling it with toDF() while taking a RDD as a parameter. 

Let’s show how it works with an example:

var df2 = spark.createDataFrame(carsData) \

.toDF("Country","Manufacturer","Model","Power")

df2.show()

// Output

+-------+------------+------------+-----+

|Country|Manufacturer|       Model|Power|

+-------+------------+------------+-----+

|    USA|    Chrysler|Chrysler 300|  292|

|Germany|         BMW|BMW 8 Series|  617|

|  Spain|  Spania GTA|   GTA Spano|  925|

+-------+------------+------------+-----+
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The second way is we can use createDataFrame() to create a dataframe and unleash 

its real power, allowing us to fully customize our own DataFrame schema. You can have 

a good grasp of how createDataFrame() works by incorporating a schema definition in 

the following example:

import org.apache.spark.sql.Row

import org.apache.spark.sql.types.{IntegerType,StringType, StructField, 

StructType}

// First of all we create a schema for the carsData dataset.

val carSchema = StructType( Array(

      StructField("Country", StringType,true),

      StructField("Manufacturer", StringType,true),

      StructField("Model", StringType,true),

      StructField("Power", IntegerType,true)

))

// Notice we are using here the carsRdd RDD shown in the previous example

val carsRowRdd = carsRdd.map(carSpecs => Row(carSpecs._1, carSpecs._2, 

carSpecs._3, carSpecs._4))

val dfCarsFromRDD = spark.createDataFrame(carsRowRdd,carSchema)

dfCarsFromRDD.show()

// Output

+-------+------------+------------+-----+

|Country|Manufacturer|       Model|Power|

+-------+------------+------------+-----+

|    USA|    Chrysler|Chrysler 300|  292|

|Germany|         BMW|BMW 8 Series|  617|

|  Spain|  Spania GTA|   GTA Spano|  925|

+-------+------------+------------+-----+

Wrapping up, we could say that though both toDF() and createDataFrame() 

methods can be used to create DataFrames, the former infers the data schema, while the 

latter gives you full customization control over the DataFrame schema.
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 Data Sources for Creating Spark DataFrames

Spark SQL, through the DataFrame interface, supports a wide range of data sources. 

A DataFrame can be operated in two different ways. The first one is directly, using 

relational transformations we have already seen in previous chapters. The second one is 

by creating a temporary view from the dataframe. The second method allows you to run 

SQL queries over the data, as if you were querying traditional RDBMS.

Parquet is the default data source Spark expects to use in input/output operations. 

This default format can be set using the spark.sql.sources.default property name.

Let’s see it with an example. Try to load a CSV file using the load() method:

val personasDF = spark.read.load("/Users/aantolinez/Downloads/

personas.csv")

You will receive the following error message:

Caused by: java.lang.RuntimeException: file:/Users/aantolinez/Downloads/

personas.csv is not a Parquet file. Expected magic number at tail, but 

found [48, 44, 70, 10]

However, if you load a Parquet file

val personasDF = spark.read.load("/Users/aantolinez/Downloads/personas.

parquet")

everything goes well:

personasDF: org.apache.spark.sql.DataFrame = [Nombre: string, Primer_

Apellido: string ... 3 more fields]

Exactly the same would happen if you use PySpark code:

personasDF = spark.read.load("/Users/aantolinez/Downloads/personas.csv")

// Output

Caused by: java.lang.RuntimeException: file:/Users/aantolinez/Downloads/

personas.csv is not a Parquet file. Expected magic number at tail, but 

found [48, 44, 70, 10]
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While using a Parquet format file, everything is fine:

personasDF = spark.read.load("/Users/aantolinez/Downloads/personas.

parquet")

personasDF.show(1)

# Output

+------+---------------+----------------+----+----+

|Nombre|Primer_Apellido|Segundo_Apellido|Edad|Sexo|

+------+---------------+----------------+----+----+

|Miguel|   de Cervantes|        Saavedra|  50|   M|

+------+---------------+----------------+----+----+

 Querying Files Using SQL

Sometimes directly querying a data file instead of loading it first into a DataFrame could 

be interesting. Spark allows you to do it in the following way, using the same code in 

Scala and PySpark and getting the same result:

spark.sql("SELECT * FROM parquet.`/Users/aantolinez/Downloads/personas.

parquet`").show()

// Output Scala and PySpark

+--------+-----------------+-------------------+----+----+

|  Nombre|  Primer_Apellido|   Segundo_Apellido|Edad|Sexo|

+--------+-----------------+-------------------+----+----+

|  Miguel|     de Cervantes|           Saavedra|  50|   M|

|Fancisco|          Quevedo|Santibáñez Villegas|  55|   M|

|    Luis|       de Góngora|           y Argote|  65|   M|

|  Teresa|Sánchez de Cepeda|          y Ahumada|  70|   F|

+--------+-----------------+-------------------+----+----+

 Ignoring Corrupt and Missing Files

Spark provides the both spark.sql.files.ignoreCorruptFiles method to ignore 

corrupt files and spark.sql.files.ignoreMissingFiles method to ignore missing files 

while reading files from the file system. With the former, when set to true, Spark jobs will 

not crash when they find corrupted files, and the content that could have been read will 

still be returned. The latter means that Spark jobs will not fail when files are missing, and 
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as in the previous method, data that could have been read will still be returned. In this 

context, a missing file is one that has been deleted after a DataFrame transformation has 

been applied.

We are going to see this Spark feature with an example:

// enable ignore corrupt files

spark.sql("set spark.sql.files.ignoreCorruptFiles=true")

// personas_corrupt.parquet is not real parquet file

val corruptFiles = spark.read.parquet(

      "/Users/aantolinez/Downloads/personas.parquet",

      "/Users/aantolinez/Downloads/personas_corrupt.parquet")

corruptFiles.show()

 Time-Based Paths

Spark provides modifiedBefore and modifiedAfter options for time control over files 

that should be loaded at query time.

modifiedBefore takes a timestamp as a parameter instructing Spark to only read 

files whose modification time occurred before the given time. Similarly, modifiedAfter 

also takes a timestamp as a parameter but this time commanding Spark to only load files 

whose modification time took place after the given time. In both cases timestamp must 

have the following format: YYYY-MM-DDTHH:mm:ss (e.g. 2022-10-29T20:30:50).

Let’s see this Spark behavior with an example in Scala and later on in PySpark:

val modifiedAfterDF = spark.read.format("csv")

  .option("header", "true")

  .option("modifiedAfter", "2022-10-30T05:30:00")

  .load("/Users/aantolinez/Downloads/Hands-On-Spark3");

modifiedAfterDF.show();

We can get the same result using PySpark code as you can see in the following:

modifiedAfterDF = spark.read.format("csv") \

  .option("header", "true") \

  .option("modifiedAfter", "2022-10-30T05:30:00") \

  .load("/Users/aantolinez/Downloads/Hands-On-Spark3");

modifiedAfterDF.show();
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The output in both cases will be the same:

+--------+-----------------+-------------------+----+----+

|  Nombre|  Primer_Apellido|   Segundo_Apellido|Edad|Sexo|

+--------+-----------------+-------------------+----+----+

|  Miguel|     de Cervantes|           Saavedra|  50|   M|

|Fancisco|          Quevedo|Santibáñez Villegas|  55|   M|

|    Luis|       de Góngora|           y Argote|  65|   M|

|  Teresa|Sánchez de Cepeda|          y Ahumada|  70|   F|

+--------+-----------------+-------------------+----+----+

Both options support the specification of a timezone via spark.sql.session.

timeZone; in this case, timestamps will reference the timezone given.

 Specifying Save Options

We have mentioned before the Spark default data source is in Parquet format; however, 

Spark permits interaction with many other sources of information such as JSON, ORC, 

CSV, and text files as well as Hive tables, Cassandra, etc. and JDBC data origins.

This large ecosystem of data origins and the Spark capacity to transform the data 

between different formats permit Spark to be used as an efficient ETL1 tool. Spark can 

load data from the sources mentioned, transform it, and save it in the formats and 

repositories specified. There are four saving modes as shown in Table 4-1.

Table 4-1. Saving Modes

In Scala and Java In Any Language Meaning

SaveMode.errorifexists 

(default)

“error” or 

“errorifexists” (default)

an exception is sent if data already exists at the 

destination when saving the DataFrame.

SaveMode.append “append” Data is appended to the destination data/table.

SaveMode.Overwrite “overwrite” if data/table already exists in the destination, it is 

overwritten.

SaveMode.ignore “ignore” it works similarly to the SQL   Create taBLe 

iF NOt eXiStS. if data already exists in the 

destination, the operation is overlooked.

1 ETL stands for Extract, Transform, and Load data.
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Let’s see how Spark saving modes work with an example:

val SpanishDf = spark.read.option("header", "true")

      .option("inferSchema", "true")

      .csv("/Users/aantolinez/Downloads/personas.csv")

// Writing the first DataFrame

SpanishDf.write.format("csv").mode("overwrite")

      .option("header", true)

      .save("/Users/aantolinez/Downloads/personas2.csv")

// Adding some data to append to the previous saved DataFrame

val SpanishWritersData2 = Seq(("Miguel", "de Unamuno", 70, "M"))

val SpanishWritersRdd = spark.sparkContext.parallelize(SpanishWritersData2)

val SpanishWritersAppendDF = SpanishWritersRdd.toDF()

// Appending the new data to the previous saved one

SpanishWritersAppendDF.write.format("csv").mode("append").save("/Users/

aantolinez/Downloads/personas2.csv")

Now if you have a look at the saved data in Figure 4-2, you see something surprising.

Figure 4-2. Spark saved data

The reason is as follows. By default Spark saves DataFrames, datasets, or RDDs in a 

folder with the name specified and writes the content inside in multiple part files (one 

part per partition) having the format file specified as extension. As you have seen in the 

preceding output, Spark also writes a _SUCCESS file and a .crc file for each partition.

If for any reason you require to have the data merged into a single file and get rid of 

the folder and collateral files, you can only easily achieve the first one of your wishes.

As mentioned before, Spark creates a file for each partition. Thus, one way to 

get a single file is by consolidating all the shuffled data in a single partition using the 

coalesce() and/or repartition() method.
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 NOTICE

Be careful when using the coalesce() and/or repartition() method with large 

data volumes as you can overload the driver memory and get into trouble facing 

OutOfMemory problems.

Let’s see how to get a single file with a simple example valid for Scala and PySpark:

SpanishWritersAppendDF.coalesce(1)

.write.csv("/Users/aantolinez/Downloads/personas_coalesce.csv")

Now, when you look at the output of the preceding code (Figure 4-3), you can see a 

single CSV file; however, the folder, _SUCCESS file, and .crc hidden files are still there.

Figure 4-3. Spark saving to a single file

For further refinement, such as removing the folder and _SUCCESS and .crc 

hidden files, you would have to use the Hadoop file system library to manipulate the 

final output.

 Read and Write Apache Parquet Files

Apache Parquet is a free, open source, columnar, and self-describing file format for fast 

analytical querying. Apache Parquet plays an important role in modern data lakes due to 

its capabilities to skip irrelevant data permitting efficient queries on large datasets.

Some advantages of the Parquet columnar storage are the following:

• Columnar: Parquet is a column-oriented format. In a Paquet file, 

data is stored as columns, meaning values of each column are stored 

close to each other, facilitating accessibility and hence querying 

performance.

• Self-description: A Parquet file combines the data itself with the data 

schema and structure. This combination facilitates the development 

of tools to read, store, and write Parquet files.
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• Compression: In a Parquet file, data compression takes place column 

by column and includes flexible compression options such as 

extendable encoding schema per data type. It means that we can use 

different compression encoding according to the data type (long, 

string, date, etc.) optimizing compression.

• Performance: The Parquet format is designed for querying 

performance. The internal Parquet format structure (which is out 

of the scope of this book), composed of row groups, header, and 

footer, minimizes the volume of data read and hence reduces disk 

I/O. Comparing Parquet with CSV files, the latter must be read in full 

and uploaded into memory, while the former permits reading only 

the relevant columns needed to answer our question. The Parquet 

format allows retrieval of minimum data, implementing vertical and 

horizontal partitioning of row groups and column chunks as you can 

see in Figure 4-4. Column chunks are also organized as data pages 

including metadata information.

Figure 4-4. Parquet data partitioning

 Saving and Data Compression of a DataFrame to a Parquet 
File Format

The parquet() method permits saving a Spark DataFrame to a Parquet file format. By 

default, this method uses the snappy compression codec:

import org.apache.spark.sql.types.{StringType, StructType, IntegerType}

val schemaWriters = new StructType()
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      .add("Name",StringType,true)

      .add("Surname",StringType,true)

      .add("Century",StringType,true)

      .add("YearOfBirth",IntegerType,true)

val SpanishWritersDf = spark.read.option("header", "true")

      .schema(schemaWriters)

.csv("/Users/aantolinez/Downloads/Spanish_Writers_by_Century.csv")

// Saving data with default compression codec: snappy

SpanishWritersDf.write.parquet("/Users/aantolinez/Downloads/Spanish_

Writers_by_Century.parquet")

Spanish_Writers_by_Century.parquet:

_SUCCESS    part-00000-e4385fd4-fcc0-4a5c-8632-d0080438fa82-c000.gz.parquet

The compression codec can be set to none, uncompressed, snappy, gzip, lzo, brotli, 

lz4, and zstd, overriding the spark.sql.parquet.compression.codec. Data can be 

appended to a Parquet file using the append option:

// Saving data with gzip compression codec compression option

SpanishWritersDf.write.mode("append").option("compression", "gzip").

parquet("/Users/aantolinez/Downloads/Spanish_Writers_by_Century.parquet")

As you can see in the following, several compression codecs can be combined:

Spanish_Writers_by_Century.parquet:

_SUCCESS    part-00000-e4385fd4-fcc0-4a5c-8632-d0080438fa82-c000.gz.parquet

    part-00000-d070dd4d-86ca-476f-8e67-060365db7ca7-c000.snappy.parquet

The same result can be obtained using PySpark code:

from pyspark.sql.types import StructField, StringType, StructType, 

IntegerType

schemaWriters = StructType([

      StructField("Name",StringType(),True),

      StructField("Surname",StringType(),True),

      StructField("Century",StringType(),True),

      StructField("YearOfBirth", IntegerType(), True)

  ])
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SpanishWritersDf = spark.read.option("header", "true") \

      .schema(schemaWriters) \

.csv("/Users/aantolinez/Downloads/Spanish_Writers_by_Century.csv")

 Direct Queries on Parquet Files

Spark can run SQL statements directly on Parquet files through temporary views:

val parquetDF = spark.read.parquet("/Users/aantolinez/Downloads/Spanish_

Writers_by_Century.parquet")

parquetDF.createOrReplaceTempView("TempTable")

val sqlDf = spark.sql("select * from TempTable where YearOfBirth = 1600")

sqlDf.show()

// Output

+--------+-----------+-------+-----------+

|    Name|    Surname|Century|YearOfBirth|

+--------+-----------+-------+-----------+

|Calderón|de la Barca|   XVII|       1600|

+--------+-----------+-------+-----------+

You can get the same result using PySpark code as you see in the following code 

snippet:

parquetDF = spark.read.parquet("/Users/aantolinez/Downloads/Spanish_

Writers_by_Century.parquet")

parquetDF.createOrReplaceTempView("TempTable")

sqlDf = spark.sql("select * from TempTable where YearOfBirth = 1600")

sqlDf.show()

# Output

+--------+-----------+-------+-----------+

|    Name|    Surname|Century|YearOfBirth|

+--------+-----------+-------+-----------+

|Calderón|de la Barca|   XVII|       1600|

+--------+-----------+-------+-----------+

Chapter 4  the Spark high-LeveL apiS



127

 Parquet File Partitioning

Spark allows Parquet file partitioning using the partitionBy() method. File partitioning 

is one of the key Spark features to improve data analytics performance and scalability. 

File partitioning is a key feature to make reads faster; it allows fast access to the data, 

loading smaller datasets, and processing data in parallel. Let’s see how it works with a 

small example:

import org.apache.spark.sql.types.{StringType, StructType, IntegerType}

val schemaWriters = new StructType()

      .add("Name",StringType,true)

      .add("Surname",StringType,true)

      .add("Century",StringType,true)

      .add("YearOfBirth",IntegerType,true)

      .add("Gender",StringType,true)

val SpanishWritersDf = spark.read.option("header", "true")

      .schema(schemaWriters)

      .csv("/Users/aantolinez/Downloads/Spanish_Writers_by_Gender.csv")

SpanishWritersDf.write.partitionBy("Century","Gender")

.parquet("/Users/aantolinez/Downloads/Spanish_Writers_by_Gender.parquet”)

Spark creates a folder hierarchy based on “Century” as the first partition key and 

recursively a group of subfolders for “Gender”, the second partition key. You can see the 

mentioned hierarchy in Figure 4-5.
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Figure 4-5. Spark Parquet file partitioning by key

The following PySpark code snippet will return to you the same output:

from pyspark.sql.types import StructField, StringType, StructType, 

IntegerType

schemaWriters = StructType([

      StructField("Name",StringType(),True),

      StructField("Surname",StringType(),True),

      StructField("Century",StringType(),True),
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      StructField("YearOfBirth", IntegerType(),True),

      StructField("Gender",StringType(),True),

  ])

SpanishWritersDf = spark.read.option("header", "true") \

      .schema(schemaWriters) \

.csv("/Users/aantolinez/Downloads/Spanish_Writers_by_Gender.csv")

SpanishWritersDf.write.partitionBy("Century","Gender") \

.parquet("/Users/aantolinez/Downloads/Spanish_Writers_by_Gender.parquet")

 Reading Parquet File Partitions

One of the ways Spark provides to speed up data processing is by enabling reading only 

the portions of the data needed.

In the following Scala code snippet, you can see how to select only the data needed 

from a Parquet file:

val partitionDF = spark.read.parquet("/Users/aantolinez/Downloads/Spanish_

Writers_by_Gender.parquet/Century=XX")

partitionDF.show()

+----+---------------+-----------+------+

|Name|        Surname|YearOfBirth|Gender|

+----+---------------+-----------+------+

|José|Ortega y Gasset|       1883|     M|

+----+---------------+-----------+------+

The same result is achieved using PySpark code:

partitionDF = spark.read.parquet("/Users/aantolinez/Downloads/Spanish_

Writers_by_Gender.parquet/Century=XX")

partitionDF.show()

 Read and Write JSON Files with Spark

Spark provides two methods for reading JSON files, loading those JSON files as 

Dataset[Row] and writing data to disk in a JSON format. Spark natively supports JSON 

file schema deduction, although the JSON file must include separate and valid newline-

delimited JSON objects.
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You can use spark.read.json("path/to/file.json") to load single-line or 

multiline JSON files or Dataset[String] into a Spark DataFrame and use dataframe.

write.json("path/to/file.json") to save a Spark DataFrame as a JSON file.

Let’s see how to load a JSON file into a Spark DataFrame. In the first example, we are 

going to load a file composed of newline-delimited JSON strings as the one we see in the 

following:

{"id":1,"first_name":"Luis","last_name":"Ortiz","email":"luis.ortiz@mapy.cz", 

"country":"Spain","updated":"2015-05-16","registered":false},

{"id":2,"first_name":"Alfonso","last_name":"Antolinez","email":"aantolinez 

@optc.es","country":"Spain","updated":"2015-03-11","registered":true},

{"id":3,"first_name":"Juan","last_name":"Dominguez","email":"jdomin@xyz.org", 

"country":"Spain","updated":"2015-02-15","registered":true},

{"id":4,"first_name":"Santiago","last_name":"Sanchez","email":"ssanchez 

@google.com","country":"Spain","updated":"2014-10-31","registered":false}

To load a single and simple JSON file, you can use the read.json() as the example 

shown next:

val df = spark.read.json("/Users/aantolinez/Downloads/Spaniards.json")

Unlike other data source formats, Spark has the capacity to infer the data schema 

while reading a JSON file:

df.printSchema()

// Output

root

 |-- country: string (nullable = true)

 |-- email: string (nullable = true)

 |-- first_name: string (nullable = true)

 |-- id: long (nullable = true)

 |-- last_name: string (nullable = true)

 |-- registered: boolean (nullable = true)

 |-- updated: string (nullable = true)
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The same result is obtained when we use PySpark code as shown next:

jsonDf = spark.read.json("/Users/aantolinez/Downloads/Spaniards.json")

jsonDf.printSchema()

# Output

root

 |-- country: string (nullable = true)

 |-- email: string (nullable = true)

 |-- first_name: string (nullable = true)

 |-- id: long (nullable = true)

 |-- last_name: string (nullable = true)

 |-- registered: boolean (nullable = true)

 |-- updated: string (nullable = true)

However, in many real cases, you are going to find files formatted as arrays of JSON 

strings. One example of this file format is shown in the following:

[{"id":1,"first_name":"Luis","last_name":"Ortiz","email":"luis.ortiz@mapy.

cz","country":"Spain","updated":"2015-05-16","registered":false},

{"id":2,"first_name":"Alfonso","last_name":"Antolinez","email":"aantolinez@

optc.es","country":"Spain","updated":"2015-03-11","registered":true},

{"id":3,"first_name":"Juan","last_name":"Dominguez","email":"jdomin@xyz.org", 

"country":"Spain","updated":"2015-02-15","registered":true},

{"id":4,"first_name":"Santiago","last_name":"Sanchez","email":"ssanchez@

google.com","country":"Spain","updated":"2014-10-31","registered":false}]

These kinds of files are known as multiline JSON strings. For multiline JSON files, 

you have to use .option("multiline","true") while reading the data. Let’s see how it 

works with an example in Scala and PySpark:

//Loading a multiline JSON strings file into a dataframe. Scala

val multilineJsonDf = spark.read.option("multiline","true")

.json("/Users/aantolinez/Downloads/Spaniards_array.json")

multilineJsonDf.show(4, false)
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// Output

+-------+-------------------+----------+---+---------+----------+----------+

|country|email              |first_name|id |last_name|registered|updated   |

+-------+-------------------+----------+---+---------+----------+----------+

|Spain  |luis.ortiz@mapy.cz |Luis      |1  |Ortiz    |false     |2015-05-16|

|Spain  |aantolinez@optc.es |Alfonso   |2  |Antolinez|true      |2015-03-11|

|Spain  |jdomin@xyz.org     |Juan      |3  |Dominguez|true      |2015-02-15|

|Spain  |ssanchez@google.com|Santiago  |4  |Sanchez  |false     |2014-10-31|

+-------+-------------------+----------+---+---------+----------+----------+

 Reading Multiple JSON Files at Once

The read.json() method can also be used to read multiple files from different paths. To 

load multiple files at once, you just need to pass their paths as elements of a list. Have a 

look at how to achieve it in a Scala code snippet:

//Loading a multiline JSON strings file into a dataframe at once

val multipleJsonsDf = spark.read.option("multiline","true").json(

      "/Users/aantolinez/Downloads/Spaniards_array.json",

      "/Users/aantolinez/Downloads/Spaniards_array2.json")

// Output

+-------+-------------------+----------+---+---------+----------+----------+

|country|email              |first_name|id |last_name|registered|updated   |

+-------+-------------------+----------+---+---------+----------+----------+

|Spain  |luis.ortiz@mapy.cz |Luis      |1  |Ortiz    |false     |2015-05-16|

|Spain  |aantolinez@optc.es |Alfonso   |2  |Antolinez|true      |2015-03-11|

|Spain  |jdomin@xyz.org     |Juan      |3  |Dominguez|true      |2015-02-15|

|Spain  |ssanchez@google.com|Santiago  |4  |Sanchez  |false     |2014-10-31|

|Spain  |luis.herrera@xyz.es|Luis      |1  |Herrera  |false     |2015-05-15|

|Spain  |mabad@opti.es      |Marcos    |2  |Abad     |true      |2015-03-21|

|Spain  |jabalos@redis.org  |Juan      |3  |Abalos   |true      |2015-02-14|

|Spain  |samo@terra.es      |Santiago  |4  |Amo      |false     |2014-10-21|

+-------+-------------------+----------+---+---------+----------+----------+
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The same outcome is achieved using PySpark code:

multipleJsonsDf = spark.read.option("multiline","true") \

.json(["/Users/aantolinez/Downloads/Spaniards_array.json", \

       "/Users/aantolinez/Downloads/Spaniards_array2.json"])

multipleJsonsDf.show(10,False)

# Output

+-------+-------------------+----------+---+---------+----------+----------+

|country|email              |first_name|id |last_name|registered|updated   |

+-------+-------------------+----------+---+---------+----------+----------+

|Spain  |luis.ortiz@mapy.cz |Luis      |1  |Ortiz    |false     |2015-05-16|

|Spain  |aantolinez@optc.es |Alfonso   |2  |Antolinez|true      |2015-03-11|

|Spain  |jdomin@xyz.org     |Juan      |3  |Dominguez|true      |2015-02-15|

|Spain  |ssanchez@google.com|Santiago  |4  |Sanchez  |false     |2014-10-31|

|Spain  |luis.herrera@xyz.es|Luis      |1  |Herrera  |false     |2015-05-15|

|Spain  |mabad@opti.es      |Marcos    |2  |Abad     |true      |2015-03-21|

|Spain  |jabalos@redis.org  |Juan      |3  |Abalos   |true      |2015-02-14|

|Spain  |samo@terra.es      |Santiago  |4  |Amo      |false     |2014-10-21|

+-------+-------------------+----------+---+---------+----------+----------+

 Reading JSON Files Based on Patterns at Once

Another command situation you can find in real life is the necessity of reading files 

based on name patterns and/or reading all the files in a folder. Spark allows loading 

files based on name patterns or the whole files in a directory using the same read.

json() method we have seen in previous examples. Let’s see how it works with another 

example:

val patternJsonsDf = spark.read.option("multiline","true").json(

      "/Users/aantolinez/Downloads/Spaniards_array*.json")

patternJsonsDf.show(20, false)
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// Output

+-------+-------------------------+----------+---+---------+----------+----------+

|country|email                    |first_name|id |last_name|registered|updated   |

+-------+-------------------------+----------+---+---------+----------+----------+

|Spain  |luis.garcia@xyz.es       |Lucia     |9  |Garcia   |true      |2015-05-15|

|Spain  |maria.rodriguez@opti.es  |Maria     |10 |Rodriguez|true      |2015-03-21|

|Spain  |carmen.gonzalez@redis.org|Carmen    |11 |Gonzalez |true      |2015-02-14|

|Spain  |sara.fernandez@terra.es  |Sara      |12 |Fernandez|true      |2014-10-21|

|Spain  |luis.ortiz@mapy.cz       |Luis      |1  |Ortiz    |false     |2015-05-16|

|Spain  |aantolinez@optc.es       |Alfonso   |2  |Antolinez|true      |2015-03-11|

|Spain  |jdomin@xyz.org           |Juan      |3  |Dominguez|true      |2015-02-15|

|Spain  |ssanchez@google.com      |Santiago  |4  |Sanchez  |false     |2014-10-31|

|Spain  |luis.herrera@xyz.es      |Luis      |1  |Herrera  |false     |2015-05-15|

|Spain  |mabad@opti.es            |Marcos    |2  |Abad     |true      |2015-03-21|

|Spain  |jabalos@redis.org        |Juan      |3  |Abalos   |true      |2015-02-14|

|Spain  |samo@terra.es            |Santiago  |4  |Amo      |false     |2014-10-21|

+-------+-------------------------+----------+---+---------+----------+----------+

You can get exactly the same result using PySpark code as follows:

patternJsonsDf = spark.read.option("multiline","true").json(

      "/Users/aantolinez/Downloads/Spaniards_array*.json")

patternJsonsDf.show(20, False)

In a similar way, you can use patterns to load all the JSON files from a folder. For 

example, the following code snippets will allow you to read all the JSON files from a 

directory and only JSON files:

// Reading all the JSON files from a directory and only JSON files 

in Scala.

val patternJsonsDf = spark.read.option("multiline","true").json(

      "/Users/aantolinez/Downloads/*.json")

# Reading all the JSON files from a directory and only JSON files in 

PySpark.

patternJsonsDf = spark.read.option("multiline","true").json(

      "/Users/aantolinez/Downloads/*.json")
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Similarly, if you want to read all the files in a directory, you can use the following code:

//  Reading ALL the files from a directory in Scala.

val patternJsonsDf = spark.read.option("multiline","true").json(

      "/Users/aantolinez/Downloads/")

# Reading ALL the files from a directory in PySpark.

patternJsonsDf = spark.read.option("multiline","true").json(

      "/Users/aantolinez/Downloads/")

 Direct Queries on JSON Files

As with other file formats, like Parquet, Spark also allows us to query JSON files directly. 

Thus, it is possible to create a SQL query string and pass it to Spark as you will do with 

a RDBMS.

Suppose you want to directly query the Spaniards.json file shown in previous 

examples. One way to do it could be by sending the following query to Spark:

CREATE TEMPORARY VIEW Spaniards

      USING org.apache.spark.sql.json

      OPTIONS (path '/Users/aantolinez/Downloads/Spaniards.json')

As usual, let’s see now how to implement it with Scala and PySpark coding:

// Using Scala code

val sqlContext = new org.apache.spark.sql.SQLContext(sc)

val Spaniards =  sqlContext.jsonFile("/Users/aantolinez/Downloads/

Spaniards.json")

Spaniards.registerTempTable("Spaniards")

sqlContext.sql("select * from Spaniards").show(false)

// Output

+-------+-------------------+----------+---+---------+----------+----------+

|country|email              |first_name|id |last_name|registered|updated   |

+-------+-------------------+----------+---+---------+----------+----------+

|Spain  |luis.ortiz@mapy.cz |Luis      |1  |Ortiz    |false     |2015-05-16|

|Spain  |aantolinez@optc.es |Alfonso   |2  |Antolinez|true      |2015-03-11|

|Spain  |jdomin@xyz.org     |Juan      |3  |Dominguez|true      |2015-02-15|

|Spain  |ssanchez@google.com|Santiago  |4  |Sanchez  |false     |2014-10-31|

+-------+-------------------+----------+---+---------+----------+----------+
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Exactly the same outcome can be achieved using a more compressed code:

spark.sqlContext.sql("CREATE TEMPORARY VIEW Spaniards USING json OPTIONS" + 

" (path '/Users/aantolinez/Downloads/Spaniards.json')")

spark.sqlContext.sql("select * from Spaniards").show(false)

// Output

+-------+-------------------+----------+---+---------+----------+----------+

|country|email              |first_name|id |last_name|registered|updated   |

+-------+-------------------+----------+---+---------+----------+----------+

|Spain  |luis.ortiz@mapy.cz |Luis      |1  |Ortiz    |false     |2015-05-16|

|Spain  |aantolinez@optc.es |Alfonso   |2  |Antolinez|true      |2015-03-11|

|Spain  |jdomin@xyz.org     |Juan      |3  |Dominguez|true      |2015-02-15|

|Spain  |ssanchez@google.com|Santiago  |4  |Sanchez  |false     |2014-10-31|

+-------+-------------------+----------+---+---------+----------+----------+

Now we are going to show how to get the same result using PySpark code:

# Using PySpark code

spark.sql("CREATE TEMPORARY VIEW Spaniards USING json OPTIONS" + " (path '/

Users/aantolinez/Downloads/Spaniards.json')")

spark.sql("select * from Spaniards").show(10, False)

# Output

+-------+-------------------+----------+---+---------+----------+----------+

|country|email              |first_name|id |last_name|registered|updated   |

+-------+-------------------+----------+---+---------+----------+----------+

|Spain  |luis.ortiz@mapy.cz |Luis      |1  |Ortiz    |false     |2015-05-16|

|Spain  |aantolinez@optc.es |Alfonso   |2  |Antolinez|true      |2015-03-11|

|Spain  |jdomin@xyz.org     |Juan      |3  |Dominguez|true      |2015-02-15|

|Spain  |ssanchez@google.com|Santiago  |4  |Sanchez  |false     |2014-10-31|

+-------+-------------------+----------+---+---------+----------+----------+

 Saving a DataFrame to a JSON File

Apache Spark provides a similar method called write().json() to easily save 

DataFrames to JSON files. The next code snippet shows how to save the multipleJsonsDf 

dataframe to a permanent storage as a JSON file:

Chapter 4  the Spark high-LeveL apiS



137

multipleJsonsDf.write

 .json("/Users/aantolinez/Downloads/Merged_Spaniards_array.json")

Now we check the Merged_Spaniards_array.json has been created and split in 

several partitions as expected:

ls Downloads/Merged_Spaniards_array.json

_SUCCESS

part-00000-69975a01-3566-4d2d-898d-cf9e543d81c3-c000.json

part-00001-69975a01-3566-4d2d-898d-cf9e543d81c3-c000.json

 Saving Modes

As it is with other file formats, the saving modes applicable to JSON files are the same as 

those shown earlier in Table 4-1. In the next code snippet, you can see how to append 

data to an already existing JSON file:

multipleJsonsDf.write.mode("append").json("/Users/aantolinez/Downloads/

Merged_Spaniards_array.json")

ls Downloads/Merged_Spaniards_array.json

_SUCCESS

part-00000-188063e9-e5f6-4308-b6e1-7965eaa46c80-c000.json

part-00000-7453b1ad-f3b6-4e68-80eb-254fb539c04d-c000.json

part-00001-188063e9-e5f6-4308-b6e1-7965eaa46c80-c000.json

part-00001-7453b1ad-f3b6-4e68-80eb-254fb539c04d-c000.json

The same code can be used for PySpark.

In previous Spark versions, saving modes were identified as SaveMode.ErrorIfExists, 

SaveMode.Overwrite, SaveMode.Append, and SaveMode.Ignore. However, in the newest 

Spark releases, the format mode("errorifexists"), mode("append"), etc. seems to be 

the way to go.

 Load JSON Files Based on Customized Schemas

When we began using JSON files, we said Spark is able to infer the data schema 

automatically for us when we read a JSON file. However, there are times in which you 

could be interested in taking advantage of Spark SQL StructType and StructField classes 
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to define your own file schema. This situation could be the case when the data schema 

you got is too complex for Spark to infer it autonomously:

import org.apache.spark.sql.types.{StructType,StructField, StringType, 

IntegerType,BooleanType,DateType}

val schemaSpaniards = StructType(Array(

      StructField("id",StringType,nullable=true),

      StructField("first_name",StringType,nullable=true),

      StructField("last_name",StringType,nullable=true),

      StructField("email", StringType,nullable=true),

      StructField("country", StringType,nullable=true),

      StructField("updated", DateType,nullable=true),

      StructField("registered", BooleanType,nullable=true)

  ))

val schemaSpaniardsDf = spark.read.schema(schemaSpaniards).json("/Users/

aantolinez/Downloads/Spaniards.json")

We can see how the new DataFrame matches the data schema previously defined:

schemaSpaniardsDf.printSchema()

// Output

root

 |-- id: string (nullable = true)

 |-- first_name: string (nullable = true)

 |-- last_name: string (nullable = true)

 |-- email: string (nullable = true)

 |-- country: string (nullable = true)

 |-- updated: date (nullable = true)

 |-- registered: boolean (nullable = true)

Now we can see the final result after loading the JSON file based on our 

customized schema:
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schemaSpaniardsDf.show(false)

// Output

+---+----------+---------+-------------------+-------+----------+----------+

|id |first_name|last_name|email              |country|updated   |registered|

+---+----------+---------+-------------------+-------+----------+----------+

|1  |Luis      |Ortiz    |luis.ortiz@mapy.cz |Spain  |2015-05-16|false     |

|2  |Alfonso   |Antolinez|aantolinez@optc.es |Spain  |2015-03-11|true      |

|3  |Juan      |Dominguez|jdomin@xyz.org     |Spain  |2015-02-15|true      |

|4  |Santiago  |Sanchez  |ssanchez@google.com|Spain  |2014-10-31|false     |

+---+----------+---------+-------------------+-------+----------+----------+

As usual, you get the same result using PySpark code. Let’s repeat the previous steps, 

but this time written in PySpark:

from pyspark.sql.types import StructType,StructField,StringType, 

IntegerType,BooleanType,DateType

schemaSpaniards = StructType([ \

StructField("id",IntegerType(),nullable=True), \

StructField("first_name",StringType(),nullable=True), \

StructField("last_name",StringType(),nullable=True), \

StructField("email",StringType(),nullable=True), \

StructField("country",StringType(),nullable=True), \

StructField("updated",DateType(),nullable=True), \

StructField("registered",BooleanType(),nullable=True)])

schemaSpaniardsDf.printSchema()

# Output

root

 |-- id: integer (nullable = true)

 |-- first_name: string (nullable = true)

 |-- last_name: string (nullable = true)

 |-- email: string (nullable = true)

 |-- country: string (nullable = true)

 |-- updated: date (nullable = true)

 |-- registered: boolean (nullable = true)
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Finally, you can also see the same result, as the one obtained with the Scala script:

schemaSpaniardsDf.show(4, False)

# Output

+---+----------+---------+-------------------+-------+----------+----------+

|id |first_name|last_name|email              |country|updated   |registered|

+---+----------+---------+-------------------+-------+----------+----------+

|1  |Luis      |Ortiz    |luis.ortiz@mapy.cz |Spain  |2015-05-16|false     |

|2  |Alfonso   |Antolinez|aantolinez@optc.es |Spain  |2015-03-11|true      |

|3  |Juan      |Dominguez|jdomin@xyz.org     |Spain  |2015-02-15|true      |

|4  |Santiago  |Sanchez  |ssanchez@google.com|Spain  |2014-10-31|false     |

+---+----------+---------+-------------------+-------+----------+----------+

 Work with Complex Nested JSON Structures Using Spark

In real life, you are barely going to find as simple JSON files as we have shown in 

previous examples. In particular, if you have to work with NoSQL databases like Apache 

Cassandra, MongoDB, and others, it is common to find a problem in which nested 

and complex JSON structures have to be flattened to exchange the data with RDBMS 

databases as part of an ETL2 process, to make it more human-readable or facilitate data 

analytics. Imagine you have a data source with a schema as the one shown just in the 

following:

root

 |-- Book: struct (nullable = true)

 |    |-- Authors: array (nullable = true)

 |    |      |-- element: struct (containsNull = true)

 |    |      |     |-- firstname: string (nullable = true)

 |    |      |     |-- lastname: string (nullable = true)

 |    |-- DOI: string (nullable = true)

 |    |-- Editors: array (nullable = true)

 |    |      |-- element: struct (containsNull = true)

 |    |      |     |-- firstname: string (nullable = true)

 |    |      |     |-- lastname: string (nullable = true)

2 ETL (Extract, Transform, Load) is a process to extract, transform, and load data from several 
sources to a consolidated data repository.
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 |    |-- ISBN: array (nullable = true)

 |    |      |-- element: struct (containsNull = true)

 |    |      |     |-- Hardcover ISBN: string (nullable = true)

 |    |      |     |-- Softcover ISBN: string (nullable = true)

 |    |      |     |-- eBook ISBN: string (nullable = true)

 |    |-- Id: long (nullable = true)

 |    |-- Publisher: string (nullable = true)

 |    |-- Title: struct (nullable = true)

 |    |      |-- Book Subtitle: string (nullable = true)

 |    |      |-- Book Title: string (nullable = true)

 |    |-- Topics: array (nullable = true)

 |    |      |-- element: string (containsNull = true)

 |    |-- eBook Packages: array (nullable = true)

 |    |      |-- element: string (containsNull = true)

And you would like to transform it into a schema like the one shown in the following:

root

 |-- Afirstname: string (nullable = true)

 |-- Alastname: string (nullable = true)

 |-- DOI: string (nullable = true)

 |-- Efirstname: string (nullable = true)

 |-- Elastname: string (nullable = true)

 |-- Hardcover ISBN: string (nullable = true)

 |-- Softcover ISBN: string (nullable = true)

 |-- eBook ISBN: string (nullable = true)

 |-- Id: long (nullable = true)

 |-- Publisher: string (nullable = true)

 |-- Book Subtitle: string (nullable = true)

 |-- Book Title: string (nullable = true)

 |-- Topics: string (nullable = true)

 |-- eBook Packages: string (nullable = true)

Hence, flatten the data and get a final Spark DataFrame as the one shown in 

Figure 4-6.
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For this purpose, Spark provides some specific functions such as explode(), to 

return a new row for each element in a given array or map. This function takes a column 

name as a parameter containing an array or map of values. When an array is passed, it 

creates a new column, named “col” by default, containing every element of the array. 

When this function receives a map, it creates two new columns named “key” and 

“value” by default and creates a new row for every key and value. However, explode() 

ignores null or empty values; therefore, if you are interested in these values as well, you 

should use explode_outer(), which returns null in case the array or map passed is null 

or empty.

There are other complementary functions you might be interested in exploring, such 

as posexplode() and posexplode_outer(). The former, apart from creating columns for 

the elements of an array or map, also creates an additional column named “pos” to hold 

the position of the array and map elements.

Let’s explain with the example shown in Figure 4-6 how some of those functions 

work. Feel free to uncomment the code lines you find in the following code snippet and 

run line by line the code, to see the evolution of the schema structure and data:

val dfMlBooks = spark.read.option("multiline", "true").json("file:///Users/

aantolinez/Books_array.json")

// dfMlBooks.show(false)

val df2 =dfMlBooks.select("Book.*")

// df2.printSchema()

val df3=df2.select(explode_outer($"Authors"), col("DOI"), $"Editors", 

$"ISBN", col("Id"), col("Publisher"), $"Title", col("Topics"), $"eBook 

Packages")

// df3.show(false)

// df3.printSchema()

val df4=df3.select(col("col.*"),  col("DOI"), explode_outer($"Editors"), 

$"ISBN", col("Id"), col("Publisher"), $"Title", col("Topics"), $"eBook 

Packages")

// df4.show(false)

// df4.printSchema()

val df5=df4.select(col("firstname").alias("Afirstname"),col("lastname").

alias("Alastname"),col("DOI"), col("col.*"),explode_outer($"ISBN"), 

col("Id"), col("Publisher"), $"Title", col("Topics"), $"eBook Packages")

// df5.show(false)
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// df5.printSchema()

val df6=df5.

select(col("Afirstname"),col("Alastname"),col("DOI"),col("firstname").

alias("Efirstname"),col("lastname").alias("Elastname"),col("col.

Hardcover ISBN").alias("Hardcover ISBN"),col("col.Softcover ISBN").

alias("Softcover ISBN"),col("col.eBook ISBN").alias("eBook ISBN"), 

col("Id"), col("Publisher"),col("Title.Book Subtitle").alias("Book 

Subtitle"),col("Title.Book Title").alias("Book Title") ,explode_

outer($"Topics").alias("Topics"), $"eBook Packages")

// df6.show(false)

// df6.printSchema()

val df7=df6.

select(col("Afirstname"),col("Alastname"),col("DOI"),col("Efirstname"), 

col("Elastname"),col("Hardcover ISBN"),col("Softcover ISBN"),col("eBook 

ISBN"),col("Id"),col("Publisher"),col("Book Subtitle"),col("Book 

Title"),col("Topics"),explode_outer( $"eBook Packages").alias("eBook 

Packages"))

// df7.show(false)

// df7.printSchema()

val df8=df7.select("*")

df8.show(false)

The same outcome can be achieved using a similar PySpark code.

 Read and Write CSV Files with Spark

Apache Spark SQL provides two specific functions to read and write CSV files. The 

method spark.read().csv() reads a file or directory of CSV files into a DataFrame. 

Additionally, dataframe.write().csv() writes a Spark DataFrame to a CSV file.

Spark provides the option() and options() functions to customize the read() and 

write() behavior. The latter permits specifying several options at once.

We are going to see how to use these four functions mentioned just above can be 

used to load and write CSV files in the following examples.

The generic use of the read() function could be as follows:

val PATH ="Downloads/Spanish_Writers_by_Century_II.csv"

val df0 = spark.read.csv(PATH)
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df0.show(5)

// Output

+--------------------+

|                 _c0|

+--------------------+

|Name;Surname;Cent...|

|Gonzalo;de Berceo...|

| Juan ;Ruiz;XIV;1283|

|Fernando;de Rojas...|

|Garcilaso;de la V...|

+--------------------+

Exactly the same output would be achieved if you use PySpark code, as follows:

# PySpark version to upload Spanish_Writers_by_Century_II.csv

PATH ="Downloads/Spanish_Writers_by_Century_II.csv"

df0 = spark.read.csv(PATH)

df0.show(5)

We can take advantage of the option() function to specify a field’s delimiter. The 

default delimiter is “,”:

val df1 = spark.read.option("delimiter", ";").csv(PATH)

df1.show(5)

// Output

+---------+----------+-------+-----------+

|      _c0|       _c1|    _c2|        _c3|

+---------+----------+-------+-----------+

|     Name|   Surname|Century|YearOfBirth|

|  Gonzalo| de Berceo|   XIII|       1196|

|    Juan |      Ruiz|    XIV|       1283|

| Fernando|  de Rojas|     XV|       1465|

|Garcilaso|de la Vega|    XVI|       1539|

 +---------+----------+-------+-----------+
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To skip the first line and use it as column names, we can use .option("header", 

"true"):

val df2 = spark.read.option("delimiter", ";").option("header", "true").

csv(path)

df2.show(5)

// Output

+---------+------------+-------+-----------+

|     Name|     Surname|Century|YearOfBirth|

+---------+------------+-------+-----------+

|  Gonzalo|   de Berceo|   XIII|       1196|

|    Juan |        Ruiz|    XIV|       1283|

| Fernando|    de Rojas|     XV|       1465|

|Garcilaso|  de la Vega|    XVI|       1539|

|   Miguel|de Cervantes|    XVI|       1547|

+---------+------------+-------+-----------+

Several CSV manipulation options can be specified at once using the options() 

function:

val df3 = spark.read.options(Map("inferSchema"->"true","delimiter"->";", 

"header"->"true")).csv(PATH)

df3.show(5)

// Output

+---------+------------+-------+-----------+

|     Name|     Surname|Century|YearOfBirth|

+---------+------------+-------+-----------+

|  Gonzalo|   de Berceo|   XIII|       1196|

|    Juan |        Ruiz|    XIV|       1283|

| Fernando|    de Rojas|     XV|       1465|

|Garcilaso|  de la Vega|    XVI|       1539|

|   Miguel|de Cervantes|    XVI|       1547|

+---------+------------+-------+-----------+

Compressed files can also be uploaded using the “compression” option:
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val GZIP_PATH = "Downloads/Spanish_Writers_by_Century_II.csv.gz"

val df5 = spark.read.option("delimiter", ";").option("header", "true").

option("compression", "gzip").csv(GZIP_PATH)

df5.show(5)

// Output

+---------+------------+-------+-----------+

|     Name|     Surname|Century|YearOfBirth|

+---------+------------+-------+-----------+

|  Gonzalo|   de Berceo|   XIII|       1196|

|    Juan |        Ruiz|    XIV|       1283|

| Fernando|    de Rojas|     XV|       1465|

|Garcilaso|  de la Vega|    XVI|       1539|

|   Miguel|de Cervantes|    XVI|       1547|

+---------+------------+-------+-----------+

Other important options are nullValue, nanValue, and dateFormat. The first option 

permits establishing a string representing a null value. The second option permits the 

specification of a string as representation of a non-number value (NaN by default). The 

last option sets the string that indicates a date format (by default “yyyy-MM-dd”).

To save a Spark DataFrame to a CSV format, we can use the write() function. The 

write() function takes a folder as a parameter. That directory represents the output path 

in which the CSV file, plus a _SUCCESS file, will be saved:

// To save a DataFrame to a CSV file

OUTPUT_PATH="Downloads/"

df5.write.option("header","true").csv(OUTPUT_PATH)

As it happens with other file formats like Parquet, several saving options, Overwrite, 

Append, Ignore, and the default option ErrorIfExists, are available.

 Read and Write Hive Tables

Apache Spark SQL also provides the capability of reading and writing data stored in 

Apache Hive tables. In this section we are going to show a typical Spark workflow in 

which we read data from an external source (CSV file) into a Spark DataFrame and save 

it to a Hive table later on.
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The first and second steps you should take are to create a Hive database and table if 

you do not have them:

-- Creating the Hive database we are going to use

CREATE DATABASE IF NOT EXISTS spaniards;

--Creating the Hive table we are going to use

CREATE TABLE IF NOT EXISTS spaniards.writersByCentury (

Name string,

Surname string,

Century string,

YearOfBirth int )

COMMENT 'Spaniards writers by century'

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ',';

After creating the basic Hive resources, we can write our code to load the data from a 

file and save it to the Hive table:

import java.io.File

import org.apache.spark.sql.{Row, SaveMode, SparkSession}

val warehouseLocation = "hdfs://localhost:9745/user/hive/warehouse"

val spark = SparkSession

  .builder()

  .appName("Hands-On Spark 3")

  .config("spark.sql.warehouse.dir", warehouseLocation)

  .enableHiveSupport()

  .getOrCreate()

import spark.implicits._

import spark.sql

val path = "file:///tmp/Spanish_Writers_by_Century.csv"

val df = spark.read.option("header", "true").csv(path)

df.show(5,false)
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// Output

+---------+------------+-------+-----------+

|Name     |Surname     |Century|YearOfBirth|

+---------+------------+-------+-----------+

|Gonzalo  |de Berceo   |XIII   |1196       |

|Juan     |Ruiz        |XIV    |1283       |

|Fernando |de Rojas    |XV     |1465       |

|Garcilaso|de la Vega  |XVI    |1539       |

|Miguel   |de Cervantes|XVI    |1547       |

+---------+------------+-------+-----------+

// Saving now the dataframe to a Hive table

df.write.mode("overwrite").saveAsTable("spaniards.writersByCentury")

After saving the data, we can go to our Hive server and check the data is already there:

hive> select * from spaniards.writersByCentury;

OK

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".

SLF4J: Defaulting to no-operation (NOP) logger implementation

SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further 

details.

Gonzalo    de Berceo        XIII   1196

Juan       Ruiz             XIV    1283

Fernando   de Rojas         XV     1465

Garcilaso  de la Vega       XVI    1539

Miguel     de Cervantes     XVI    1547

Francisco  de Quevedo       XVI    1580

Luis       de Góngora       XVI    1561

Lope       de Vega          XVI    1562

Tirso      de Molina        XVI    1583

Calderón   de la Barca      XVII   1600

Adolfo     Bécquer          XIX    1836

Benito     Pérez Galdós     XIX    1843

Emilia     Pardo Bazán      XIX    1851

José       Ortega y Gasset  XX     1883

Time taken: 9.226 seconds, Fetched: 14 row(s)

hive>
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 Read and Write Data via JDBC from and to Databases

Apache Spark can also write to and read from numerous data sources using a JDBC 

connector. Something you have to take into consideration while using JDBC connections 

to access your data is that the information returned from the source is formatted as a 

Spark DataFrame, which is very convenient.

If you plan to access remote data sources using a JDBC connection, the first thing 

you need is a JDBC driver compatible with your data source. In the following examples, 

we are going to walk you through the implementation of JDBC connections to two of the 

most popular RDBMSs, MySQL and PostgreSQL:

val spark = SparkSession.builder

.appName("Hands-On Guide to Apache Spark 3")

.master("local[*]")

.config("spark.driver.memory", "1g")

.config("spark.sql.ansi.enabled ",true)

.config("spark.jars", "./postgresql-42.5.0.jar, ./mysql-connector- 

java-8.0.30.jar")

.getOrCreate()

// Connecting to a PostgreSQL remote server

val dfPostgresql = spark.read

.format("jdbc")

.option("url", "jdbc:postgresql://dbserver_url:5432/northwind")

.option("driver", "org.postgresql.Driver")

.option("dbtable","public.categories")

.option("user","YOUR_USER_HERE")

.option("password", "YOUR_PASSWORD_HERE")

.load()

dfPostgresql.show()

// Output

+-----------+--------------+--------------------+-------+

|category_id| category_name|         description|picture|

+-----------+--------------+--------------------+-------+

|          1|     Beverages|Soft drinks, coff...|     []|

|          2|    Condiments|Sweet and savory ...|     []|
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|          3|   Confections|Desserts, candies...|     []|

|          4|Dairy Products|             Cheeses|     []|

|          5|Grains/Cereals|Breads, crackers,...|     []|

|          6|  Meat/Poultry|      Prepared meats|     []|

|          7|       Produce|Dried fruit and b...|     []|

|          8|       Seafood|    Seaweed and fish|     []|

+-----------+--------------+--------------------+-------+

Now we are going to show how to connect to a MySQL database:

val jdbcMySQL = spark.read

  .format("jdbc")

  .option("url", "jdbc:mysql://dbserver_url:3306/northwind")

  .option("driver", "com.mysql.jdbc.Driver")

  .option("dbtable", "customers")

  .option("user", "YOUR_USER_HERE")

  .option("password", "YOUR_PASSWORD_HERE")

  .load()

jdbcAwsMySQL.select("id","company","last_name","first_name","job_

title")show(8)

// Output

+---+---------+----------------+----------+--------------------+

| id|  company|       last_name|first_name|           job_title|

+---+---------+----------------+----------+--------------------+

|  1|Company A|          Bedecs|      Anna|               Owner|

|  2|Company B|Gratacos Solsona|   Antonio|               Owner|

|  3|Company C|            Axen|    Thomas|Purchasing Repres...|

|  4|Company D|             Lee| Christina|  Purchasing Manager|

|  5|Company E|       O’Donnell|    Martin|               Owner|

|  6|Company F|    Pérez-Olaeta| Francisco|  Purchasing Manager|

|  7|Company G|             Xie| Ming-Yang|               Owner|

|  8|Company H|        Andersen| Elizabeth|Purchasing Repres...|

+---+---------+----------------+----------+--------------------+
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You can get the same result using an embedded SQL query instead of retrieving the 

whole table:

val jdbcMySQL = spark.read

  .format("jdbc")

  .option("url", "jdbc:mysql://dbserver_url:3306/northwind")

  .option("driver", "com.mysql.jdbc.Driver")

   .option("query", "select id,company,last_name,first_name,job_title from 

customers")

  .option("user", "YOUR_USER_HERE")

  .option("password", "YOUR_PASSWORD_HERE")

  .load()

jdbcAwsMySQL.show(8)

// Output

+---+---------+----------------+----------+--------------------+

| id|  company|       last_name|first_name|           job_title|

+---+---------+----------------+----------+--------------------+

|  1|Company A|          Bedecs|      Anna|               Owner|

|  2|Company B|Gratacos Solsona|   Antonio|               Owner|

|  3|Company C|            Axen|    Thomas|Purchasing Repres...|

|  4|Company D|             Lee| Christina|  Purchasing Manager|

|  5|Company E|       O’Donnell|    Martin|               Owner|

|  6|Company F|    Pérez-Olaeta| Francisco|  Purchasing Manager|

|  7|Company G|             Xie| Ming-Yang|               Owner|

|  8|Company H|        Andersen| Elizabeth|Purchasing Repres...|

+---+---------+----------------+----------+--------------------+

In a similar way, you can save a Spark DataFrame to a database using a JDBC 

connection. Let’s see it with an example of how to add data to a MySQL database table:

import spark.implicits._

val data = Seq((6, "Alfonso"))

val dataRdd = spark.sparkContext.parallelize(data)

val dfFromRDD = dataRdd.toDF("id","name")

dfFromRDD.write

  .mode("append")
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  .format("jdbc")

  .option("url", "jdbc:mysql://dbserver_url:3306/northwind")

  .option("driver", "com.mysql.jdbc.Driver")

  .option("dbtable", "customers")

  .option("user", "YOUR_USER_HERE")

  .option("password", "YOUR_PASSWORD_HERE")

  .save()

There are many other options you can use when using a JDBC connection. The 

ones we show next are probably the most relevant when you want to optimize the 

communication with the data source:

val jdbcMySQL = spark.read

  .format("jdbc")

  .option("url", "jdbc:mysql://dbserver_url:3306/northwind")

  .option("driver", "com.mysql.jdbc.Driver")

  .option("dbtable", "customers")

  .option("numpartitions", numpartitions)

  .option("lowerbound", min)

  .option("upperbound", max)

  .option("partitioncolumn", primarykey)

  .option("fetchsize", 0)

  .option("batchsize", 1000)

  .option("user", "YOUR_USER_HERE")

  .option("password", "YOUR_PASSWORD_HERE")

  .load()

The new options add the following features:

• numPartitions: This option is used for both reading and writing and 

represents the maximum number of partitions used for parallelism 

processing as well as the maximum number of JDBC connections.

• partitionColumn: Represents the column of the table used for 

partition. It must be of numeric, date, or timestamp format.

• lowerBound and upperBound: These options are used for reading 

operations, and they establish the partition stride.
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• fetchsize: This option is intended to boost JDBC connection 

performance: it establishes the number of rows to fetch per round 

trip. The default value is 0.

• batchsize: This option only applies to writing operations, and its goal 

is improving writing performance. It establishes the number of rows 

to be inserted per round trip.

4.2  Use of Spark DataFrames
The main use of Spark DataFrames is to execute queries. In this section we are going to 

explore some of the most common operations we can perform by making use of Spark 

DataFrames such as selection, filtering, aggregations, and data grouping.

In this section we are going to take advantage of the WorldCup3 dataset to walk you 

through the use of Spark DataFrames to query data.

 Select DataFrame Columns
Probably the most important transformation function you are going to use in Spark is 

select(). This Spark function returns a new Spark DataFrame composed of a selected 

set of columns. The returned columns can be renamed using the alias() function to 

eliminate ambiguity and/or improve human readability.

The select() function takes the name(s) of one or several DataFrame columns and 

returns a new Spark DataFrame containing only the selected columns. By default Spark 

does not show the content of the new DataFrame. As you have seen in the book, we can 

use the show() function to instruct Spark to reveal the returned values.

The following code snippet illustrates how to use show() to display the data retrieved 

from a select() statement:

val dfWC=spark.read.option("header", "true").csv("file:///Users/aantolinez/

Downloads/WorldCups.csv")

dfWC.show(5,false)

3 www.kaggle.com/datasets/abecklas/fifa-world-cup?select=WorldCups.csv
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// Output showing only the first 5 rows

+----+-----------+----------+--------------+-------+----------+-----------+ 

--------------+-------------+----------+

|Year|Country    |Winner    |Runners-Up    |Third  |Fourth    |GoalsScored| 

QualifiedTeams|MatchesPlayed|Attendance|

+----+-----------+----------+--------------+-------+----------+-----------+ 

--------------+-------------+----------+

|1930|Uruguay    |Uruguay   |Argentina     |USA    |Yugoslavia|70         | 

13            |18           |590.549   |

|1934|Italy      |Italy     |Czechoslovakia|Germany|Austria   |70         | 

16            |17           |363.000   |

|1938|France     |Italy     |Hungary       |Brazil |Sweden    |84         | 

15            |18           |375.700   |

|1950|Brazil     |Uruguay   |Brazil        |Sweden |Spain     |88         | 

13            |22           |1.045.246 |

|1954|Switzerland|Germany FR|Hungary       |Austria|Uruguay   |140        | 

16            |26           |768.607   |

+----+-----------+----------+--------------+-------+----------+-----------+ 

--------------+-------------+----------+

only showing top 5 rows

The show() function without parameters displays 20 rows and truncates the text 

length to 20 characters by default. However, show() can take up to three parameters: 

The first one is an integer corresponding to the number of rows to display. The second 

parameter can be a Boolean value, indicating whether text string should be truncated, 

or an integer, denoting the number of characters to display. The third parameter is a 

Boolean-type value, designating whether values should be shown vertically.

The following output displays the results of the previous example, but using the 

dfWC.show(5,8) option, showing only the first five rows and just eight characters 

in length:
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+----+--------+--------+----------+-------+--------+-----------+ 

--------------+-------------+----------+

|Year| Country|  Winner|Runners-Up|  Third|  Fourth|GoalsScored| 

QualifiedTeams|MatchesPlayed|Attendance|

+----+--------+--------+----------+-------+--------+-----------+ 

--------------+-------------+----------+

|1930| Uruguay| Uruguay|  Argen...|    USA|Yugos...|         70| 

            13|           18|   590.549|

|1934|   Italy|   Italy|  Czech...|Germany| Austria|         70| 

            16|           17|   363.000|

|1938|  France|   Italy|   Hungary| Brazil|  Sweden|         84| 

            15|           18|   375.700|

|1950|  Brazil| Uruguay|    Brazil| Sweden|   Spain|         88| 

            13|           22|  1.045...|

|1954|Switz...|Germa...|   Hungary|Austria| Uruguay|        140| 

            16|           26|   768.607|

+----+--------+--------+----------+-------+--------+-----------+ 

--------------+-------------+----------+

only showing top 5 rows

Selecting All or Specific DataFrame Columns

You can use select() to discriminate the columns you would like to query. To retrieve all 

the columns in the DataFrame, you use show() as explained in the previous examples, or 

you can use the wildcard “*”, as follows:

dfWC.select("*").show()

On the other hand, you can fetch specific columns from your DataFrame using 

column names in one of the following query ways:

// Fetch specific columns from a DataFrame using column names

dfWC.select("Year","Country", "Winner", "Runners-Up", "Third","Fourth").

show(5, false)
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// Output

+----+-----------+----------+--------------+-------+----------+

|Year|Country    |Winner    |Runners-Up    |Third  |Fourth    |

+----+-----------+----------+--------------+-------+----------+

|1930|Uruguay    |Uruguay   |Argentina     |USA    |Yugoslavia|

|1934|Italy      |Italy     |Czechoslovakia|Germany|Austria   |

|1938|France     |Italy     |Hungary       |Brazil |Sweden    |

|1950|Brazil     |Uruguay   |Brazil        |Sweden |Spain     |

|1954|Switzerland|Germany FR|Hungary       |Austria|Uruguay   |

+----+-----------+----------+--------------+-------+----------+

// Fetch individual columns from a DataFrame using Dataframe object name

dfWC.select(dfWC("Year"),dfWC("Country"),dfWC("Winner"),dfWC("Runners-Up"),

dfWC("Third"),dfWC("Fourth")).show(5, false)

//Fetch individual columns from a DataFrame using col function.

import org.apache.spark.sql.functions.col

dfWC.select(col("Year"),col("Country"),col("Winner"),col("Runners-Up"),col(

"Third"),col("Fourth")).show(5, false)

You can also select columns from a DataFrame based on column index. You can see 

a couple of examples in the following:

dfWC.select(dfWC.columns(0),dfWC.columns(1),dfWC.columns(2),dfWC.

columns(3)).show(5, false)

// Output

+----+-----------+----------+--------------+

|Year|Country    |Winner    |Runners-Up    |

+----+-----------+----------+--------------+

|1930|Uruguay    |Uruguay   |Argentina     |

|1934|Italy      |Italy     |Czechoslovakia|

|1938|France     |Italy     |Hungary       |

|1950|Brazil     |Uruguay   |Brazil        |

|1954|Switzerland|Germany FR|Hungary       |

+----+-----------+----------+--------------+
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You can fetch an array of columns using a sequence of indexes:

val colIndex = Seq(0, 1, 2, 3, 4, 5)

dfWC.select(colIndex map dfWC.columns map col: _*).show(5, false)

// Output

+----+-----------+----------+--------------+-------+----------+

|Year|Country    |Winner    |Runners-Up    |Third  |Fourth    |

+----+-----------+----------+--------------+-------+----------+

|1930|Uruguay    |Uruguay   |Argentina     |USA    |Yugoslavia|

|1934|Italy      |Italy     |Czechoslovakia|Germany|Austria   |

|1938|France     |Italy     |Hungary       |Brazil |Sweden    |

|1950|Brazil     |Uruguay   |Brazil        |Sweden |Spain     |

|1954|Switzerland|Germany FR|Hungary       |Austria|Uruguay   |

+----+-----------+----------+--------------+-------+----------+

Sequences can also be used in several other ways, for instance, using the sequence 

plus the string column names, as you see next:

val seqColumnas = Seq("Year","Country","Winner","Runners- Up","Third", 

"Fourth")

val result = dfWC.select(seqColumnas.head, seqColumnas.tail: _*).

show(5, false)

Another way could be using a sequence plus the map function with a set of 

column names:

dfWC.select(seqColumnas.map(i => col(i)): _*).show(5,false)

In both examples, you get exactly the same result you got in previous code snippets.

You can also use a list of columns to retrieve the desired data. Have a look at the next 

example:

import org.apache.spark.sql.Column

val miColumnas: List[Column] = List(new Column("Year"), new 

Column("Country"), new Column("Winner"))

dfWC.select(miColumnas: _*).show(5,false)
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// Output

+----+-----------+----------+

|Year|Country    |Winner    |

+----+-----------+----------+

|1930|Uruguay    |Uruguay   |

|1934|Italy      |Italy     |

|1938|France     |Italy     |

|1950|Brazil     |Uruguay   |

|1954|Switzerland|Germany FR|

+----+-----------+----------+

 Select Columns Based on Name Patterns
The startsWith(String prefix) and endsWith(String suffix) column functions are 

used to confirm whether a string begins with a specified prefix or substring, in the first 

case, or the same string ends with a defined suffix. Another interesting column function 

is contains(Other), which returns a Boolean value indicating whether a pattern appears 

in a column or not. These three functions can be complemented with the like() 

function to achieve the same results. Let’s see how to use them to select the desired 

columns using name patterns:

dfWC.select(dfWC.columns.filter(s=>s.startsWith("Y")).map(c=>col(c)):_*).

show(5,false)

// Output

+----+

|Year|

+----+

|1930|

|1934|

|1938|

|1950|

|1954|

+----+
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dfWC.select(dfWC.columns.filter(s=>s.endsWith("ner")).map(c=>col(c)):_*).

show(5,false)

// Output

+----------+

|Winner    |

+----------+

|Uruguay   |

|Italy     |

|Italy     |

|Uruguay   |

|Germany FR|

+----------+

On the other hand, the function contains() can be used to filter rows by columns 

containing a specific pattern. You can see an example in the following in which we filter 

the dataset rows with letter “y” in the Winner column:

import org.apache.spark.sql.functions.col

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth").

filter(col("Winner").contains("S")).show()

// Output

+----+------------+------+-----------+-------+-------+

|Year|     Country|Winner| Runners-Up|  Third| Fourth|

+----+------------+------+-----------+-------+-------+

|2010|South Africa| Spain|Netherlands|Germany|Uruguay|

+----+------------+------+-----------+-------+-------+

filter can be complemented with the function like() to achieve the same outcome:

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth").

filter(col("Winner").like("%S%")).show()

// Outcome

+----+------------+------+-----------+-------+-------+

|Year|     Country|Winner| Runners-Up|  Third| Fourth|

+----+------------+------+-----------+-------+-------+

|2010|South Africa| Spain|Netherlands|Germany|Uruguay|

+----+------------+------+-----------+-------+-------+
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We can also use SQL ANSI language as a complement to filter dataset rows:

dfWC.createOrReplaceTempView("WorldCups")

spark.sql("select Year,Country,Winner,`Runners-Up`,Third,Fourth from 

WorldCups where Winner like '%S%'").show()

// Output

+----+------------+------+-----------+-------+-------+

|Year|     Country|Winner| Runners-Up|  Third| Fourth|

+----+------------+------+-----------+-------+-------+

|2010|South Africa| Spain|Netherlands|Germany|Uruguay|

+----+------------+------+-----------+-------+-------+

 Filtering Results of a Query Based on One or 
Multiple Conditions
So far we have been applying selection criteria at the column level. Now we are going 

to see how to refine gathered data at the row level. Spark filter() and where() 

functions are used to filter data at the row level based on one or multiple criteria. Both 

functions return the same outcome; thus, the where() function was introduced for SQL 

background compatibility.

Both filtering functions can be used alone or combined with others to refine the 

results. In the following code snippet, we are using filter() individually; thus, we get 

the full set of columns. In the second one, we combine it with select to limit the number 

of columns retrieved to those that are of our interest:

dfWC.filter("Year < 1938").show(5,false)

// Output

+----+-------+-------+--------------+-------+----------+-----------+ 

--------------+-------------+----------+

|Year|Country|Winner |Runners-Up    |Third  |Fourth    |GoalsScored| 

QualifiedTeams|MatchesPlayed|Attendance|

+----+-------+-------+--------------+-------+----------+-----------+ 

--------------+-------------+----------+

|1930|Uruguay|Uruguay|Argentina     |USA    |Yugoslavia|70         | 

13            |18           |590.549   |
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|1934|Italy  |Italy  |Czechoslovakia|Germany|Austria   |70         | 

16            |17           |363.000   |

+----+-------+-------+--------------+-------+----------+-----------+ 

--------------+-------------+----------+

dfWC.select(col("Year"),col("Country"),col("Winner"),col("Runners-Up"), 

col("Third"),col("Fourth")).filter("Year < 1938").show(5,false)

// Output

+----+-------+-------+--------------+-------+----------+

|Year|Country|Winner |Runners-Up    |Third  |Fourth    |

+----+-------+-------+--------------+-------+----------+

|1930|Uruguay|Uruguay|Argentina     |USA    |Yugoslavia|

|1934|Italy  |Italy  |Czechoslovakia|Germany|Austria   |

+----+-------+-------+--------------+-------+----------+

In the last piece of code, you can appreciate how Spark performs query operations. 

First, Spark performs the select() transformation, and then it applies the filter criteria 

to the selected data. Finally, it applies the action show() to the results.

Several filter() functions can be cascaded to provide additional data refinement:

dfWC.select(col("Year"),col("Country"),col("Winner"),col("Runners-Up")).

filter("Year < 1938").filter("Country = 'Italy'").show(5,false)

// Output

+----+-------+------+--------------+

|Year|Country|Winner|Runners-Up    |

+----+-------+------+--------------+

|1934|Italy  |Italy |Czechoslovakia|

+----+-------+------+--------------+

 Using Different Column Name Notations
Column names inside a filter() function can also be mentioned by using 'columnName, 

col(columnName), $"columnName", Dataframe("columnName") notations. Let’s see how it 

works with an example:

// Using the 'columnName notation

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth", 

"GoalsScored").filter('Winner === "Spain").show(false)
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// Using the $"columnName" notation

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth", 

"GoalsScored").filter($"Winner" === "Spain").show(false)

// Using the col(columnName) notation

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth", 

"GoalsScored").filter(col("Winner") === "Winner").show(false)

// Using the Dataframe("columnName") notation

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth", 

"GoalsScored").filter(dfWC("Winner") === "Spain").show(false)

// Output from all code snippets

+----+------------+------+-----------+-------+-------+-----------+

|Year|Country     |Winner|Runners-Up |Third  |Fourth |GoalsScored|

+----+------------+------+-----------+-------+-------+-----------+

|2010|South Africa|Spain |Netherlands|Germany|Uruguay|145        |

+----+------------+------+-----------+-------+-------+-----------+

Alternatively, you can use the whether() function to get the same outcome, as you 

can see in the following example:

// Using the 'columnName notation

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth", 

"GoalsScored").where('Winner === "Spain").show(false)

// Using the $"columnName" notation

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth", 

"GoalsScored").where($"Winner" === "Spain").show(false)

// Using the col(columnName) notation

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth", 

"GoalsScored").where(col("Winner") === "Spain").show(false)

// Using the Dataframe("columnName") notation

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth", 

"GoalsScored").where(dfWC("Winner") === "Spain").show(false)

// Output from all code snippets

+----+------------+------+-----------+-------+-------+-----------+

|Year|Country     |Winner|Runners-Up |Third  |Fourth |GoalsScored|

+----+------------+------+-----------+-------+-------+-----------+

|2010|South Africa|Spain |Netherlands|Germany|Uruguay|145        |

+----+------------+------+-----------+-------+-------+-----------+
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 Using Logical Operators for Multi-condition Filtering
So far we have shown how to filter dataset rows applying one condition. However, in 

real life, very often we need more complex selection criteria. The power of the filter() 

function can be enhanced by applying logical operators like AND, OR, and NOT, which 

will allow you to concatenate multiple conditions. These logical operators can also be 

represented as “&&”, “||”, and “!”. Once again, we are going to show you how to use them 

with several examples:

// Using AND, "&&" logical operator

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth", 

"GoalsScored").filter(dfWC("Winner") === "Spain" and dfWC("Runners-Up") === 

"Netherlands").show(false)

// Output

+----+------------+------+-----------+-------+-------+-----------+

|Year|Country     |Winner|Runners-Up |Third  |Fourth |GoalsScored|

+----+------------+------+-----------+-------+-------+-----------+

|2010|South Africa|Spain |Netherlands|Germany|Uruguay|145        |

+----+------------+------+-----------+-------+-------+-----------+

// Using OR, "||" logical operator

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth", 

"GoalsScored").filter(dfWC("Winner") === "Spain" or dfWC("Runners-Up") === 

"Netherlands").show(false)

// Output

+----+------------+----------+-----------+-------+-------+-----------+

|Year|Country     |Winner    |Runners-Up |Third  |Fourth |GoalsScored|

+----+------------+----------+-----------+-------+-------+-----------+

|1974|Germany     |Germany FR|Netherlands|Poland |Brazil |97         |

|1978|Argentina   |Argentina |Netherlands|Brazil |Italy  |102        |

|2010|South Africa|Spain     |Netherlands|Germany|Uruguay|145        |

+----+------------+----------+-----------+-------+-------+-----------+

It seems the Dutch are real experts in being the second one!
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One possible use of NOT or “!” could be something like the next one:

// Using NOT, "!" logical operator

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth").filter 

(not (dfWC("Winner") === "Italy" or dfWC("Runners-Up") === "Netherlands")).

show(false)

// Output

+----+-----------+----------+--------------+-----------+--------------+

|Year|Country    |Winner    |Runners-Up    |Third      |Fourth        |

+----+-----------+----------+--------------+-----------+--------------+

|1930|Uruguay    |Uruguay   |Argentina     |USA        |Yugoslavia    |

|1950|Brazil     |Uruguay   |Brazil        |Sweden     |Spain         |

|1954|Switzerland|Germany FR|Hungary       |Austria    |Uruguay       |

|1958|Sweden     |Brazil    |Sweden        |France     |Germany FR    |

|1962|Chile      |Brazil    |Czechoslovakia|Chile      |Yugoslavia    |

|1966|England    |England   |Germany FR    |Portugal   |Soviet Union  |

|1970|Mexico     |Brazil    |Italy         |Germany FR |Uruguay       |

|1986|Mexico     |Argentina |Germany FR    |France     |Belgium       |

|1990|Italy      |Germany FR|Argentina     |Italy      |England       |

|1994|USA        |Brazil    |Italy         |Sweden     |Bulgaria      |

|1998|France     |France    |Brazil        |Croatia    |Netherlands   |

|2002|Korea/Japan|Brazil    |Germany       |Turkey     |Korea Republic|

|2014|Brazil     |Germany   |Argentina     |Netherlands|Brazil        |

 +----+-----------+----------+--------------+-----------+--------------+

 Manipulating Spark DataFrame Columns
When you will be working in real environments, you are very likely to manipulate the 

original DataFrame, adding columns, deleting columns, and so on. Apache Spark 

provides the withColumn() transformation function to manipulate Spark DataFrame 

columns such as adding a new column, updating the value of a column, changing a 

column data type, creating an inherited column from existing ones, etc.

The transformation performed with the withColumn() function can be applied 

to all DataFrame rows or a set of them. As we have just mentioned, withColumn() is a 

transformation function, and as we have already described, DataFrame transformations 

return new DataFrames and are lazily evaluated.
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Let’s see how to take advantage of withColumn() with some examples, as usual. In 

our first example, we are going to use the previous FIFA World Cup dataset, to add a 

new calculated column reflecting an important missing metric, the fans attendance per 

match played.

If you try to immediately apply withColumn() to add a new calculated column, you 

are going to run into trouble. Why? Have a look at the data schema you got:

dfWC.printSchema()

// Output

root

 |-- Year: string (nullable = true)

 |-- Country: string (nullable = true)

 |-- Winner: string (nullable = true)

 |-- Runners-Up: string (nullable = true)

 |-- Third: string (nullable = true)

 |-- Fourth: string (nullable = true)

 |-- GoalsScored: string (nullable = true)

 |-- QualifiedTeams: string (nullable = true)

 |-- MatchesPlayed: string (nullable = true)

 |-- Attendance: string (nullable = true)

Do you see the problem? Yes, Spark identified all the columns as string. Therefore, if 

you attempt to perform the operation at this stage, you will get the following errors:

// Adding a new column to DataFrame. Fans attendance per match played

import org.apache.spark.sql.functions.col

val dfWCExt=dfWC.withColumn("AttendancePerMatch", round(col("Attendance")/

col("MatchesPlayed"), 3))

dfWCExt.select("Attendance","MatchesPlayed","AttendancePerMatch").show(5)

// Output

+----------+-------------+------------------+

|Attendance|MatchesPlayed|AttendancePerMatch|

+----------+-------------+------------------+

|   590.549|           18|            32.808|

|   363.000|           17|            21.353|

|   375.700|           18|            20.872|
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| 1.045.246|           22|              null|

|   768.607|           26|            29.562|

+----------+-------------+------------------+

Thus, the first step should be converting the columns of interest to a numeric data 

type. However, if you try to directly convert some figures such as 1.045.246 to numeric, 

you will also have problems, as they are saved in Metric System format. Therefore, it 

could be preferable to remove “ . ” to avoid problems:

import org.apache.spark.sql.functions.regexp_replace

import org.apache.spark.sql.functions.col

import org.apache.spark.sql.types.IntegerType

val dfWC2=dfWC.withColumn("Attendance", regexp_replace($"Attendance", 

"\\.", ""))

val dfWC3=dfWC2.withColumn("GoalsScored", col("GoalsScored").

cast(IntegerType))

.withColumn("QualifiedTeams", col("QualifiedTeams").cast(IntegerType))

.withColumn("MatchesPlayed", col("MatchesPlayed").cast(IntegerType))

.withColumn("Attendance", col("Attendance").cast(IntegerType))

dfWC3.printSchema()

// Output

root

 |-- Year: string (nullable = true)

 |-- Country: string (nullable = true)

 |-- Winner: string (nullable = true)

 |-- Runners-Up: string (nullable = true)

 |-- Third: string (nullable = true)

 |-- Fourth: string (nullable = true)

 |-- GoalsScored: integer (nullable = true)

 |-- QualifiedTeams: integer (nullable = true)

 |-- MatchesPlayed: integer (nullable = true)

 |-- Attendance: integer (nullable = true)
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Now, we can accomplish our goal of adding a new calculated column:

val dfWCExt=dfWC3.withColumn("AttendancePerMatch", round(col("Attendance").

cast(IntegerType)/col("MatchesPlayed").cast(IntegerType), 3))

dfWCExt.select("Attendance","MatchesPlayed","AttendancePerMatch").show(5)

// Output

+----------+-------------+------------------+

|Attendance|MatchesPlayed|AttendancePerMatch|

+----------+-------------+------------------+

|    590549|           18|         32808.278|

|    363000|           17|         21352.941|

|    375700|           18|         20872.222|

|   1045246|           22|         47511.182|

|    768607|           26|         29561.808|

+----------+-------------+------------------+

In the preceding example, you have already used a good bunch of the withColumn() 

use cases.

 Renaming DataFrame Columns
Apache Spark provides the withColumnRenamed() transformation function to change 

DataFrame column names; it can be used to rename a single column or multiple ones 

at the same time. This function can also be used to rename nested StructType schemas. 

The withColumnRenamed() function takes two parameters: the current name of the 

DataFrame column we would like to change and the new name we would like to give to 

that column. As withColumnRenamed() is a transformation, it returns a DataFrame.

Let’s see how it works with a practical example. The next code snippet renames one 

of the dfWCExt columns from AttendancePerMatch to AxMatch:

val dfRenamed = dfWCExt.withColumnRenamed("AttendancePerMatch","AxMatch")

dfRenamed.select("Attendance", "MatchesPlayed","AxMatch").show(5)

// Output

+----------+-------------+---------+

|Attendance|MatchesPlayed|  AxMatch|

+----------+-------------+---------+

|    590549|           18|32808.278|
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|    363000|           17|21352.941|

|    375700|           18|20872.222|

|   1045246|           22|47511.182|

|    768607|           26|29561.808|

+----------+-------------+---------+

Several columns can be renamed at once joining several calls to 

withColumnRenamed() as shown next:

val dfRenamed2 = dfRenamed

.withColumnRenamed("Attendance","Att")

.withColumnRenamed("AxMatch","AttendancexMatch")

dfRenamed2.select("Att", "MatchesPlayed","AttendancexMatch").show(5)

// Output

+-------+-------------+----------------+

|    Att|MatchesPlayed|AttendancexMatch|

+-------+-------------+----------------+

| 590549|           18|       32808.278|

| 363000|           17|       21352.941|

| 375700|           18|       20872.222|

|1045246|           22|       47511.182|

| 768607|           26|       29561.808|

+-------+-------------+----------------+

 Dropping DataFrame Columns
Apache Spark provides the drop() function to drop DataFrame columns. The drop() 

function can be used to remove one column or several at once.

Spark drop() can be used by employing three different syntaxes:

• Deleting a single column: dataframe.drop(‘column name’)

• Deleting multiple columns: dataframe.drop(*(‘column 1’, ‘column 2’, 

‘column n’))

• Deleting all columns of a dataframe: dataframe.drop(*list_of_

column names)
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Now we are going to see how to use them with several examples continuing with the 

dataframes we created in the previous sections.

Let’s start by droping one of the columns (AttendancexMatch) added before:

val dfFropOne = dfRenamed2.drop("AttendancexMatch")

dfFropOne.show(5)

// Output

+----+-----------+----------+--------------+-------+----------+-----------+ 

--------------+-------------+-------+

|Year|    Country|    Winner|    Runners-Up|  Third|    Fourth|GoalsScored| 

QualifiedTeams|MatchesPlayed|    Att|

+----+-----------+----------+--------------+-------+----------+-----------+ 

--------------+-------------+-------+

|1930|    Uruguay|   Uruguay|     Argentina|    USA|Yugoslavia|         70| 

            13|           18| 590549|

|1934|      Italy|     Italy|Czechoslovakia|Germany|   Austria|         70| 

            16|           17| 363000|

|1938|     France|     Italy|       Hungary| Brazil|    Sweden|         84| 

            15|           18| 375700|

|1950|     Brazil|   Uruguay|        Brazil| Sweden|     Spain|         88| 

            13|           22|1045246|

|1954|Switzerland|Germany FR|       Hungary|Austria|   Uruguay|        140| 

            16|           26| 768607|

+----+-----------+----------+--------------+-------+----------+-----------+ 

--------------+-------------+-------+

After that we are going to drop columns “MatchesPlayed” and “AttendancexMatch”:

val dfFropTwo = dfRenamed2.drop("MatchesPlayed","AttendancexMatch")

dfFropTwo.show(5)

// Output

+----+-----------+----------+--------------+-------+----------+-----------+ 

--------------+-------+

|Year|    Country|    Winner|    Runners-Up|  Third|    Fourth|GoalsScored| 

QualifiedTeams|    Att|

+----+-----------+----------+--------------+-------+----------+-----------+ 

--------------+-------+
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|1930|    Uruguay|   Uruguay|     Argentina|    USA|Yugoslavia|         70| 

            13| 590549|

|1934|      Italy|     Italy|Czechoslovakia|Germany|   Austria|         70| 

            16| 363000|

|1938|     France|     Italy|       Hungary| Brazil|    Sweden|         84| 

            15| 375700|

|1950|     Brazil|   Uruguay|        Brazil| Sweden|     Spain|         88| 

            13|1045246|

|1954|Switzerland|Germany FR|       Hungary|Austria|   Uruguay|        140| 

            16| 768607|

+----+-----------+----------+--------------+-------+----------+-----------+ 

--------------+-------+

The same result can be obtained using PySpark code:

dfFropTwo = dfRenamed2.drop(*("MatchesPlayed","AttendancexMatch"))

dfFropTwo.show(5)

# Output

+----+-----------+----------+--------------+-------+----------+-----------+ 

--------------+-------+

|Year|    Country|    Winner|    Runners-Up|  Third|    Fourth|GoalsScored| 

QualifiedTeams|    Att|

+----+-----------+----------+--------------+-------+----------+-----------+ 

--------------+-------+

|1930|    Uruguay|   Uruguay|     Argentina|    USA|Yugoslavia|         70| 

            13| 590549|

|1934|      Italy|     Italy|Czechoslovakia|Germany|   Austria|         70| 

            16| 363000|

|1938|     France|     Italy|       Hungary| Brazil|    Sweden|         84| 

            15| 375700|

|1950|     Brazil|   Uruguay|        Brazil| Sweden|     Spain|         88| 

            13|1045246|

|1954|Switzerland|Germany FR|       Hungary|Austria|   Uruguay|        140| 

            16| 768607|

+----+-----------+----------+--------------+-------+----------+-----------+ 

--------------+-------+
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You can delete all the DataFrame columns at once using the following Scala code 

snippet:

val allColumnsList = dfRenamed2.columns

val dfFropAll = dfRenamed2.drop(allColumnsList:_*)

dfFropAll.show(5)

// Output

++

||

++

||

++

And the same result is obtained using PySpark:

allColumnsList = dfRenamed2.columns

dfFropAll = dfRenamed2.drop(*allColumnsList)

dfFropAll.show(2)

# Output

++

||

++

||

||

++

 Creating a New Dataframe Column Dependent 
on Another Column
Spark SQL “case when” and “when otherwise” permit replicating the SQL CASE 

statement in Spark.

Consider the following dataset:

import org.apache.spark.sql.functions.{when, _}

import spark.sqlContext.implicits._

val p = List(("Juan ","Bravo",67,"M",65000),

             ("Miguel ","Rosales",40,"M",87000),
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             ("Roberto ","Morales",7,"M",0),

             ("Maria ","Gomez",12,"F",0),

             ("Vanesa","Lopez",25,"F",72000))

val c = Seq("name","surname","age","gender","salary")

val df = spark.createDataFrame(p).toDF(c:_*)

df.show(5)

// Output

+--------+-------+---+------+------+

|    name|surname|age|gender|salary|

+--------+-------+---+------+------+

|   Juan |  Bravo| 67|     M| 65000|

| Miguel |Rosales| 40|     M| 87000|

|Roberto |Morales|  7|     M|     0|

|  Maria |  Gomez| 12|     F|     0|

|  Vanesa|  Lopez| 25|     F| 72000|

+--------+-------+---+------+------+

Now we are going to see how to implement when() and otherwise() in Scala:

val df2 = df

      .withColumn("stage", when(col("age") < 10,"Child")

      .when(col("age") >= 10 && col("age") < 18,"Teenager")

      .otherwise("Adult"))

df2.show(5)

// Output

+--------+-------+---+------+------+--------+

|    name|surname|age|gender|salary|   stage|

+--------+-------+---+------+------+--------+

|   Juan |  Bravo| 67|     M| 65000|   Adult|

| Miguel |Rosales| 40|     M| 87000|   Adult|

|Roberto |Morales|  7|     M|     0|   Child|

|  Maria |  Gomez| 12|     F|     0|Teenager|

|  Vanesa|  Lopez| 25|     F| 72000|   Adult|

+--------+-------+---+------+------+--------+
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The when() clause can also be used as part of a SQL select statement:

val df3 = df.select(col("*"),

      expr("case when age < '10' then 'Child' " +

          "when age >= '10' and age <= '18' then 'Teenager' "

        + "else 'Adult' end").alias("stage"))

df3.show()

// Output

+--------+-------+---+------+------+--------+

|    name|surname|age|gender|salary|   stage|

+--------+-------+---+------+------+--------+

|   Juan |  Bravo| 67|     M| 65000|   Adult|

| Miguel |Rosales| 40|     M| 87000|   Adult|

|Roberto |Morales|  7|     M|     0|   Child|

|  Maria |  Gomez| 12|     F|     0|Teenager|

|  Vanesa|  Lopez| 25|     F| 72000|   Adult|

+--------+-------+---+------+------+--------+

Here’s using the when() clause with null values:

val personas = sc.parallelize(Seq(

      ("Juan ","Bravo",67,"M",new Integer(65000) ),

      ("Miguel ","Rosales",40,"M",new Integer(87000) ),

      ("Roberto ","Morales",7,"M",null.asInstanceOf[Integer] ),

      ("Maria ","Gomez",12,"F",null.asInstanceOf[Integer] ),

      ("Vanesa","Lopez",25,"F",new Integer(32000) ))

)

val dfp = personas.toDF("name","surname","age","gender","salary")

// ppower --> purchasing power

dfp.withColumn("ppower", when(col("salary") < 40000,"Low")

   .when(col("salary") >= 40000 && col("Salary") < 70000,"Medium")

   .when(col("salary").isNull ,"")

   .otherwise("High")).show()

// Output
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+--------+-------+---+------+------+------+

|    name|surname|age|gender|salary|ppower|

+--------+-------+---+------+------+------+

|   Juan |  Bravo| 67|     M| 65000|Medium|

| Miguel |Rosales| 40|     M| 87000|  High|

|Roberto |Morales|  7|     M|  null|      |

|  Maria |  Gomez| 12|     F|  null|      |

|  Vanesa|  Lopez| 25|     F| 32000|   Low|

+--------+-------+---+------+------+------+

 User-Defined Functions (UDFs)
User-defined functions are a Spark feature designed to help users extend the system’s 

built-in functionalities by writing custom functions.

In this section we are going to use a UDF to categorize the previous personas 

dataframe between adults and not adults. To create a UDF, the first step is to write a 

function. In Scala, this kind of functions do not include the return statement, can receive 

multiple parameters, and do not accept null values. Let’s code a simple function that 

takes an integer value and returns a string, classifying each individual of our dataset 

between “Adult” or “No adult” depending on their age:

def  isAdult= (age: Integer) => {

  if(age >= 18){

      "Adult"

  }

      else{

      "No adult"

      }

}

The isAdult() function is ready to be used; however, it needs to be registered 

before it is called. After registering a UDF on the driver node, Spark transfers it over to 

all executor processes, making it available to all worker machines. In the following we 

proceed to register the isAdult() function:

val isAdultUDF = udf(isAdult)
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Now that our UDF is registered, we can use it with our personas dataframe as a 

normal SQL function:

val finalDF=df.withColumn("is_adult",isAdultUDF(col("age")))

finalDF.show()

// Output

+--------+-------+---+------+------+--------+

|    name|surname|age|gender|salary|is_adult|

+--------+-------+---+------+------+--------+

|   Juan |  Bravo| 67|     M| 65000|   Adult|

| Miguel |Rosales| 40|     M| 87000|   Adult|

|Roberto |Morales|  7|     M|     0|No adult|

|  Maria |  Gomez| 12|     F|     0|No adult|

|  Vanesa|  Lopez| 25|     F| 72000|   Adult|

+--------+-------+---+------+------+--------+

 Merging DataFrames with Union and UnionByName
Very often in real life, you will have a set of data files that you would like to merge into 

a single DataFrame. A typical example is when you receive several files containing 

time-series data. In this case, all the files you receive will have the same data structure. 

In this scenario, the Spark union() method can be used to merge several DataFrames 

with the same schema. The union() method has an important limitation. It works by 

combining the DataFrames by position. This means both DataFrames’ columns have to 

be in the same order; if they are not, the resultant DataFrame will not be correct. If your 

dataframes do not have the same structure, union() returns an error.

Let’s see how to use the union() function with a practical example in which we are 

going to use two files containing production of crude oil in thousands of barrels:

val dfCOP3=spark.read.option("header", "true").csv("file:///Users/

aantolinez/Downloads/Crude_Oil_Production_3.csv")

dfCOP3.show(5)

// Output
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+----+------+------+------+------+------+------+------+------+------+ 

------+------+------+

|Year|   Jan|   Feb|   Mar|   Apr|   May|   Jun|   Jul|   Aug|   Sep| 

   Oct|   Nov|   Dec|

+----+------+------+------+------+------+------+------+------+------+ 

------+------+------+

|2010|167529|155496|170976|161769|167427|161385|164234|168867|168473| 

174547|167272|173831|

|2011|170393|151354|174158|166858|174363|167673|168635|175618|168411| 

182977|181157|189487|

|2012|191472|181783|196138|189601|197456|188262|199368|196867|197942| 

216057|212472|220282|

|2013|219601|200383|223683|221242|227139|218355|233210|233599|235177| 

240600|237597|245937|

|2014|250430|228396|257225|255822|268025|262291|274273|276909|272623| 

287256|279821|296518|

+----+------+------+------+------+------+------+------+------+------+ 

------+------+------+

val dfCOP4=spark.read.option("header", "true").csv("file:///Users/

aantolinez/Downloads/Crude_Oil_Production_4.csv")

dfCOP4.show(5)

// Output

+----+------+------+------+------+------+------+------+------+------+ 

------+------+------+

|Year|   Jan|   Feb|   Mar|   Apr|   May|   Jun|   Jul|   Aug|   Sep| 

   Oct|   Nov|   Dec|

+----+------+------+------+------+------+------+------+------+------+ 

------+------+------+

|2015|290891|266154|297091|289755|293711|280734|292807|291702|284406| 

291419|279982|287533|

|2016|285262|262902|282132|266219|273875|260284|268526|269386|256317| 

272918|267097|273288|

|2017|275117|255081|284146|273041|284727|273321|286657|286759|285499| 

299726|302564|309486|

Chapter 4  the Spark high-LeveL apiS



178

|2018|310032|287870|324467|314996|323491|319216|337814|353154|343298| 

356767|356583|370284|

|2019|367924|326845|369292|364458|376763|366546|368965|387073|377710| 

397094|390010|402314|

+----+------+------+------+------+------+------+------+------+------+ 

------+------+------+

Merging DataFrames with Duplicate Values

Unlike other SQL functions, Spark union() does not drop duplicate values after 

combining the DataFrames. If you do not want to have duplicate values in your final 

DataFrame, you can remove them after merging the DataFrames using the distinct() 

function. The distinct() function filters duplicate values. Next, there is an example of how 

to remove duplicate records.

In this example, we would like to merge dfCOP5 and dfCOP4 DataFrames. As you 

can see in the following, both dfCOP5 and dfCOP4 DataFrames include records of the 

year 2015, therefore resulting in duplicate 2015 rows in the combined DataFrame:

// dfCOP5 DataFrame including Year 2015 records

val dfCOP5=spark.read.option("header", "true").csv("file:///Users/

aantolinez/Downloads/Crude_Oil_Production_5.csv")

dfCOP5.show(10)

// Output

+----+------+------+------+------+------+------+------+------+------+ 

------+------+------+

|Year|   Jan|   Feb|   Mar|   Apr|   May|   Jun|   Jul|   Aug|   Sep| 

   Oct|   Nov|   Dec|

+----+------+------+------+------+------+------+------+------+------+ 

------+------+------+

|2010|167529|155496|170976|161769|167427|161385|164234|168867|168473| 

174547|167272|173831|

|2011|170393|151354|174158|166858|174363|167673|168635|175618|168411| 

182977|181157|189487|

|2012|191472|181783|196138|189601|197456|188262|199368|196867|197942| 

216057|212472|220282|

|2013|219601|200383|223683|221242|227139|218355|233210|233599|235177| 

240600|237597|245937|
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|2014|250430|228396|257225|255822|268025|262291|274273|276909|272623| 

287256|279821|296518|

|2015|290891|266154|297091|289755|293711|280734|292807|291702|284406| 

291419|279982|287533|

+----+------+------+------+------+------+------+------+------+------+ 

------+------+------+

To produce a clear DataFrame, we can use the following code snippet. You can see in 

the following only one 2015 row is preserved:

val cleanDf = dfCOP4.union(dfCOP5).distinct()

cleanDf.show(false)

// Output

+----+------+------+------+------+------+------+------+------+------+ 

------+------+------+

|Year|Jan   |Feb   |Mar   |Apr   |May   |Jun   |Jul   |Aug   |Sep   | 

Oct   |Nov   |Dec   |

+----+------+------+------+------+------+------+------+------+------+ 

------+------+------+

|2019|367924|326845|369292|364458|376763|366546|368965|387073|377710| 

397094|390010|402314|

|2016|285262|262902|282132|266219|273875|260284|268526|269386|256317| 

272918|267097|273288|

|2015|290891|266154|297091|289755|293711|280734|292807|291702|284406| 

291419|279982|287533|

|2018|310032|287870|324467|314996|323491|319216|337814|353154|343298| 

356767|356583|370284|

|2017|275117|255081|284146|273041|284727|273321|286657|286759|285499| 

299726|302564|309486|

|2012|191472|181783|196138|189601|197456|188262|199368|196867|197942| 

216057|212472|220282|

|2011|170393|151354|174158|166858|174363|167673|168635|175618|168411| 

182977|181157|189487|

|2014|250430|228396|257225|255822|268025|262291|274273|276909|272623| 

287256|279821|296518|
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|2010|167529|155496|170976|161769|167427|161385|164234|168867|168473| 

174547|167272|173831|

|2013|219601|200383|223683|221242|227139|218355|233210|233599|235177| 

240600|237597|245937|

+----+------+------+------+------+------+------+------+------+------+ 

------+------+------+

Another very useful Spark method when we want to merge DataFrames is 

unionByName(). unionByName() permits the combination of several DataFrames by 

column names instead of by their position; therefore, it is appropriate when DataFrames 

have the same column names but in different positions.

The unionByName() function since Spark version 3 incorporates 

allowMissingColumns. When allowMissingColumns is set to true, it allows merging 

DataFrames when some columns are missing from one DataFrame.

In the following example, we merge DataFrame dfCOP1

val dfCOP1=spark.read.option("header", "true").csv("file:///Users/

aantolinez/Downloads/Crude_Oil_Production_1.csv")

dfCOP1.show(5)

// Output

+----+------+------+------+------+------+------+

|Year|   Jan|   Feb|   Mar|   Apr|   May|   Jun|

+----+------+------+------+------+------+------+

|2015|290891|266154|297091|289755|293711|280734|

|2016|285262|262902|282132|266219|273875|260284|

|2017|275117|255081|284146|273041|284727|273321|

|2018|310032|287870|324467|314996|323491|319216|

|2019|367924|326845|369292|364458|376763|366546|

+----+------+------+------+------+------+------+

with DataFrame dfCOP2:

val dfCOP2=spark.read.option("header", "true").csv("file:///Users/

aantolinez/Downloads/Crude_Oil_Production_2.csv")

dfCOP2.show(5)

// Output
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+----+------+------+------+------+------+------+

|Year|   Jan|   Feb|   Mar|   Apr|   May|   Jun|

+----+------+------+------+------+------+------+

|2015|290891|266154|297091|289755|293711|280734|

|2016|285262|262902|282132|266219|273875|260284|

|2017|275117|255081|284146|273041|284727|273321|

|2018|310032|287870|324467|314996|323491|319216|

|2019|367924|326845|369292|364458|376763|366546|

+----+------+------+------+------+------+------+

The dfCOP1 and dfCOP2 DataFrames only have the Year column in common:

// Using allowMissingColumns=true

val missingColumnsDf=dfCOP1.unionByName(dfCOP2, allowMissingColumns=true)

missingColumnsDf.show()

// Output

+----+------+------+------+------+------+------+------+------+------+ 

------+------+------+

|Year|   Jan|   Feb|   Mar|   Apr|   May|   Jun|   Jul|   Aug|   Sep| 

   Oct|   Nov|   Dec|

+----+------+------+------+------+------+------+------+------+------+ 

------+------+------+

|2015|290891|266154|297091|289755|293711|280734|  null|  null|  null| 

  null|  null|  null|

|2016|285262|262902|282132|266219|273875|260284|  null|  null|  null| 

  null|  null|  null|

|2017|275117|255081|284146|273041|284727|273321|  null|  null|  null| 

  null|  null|  null|

|2018|310032|287870|324467|314996|323491|319216|  null|  null|  null| 

  null|  null|  null|

|2019|367924|326845|369292|364458|376763|366546|  null|  null|  null| 

  null|  null|  null|

|2020|398420|372419|396693|357412|301105|313275|  null|  null|  null| 

  null|  null|  null|

|2015|  null|  null|  null|  null|  null|  null|292807|291702|284406| 

291419|279982|287533|
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|2016|  null|  null|  null|  null|  null|  null|268526|269386|256317| 

272918|267097|273288|

|2017|  null|  null|  null|  null|  null|  null|286657|286759|285499| 

299726|302564|309486|

|2018|  null|  null|  null|  null|  null|  null|337814|353154|343298| 

356767|356583|370284|

|2019|  null|  null|  null|  null|  null|  null|368965|387073|377710| 

397094|390010|402314|

|2020|  null|  null|  null|  null|  null|  null|341184|327875|327623| 

324180|335867|346223|

+----+------+------+------+------+------+------+------+------+------+ 

------+------+------+

Spark offers another option to merge DataFrames called unionAll(); however, it is 

deprecated since Spark 2 in favor of union().

Wrapping up, it is important to underline that union() and unionByName() merge 

DataFrames vertically on top of each other.

In the next section, we are going to see another way of joining DataFrames.

 Joining DataFrames with Join
In the last section, you saw how to glue DataFrames vertically, stacking up one over the 

other. In this section you are going to see another way of combining DataFrames, but this 

time horizontally, one beside the other.

Apache Spark provides the join() method to join DataFrames. Though Spark 

DataFrame join would probably occupy a complete book, we are going to limit its scope 

to the five most widely used join types: inner, outer, left, right, and anti joins.

The Spark DataFrame INNER join is the most popular. INNER join combines 

DataFrames including only the common elements to all DataFrames involved.

As usual, let’s see how INNER join works with a practical example, and for that, the 

first step is to create a couple of DataFrames to work with. The first one contains the 

attributes of users from different nationalities including a field identifying the ISO 3166 

country code of their country:
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val dfUByL=spark.read.option("header", "true").csv("file:///Users/

aantolinez/Downloads/User_by_language.csv")

// Output

+---------+--------+------+--------+-----------+------+

|firstName|lastName|gender|language|ISO3166Code|salary|

+---------+--------+------+--------+-----------+------+

|  Liselda|   Rojas|Female| Spanish|        484| 62000|

| Leopoldo|   Galán|  Male| Spanish|        604| 47000|

|  William|   Adams|  Male| English|        826| 99000|

|    James|   Allen|  Male| English|        124| 55000|

|   Andrea|   López|Female| Spanish|        724| 95000|

+---------+--------+------+--------+-----------+------+

The second one includes the names of different countries together with their ISO 

3166 country codes:

val dfCCodes=spark.read.option("header", "true").csv("file:///Users/

aantolinez/Downloads/ISO_3166_country_codes.csv")

// Output

+------------+--------------+

| ISO3166Code|   CountryName|

+------------+--------------+

|         484|        Mexico|

|         826|United Kingdom|

|         250|        France|

|         124|        Canada|

|         724|         Spain|

+------------+--------------+

Let’s now use an INNER join to join the preceding two DataFrames on the 

ISO3166Code column:

dfUByL.join(dfCCodes, dfUByL("ISO3166Code") === dfCCodes("ISO3166Code"), 

"inner").show()
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// Output

+---------+---------+------+--------+-----------+------+-----------+--------------+

|firstName| lastName|gender|language|ISO3166Code|salary|ISO3166Code|   CountryName|

+---------+---------+------+--------+-----------+------+-----------+--------------+

|  Liselda|    Rojas|Female| Spanish|        484| 62000|        484|        Mexico|

| Leopoldo|    Galán|  Male| Spanish|        604| 47000|        604|          Peru|

|  William|    Adams|  Male| English|        826| 99000|        826|United Kingdom|

|    James|    Allen|  Male| English|        124| 55000|        124|        Canada|

|   Andrea|    López|Female| Spanish|        724| 95000|        724|         Spain|

|   Sophia|Rochefort|Female|  French|        250| 49000|        250|        France|

|      Ben|   Müller|Female|  German|        276| 47000|        276|       Germany|

+---------+---------+------+--------+-----------+------+-----------+--------------+

Do you see something in the preceding output? Yes, the join column is duplicated. 

This situation will put you into trouble if you try to work with the final DataFrame, as 

duplicate columns will create ambiguity. Therefore, it is very likely you will receive a 

message similar to this one: “org.apache.spark.sql.AnalysisException: Reference 

'ISO3166Code' is ambiguous, could be: ISO3166Code, ISO3166Code.”

One way to avoid this kind of problem is using a temporary view and selecting just 

the fields you would like to have. Let’s repeat the previous example, but this time using 

the Spark function createOrReplaceTempView() to create a temporary view:

// Create a temporary view

dfUByL.createOrReplaceTempView("UByL")

dfCCodes.createOrReplaceTempView("CCodes")

// Now you can run a SQL query as you would do in a RDBMS

val cleanDf=spark.sql("SELECT u.*, c.CountryName FROM UByL u INNER JOIN 

CCodes c ON u.ISO3166Code == c.ISO3166Code")

cleanDf.show(5)

// Output

+---------+--------+------+--------+-----------+------+--------------+

|firstName|lastName|gender|language|ISO3166Code|salary|   CountryName|

+---------+--------+------+--------+-----------+------+--------------+

|  Liselda|   Rojas|Female| Spanish|        484| 62000|        Mexico|

| Leopoldo|   Galán|  Male| Spanish|        604| 47000|          Peru|

|  William|   Adams|  Male| English|        826| 99000|United Kingdom|
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|    James|   Allen|  Male| English|        124| 55000|        Canada|

|   Andrea|   López|Female| Spanish|        724| 95000|         Spain|

+---------+--------+------+--------+-----------+------+--------------+

On the other hand, a fullouter, outer, or full join collects all rows from both 

DataFrames and adds a null value for those records that do not have a match in both 

DataFrames. Once more, we are going to show you how to use this kind of join with a 

practical example using the previous DataFrames. Please notice that the next three code 

snippets return exactly the same outcome:

// Fullouter, Full and Outer join

dfUByL.join(dfCCodes, dfUByL("ISO3166Code") === dfCCodes("ISO3166Code"), 

"fullouter").show()

dfUByL.join(dfCCodes, dfUByL("ISO3166Code") === dfCCodes("ISO3166Code"), 

"full").show()

dfUByL.join(dfCCodes, dfUByL("ISO3166Code") === dfCCodes("ISO3166Code"), 

"outer").show()

// Output

+---------+---------+------+--------+-----------+------+-----------+--------------+

|firstName| lastName|gender|language|ISO3166Code|salary|ISO3166Code|   CountryName|

+---------+---------+------+--------+-----------+------+-----------+--------------+

|    James|    Allen|  Male| English|        124| 55000|        124|        Canada|

|   Agnete|   Jensen|Female|  Danish|        208| 80000|       null|          null|

|   Sophia|Rochefort|Female|  French|        250| 49000|        250|        France|

|      Ben|   Müller|Female|  German|        276| 47000|        276|       Germany|

|   Amelie| Hoffmann|Female|  German|         40| 45000|       null|          null|

|  Liselda|    Rojas|Female| Spanish|        484| 62000|        484|        Mexico|

| Leopoldo|    Galán|  Male| Spanish|        604| 47000|        604|          Peru|

|   Andrea|    López|Female| Spanish|        724| 95000|        724|         Spain|

|  William|    Adams|  Male| English|        826| 99000|        826|United Kingdom|

+---------+---------+------+--------+-----------+------+-----------+--------------+

The Spark left outer join collects all the elements from the left DataFrame and only 

those from the right one that have a matching on the left DataFrame. If there is no 

matching element on the left DataFrame, no join takes place.
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Once again, the next code snippets will give you the same result:

dfUByL.join(dfCCodes, dfUByL("ISO3166Code") === dfCCodes("ISO3166Code"), 

"left").show()

dfUByL.join(dfCCodes, dfUByL("ISO3166Code") === dfCCodes("ISO3166Code"), 

"leftouter").show()

// Output

+---------+---------+------+--------+-----------+------+-----------+--------------+

|firstName| lastName|gender|language|ISO3166Code|salary|ISO3166Code|   CountryName|

+---------+---------+------+--------+-----------+------+-----------+--------------+

|  Liselda|    Rojas|Female| Spanish|        484| 62000|        484|        Mexico|

| Leopoldo|    Galán|  Male| Spanish|        604| 47000|        604|          Peru|

|  William|    Adams|  Male| English|        826| 99000|        826|United Kingdom|

|    James|    Allen|  Male| English|        124| 55000|        124|        Canada|

|   Andrea|    López|Female| Spanish|        724| 95000|        724|         Spain|

|   Sophia|Rochefort|Female|  French|        250| 49000|        250|        France|

|      Ben|   Müller|Female|  German|        276| 47000|        276|       Germany|

|   Agnete|   Jensen|Female|  Danish|        208| 80000|       null|          null|

|   Amelie| Hoffmann|Female|  German|         40| 45000|       null|          null|

+---------+---------+------+--------+-----------+------+-----------+--------------+

The Spark right outer or right join performs the left join symmetrical operation. In 

this case, all the elements from the right DataFrame are collected, and a null value is 

added where no matching is found on the left one. Next is an example, and again, both 

lines of code produce the same outcome:

dfUByL.join(dfCCodes, dfUByL("ISO3166Code") === dfCCodes("ISO3166Code"), 

"right").show()

dfUByL.join(dfCCodes, dfUByL("ISO3166Code") === dfCCodes("ISO3166Code"), 

"rightouter").show()

// Output

+---------+---------+------+--------+-----------+------+-----------+--------------+

|firstName| lastName|gender|language|ISO3166Code|salary|ISO3166Code|   CountryName|

+---------+---------+------+--------+-----------+------+-----------+--------------+

|  Liselda|    Rojas|Female| Spanish|        484| 62000|        484|        Mexico|

|  William|    Adams|  Male| English|        826| 99000|        826|United Kingdom|

Chapter 4  the Spark high-LeveL apiS



187

|   Sophia|Rochefort|Female|  French|        250| 49000|        250|        France|

|    James|    Allen|  Male| English|        124| 55000|        124|        Canada|

|   Andrea|    López|Female| Spanish|        724| 95000|        724|         Spain|

| Leopoldo|    Galán|  Male| Spanish|        604| 47000|        604|          Peru|

|      Ben|   Müller|Female|  German|        276| 47000|        276|       Germany|

+---------+---------+------+--------+-----------+------+-----------+--------------+

Finally, the Spark anti join returns rows from the first DataFrame not having matches 

in the second one. Here is one more example:

dfUByL.join(dfCCodes, dfUByL("ISO3166Code") === dfCCodes("ISO3166Code"), 

"anti").show()

// Output

+---------+--------+------+--------+-----------+------+

|firstName|lastName|gender|language|ISO3166Code|salary|

+---------+--------+------+--------+-----------+------+

|   Agnete|  Jensen|Female|  Danish|        208| 80000|

|   Amelie|Hoffmann|Female|  German|         40| 45000|

+---------+--------+------+--------+-----------+------+

Summarizing, in this section you have seen how to use the most typical Spark 

joins. However, you have to bear something important in mind. Joins are wide 

Spark transformations; therefore, they imply data shuffling across the nodes. Hence, 

performance can be seriously affected if you use them without caution.

4.3  Spark Cache and Persist of Data
We have already mentioned in this book that one of Spark’s competitive advantages 

is its data partitioning capability across multiple executors. Splitting large volumes 

of information across the network poses important challenges such as bandwidth 

saturation and network latency.

While using Spark you might need to use a dataset many times over a period of time; 

therefore, fetching the same dataset once and again to the executors could be inefficient. 

To overcome this obstacle, Spark provides two API calls called cache() and persist() to 

store locally in the executors as many of the partitions as the memory permits. Therefore, 

cache() and persist() are Spark methods intended for iterative and interactive 

application performance improvement.
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Spark cache() and persist() are equivalent. In fact when persist() is called 

without arguments, it internally calls cache(). However, persist() with the 

StorageLevel argument offers additional storage optimization capabilities such 

as whether data should be stored in memory or on disk and/or in a serialized or 

unserialized way.

Now we are going to see with a practical example the impact the use of cache() can 

have in Spark operation performance:

// We create a 10^9 DataFrame

val dfcache = spark.range(1, 1000000000).toDF("base").withColumn("square", 

$"base" * $"base")

dfcache.cache() // Cache is called to create a data copy in memory

spark.time(dfcache.count()) // Cache is materialized only first execute 

an action

Time taken: 57407 ms

Out[96]: res81: Long = 1000000000

spark.time(dfcache.count())  // This time count() takes advantage of the 

cached data

Time taken: 2358 ms

Out[98]: res83: Long = 1000000000

If you look attentively at the preceding example, you can see that cache() is lazily 

evaluated; it means that it is not materialized when it is called, but the first time it is 

invoked. Thus, the first call to dfcache.count() does not take advantage of the cached 

data; only the second call can profit from it. As you can see, the second dfcache.count() 

executes 24.34 times faster.

Is it worth noticing that cache() persists in memory the partitioned data in 

unserialized format. The cached data is localized in the node memory processing the 

corresponding partition; therefore, if that node is lost in the next invocation to that 

information, it would have to be recovered from the source. As the data will not be 

serialized, it would take longer and perhaps produce network bottleneck.

To overcome the cache() restrictions, the DataFrame.persist() method was 

introduced and accepts numerous types of storage levels via the 'storageLevel' [ = ] 

value key and value pair.
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The most typical valid options for storageLevel are

• NONE: With no options, persist() calls cache() under the hood.

• DISK_ONLY:   Data is stored on disk rather than in RAM. Since you are 

persisting on disk, it is serialized in nature.

• MEMORY_ONLY: Stores data in RAM as deserialized Java objects. 

Full data cache is not guaranteed as it cannot be fully accommodated 

into memory and has no replication.

• MEMORY_ONLY_SER: Stores data as serialized Java objects. 

Generally more space-efficient than deserialized objects, but more 

read CPU-intensive.

• MEMORY_AND_DISK: Stores data as deserialized Java objects. If the 

whole data does not fit in memory, store partitions not fitting in RAM 

to disk.

• OFF_HEAP: It is an experimental storage level similar to MEMORY_

ONLY_SER, but storing the data in off-heap memory if off-heap 

memory is enabled.

• MEMORY_AND_DISK_SER: Option Akin to MEMORY_ONLY_SER; 

however, partitions not fitting in memory are streamed to disk.

• DISK_ONLY_2, DISK_ONLY_3, MEMORY_ONLY_2, MEMORY_AND_

DISK_2, MEMORY_AND_DISK_SER_2, MEMORY_ONLY_SER_2: 

The same as the parent levels adding partition replication to two 

cluster nodes.

Next, we are going to show you how to use persist() with a practical example:

import org.apache.spark.storage.StorageLevel

val dfpersist = spark.range(1, 1000000000).toDF("base").

withColumn("square", $"base" * $"base")

dfpersist.persist(StorageLevel.DISK_ONLY) // Serialize and cache 

data on disk

spark.time(dfpersist.count()) // Materialize the cache

Time taken: 54762 ms

Out[107]: res90: Long = 999999999
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spark.time(dfpersist.count()) // Taking advantage of cached data

Time taken: 2045 ms

Out[108]: res91: Long = 999999999

Once again, you can see in the preceding example the operation performed on 

persisted data is 26.8 times faster.

Additionally, tables and views derived from DataFrames can also be cached. Let’s 

see again how it can be used with a practical example:

val dfWithQuery = spark.range(1, 1000000000).toDF("base").

withColumn("square", $"base" * $"base")

dfQuery.createOrReplaceTempView("TableWithQuery")

spark.sql("CACHE TABLE TableWithQuery")

spark.time(spark.sql("SELECT count(*) FROM TableWithQuery")).show()

Time taken: 2 ms

+---------+

| count(1)|

+---------+

|999999999|

+---------+

// Using already cached data

spark.time(spark.sql("SELECT count(*) FROM TableWithQuery")).show()

Time taken: 1 ms

+---------+

| count(1)|

+---------+

|999999999|

+---------+

 Unpersisting Cached Data
In a similar way, data not in use can be unpersisted to release space using unpersist(), 

though Spark monitors the use your applications make of cache() and persist() and 

releases persisted data when it is not used. Spark also uses the Least Recently Used 
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(LRU) Page Replacement algorithm. Whenever a new block of data is addressed and not 

present in memory, Spark replaces one of the existing blocks with a newly created one.

Let’s see how to use unpersist() taking advantage of the previous example:

val dfUnpersist = dfWithQuery.unpersist()

Out[5]: dfUnpersist: dfWithQuery.type = [base: bigint, square: bigint]

spark.time(dfUnpersist.count())

Time taken: 99 ms

Out[6]:   res2: Long = 9999999

Summarizing, in this section you have seen the important performance 

improvements you can get when using Spark caching techniques. In general, you 

should cache your data when you expect to use it several times during a job, and the 

storage level to use depends on the use case at hand. MEMORY_ONLY is CPU-efficient 

and performance-optimized. MEMORY_ONLY_SER used together with a serialization 

framework like Kyro is store-optimized and specially indicated when you have a 

DataFrame with many elements. Storage types involving replication, like MEMORY_

ONLY_2, MEMORY_ONLY_2, and so on, are indicated if full fast recovery is required.

4.4  Summary
In this chapter we have explained what is called the Apache Spark high-level API. We 

have reviewed the concept of DataFrames and the DataFrame attributes. We have talked 

about the different methods available to create Spark DataFrames. Next, we explained 

how DataFrames can be used to manipulate and analyze information. Finally, we went 

through the options available to speed up data processing by caching data in memory. 

In the next chapter, we are going to study another Spark high-level data structure named 

datasets.
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CHAPTER 5

Spark Dataset API and 
Adaptive Query Execution
In the Spark ecosystem, DataFrames and datasets are higher-level APIs that use 

Spark RDDs under the hood. Spark developers mainly use DataFrames and datasets 

because these data structures are the ones more efficiently using Spark storage and 

query optimizers, hence achieving the best data processing performance. Therefore, 

DataFrames and datasets are the best Spark tools in getting the best performance to 

handle structured data. Spark DataFrames and datasets also allow technicians with a 

RDBMS and SQL background to take advantage of Spark capabilities quicker.

5.1  What Are Spark Datasets?
According to the official Spark dataset documentation, datasets are “a strongly typed 

collection of domain-specific objects that can be parallelized employing functional 

or relational operations.” Datasets were introduced in Spark 1.6 to overcome some 

dataframe limitations, and in Spark 2.0 both high-level APIs (the DataFrame and the 

Dataset) were merged into a single one, the Dataset API. Therefore, DataFrames can be 

thought of as datasets of type row or Dataset[Row].

Datasets combine RDD features like compile-time type safety and the capacity to 

use lambda functions with dataframe features including SQL automatic optimization. 

Datasets also incorporate compile-time safety, a feature only implemented in compiled 

languages like Java or Scala but not available in interpreted languages like PySpark or 

SparkR. That is why datasets are only available for Java and Scala.
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5.2  Methods for Creating Spark Datasets
A dataset can be created following four different ways:

• Can be created from a sequence of elements

• Can be created from a sequence of case classes

• Can be created from a RDD

• Can be created from a DataFrame

A dataset can be created from a sequence of elements using the toDS() method as in 

the following example:

val sequencia = Seq(0, 1, 2, 3, 4)

val sequenciaToDS = sequencia.toDS()

sequenciaToDS.show()

// Output

+-----+

|value|

+-----+

|    0|

|    1|

|    2|

|    3|

|    4|

+-----+

To create a dataset from a sequence of case classes using again the toDS() method, 

we first need a case class. Let’s see how it works with a practical example. First, we create 

a Scala case class named Personas:

case class Personas(Nombre: String, Primer_Apellido: String,  

Segundo_Apellido: String, Edad: Int, Sexo:String)

Then we can create a sequence of data matching the Personas case class schema. 

In this case we are going to use the data of some of the most famous Spanish writers of 

all times:
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val personasSeq = Seq(

Personas("Miguel","de Cervantes","Saavedra",50,"M"),

Personas("Fancisco","Quevedo","Santibáñez Villegas",55,"M"),

Personas("Luis","de Góngora","y Argote",65,"M"))

After that we can obtain a dataset by applying the toDS() method to the personasSeq 

sequence:

val personasDs = personasSeq.toDS()

personasDs.show()

// Output

+--------+---------------+-------------------+----+----+

|  Nombre|Primer_Apellido|   Segundo_Apellido|Edad|Sexo|

+--------+---------------+-------------------+----+----+

|  Miguel|   de Cervantes|           Saavedra|  50|   M|

|Fancisco|        Quevedo|Santibáñez Villegas|  55|   M|

|    Luis|     de Góngora|           y Argote|  65|   M|

+--------+---------------+-------------------+----+----+

Another way of creating a dataset is from a RDD. Again we are going to show how it 

works with an example:

val myRdd = spark.sparkContext.parallelize(Seq(("Miguel de Cervantes", 

1547),("Lope de Vega", 1562),("Fernando de Rojas",1470)))

val rddToDs = myRdd.toDS

.withColumnRenamed("_1","Nombre")

.withColumnRenamed("_2","Nacimiento")

rddToDs.show()

// Output

+-------------------+----------+

|             Nombre|Nacimiento|

+-------------------+----------+

|Miguel de Cervantes|      1547|

|       Lope de Vega|      1562|

|  Fernando de Rojas|      1470|

+-------------------+----------+
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The fourth way of creating a dataset is from a DataFrame. In this case we are going 

to use an external file to create a DataFrame and after that transform it into a dataset, as 

you can see in the following code snippet:

case class Personas(Nombre: String, Primer_Apellido: String,  

Segundo_Apellido: String, Edad: Int, Sexo:String)

val personas = spark.read.format("csv")

      .option("header", "true")

      .option("inferSchema", "true")

      .load("personas.csv")

      .as[Personas]

personas.show()

// Output

+--------+-----------------+-------------------+----+----+

|  Nombre|  Primer_Apellido|   Segundo_Apellido|Edad|Sexo|

+--------+-----------------+-------------------+----+----+

|  Miguel|     de Cervantes|           Saavedra|  50|   M|

|Fancisco|          Quevedo|Santibáñez Villegas|  55|   M|

|    Luis|       de Góngora|           y Argote|  65|   M|

|  Teresa|Sánchez de Cepeda|          y Ahumada|  70|   F|

+--------+-----------------+-------------------+----+----+

5.3  Adaptive Query Execution
With each release, Apache Spark has introduced new methods of improving performance 

of data querying. Therefore, with Spark 1.x, the Catalyst Optimizer and Tungsten 

Execution Engine were introduced; Spark 2.x incorporated the Cost-Based Optimizer; 

and finally, with Spark 3.0 the new Adaptive Query Execution (AQE) has been added.

The Adaptive Query Execution (AQE) is, without a doubt, one of the most important 

features introduced with Apache Spark 3.0. Before Spark 3.0, query execution plans were 

monolithic; it means that before executing a query, Spark established an execution plan 

and once the job execution began this plan was strictly followed independently of the 

statistics and metrics collected at each job stage. In Figure 5-1 the process followed by 

Spark 2.x to create and execute a query using the cost-based optimization framework is 

depicted.
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Figure 5-1. Spark 2.x Cost-Based Optimizer (Source: Databricks)

Cost-based optimization tries to improve the quality of executing a SQL statement 

by generating multiple execution plans employing execution rules and at the same time, 

calculating the computing cost of each query. Cost-based optimization techniques can 

improve decisions such as selecting the most efficient join type, selecting the correct 

build side in a hash join, and so on.

The introduction of the Adaptive Query Execution permits the Spark SQL engine a 

continuous update of the execution plan while running based on the statistics collected 

at runtime. The AQE framework includes the following three major features:

• Data-dependent adaptive determination of the shuffle 

partition number

• Runtime replanning of join strategies according to the most accurate 

join relation size

• Optimization of unevenly distributed data joins at execution time

The Spark 3 Adaptive Query Execution (AQE) framework introduces the concepts of 

materialization points and query stages. The AQE succinctly works as follows: Normally, 

Spark processes run pipelined and in parallel; however, actions triggering shuffling and 

broadcasting operations break that pipelining as each query stage must materialize 

its intermediate results, and all running parallel processes have to materialize their 

intermediate stages before the workflow can continue. These temporal interruptions 

offer an occasion for query plan reoptimization.

When a query is released, the Adaptive Query Execution framework launches all 

the so-called leaf stages or stages that do not depend on any other. As soon as these 

stages finish their individual materializations, the AQE labels them as completed in 

the physical query plan and subsequently updates the logical query plan metrics with 

the fresh statistics collected from finished stages at runtime. Founded on updated 

information, the AQE reruns the optimizer and the physical planner.
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With the now retrofitted and hopefully improved execution plan, the AQE framework 

runs the query stages under those already materialized, repeating this run-reevaluate- 

execute cycle until the entire query has been executed.

With the new Adaptive Query Execution framework, the SQL plan workflow looks 

like the one shown in Figure 5-2.

Figure 5-2. Spark 3 Adaptive Query Execution framework SQL plan

5.4  Data-Dependent Adaptive Determination 
of the Shuffle Partition Number

According to the Adaptive Query Execution official documentation, by default 

Apache Spark sets to 200 the number of partitions to use for data shuffling in join and 

aggregation operations. This base parameter is not necessarily the option at any time 

because shuffle operations have a very important impact on Spark performance when 

we are dealing with very large datasets as these operations require the rearrangement 

of the information across the nodes of the cluster and movement of data through the 

network.

In order to minimize the impact of data transfer, the allocation of the correct number 

of partitions is key. On the other hand, the number of partitions is heavily dependent on 

data volume, which in turn varies from stage to stage and operation to operation.

• If the number of allocated partitions is smaller than necessary, the 

size of the information per partition could be too big to fit in memory. 

Hence, writing it down to disk could be necessary, jeopardizing 

performance.
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• In case the number of partitions is greater than required, it can 

introduce additional bottlenecks:

• Firstly, the size of every partition could be very small, requiring a 

large number of I/O operations to fetch the data blocks involved 

in the shuffle operations.

• Secondly, too many operations can increase the number of jobs 

Spark needs to handle, therefore creating additional overhead.

To tackle these problems, you can set your best estimation of the number of 

partitions and let Spark dynamically adapt this number according to the statistics 

collected between stages. Possible strategies to choose the best numPartitions can be

• Based on computer capacity available

• Based on the grounds of the amount of data to be processed

A graphical example of how the Adaptive Query Execution works is illustrated in 

Figure 5-3.

Figure 5-3. Adaptive Query Execution (AQE)
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5.5  Runtime Replanning of Join Strategies
With the AQE enabled, when we want to perform join operations on tables, Spark can 

determine the optimal join algorithm to use at runtime. Spark supports several join 

strategies. Among them the broadcast hash join is usually the most performant one 

when one of the sides of the join can fit in memory and it is smaller than the broadcast 

threshold.

With the new AQE enabled, Spark can replan at runtime the join strategy according 

to the information collected. As you can see in Figure 5-4, Spark develops an initial join 

strategy based on the information available at the very beginning. After first computations 

and based on data volumes and distribution, Spark is capable of adapting the join strategy 

from an initial sort merge join to a broadcast hash join more suitable for the situation.

Figure 5-4. Dynamic join strategy adaptation

5.6  Optimization of Unevenly Distributed Data Joins
A skewed dataset is characterized by a plot frequency distribution not perfectly 

symmetrical but skewed to the left or right side of the graph. Said another way, data 

skew is associated with an uneven or nonuniform distribution of data among different 

partitions in a cluster. In Figure 5-5 you can see a graphical representation of a real 

positively skewed dataset.
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Figure 5-5. Positive skew

In real-life scenarios, you will often have to tackle the problem of non-ideal data 

distributions. Severe data skewness can severely jeopardize Spark join performance 

because for join operations, Spark has to place records of each key in its particular 

partition. Therefore, if you want to join two dataframes by a specific key or column and 

one of the keys has many more records than the others, its corresponding partition will 

become much bigger than the others (or skewed); therefore, the time taken to process that 

partition will be comparatively longer than the time consumed by others, consequently 

causing job bottlenecks, poor CPU utilization, and/or out-of-memory problems.

The AQE automatically detects data skewness from shuffle statistics and divides the 

bigger partitions into smaller ones that will be joined locally with their corresponding 

counterparts.

For Spark, to take advantage of skew join optimization, both options  

“spark.sql.adaptive.enabled” and “spark.sql.adaptive.skewJoin.enabled” have to be set 

to true.

5.7  Enabling the Adaptive Query Execution (AQE)
The Adaptive Query Execution is disabled by default in Spark 3.0. In order to enable 

it, you must set the spark.sql.adaptive.enabled configuration property to true. 

However, advantages of the AQE can only be applied to not streaming queries or when 

they include operations entailing data exchange such as joins, aggregates, or window 

operators.
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5.8  Summary
Datasets are part of the so-called Spark high-level API together with DataFrames. 

However, unlike the latter, they are only available with compiled programming languages, 

such as Java and Scala. This attribute is both an advantage and disadvantage as those 

programming languages’ learning curves have a more pronounced gradient than that 

of Python, for example; hence, they are less commonly employed. Datasets also provide 

security improvements as they are strongly typed data structures. After introducing the 

concept of datasets, we focused on the Spark Adaptive Query Execution (AQE) as it is one 

of the newest and more interesting features introduced in Spark 3.0. The AQE permits the 

improvement of Spark query performance as it is able to automatically adapt query plans 

based on statistical data collected at runtime. In the coming chapters, we have to switch 

to another important Spark feature, which is data streaming.
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CHAPTER 6

Introduction to Apache 
Spark Streaming
Spark Streaming was added to Apache Spark in 2013 as a scalable, fault-tolerant,  

real- time streaming processing extension of the core Spark API. Spark Streaming natively 

supports both batch and streaming workloads and uses micro-batching to ingest and 

process streams of data passing the results to permanent storage or a dashboard for 

online data analysis.

Spark Streaming incorporates a large ecosystem of data sources and data sinks. 

Among the former we can include Apache Kafka, Apache Flume, Amazon Kinesis, and 

TCP sockets as data streamers, and among the latter, we can include most of the RDBMS 

and NoSQL databases such as MemSQL, PostgreSQL, and MySQL, including of course 

file storage format such as Parquet or CSV.

6.1  Real-Time Analytics of Bound 
and Unbound Data

Continuous streaming and real-time analytics are changing the way we consume 

information nowadays. In fact, in the real world most of the information we produce and 

consume is based on unbound or unconfined data. For example, our brain is processing 

data and taking decisions as information is coming through in very definite time 

windows.

In mathematics, unbounded means that a function is not confined or bounded. 

Therefore, an unbounded set is a set that has no finite upper or lower limits. Examples of 

unbounded sets could be (−∞,+∞), (5,+∞), etc. On the other hand, a set that has finite 

values of upper and lower bounds is said to be bounded. That is why you would probably 

hear that unbounded data is (theoretically) infinite.
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Data analytics is divided into batch and streaming processing. Traditionally, batch 

data is associated with what is commonly known as bound data.

Bound data is steady, unchanging, with a known size, and within a defined 

timeframe. Examples of this confined data are last year or last quarter sales data analysis, 

historical stock market trades, and so on. On the other hand, unbound or unconfined 

data is in motion (is not finished) and very often not in a perfect or expected sequence.

Spark Streaming works as follows: by receiving continuous data streams and dividing 

them into micro-batches called Discretized Streams or DStreams, which are passed to 

the Spark engine that generates batches of results.

A graphical depiction of continuous stream processing of batch streams of data to 

provide real-time data analytics is shown in Figure 6-1.

Figure 6-1. Continuous stream processing enabling real-time analytics

6.2  Challenges of Stream Processing
As we analyze data using finite resources (finite number of CPUs, RAM, storage 

hardware, etc.), we cannot expect to be able to accommodate it in finite resources. 

Instead, we have to process it as a sequence of events received over a period of time with 

limited computational resources.

While processing data streams, time introduces important challenges because there 

is a time difference between the moment the information is produced and the moment it 

is processed and analyzed.
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There are three important concepts when we deal with streaming data processing:

• Event time: It refers to the moment when the event was produced on 

its producing device. This time reference can be established by the 

event emitter (typically) or by the event receiver; either way, you have 

to understand the additional complexity brought by operating in 

different timezones, for example.

• Ingestion time: It is the time when an event flows into the streaming 

process.

• Data processing time: In this case the frame of reference is the 

computer in which data is being processed.

6.3  The Uncertainty Component of Data Streams
Another important aspect to consider when dealing with data streams is the uncertainty 

over data throughput. In general, no assumptions can be made about the data cadence 

arriving to the system; therefore, it is not possible to precisely foresee either the future 

hardware resources needed or the order in the sequence of events.

Information coming from stream sources such as sensors, social networks, and so on 

can suffer delays and interruptions due to numerous circumstances. In these particular 

situations, one of the following can happen: Either the information is piled up, and it is 

released as a kind of data avalanche as soon as the connection is restored. Or the data 

is lost; hence, some gap in the sequence of events will appear. When something like 

the preceding scenarios takes place, the system can be temporarily saturated by the 

oversupply of data, causing processing delays or failures.

6.4  Apache Spark Streaming’s Execution Model
From inception, Apache Spark was conceived as an unified engine for batch and 

streaming data processing aiming to provide some major features such as

• A rapid service restoration from failures

• Active identification of slow-running tasks, a.k.a. stragglers, and 

actively dealing with them
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• Improved load evenness and computation resource utilization

• The capacity of consuming data streams from static datasets and 

interactive SQL queries

• Built-in integration with other Spark modules like SQL, MLlib, etc.

Among the above-mentioned features, Spark’s capability to tackle slow-running 

tasks or stragglers is worth mentioning. A straggler refers to a task within a stage that 

takes exceptionally longer time to execute than other ones belonging to the same stage. 

In terms of performance, it is always a good practice to keep an eye on stragglers as they 

can frequently appear in a stage or disseminated across multiple stages.

The appearance of slow-running tasks even in a single stage can considerably delay 

Spark jobs and produce a cascade effect damaging the overall performance of your 

application.

6.5  Stream Processing Architectures
In this section we introduce two of the most typical real-time data processing 

technological approaches, the so-called Lambda and Kappa architectures. Setting up a 

proper and economically sustainable real-time processing architecture that best fits our 

business needs is not something trivial.

Real-time data processing architectures are technological systems conceived to 

efficiently manage the full real-time data life cycle: data intake, data processing, and 

finally storage of huge amounts of data. They play a pivotal role in allowing modern 

businesses to gain valuable insights from the information available. These architectures 

together with data analytics techniques are the foundations of the modern data-driven 

organizations that take advantage of data analysis to improve decision-making, achieve 

competitive advantage and operational efficiency, and ultimately drive growth.

The Lambda and Kappa architectures are designed to cope with both batch 

processing and real-time data processing.

 The Lambda Architecture
The Lambda architecture was developed by Nathan Marz, the creator of Apache Storm, 

in 2011 as a scalable, fault-tolerant, and flexible architecture for massive real-time data 

processing.
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The main characteristic of the Lambda architecture is that it incorporates two 

separate lanes to process different kinds of workloads as can be seen in Figure 6-2. 

The batch lane is intended to process large amounts of data and store the results in a 

centralized warehouse or distributed file system such as Hadoop.

Figure 6-2. Lambda architecture for real-time stream and batch data processing

The real-time lane takes care of data as it arrives to the system, and as the batch lane, 

it stores the result in a distributed data warehouse system.

The Lambda architecture has shown to satisfy many business use cases, and it is 

currently in use by important corporations like Yahoo and Netflix.

The Lambda architecture is integrated by three main layers or lanes:

• Batch processing layer

• Real-time or speed layer

• Serving layer

In addition to these three main data processing lanes, some authors would add a 

pre-layer for data intake:

• Data ingestion layer

Let’s succinctly review all of them.
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 Data Ingestion Layer

This lane is responsible for integrating on the fly the raw data coming from several data 

sources. This information is supplied to the batch and speed lanes simultaneously.

 Batch Processing Layer

This lane is intended to efficiently process large amounts of information and to provide 

a holistic view of the data. The batch layer is responsible for (a) integrating historical 

consolidated data into the analytical process and (b) reprocessing previous results 

such as retraining machine learning models. This layer oversees the full dataset, hence 

producing more precise outcomes; however, results are delivered offline as it takes a 

longer computation time.

 Real-Time or Speed Layer

This layer is intended for providing a low-latency and almost up-to-the-minute vision 

of huge volumes of data streams complementing the batch layer with incremental 

outcomes. Thanks to these incremental results, computation time is decreased. This 

layer is responsible for real-time data processing and stores the results obtained in a 

distributed storage (NoSQL databases or file systems).

 Serving Layer

This layer merges the results from the batch and real-time layers and constitutes the way 

users use to interactively submit queries and receive the results online. This layer allows 

users to seamlessly interact with full data being processed independently of whether it 

is being processed on the batch or stream lane. This lane also provides the visualization 

layer with up-to-the-minute information.

 Pros and Cons of the Lambda Architecture

The Lambda architecture meets many big data use cases, but at a high cost in terms of 

redundancy and complexity. Therefore, it has pros and cons.
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Pros:

• Scalability: The Lambda architecture is suitable for horizontal 

scalability meeting big data requirements.

• Fault tolerance against hardware failures.

• Flexibility handling both batch and streaming workloads.

Cons:

• Complexity: Due to its distributed nature and different technologies 

being involved, this architecture is complex and redundant and could 

be difficult to tune and maintain.

• Possible data discrepancies: As data is processed through parallel 

lanes, processing failures can bring discrepant results from batch and 

stream lanes.

 The Kappa Architecture
The Kappa architecture shown in Figure 6-3 was designed by Jay Kreps in 2014 to 

confront some of the problems identified in the Lambda architecture and to avoid 

maintaining two separate developments.

The Kappa architecture uses a single lane with two layers: stream processing and 

serving for both batch and stream data processing workloads, hence treating every data 

influx as streams of data. This architecture is simpler than Lambda as live stream data 

intake, processing, and storage is performed by the stream processing layer while still 

maintaining fast and efficient query capabilities.

Figure 6-3. Kappa architecture for real-time stream data processing
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The two layers of the Kappa architecture implement the following functionalities:

• Stream processing: This module is responsible for live data ingestion 

and permanent raw data storage.

• Serving: The serving layer is responsible for the provision of the 

necessary tools for data querying.

 Pros and Cons of the Kappa Architecture

Here we introduce some of the pros and cons of the Kappa architecture.

Pros:

• Simplified design, implementation, debugging, and maintenance of 

the pipeline

• Facilitates pipeline migration and reorganization taking advantage of 

the single-lane pipeline

Cons:

• Complexity: Though it is simpler than the Lambda architecture, the 

overall infrastructure is still complex.

• Scalability issues: The use of a single streaming lane processing 

unbounded streams of data can provoke bottlenecks when it comes 

time to use the great volume of results processed.

6.6  Spark Streaming Architecture: 
Discretized Streams

The key Spark abstraction for streaming processing is the so-called Apache Spark 

Discretized Stream, commonly known as Spark DStream. DStreams, as we saw at the 

beginning of the chapter, are formed by a stream of data divided into micro-batches of 

less than a second. To create these micro-batches, Spark Streaming receivers can ingest 

data in parallel and store it in Spark workers’ memory before releasing it to be processed. 

In micro-batching, the Spark worker nodes typically wait for a defined period of time—

called the batch cycle—or until the batch size gets to the upper limit before executing the 

batch job.
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For example, if a streaming job is configured with a batch cycle of 1 s and a batch 

size limit of 128 items read, even if the number of items read is less than 128 in a second, 

the job will start anyway. On the other hand, if the receivers sustain a high throughput 

and the number of items received is higher than 128 in less than 1 s, the job would start 

without waiting for the batch cycle to complete.

DStream is internally built on top of a series of unbounded Spark RDDs; therefore, 

transformations and actions executed on DStreams are in fact RDD operations. Each 

RDD contains only data from a certain slot of time as shown in Figure 6-4.

Figure 6-4. Spark DStream as a succession of micro-batches (RDDs)

The use of RDDs under the hood to manipulate data facilitates the use of a common 

API both for batch and streaming processing. At the same time, this architecture permits 

the use of any third-party library available to process Spark data streams.

Spark implements streaming load balancing and a faster fault recovery by 

dynamically assigning processing tasks to the workers available.

Thus, a Discretized Stream (DStream) is in fact a continuous sequence of RDDs of 

the same type simulating a continuous flow of data and bringing all the RDD advantages 

in terms of speed and safety to near-real-time stream data processing. However, the 

DStream API does not offer the complete set of transformations compared with the 

Apache Spark RDD (low-level API).

6.7  Spark Streaming Sources and Receivers
In Spark Streaming, input data streams are DStreams symbolizing the input point of 

incoming information and are the way to integrate data from external data sources.

Every input DStream (except file stream) is associated with a Receiver object, and it 

acts as a buffer between data sources and Spark workers’ memory where data is piled up 

in micro-batches before it is processed.
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There are two built-in streaming sources in Spark:

• Basic input sources

• Advanced input sources

 Basic Input Sources
Basic sources are those natively built in the StreamingContext API, for example, TCP 

socket connections and file system sources. When a stream of data is implemented 

through a socket connection, Spark listens to the specified TCP/IP address and port 

creating input Discretized Streams (DStreams) from the text data received over that TCP 

socket connection. Socket streams are receiver-based connections; hence, they require 

the implementation of a receiver. Therefore, when implementing an input DStream based 

on a socket receiver, enough resources (CPU cores) must be allocated to receive data and 

to process it. Thus, when running receiver-based streams in local mode, either “local[*]” 

or “local[n]” (with n > number of receivers) has to be implemented as the master URL. For 

the same reason, if receiver-based streaming jobs are run in cluster mode, the number of 

processing threads available must be bigger than the number of receivers.

On the other hand, file streams do not require executing receivers; in consequence, 

no additional CPU resources are needed for file data ingestion. File sources are used to 

ingest data from files as they appear in a system folder, hence simulating a data stream. 

Input file formats supported are text, CSV, JSON, ORC, and Parquet.

 Socket Connection Streaming Sources

A socket is the union of an IP address and a network port (<IP>:<port>). Sockets permit 

the connection between computers over the TCP/IP where each ending computer sets 

up a connection socket.

To show how Spark Streaming can be used to ingest data by listening to a socket 

connection, we are going to use an example based on a real data streaming use case; we 

are going to implement a basic near-real-time streaming Hospital Queue Management 

System with a CSV format as input as the ones you can see next:

1004,Tomás,30,DEndo,01-09-2022

1005,Lorena,50,DGineco,01-09-2022

1006,Pedro,10,DCardio,01-09-2022
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1007,Ester,10,DCardio,01-09-2022

1008,Marina,10,DCardio,01-09-2022

1009,Julia,20,DNeuro,01-09-2022

1010,Javier,30,DEndo,01-09-2022

1011,Laura,50,DGineco,01-09-2022

1012,Nuria,10,DCardio,01-09-2022

1013,Helena,10,DCardio,01-09-2022

1014,Nati,10,DCardio,01-09-2022

Next, we show two options to see our program up and running. The first code 

(socketTextStream.scala) is shown next, and it is a Scala variant that can be compiled and 

executed in Spark using the $SPARK_HOME/bin/spark-submit command. It is out of the 

scope of this book to discuss how to compile and link Scala code, but it is recommended 

to use sbt1 together with sbt-assembly2 to create a so-called “fat JAR” file including all the 

necessary libraries, a.k.a. dependencies:

import org.apache.spark.sql.SparkSession

import org.apache.spark.streaming.{Seconds, StreamingContext}

import java.io.IOException

object socketTextStream {

  def main(args: Array[String]): Unit = {

      val host = "localhost"

      val port = 9999

      try {

      val spark: SparkSession = SparkSession.builder()

      .master("local[*]")

      .appName("Hand-On-Spark3_socketTextStream")

      .getOrCreate()

      spark.sparkContext.setLogLevel("ERROR")

      val sc = spark.sparkContext

      val ssc = new StreamingContext(sc, Seconds(5))

1 www.scala-sbt.org/
2 https://github.com/sbt/sbt-assembly
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      val lines = ssc.socketTextStream(host, port)

      printf("\n Spark is listening on port 9999 and ready...\n")

      lines.print()

      ssc.start()

      ssc.awaitTermination()

      } catch {

       case e: java.net.ConnectException => println("Error establishing 

connection to " + host + ":" + port)

      case e: IOException => println("IOException occurred")

      case t: Throwable => println("Error receiving data", t)

      } finally {

      println("Finally block")

      }

  }

}

The next code snippet is a version of the preceding Hospital Queue Management 

System application that can be executed in Spark using a notebook application such as 

Jupyter,3 Apache Zeppelin,4 etc., which can be more convenient for learning purposes, 

especially if you are not familiar with Scala code compiler tools:

import org.apache.spark.SparkConf

import org.apache.spark.sql.SparkSession

import org.apache.spark.streaming.{Seconds, StreamingContext}

import java.io.IOException

val host = "localhost"

val port = 9999

try{

      val spark = SparkSession

      .builder()

      .master("local[*]")

3 https://jupyter.org/
4 https://zeppelin.apache.org/
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      .appName("Hands-On_Spark3_socketTextStream")

      .getOrCreate()

      val sc = spark.sparkContext

      // Create the context with a 5 seconds batch size

      val ssc = new StreamingContext(sc, Seconds(5))

      val lines = ssc.socketTextStream(host, port)

      printf("\n Spark is listening on port 9999 and ready...\n")

      lines.print()

      ssc.start()

      ssc.awaitTermination()

}catch {

       case e: java.net.ConnectException => println("Error establishing 

connection to " + host + ":" + port)

      case e: IOException => println("IOException occurred")

      case t: Throwable => println("Error receiving data", t)

      } finally {

      println("Finally block")

      }

Pay attention to the local[*] option. In this case we have used “*”; thus, the program 

is going to use all the cores available. It is important to use more than one because 

the application must be able to run two tasks in parallel, listening to a TCP socket 

(localhost:9999) and, at the same time, processing the data and showing it on the console.

 Running Socket Streaming Applications Locally

We are going to use a featured networking utility called Netcat5 to set up a simple client/

server streaming connection. Netcat (netcat, nc, ncat, etc., depending on the system) 

is available in Unix-like operating systems and uses the TCP/IP to read and write data 

through a network. In this book we use the Netcat OpenBSD version (nc).

5 https://netcat.sourceforge.net/
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The syntax for the nc command is

nc [<options>] <host> <port>

Netcat has several [<options>]; however, we are going to use only -l, which instructs 

nc to listen on a UDP or TCP <port>, and -k, which is used in listen mode to accept 

multiple connections. When <host> is omitted, nc listens to all the IP addresses bound to 

the <port> given.

To illustrate how the program works, we are going to take advantage of the nc utility 

introduced, to establish a streaming client/server connection between nc and our 

Spark application. In our case nc will act as a server (listens to a host:port), while our 

application will act as a client (connects to the nc server).

Whether you have built your JAR file from the previous code or are using the 

notebook version, running the application consists of a two-step process:

 1. Open a terminal in your system and set up the server side of the 

client/server streaming connection by running the following code:

nc -lk 9999

 2. Depending on how you are running the application

 2.1. Using a JAR file: Open a second terminal and execute your 

application as shown in the following:

$SPARK_HOME/bin/spark-submit --class org.

apress.handsOnSpark3.socketTextStream --master 

"local[*]" /PATH/TO/socketTextStream/HandsOnSpark3-

socketTextStream.jar

 2.2. Using a notebook: Just execute the code in your notebook.

As soon as you see the message Spark is listening on port 

9999 and ready... on your screen, you can go back to step 1 and 

type some of the CSV strings provided as examples, for instance:

1009,Julia,20,DNeuro,01-09-2022

1010,Javier,30,DEndo,01-09-2022

1011,Laura,50,DGineco,01-09-2022

1012,Nuria,10,DCardio,01-09-2022

1013,Helena,10,DCardio,01-09-2022
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1014,Nati,10,DCardio,01-09-2022

1004,Tomás,30,DEndo,01-09-2022

1005,Lorena,50,DGineco,01-09-2022

1006,Pedro,10,DCardio,01-09-2022

1007,Ester,10,DCardio,01-09-2022

1008,Marina,10,DCardio,01-09-2022

With a cadence of seconds, you will see an output like the 

following one coming up on your terminal or notebook:

Spark is listening on port 9999 and ready...

-------------------------------------------

Time: 1675025630000 ms

-------------------------------------------

1009,Julia,20,DNeuro,01-09-2022

1010,Javier,30,DEndo,01-09-2022

1011,Laura,50,DGineco,01-09-2022

1012,Nuria,10,DCardio,01-09-2022

1013,Helena,10,DCardio,01-09-2022

1014,Nati,10,DCardio,01-09-2022

-------------------------------------------

Time: 1675025635000 ms

-------------------------------------------

1004,Tomás,30,DEndo,01-09-2022

1005,Lorena,50,DGineco,01-09-2022

1006,Pedro,10,DCardio,01-09-2022

1007,Ester,10,DCardio,01-09-2022

1008,Marina,10,DCardio,01-09-2022

...

 3. Application termination

awaitTermination() waits for a user’s termination signal. Thus, 

going to the terminal session started in step 1 and pressing Ctrl+C 

or SIGTERM, the streaming context will be stopped and your 

streaming application terminated.
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However, this way of abruptly killing a streaming process is neither elegant nor 

convenient in most of the real streaming applications. The notion of unbounded 

data implies a continuous flow of information arriving to the system; thus, an abrupt 

interruption of the streaming process is bound to a loss of information in all likelihood in 

the majority of situations. To avoid data loss, a procedure is to halt a streaming application 

without suddenly killing it during the RDD processing; it is called a “graceful shutdown,” 

and we are going to explain it later on in the “Spark Streaming Graceful Shutdown” section.

 Improving Our Data Analytics with Spark 
Streaming Transformations

Though the number of transformations that can be applied to RDD DStreams is limited, 

the previous example can be tweaked to improve its functionality.

We can use the flatMap(function()) function, which takes function() as an 

argument and applies it to each element, returning a new RDD with 0 or more items.

Therefore, replacing the code line lines.print() in the previous code snippet with 

the following line

lines.flatMap(_.split(",")).print()

we get the following output:

-------------------------------------------

Time: 1675203480000 ms

-------------------------------------------

1009

Julia

20

DNeuro

01-09-2022

1010

Javier

30

DEndo

01-09-2022

...

Chapter 6  IntroduCtIon to apaChe Spark StreamIng



219

-------------------------------------------

Time: 1675203485000 ms

-------------------------------------------

1005

Lorena

50

DGineco

01-09-2022

1006

Pedro

10

DCardio

01-09-2022

...

We can also introduce the count() function to count the number of lines in our 

stream. Thus, adding the count() function as you can see in the following line

lines.flatMap(_.split(",")).count().print()

and typing text lines from our example, we get an output similar to the following:

-------------------------------------------

Time: 1675204465000 ms

-------------------------------------------

75

-------------------------------------------

Time: 1675204470000 ms

-------------------------------------------

35

-------------------------------------------

Time: 1675204470000 ms

-------------------------------------------

260

We can also use countByValue() to count the number of occurrences of each word 

in the dataset, that is to say, the number of times each word occurs in the stream.
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To achieve that goal, all we have to do is transform the

lines.flatMap(_.split(",")).print()

line of code into the following one:

lines.countByValue().print()

Running again the code and copying and pasting some of the lines provided as 

examples, you could see an output similar to the following:

Spark is listening on port 9999 and ready...

-------------------------------------------

Time: 1675236625000 ms

-------------------------------------------

(1013,Helena,10,DCardio,01-09-2022,1)

(1007,Ester,10,DCardio,01-09-2022,4)

(1010,Javier,30,DEndo,01-09-2022,1)

(1011,Laura,50,DGineco,01-09-2022,1)

(1005,Lorena,50,DGineco,01-09-2022,3)

(1014,Nati,10,DCardio,01-09-2022,1)

(1004,Tomás,30,DEndo,01-09-2022,1)

(1008,Marina,10,DCardio,01-09-2022,4)

(1012,Nuria,10,DCardio,01-09-2022,1)

(1006,Pedro,10,DCardio,01-09-2022,4)

-------------------------------------------

Time: 1675236630000 ms

-------------------------------------------

(1007,Ester,10,DCardio,01-09-2022,1)

(1005,Lorena,50,DGineco,01-09-202,1)

(1005,Lorena,50,DGineco,01-09-2022,1)

(1014,Nati,10,DCardio,01-09-2022,1)

(1004,Tomás,30,DEndo,01-09-2022,1)

(1008,Marina,10,DCardio,01-09-2022,1)

(1006,Pedro,10,DCardio,01-09-2022,1)
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-------------------------------------------

Time: 1675236640000 ms

-------------------------------------------

(1007,Ester,10,DCardio,01-09-2022,1)

(1005,Lorena,50,DGineco,01-09-2022,1)

(1008,Marina,10,DCardio,01-09-2022,1)

(1006,Pedro,10,DCardio,01-09-2022,1)

We can improve our example even more and achieve the same result linking or 

piping the previous code line with the flatMap() function we saw before:

lines.flatMap(_.split(",")).countByValue().print()

As you previously did, run the code again, copy and paste the example lines in your 

terminal, and you will see again outcome similar to the next one:

 Spark is listening on port 9999 and ready...

-------------------------------------------

Time: 1675236825000 ms

-------------------------------------------

(01-09-202,1)

(01-09-2022,20)

(1007,5)

(1008,5)

(50,4)

(DCardio,16)

(Lorena,4)

(Tomás,1)

(Marina,5)

(Ester,5)

...

-------------------------------------------

Time: 1675236830000 ms

-------------------------------------------

(01-09-202,1)

(01-09-2022,13)

(1007,3)
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(1008,3)

(50,3)

(DCardio,10)

(Lorena,3)

(Tomás,1)

(Marina,3)

(Ester,3)

...

-------------------------------------------

Time: 1675236835000 ms

-------------------------------------------

(01-09-202,1)

(01-09-2022,6)

(1007,2)

(1008,1)

(50,2)

(DCardio,5)

(Lorena,2)

(Marina,1)

(Ester,2)

(DGineco,2)

...

This time the output is more informative, as you can see the Department of 

Cardiology registrations are piling up. That information could be used to, for example, 

trigger an alarm when the number of appointments approaches or crosses the threshold 

of maximum capacity.

We could have gotten the same result by using the reduceByKey() function. This 

function works on RDDs (key/value pairs) and is used to merge the values of each key 

using a provided reduce function ( _ + _ in our example).

To do that, just replace the following line of code

lines.countByValue().print()

with the next one:

val words = lines.flatMap(_.split(",")).map(x => (x, 1)).reduceByKey(_+_)

words.print()
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Repeating the process of copying and pasting example lines to you terminal will give 

an output similar to this:

 Spark is listening on port 9999 and ready...

-------------------------------------------

Time: 1675241775000 ms

-------------------------------------------

(01-09-202,2)

(01-09-2022,22)

(1007,6)

(1008,5)

(50,5)

(DCardio,19)

(Lorena,5)

(Marina,5)

(Ester,6)

(DGineco,5)

...

-------------------------------------------

Time: 1675241780000 ms

-------------------------------------------

(01-09-2022,9)

(1007,3)

(1008,2)

(50,1)

(DCardio,8)

(Lorena,1)

(Marina,2)

(Ester,3)

(DGineco,1)

(Pedro,3)

...

Now we are going to introduce a more significant change in our program. We want 

to analyze only specific fields of the incoming data stream. In particular we would like to 

supervise in nearly real time the number of appointments by department.
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Remember we are processing data in CSV format, and as you probably know, CSV 

files commonly incorporate a header row with the names of the columns. If we keep 

the code as it was in our previous examples, that header row will be inappropriately 

processed. Therefore, we must introduce a filter to screen out this row. As we do not 

know the moment in time in which this header is going to arrive to our streaming 

process, we have to find a way to prevent this row from being processed. As we know the 

header is the only row beginning with a word (alphabetical string), instead of a number, 

we can use a regular expression to filter rows beginning with a word.

Here is our code snippet tuned to filter the header row and to extract and process 

only one of the fields of interest, Department Number (DNom):

import org.apache.spark.SparkConf

import org.apache.spark.sql.SparkSession

import org.apache.spark.streaming.{Seconds, StreamingContext}

import java.io.IOException

val host = "localhost"

val port = 9999

try{

      val spark = SparkSession

      .builder()

      .master("local[*]")

      .appName("Hands-On_Spark3_socketTextStream")

      .getOrCreate()

      val sc = spark.sparkContext

      // Create the context with a 5 seconds batch size

      val ssc = new StreamingContext(sc, Seconds(5))

      val lines = ssc.socketTextStream(host, port)

      printf("\n Spark is listening on port 9999 and ready...\n")

      val filterHeaders = lines.filter(!_.matches("[^0-9]+"))

      val selectedRecords = filterHeaders.map{ row =>

      val rowArray = row.split(",")

       (rowArray(3))

      }
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      selectedRecords.map(x => (x, 1)).reduceByKey(_+_).print()

      ssc.start()

      ssc.awaitTermination()

}catch {

       case e: java.net.ConnectException => println("Error establishing 

connection to " + host + ":" + port)

      case e: IOException => println("IOException occurred")

      case t: Throwable => println("Error receiving data", t)

      } finally {

      println("Finally block")

      }

After applying these changes, if you execute the program again and paste the 

following lines to your terminal

NSS,Nom,DID,DNom,Fecha

1004,Tomás,30,DEndo,01-09-2022

1005,Lorena,50,DGineco,01-09-2022

1006,Pedro,10,DCardio,01-09-2022

1007,Ester,10,DCardio,01-09-2022

1008,Marina,10,DCardio,01-09-2022

NSS,Nom,DID,DNom,Fecha

1009,Julia,20,DNeuro,01-09-2022

1010,Javier,30,DEndo,01-09-2022

1011,Laura,50,DGineco,01-09-2022

1012,Nuria,10,DCardio,01-09-2022

1013,Helena,10,DCardio,01-09-2022

1014,Nati,10,DCardio,01-09-2022

you will see an output like this:

-------------------------------------------

Time: 1675284925000 ms

-------------------------------------------

(DCardio,3)

(DGineco,1)

(DEndo,1)
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-------------------------------------------

Time: 1675284930000 ms

-------------------------------------------

(DCardio,3)

(DGineco,1)

(DEndo,1)

(DNeuro,1)

As you can appreciate, header lines are removed; therefore, only the lines of interest 

are considered.

Next, we are going to see the other basic source directly available in the Spark 

Streaming core API, file systems compatible with HDFS (Hadoop Distributed File 

System).

 File System Streaming Sources

Spark Streaming can use file systems as input data sources. File streams are used for 

streaming data from a folder. Spark can mount file streaming processes on any HDFS- 

compatible file system such as HDFS itself, AWS S3, NFS, etc. When a file system stream 

is set up, Spark monitors the path indicated and processes any files created in it. By 

default, files are processed according to the file modification timestamp, with the oldest 

modified files first; however, the order can be reversed using the latestFirst option 

(default: false), which instructs Spark to start with the latest files modified first. Spark by 

default supports different file formats such as text, CSV, JSON, ORC, and Parquet.

A DStream from files can be created using streamingContext.fileStream[KeyClass, 

ValueClass,InputFormatClass](dataDirectory), though for text files 

StreamingContext.textFileStream(dataDirectory) can be used. The variable 

dataDirectory represents the path to the folder to be monitored.

 How Spark Monitors File Systems

Spark monitors file systems according to the following patterns:

• For paths such as "hdfs://hadoop:9000/folder/", “s3//...”, “file//...”, 

etc., Spark processes the files as soon as they appear under the path.

• Glob patterns to specify directories "hdfs://hadoop:9000/folder/

textfiles/*/*" are also possible.
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• All files within the path have to be in the same format.

• The number of files present under the path influences the time Spark 

will take to scan it, even if no file has been updated.

• File updates within the same time window are ignored. Therefore, 

once a file is processed, updating it will not cause its reprocessing.

• Spark will process files looking at the modification time, not the 

creation time. Therefore, files already present in the path when the 

streaming process starts will not be processed.

• Setting access time of a file using Hadoop FileSystem.setTimes() 

can cause a file to be processed out of the current processing 

time window.

Now we are going to see how to use Spark to continue monitoring and streaming 

files from a folder. In this case we are going to continue with the basic near-real-time 

streaming Hospital Queue Management System, tweaking it a little bit again to use it to 

stream files from a file system.

As we previously did with the socket data source example, two versions of the 

program are provided. The first one could be compiled with sbt or another Scala compiler.

The first code (textFileStream.scala) is shown next, and it is the Scala variant that 

can be compiled and executed in Spark using the $SPARK_HOME/bin/spark-submit 

command. In this case considering that we are going to pour CSV files into a folder, we 

should start from the last version of our previous example in which we were filtering 

lines beginning with a word and screening them out of the stream process:

package org.apress.handsOnSpark3

import org.apache.spark.sql.SparkSession

import org.apache.spark.streaming.{Seconds, StreamingContext}

import java.io.IOException

object textFileStream {

  def main(args: Array[String]): Unit = {

      val folder="/tmp/patient_streaming"

      try {

      val spark: SparkSession = SparkSession.builder()
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      .master("local[1]")

      .appName("Hand-On-Spark3_textFileStream")

      .getOrCreate()

      spark.sparkContext.setLogLevel("ERROR")

      val sc = spark.sparkContext

      val ssc = new StreamingContext(sc, Seconds(5))

      val lines = ssc.textFileStream(folder)

       printf(f"\n Spark is monitoring the folder $folder%s and 

ready... \n")

      val filterHeaders = lines.filter(!_.matches("[^0-9]+"))

      val selectedRecords = filterHeaders.map { row =>

      val rowArray = row.split(",")

      (rowArray(3))

      }

      selectedRecords.map(x => (x, 1)).reduceByKey(_ + _).print()

      ssc.start()

      ssc.awaitTermination()

      } catch {

      case e: IOException => println("IOException occurred")

      case t: Throwable => println("Error receiving data", t)

      } finally {

      println("Finally block")

      }

  }

}

Pay attention to the local[1] option. In this case we have used only “[1]” because 

file streams do not require executing a receiver; therefore, no additional cores are 

required for file intake.

The next piece of code is a version of the preceding Hospital Queue Management 

System application that can be executed in Spark using a notebook application such as 

Jupyter, Apache Zeppelin, etc.:
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import org.apache.spark.SparkConf

import org.apache.spark.sql.SparkSession

import org.apache.spark.streaming.{Seconds, StreamingContext}

import java.io.IOException

val folder="/tmp/patient_streaming"

try{

      val spark = SparkSession

      .builder()

      .master("local[1]")

      .appName("Hand-On-Spark3_textFileStream")

      .getOrCreate()

      val sc = spark.sparkContext

      // Create the context with a 5 seconds batch size

      val ssc = new StreamingContext(sc, Seconds(5))

      val lines = ssc.textFileStream(folder)

       printf(f"\n Spark is monitoring the folder $folder%s and 

ready... \n")

      val filterHeaders = lines.filter(!_.matches("[^0-9]+"))

      val selectedRecords = filterHeaders.map{ row =>

      val rowArray = row.split(",")

      (rowArray(3))

      }

      selectedRecords.map(x => (x, 1)).reduceByKey(_+_).print()

      ssc.start()

      ssc.awaitTermination()

}catch {

      case e: IOException => println("IOException occurred")

      case t: Throwable => println("Error receiving data", t)

      } finally {

      println("Finally block")

      }

Now it is time to run these examples and see their outcomes.
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 Running File System Streaming Applications Locally

In this case our program is going to monitor the selected /tmp/patient_streaming path 

and process the files copied over there as soon as Spark discovers them.

As in the “Running Socket Streaming Applications Locally” section, running the 

file system data source examples provided here also depends on the method you have 

chosen to execute them. Here you can also choose either to build your own JAR file from 

the code snippets provided before or use the notebook version. In any case, running the 

application consists of a two-step process:

 1. Depending on how you are running the application

 1.1. If you are using a JAR file, open a terminal in your computer and 

execute your application as shown in the following:

$SPARK_HOME/bin/spark-submit --class org.apress.handsOnSpark3.

textFileStream --master "local[1]" /PATH/TO/YOUR/

HandsOnSpark3- textFileStream.jar

 1.2. If you are using a notebook, just execute the code in your notebook.

 2. Open a new terminal in your computer to copy the CSV files 

provided to the monitored folder.

As soon as you see on your screen the message Spark is 

monitoring the folder /tmp/patient_streaming and 

ready... , you can go back to step 2 and start copying the CSV 

files to the /tmp/patient_streaming folder,6 for example:

cp /PATH/TO/patient1.csv /tmp/patient_streaming

cp /PATH/TO/patient2.csv /tmp/patient_streaming

cp /PATH/TO/patient3.csv /tmp/patient_streaming

cp /PATH/TO/patient4.csv /tmp/patient_streaming

cp /PATH/TO/patient5.csv /tmp/patient_streaming

With a cadence of seconds, you will start seeing on your terminal 

session or notebook an output similar to the next one:

Spark is monitoring the folder /tmp/patient_streaming and ready...

6 It is advised to copy the files progressively to better see how Spark processes them.
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-------------------------------------------

Time: 1675447065000 ms

-------------------------------------------

(DCardio,1)

-------------------------------------------

Time: 1675447070000 ms

-------------------------------------------

(DEndo,1)

(DNeuro,1)

-------------------------------------------

Time: 1675447075000 ms

-------------------------------------------

(DGastro,1)

(DCardio,3)

(DGineco,1)

(DNeuro,2)

 3. Application termination

Once again, awaitTermination() waits for a user’s termination 

signal. Thus, going to the terminal session started in step 2 and 

pressing Ctrl+C or SIGTERM, the streaming context will be 

stopped. If the application is run in a notebook, you can stop 

the execution of the application by stopping or restarting the 

Spark kernel.

 Known Issues While Dealing with Object Stores Data Sources

File systems such as Hadoop Distributed File System (HDFS) can establish the 

modification time of its files at the beginning output stream that creates them. That is 

to say, modification time can be set before the file writing process that creates them 

is completed. Consequently, this behavior can cause Spark DStream to include those 

incomplete files in the current processing window and subsequently ignore ulterior 

data aggregations or file updates; therefore, some data can be lost as it is left out of the 

window stream.
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Several techniques can be used to work around this possible problem depending 

on the file system technology considered. In some cases direct data writing to the Spark 

supervised path can be fine; in others files can be created in a different folder than the 

final destination and finally copied or renamed to the monitored path once they are 

complete, though in this case file copy or rename operations also take time and the 

file metadata can also be altered, for example, the original file creation or modification 

time can be overwritten with the rename or copy time. In any case, when using Spark 

Streaming, attention should be paid to these details.

 Advanced Input Sources
Advanced sources are not part of the StreamingContext API and are only available 

via third-party extra classes (similar drivers for peripherals in an operating system). 

Examples of these advanced sources are Kafka and Kinesis.

At the time this book was written, Spark Streaming 3.3.1 was compatible with Kafka 

broker versions 0.10 and higher and with Kinesis Client Library 1.2.1.

6.8  Spark Streaming Graceful Shutdown
In our previous streaming examples, we interrupted the execution of the stream process 

by pressing Ctrl+C or SIGTERM, thus killing the execution while it was still listening to a 

socket port or monitoring a file system directory. In a real production environment, a Spark 

streaming application cannot be abruptly interrupted because data is going to be lost in 

all likelihood. Imagine that while you were running our previous examples, some data 

stream was being received or some file was being read from the disk when you interrupted 

the job. Taking into consideration there is a time interval between each data ingestion and 

processing, if you interrupt the application in between them, that information will be lost.

In a production environment, the situation is completely different. Ideally, a Spark 

streaming application must be up and running 24/7. Therefore, a production job should 

never stop; it should constantly be reading events/files from a data source, processing 

them, and writing the output into a sink or another component of the data pipe.

However, in real life things are far away from being perfect. Sometimes we need to 

stop the streaming job for several reasons; one of them could be when a new version 

of our Spark application is deployed into production. In these cases, when our goal 

is to perform a smooth shutdown of the Spark streaming job, we have to find a way 
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to accomplish it without data loss. It turns out there is a procedure called Graceful 

Shutdown that guarantees no job is forcefully halted while ongoing RDDs are processed. 

This part of the chapter focuses on stopping processing—gracefully.

Graceful Shutdown is a feature available in Spark Streaming to facilitate a “safe” 

stopping of a stream job without data loss under certain conditions we explain next. 

Graceful Shutdown permits the conclusion of the jobs already in progress as well as the 

ones piled up before closing the stream listening/reading process, and only after that the 

streaming job is stopped; therefore, there is no data loss under certain conditions we are 

going to explain later on.

To understand the Spark Streaming Graceful Shutdown feature, it is necessary to 

understand how Spark Streaming jobs are stopped in advance.

The logic behind Spark start and stop streaming jobs is handled by the JobScheduler 

as you can see in Figure 6-5.

Figure 6-5. JobScheduler and dependent services

The Streaming scheduler or JobScheduler is created and starts with creating the 

StreamingContext procedure. The JobScheduler role is to track jobs submitted for 

execution in the jobSets internal map, which is a collection of streaming jobs.
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Enabling Graceful Shutdown requires the creation of a Spark context with the 

parameter spark.streaming.stopGracefullyOnShutdown set to true. When Graceful 

Shutdown is not enabled, the JobScheduler forcefully stops stream jobs as follows:

• New data intake is prevented.

• When dynamic allocation is active, executor allocators are stopped.

• The generation of new jobs is interrupted.

• Currently executing jobs are stopped.

• Finally, job event listeners are halted.

You can see the procedure of terminating a stream process is quite “violent,” 

representing data in transit is lost.

However, when Graceful Shutdown is enabled, the Spark JobScheduler behaves in a 

less radical way:

• New data intake is prevented. Graceful Shutdown waits until the 

receivers have received all the data in transit.

• Executor allocators are stopped. This shutdown step is not changed.

• The generation of new jobs is interrupted. The generation of new jobs 

is permitted, but only for the time interval in progress.

• Currently executing jobs are stopped. Graceful Shutdown sets the 

input parameter processAllReceivedData to true. This action grants 

1 additional hour to the jobExecutor Thread Pool before termination. 

This parameter is not configurable, and it assumes it is time enough 

to finish the ongoing jobs. Otherwise, the jobExecutor Thread Pool is 

terminated in 2 s.

• Job event listeners are halted. This step of the stopping process is not 

changed either.

Now it is time to tweak our previous examples, to show how Graceful Shutdown 

could be implemented:

import org.apache.spark.SparkConf

import org.apache.spark.storage.StorageLevel

import org.apache.spark.streaming.{Seconds, StreamingContext}
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import org.apache.spark.sql.SparkSession

import org.apache.hadoop.conf.Configuration

import org.apache.hadoop.fs.{FileSystem, Path}

val spark = SparkSession

      .builder()

      .master("local[3]")

      .appName("streamingGracefulShutdown")

      .config("spark.streaming.stopGracefullyOnShutdown", true)

      .getOrCreate()

import spark.implicits._

val sc = spark.sparkContext

val ssc = new StreamingContext(sc, Seconds(5))

val host = "localhost"

val port = 9999

val altFolder = "/tmp/alt_folder"

var stopFlag:Boolean = false

val groupedRecords =lines.map(record =>{

                              val arrayRecords=record.split(",")

                                (arrayRecords(3))

                           })

groupedRecords.countByValue().print()

val words = lines.flatMap(_.split(","))

val wordCounts = words.map(x => (x, 1)).reduceByKey(_+_)

wordCounts.print()

ssc.start()

val timeout = 10000

var wasStopped = false

while (! wasStopped) {

      printf("\n Listening and ready... \n")

      wasStopped = ssc.awaitTerminationOrTimeout(timeout)
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      if (wasStopped)

      println("Streaming process is no longer active...")

      else

      println("Streaming is in progress...")

      // Check the existence of altFolder, /tmp/alt_folder

      if (!stopFlag) {

      val fs = FileSystem.get(new Configuration())

      stopFlag = fs.exists(new Path(altFolder))

      }

      if (!wasStopped && stopFlag) {

      println("Stopping ssc context...")

      ssc.stop(stopSparkContext = true, stopGracefully = true)

      println("ssc context has been stopped!")

      }

}

Now, before you execute the preceding code example, in a terminal set up the socket 

server by typing

nc -lk 9999

After that, you can execute the preceding code snippet, and as soon as you see the 

message Listening and ready... on your screen, you can start copying and pasting the 

CSV example lines provided, for example:

1004,Tomás,30,DEndo,01-09-2022

1005,Lorena,50,DGineco,01-09-2022

1006,Pedro,10,DCardio,01-09-2022

1007,Ester,10,DCardio,01-09-2022

...

1010,Javier,30,DEndo,01-09-2022

1011,Laura,50,DGineco,01-09-2022

1012,Nuria,10,DCardio,01-09-2022

1013,Helena,10,DCardio,01-09-2022

1014,Nati,10,DCardio,01-09-2022

1009,Julia,20,DNeuro,01-09-2022

1010,Javier,30,DEndo,01-09-2022
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In a few seconds you would see an output similar to this coming out of your 

program:

Listening and ready...

-------------------------------------------

Time: 1675631795000 ms

-------------------------------------------

(DCardio,12)

(DGineco,4)

(DEndo,4)

(DNeuro,2)

-------------------------------------------

Time: 1675631795000 ms

-------------------------------------------

(01-09-2022,22)

(1007,2)

(1008,2)

(Laura,2)

(Julia,2)

(50,4)

(Nuria,2)

(1009,2)

(DCardio,12)

(Javier,2)

...

-------------------------------------------

Time: 1675631800000 ms

-------------------------------------------

-------------------------------------------

Time: 1675631800000 ms

-------------------------------------------

Streaming in progress. Timeout...
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 Listening and ready...

-------------------------------------------

Time: 1675631805000 ms

-------------------------------------------

Next, in a new terminal type, the following command line

mkdir /tmp/alt_folder

to create the /tmp/alt_folder folder.

Once again, in a few seconds, after the timeout period defined, you should see the 

following lines:

Stopping ssc context...

WARN ReceiverSupervisorImpl: Receiver has been stopped

-------------------------------------------

Time: 1675631815000 ms

-------------------------------------------

-------------------------------------------

Time: 1675631820000 ms

-------------------------------------------

ssc context has been stopped!

 Listening and ready...

Streaming process is no longer active...

Graceful Shutdown finished the job in queue and nicely stopped your streaming 

process without losing any data.

If you look carefully through the preceding code snippet, you can see that Spark is 

uninterruptedly listening to the network socket localhost:9999 (host:port) while the 

flag stopFlag is false. Thus, we need to find a way to send to Spark the stop streaming 

signal. We achieve that by creating a new folder in the defined file system path /tmp/

alt_folder.
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The next two lines of code

val fs = FileSystem.get(new Configuration())

stopFlag = fs.exists(new Path(altFolder))

permit checking whether the path defined by the altFolder variable exists. If it 

exists, the stopFlag Boolean variable is set to true and hence triggers the Grateful 

Shutdown process.

6.9  Transformations on DStreams
Similar to those on RDDs, transformations on DStreams allow the data from the input 

DStream to be transformed according to our needs.

Apart from the transformations on DStreams already seen in previous examples, 

DStreams support several other transformations available on normal Spark RDDs. Some 

of the common transformations on DStreams are listed and succinctly explained in 

Table 6-1.
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Table 6-1. Transformations on DStreams

Transformation Description

map(func) returns a new dStream after applying a function func to all the dStream 

elements.

flatMap(func) Similar to map, it takes a function as an argument and applies it to each 

element, returning a new rdd with 0 or multiple elements.

filter(func) returns a new dStream screening out the incoming dStream records on 

which the function func returned false.

repartition(numpartitions) Changes the dStream level of parallelism, increasing or decreasing the 

number of partitions.

union(otherStream) returns a dStream union of the elements of the source dStream and 

otherdStream.

count( ) returns a new dStream counting the number of elements of a dStream.

reduce(func) returns a new dStream by aggregating the elements in each rdd of a 

dStream using a function func. the function should support parallelized 

computation.

countByValue( ) returns a new dStream of (k, Long) pairs with the frequency in each 

key in the rdd of the dStream.

reduceByKey(func, 

[numtasks])

returns a dStream of (key, Value) pairs aggregating the values for each 

key using a reduce function.

join(otherStream, 

[numtasks])

returns a new dStream of (k, (V, W)) pairs from a joining operation of 

two dStreams of (k, V) and (k, W) key-value pairs.

cogroup(otherStream, 

[numtasks])

returns a dStream of (k, Seq[V], Seq[W]) tuples from a dStream of (k, V) 

and (k, W) pairs.

transform(func) returns a dStream after applying arbitrary rdd-to-rdd functions to a 

dStream.

updateStateByKey(func) returns a "state" dStream maintaining it updated with new information 

from previous dStreams.
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6.10  Summary
In this chapter we have explained what Apache Spark Streaming is, together with the 

Spark DStream (Discretized Stream) as the basic abstraction behind the Spark Streaming 

concept. We mentioned DStream is a high-level abstraction for Spark Streaming just like 

RDD. We also went through the differences between real-time analytics of bound and 

unbound data, mentioning the challenges and uncertainties stream processing brings 

in. Next, we talked about the Spark Streaming Execution Model and stream processing 

architectures. At that point, we explained the Lambda and Kappa architectures as the 

main stream processing architectures available. After that, we went through the concepts 

of Discretized Streams and stream sources and receivers. The last point was quite dense, 

explaining and giving examples of basic and advanced data sources. The advanced topic 

of Grateful Shutdown was described, giving a practical example, and finally, a list of the 

most common transformations on DStreams was provided.
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CHAPTER 7

Spark Structured 
Streaming
Nowadays, in the big data world, more and more business processes and daily used 

applications require the analysis of real-time or near-real-time information at scale. 

Real-time data analysis is commonly associated with processes that require decisions 

to be taken quickly and without delay. Therefore, infrastructures capable of providing 

instant analytics, management of continuously flowing data, and fault tolerance and 

handling stragglers or slow components are necessary.

Considering the main characteristics that define data streaming, in which

• Information is continuous

• Information is unbounded

• There is high volume and velocity of data production

• Information is time-sensitive

• There is heterogeneity of data sources

we can assume data faults and stragglers1 are certain to occur in this sort of environment.

Data faults and stragglers represent a serious challenge for streaming data 

processing. For instance, how can we get insights from a sequence of events arriving at a 

stream processing system if we do not know what is the order in which they took place?

1 Late or out-of-order events (information).
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Stream processing uses timestamps2 to sequence the events and includes different 

notions of time regarding stream event processing:

• Event time: It corresponds with the moment in time in which the 

event is generated by a device.

• Ingestion time: It is the time when an event arrives at the stream 

processing architecture.

• Processing time: It refers to the computer time when it begins treating 

the event.

In Chapter 6 we saw that Spark's first attempt to keep up with the dynamic nature 

of information streaming and to deal with the challenges mentioned before was the 

introduction of Apache Spark Streaming (DStream API). We also studied that DStreams 

or Discretized Streams are implemented on top of Spark’s Resilient Distributed Dataset 

(RDD) data structures. DStream handles continuous data flowing by dividing the 

information into small chunks, processing them later on as micro-batches.

The use of the low-level RDD API offers both advantages and disadvantages. The first 

disadvantage is that, as the name states, it is a low-level framework; therefore, it requires 

higher technical skills to take advantage of it and poses performance problems because 

of data serialization and memory management. Serialization is critical for distributed 

system performance to minimize data shuffling across the network; therefore, if not 

managed with caution, it can lead to numerous issues such as memory overuse and 

network bottlenecks.

7.1  General Rules for Message Delivery Reliability
At this point we provide an introduction to general message delivery semantics you are 

going to find in the next chapters and the importance of each one in a streaming data 

processing infrastructure.

Performing complex real-time streaming analytics is not an easy task. In order 

to give some context to the importance of message delivery reliability in real-time 

streaming analytics, consider a streaming application collecting real-time events from 

remote hosts or sensors, which can generally be called actors, scattered over multiple 

2 The point in time at which an event takes place.
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locations. Also consider these actors are going to be connected to different network 

topologies and to different qualities of hardware with observable differences in message 

latency (the time it takes for messages to travel from one point on a network to another), 

bandwidth (the capacity for data transfer of an electronic communications system), and 

reliability. Therefore, the more steps are involved in the event transmission, the more 

likely the sequence of messages can be faulty.

When all of these factors are taken into account, we conclude that regarding real- 

time data streaming processing, we can only rely on those properties that are always 

guaranteed in order to achieve full actor’s location transparency and strict warranties on 

message delivery.

When it comes down to the semantics of message delivery reliability mechanisms, 

there are three following basic categories:

• At most once (at-most-once delivery): This semantic means the 

message is delivered once or not at all (in a fire-and-forget manner). 

This means that the message can be lost. It is the most inexpensive 

in terms of highest delivery performance and least implementation 

overhead as no state is kept either during the sending process or 

during the transport process. As it gets rid of the overhead of waiting 

for acknowledgment from the message brokers, it is suitable for 

use cases in which attaining a high throughput is of paramount 

importance and when losing some messages does not significantly 

affect the final result, for example, analyzing customer sentiment by 

listening to posts in social networks. Among millions of them, losing 

a few will not probably greatly impact the final conclusions.

• At least once (at-least-once delivery): In this semantic, multiple 

attempts are going to possibly be made in order to guarantee that 

at least one message reaches the destination. It is suitable for use 

cases in which there is little or no concern with duplication of data 

but it is of utmost importance no message is lost, for example, 

sensors monitoring critical components or human vital signs (body 

temperature, pulse rate, respiration rate, blood pressure, etc.).

• Exactly once (exactly-once delivery): This semantic means messages 

can neither be lost nor duplicated. Messages are delivered and read 

once. Therefore, exactly one delivery is made to the destination.
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Even though there is a lot of literature out there about the impossibility of achieving an 

exactly-once delivery as it implies the guarantee that a message is delivered to the recipient 

once, and only once, from a theoretical point of view, it exists, and we consider it in this book.

7.2  Structured Streaming vs. Spark Streaming
Considering only the Spark consolidated versions and modules, both Spark Streaming 

and Spark Structured Streaming use the default micro-batch processing model; however, 

while Spark Streaming employs DStreams, Spark Structured Streaming uses datasets/

DataFrames. A DStream is represented by a perpetual sequence of RDDs, which are 

Spark's notion of immutable, distributed datasets that are held in memory. DStream 

relies on RDDs to provide low-level transformation and processing. On the other hand, 

Structured Streaming takes advantage of the DataFrame and Dataset APIs, providing a 

higher level of abstraction and permitting SQL-like manipulation functions. As RDDs are 

part of the low-level API, they can only work with event ingestion time, also known as 

processing time or the time when the event entered the engine, therefore being unable 

to efficiently tackle out-of-order events. Conversely, Structured Streaming can process 

data based on the event time, the time when the event was generated, hence providing 

a workaround to deal with received late and out-of-order events. Spark RDDs cannot be 

optimized; therefore, they are more likely to develop inefficient data transformations, 

and optimization would require extra work from the programmer side.

Additionally, using DStream is not straightforward to build in-stream processing 

pipelines supporting exactly-once-guarantee delivery policies. Implementation is 

possible, but requires programming workarounds. In contrast, Structured Streaming 

incorporates new valuable concepts for in-stream processing:

• The exactly-once-guarantee message delivery rule is implemented 

by default; therefore, theoretically, data is processed only once, and 

duplicates are removed from the outcomes.

• Event-time in-stream-based processing brings the benefits 

mentioned before.

Another important difference between using DStreams and Structured Streaming 

is necessity or not of a streaming sink. While DStream streaming outputs are RDDs that 

can be manipulated and, hence, do not have a need for a streaming sink as final output, 

Spark Structured Streaming requires a streaming sink.
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Another one is how real-time streaming is treated. While DStream simulates real- 

time processing stockpiling data into micro-batches, Spark Structured Streaming uses 

the concept of unbounded table, which we will explain in detail later on in this chapter, 

to continuously add real-time events to the streaming flow.

Another significant difference between Spark DStreams and Spark Structured 

Streaming is how the end-to-end streaming process is conducted. On one hand, Spark 

Structured Streaming has a dedicated thread to check whether new data has arrived to 

the stream, and if and only if there is new information to process, the stream query is 

executed. On the other hand, while a Spark Streaming program is running, DStream’s 

micro-batches are executed according to the batchDuration time interval parameter of 

the StreamingContext() method at which the DStream generates a RDD independently 

of there is live information or not.

7.3  What Is Apache Spark Structured Streaming?
Apache Spark Structured Streaming was introduced with Spark 2.0. Spark Structured 

Streaming is a scalable and near-real-time stream processing engine offering end-to-end 

fault tolerance with exactly-once processing guarantees. Spark Structured Streaming is 

built on top of the Spark SQL library; hence, it natively incorporates the Spark SQL code 

and memory optimization and facilitates the use of SQL. Structured Streaming is based 

on the Dataframe and Dataset APIs.

Spark Structured Streaming incorporates several novel conceptualizations where the 

most important ones are the following:

• Input table

• Result table

• Output modes

• Datasets and DataFrames Streaming API

• Event-Time Window Operations

• Watermarking

• Streaming data deduplication

• State store (a versioned key-value store)

• Output sinks
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Let’s explain next what is behind some of these concepts. The others will be 

explained in later chapters.

 Spark Structured Streaming Input Table
Spark Structured Streaming uses the concept of “input table,” which could be assimilated 

to the “unbounded input table” abstraction depicted in Figure 7-1, to process every input 

data. The concept of unbounded table means that every new piece of data arriving at the 

system is appended as a new row to the table.

Figure 7-1. The Spark Structured Streaming unbounded input table flow diagram

Consequently, with Structured Streaming, computation is performed incrementally 

with continuous result update as data comes in, permitting the representation of stream 

data processing in the same fashion batch computation on at-rest data is represented.

 Spark Structured Streaming Result Table
The “result table” in Spark Structured Streaming could also be assimilated to a kind of 

unbounded output table. The result table will eventually be the consequence of every 

query on the input data. Every time new information is added to the unbounded input 

table, it will trigger the update of the unbounded output table, consequently writing the 

results to the designated output or data sink according to the out mode established. The 

unbounded output table concept and how it integrates into the streaming workflow are 

depicted in Figure 7-2.
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Figure 7-2. The Spark Structured Streaming unbounded output table 
flow diagram

Next, we explain the three different output modes available in Spark Structured 

Streaming.

 Spark Structured Streaming Output Modes
The output mode (alias: OutputMode) is a new concept introduced by Structured 

Streaming, and as we have already mentioned before, Spark Structured Streaming 

requires a streaming sink.

When it comes to Spark Structured Streaming, the output mode specifies what data 

is written to a streaming sink and the way of writing that data.

Spark Structured Streaming supports three output modes :

• Append mode (alias: append). This is the default behavior, and 

only the new rows that arrived at the result table are written to the 

output sink. Regarding streaming aggregations, new rows are those 

whose intermediate states become final. This mode guarantees that 

each row will be output only once; it is indicated when we are only 

interested in analyzing the new data. Append mode is applicable to 

only queries where rows appended to the result table are not going to 

be modified, for example, those only employing select, where, map, 

flatMap, filter, join, etc.
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• Complete mode (alias: complete). This mode is only supported for 

streaming aggregations, and it works by writing all the rows of the 

result table every time the information is processed. It is indicated 

when we want to perform data aggregation and then dump the 

full result table to the data sink after every update. This mode does 

not handle how the full table data is written; therefore, it is the 

responsibility of the used connector to manage the information.

• Update mode (alias: update). This output mode was introduced with 

Spark 2.1.1, and it will only write to the sink the updated rows since 

the last trigger. It will be equivalent to the append mode when the 

query does not contain aggregations.

However, no output mode mentioned is applicable to all possible streaming queries. 

Table 7-1 shows an output mode vs. streaming query compatibility matrix.3

Table 7-1. Output Mode vs. Streaming Query Compatibility Matrix

Streaming Query Type Supported Output Modes

Queries with aggregation aggregation in event time  

with watermark

append, update, Complete

Other aggregations Complete, update

Queries with mapGroupsWithState update

Queries with 

flatMapGroupsWithState

append operation mode append

update operation mode update

Queries including joins append

Other queries append, update

The output mode is specified on the writing side of a streaming query using the 

streaming.DataStreamWriter.outputMode method using either an alias or a value of the 

org.apache.spark.sql.streaming.OutputMode object:

3 Based on the official Apache Spark Structured Streaming Programming Guide.
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import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.streaming.OutputMode.Update

val spark:SparkSession = SparkSession.builder()

  .master("local[*]")

  .appName("Hands-On-Spark3_Structured_Streaming")

  .getOrCreate()

val inputStream = spark

  .readStream

  .format("socket")

  .option("host","localhost")

  .option("port","9999")

  .load()

inputStream.select(explode(split(df("value")," "))

  .alias("palabra"))

  .groupBy("word")

  .count()

  .writeStream

  .format("console")

  .outputMode("complete") // Complete output mode selected

  .start()

  .awaitTermination()

// Another way of specifying

val inputStream = spark

  .readStream

  .format("socket")

  .load()

// .... your code goes here

  .writeStream

  .format("console")

  .outputMode(Update) // Update output mode selected

  .start()

  .awaitTermination()
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Remember when using Structured Streaming, you always have to specify a streaming 

sink and output mode.

In summary, taking into consideration the Spark Structured Streaming 

characteristics enumerated before, we can say that Structured Streaming offers 

consistency in the outcomes provided as it is guaranteed they are always going to be 

equivalent to the ones returned by an equivalent batch process having the same input 

data. However, each of these modes is applicable only to certain types of queries.

7.4  Datasets and DataFrames Streaming API
Since Spark 2.0, DataFrames and datasets can be used to process both data at rest 

(bound data) and streaming data (unbound data). The most recent Spark versions can 

use DataFrames/datasets to process data coming from streaming sources using the 

common SparkSession entry point and apply exactly the same transformations and 

actions to them that could be applied in a batch process.

Streaming DataFrames can be created via the DataStreamReader interface returned 

by SparkSession.readStream() if you are using Scala, Java, or Python or the read.

stream() method if you are using R, and like the Spark SQL read() method to read 

different format files into a Spark DataFrame, the details of the source data format (CSV, 

JSON, etc.), schema, etc. can be specified.

As with Spark Streaming (DStreams), Structured Streaming also incorporates some 

built-in data sources for data ingestion. These data sources are

• File source: Streaming data is uploaded from different format files 

such as text, CSV, JSON, Parquet, etc. located in a directory using the 

DataStreamReader method.

• Kafka source: Streaming data is read from Apache Kafka topics. At the 

time this book was written, only Kafka broker version 0.10.0 or higher 

was supported.

• Socket source: Reads UTF-8-encoded text from a socket connection. 

It is not considered a fault-tolerant streaming source as it does 

not support using checkpointed offsets to resubmit data after a 

failure occurs.
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• Rate source: This streaming source is intended for testing and 

benchmarking only. It is used to produce random data with two 

columns, “timestamp” and “value,” at the specified number of rows 

per second (rate). The “timestamp” column contains the time the 

message was sent out in a Timestamp-type format, while the “value” 

column allocates a Long-type number counting messages sent and 

starting from 0.

• Rate per micro-batch source: This streaming data source is also 

intended for testing and benchmarking only. As it happens with the 

rate source, each output row contains two columns, “timestamp” and 

“value.” It has the same characteristics as the rate source, but unlike 

the latter, the former is intended to provide a consistent number of 

rows per micro-batch (timestamp and value), that is to say, if batch 

0 produces numbers 0 to 999 and their associated timestamps, 

batch 1 will produce 1000 to 1999 and their subsequent timestamps, 

and so on.

Next, in Table 7-2 you can see a summary of the above-mentioned data sources and 

their main options. This table again is based on the official Apache Spark input sources 

for streaming DataFrames and datasets.4

4 https://spark.apache.org/docs/latest/structured-streaming-programming-guide.
html#input-sources
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Table 7-2. Spark Structured Streaming Data Source Options

Source Options Fault- Tolerant

File source • path: path to the input file directory.

•  maxFilesPerTrigger: maximum number of new files to be 

considered in every trigger (default: no max).

• latestFirst: Whether to process the latest files first.

•  fileNameOnly: Whether to check new files based on only the 

filename instead of on the full path:

• default: false.

•  Set fileNameOnly to “true,” and the following files 

“hdfs://<host>:<port>/file.txt”, “file:///file.txt”, “s3://x/

file.txt”, etc. will be considered as the same because their 

filenames are “file.txt”.

•  maxFileAge: maximum age of a file in a directory before it is 

ignored:

• For the first batch, all files will be considered valid.

•  the max age is specified with respect to the timestamp of 

the latest file and not the timestamp of the current system 

(default: 1 week).

•  if latestFirst is set to “true” and maxFilesPerTrigger 

is set, then this parameter will be ignored, because old files 

that are valid, and should be processed, may be ignored.

•  cleanSource: to clean up completed files after processing. 

available options are “archive,” “delete,” and “off” (default: off):

•  When “archive” is provided, the sourceArchiveDir option 

must be provided as well.

•  Both archiving (moving files) and deleting completed files 

will introduce overhead (slowdown) in each micro-batch.

See the input sources manual for more details.

Yes

(continued)
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Table 7-2. (continued)

Source Options Fault- Tolerant

Socket source host and port (<host>:<port>) to connect to. no

rate source •  rowsPerSecond: how many rows should be generated per 

second, for example, 100 (default: 1).

•  rampUpTime: how long to ramp up before the generating 

speed becomes rowsPerSecond. maximum granularity is 

seconds, for example, 5 s (default: 0 s).

•  numpartitions: the partition number for the generated rows, for 

example, 10 (default: Spark's default parallelism).

the number of rowsPerSecond is not guaranteed as the query 

may be resource constrained; in that case numPartitions can 

be modified to help reach the desired rate.

Yes

rate per 

micro- batch 

source

•  rowsPerBatch: number of rows that should be generated per 

micro- batch, for example, 100

•  numPartitions: the partition number for the generated rows, 

for example, 10 (default: Spark’s default parallelism)

•  startTimestamp: Starting value of generated time, for 

example, 1000 (default: 0)

•  advanceMillisPerBatch: the amount of time being 

advanced in generated time on each micro-batch, for example, 

1000 (default: 1000)

Yes

kafka source Check out the kafka integration guide documentation for more 

details.

Yes

Now that we have studied the basics of Spark Structured Streaming and the main 

sources of data, it is time to see how streaming DataFrames work with some examples.

 Socket Structured Streaming Sources
To show how Spark Structured Streaming can be used to ingest data by listening to a 

socket connection, we are going to continue using our basic near-real-time streaming 

Hospital Queue Management System shown in the previous chapter, tweaking it a little 

bit to make it more realistic implementing a JSON input format.
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We show two options to see our program up and running. The first code 

(readStreamSocket.scala) is shown next, a Scala variant that can be compiled and 

executed in Spark using the $SPARK_HOME/bin/spark-submit command. It is out of the 

scope of this book to discuss how to compile and link Scala code, but it is recommended 

to use sbt together with sbt-assembly to create a so-called “fat JAR” file including all the 

necessary libraries, a.k.a. dependencies:

package org.apress.handsOnSpark3

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types.{IntegerType, StringType, StructField, 

StructType}

import java.io.IOException

case class Patient(

                   NSS: String,

                   Nom: String,

                   DID: Option[Long],

                   DNom: String,

                   Date: String

                  )

object readStreamSocket {

  def main(args: Array[String]): Unit = {

      val PatientsSchema = StructType(Array(

      StructField("NSS", StringType),

      StructField("Nom", StringType),

      StructField("DID", IntegerType),

      StructField("DNom", StringType),

      StructField("Date", StringType))

      )

      val host = "localhost"

      val port = 9999

      try {

      val spark: SparkSession = SparkSession.builder()

      .master("local[*]")
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      .appName("Hand-On-Spark3_Socket_Data_Source")

      .getOrCreate()

      spark.sparkContext.setLogLevel("ERROR")

      // Set up spark.readStream …

      import spark.implicits._

      val PatientDS = spark.readStream

      .format("socket")

      .option("host", host)

      .option("port", port)

      .load()

      .select(from_json(col("value"),PatientsSchema).as("patient"))

      .selectExpr("patient.*")

      .as[Patient]

      printf("\n Listening and ready... \n")

      val selectDF = PatientDS.select("*")

      selectDF.writeStream

      .format("console")

      .outputMode("append")

      .option("truncate", false)

      .option("newRows", 30)

      .start()

      .awaitTermination()

      } catch {

       case e: java.net.ConnectException => println("Error establishing 

connection to " + host + ":" + port)

      case e: IOException => println("IOException occurred")

      case t: Throwable => println("Error receiving data", t)

      } finally {

      println("Finally block")

      }

  }

}
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The next piece of code is a version of the preceding Hospital Queue Management 

System application that can be executed in Spark using a notebook application such as 

Jupyter, Apache Zeppelin, etc., which can be more convenient for learning purposes, 

especially if you are not familiar with Scala code compiler tools:

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types.{IntegerType, StringType, StructField, St

ructType,DoubleType,LongType}

import org.apache.spark.sql.{DataFrame, Dataset, Encoders, SparkSession}

import java.io.IOException

val PatientsSchema = StructType(Array(

      StructField("NSS", StringType),

      StructField("Nom", StringType),

      StructField("DID", IntegerType),

      StructField("DNom", StringType),

      StructField("Fecha", StringType))

      )

case class Patient(

      NSS: String,

      Nom: String,

      DID: Option[Long],

      DNom: String,

      Fecha: String

)

val spark:SparkSession = SparkSession.builder()

      .master("local[*]")

      .appName("Hand-On-Spark3_Socket_Data_Source")

      .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")

val host = "localhost"

val port = 9999

Chapter 7  Spark StruCtured Streaming



261

try {

      val PatientDS = spark.readStream

      .format("socket")

      .option("host",host)

      .option("port",port)

      .load()

      .select(from_json(col("value"), PatientsSchema).as("patient"))

      .selectExpr("Patient.*")

      .as[Patient]

      printf("\n Listening and ready... \n")

      val selectDF = PatientDS.select("*")

      selectDF.writeStream

      .format("console")

      .outputMode("append")

      .option("truncate",false)

      .option("newRows",30)

      .start()

      .awaitTermination()

} catch {

       case e: java.net.ConnectException => println("Error establishing 

connection to " + host + ":" + port)

      case e: IOException => println("IOException occurred")

      case t: Throwable => println("Error receiving data", t)

}finally {

      println("In finally block")

}

Notice how we have defined the PatientsSchema schema before ingesting the data:

val PatientsSchema = StructType(Array(

       StructField("NSS", StringType),

       StructField("Nom", StringType),

       StructField("DID", IntegerType),

       StructField("DNom", StringType),

       StructField("Fecha", StringType))

    )
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When we use Spark Structured Streaming, it is mandatory to define the schema of 

the information before using it.

Pay attention also to the local[*] option. In this case we have used “*”; thus, the 

program is going to use all the cores available. It is important to use more than one 

because the application must be able to run two tasks in parallel, listening to a TCP 

socket (localhost:9999) and, at the same time, processing the data and showing it on the 

console.

 Running Socket Structured Streaming 
Applications Locally
We are going to use a featured networking utility called Netcat to set up a simple client/

server streaming connection. Netcat (netcat, nc, ncat, etc. depending on the system) 

is available in Unix-like operating systems and uses the TCP/IP to read and write data 

through a network. In this book we use the Netcat OpenBSD version (nc).

The syntax for the nc command is

nc [<options>] <host> <port>

Netcat has several [<options>]; however, we are going to use only -l, which instructs 

nc to listen on a UDP or TCP <port>, and -k, which is used in listen mode to accept 

multiple connections. When <host> is omitted, nc listens to all the IP addresses bound to 

the <port> given.

To illustrate how the program works, we are going to take advantage of the nc utility 

introduced before, to establish a streaming client/server connection between nc and 

our Spark application. In our case nc will act as a server (listens to a host:port), while our 

application will act as a client (connects to the nc server).

Whether you have built your JAR file from the previous code or are using the 

notebook version, running the application consists of a two-step process:

 1. Open a terminal in your system and set up the server side of the 

client/server streaming connection by running the following code:

nc -lk 9999

 2. Depending on how you are running the application

Chapter 7  Spark StruCtured Streaming



263

 2.1. Using a JAR file: Open a second terminal and execute your 

application as shown in the following:

$SPARK_HOME/bin/spark-submit --class org.apress. 

handsOnSpark3.readStreamSocket --master "local[*]"  

PATH/TO/YOUR/HandsOnSpark3- readStreamSocket.jar

 2.2. Using a notebook: Just execute the code in your notebook.

As soon as you see the message Listening and ready… on your 

screen, you can go back to step 1 and type some of the JSON 

strings provided, for example:

{"NSS":"1234","Nom":"María", "DID":10, "DNom":"Cardio", 

"Fecha":"01-09-2022"}

{"NSS":"2345","Nom":"Emilio", "DID":20, "DNom":"Neuro", 

"Fecha":"01-09-2022"}

{"NSS":"3456","Nom":"Marta", "DID":30, "DNom":"Endo", 

"Fecha":"01-09-2022"}

…

{"NSS":"4567","Nom":"Marcos", "DID":40, "DNom":"Gastro", 

"Fecha":"01-09-2022"}

{"NSS":"5678","Nom":"Sonia", "DID":50, "DNom":"Gineco", 

"Fecha":"01-09-2022"}

{"NSS":"6789","Nom":"Eduardo", "DID":10, "DNom":"Cardio", 

"Fecha":"01-09-2022"}

With a cadence of seconds, you will see an output like the 

following one coming up on your terminal:

Listening and ready...

-------------------------------------------

Batch: 1

-------------------------------------------

+----+------+---+------+----------+

|NSS |Nom   |DID|DNom  |Fecha     |

+----+------+---+------+----------+

|1234|María |10 |Cardio|01-09-2022|

|2345|Emilio|20 |Neuro |01-09-2022|
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|3456|Marta |30 |Endo  |01-09-2022|

|4567|Marcos|40 |Gastro|01-09-2022|

|5678|Sonia |50 |Gineco|01-09-2022|

+----+------+---+------+----------+

-------------------------------------------

Batch: 2

-------------------------------------------

+----+-------+---+------+----------+

|NSS |Nom    |DID|DNom  |Fecha     |

+----+-------+---+------+----------+

|6789|Eduardo|10 |Cardio|01-09-2022|

+----+-------+---+------+----------+

-------------------------------------------

Batch: 3

-------------------------------------------

+----+------+---+------+----------+

|NSS |Nom   |DID|DNom  |Fecha     |

+----+------+---+------+----------+

|1009|Julia |20 |Neuro |01-09-2022|

|1010|Javier|30 |Endo  |01-09-2022|

|1011|Laura |50 |Gineco|01-09-2022|

|1012|Nuria |10 |Cardio|01-09-2022|

|1013|Helena|10 |Cardio|01-09-2022|

+----+------+---+------+----------+

 3. Application termination

awaitTermination() waits for a user’s termination signal. Thus, 

going to the terminal session started in step 1 and pressing Ctrl+C 

or SIGTERM, the streaming context will be stopped.

This way of terminating a streaming application is neither elegant nor correct, 

because the operations in progress when we terminate it are going to be lost. A more 

elegant and correct approach is using Spark Structured Streaming Graceful Shutdown 

we saw in the previous chapter. Thus, we encourage you to play with the previous code 

adding to it the Graceful Shutdown feature.
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 File System Structured Streaming Sources
Spark Streaming can use file systems as input databases. Spark can mount file streaming 

processes on any HDFS-compatible file system such as HDFS itself, AWS S3, NFS, etc. 

When a file system stream is set up, Spark monitors the path indicated and processes any 

files created in it.

Spark monitors file systems according to the following patterns:

• For paths such as “hdfs://hadoop:9000/folder/”, “s3//…”, “file//…”, 

etc., Spark processes the files as soon as they appear under the path.

• Glob patterns to specify directories “hdfs://<hadoop-host>: 

<hadoop- port>/folder/textfiles/*/*” are also possible.

• All files within the path have to be in the same format.

• The number of files present under the path influences the time Spark 

will take to scan it, even if no file has been updated.

• File updates within the same time window are ignored. Therefore, 

once a file is processed, updating it will not cause its reprocessing.

• Spark will process files looking at the modification time, not the 

creation time. Therefore, files already existing in the path when the 

streaming process starts will not be processed.

• Setting access time of a file using Hadoop FileSystem.setTimes() 

can cause a file to be processed out of the current processing 

time window.

Now we are going to see how to use Spark to continue monitoring and streaming 

files from a folder. In this case we are going to continue with the basic near-real-time 

streaming Hospital Queue Management System, tweaking it a little bit again to use it to 

stream files from a file system.
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As we previously did with the socket data source example, two versions of the 

program are provided. The first one could be compiled with sbt or another Scala 

compiler:

package org.apress.handsOnSpark3

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types.{IntegerType, StringType, StructField, 

StructType}

import java.io.IOException

object dStreamsFiles {

  def main(args: Array[String]): Unit = {

      val PatientsSchema = StructType(Array(

      StructField("NSS", StringType),

      StructField("Nom", StringType),

      StructField("DID", IntegerType),

      StructField("DNom", StringType),

      StructField("Date", StringType)

      )

      )

      try {

      val spark: SparkSession = SparkSession

      .builder()

      .master("local[3]")

      .appName("Hand-On-Spark3_File_Data_Source")

      .getOrCreate()

      spark.sparkContext.setLogLevel("ERROR")

      val df = spark.readStream

     .schema(PatientsSchema).json("/tmp/patient_streaming")

      val groupDF = df.select("DID")

      .groupBy("DID").agg(count("DID").as("Accumulated"))

      .sort(desc("Accumulated"))
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      printf("\n Listening and ready... \n")

      groupDF.writeStream

      .format("console")

      .outputMode("complete")

      .option("truncate", false)

      .option("newRows", 30)

      .start()

      .awaitTermination()

      } catch {

          case e: IOException => println("IOException occurred")

          case t: Throwable => println("Error receiving data", t)

      } finally {

      println("Finally block")

      }

  }

}

Next is the second version intended to be executed in a notebook such as Apache 

Zeppelin, Jupyter Notebook, etc.:

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.types.{IntegerType, StringType, StructField, 

StructType}

import org.apache.spark.sql.functions.desc

import java.io.IOException

val spark:SparkSession = SparkSession

      .builder()

      .master("local[3]")

      .appName("Hand-On-Spark3_File_Data_Source")

      .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")

val PatientsSchema = StructType(Array(

      StructField("NSS", StringType),

      StructField("Nom", StringType),
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      StructField("DID", IntegerType),

      StructField("DNom", StringType),

      StructField("Fecha", StringType)

      )

      )

try{

      val df = spark.readStream.schema(PatientsSchema)

              .json("/tmp/patient_streaming")

      val groupDF = df.select("DID")

      .groupBy("DID").agg(count("DID").as("Accumulated"))

      .sort(desc("Accumulated"))

      groupDF.writeStream

      .format("console")

      .outputMode("complete")

      .option("truncate",false)

      .option("newRows",30)

      .start()

      .awaitTermination()

} catch{

      case e: IOException => println("IOException occurred")

      case t: Throwable => println("Error receiving data", t)

}

 Running File System Streaming Applications Locally
In this case our program is going to monitor the selected /tmp/patient_streaming path 

and process the files copied there as soon as Spark discovers them.

As in the “Running Socket Structured Streaming Applications Locally” section, 

running the file system data source examples provided here also depends on the method 

you have chosen to execute them. Here you can also choose either to build your own 

JAR file from the code snippets provided before or use the notebook version. In any case, 

running the application consists of a two-step process:
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 1. Depending on how you are running the application

 1.1. If you are using a JAR file, open a terminal in your computer 

and execute your application as shown in the following:

$SPARK_HOME/bin/spark-submit --class org.apress. 

handsOnSpark3.dStreamsFiles --master "local[*]"  

target/scala-2.12/HandsOnSpark3-dStreamsFiles-assembly- 

fatjar-1.0.jar

 1.2. If you are using a notebook, just execute the code in your notebook.

 2. Open a new terminal in your computer to copy the JSON files 

provided to the monitored folder.

As soon as you see on your screen the message Listening and 

ready... , you can go back to step 2 and start copying JSON files 

to the /tmp/patient_streaming folder,5, for example:

cp /PATH/TO/patient1.json /tmp/patient_streaming

cp /PATH/TO/patient2.json /tmp/patient_streaming

cp /PATH/TO/patient3.json /tmp/patient_streaming

cp /PATH/TO/patient4.json /tmp/patient_streaming

cp /PATH/TO/patient5.json /tmp/patient_streaming

With a cadence of seconds, you will start seeing on your terminal session or 

notebook an output like this:

Listening and ready...

-------------------------------------------

Batch: 0

-------------------------------------------

+---+-----------+

|DID|Accumulated|

+---+-----------+

|10 |1          |

+---+-----------+

5 It is advised to copy the files progressively to better see how Spark processes them.
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-------------------------------------------

Batch: 1

-------------------------------------------

+---+-----------+

|DID|Accumulated|

+---+-----------+

|20 |1          |

|10 |1          |

|30 |1          |

+---+-----------+

-------------------------------------------

Batch: 2

-------------------------------------------

+---+-----------+

|DID|Accumulated|

+---+-----------+

|10 |4          |

|20 |3          |

|40 |1          |

|50 |1          |

|30 |1          |

+---+-----------+

-------------------------------------------

Batch: 3

-------------------------------------------

+---+-----------+

|DID|Accumulated|

+---+-----------+

|10 |7          |

|20 |3          |

|50 |2          |

|30 |2          |

|40 |1          |

+---+-----------+
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The examples provided generate untyped DataFrames; it means that the schema 

provided is not validated at compile time, only at runtime when the code is executed.

So far, we have only been applying transformations to the data arriving to the 

streaming process. For example, in our last program, the “Accumulated” column adds up 

the input “DID” field. This is what is called stateless streaming. Suppose now a scenario 

in which you want to find out the total occurrences of each value received by your 

streaming application, updating the state of the previously processed information. Here 

is where the concepts of streaming state and stateful streaming that we are going to see 

next come into play.

7.5  Spark Structured Streaming Transformations
In this section we are going to walk you through the Spark Structured Streaming 

supported data transformations. These data transformations are classified as stateless 

and stateful operations. Only operations that can incrementally update DataFrame 

aggregations are supported by Spark Structured Streaming. Stateful operations need to 

maintain the event state across the streaming process or as long as we define.

Next, we explain the Structured Streaming notions mentioned before of streaming 

state and stateless and stateful operations.

 Streaming State in Spark Structured Streaming
The state is one of the most important components of any streaming data pipeline. 

Depending on the specific use case, it might be necessary to maintain the state of 

different variables like counters while the streaming application is in operation.

In the process of dealing with stream data processing, every application must use 

either stateless or stateful data management approaches. The main difference between 

stateless and stateful operations is whether when executing incremental aggregations/

operations we need to keep track of ongoing event states.

Summarizing, in this context state basically means “ephemeral information” that 

needs to be retained for a certain period of time in order to use it down the stream 

process.
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 Spark Stateless Streaming
Stateless state means that data included in the ongoing micro-batches is processed 

without considering past or future information. One example of this kind of stateless 

data processing could be the recollection and saving of web events (clicks, page 

visits, etc.).

Stateless operations are those that can process the information independently 

of the previously processed information. Examples of these operations are select(), 

explode(), map(), flatMap(),   filter(), and where(), to mention some of them. Stateless 

operations support append and update output modes exclusively because information 

processed by these operations cannot be updated downstream. On the other hand, they 

do not support the complete output mode because it could be practically impossible to 

accumulate the complete stream of information.

In the next section, we are going to explore how to perform stateful operations and 

how the streaming configurations and resources have to be updated accordingly.

 Spark Stateful Streaming
Stateful stream processing is stream processing that maintains events’ states. It means 

that an event state is maintained and shared among events along the stream process; 

thus, event conditions can be maintained and/or updated over time. Stateful streams are 

used to persist live aggregates in streaming aggregations.

When it comes to stateful operations, Spark Structured Streaming provides a simple 

and concise API to maintain the state between different batches.

Stateful processing is necessary when we need to keep updated intermediate states 

(information being processed) along the streaming process, for example, when we need 

to perform data aggregation by key or event-time aggregations, assuming the ordered 

arrival time of events could not be guaranteed. Depicted in Figure 7-3, you can see how 

Spark uses the concept of StateStore/state store to maintain and share state information 

about events between various batches.
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Figure 7-3. Spark Structured Streaming state maintenance process

Apache Spark achieves stateful operations by saving the intermediate state 

information in an in-memory key-value store named StateStore. The StateStore attains 

fault tolerance, saving intermediate states in a file system directory called a checkpoint 

directory.

Thus, with stateful streaming each micro-batch intermediate output is temporarily 

preserved and shared between executions using the event “state.”

An example of stateful transformation is counting (df.groupBy().count()) the 

number of events processed since the beginning of a query. Spark keeps the number of 

events already counted in the event state and passes it to the next micro-batch, where 

that number is added to the ongoing count. Event state is maintained in the Spark 

executors’ memory and saved to a designated file system directory to provide fault 

tolerance.

There are two types of stateful operations based on how intermediate information is 

managed and removed:

• Managed stateful operations are operations that automatically 

manage obsolete (“old”) states. Operators such as

• Streaming aggregations

• Stream-stream joins

• Streaming deduplication

are part of this group.
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• Unmanaged stateful operations, such as

• mapGroupsWithState

• flatMapGroupsWithState

allow the user to define their own stateful operations.

 Stateful Streaming Aggregations
Spark stateful streaming aggregations can be classified as

• Time-based aggregations: Number of events processed per 

unit of time

• No-time-based aggregations: Grouping events by key, for example

 Time-Based Aggregations

Time-based aggregations are studied in detail in Chapter 8. Thus, we are going to leave it 

for now.

 No-Time-Based Aggregations

No-time-based aggregations include

• Global aggregations

Those are general aggregations with no key discrimination. In the 

examples you have seen so far, it could be the number of patients 

registering in a hospital:

# PySpark

counts = PatientDS.groupBy().count()

// Scala

val counts = PatientDS.groupBy().count()
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• Grouped aggregations

These are aggregations by key or with key discrimination. Adding 

to the previous Hospital Queue Management System application 

example, we could be interested in seeing only the number of 

appointments of specific medical departments in a hospital.

In the following you can see a modified version of our Hospital 

Queue Management System application example with stateful 

grouped aggregations by department id and department name:

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types.{IntegerType, StringType, 

StructField, StructType,DoubleType,LongType}

import org.apache.spark.sql.{DataFrame, Dataset, Encoders, 

SparkSession}

import java.io.IOException

val PatientsSchema = StructType(Array(

      StructField("NSS", StringType),

      StructField("Nom", StringType),

      StructField("DID", IntegerType),

      StructField("DNom", StringType),

      StructField("Fecha", StringType))

      )

case class Patient(

      NSS: String,

      Nom: String,

      DID: Option[Long],

      DNom: String,

      Fecha: String

)

val spark:SparkSession = SparkSession.builder()

      .master("local[*]")

      .appName("Hand-On-Spark3_Socket_Data_Source")

      .getOrCreate()
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spark.sparkContext.setLogLevel("ERROR")

val host = "localhost"

val port = 9999

try {

      val PatientDS = spark.readStream

      .format("socket")

      .option("host",host)

      .option("port",port)

      .load()

       .select(from_json(col("value"),  PatientsSchema).

as("patient"))

      .selectExpr("Patient.*")

      .as[Patient]

      printf("\n Listening and ready... \n")

      val counts = PatientDS

      .groupBy(col("DID"),col("DNom"))

      .count()

      counts.writeStream

      .format("update")

      .format("console")

      .outputMode("complete")

      .option("truncate",false)

      .option("newRows",30)

      .start()

      .awaitTermination()

} catch {

       case e: java.net.ConnectException => println("Error 

establishing connection to " + host + ":" + port)

      case e: IOException => println("IOException occurred")

      case t: Throwable => println("Error receiving data", t)

Chapter 7  Spark StruCtured Streaming



277

}finally {

      println("Finally block")

}

Running the previous code, you will see an output similar to the 

next one:

Listening and ready...

-------------------------------------------

Batch: 1

-------------------------------------------

+---+------+-----+

|DID|DNom  |count|

+---+------+-----+

|20 |Neuro |4    |

|40 |Gastro|1    |

|50 |Gineco|3    |

|30 |Endo  |3    |

|10 |Cardio|9    |

+---+------+-----+

-------------------------------------------

Batch: 2

-------------------------------------------

+---+------+-----+

|DID|DNom  |count|

+---+------+-----+

|20 |Neuro |11   |

|40 |Gastro|3    |

|50 |Gineco|9    |

|30 |Endo  |8    |

|10 |Cardio|26   |

+---+------+-----+
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-------------------------------------------

Batch: 3

-------------------------------------------

+---+------+-----+

|DID|DNom  |count|

+---+------+-----+

|20 |Neuro |11   |

|40 |Gastro|3    |

|50 |Gineco|9    |

|30 |Endo  |8    |

|10 |Cardio|27   |

+---+------+-----+

• Multiple aggregations

The groupBy clause allows you to specify more than one 

aggregation function to transform column information. Therefore, 

multiple aggregations can be performed at once. For example, you 

can modify the previous code snippet as follows

val counts = PatientDS

.groupBy(col("DID"),col("DNom"))

.agg(count("*").alias("countDID"),

    sum("DID").alias("sumDID"),

    mean("DID").alias("meanDID"),

    stddev("DID").alias("stddevDID"),

    approx_count_distinct("DID").alias("distinctDID"),

    collect_list("DID").alias("collect_listDID"))

to obtain several aggregations together.

When you run the previous code and copy in your terminal 

(remember nc -lk 9999) first the following JSON strings

{"NSS":"4567","Nom":"Marcos", "DID":40, "DNom":"Gastro", 

"Fecha":"2023-02-23T00:00:03.002Z"}

{"NSS":"5678","Nom":"Sonia", "DID":50, "DNom":"Gineco", 

"Fecha":"2023-02-23T00:00:04.002Z"}

Chapter 7  Spark StruCtured Streaming



279

{"NSS":"6789","Nom":"Eduardo", "DID":10, "DNom":"Cardio", 

"Fecha":"2023-02-23T00:00:05.002Z"}

{"NSS":"1001","Nom":"Lorena", "DID":10, "DNom":"Cardio", 

"Fecha":"2023-02-23T00:00:06.002Z"}

{"NSS":"1006","Nom":"Sara", "DID":20, "DNom":"Neuro", 

"Fecha":"2023-02-23T00:00:07.002Z"}

{"NSS":"1002","Nom":"Teresa", "DID":10, "DNom":"Cardio", 

"Fecha":"2023-02-23T00:00:08.002Z"}

{"NSS":"1003","Nom":"Luis", "DID":20, "DNom":"Neuro", 

"Fecha":"2023-02-23T00:00:09.002Z"}

and after that this second set of JSON strings

{"NSS":"1004","Nom":"Tomás", "DID":30, "DNom":"Endo", 

"Fecha":"2023-02-23T00:00:10.002Z"}

{"NSS":"1005","Nom":"Lorena", "DID":50, "DNom":"Gineco", 

"Fecha":"023-02- 23T00:00:11.002Z"}

{"NSS":"1006","Nom":"Pedro", "DID":10, "DNom":"Cardio", 

"Fecha":"023-02- 23T00:00:12.002Z"}

{"NSS":"1007","Nom":"Ester", "DID":10, "DNom":"Cardio", 

"Fecha":"023-02- 23T00:00:13.002Z"}

{"NSS":"1008","Nom":"Marina", "DID":10, "DNom":"Cardio", 

"Fecha":"023-02- 23T00:00:14.002Z"}

{"NSS":"1009","Nom":"Julia", "DID":20, "DNom":"Neuro", 

"Fecha":"023-02- 23T00:00:15.002Z"}

{"NSS":"1010","Nom":"Javier", "DID":30, "DNom":"Endo", 

"Fecha":"023-02- 23T00:00:16.002Z"}

{"NSS":"1011","Nom":"Laura", "DID":50, "DNom":"Gineco", 

"Fecha":"023-02- 23T00:00:17.002Z"}

{"NSS":"1012","Nom":"Nuria", "DID":10, "DNom":"Cardio", 

"Fecha":"023-02- 23T00:00:18.002Z"}

{"NSS":"1013","Nom":"Helena", "DID":10, "DNom":"Cardio", 

"Fecha":"023-02- 23T00:00:19.002Z"}
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you could see an output like the following one:

Listening and ready...

-------------------------------------------

Batch: 1

-------------------------------------------

+---+------+--------+------+-------+---------+-----------+---------------+

|DID|DNom  |countDID|sumDID|meanDID|stddevDID|distinctDID|collect_listDID|

+---+------+--------+------+-------+---------+-----------+---------------+

|20 |Neuro |2       |40    |20.0   |0.0      |1          |[20, 20]       |

|40 |Gastro|1       |40    |40.0   |null     |1          |[40]           |

|50 |Gineco|1       |50    |50.0   |null     |1          |[50]           |

|10 |Cardio|3       |30    |10.0   |0.0      |1          |[10, 10, 10]   |

+---+------+--------+------+-------+---------+-----------+---------------+

-------------------------------------------

Batch: 2

-------------------------------------------

+---+------+--------+------+-------+---------+-----------+----------------------------+

|DID|DNom  |countDID|sumDID|meanDID|stddevDID|distinctDID|collect_listDID             |

+---+------+--------+------+-------+---------+-----------+----------------------------+

|20 |Neuro |3       |60    |20.0   |0.0      |1          |[20, 20, 20]                |

|40 |Gastro|1       |40    |40.0   |null     |1          |[40]                        |

|50 |Gineco|3       |150   |50.0   |0.0      |1          |[50, 50, 50]                |

|30 |Endo  |2       |60    |30.0   |0.0      |1          |[30, 30]                    |

|10 |Cardio|7       |70    |10.0   |0.0      |1          |[10, 10, 10, 10, 10, 10, 10]|

+---+------+--------+------+-------+---------+-----------+----------------------------+

-------------------------------------------

Batch: 3

-------------------------------------------
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+---+------+--------+------+-------+---------+-----------+--------------------------------+

|DID|DNom  |countDID|sumDID|meanDID|stddevDID|distinctDID|collect_listDID                 |

+---+------+--------+------+-------+---------+-----------+--------------------------------+

|20 |Neuro |3       |60    |20.0   |0.0      |1          |[20, 20, 20]                    |

|40 |Gastro|1       |40    |40.0   |null     |1          |[40]                            |

|50 |Gineco|3       |150   |50.0   |0.0      |1          |[50, 50, 50]                    |

|30 |Endo  |2       |60    |30.0   |0.0      |1          |[30, 30]                        |

|10 |Cardio|8       |80    |10.0   |0.0      |1          |[10, 10, 10, 10, 10, 10, 10, 10]|

+---+------+--------+------+-------+---------+-----------+--------------------------------+

Note the aggregation functions shown in the previous code snippet are included 
for illustration purposes only. Obviously, functions such as sum(), mean(), stddev(), 
approx_count_distinct(), and collect_list() applied to a medical department id "did" 
do not make any business sense.

• Built-in aggregation functions

Spark Streaming built-in aggregation functions simplify the 

process of summarizing data, which is an important component 

of data analytics. To use them, you need to specify an aggregation 

key for grouping and the aggregation function that defines how 

the transformations will be performed across the DataFrame 

columns.

Table 7-3 shows a list of the most common aggregation functions 

for DataFrames. A complete list of aggregation functions for 

column operations can be found in the official documentation.6

6 https://spark.apache.org/docs/3.3.2/api/R/reference/column_aggregate_
functions.html
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Table 7-3. Spark Structured Streaming List of Aggregation Functions for 

Dataframes

Aggregation Function Description

approx_count_distinct() returns a new column for approximate distinct count of a column.

avg() returns the average of the values in a group.

collect_list() returns a list with duplicates of all values from an input column.

collect_set() returns a set of the values from an input column without 

duplicates.

countDistinct()(*) returns a new column for distinct elements in a column.

count() returns the number of elements in a column.

first() returns the first non-null element in a column.

last() returns the last non-null element.

kurtosis() returns the kurtosis of the values in a column. it could be used to 

try to identify outliers in the data.

max()/min() they return the maximum or minimum value in a column.

mean() an alias for avg(), it returns the average of the elements in a 

column.

skewness() returns the skewness of the values in a column. it is the degree 

of distortion from the normal distribution.

stddev() an alias for stddev_samp(), it returns the unbiased sample 

standard deviation of the expression in a group.

stddev_pop() returns population standard deviation of the expression in a 

column.

(continued)
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Aggregation Function Description

sum() returns the sum of the values in a column.

sumDistinct() returns the sum of the distinct values in a column.

variance() an alias for var_samp(), it returns the unbiased sample 

variance of the values in a column.

var_pop() returns the population variance of the values in a column.

(*) Although countDistinct() appears in the literature available as a valid aggregation function 
for Structured Streaming, at the time this book was written, the following message was outputted by 
Spark when we tried to use it as one of the multiple aggregation functions described in the previous 
section:

"Distinct aggregations are not supported on streaming DataFrames/Datasets. 

Consider using approx_count_distinct() instead."

Table 7-3. (continued)

• User-defined aggregation

Finally, Spark Structured Streaming supports user-defined 

aggregation functions. Check the Spark SQL Guide for more and 

updated details.

7.6  Spark Checkpointing Streaming
To provide fault tolerance, Spark uses checkpointing to ensure it can recover from 

failures. Checkpointing is used to persist intermediate information states in a file system 

storage from which Spark can read upon failure. In stateful streaming, it is mandatory to 

apply checkpointing to be able to restore transitional states in the eventuality of a failure.

The StateStore studied in the “Spark Stateful Streaming” section and depicted in 

Figure 7-3 supports incremental checkpointing, meaning that only the key-values 

updated are preserved, without modifying other key-value pairs present in the streaming 

process.
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To include checkpointing support in our streaming Hospital Queue Management 

System application example, we are going to update our previous code snippet as 

follows:

import org.apache.spark.sql.streaming._

// ...

val checkpointDir = "/tmp/streaming_checkpoint"

// ...

counts.writeStream

      // ...

      .trigger(Trigger.ProcessingTime("5 seconds"))

      .option("checkpointLocation", checkpointDir)

      // ...

      .start()

      .awaitTermination()

As you can see, we have introduced several new features that we explain in the 

following:

• Trigger: Defines how often a streaming query must be triggered (run) 

to process newly available streaming data—in other words, how 

frequently our application has to review the data sources looking for 

new information and possibly emit new data. Trigger was introduced 

into Spark to set the stream batch period.

ProcessingTime is a trigger that assumes milliseconds as the 

minimum unit of time. ProcessingTime(interval: String) 

accepts CalendarInterval instances with or without interval 

strings, for example:

• With interval strings: ProcessingTime("interval 10 seconds")

• Without interval strings: ProcessingTime("10 seconds")

There are four factory methods (options):

• Default: If no trigger is set, the streaming query runs micro-

batches one after another, as soon as the precedent micro-batch 

has finished.
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• OneTimeTrigger: With this trigger mode set, it executes the 

trigger once and stops. The streaming query will execute 

the data available in only one micro-batch. A use case for 

this trigger mode could be to use it as a kind of daily batch 

processing, saving computing resources and money. Example: 

.trigger(Trigger.Once).

• ProcessingTime: The user can define the ProcessingTime 

parameter, and the streaming query will be triggered with the 

interval established, executing new micro-batches and possibly 

emitting new data.

• ContinuousTrigger: At the time this book was written, continuous 

processing was an experimental streaming execution mode 

introduced in Spark 2.3.7 It has been designed to achieve 

low latencies (in the order of 1 ms) providing at-least-once 

guarantee. To provide fault tolerance,   a checkpoint interval 

must be provided as a  parameter. Example: .trigger(Trigger.

Continuous("1 second")). A checkpoint interval of 1 s means 

that the stream engine will register the intermediate results of 

the query every second. Every checkpoint is written in a micro-

batch engine-compatible structure; therefore, after a failure, the 

ongoing (supported) query can be restarted by any other kind 

of trigger. For example, a supported query that was started using 

the micro-batch mode can be restarted in continuous mode, 

and vice versa. The continuous processing mode only supports 

stateless queries such as select, map, flatMap, mapPartitions, 

etc. and selections like where, filter, etc. All the SQL functions 

are supported in continuous mode, except aggregation functions 

current_timestamp() and current_date().

• checkpointLocation

7 For up-to-date information, please check the Apache Spark official documentation, 
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.
html#continuous-processing
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This parameter points to the file system directory created for state storage 

persistence purposes. To make the store fault-tolerant, the option checkpointLocation 

must be set as part of the writeStream output configuration.

The state storage uses the checkpoint folder to store mainly

• Data checkpointing

• Metadata checkpointing

In case we are using stateful operations, the structure of the Spark Streaming 

checkpoint folder and the state data representation folders will look as illustrated in 

Table 7-4.

Table 7-4. Spark Streaming Checkpoint and the State Data Representation 

Structure

The checkpointLocation Folder Structure The State Data Representation

/tmp/streaming_checkpoint

├── commits

│   ├── 0

│   ├── 1

│   ├── 2

│   └── 3

├── metadata

├── offsets

│   ├── 0

│   ├── 1

│   ├── 2

│   └── 3

└── state

      └── 0

└── state

└── 0

├── 0

│   ├── 1.delta

│   ├── 2.delta

│   ├── 3.delta

│   ├── 4.delta

│   └── _metadata

│   └── schema

├── 1

│   ├── 1.delta

│   ├── 2.delta

│   ├── 3.delta

│   └── 4.delta

├── 10

│   ├── 1.delta

│   ├── 2.delta

│   ├── 3.delta

│   └── 4.delta
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 Recovering from Failures with Checkpointing
Upon failure or intentional shutdown, the intermediate information persisted inside 

the checkpoint directory can be used to restore the query exactly where it stopped. In 

addition, after restoration some changes are allowed in a streaming query and some 

others not. For example, you can change the query sink from file to Kafka but not vice 

versa. You can check out the most updated list of allowed and not allowed changes in 

a streaming query between restarts from the same checkpoint location, looking at the 

Structured Streaming Programming Guide documentation.8

7.7  Summary
In this chapter we went over the Spark Structured Streaming module. Firstly, we 

studied the general semantics of message delivery reliability mechanisms. Secondly, we 

compared Structured Streaming with Spark Streaming based on DStreams. After that, 

we explained the technical details behind the Spark Structured Streaming architecture, 

such as input and result tables as well as the different output modes supported. In 

addition, we also went through the streaming API for DataFrames and datasets and 

Structured Streaming stateless and stateful transformations and aggregations, giving 

some interesting examples that will help you learn how to implement these features. 

Finally, we studied the concepts of streaming checkpointing and recovery, giving some 

practical examples. In the next chapter, we are moving forward studying streaming 

sources and sinks.

8 https://spark.apache.org/docs/3.3.2/structured-streaming-programming-guide.
html#recovery-semantics-after-changes-in-a-streaming-query
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CHAPTER 8

Streaming Sources 
and Sinks
In the previous chapter, we went through the basics of an end-to-end Structured 

Streaming process. Remember the foundations of Apache Spark Structured Streaming are 

creating streaming dataframes by ingesting data from a source using the SparkSession.

readStream() method, applying business logic to it using the processing engine and 

outputting the result DataFrame to a data sink using DataFrame.writeStream().

In this chapter we are going to delve into the usage of built-in data sources and sinks, as 

well as how to create your own custom streaming sources and sinks using foreachBatch() 

and foreach() methods to implement your own functionality and write your data to a 

storage system other than that natively supported by Spark Structured Streaming.

8.1  Spark Streaming Data Sources
Remember we saw in the previous chapter Spark supports various input sources for data 

ingestion. Some of them are the so-called built-in sources:

• File source: It is used for streaming data from a file system. Supported 

file formats are text, CSV, JSON, and Parquet.

• Kafka source: It is used for reading data from Kafka topics. It requires 

Kafka version 0.10.0 or higher.

Then, there are other data sources considered mostly for testing as they are not  

fault- tolerant:

• Socket source: It reads the data from a TCP/IP socket connection.

• Rate source: It generates random data at the specified number of rows 

per second, where each row of data has two columns: a “timestamp” 

and a “value.”

© Alfonso Antolínez García 2023 
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• Rate per micro-batch source: It is similar to the “rate” source, but in 

this case it produces a consistent set of input rows per micro-batch 

regardless of query execution configuration. For example, batch 0 will 

produce values in the interval [0, 999], batch 1 will generate values in 

the interval [1000, 9999], and so on.

 Reading Streaming Data from File Data Sources
Apache Spark Structured Streaming natively supports stream reading from file systems 

employing the same file formats as those supported in batch processing (text, CSV, JSON, 

ORC, and Parquet).

Spark Structured Streaming uses the DataStreamReader class for streaming text files 

from a file system folder. When you define a directory as a streaming source, Spark treats 

the files appearing in that location as a data stream. That means a FileStreamSource is a 

source that reads text format files from a directory as they are seen by Spark. Next is an 

example of how to set up a basic file source streaming:

val df = spark.readStream

  .format("text")

  .option("maxFilesPerTrigger", 1)

  .load("/tmp/logs")

You can also specify the schema of your data, for example:

val PatientsSchema = StructType(Array(

      StructField("NSS", StringType),

      StructField("Nom", StringType),

      StructField("DID", IntegerType),

      StructField("DNom", StringType),

      StructField("Fecha", StringType) )

    )

And then you can read the files based on the precedent schema:

val df = spark

       .readStream

       .schema(PatientsSchema)

       .json("/tmp/patient_streaming")
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In our preceding example, the returned df streaming DataFrame will have the 

PatientsSchema. The “/tmp/patient_streaming” source directory must exist when the 

stream process starts.

There are some important points to remember when using file sources:

• The source directory must exist when the stream process starts, as 

mentioned before.

• All the files streamed to the source directory must be of the same 

format, that is to say, they all must be text, JSON, Parquet, etc., 

and the schema must be also the same if we want to preserve data 

integrity and avoid errors.

• Files already present in the designated folder when the streaming job 

begins are ignored. This concept is depicted in Figure 8-1.

Figure 8-1. File data stream processing schema

• Spark uses system tools that list files to identify the new files. 

Therefore, the files appearing in the streaming directory must be 

complete and closed, because Spark will process them as soon as 

they are discovered. Thus, any data addition or file update could 

result in data loss.

• When Spark processes a file, it is internally labeled as processed. 

Hence, it will not be processed again even if it is updated.

• In case several files should be processed, but Spark can only cope 

with part of them in the next micro-batch, files with the earliest 

timestamps will be processed first.
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When creating a new FileStreamSource instance, two main options are available:

• schema: As we have already mentioned, it is the schema of the data, 

and it is specified at instantiation time.

• maxFilesPerTrigger: It specifies the maximum number of files read 

per micro-batch. Therefore, it is used to control the stream read rate 

to the maximum number of files per trigger.

In the following you have a code example in which we stream data from a file source. 

This example includes the schema of the files used as a data source, streams data from a 

directory, and outputs the results of the transformation to the console:

package org.apress.handsOnSpark3

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types.{IntegerType, StringType, StructField, 

StructType}

import java.io.IOException

object dStreamsFiles {

  def main(args: Array[String]): Unit = {

      val PatientsSchema = StructType(Array(

      StructField("NSS", StringType),

      StructField("Nom", StringType),

      StructField("DID", IntegerType),

      StructField("DNom", StringType),

      StructField("Fecha", StringType)

      )

      )

      try {

      val spark: SparkSession = SparkSession

      .builder()

      .master("local[3]")

      .appName("Hand-On-Spark3_File_Data_Source")

      .getOrCreate()
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      spark.sparkContext.setLogLevel("ERROR")

      val df = spark

      .readStream

      .schema(PatientsSchema)

      .json("/tmp/patient_streaming")

      val groupDF = df.select("DID")

      .groupBy("DID").agg(count("DID").as("Accumulated"))

      .sort(desc("Accumulated"))

      printf("\n Listening and ready... \n")

      groupDF.writeStream

      .format("console")

      .outputMode("complete")

      .option("truncate", false)

      .option("newRows", 30)

      .start()

      .awaitTermination()

      } catch {

      case e: IOException => println("IOException occurred")

      case t: Throwable => println("Error receiving data", t)

      } finally {

      println("Finally block")

      }

  }

}

Next, we are going to jump to another built-in data source and one of the most 

commonly used nowadays. First, we are going to provide an introduction about Kafka, 

and after that we are going to provide a practical example.

 Reading Streaming Data from Kafka
Apache Kafka is an open source, distributed, persistent, and highly scalable event 

streaming platform enabling the development of real-time, event-driven applications, 

among other features. Kafka organizes and stores events in topics, which are Kafka’s 
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most fundamental unit of organization. A topic is a named log of events, something 

similar to a table in a relational database. Events in the log are immutable and durable, 

meaning that once something has happened, they cannot be altered or deleted—

they persist unchanged and can remain in the topic for a defined period of time or, 

eventually, indefinitely. Kafka logs/topics containing the events are files stored on a disk.

An example of how Kafka components interact in the Kafka architecture is shown in 

Figure 8-2.

Figure 8-2. Kafka architecture

Kafka has four primary capabilities:

• Kafka allows applications to publish or subscribe to event streams, 

enabling them to respond to events in real time.

• Kafka manages records preserving the order in which they occurred.

• Kafka is a fault-tolerant and scalable system that processes records in 

real time.
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• The simple semantics of topics allow Kafka to deliver high levels of 

sustained in and out throughput and facilitate data replication to 

enhance fault tolerance. Kafka topics are partitioned and replicated, 

contributing to maintaining a high-performance simultaneous event 

delivering service to a large number of consumers.

In Figure 8-3 you can see a graphical representation of the Kafka concepts of topic, 

data partition, and replica.

Figure 8-3. Kafka concepts of topic, partition, and replica

Kafka capabilities can be leveraged through four APIs:

• Producer API: It is used to publish an event or stream of events to a 

Kafka topic.

• Consumer API: Applications use it to subscribe to one or more topics 

consuming the stream of data stored in the topic. Information in a 

topic can be consumed in real time or can be read from historical 

registers.

• Streams API: This API is more complex than the Producer and 

Consumer APIs and provides the capacity to build complex data 

and event streaming processes. For example, it can be used to set 

up end-to-end stream jobs, receiving information, analyzing it, and 

transforming it, if required.

• Connector API: This API is intended for the development of 

connectors, to automate the data flow to and from a Kafka cluster.
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Apache Kafka and Spark Streaming are often used together to process real-time 

data streams. Coupling Kafka and Spark can lead to a reliable, performant, and scalable 

streaming data processing pipeline able to cope with complex event processes. A sketch 

of the Kafka-Spark Streaming integration architecture is depicted in Figure 8-4.

Figure 8-4. Kafka-Spark Streaming integration architecture

Implementing a data processing pipeline using Kafka-Spark Streaming includes data 

intake from Kafka topics, manipulating and analyzing data using Spark Streaming, and 

then storing the treated data in a final sink or injecting it back again into another Kafka 

topic as part of another pipeline.

In the following code snippet, you have an example of how Apache Kafka and 

Apache Spark Structured Streaming can work together to implement a highly scalable 

real-time processing architecture:

package org.apress.handsOnSpark3.com

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions.{col, from_json}

import org.apache.spark.sql.types.{IntegerType, StringType, StructType, 

StructField}

object SparkKafka {

  def main(args: Array[String]): Unit = {

      val spark: SparkSession = SparkSession.builder

Chapter 8  Streaming SourCeS and SinkS



297

      .master("local[3]")

      .appName("SparkStructuredStreamingHospital")

      .getOrCreate()

      spark.sparkContext.setLogLevel("ERROR")

      import spark.implicits._

      val df = spark.readStream

      .format("kafka")

      .option("kafka.bootstrap.servers", "localhost:9092")

      .option("subscribe", "patient")

      .option("startingOffsets", "earliest")

      .load()

      df.printSchema()

      val PatientsSchema = StructType(Array(

      StructField("NSS", StringType),

      StructField("Nom", StringType),

      StructField("DID", IntegerType),

      StructField("DNom", StringType),

      StructField("Fecha", StringType))

      )

      val patient = df.selectExpr("CAST(value AS STRING)")

      .select(from_json(col("value"), PatientsSchema).as("data"))

      .select("data.*")

      patient.printSchema()

      val query = patient.writeStream

      .format("console")

      .outputMode("append")

      .start()

      .awaitTermination()

  }

}
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As soon as you have your code ready, it is time to give it a try. The first thing we are 

going to do is to start the Kafka environment.

Note at the time this book was written, kafka 3.4.0 was the latest release and 
the one used in our examples. to be able to execute the code shown before, your 
local environment must have Java 8+ installed.

Apache Kafka can be started using ZooKeeper or KRaft. In this book we are using 

only the former.

Firstly, open a terminal session and from your $KAFKA_HOME directory execute the 

following commands in order to start all services in the correct order. Run the following 

commands to start the ZooKeeper service with the default configuration:

$ bin/zookeeper-server-start.sh config/zookeeper.properties

Secondly, open another terminal session and run the following commands to start 

the Kafka broker service with the default configuration as well:

$ bin/kafka-server-start.sh config/server.properties

As soon as all preceding services are successfully running, a basic Kafka environment 

will be ready to use. However, before we can write our first events, we have to create a topic.

Therefore, open another terminal session and run the following code to create a 

“patient” topic to use with our Hospital Queue Management System data examples:

$ bin/kafka-topics.sh --create --topic patient --bootstrap-server 

localhost:9092

The kafka-topics.sh command without any arguments can also be used to display 

usage information. For example, it can be employed to show the details of the new 

topic, such as the partition count, replicas, etc. of the patient topic. You can execute the 

following command and options, to display that information:

bin/kafka-topics.sh --describe --topic patient --bootstrap-server 

localhost:9092

Topic: patient    TopicId: Bhq8M7cgTVqRrV18nT7dzg    PartitionCount: 

1    ReplicationFactor: 1    Configs:

    Topic: patient    Partition: 0    Leader: 0    Replicas: 0    Isr: 0
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Now is time to write some events into the patient topic just created and see the 

results. To do that, we are going to create a Kafka producer using the “bin/kafka-

console- producer.sh”, which is located in the Kafka directory.

A Kafka producer is a client application that communicates with the Kafka brokers 

for writing events into topics. Once the information is received, the brokers will save 

it in a fault-tolerant storage for as long as we could need it, allegedly forever. This is 

the reason our Spark application is going to be able to asynchronously consume the 

information stored in our example topic.

To see how it works, open a new terminal session and run the producer console 

client, as shown in the following, to write some events into our “patient” topic just 

created. In this example we are going to use the data from the JSON files of Chapter 6. By 

default, every line you type will be a new event being written to the “patient” topic:

$ bin/kafka-console-producer.sh --topic patient --bootstrap-server 

localhost:9092

>{"NSS":"4567","Nom":"Marcos", "DID":40, "DNom":"Gastro", "Fecha":"01-09-2022"}

>{"NSS":"5678","Nom":"Sonia", "DID":50, "DNom":"Gineco", "Fecha":"01-09-2022"}

>{"NSS":"6789","Nom":"Eduardo", "DID":10, "DNom":"Cardio", 

"Fecha":"01-09-2022"}

>{"NSS":"1234","Nom":"María", "DID":10, "DNom":"Cardio", "Fecha":"01-09-2022"}

>{"NSS":"4567","Nom":"Marcos", "DID":40, "DNom":"Gastro", "Fecha":"01-09-2022"}

> . . .

> . . .

> . . .

>{"NSS":"2345","Nom":"Emilio", "DID":20, "DNom":"Neuro", "Fecha":"01-09-2022"}

>{"NSS":"3456","Nom":"Marta", "DID":30, "DNom":"Endo", "Fecha":"01-09-2022"}

>{"NSS":"4567","Nom":"Marcos", "DID":40, "DNom":"Gastro", 

"Fecha":"01-09-2022"}

>{"NSS":"4567","Nom":"Marcos", "DID":40, "DNom":"Gastro", 

"Fecha":"01-09-2022"}

>{"NSS":"5678","Nom":"Sonia", "DID":50, "DNom":"Gineco", "Fecha":"01-09-2022"}

>{"NSS":"6789","Nom":"Eduardo", "DID":10, "DNom":"Cardio", 

"Fecha":"01-09-2022"}

>{"NSS":"1234","Nom":"María", "DID":10, "DNom":"Cardio", 

"Fecha":"01-09-2022"}
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After pasting the content of the JSON files onto the Kafka producer console, run your 

example program as follows:

$SPARK_HOME/bin/spark-submit --class org.apress.handsOnSpark3.com.

SparkKafka --master yarn --packages org.apache.spark:spark-sql- 

kafka-0-10_2.12:3.2.0 /PATH/TO/JAR/FILE/HandsOnSpark3- Structured_Streaming_

Hospital- 1.0.jar

As soon as the program is running, you could see an output similar to the next one 

coming out from your program:

root

 |-- key: binary (nullable = true)

 |-- value: binary (nullable = true)

 |-- topic: string (nullable = true)

 |-- partition: integer (nullable = true)

 |-- offset: long (nullable = true)

 |-- timestamp: timestamp (nullable = true)

 |-- timestampType: integer (nullable = true)

root

 |-- NSS: string (nullable = true)

 |-- Nom: string (nullable = true)

 |-- DID: integer (nullable = true)

 |-- DNom: string (nullable = true)

 |-- Fecha: string (nullable = true)

-------------------------------------------

Batch: 0

-------------------------------------------

+----+-----+---+------+----------+

| NSS|  Nom|DID|  DNom|     Fecha|

+----+-----+---+------+----------+

|1234|María| 10|Cardio|01-09-2022|

+----+-----+---+------+----------+
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-------------------------------------------

Batch: 1

-------------------------------------------

+----+------+---+------+----------+

| NSS|   Nom|DID|  DNom|     Fecha|

+----+------+---+------+----------+

|4567|Marcos| 40|Gastro|01-09-2022|

|5678| Sonia| 50|Gineco|01-09-2022|

+----+------+---+------+----------+

-------------------------------------------

Batch: 2

-------------------------------------------

+----+-------+---+------+----------+

| NSS|    Nom|DID|  DNom|     Fecha|

+----+-------+---+------+----------+

|6789|Eduardo| 10|Cardio|01-09-2022|

+----+-------+---+------+----------+

-------------------------------------------

Batch: 3

-------------------------------------------

+----+------+---+------+----------+

| NSS|   Nom|DID|  DNom|     Fecha|

+----+------+---+------+----------+

|1234| María| 10|Cardio|01-09-2022|

|2345|Emilio| 20| Neuro|01-09-2022|

|3456| Marta| 30|  Endo|01-09-2022|

|4567|Marcos| 40|Gastro|01-09-2022|

+----+------+---+------+----------+
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-------------------------------------------

Batch: 4

-------------------------------------------

+----+-------+---+------+----------+

| NSS|    Nom|DID|  DNom|     Fecha|

+----+-------+---+------+----------+

|4567| Marcos| 40|Gastro|01-09-2022|

|5678|  Sonia| 50|Gineco|01-09-2022|

|6789|Eduardo| 10|Cardio|01-09-2022|

|1234|  María| 10|Cardio|01-09-2022|

|4567| Marcos| 40|Gastro|01-09-2022|

|5678|  Sonia| 50|Gineco|01-09-2022|

|6789|Eduardo| 10|Cardio|01-09-2022|

|1234|  María| 10|Cardio|01-09-2022|

|2345| Emilio| 20| Neuro|01-09-2022|

|3456|  Marta| 30|  Endo|01-09-2022|

|4567| Marcos| 40|Gastro|01-09-2022|

+----+-------+---+------+----------+

To double-check the results of your streaming process, you can also read the events 

from the Kafka brokers using a Kafka consumer, which is a client application that 

subscribes to (reads and processes) events.

To see how that works, open another terminal session and run the consumer console 

client as shown in the following, to read the patient topic we created before:

$ bin/kafka-console-consumer.sh --topic patient --from-beginning  

--bootstrap-server localhost:9092

You will see on your screen an output similar to the following one:

{"NSS":"1234","Nom":"María", "DID":10, "DNom":"Cardio", "Fecha":"01-09-2022"}

{"NSS":"2345","Nom":"Emilio", "DID":20, "DNom":"Neuro", "Fecha":"01-09-2022"}

{"NSS":"3456","Nom":"Marta", "DID":30, "DNom":"Endo", "Fecha":"01-09-2022"}

{"NSS":"4567","Nom":"Marcos", "DID":40, "DNom":"Gastro", 

"Fecha":"01-09-2022"}

. . .

. . .
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{"NSS":"4567","Nom":"Marcos", "DID":40, "DNom":"Gastro", 

"Fecha":"01-09-2022"}

{"NSS":"5678","Nom":"Sonia", "DID":50, "DNom":"Gineco", "Fecha":"01-09-2022"}

{"NSS":"6789","Nom":"Eduardo", "DID":10, "DNom":"Cardio", 

"Fecha":"01-09-2022"}

To be able to compile the code examples used in this section, you have to use the 

correct Kafka dependencies and Scala compiler version, and all depend on your Kafka, 

Spark, and Scala versions installed.

So far, we have talked about Spark built-in streaming data sources like TCP/IP 

sockets, files, Apache Kafka, etc. Other advanced streaming applications that can be 

paired with Apache Spark to create stream pipes could be Kinesis. In the next section, 

we are going to see how to create custom stream data sources using tools primarily not 

intended for that purpose. In particular we are going to show you how to stream data 

from a NoSQL database such as MongoDB.

 Reading Streaming Data from MongoDB
Spark Streaming allows live analysis of data streams read from MongoDB. In this section 

we are going to stream data between MongoDB and Spark using Spark Structured 

Streaming and the new continuous processing trigger.

To accomplish our task, we are also going to use the new v2 MongoDB Spark 

connector. The latest 10.x series connector provides native integration between Spark 

Structured Streaming and MongoDB and supports the new continuous trigger–type 

 streaming. This connector also takes advantage of one of the features of MongoDB 

version 5.1 and onward, called a “change stream cursor,” to subscribe to information 

changes in the database.

Therefore, with this connector, we are going to open an input stream connection 

from our MongoDB database and at the same time set up a MongoDB change stream 

cursor to the designated database and data collection. This feature triggers a change 

stream event as soon as new documents are inserted or the existing ones are modified 

or deleted. Those event changes are forwarded to the specified consumer, in our 

case Spark.
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In Figure 8-5 you can see an example use case in which Spark and MongoDB are 

coupled to build an event streaming architecture.

Figure 8-5. Spark-MongoDB event streaming architecture

Consider the following example that streams live information regarding medical 

appointments from a MongoDB Atlas cluster onto our Hospital Queue Management 

System application we have been using in previous chapters:

{"NSS":"2345","Nom":"Emilio", "DID":20, "DNom":"Neuro", 

"Fecha":"01-09-2022"}

{"NSS":"3456","Nom":"Marta", "DID":30, "DNom":"Endo", "Fecha":"01-09-2022"}

Information like this in a MongoDB document looks as follows:

{

  "_id": {

      "$oid": "640cba70f9972564d8c4ef2f"

  },

  "NSS": "2345",

  "Nom": "Emilio",

  "DID": 20,

  "DNom": "Neuro",

  "Fecha": "01-09-2022"

}
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In the next code snippet, we will use the new MongoDB Spark connector to read data 

from our MongoDB data collection:

import org.apache.spark.sql.SparkSession

import org.apache.spark.{SparkConf, SparkContext}

import org.apache.spark.sql.streaming.Trigger

val spark:SparkSession = SparkSession

      .builder()

       .config("spark.jars.packages", "org.mongodb.spark:mongo-spark- 

connector:10.1.1")

      .master("local[*]")

      .appName("Hand-On-Spark3_File_Data_Source_MongoDB")

      .getOrCreate()

val sc = spark.sparkContext

sc.setLogLevel("ERROR")

val mongoDBURI = "mongodb+srv://<user>:<password>@hands-on-spark3.abcdef.

mongodb.net/?retryWrites=true&w=majority"

val columsOfInterest = List("NSS","Nom","DID","DNom","Fecha","_id")

// define a streaming query

val df = spark.readStream

  .format("mongodb")

  .option("spark.mongodb.connection.uri", mongoDBURI)

  .option("spark.mongodb.database", "MongoDB_Data_Source")

  .option("spark.mongodb.collection", "MongoDB_Data_Source")

  .option("spark.mongodb.change.stream.publish.full.document.only", "true")

  .option("forceDeleteTempCheckpointLocation", "true")

  //.schema(PatientsSchema)

  .load()

df.printSchema()

if (df.isStreaming) printf(" ----- Streaming is running -----! \n")

import spark.implicits._
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val groupDF = df.select(columsOfInterest.map(col): _*) // Here you could do 

data transformation

groupDF.printSchema()

groupDF.writeStream

      .outputMode("append")

      .option("forceDeleteTempCheckpointLocation", "true")

      .format("console")

      .option("checkpointLocation", "/tmp/checkpointDir")

      //.trigger(Trigger.ProcessingTime("10 seconds"))

      .trigger(Trigger.Continuous("30 seconds"))

      .start()

      .awaitTermination()

Going through the preceding code, you notice that while reading from a MongoDB 

database, we do not necessarily need to define an information schema as the schema is 

inferred from the MongoDB collection.

In any case, if you prefer or need to define your data schema, you can do it and call 

the stream read process as follows.

First, define the schema of your data:

val PatientsSchema = StructType(Array(

      StructField("NSS", StringType),

      StructField("Nom", StringType),

      StructField("DID", IntegerType),

      StructField("DNom", StringType),

      StructField("Fecha", StringType),

     StructField("_id", StringType))

      )

After that, use it in combination with your readStream method like this, to define the 

schema of the incoming data:

val df = spark.readStream

  .format("mongodb")

  .option("spark.mongodb.connection.uri", mongoDBURI)

  .option("spark.mongodb.database", "MongoDB_Data_Source")
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  .option("spark.mongodb.collection", "MongoDB_Data_Source")

  .option("spark.mongodb.change.stream.publish.full.document.only", "true")

  .option("forceDeleteTempCheckpointLocation", "true")

  .schema(PatientsSchema)

  .load()

Another code line to pay attention to is the following one:

if (df.isStreaming) printf(" ----- Streaming is running -----! \n")

We have used the property isStreaming to verify that the dataset is streaming. It 

returns true if the df dataset contains one or more data sources that constantly send data 

as it arrives.

Finally, when writing the streamed data to the console, we have chosen the 

continuous trigger type as it is supported by the latest MongoDB Spark connector.

In this case, we have set the trigger to “30 s” for the sake of readability, as using a  

“1 s” trigger, for instance, would have been pulling data continuously to the console and 

it would have been more difficult to collect it for the book:

 .trigger(Trigger.Continuous("30 seconds"))

Nevertheless, you can use any of the other supported trigger types, such as

• Default trigger: It runs micro-batches as soon as possible.

• ProcessingTime trigger: It triggers micro-batches with a time interval 

specified.

• One-time trigger: It will execute only one micro-batch, process the 

information available, and stop.

• Available-now trigger: It is similar to the one-time trigger with the 

difference that it is designed to achieve better query scalability trying 

to process data in multiple micro-batches based on the configured 

source options (e.g., maxFilesPerTrigger).

In the next code example, we show how to modify the previous program to use 

Trigger.ProcessingTime with a 10 s interval:

groupDF.writeStream

    .outputMode("append")

    .option("forceDeleteTempCheckpointLocation", "true")
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    .format("console")

    .option("checkpointLocation", "/tmp/checkpointDir")

    .trigger(Trigger.ProcessingTime("10 seconds"))

    .start()

    .awaitTermination()

Well, now it is time to give the program a try.

As soon as you execute the program, insert some documents (information) in your 

database. You can do as it as displayed in Figure 8-6 if you are using a graphical interface 

such as MongoDB Compass.

Figure 8-6. Inserting a new document into the MongoDB database

Once the new document is inserted into the MongoDB database, you can see it 

displayed as in Figure 8-7.
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Figure 8-7. A new document is inserted into a MongoDB database and collection

You should see an outcome similar to the following one coming out from your 

application:

root

|-- _id: string (nullable = true)

|-- NSS: string (nullable = true)

|-- Nom: string (nullable = true)

|-- DID: integer (nullable = true)

|-- DNom: string (nullable = true)

|-- Fecha: string (nullable = true)

----- Streaming is running -----!

… removed for brevity …
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-------------------------------------------

Batch: 1

-------------------------------------------

+----+------+---+------+----------+--------------------+

| NSS|   Nom|DID|  DNom|     Fecha|                 _id|

+----+------+---+------+----------+--------------------+

|3456| Marta| 30|  Endo|01-09-2022|640cbaa7f9972564d...|

|4567|Marcos| 40|Gastro|01-09-2022|640cbab3f9972564d...|

+----+------+---+------+----------+--------------------+

-------------------------------------------

Batch: 2

-------------------------------------------

+----+-------+---+------+----------+--------------------+

| NSS|    Nom|DID|  DNom|     Fecha|                 _id|

+----+-------+---+------+----------+--------------------+

|4567| Marcos| 40|Gastro|01-09-2022|640cbabdf9972564d...|

|5678|  Sonia| 50|Gineco|01-09-2022|640cbac8f9972564d...|

|6789|Eduardo| 10|Cardio|01-09-2022|640cbad3f9972564d...|

+----+-------+---+------+----------+--------------------+

-------------------------------------------

Batch: 3

-------------------------------------------

+----+-----+---+------+----------+--------------------+

| NSS|  Nom|DID|  DNom|     Fecha|                 _id|

+----+-----+---+------+----------+--------------------+

|1234|María| 10|Cardio|01-09-2022|640cbadcf9972564d...|

+----+-----+---+------+----------+--------------------+

As we have used the continuous trigger type with a 30 s interval, the data is not 

streamed as it is registered, but every 30 s; otherwise, you could not see aggregated data 

in different batches, unless you would be able to type quicker that the server is able to 

process the information.

Now, after we have seen several stream sources, it is time to deal with data storage. In 

data streaming terminology, those stores are known as data sinks.
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8.2  Spark Streaming Data Sinks
As we have seen so far, Apache Spark Streaming is composed of three major logical 

components: a data source (input source), the processing engine (business logic), 

and finally an output destination (sink) for the resulting information after all the 

computations, aggregations, transformations, etc. have been performed.

Thus, in Spark Streaming, output sinks are used to save business logic applied to an 

external source. We have already seen in previous chapters that Spark Streaming uses the 

class org.apache.spark.sql.streaming.DataStreamWriter as an interface to write a 

streaming DataFrame/dataset to external storage systems via the writeStream method.

Spark includes a set of built-in output sinks:

• Console sink

• File sink

• Kafka sink

• ForeachBatch sink

• Foreach sink

All of them are natively supported by Spark Structured Streaming. The first one, the 

console sink, is mostly intended for testing and debugging as it does not support fault 

tolerance. The first three (console, file, and Kafka sinks) are already defined output 

formats: console, as in format(“console”); file, as in format(“csv”)(or “json”, “orc”, 

or “parquet”); and “kafka”. But what about writing the stream output to an arbitrary 

storage system like a NoSQL database like MongoDB or to a relational database like 

PostgreSQL? That is when Foreach and ForeachBatch sinks come into play.

Next, we study each one of them in detail.

 Writing Streaming Data to the Console Sink
As you have already seen in our examples, the results are displayed onto the console. 

This data sink is not primarily intended for production systems; it would rather be a 

useful development and debugging tool.
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 Writing Streaming Data to the File Sink
The file sink stores the output data to a file system directory. Different file formats are 

supported such as JSON, ORC, CSV, and Parquet.

Here is an example of how you can save your streaming output to a CSV file. The 

code snippet is a modification of our streaming Hospital Queue Management System 

application to save processed data to a file system instead of outputting it to the console:

PatientDF.writeStream

     // You have to change this part of the code

      .format("csv")

      .option("path", "/tmp/streaming_output/csv")

      // … for this

      .format("parquet")

      .option("path", "/tmp/streaming_output/parquet")

      // ...

      .trigger(Trigger.ProcessingTime("5 seconds"))

      .option("checkpointLocation", checkpointDir)

      .outputMode("append")

      .option("truncate",false)

      .option("newRows",30)

      .start()

      .awaitTermination()

Now, if you have a look at the designated output directories, you should find an 

output similar to the one depicted in Figure 8-8.
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Figure 8-8. Example of streaming output to the file sink in CSV and 
Parquet formats

For the sake of simplicity and visibility, in Figure 8-8 we have paired both outputs 

together. The CSV output format is on the left, and the Parquet output format is on 

the right.

 Writing Streaming Data to the Kafka Sink
The Kafka sink publishes the output to one or more topics in Kafka.

Here is an example of how you can save your streaming output to a Kafka topic or topics:

counts.writeStream

 .format("kafka")

 .option("kafka.bootstrap.servers","host1:port1,host2:port2")

 // ...

 .option("topic", "patient")

 .option("checkpointLocation", "/tmp/kafka_checkpoint")

 .start()

 .awaitTermination()
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Pay attention to the .option("kafka.bootstrap.servers","host1:port1,host2

:port2") line. As you can see, bootstrap.servers is a comma-separated list of socket 

connections (host and port pairs) corresponding to the IP addresses of the Kafka brokers 

in a “bootstrap” Kafka cluster. They are used by Kafka clients (producers and consumers) 

to connect to Kafka clusters.

So far we took advantage of sinks where the output format was already natively 

(built-in) supported like file, Kafka, or console. Now, we are going to study how to apply 

our own business logic to each stream record before saving it and how to write the 

information to our own defined data store using foreachBatch and foreach data sinks.

The main difference between the both of them is that while foreachBatch performs 

custom logic at the micro-batch level, foreach performs that custom logic at the 

row level.

Let’s now study those two sinks.

 Writing Streaming Data to the ForeachBatch Sink
The ForeachBatch sink takes a user-defined function that is executed on the output data 

for every micro-batch of a streaming query, for example:

def saveToCSV = (df: DataFrame, timeStamp: Long) => {

      df.withColumn("timeStamp", date_format(current_date(),"yyyyMMdd"))

      .write.format("csv")

      .option("path", "/tmp/streaming_output/foreachBatch")

      .mode("append")

      .save()

}

// ...

// ...

PatientDF.writeStream

      .trigger(Trigger.ProcessingTime("5 seconds"))

      .option("checkpointLocation", checkpointDir)

      .outputMode("append")

      .foreachBatch(saveToCSV)

      .start()

      .awaitTermination()
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As you can see, this code snippet is a small modification of our previous examples. 

First of all, we have defined our own writing business logic encapsulated inside the 

saveToCSV() function. This function adds a timestamp to each micro-batch processed.

Here is the code example:

// File Sink to CSV

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types.{IntegerType, StringType, StructField,  

StructType,DoubleType,LongType}

import org.apache.spark.sql.{DataFrame, Dataset, Encoders, SparkSession}

import java.io.IOException

import org.apache.spark.sql.streaming._

import org.apache.spark.sql.streaming.{GroupState,GroupStateTimeout, 

OutputMode}

import org.apache.spark.sql.DataFrame

val PatientsSchema = StructType(Array(

      StructField("NSS", StringType),

      StructField("Nom", StringType),

      StructField("DID", IntegerType),

      StructField("DNom", StringType),

      StructField("Fecha", StringType))

      )

case class Patient(

      NSS: String,

      Nom: String,

      DID: Option[Long],

      DNom: String,

      Fecha: String

)

def saveToCSV = (df: DataFrame, timeStamp: Long) => {

      df.withColumn("timeStamp", date_format(current_date(),"yyyyMMdd"))

      .write.format("csv")

      .option("path", "/tmp/streaming_output/foreachBatch")
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      .mode("append")

      .save()

}

val spark:SparkSession = SparkSession.builder()

      .master("local[*]")

      .appName("Hand-On-Spark3_Socket_Data_Source")

      .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")

import spark.implicits._

val host = "localhost"

val port = 9999

val checkpointDir = "/tmp/streaming_checkpoint"

try {

      val PatientDS = spark.readStream

      .format("socket")

      .option("host",host)

      .option("port",port)

      .load()

      .select(from_json(col("value"), PatientsSchema).as("patient"))

      .selectExpr("Patient.*")

      .as[Patient]

      printf("\n Listening and ready... \n")

      val PatientDF = PatientDS.select("*")

      PatientDF.writeStream

      .trigger(Trigger.ProcessingTime("5 seconds"))

      .option("checkpointLocation", checkpointDir)

      .outputMode("append")

      .foreachBatch(saveToCSV)

      .start()

      .awaitTermination()

} catch {
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       case e: java.net.ConnectException => println("Error establishing 

connection to " + host + ":" + port)

      case e: IOException => println("IOException occurred")

      case t: Throwable => println("Error receiving data", t)

}finally {

      println("In finally block")

}

Now, open a terminal session and as usual type

nc -lk 9999

Then, run the preceding code example, and when you see the following in your 

notebook

Listening and ready...

go back to the previous terminal session and paste the JSON examples we provided 

you in Chapter 6, for instance:

{"NSS":"1234","Nom":"María", "DID":10, "DNom":"Cardio", 

"Fecha":"01-09-2022"}

. . .

{"NSS":"2345","Nom":"Emilio", "DID":20, "DNom":"Neuro", 

"Fecha":"01-09-2022"}

{"NSS":"3456","Nom":"Marta", "DID":30, "DNom":"Endo", "Fecha":"01-09-2022"}

After running the previous program and pasting the data to the terminal console, 

if you have a look at the designated output directory path /tmp/streaming_output/

foreachBatch/, you should find a bunch of files similar to the following:

/tmp/streaming_output/foreachBatch/

├── part-00000-07c12f65-b1d6-4c7b-b50d-2d8b25d724b8-c000.csv
├── part-00000-63507ff8-a09a-4c8e-a526-28890c170d96-c000.csv
├── part-00000-9a2caabe-7d84-4799-b788-a633cfc32042-c000.csv
├── part-00000-dabb8320-0c0e-4bb5-ad19-c36a53ac8d1e-c000.csv
├── part-00000-df0c4ba0-a9f0-40ed-b773-b879488b0a85-c000.csv
├── part-00000-f924d5cc-8e4a-4d5f-91b7-965ce2ac8710-c000.csv
├── part-00000-fd07c2e4-1db1-441c-8199-a69a064efe75-c000.csv
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├── part-00001-07c12f65-b1d6-4c7b-b50d-2d8b25d724b8-c000.csv
├── part-00001-63507ff8-a09a-4c8e-a526-28890c170d96-c000.csv
├── part-00001-9a2caabe-7d84-4799-b788-a633cfc32042-c000.csv
├── part-00001-df0c4ba0-a9f0-40ed-b773-b879488b0a85-c000.csv
├── part-00001-fd07c2e4-1db1-441c-8199-a69a064efe75-c000.csv
├── part-00002-07c12f65-b1d6-4c7b-b50d-2d8b25d724b8-c000.csv
├── part-00002-9a2caabe-7d84-4799-b788-a633cfc32042-c000.csv
├── part-00002-df0c4ba0-a9f0-40ed-b773-b879488b0a85-c000.csv
├── part-00002-fd07c2e4-1db1-441c-8199-a69a064efe75-c000.csv
├── part-00003-07c12f65-b1d6-4c7b-b50d-2d8b25d724b8-c000.csv
├── part-00003-df0c4ba0-a9f0-40ed-b773-b879488b0a85-c000.csv
├── part-00003-fd07c2e4-1db1-441c-8199-a69a064efe75-c000.csv
├── part-00004-07c12f65-b1d6-4c7b-b50d-2d8b25d724b8-c000.csv
├── part-00004-df0c4ba0-a9f0-40ed-b773-b879488b0a85-c000.csv
├── part-00005-07c12f65-b1d6-4c7b-b50d-2d8b25d724b8-c000.csv
├── part-00005-df0c4ba0-a9f0-40ed-b773-b879488b0a85-c000.csv
└── _SUCCESS

Remember, Spark by default writes to disk in a distributed manner; therefore, you are 

going to find the general program output as a sequence of partitioned files.

For example, we have copied and pasted the following JSON string into our console 

session:

{"NSS":"1009","Nom":"Julia", "DID":20, "DNom":"Neuro", 

"Fecha":"01-09-2022"}

Now, if we open the file part-00000-07c12f65-b1d6-4c7b-

b50d-2d8b25d724b8- c000.csv, for example

vi part-00000-07c12f65-b1d6-4c7b-b50d-2d8b25d724b8-c000.csv

we see the following content, including the timestamp at the end of the record, as we 

expected:

1009,Julia,20,Neuro,01-09-2022,20230317
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Exactly the same could be seen opening other output files:

{"NSS":"2345","Nom":"Emilio", "DID":20, "DNom":"Neuro", 

"Fecha":"01-09-2022"}

2345,Emilio,20,Neuro,01-09-2022,20230317

{"NSS":"4567","Nom":"Marcos", "DID":40, "DNom":"Gastro", 

"Fecha":"01-09-2022"}

4567,Marcos,40,Gastro,01-09-2022,20230317

And so forth.

In a similar way, you could write your own function to use PostgreSQL as a data sink. 

You code could look like this:

def savePostgreSql = (df: DataFrame, timeStamp: Long) => {

      val url = "jdbc:postgresql://<host>:5432/database"

      df

      .withColumn("timeStamp", date_format(current_date(),"yyyyMMdd"))

      .write.format("jdbc")

      .option("driver": "org.postgresql.Driver")

      .option("url", url)

      .option("dbtable", "<your_table>")

      .option("user", "<your_user>")

      .option("password", <your_pasword>)

      .mode("append")

      .save()

}

Summarizing, foreachBatch writes each micro-batch to our designated storage 

applying our custom logic.

 Writing Streaming Data to the Foreach Sink
The Foreach sink permits the application of user-defined business logic on each row 

during the data writing process. It can be used to write stream data to any kind of 

storage. If for any reason we cannot use foreachBatch, because a specific batch data 
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writer does not exist or you need to use the continuous processing mode, then foreach 

could be the solution. When using foreach we have to implement three methods (open, 

process, and close):

• open: Is the function in charge of opening the connection

• process: Writes data to the designated connection

• close: Is the function responsible for closing the connection

Spark Structured Streaming implements the preceding methods in the following 

sequence: Method open() is called for every partition (partition_id) for every 

streaming batch/epoch (epoch_id) as open(partitionId, epochId).

If open(partitionId, epochId) returns true for every row in the partition and for 

every batch/epoch, then the method process(row) is executed.

The method close(error) is called if any error appears while processing the 

data rows.

On the other hand, the close() method is executed if any open() method exists and 

returns successfully, provided no system failure occurred in between1:

counts.writeStream

.foreach( "some user logic goes here")

// ...

.start()

.awaitTermination()

Let’s see now with a simple example how foreach can be implemented. For the 

purpose of this example, we have slightly modified our previous code snippet used for 

the foreachBatch sink to accommodate it to meet our necessities:

// Console Sink with foreach()

import org.apache.spark.sql.{Column, Row, SparkSession}

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types.{IntegerType, StringType, StructField,  

StructType,DoubleType,LongType}

import org.apache.spark.sql.{DataFrame, Dataset, Encoders, SparkSession}

1 More information can be found here: https://docs.databricks.com/structured-streaming/
foreach.html

Chapter 8  Streaming SourCeS and SinkS

https://docs.databricks.com/structured-streaming/foreach.html
https://docs.databricks.com/structured-streaming/foreach.html


321

import java.io.IOException

import org.apache.spark.sql.streaming._

import org.apache.spark.sql.streaming.{GroupState,GroupStateTimeout, 

OutputMode}

import org.apache.spark.sql.{DataFrame,ForeachWriter}

val PatientsSchema = StructType(Array(

      StructField("NSS", StringType),

      StructField("Nom", StringType),

      StructField("DID", IntegerType),

      StructField("DNom", StringType),

      StructField("Fecha", StringType))

      )

case class Patient(

      NSS: String,

      Nom: String,

      DID: Option[Long],

      DNom: String,

      Fecha: String

)

val customWriterToConsole = new ForeachWriter[Row] {

      override def open(partitionId: Long, version: Long) = true

      override def process(record: Row) = {

      // You can transform record into a Sequence a loop through it

      //record.toSeq.foreach{col => println(col) }

      // ... or you can just print record field by field

      println("NSS: " + record.getAs("NSS")

             +" Nom: "  + record.getAs("Nom")

             +" DID: "  + record.getAs("DID")

             +" DNom: "  + record.getAs("DNom")

             +" Fecha : "  + record.getAs("Fecha"))

      }
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      override def close(errorOrNull: Throwable) = {}

}

val spark:SparkSession = SparkSession.builder()

      .master("local[*]")

      .appName("Hand-On-Spark3_Socket_Data_Source")

      .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")

import spark.implicits._

val host = "localhost"

val port = 9999

val checkpointDir = "/tmp/streaming_checkpoint"

try {

      val PatientDS = spark.readStream

      .format("socket")

      .option("host",host)

      .option("port",port)

      .load()

      .select(from_json(col("value"), PatientsSchema).as("patient"))

      .selectExpr("Patient.*")

      .as[Patient]

      printf("\n Listening and ready... \n")

      val PatientDF = PatientDS.select("*")

      PatientDF.writeStream

      .trigger(Trigger.ProcessingTime("5 seconds"))

      .option("checkpointLocation", checkpointDir)

      .outputMode("append")

      .foreach(customWriterToConsole)

      .start()

      .awaitTermination()
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} catch {

       case e: java.net.ConnectException => println("Error establishing 

connection to " + host + ":" + port)

      case e: IOException => println("IOException occurred")

      case t: Throwable => println("Error receiving data", t)

}finally {

      println("In finally block")

}

Before executing the preceding code, open a terminal session and create a socket 

session as follows:

$ nc -lk 9999

Once the socket session has been created, it is time to run the code. As soon as you 

see the line Listening and ready... on your screen, go back to the terminal with the socket 

session open and start typing JSON lines. You can use lines like following:

{"NSS":"1234","Nom":"María", "DID":10, "DNom":"Cardio", "Fecha":"01-09-2022"}

{"NSS":"2345","Nom":"Emilio", "DID":20, "DNom":"Neuro", "Fecha":"01-09-2022"}

{"NSS":"3456","Nom":"Marta", "DID":30, "DNom":"Endo", "Fecha":"01-09-2022"}

{"NSS":"4567","Nom":"Marcos", "DID":40, "DNom":"Gastro", "Fecha":"01-09-2022"}

{"NSS":"5678","Nom":"Sonia", "DID":50, "DNom":"Gineco", "Fecha":"01-09-2022"}

{"NSS":"6789","Nom":"Eduardo", "DID":10, "DNom":"Cardio", "Fecha":"01-09-2022"}

{"NSS":"1001","Nom":"Lorena", "DID":10, "DNom":"Cardio", "Fecha":"01-09-2022"}

{"NSS":"1006","Nom":"Sara", "DID":20, "DNom":"Neuro", "Fecha":"01-09-2022"}

{"NSS":"1002","Nom":"Teresa", "DID":10, "DNom":"Cardio", "Fecha":"01-09-2022"}

{"NSS":"1003","Nom":"Luis", "DID":20, "DNom":"Neuro", "Fecha":"01-09-2022"}

You will see an output like this coming out of you program:

 Listening and ready...

NSS: 1234 Nom: María DID: 10 DNom: Cardio Fecha : 01-09-2022

NSS: 2345 Nom: Emilio DID: 20 DNom: Neuro Fecha : 01-09-2022

NSS: 3456 Nom: Marta DID: 30 DNom: Endo Fecha : 01-09-2022

NSS: 4567 Nom: Marcos DID: 40 DNom: Gastro Fecha : 01-09-2022

NSS: 5678 Nom: Sonia DID: 50 DNom: Gineco Fecha : 01-09-2022

NSS: 6789 Nom: Eduardo DID: 10 DNom: Cardio Fecha : 01-09-2022

Chapter 8  Streaming SourCeS and SinkS



324

NSS: 1001 Nom: Lorena DID: 10 DNom: Cardio Fecha : 01-09-2022

NSS: 1006 Nom: Sara DID: 20 DNom: Neuro Fecha : 01-09-2022

NSS: 1002 Nom: Teresa DID: 10 DNom: Cardio Fecha : 01-09-2022

NSS: 1003 Nom: Luis DID: 20 DNom: Neuro Fecha : 01-09-2022

Going back to the previous code example, you can see that the only differences 

are the customWriterToConsole() function implementing the ForeachWriter and the 

foreach sink call itself, inside the writeStream method.

Notice the implementation of the three mandatory methods—open, process, and 

finally close:

val customWriterToConsole = new ForeachWriter[Row] {

      override def open(partitionId: Long, version: Long) = true

      override def process(record: Row) = {

      // You can transform record into a Sequence a loop through it

      //record.toSeq.foreach{col => println(col) }

      // ... or you can just print record field by field

      println("NSS: " + record.getAs("NSS")

             +" Nom: "  + record.getAs("Nom")

             +" DID: "  + record.getAs("DID")

             +" DNom: "  + record.getAs("DNom")

             +" Fecha : "  + record.getAs("Fecha"))

      }

      override def close(errorOrNull: Throwable) = {}

}

And notice the foreach sink call inside the writeStream method:

PatientDF.writeStream

      .trigger(Trigger.ProcessingTime("5 seconds"))

      .option("checkpointLocation", checkpointDir)

      .outputMode("append")

      .foreach(customWriterToConsole)

      .start()

      .awaitTermination()
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You can modify the customWriterToConsole implementation to meet your 

particular needs.

 Writing Streaming Data to Other Data Sinks
In previous sections we have seen how to use the Spark Structured Streaming built-in 

data sinks. In this section we are going to see how to use the MongoDB Spark connector 

to stream live data to MongoDB.

MongoDB stores the information in JSON-like documents with a variable structure, 

offering a dynamic and flexible schema. MongoDB was designed for high availability and 

scalability and natively incorporates built-in replication and auto-sharding.

The MongoDB sink allows you to write events from Spark to a MongoDB instance. The 

sink connector converts the Spark streaming event data into a MongoDB document and 

will do an append or overwrite depending on the save mode configuration you choose.

The MongoDB sink connector expects the output database created up front, while 

the destination MongoDB collections can be created at runtime if they do not exist.

A graphical representation of the MongoDB connector for Spark can be seen in 

Figure 8-9.

Figure 8-9. MongoDB connector for Spark representation

Next, we are going to see a practical code example, showing how to use MongoDB 

as a Spark data sink. As in other previous examples, the program reads JSON files from 

a directory as soon as they emerge over there and inserts the data into a MongoDB 

collection. The JSON files we are using in this example are the patient examples we have 

been using so far in previous examples and the ones firstly included in Chapter 6:

import org.apache.spark.sql.SparkSession

import org.apache.spark.{SparkConf, SparkContext}

import org.apache.spark.sql.types.{IntegerType, StringType, StructField, 

StructType}
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val spark:SparkSession = SparkSession

      .builder()

       .config("spark.jars.packages", "org.mongodb.spark:mongo-spark- 

connector:10.1.1")

      .master("local[*]")

      .appName("Hand-On-Spark3_File_Data_Source_MongoDB_Sink")

      .getOrCreate()

val sc = spark.sparkContext

sc.setLogLevel("ERROR")

val mongoDBURI = "mongodb+srv://<user>:<password>@hands-on-spark3.akxgvpe.

mongodb.net/?retryWrites=true&w=majority"

val PatientsSchema = StructType(Array(

      StructField("NSS", StringType),

      StructField("Nom", StringType),

      StructField("DID", IntegerType),

      StructField("DNom", StringType),

      StructField("Fecha", StringType))

      )

val df = spark.readStream

      .schema(PatientsSchema)

      .option("checkpointLocation", "/tmp/checkpoint")

      .json("/tmp/stream_mongo")

df.printSchema()

val newDF = df.select("*") // Here you could transform your data

newDF.printSchema()

newDF.writeStream

      .format("mongodb")

      .option("checkpointLocation", "/tmp/checkpoint")

      .option("forceDeleteTempCheckpointLocation", "true")
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To see the code working, create a streaming directory, /tmp/stream_mongo, for 

example, where to copy your JSON files.

When you run the preceding code and you see the following output

root

|-- NSS: string (nullable = true)

|-- Nom: string (nullable = true)

|-- DID: integer (nullable = true)

|-- DNom: string (nullable = true)

|-- Fecha: string (nullable = true)

you can start copying files to the designated streaming directory. For the purpose of 

this example, we use the JSON files we used in Chapter 6. Here is an example of how you 

can do it:

$ cp /tmp/json/patient1.json /tmp/stream_mongo

$ cp /tmp/json/patient2.json /tmp/stream_mongo

$ cp /tmp/json/patient3.json /tmp/stream_mongo

$ cp /tmp/json/patient4.json /tmp/stream_mongo

$ cp /tmp/json/patient5.json /tmp/stream_mongo

$ cp /tmp/json/patient6.json /tmp/stream_mongo

Remember the information inside those files looks like this:

{"NSS":"1009","Nom":"Julia", "DID":20, "DNom":"Neuro", 

"Fecha":"01-09-2022"}

{"NSS":"1010","Nom":"Javier", "DID":30, "DNom":"Endo", 

"Fecha":"01-09-2022"}

{"NSS":"1011","Nom":"Laura", "DID":50, "DNom":"Gineco", 

"Fecha":"01-09-2022"}

{"NSS":"1012","Nom":"Nuria", "DID":10, "DNom":"Cardio", 

"Fecha":"01-09-2022"}

{"NSS":"1013","Nom":"Helena", "DID":10, "DNom":"Cardio", 

"Fecha":"01-09-2022"}

{"NSS":"1014","Nom":"Nati", "DID":10, "DNom":"Cardio", 

"Fecha":"01-09-2022"}
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Now, if you have a look at your MongoDB database—in our case we have used the 

graphical interface MongoDB Compass to do it—you could see the data inserted from 

the streaming process.

Figure 8-10 shows you how to filter the already recorded data using different data 

keys. In this case we have used the department ID (“DID”). Remember MongoDB stores 

the information in a JSON-like format, not in tables as traditional OLTP databases do.

Figure 8-10. MongoDB Compass filtering data by department ID (DID)

In Figure 8-11 you can see a similar filtering query, but in this case we have filtered 

by the Social Security Number (SSN).
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Figure 8-11. MongoDB Compass filtering data by Social Security Number (SSN)

Wrapping up, MongoDB is a well-known document-oriented, nonrelational 

database intended for use with semi-structured data. It is very flexible and can handle 

large volumes of heterogeneous information. Both MongoDB and Spark are published 

under a free and open source license and together constitute a solid pillar to consider in 

any modern data architecture.

8.3  Summary
In this chapter we went over the Spark Structured Streaming module. In particular 

we have studied the most common data sources and data sinks, regarding streaming 

data processing. Firstly, we studied the built-in Spark Structured Streaming data 

sources, paying special attention to the most typical ones: the file, socket, and Kafka 

sources. Kafka is one of most important streaming frameworks nowadays; therefore, 

we developed a specific code example showing how to use it as a live stream source. 

Secondly, we showed how to implement a custom data source and implemented 

another practical example how to do it with MongoDB. After that, we moved forward 

and repeated the same process with data sinks. First, we went through the defined data 

sinks, that is to say, the console sink, file sink, and Kafka sink. Later on, we studied the 
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foreachBatch and foreach sinks and analyzed how they can be used by a user to create 

their own tailor-made data sinks. To finalize, we also provided a practical example of a 

custom-made data sink implemented once again with MongoDB. In the next chapter, we 

are moving forward studying advanced streaming configurations, introducing the Event- 

Time Window Operations and Watermarking.
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CHAPTER 9

Event-Time 
Window Operations 
and Watermarking
After having studied the insights of Apache Spark Streaming and Structured Streaming, 

in this chapter, we are going to focus on time-based stream processing.

Data analytics is evolving from batch to stream data processing for many use 

cases. One of the reasons for this shift is that it is becoming more and more commonly 

accepted that streaming data is more suited to model the life we live. This is particularly 

true when we think about most of the systems we want to analyze and model—

autonomous cars receiving and emitting satellite navigation coordinates, Internet 

of things (IoT) devices exchanging signals, road sensors counting vehicles for traffic 

control, wearable devices, etc.—all have a common similarity; they all appear as a 

continuous stream of events and in a timely manner. In fact, streaming data sources are 

almost omnipresent.

Additionally, events are generated as a result of some activity, and in many scenarios 

they require some immediate action to be taken. Consider, for example, applications for 

fraud or anomaly detection or personalization, marketing, and advertising in real time 

as some of the most common use cases of real-time stream processing and event-driven 

applications.

Coherent time semantics are of paramount importance in stream processing as 

many operations in event processing such as aggregation over a time window, joins, and 

stragglers management depend on time.

In this chapter, we are going to go through the concept of temporal windows, also 

known as time windows, for stream processing, study Spark’s built-in window functions, 

and explain windowing semantics.
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9.1  Event-Time Processing
As mentioned just before, many operations in real-time event stream processing are 

depending on time. When dealing with events and time, we have several options of time 

marks for event, and depending on the use case at hand, we must prioritize one variant 

over the others:

• Event-time: It refers to the time in which the event was created, for 

example, produced by a sensor.

• Ingestion-time: It denotes the moment in time when the event 

was ingested by the event streaming platform. It is implemented 

by adding a timestamp to the event when it enters the streaming 

platform.

• Processing-time, also called Wall-clock-time: It is the moment when 

the event is effectively processed.

Next, Figure 9-1 graphically explains the previous event-time processing concepts.

Figure 9-1. Stream event-time processing schema

9.2  Stream Temporal Windows in Apache Spark
In real-time stream processing, performing actions on the data contained in temporal 

windows is one of the most common operations.
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Temporal windows, also known as time windows, group stream elements by time 

intervals. Apache Spark Structured Streaming also has event-time support and allows 

windowed computations over event time and native support for windowing functions. 

Before Apache version 3.2, Spark only supported “tumbling windows” and “sliding 

windows,” but starting with Spark 3.2, Spark also includes “session windows” which 

can also be used for both streaming and batch queries enabling engineers to develop 

complex stream processing jobs with minimal work.

With Structured Streaming, data aggregations are very similar to Spark grouped 

aggregations when applied to sliding windows. Regarding grouped aggregations, 

aggregated calculations are maintained for each different element of the grouping 

column. When it comes to window-based aggregations, aggregated calculations are 

maintained for each window the event-time value belongs to.

Therefore, at the moment this book was written, Spark offers three types of temporal 

windows to choose from:

• Tumbling windows

• Sliding windows

• Session windows

The common denominator of the precedent window types is that they are applied 

over continuous streaming of data, splitting it into finite collections of information. 

The application of temporal or finite time windows to stream data is particularly 

indicated when we would like to perform operations like aggregations, joins, and pattern 

identification. The next sections describe how the tumbling, sliding, and session window 

types work and how to practically implement them. Let’s study each one of them 

in detail.

 What Are Temporal Windows and Why Are They Important 
in Streaming
Consider our example of the Hospital Queue Management System we have been using 

so far. Consider as well that we have a counter device counting every 15 seconds the 

number of patients entering a hospital. The resulting stream of events could result like in 

Figure 9-2.
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Figure 9-2. Example of counting device delivering a stream of events

If we would like to know the number of patients entering the hospital, we could 

add up the number of patients counted. However, the nature of a stream is that we face 

a scenario of unbound data. That is to say, the flow of counts is endless, and therefore 

we cannot produce a final total of the number of patients entering the facilities. One 

alternative could be computing partial sums, that is to say, adding up the counts received 

and updating the partial sum with the new values as they are collected. Acting like this, 

we collect a series of running totals updated with new counts as it is shown in Figure 9-3.

Figure 9-3. Sequence of partial sums

However, a sequence of partial sums is a live metric as it is constantly updated. 

Therefore, the strategy of rolling sums cannot be the best option if you want to analyze 

data variability over time, for example, when is there a bigger influx of patients to the 

hospital, in the morning or evening? Or how many patients enter the hospital every unit 

of time as we see in Figure 9-4.
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Figure 9-4. Example of temporal window to count events per window time

To answer questions like the previous ones, we have different kinds of temporary 

window operations. Next we are going to study the tumbling window operations.

9.3  Tumbling Windows
Tumbling windows or nonoverlapping windows discretize a stream into nonoverlapping 

segments of data and apply a function against them, like the example depicted in 

Figure 9-5.

The main features of tumbling windows are that disjuncts repeat, and an event only 

belongs to one, and only one, tumbling window.

Figure 9-5. A ten-second tumbling window
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For the sake of simplicity, the previous figures are shown the same number of 

events per window interval; however, be advised that is not always going to happen, and 

 different numbers of events can fall in different temporary windows as is highlighted 

next in Figure 9-6.

Figure 9-6. A ten-second tumbling window with different number of events 
per window

The next code snippet uses a tumbling window of ten seconds’ size to perform 

an aggregate count of the number of patients entering the hospital over the same 

window time.

// Tumbling windows

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types.{IntegerType, StringType, StructField,  

StructType,DoubleType,LongType}

import org.apache.spark.sql.{DataFrame, Dataset, Encoders, SparkSession}

import java.io.IOException

import org.apache.spark.sql.streaming._

import org.apache.spark.sql.streaming.{GroupState,GroupStateTimeout, 

OutputMode}

import org.apache.spark.sql.DataFrame
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val PatientsSchema = StructType(Array(

      StructField("NSS", StringType),

      StructField("Nom", StringType),

      StructField("DID", IntegerType),

      StructField("DNom", StringType),

      StructField("Fecha", StringType))

      )

val spark:SparkSession = SparkSession.builder()

      .master("local[10]")

      .appName("Hand-On-Spark3_Socket_Data_Source")

      .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")

import spark.implicits._

try {

      val PatientDS = spark.readStream

      .schema(PatientsSchema)

      .json("/tmp/window")

      printf("\n Listening and ready... \n")

      val PatientDF = PatientDS

      .groupBy(window(col("Fecha"), "10 seconds"))

      .agg(count("DNom").alias("Suma_x_Dpt"))

      PatientDF.writeStream

         .outputMode("complete")

         .format("console")

         .option("truncate", false)

         .start()

         .awaitTermination()

} catch {

      case e: IOException => println("IOException occurred")

      case t: Throwable => println("Error receiving data", t)

}finally {

      println("In finally block")

}
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To run the previous code example, first of all you have to create the necessary data 

source (in our case “/tmp/window”) to pull the corresponding JSON files to.

Ones you have done so, run the code and when you see the message

Listening and ready...

Start copying files to the data source, for example:

$ cp json_file1.json /tmp/window

$ cp json_file2.json /tmp/window

$ cp json_file3.json /tmp/window

$ cp json_file4.json /tmp/window

$ cp json_file5.json /tmp/window

$ cp json_file6.json /tmp/window

$ cp json_file7.json /tmp/window

You will have a similar output like the following one coming out of your program:

 Listening and ready...

-------------------------------------------

Batch: 0

-------------------------------------------

+------------------------------------------+----------+

|window                                    |Suma_x_Dpt|

+------------------------------------------+----------+

|{2023-02-23 01:00:00, 2023-02-23 01:00:10}|1         |

+------------------------------------------+----------+

-------------------------------------------

Batch: 1

-------------------------------------------

+------------------------------------------+----------+

|window                                    |Suma_x_Dpt|

+------------------------------------------+----------+

|{2023-02-23 01:00:00, 2023-02-23 01:00:10}|3         |

+------------------------------------------+----------+
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-------------------------------------------

Batch: 2

-------------------------------------------

+------------------------------------------+----------+

|window                                    |Suma_x_Dpt|

+------------------------------------------+----------+

|{2023-02-23 01:00:00, 2023-02-23 01:00:10}|6         |

+------------------------------------------+----------+

-------------------------------------------

Batch: 3

-------------------------------------------

+------------------------------------------+----------+

|window                                    |Suma_x_Dpt|

+------------------------------------------+----------+

|{2023-02-23 01:00:00, 2023-02-23 01:00:10}|10        |

+------------------------------------------+----------+

-------------------------------------------

Batch: 4

-------------------------------------------

+------------------------------------------+----------+

|window                                    |Suma_x_Dpt|

+------------------------------------------+----------+

|{2023-02-23 01:00:00, 2023-02-23 01:00:10}|10        |

|{2023-02-23 01:00:10, 2023-02-23 01:00:20}|1         |

+------------------------------------------+----------+

-------------------------------------------

Batch: 5

-------------------------------------------

+------------------------------------------+----------+

|window                                    |Suma_x_Dpt|

+------------------------------------------+----------+

|{2023-02-23 01:00:00, 2023-02-23 01:00:10}|10        |

|{2023-02-23 01:00:10, 2023-02-23 01:00:20}|1         |

+------------------------------------------+----------+
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-------------------------------------------

Batch: 6

-------------------------------------------

+------------------------------------------+----------+

|window                                    |Suma_x_Dpt|

+------------------------------------------+----------+

|{2023-02-23 01:00:00, 2023-02-23 01:00:10}|10        |

|{2023-02-23 01:00:10, 2023-02-23 01:00:20}|1         |

+------------------------------------------+----------+

Now if you introduce a small change in the previous code like this

      PatientDF.printSchema()

Before this part of the code

      PatientDF.writeStream

      .outputMode("complete")

      .format("console")

      .option("truncate", false)

      .start()

      .awaitTermination()

You will see the schema of your window data frame is like the following:

root

 |-- window: struct (nullable = true)

 |    |-- start: timestamp (nullable = true)

 |    |-- end: timestamp (nullable = true)

 |-- Suma_x_Dpt: long (nullable = false)

Therefore, if you prefer to see the window boundaries in separate columns, you can 

tweak the previous code as follows:

      val PatientDF = PatientDS

      .groupBy(window(col("Fecha"), "10 seconds"))

      .agg(count("DNom").alias("Suma_x_Dpt"))

      .select("window.start", "window.end", "Suma_x_Dpt")
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And you will see the window information as shown in the following:

Listening and ready...

-------------------------------------------

Batch: 0

-------------------------------------------

+-------------------+-------------------+----------+

|start              |end                |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:00|2023-02-23 01:00:10|1         |

+-------------------+-------------------+----------+

-------------------------------------------

Batch: 1

-------------------------------------------

+-------------------+-------------------+----------+

|start              |end                |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:00|2023-02-23 01:00:10|3         |

+-------------------+-------------------+----------+

-------------------------------------------

Batch: 2

-------------------------------------------

+-------------------+-------------------+----------+

|start              |end                |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:00|2023-02-23 01:00:10|6         |

+-------------------+-------------------+----------+

-------------------------------------------

Batch: 3

-------------------------------------------

+-------------------+-------------------+----------+

|start              |end                |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:00|2023-02-23 01:00:10|10        |

+-------------------+-------------------+----------+
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-------------------------------------------

Batch: 4

-------------------------------------------

+-------------------+-------------------+----------+

|start              |end                |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:00|2023-02-23 01:00:10|10        |

|2023-02-23 01:00:10|2023-02-23 01:00:20|1         |

+-------------------+-------------------+----------+

-------------------------------------------

Batch: 5

-------------------------------------------

+-------------------+-------------------+----------+

|start              |end                |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:00|2023-02-23 01:00:10|10        |

|2023-02-23 01:00:10|2023-02-23 01:00:20|1         |

+-------------------+-------------------+----------+

-------------------------------------------

Batch: 6

-------------------------------------------

+-------------------+-------------------+----------+

|start              |end                |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:00|2023-02-23 01:00:10|10        |

|2023-02-23 01:00:10|2023-02-23 01:00:20|1         |

+-------------------+-------------------+----------+

9.4  Sliding Windows
In certain cases, we might require a different kind of window. For example, we may need 

overlapping windows if we would like to know every 30 minutes how many patients 

entered the hospital during the last minute. To answer this kind of question, we need the 

sliding windows.
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Sliding windows like tumbling windows are “fixed-sized,” but unlike them, they can 

overlap. When window overlapping happens, an event can belong to multiple windows. 

Overlapping occurs when the duration of the slide is smaller than the duration of 

the window.

Thus, in Spark Streaming, to define a sliding window, two parameters are needed: 

the window size (interval) and a sliding offset (overlapping dimension). For example, in 

Figure 9-7, we have created a sliding window with ten seconds of size and sliding offset 

of five seconds.

Figure 9-7. A ten-second sliding windows with sliding offset of five seconds

In the next code example, we calculate the aggregated number of people entering the 

hospital every ten seconds. The example illustrates how to create a sliding window on 

the column Fecha for every ten seconds and adding a sliding offset of five seconds.

Note please notice the time intervals established are very narrow for the sake of 
usage illustration. the same code applied to a real hospital will probably use wider 
time intervals.
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// Sliding Windows

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types.{IntegerType, StringType, StructField,  

StructType,DoubleType,LongType}

import org.apache.spark.sql.{DataFrame, Dataset, Encoders, SparkSession}

import java.io.IOException

import org.apache.spark.sql.streaming._

import org.apache.spark.sql.streaming.{GroupState,GroupStateTimeout, 

OutputMode}

import org.apache.spark.sql.DataFrame

val PatientsSchema = StructType(Array(

      StructField("NSS", StringType),

      StructField("Nom", StringType),

      StructField("DID", IntegerType),

      StructField("DNom", StringType),

      StructField("Fecha", StringType))

      )

val spark:SparkSession = SparkSession.builder()

      .master("local[10]")

      .appName("Hand-On-Spark3_Socket_Data_Source")

      .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")

import spark.implicits._

try {

      val PatientDS = spark.readStream

      .schema(PatientsSchema)

      .json("/tmp/window")

      printf("\n Listening and ready... \n")

      val PatientDF = PatientDS

      .groupBy(window(col("Fecha"), "10 seconds", "5 seconds"))
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      .agg(count("DID").alias("Suma_x_Dpt"))

      PatientDF.writeStream

      .outputMode("complete")

      .format("console")

      .option("truncate", false)

      .start()

      .awaitTermination()

} catch {

      case e: IOException => println("IOException occurred")

      case t: Throwable => println("Error receiving data", t)

}finally {

      println("In finally block")

}

As we did in our previous tumbling windows example, before trying to run the 

previous code example, first you have to create the data source for the JSON files (“/tmp/

window” folder in our case). After that, you can start pouring JSON files to that directory. 

For example

$ cp json_file9.json /tmp/window

$ cp json_file8.json /tmp/window

$ cp json_file7.json /tmp/window

...

$ cp json_file1.json /tmp/window

As soon as you copy the mentioned files, and depending on the copying rate you 

apply, the program will create a window size of ten seconds with a sliding interval of five 

seconds. A new window of ten seconds will be created every 5, with a five-second gap 

from the beginning of the previous one, as it is shown in the next program output.

Listening and ready...

-------------------------------------------

Batch: 0

-------------------------------------------
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+------------------------------------------+----------+

|window                                    |Suma_x_Dpt|

+------------------------------------------+----------+

|{2023-02-23 01:00:25, 2023-02-23 01:00:35}|5         |

|{2023-02-23 01:00:35, 2023-02-23 01:00:45}|4         |

|{2023-02-23 01:00:30, 2023-02-23 01:00:40}|9         |

+------------------------------------------+----------+

-------------------------------------------

Batch: 1

-------------------------------------------

+------------------------------------------+----------+

|window                                    |Suma_x_Dpt|

+------------------------------------------+----------+

|{2023-02-23 01:00:25, 2023-02-23 01:00:35}|10        |

|{2023-02-23 01:00:20, 2023-02-23 01:00:30}|8         |

|{2023-02-23 01:00:35, 2023-02-23 01:00:45}|4         |

|{2023-02-23 01:00:30, 2023-02-23 01:00:40}|9         |

|{2023-02-23 01:00:15, 2023-02-23 01:00:25}|3         |

+------------------------------------------+----------+

-------------------------------------------

Batch: 2

-------------------------------------------

+------------------------------------------+----------+

|window                                    |Suma_x_Dpt|

+------------------------------------------+----------+

|{2023-02-23 01:00:25, 2023-02-23 01:00:35}|10        |

|{2023-02-23 01:00:20, 2023-02-23 01:00:30}|10        |

|{2023-02-23 01:00:35, 2023-02-23 01:00:45}|4         |

|{2023-02-23 01:00:10, 2023-02-23 01:00:20}|5         |

|{2023-02-23 01:00:30, 2023-02-23 01:00:40}|9         |

|{2023-02-23 01:00:15, 2023-02-23 01:00:25}|10        |

+------------------------------------------+----------+
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-------------------------------------------

Batch: 3

-------------------------------------------

+------------------------------------------+----------+

|window                                    |Suma_x_Dpt|

+------------------------------------------+----------+

|{2023-02-23 01:00:25, 2023-02-23 01:00:35}|10        |

|{2023-02-23 01:00:20, 2023-02-23 01:00:30}|11        |

|{2023-02-23 01:00:35, 2023-02-23 01:00:45}|4         |

|{2023-02-23 01:00:10, 2023-02-23 01:00:20}|10        |

|{2023-02-23 01:00:30, 2023-02-23 01:00:40}|9         |

|{2023-02-23 01:00:15, 2023-02-23 01:00:25}|16        |

+------------------------------------------+----------+

As we did with tumbling windows, you can modify the previous code snippet as 

follows:

      val PatientDF = PatientDS

      .groupBy(window(col("Fecha"), "10 seconds", "5 seconds"))

      .agg(count("DID").alias("Suma_x_Dpt"))

      .select("window.start", "window.end", "Suma_x_Dpt")

to separate window time data in two different columns.

As in the tumbling windows example, you will get a similar output like the 

following one:

Listening and ready...

-------------------------------------------

Batch: 0

-------------------------------------------

+-------------------+-------------------+----------+

|start              |end                |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:25|2023-02-23 01:00:35|5         |

|2023-02-23 01:00:35|2023-02-23 01:00:45|4         |

|2023-02-23 01:00:30|2023-02-23 01:00:40|9         |

+-------------------+-------------------+----------+
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-------------------------------------------

Batch: 1

-------------------------------------------

+-------------------+-------------------+----------+

|start              |end                |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:25|2023-02-23 01:00:35|10        |

|2023-02-23 01:00:20|2023-02-23 01:00:30|8         |

|2023-02-23 01:00:35|2023-02-23 01:00:45|4         |

|2023-02-23 01:00:30|2023-02-23 01:00:40|9         |

|2023-02-23 01:00:15|2023-02-23 01:00:25|3         |

+-------------------+-------------------+----------+

-------------------------------------------

Batch: 2

-------------------------------------------

+-------------------+-------------------+----------+

|start              |end                |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:25|2023-02-23 01:00:35|10        |

|2023-02-23 01:00:20|2023-02-23 01:00:30|10        |

|2023-02-23 01:00:35|2023-02-23 01:00:45|4         |

|2023-02-23 01:00:10|2023-02-23 01:00:20|5         |

|2023-02-23 01:00:30|2023-02-23 01:00:40|9         |

|2023-02-23 01:00:15|2023-02-23 01:00:25|10        |

+-------------------+-------------------+----------+

-------------------------------------------

Batch: 3

-------------------------------------------

+-------------------+-------------------+----------+

|start              |end                |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:25|2023-02-23 01:00:35|10        |

|2023-02-23 01:00:20|2023-02-23 01:00:30|11        |

|2023-02-23 01:00:35|2023-02-23 01:00:45|4         |
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|2023-02-23 01:00:10|2023-02-23 01:00:20|10        |

|2023-02-23 01:00:30|2023-02-23 01:00:40|9         |

|2023-02-23 01:00:15|2023-02-23 01:00:25|16        |

+-------------------+-------------------+----------+

With sliding windows, we can answer questions such as what was the number of 

patients visiting our hospital during the last minute, hour, etc.? or trigger events such 

as “ring an alarm” whenever more than five patients for the same medical department 

enter the hospital in the last ten seconds.

In the next section, we are going to study session windows which have a different 

semantics compared to the previous two types of windows.

9.5  Session Windows
Session windows have an important different characteristic compared to tumbling and 

sliding windows. Session windows have a variable geometry. Session windows’ length is 

dynamic in size depending on the incoming events.

Session windows gather events that arrive at similar moments in time, isolating 

periods of data inactivity. A session window starts with an input event collected and lasts 

for as long as we keep receiving data within the gap interval duration equivalent to the 

window length. Thus, in any case, it closes itself when the maximum window length is 

reached. For example, in our previous examples in which we had a window size of ten 

seconds, the session windows will begin right after receiving the first input. Thereafter, 

all the events acquired within ten seconds will be associated with that window. This 

window will close itself if it does not receive more inputs for a period of ten seconds. A 

graphical depiction of how a session window works can be seen in Figure 9-8.

Figure 9-8. Ten-second session window with a gap interval of five seconds

Chapter 9  event-time WindoW operations and Watermarking



350

Session windows are the right tools when business questions like which patients 

visited the hospital at a certain moment in time? Or what are the hospital busiest 

moments along a defined period of time?

As usual, we include a practical example of session window usage. In the following 

code snippet, you can see how session windows could be depicted as creating a window 

to collect all upcoming events arriving within the timeout period. As you see, all 

collected events inside the window time frame are added to the current session.

In the next example, we have implemented the session_window() to count incoming 

events over a session window with a ten-second gap on the Fecha column of our 

sample events.

// Session Window

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types._

import org.apache.spark.sql.{DataFrame, Dataset, Encoders, SparkSession}

import java.io.IOException

import org.apache.spark.sql.streaming._

import org.apache.spark.sql.streaming.{GroupState,GroupStateTimeout, 

OutputMode}

import org.apache.spark.sql.DataFrame

val PatientsSchema = StructType(Array(

      StructField("NSS", StringType),

      StructField("Nom", StringType),

      StructField("DID", IntegerType),

      StructField("DNom", StringType),

      StructField("Fecha", StringType))

      )

val spark:SparkSession = SparkSession.builder()

      .master("local[10]")

      .appName("Hand-On-Spark3_Socket_Data_Source")

      .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")

import spark.implicits._
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try {

      val PatientDS = spark.readStream

      .schema(PatientsSchema)

      .json("/tmp/window")

      PatientDS.printSchema()

      printf("\n Listening and ready... \n")

      val PatientDF = PatientDS

      .groupBy(

            session_window(col("Fecha"), "10 seconds"), col("DID")

      ).count()

      PatientDF.printSchema()

      PatientDF.writeStream

      .outputMode("complete")

      .format("console")

      .option("truncate", false)

      .start()

      .awaitTermination()

} catch {

      case e: IOException => println("IOException occurred")

      case t: Throwable => println("Error receiving data", t)

}finally {

      println("In finally block")

}

As you did in previous examples, before running the precedent code, you first have 

to create the data source folder (again “/tmp/window” in our example). After that you 

can copy JSON files provided as an example to the data source directory, for example, 

like this:

$ cp json_file11.json /tmp/window

$ cp json_file9.json /tmp/window

...

$ cp json_file7.json /tmp/window
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Once the files are copied, your program should output something like this:

. . . Removed for brevity . . .

 Listening and ready...

-------------------------------------------

Batch: 0

-------------------------------------------

+--------------------------------------------------+---+-----+

|session_window                                    |DID|count|

+--------------------------------------------------+---+-----+

|{2023-02-23 01:00:15.002, 2023-02-23 01:00:25.002}|20 |1    |

|{2023-02-23 01:00:18.002, 2023-02-23 01:00:31.002}|10 |4    |

|{2023-02-23 01:00:17.002, 2023-02-23 01:00:27.002}|50 |1    |

|{2023-02-23 01:00:16.002, 2023-02-23 01:00:26.002}|30 |1    |

+--------------------------------------------------+---+-----+

-------------------------------------------

Batch: 1

-------------------------------------------

+--------------------------------------------------+---+-----+

|session_window                                    |DID|count|

+--------------------------------------------------+---+-----+

|{2023-02-23 01:00:15.002, 2023-02-23 01:00:25.002}|20 |2    |

|{2023-02-23 01:00:18.002, 2023-02-23 01:00:31.002}|10 |7    |

|{2023-02-23 01:00:17.002, 2023-02-23 01:00:27.002}|50 |2    |

|{2023-02-23 01:00:16.002, 2023-02-23 01:00:26.002}|30 |2    |

+--------------------------------------------------+---+-----+

-------------------------------------------

Batch: 2

-------------------------------------------

+--------------------------------------------------+---+-----+

|session_window                                    |DID|count|

+--------------------------------------------------+---+-----+

|{2023-02-23 01:02:00.002, 2023-02-23 01:02:10.002}|20 |1    |

|{2023-02-23 01:00:15.002, 2023-02-23 01:00:25.002}|20 |2    |
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|{2023-02-23 01:01:34.002, 2023-02-23 01:01:44.002}|20 |1    |

|{2023-02-23 01:02:05.002, 2023-02-23 01:02:15.002}|10 |1    |

|{2023-02-23 01:00:18.002, 2023-02-23 01:00:31.002}|10 |7    |

|{2023-02-23 01:00:17.002, 2023-02-23 01:00:27.002}|50 |2    |

|{2023-02-23 01:02:20.002, 2023-02-23 01:02:30.002}|50 |1    |

|{2023-02-23 01:02:38.002, 2023-02-23 01:02:48.002}|50 |1    |

|{2023-02-23 01:01:30.002, 2023-02-23 01:01:43.002}|50 |4    |

|{2023-02-23 01:02:37.002, 2023-02-23 01:02:47.002}|30 |1    |

|{2023-02-23 01:00:16.002, 2023-02-23 01:00:26.002}|30 |2    |

|{2023-02-23 01:02:10.002, 2023-02-23 01:02:20.002}|30 |1    |

+--------------------------------------------------+---+-----+

-------------------------------------------

Batch: 3

-------------------------------------------

+--------------------------------------------------+---+-----+

|session_window                                    |DID|count|

+--------------------------------------------------+---+-----+

|{2023-02-23 01:00:15.002, 2023-02-23 01:00:25.002}|20 |2    |

|{2023-02-23 01:01:34.002, 2023-02-23 01:01:44.002}|20 |1    |

|{2023-02-23 01:00:34.002, 2023-02-23 01:00:45.002}|20 |2    |

|{2023-02-23 01:02:00.002, 2023-02-23 01:02:10.002}|20 |1    |

|{2023-02-23 01:00:18.002, 2023-02-23 01:00:31.002}|10 |7    |

|{2023-02-23 01:02:05.002, 2023-02-23 01:02:15.002}|10 |1    |

|{2023-02-23 01:00:36.002, 2023-02-23 01:00:46.002}|10 |1    |

|{2023-02-23 01:02:20.002, 2023-02-23 01:02:30.002}|50 |1    |

|{2023-02-23 01:00:17.002, 2023-02-23 01:00:27.002}|50 |2    |

|{2023-02-23 01:00:30.002, 2023-02-23 01:00:48.002}|50 |5    |

|{2023-02-23 01:02:38.002, 2023-02-23 01:02:48.002}|50 |1    |

|{2023-02-23 01:01:30.002, 2023-02-23 01:01:43.002}|50 |4    |

|{2023-02-23 01:00:16.002, 2023-02-23 01:00:26.002}|30 |2    |

|{2023-02-23 01:02:10.002, 2023-02-23 01:02:20.002}|30 |1    |

|{2023-02-23 01:00:37.002, 2023-02-23 01:00:47.002}|30 |1    |

|{2023-02-23 01:02:37.002, 2023-02-23 01:02:47.002}|30 |1    |

+--------------------------------------------------+---+-----+
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 Session Window with Dynamic Gap
Another interesting feature of the session window type is that it supports what is called 

dynamic gap duration1. The session window we implemented in our previous example, 

though it has a variable size depending on the arrival or not of new events, has a maximum 

size, the window length. The dynamic gap duration has the peculiarity of having a different 

gap duration per session. Thus, instead of a fixed gap/timeout value, we can use an 

expression to dynamically set the window size, adapting it to the input data characteristics.

In the following is a practical example showing you how to implement a session 

window with dynamic gap duration.

// Session Windows II. Session window with dynamic gap duration

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types._

import org.apache.spark.sql.{DataFrame, Dataset, Encoders, SparkSession}

import java.io.IOException

import org.apache.spark.sql.streaming._

import org.apache.spark.sql.streaming.{GroupState,GroupStateTimeout, 

OutputMode}

import org.apache.spark.sql.DataFrame

val PatientsSchema = StructType(Array(

      StructField("NSS", StringType),

      StructField("Nom", StringType),

      StructField("DID", IntegerType),

      StructField("DNom", StringType),

      StructField("Fecha", StringType))

      )

val spark:SparkSession = SparkSession.builder()

      .master("local[10]")

      .appName("Hand-On-Spark3_Socket_Data_Source")

      .getOrCreate()

1 More information: www.databricks.com/blog/2021/10/12/native-support-of-session-
window- in-spark-structured-streaming.html
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spark.sparkContext.setLogLevel("ERROR")

import spark.implicits._

try {

      val PatientDS = spark.readStream

      .schema(PatientsSchema)

      .json("/tmp/window")

      PatientDS.printSchema()

      printf("\n Listening and ready... \n")

      val PatientDF = PatientDS

        .groupBy(

            session_window(col("Fecha"),

                       when(col("NSS") === "1009", "10 seconds")

                       .when(col("NSS") === "2001", "30 seconds")

                       .when(col("NSS") === "5000", "50 seconds")

                       .otherwise("60 seconds")),

            col("DID")

        ).count()

      PatientDF.printSchema()

      PatientDF.writeStream

      .outputMode("complete")

      .format("console")

      .option("truncate", false)

      .start()

      .awaitTermination()

} catch {

      case e: IOException => println("IOException occurred")

      case t: Throwable => println("Error receiving data", t)

}finally {

      println("In finally block")

}
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The novelty of the previous code resides in this block of code, in which to implement 

the session window with a dynamic timeout.

      val PatientDF = PatientDS

        .groupBy(

            session_window(col("Fecha"),

                       when(col("NSS") === "1009", "10 seconds")

                       .when(col("NSS") === "2001", "30 seconds")

                       .when(col("NSS") === "5000", "50 seconds")

                       .otherwise("60 seconds")),

            col("DID")

        ).count()

Now you can see that the session window length is dynamically established by the 

value of the NSS field.

Once more, after creating the source data directory (“/tmp/window”) ,executing the 

code example, and copying the JSON files provided as examples, the program will get 

you an output similar to the next one.

. . . Removed for brevity . . .

 Listening and ready...

-------------------------------------------

Batch: 0

-------------------------------------------

+--------------------------------------------------+---+-----+

|session_window                                    |DID|count|

+--------------------------------------------------+---+-----+

|{2023-02-23 01:00:15.002, 2023-02-23 01:00:25.002}|20 |1    |

|{2023-02-23 01:00:18.002, 2023-02-23 01:01:20.002}|10 |3    |

|{2023-02-23 01:00:17.002, 2023-02-23 01:01:17.002}|50 |1    |

|{2023-02-23 01:00:16.002, 2023-02-23 01:01:16.002}|30 |1    |

+--------------------------------------------------+---+-----+
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-------------------------------------------

Batch: 1

-------------------------------------------

+--------------------------------------------------+---+-----+

|session_window                                    |DID|count|

+--------------------------------------------------+---+-----+

|{2023-02-23 01:00:15.002, 2023-02-23 01:00:45.002}|20 |2    |

|{2023-02-23 01:00:18.002, 2023-02-23 01:01:21.002}|10 |7    |

|{2023-02-23 01:00:17.002, 2023-02-23 01:01:17.002}|50 |2    |

|{2023-02-23 01:00:16.002, 2023-02-23 01:01:16.002}|30 |2    |

+--------------------------------------------------+---+-----+

-------------------------------------------

Batch: 2

-------------------------------------------

+--------------------------------------------------+---+-----+

|session_window                                    |DID|count|

+--------------------------------------------------+---+-----+

|{2023-02-23 01:00:15.002, 2023-02-23 01:01:22.002}|20 |3    |

|{2023-02-23 01:00:18.002, 2023-02-23 01:01:28.002}|10 |11   |

|{2023-02-23 01:00:17.002, 2023-02-23 01:01:29.002}|50 |4    |

|{2023-02-23 01:00:16.002, 2023-02-23 01:01:23.002}|30 |3    |

+--------------------------------------------------+---+-----+

-------------------------------------------

Batch: 3

-------------------------------------------

+--------------------------------------------------+---+-----+

|session_window                                    |DID|count|

+--------------------------------------------------+---+-----+

|{2023-02-23 01:00:15.002, 2023-02-23 01:01:35.002}|20 |5    |

|{2023-02-23 01:00:18.002, 2023-02-23 01:01:36.002}|10 |12   |

|{2023-02-23 01:00:17.002, 2023-02-23 01:01:38.002}|50 |9    |

|{2023-02-23 01:00:16.002, 2023-02-23 01:01:37.002}|30 |4    |

+--------------------------------------------------+---+-----+
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-------------------------------------------

Batch: 4

-------------------------------------------

+--------------------------------------------------+---+-----+

|session_window                                   |DID|count|

+--------------------------------------------------+---+-----+

|{2023-02-23 01:00:15.002, 2023-02-23 01:03:00.002}|20 |7    |

|{2023-02-23 01:02:05.002, 2023-02-23 01:03:05.002}|10 |1    |

|{2023-02-23 01:00:18.002, 2023-02-23 01:01:36.002}|10 |12   |

|{2023-02-23 01:00:17.002, 2023-02-23 01:03:38.002}|50 |15   |

|{2023-02-23 01:00:16.002, 2023-02-23 01:01:37.002}|30 |4    |

|{2023-02-23 01:02:10.002, 2023-02-23 01:03:37.002}|30 |2    |

+--------------------------------------------------+---+-----+

-------------------------------------------

Batch: 5

-------------------------------------------

+--------------------------------------------------+---+-----+

|session_window                                    |DID|count|

+--------------------------------------------------+---+-----+

|{2023-02-23 01:00:15.002, 2023-02-23 01:03:00.002}|20 |7    |

|{2023-02-23 01:00:18.002, 2023-02-23 01:01:36.002}|10 |12   |

|{2023-02-23 01:02:05.002, 2023-02-23 01:03:05.002}|10 |1    |

|{2023-02-23 01:00:17.002, 2023-02-23 01:03:38.002}|50 |15   |

|{2023-02-23 01:02:10.002, 2023-02-23 01:03:37.002}|30 |2    |

|{2023-02-23 01:00:10.002, 2023-02-23 01:01:37.002}|30 |5    |

+--------------------------------------------------+---+-----+

At the time this book was written and as for Spark 3.3.2, some restrictions are in place 

when using session windows in streaming query:

• Output mode “update” is not supported.

• The grouping clause should include at least two columns, the 

session_window and another one.
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However, when used for batch query, grouping clauses can only include the session_

window column as mentioned in the Apache Spark official documentation2.

9.6  Watermarking in Spark Structured Streaming
As we have already mentioned several times across this book, stream data is far from 

ideal. We have already gone through the concepts of stranglers and late-arrival events.

Watermarking was introduced in Apache Spark 2.1 to support late-arriving data. For 

example, watermarks are used in stateful streaming operations to avoid boundlessly 

accumulating information in state, which in all likelihood will provoke instability due to 

memory saturation, hence introducing computing latencies in the course of streaming 

operations.

This section explains the basic concepts behind Watermarking and provides a 

practical example for using watermarks with Spark stateful streaming operations.

 What Is a Watermark?
Watermarking could be defined as a lateness threshold. Watermarking permits Spark 

Structured Streaming to tackle the problem of late-arrival events. Management of 

stragglers or out-of-order events is critical in distributed architectures for the sake of 

data integrity, accuracy, and fault tolerance. When dealing with this kind of complex 

system, it is not guaranteed that the data will arrive to the streaming platform in the 

order it was delivered. This could happen due to network bottlenecks, latency in the 

communications, etc. To overcome these difficulties, the state of aggregate operations 

must be retained.

Spark Structured Streaming uses watermarks as a cutoff point to control for how long 

the Spark Stream Processing Engine will wait for late events.

Therefore, when we declare a watermark, we specify a timestamp field and a 

watermark limit of time. For instance, consider our Session Windows code snippet. We 

can modify it as shown in the following, to introduce a watermark threshold.

2 https://spark.apache.org/docs/latest/structured-streaming-programming-guide.
html#types-of-time-windows
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      val PatientDF = PatientDS

      .withWatermark("Fecha", "30 seconds")

      .groupBy(

            session_window(col("Fecha"), "10 seconds"), col("DID")

      ).count()

In this example

• The Fecha column is used to define a 30 seconds’ watermark.

• A count is performed for each DID observed for each nonoverlapping 

ten seconds’ window.

• State information is preserved for each count until the end of the 

window is ten seconds older than the latest observed Fecha value.

After including a watermark, as new data arrives, Spark tracks the most recent 

timestamp in the designated column and processes the incoming event within the 

watermark threshold.

Here is the complete code example including a watermark of 30 seconds.

// Watermarking in Spark Structured Streaming

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types._ //{IntegerType, StringType, 

StructField, StructType,DoubleType,LongType}

import org.apache.spark.sql.{DataFrame, Dataset, Encoders, SparkSession}

import java.io.IOException

import org.apache.spark.sql.streaming._

import org.apache.spark.sql.streaming.{GroupState,GroupStateTimeout, 

OutputMode}

import org.apache.spark.sql.DataFrame

val PatientsSchema = StructType(Array(

      StructField("NSS", StringType),

      StructField("Nom", StringType),

      StructField("DID", IntegerType),
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      StructField("DNom", StringType),

      StructField("Fecha", StringType))

      )

val spark:SparkSession = SparkSession.builder()

      .master("local[10]")

      .appName("Hand-On-Spark3_Socket_Data_Source")

      .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")

import spark.implicits._

try {

      val PatientDS = spark.readStream

      .schema(PatientsSchema)

      .json("/tmp/window")

       .withColumn("Fecha", to_timestamp(col("Fecha"),  

"yyyy-MM- dd'T'HH:mm:ss.SSSX"))

      PatientDS.printSchema()

      printf("\n Listening and ready... \n")

      val PatientDF = PatientDS

        .withWatermark("Fecha", "30 seconds")

          .groupBy(

             session_window(col("Fecha"), "10 seconds"), col("DID")

        ).count()

      PatientDF.printSchema()

      PatientDF.writeStream

      .outputMode("complete")

      .format("console")

      .option("truncate", false)

      .start()

      .awaitTermination()
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} catch {

      case e: IOException => println("IOException occurred")

      case t: Throwable => println("Error receiving data", t)

}finally {

      println("In finally block")

}

There is another important part of the precedent code snippet you should pay 

attention to.

      val PatientDS = spark.readStream

      .schema(PatientsSchema)

      .json("/tmp/window")

       .withColumn("Fecha", to_timestamp(col("Fecha"),  

"yyyy-MM- dd'T'HH:mm:ss.SSSX"))

      PatientDS.printSchema()

root

 |-- NSS: string (nullable = true)

 |-- Nom: string (nullable = true)

 |-- DID: integer (nullable = true)

 |-- DNom: string (nullable = true)

 |-- Fecha: timestamp (nullable = true)

Watermark can only be used with timestamp or window columns. Thus, column 

Fecha must be converted from string to timestamp type before it can be used; otherwise, 

you will get an error.

Once again, if you run the precedent program and copy the JSON files provided as 

examples to the data source directory (“/tmp/window”), you will get an output similar to 

the following one.

. . . Removed for brevity . . .

 Listening and ready...

-------------------------------------------

Batch: 0

-------------------------------------------
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+--------------------------------------------------+---+-----+

|session_window                                    |DID|count|

+--------------------------------------------------+---+-----+

|{2023-02-23 01:01:34.002, 2023-02-23 01:01:44.002}|20 |1    |

|{2023-02-23 01:02:00.002, 2023-02-23 01:02:10.002}|20 |1    |

|{2023-02-23 01:02:05.002, 2023-02-23 01:02:15.002}|10 |1    |

|{2023-02-23 01:02:20.002, 2023-02-23 01:02:30.002}|50 |1    |

|{2023-02-23 01:02:38.002, 2023-02-23 01:02:48.002}|50 |1    |

|{2023-02-23 01:01:30.002, 2023-02-23 01:01:43.002}|50 |4    |

|{2023-02-23 01:02:10.002, 2023-02-23 01:02:20.002}|30 |1    |

|{2023-02-23 01:02:37.002, 2023-02-23 01:02:47.002}|30 |1    |

+--------------------------------------------------+---+-----+

-------------------------------------------

Batch: 1

-------------------------------------------

+--------------------------------------------------+---+-----+

|session_window                                    |DID|count|

+--------------------------------------------------+---+-----+

|{2023-02-23 01:02:00.002, 2023-02-23 01:02:10.002}|20 |1    |

|{2023-02-23 01:01:34.002, 2023-02-23 01:01:44.002}|20 |1    |

|{2023-02-23 01:02:05.002, 2023-02-23 01:02:15.002}|10 |1    |

|{2023-02-23 01:02:20.002, 2023-02-23 01:02:30.002}|50 |1    |

|{2023-02-23 01:02:38.002, 2023-02-23 01:02:48.002}|50 |1    |

|{2023-02-23 01:01:30.002, 2023-02-23 01:01:43.002}|50 |4    |

|{2023-02-23 01:02:37.002, 2023-02-23 01:02:47.002}|30 |1    |

|{2023-02-23 01:02:10.002, 2023-02-23 01:02:20.002}|30 |1    |

+--------------------------------------------------+---+-----+

-------------------------------------------

Batch: 2

-------------------------------------------

+--------------------------------------------------+---+-----+

|session_window                                    |DID|count|

+--------------------------------------------------+---+-----+

|{2023-02-23 01:02:00.002, 2023-02-23 01:02:10.002}|20 |1    |

|{2023-02-23 01:01:34.002, 2023-02-23 01:01:44.002}|20 |1    |
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|{2023-02-23 01:02:05.002, 2023-02-23 01:02:15.002}|10 |1    |

|{2023-02-23 01:02:20.002, 2023-02-23 01:02:30.002}|50 |1    |

|{2023-02-23 01:02:38.002, 2023-02-23 01:02:48.002}|50 |1    |

|{2023-02-23 01:01:30.002, 2023-02-23 01:01:43.002}|50 |4    |

|{2023-02-23 01:02:37.002, 2023-02-23 01:02:47.002}|30 |1    |

|{2023-02-23 01:02:10.002, 2023-02-23 01:02:20.002}|30 |1    |

+--------------------------------------------------+---+-----+

-------------------------------------------

Batch: 3

-------------------------------------------

+--------------------------------------------------+---+-----+

|session_window                                    |DID|count|

+--------------------------------------------------+---+-----+

|{2023-02-23 01:02:00.002, 2023-02-23 01:02:10.002}|20 |1    |

|{2023-02-23 01:01:34.002, 2023-02-23 01:01:44.002}|20 |1    |

|{2023-02-23 01:02:05.002, 2023-02-23 01:02:15.002}|10 |1    |

|{2023-02-23 01:02:20.002, 2023-02-23 01:02:30.002}|50 |1    |

|{2023-02-23 01:02:38.002, 2023-02-23 01:02:48.002}|50 |1    |

|{2023-02-23 01:01:30.002, 2023-02-23 01:01:43.002}|50 |4    |

|{2023-02-23 01:02:37.002, 2023-02-23 01:02:47.002}|30 |1    |

|{2023-02-23 01:02:10.002, 2023-02-23 01:02:20.002}|30 |1    |

+--------------------------------------------------+---+-----+

-------------------------------------------

Batch: 4

-------------------------------------------

+--------------------------------------------------+---+-----+

|session_window                                    |DID|count|

+--------------------------------------------------+---+-----+

|{2023-02-23 01:02:00.002, 2023-02-23 01:02:10.002}|20 |1    |

|{2023-02-23 01:01:34.002, 2023-02-23 01:01:44.002}|20 |1    |

|{2023-02-23 01:02:05.002, 2023-02-23 01:02:15.002}|10 |1    |

|{2023-02-23 01:02:20.002, 2023-02-23 01:02:30.002}|50 |1    |

|{2023-02-23 01:02:38.002, 2023-02-23 01:02:48.002}|50 |1    |

|{2023-02-23 01:01:30.002, 2023-02-23 01:01:43.002}|50 |4    |

Chapter 9  event-time WindoW operations and Watermarking



365

|{2023-02-23 01:02:37.002, 2023-02-23 01:02:47.002}|30 |1    |

|{2023-02-23 01:02:10.002, 2023-02-23 01:02:20.002}|30 |1    |

+--------------------------------------------------+---+-----+

-------------------------------------------

Batch: 5

-------------------------------------------

+--------------------------------------------------+---+-----+

|session_window                                    |DID|count|

+--------------------------------------------------+---+-----+

|{2023-02-23 01:02:00.002, 2023-02-23 01:02:10.002}|20 |1    |

|{2023-02-23 01:01:34.002, 2023-02-23 01:01:44.002}|20 |1    |

|{2023-02-23 01:02:05.002, 2023-02-23 01:02:15.002}|10 |1    |

|{2023-02-23 01:02:20.002, 2023-02-23 01:02:30.002}|50 |1    |

|{2023-02-23 01:02:38.002, 2023-02-23 01:02:48.002}|50 |1    |

|{2023-02-23 01:01:30.002, 2023-02-23 01:01:43.002}|50 |4    |

|{2023-02-23 01:02:37.002, 2023-02-23 01:02:47.002}|30 |1    |

|{2023-02-23 01:02:10.002, 2023-02-23 01:02:20.002}|30 |1    |

+--------------------------------------------------+---+-----+

9.7  Summary
In this chapter, we covered the different Event-Time Window Operations and 

Watermarking with Apache Spark. First, we studied how to perform streaming 

aggregations with the tumbling and sliding windows, the two types of fixed-sized 

window operations. After that we learned how to implement a session window and how 

to use the new Spark built-in function session_window to create a window column. 

Special attention was paid to the session window with dynamic gap duration to adapt the 

window length as a function of the input data. Finally, we have covered Watermarking 

in Spark Structured Streaming and how it can be used to manage late-arriving events. In 

the next and final chapter, we are going to explore future directions for Spark Streaming.
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CHAPTER 10

Future Directions 
for Spark Streaming
Nowadays, data drives many decision-making processes for companies worldwide. 

Information assists them in understanding their customers and attracting new ones. 

Information is also used to streamline business processes and achieve both competitive 

advantage and operational efficiency. These are the reasons why so many companies 

understand the importance of data to make better decisions, improve customer 

relationships, and launch strategic initiatives. Therefore, to take full advantage of 

information, companies have to know how to extract its value.

At the same time, as the world digitizes, data is increasingly considered a 

depreciating asset because organizations need to gain insights of huge volumes of 

information in near real time. That is where stream processing comes in.

We have seen in previous chapters that stream processing permits processing and 

analyzing live information. We have also seen that real-time information processing 

can be used to instantly react to events and trigger proactive or reactive actions. Thus, 

stream analysis enables businesses and organizations to take immediate action on 

opportunities and threats.

Stream processing is finding increasing applications in event-driven architectures 

and microservice processes orchestration. Another use of stream processing gaining 

popularity nowadays is by coupling real-time data processing with artificial intelligence 

(AI) and machine learning (ML) algorithms to make instantaneous predictions.

In the next section, we are going to show you a practical example of how to use Spark 

Structured Streaming with Spark ML to apply ML algorithms to data streams, extract 

patterns, gain insights into live information, and trigger decisions.
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10.1  Streaming Machine Learning with Spark
As we have already mentioned in this chapter, many data sources produce data in an 

unbounded manner, for example, web logs, Internet of things (IoT) devices, transactions 

from financial services, etc. These continuous streams of data were traditionally 

stored and converted into bounded datasets for later batch processing. Therefore, 

data collection, processing, and preparation for decision-making were complete 

asynchronous processes, occurring at different moments in time.

In our time, many organizations simply cannot afford such a time delay between 

data intake and decision-making due to the time value of the data. These days, many 

scenarios require taking advantage of live data to proactively respond to events as close 

as the information is available. For instance, consider use cases such as autonomous 

driving, unmanned vehicles, etc.

In circumstances like that, rather than wait for the data to go through the whole 

process, streaming analytics permits the detection of patterns in data in almost real time 

and consequently triggers actions. Another important advantage of performing analyses 

of in motion data is that as information properties and its patterns change over time, 

streaming algorithms can adapt to them.

This section introduces how Spark Machine Learning (Spark ML) and Spark 

Streaming can be coupled together to make predictions on streaming data.

Next code example shows how to train a machine learning model using Spark ML 

to generate a PipelineModel to make predictions on streaming workflows. It is out of 

scope of this book to teach you how to implement machine learning with Spark; thus, it 

is assumed the reader has a basic knowledge of machine learning and how to implement 

it with Apache Spark ML.

For the purpose of this example, we are going to use a small dataset of 303 rows and 

14 columns for heart attack classification that is available for public domain and which 

can be found at Heart Attack Analysis & Prediction Dataset. After training or ML model 

on this dataset, we will be able to predict whether a person can suffer a heart attack 

based on 13 dependent variables such as age, sex, and vital signs.

Table 10-1 shows a description of each column of the dataset.
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Table 10-1. Heart Attack Analysis and Prediction Dataset Columns Description

Column 
name

Description and possible values

age age of the patient

sex sex of the patient

exang exercise induced angina

Value

1 Yes

0 no

ca number of major vessels (0–3)

cp Chest pain type

Value

1 typical angina

2 atypical angina

3 non-anginal pain

4 asymptomatic

trtbps resting blood pressure (in mm hg)

chol Cholesterol in mg/dl fetched via 

Bmi sensor

fbs (Fasting blood sugar > 120 mg/dl) 

(1 = true; 0 = false)

rest_ecg: resting electrocardiographic 

results

Value

0 normal

1 having st-t wave abnormality (t wave inversions 

and/or st elevation or depression of > 0.05 mV)

(continued)
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Table 10-1. (continued)

Column 
name

Description and possible values

2 showing probable or definite left ventricular 

hypertrophy by estes’ criteria

thalach maximum heart rate achieved

output

Value

0 Less chance of heart attack

1 more chance of heart attack

The column “output” represents the dependent variable, and as you can see, it 

can only take two possible values: 0 and 1. Therefore, we have to deal with a binary 

classification problem. For that reason, we can implement a logistic regression model as 

it is suitable for probability prediction.

 What Is Logistic Regression?
Regression model (also known as logit model) is commonly used for classification and 

predictive analytics. Logistic regression estimates the probability of an event occurring, 

such as heart attack or no heart attack, based on a given database of independent 

variables also called predictors.

Logistic regression is used to estimate the relationship between a dependent and 

continuous variable and one or more independent categorical variables. Categorical 

variables can only acquire a limited number of values, that is, true or false, yes or no, 1 

or 0, etc.

Under the context of machine learning, logistic regression belongs to the family of 

supervised machine learning models. Supervised machine learning models require a 

labeled dataset to train the model.
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 Types of Logistic Regression
There are three types of logistic regression models based on their categorical output.

• Binary logistic regression: The dependent variable has only two 

possible outcomes (e.g., 0 or 1).

• Multinomial logistic regression: The dependent variable has three or 

more possible outcomes and these values have no specified order.

• Ordinal logistic regression: The dependent variable has three or more 

possible outcomes, and these values have a specific order.

 Use Cases of Logistic Regression
Logistic regression can be used for regression (prediction) and classification problems. 

Some of these use cases could be the following:

• Fraud detection: Identification of anomalies which are predictive 

of fraud

• Disease prediction: In medicine, prediction of the likelihood of a 

disease for a given population

Thus, logistic regression can facilitate prediction and enhance decision-making. 

More information about the logistic regression can be found here.

After this short introduction about the concepts behind logistic regression, let’s now 

focus on our code example.

First of all, we are going to create a schema for our dataframe to enumerate the 

columns and their types of data while loading the data.

Here is the code.

import org.apache.spark.sql.types.{StructType,LongType}

import org.apache.spark.ml.feature.{OneHotEncoder, VectorAssembler, 

MinMaxScaler, StringIndexer}

import org.apache.spark.ml.{Pipeline, PipelineModel}

import org.apache.spark.ml.classification.LogisticRegression

val schema = new StructType()

      .add("age",LongType,true)

      .add("sex",LongType,true)

Chapter 10  Future DireCtions For spark streaming

https://www.ibm.com/topics/logistic-regression


372

      .add("cp",LongType,true)

      .add("trtbps",LongType,true)

      .add("chol",LongType,true)

      .add("fbs",LongType,true)

      .add("restecg",LongType,true)

      .add("thalachh",LongType,true)

      .add("exng",LongType,true)

      .add("oldpeak",LongType,true)

      .add("slp",LongType,true)

      .add("caa",LongType,true)

      .add("thall",LongType,true)

      .add("output",LongType,true)

val spark:SparkSession = SparkSession.builder()

    .master("local[*]")

    .appName("Hand-On-Spark3_Spark_ML_and_Streaming")

    .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")

val heartdF = spark.read.format("csv")

      .option("header", "true")

      .schema(schema)

      .load("file:///tmp/spark_ml")

      .withColumnRenamed("output","label")

println(heartdF.count)

heartdF.printSchema()

When you run this code, for instance, in a notebook, you will find the following output.

303

root

 |-- age: long (nullable = true)

 |-- sex: long (nullable = true)

 |-- cp: long (nullable = true)

 |-- trtbps: long (nullable = true)

 |-- chol: long (nullable = true)
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 |-- fbs: long (nullable = true)

 |-- restecg: long (nullable = true)

 |-- thalachh: long (nullable = true)

 |-- exng: long (nullable = true)

 |-- oldpeak: long (nullable = true)

 |-- slp: long (nullable = true)

 |-- caa: long (nullable = true)

 |-- thall: long (nullable = true)

 |-- label: long (nullable = true)

You can see in the preceding code the schema of the dataframe and column’s 

data types.

A very important step when working with data is the process of data engineering and 

feature engineering. As part of the data engineering process, it is always recommended 

to check the existence of NULL values in our dataset.

If inadvertently you process a dataset with NULL values, at best you will receive 

an error and understand something is wrong with the data, and at worst you will get 

inaccurate results.

In our dataset, if you check the “oldpeak” column, running the following line of 

code, you will find there are 173 NULL values

heartdF.filter("oldpeak is null").count

  res2: Long = 173

Therefore, we will have to take it into consideration along the construction of our 

ML model.

The next step could be the split of our dataset between training (trainDF) and test 

(testDF) subdatasets.

val Array(trainDF, testDF) = heartdF.randomSplit(weights=Array(.8, .2))

The previous line of code will randomly split the data in a 80%–20% proportion. 

Eighty percent of the data will be used to train our PipelineModel and the other 20% (the 

unseen data) to test it.

val lr = new LogisticRegression()

  .setMaxIter(10)

  .setRegParam(0.01)
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val oneHotEnc = new OneHotEncoder()

.setInputCols(Array("sex", "cp", "fbs", "restecg", "exng", "slp", 

"caa","thall"))

.setOutputCols(Array("SexOHE", "cpOHE", "fbsOHE", "restecgOHE", "exngOHE", 

"slpOHE", "caaOHE","thallOHE"))

val assemblerA = new VectorAssembler()

  .setInputCols(Array("age", "trtbps", "chol", "thalachh", "oldpeak"))

  .setOutputCol("features_scaled1")

  .setHandleInvalid("skip")

val scaler = new MinMaxScaler()

  .setInputCol("features_scaled1")

  .setOutputCol("features_scaled")

val assemblerB = new VectorAssembler()

   .setInputCols(Array("SexOHE", "cpOHE", "fbsOHE", "restecgOHE", "exngOHE", 

"slpOHE", "caaOHE","thallOHE", "features_scaled"))

  .setOutputCol("features")

  .setHandleInvalid("skip")

val modelStages = Array(assemblerA, scaler, oneHotEnc, assemblerB, lr)

val pipeline = new Pipeline()

  .setStages(modelStages)

val PipelineModel = pipeline.fit(trainDF)

val trainingPred = PipelineModel.transform(trainDF)

trainingPred.select("label","probability","prediction").

show(truncate=false)

If you execute the precedent piece of code in your notebook, you will get an output 

pretty similar to the next one.
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+-----+------------------------------------------+----------+

|label|probability                               |prediction|

+-----+------------------------------------------+----------+

|1    |[0.03400091691592197,0.965999083084078]   |1.0       |

|1    |[0.05511659822191829,0.9448834017780817]  |1.0       |

|0    |[0.5605994301074364,0.4394005698925636]   |0.0       |

|1    |[0.03115074381750154,0.9688492561824985]  |1.0       |

|1    |[0.004384634167846924,0.995615365832153]  |1.0       |

|1    |[0.08773404036960819,0.9122659596303918]  |1.0       |

|1    |[0.08773404036960819,0.9122659596303918]  |1.0       |

|1    |[0.06985863429068614,0.9301413657093138]  |1.0       |

|0    |[0.7286457381073151,0.27135426189268486]  |0.0       |

|1    |[0.02996587703476992,0.9700341229652301]  |1.0       |

|1    |[0.0016700146317826447,0.9983299853682174]|1.0       |

|0    |[0.36683434534535186,0.6331656546546481]  |1.0       |

|1    |[0.04507024193962369,0.9549297580603763]  |1.0       |

|1    |[0.013996165515300337,0.9860038344846996] |1.0       |

|1    |[0.016828318827434772,0.9831716811725653] |1.0       |

|1    |[0.2671331307894787,0.7328668692105214]   |1.0       |

|1    |[0.32331781956753536,0.6766821804324646]  |1.0       |

|1    |[0.09759145569985764,0.9024085443001424]  |1.0       |

|1    |[0.032829375720753985,0.967170624279246]  |1.0       |

|0    |[0.8584162531850159,0.1415837468149841]   |0.0       |

+-----+------------------------------------------+----------+

only showing top 20 rows

If you pay attention to the previous outcome, you will see that the lower the 

probability, the more likely the prediction to be 1, while on the other hand, the higher 

the probability, the more likely the prediction to be 0.

One line of the previous code you should pay attention to is this one:

.setHandleInvalid("skip")

If you remember, our dataset has columns with NULL values. If you do not take care 

of them, you will receive an error. The previous line of code skips NULL values.
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Once we have trained our model, we are going to divide our test dataset (tetDF) into 

multiple files to simulate a streaming data flow. Then, we are going to set up a file data 

source and copy each individual file to the source folder, as we did in previous chapters 

simulating a stream of information.

Next is the code to divide testDF into ten partitions (individual files) and writing 

them to the /tmp/spark_ml_streaming/ directory.

testDF.repartition(10)

.write.format("csv")

.option("header", true)

.mode("overwrite")

.save("file:///tmp/spark_ml_streaming/")

After executing the previous code snippet, if you have a look at the designated source 

directory, you will find something similar to this:

$ tree /tmp/spark_ml_streaming/

/tmp/spark_ml_streaming/

├── part-00000-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv
├── part-00001-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv
├── part-00002-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv
├── part-00003-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv
├── part-00004-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv
├── part-00005-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv
├── part-00006-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv
├── part-00007-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv
├── part-00008-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv
├── part-00009-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv
└── _SUCCESS

Next, we have to create the streaming source to load the files from the data source as 

soon as they appear in the directory.

val streamingSource=spark

      .readStream

      .format("csv")

      .option("header",true)

      .schema(schema)
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      .option("ignoreLeadingWhiteSpace",true)

      .option("mode","dropMalformed")

      .option("maxFilesPerTrigger",1)

      .load("file:///tmp/HeartTest/")

      .withColumnRenamed("output","label")

We have to control the quality of the data that is injected into the model; that is why 

we have included the following lines:

      .option("ignoreLeadingWhiteSpace",true)

      .option("mode","dropMalformed")

to be sure that unnecessary white spaces and malformed rows do not get to 

the model.

We have also added the line

.option("maxFilesPerTrigger",1)

to be sure only one file is processed at a time.

It is now time to write our PipelineModel, pass the input stream through it, and 

construct the stream writer to pour the output into the sink.

val streamingHeart = PipelineModel.transform(streamingSource).select 

("label","probability","prediction")

streamingHeart.writeStream

      .outputMode("append")

      .option("truncate", false)

      .format("console")

      .start()

      .awaitTermination()

Now, execute the precedent code snippet and copy the partitioned files to the data 

source. For example

$ cp part-00000-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv /tmp/HeartTest/

$ cp part-00001-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv /tmp/HeartTest/

...

$ cp part-00009-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv /tmp/HeartTest/
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You will see an output similar to the next one, coming out of your program.

-------------------------------------------

Batch: 0

-------------------------------------------

+-----+----------------------------------------+----------+

|label|probability                             |prediction|

+-----+----------------------------------------+----------+

|0    |[0.7464870545074516,0.25351294549254844]|0.0       |

|1    |[0.1632367041842738,0.8367632958157262] |1.0       |

+-----+----------------------------------------+----------+

-------------------------------------------

Batch: 1

-------------------------------------------

+-----+-----------------------------------------+----------+

|label|probability                              |prediction|

+-----+-----------------------------------------+----------+

|0    |[0.9951659487928823,0.004834051207117662]|0.0       |

|0    |[0.9929886660069713,0.007011333993028668]|0.0       |

+-----+-----------------------------------------+----------+

-------------------------------------------

Batch: 2

-------------------------------------------

+-----+-----------------------------------------+----------+

|label|probability                              |prediction|

+-----+-----------------------------------------+----------+

|0    |[0.6601488743972465,0.33985112560275355] |0.0       |

|0    |[0.9885105583774811,0.011489441622518859]|0.0       |

|1    |[0.004729033461790646,0.9952709665382093]|1.0       |

|1    |[0.002543643876197849,0.9974563561238021]|1.0       |

+-----+-----------------------------------------+----------+
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-------------------------------------------

Batch: 3

-------------------------------------------

+-----+----------------------------------------+----------+

|label|probability                             |prediction|

+-----+----------------------------------------+----------+

|1    |[0.23870496408150266,0.7612950359184973]|1.0       |

|0    |[0.8285765606366566,0.17142343936334337]|0.0       |

|1    |[0.1123278992547269,0.8876721007452731] |1.0       |

+-----+----------------------------------------+----------+

-------------------------------------------

Batch: 4

-------------------------------------------

+-----+-----------------------------------------+----------+

|label|probability                              |prediction|

+-----+-----------------------------------------+----------+

|1    |[0.3811392681451562,0.6188607318548438]  |1.0       |

|1    |[0.016044469761318698,0.9839555302386813]|1.0       |

|1    |[0.011124987326959632,0.9888750126730403]|1.0       |

|0    |[0.009425069592366693,0.9905749304076333]|1.0       |

+-----+-----------------------------------------+----------+

-------------------------------------------

Batch: 5

-------------------------------------------

+-----+-----------------------------------------+----------+

|label|probability                              |prediction|

+-----+-----------------------------------------+----------+

|1    |[0.030581176663381764,0.9694188233366182]|1.0       |

|1    |[0.028952221072329157,0.9710477789276708]|1.0       |

|0    |[0.7251959061823547,0.27480409381764526] |0.0       |

+-----+-----------------------------------------+----------+
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-------------------------------------------

Batch: 6

-------------------------------------------

+-----+----------------------------------------+----------+

|label|probability                             |prediction|

+-----+----------------------------------------+----------+

|1    |[0.3242653848343221,0.6757346151656779] |1.0       |

|0    |[0.9101196538221397,0.08988034617786034]|0.0       |

|1    |[0.08227291309126751,0.9177270869087325]|1.0       |

+-----+----------------------------------------+----------+

-------------------------------------------

Batch: 7

-------------------------------------------

+-----+----------------------------------------+----------+

|label|probability                             |prediction|

+-----+----------------------------------------+----------+

|1    |[0.09475287521715883,0.9052471247828412]|1.0       |

+-----+----------------------------------------+----------+

-------------------------------------------

Batch: 8

-------------------------------------------

+-----+----------------------------------------+----------+

|label|probability                             |prediction|

+-----+----------------------------------------+----------+

|1    |[0.8256079035149502,0.17439209648504983]|0.0       |

|0    |[0.31539711793989017,0.6846028820601098]|1.0       |

|0    |[0.9889473486170233,0.01105265138297673]|0.0       |

|1    |[0.12416982209602322,0.8758301779039768]|1.0       |

+-----+----------------------------------------+----------+

When developing a machine learning (ML) model, it is always essential to find out 

whether it accurately measures what it is set out to measure.

In the next section, we are going to introduce a small variation in our example code 

to show you how to assess the accuracy of a pipeline model through the measure of its 

sensitivity and specificity.
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 Assessing the Sensitivity and Specificity of Our Streaming 
ML Model
As mentioned just previously, it is not enough that a ML model makes predictions; those 

predictions have to be accurate.

Sensitivity and specificity are metrics that indicate the accuracy of a test or measure 

and help to determine how valid the predictions are. Whenever we create a ML model, 

in this case to screen for the possibility of a person suffering a heart attack, or to detect 

an abnormality, we must determine how valid that model is. In this heart attack analysis 

and prediction example, our screening model is used to decide which patients are more 

likely to have a condition (heart attack).

Next we show you how you can also adapt the following part of the previous code:

val streamingHeart = PipelineModel.transform(streamingSource).select 

("label","probability","prediction")

streamingHeart.writeStream

      .outputMode("append")

      .option("truncate", false)

      .format("console")

      .start()

      .awaitTermination()

changing it like this

import org.apache.spark.sql.functions.{count, sum, when}

val streamingRates = PipelineModel.transform(streamingSource)

      .groupBy('label)

      .agg(

       (sum(when('prediction === 'label, 1)) / count('label)).alias("true 

prediction rate"),

      count('label).alias("count")

      )

streamingRates.writeStream

      .outputMode("complete")

      .option("truncate", false)
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      .format("console")

      .start()

      .awaitTermination()

to calculate the ongoing sensitivity and specificity, respectively, of the predictions of 

the model for the test dataset.

As we are applying our PipelineModel to a stream of data, the previous metrics 

(sensitivity and specificity) are going to be calculated as the rates of true positive 

and true negative predictions and constantly being updated as the incoming data is 

processed.

After adapting the code and repeating the streaming simulation process, your code 

will show you an output similar to the one shown in the following.

-------------------------------------------

Batch: 0

-------------------------------------------

+-----+--------------------+-----+

|label|true prediction rate|count|

+-----+--------------------+-----+

|0    |0.5                 |2    |

|1    |0.5                 |2    |

+-----+--------------------+-----+

-------------------------------------------

Batch: 1

-------------------------------------------

+-----+--------------------+-----+

|label|true prediction rate|count|

+-----+--------------------+-----+

|0    |0.6666666666666666  |3    |

|1    |0.6666666666666666  |3    |

+-----+--------------------+-----+

-------------------------------------------

Batch: 2

-------------------------------------------
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+-----+--------------------+-----+

|label|true prediction rate|count|

+-----+--------------------+-----+

|0    |0.6666666666666666  |3    |

|1    |0.7142857142857143  |7    |

+-----+--------------------+-----+

-------------------------------------------

Batch: 3

-------------------------------------------

+-----+--------------------+-----+

|label|true prediction rate|count|

+-----+--------------------+-----+

|0    |0.75                |4    |

|1    |0.75                |8    |

+-----+--------------------+-----+

-------------------------------------------

Batch: 4

-------------------------------------------

+-----+--------------------+-----+

|label|true prediction rate|count|

+-----+--------------------+-----+

|0    |0.8                 |5    |

|1    |0.7777777777777778  |9    |

+-----+--------------------+-----+

-------------------------------------------

Batch: 5

-------------------------------------------

+-----+--------------------+-----+

|label|true prediction rate|count|

+-----+--------------------+-----+

|0    |0.8                 |5    |

|1    |0.6363636363636364  |11   |

+-----+--------------------+-----+
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-------------------------------------------

Batch: 6

-------------------------------------------

+-----+--------------------+-----+

|label|true prediction rate|count|

+-----+--------------------+-----+

|0    |0.8                 |5    |

|1    |0.7333333333333333  |15   |

+-----+--------------------+-----+

-------------------------------------------

Batch: 7

-------------------------------------------

+-----+--------------------+-----+

|label|true prediction rate|count|

+-----+--------------------+-----+

|0    |0.7142857142857143  |7    |

|1    |0.75                |16   |

+-----+--------------------+-----+

-------------------------------------------

Batch: 8

-------------------------------------------

+-----+--------------------+-----+

|label|true prediction rate|count|

+-----+--------------------+-----+

|0    |0.7777777777777778  |9    |

|1    |0.7647058823529411  |17   |

+-----+--------------------+-----+

As you can see, the rates of true positive and true negative predictions are 

continuously updated as the data goes in. The true prediction rate is nothing out of 

this world because we are using a very small dataset and to make things worse, it had 

NULL values that have been discharged.

One of the main drawbacks of logistic regression is that it needs big datasets to be 

really able to get the insights of the data.
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If you want to dig deeper into how to use Spark ML with Spark Structured Streaming, 

you can find a complete stream pipeline example following this link.

In the next section, we are going to analyze some of the expected future Spark 

Streaming features that are already here.

10.2  Spark 3.3.x
The new Spark 3.3.2 version was released on February 17, 2023, the time this book was 

written; therefore, some of the future improvements expected from Spark are already here1.

For instance, one of the most recent Spark Streaming related improvements has 

been the addition of RocksDB state store provider, complementary to the default 

implementation based on the HDFS backend state store provider.

Although the incorporation of RocksDB as a state store provider is not new, it was 

included with Spark 3.2; RocksDB state store WriteBatch problems cleaning up native 

memory have been recently addressed.

Before Spark 3.2, the only built-in streaming state store implementation available 

was the HDFS backend state store provider (HDFSBackedStateStore). The HDFS state 

store implements two different stages. During the first phase, state data is stored in a 

memory map. The second phase includes saving that information to a fault-tolerance 

HDFS-compatible file system.

Remember from previous chapters that stream processing applications are very 

often stateful, and they retain information from previous events to be used to update the 

state of other future events.

When we have stateful operations such as streaming aggregations, 

streaming dropDuplicates, stream-stream joins, mapGroupsWithState, or 

flatMapGroupsWithState and, at the same time, we would like to maintain the state of 

a huge number of keys, this could cause processing latencies due to the problem of Java 

virtual machine (JVM) garbage collection, hence producing important delays in the 

micro-batch processing times.

To understand the reasons causing the previous state store problems, we have to know 

that the implementation of HDFSBackedStateStore causes the state information to be 

stored in the Spark executors’ JVM memory. Thus, the accumulation of large numbers of 

state objects will saturate the memory originating garbage collection performance issues.

1 https://spark.apache.org/news/
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For situations like this, Spark recently incorporated RocksDB as another state storage 

provider, to permit storage of the state information in a RocksDB database.

 Spark RocksDB State Store Database
Let’s explore some of the new features RocksDB is bringing to the table and how you can 

use them to improve your Spark Streaming performance.

 What Is RocksDB?

RocksDB is an embeddable persistent key-value store for fast storage based on three 

basic structures: memtable, sstfile, and logfile.

RocksDB includes the following main features:

• It uses a log structured database engine.

• It is optimized for storing small to medium size key-values, though 

keys and values are arbitrarily sized byte streams.

• It is optimized for fast, low latency storage such as flash drives and 

high-speed disk drives, for high read/write rate performance.

• It works on multicore processors.

Apart from Spark Streaming, RocksDB is also used as a state backend by other 

state- of- the-art streaming frameworks such Apache Flink or Kafka Streams which uses 

RocksDB to maintain local state on a computing node.

If you want to incorporate RocksDB to your Spark cluster, setting

spark.conf.set(

  "spark.sql.streaming.stateStore.providerClass",

"org.apache.spark.sql.execution.streaming.state.RocksDBStateStoreProvider")

enables RocksDBStateStoreProvider as the default Spark StateStoreProvider.

Apart from the previous basic configuration, Spark incorporates several options you 

can use to tune your RocksDB installation.

Table 10-2 includes a summary of the most common RocksDBConf configuration 

options for optimizing RocksDB.
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BlockBasedTableConfig

BlockBasedTable is RocksDB’s default SST file format. It includes the configuration for 

plain tables in sst format. RocksDB creates a BlockBasedTableConfig when created.

RocksDB Possible Performance Degradation

With this option enabled, it adds extra attempts to retrieve data on write operations to 

track the changes of the total number of rows, bringing an overhead on massive write 

workloads. It is used when we want RocksDB to upload a version of a pair key-value, 

update the value, and after that remove the key. Thus, be advised turning it on can 

jeopardize the system performance.

Wrapping up, RocksDB is able to achieve very high performance. RocksDB includes 

a flexible and tunable architecture with many settings that can be tweaked to adapt it 

to different production environments and hardware available, including in-memory 

storage, flash memory, commodity hard disks, HDFS file systems, etc.

RocksDB supports advanced database operations such as merging, compaction 

filters, and SNAPSHOT isolation level. On the other hand, RocksDB does not support 

some database features such as joins, query compilation, or stored procedures.

10.3  The Project Lightspeed
On June 28, 2022, Databricks announced the Project Lightspeed. The Project Lightspeed 

is the next-gen Spark Streaming engine.

Spark Structured Streaming has been widely adopted by the industry and 

community, and as more and more nowadays applications require processing streaming 

data, the requirements for streaming engines have changed as well.

The Project Lightspeed will focus on delivering higher throughput and lower latency 

and reduce data processing cost. Project Lightspeed will also support the expansion of 

the ecosystem of connectors, enhance new streaming functionalities, and simplify the 

application deployment, monitoring, and troubleshooting.

Project Lightspeed will roll out incrementally, backing the improvement of the 

following Spark Structured Streaming fields:
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 Predictable Low Latency
In this field, the new Apache Spark Structured Streaming is promising the increase of 

workload performance as much as twice in comparison with current capabilities. Some 

of the initiatives that are currently taking place in this area to support the consecution of 

this objective are as follows:

• Offset management: Practical experience shows that offset 

management operations consume 30% to 50% of the total pipeline 

processing time. It is expected to reduce processing latency by 

making these operations asynchronous and of configurable pace.

• Asynchronous checkpointing: It is expected up to 25% of 

improvement in efficiency in this domain by overlapping the 

execution with the writing of the checkpoints of two adjacent groups 

of records. Currently checkpoints are written only after processing 

each group of records.

• State checkpointing frequency: New Spark Structured Streaming 

engine is expected to incorporate the parametrization of the number 

of checkpoints, that is, writing checkpoints only after processing a 

certain number group of records in order to reduce latency.

 Enhanced Functionality for Processing Data/Events
Project Lightspeed is going to enlarge Spark Structured Streaming functionalities in the 

following fields:

• Multiple stateful operators: The new Spark Structured Streaming 

is expected to support multiple state operators in order to satisfy 

multiple use cases such as the following:

 ◦ Chained time window aggregation (e.g., chain of different types of 

window aggregations)

 ◦ Chained stream-stream outer equality joins.

 ◦ Stream-stream time interval join plus time window aggregations
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• Advanced windowing: The new Spark Structured Streaming engine is 

expected to provide an intuitive API to support the following:

 ◦ Arbitrary groups of window elements

 ◦ Ability to define when to execute the processing logic

 ◦ Capacity to remove window elements before or after the 

processing logic is triggered

• State management: Lightspeed will incorporate a dynamic state 

schema adapting to the changes in the processing logic and the 

capacity to externally query intermediate information (“state”).

• Asynchronous I/O: Lightspeed is also expected to introduce a new 

API to asynchronously manage connections to external data sources 

or systems. This new functionality can be very helpful in streaming 

ETL jobs that collect live data from heterogeneous sources and/or 

writing into multiple sinks.

• Python API parity: Lightspeed will provide a new Python API 

incorporating stateful processing capabilities and built-in 

integrations with popular Python packages like Pandas to facilitate its 

utilization by Python developers.

 New Ecosystem of Connectors
Connectors certainly make Spark users’ life easier. In this area, the Project Lightspeed is 

also expected to supply the following:

• New connectors: New native connectors will be added to Spark 

Structured Streaming. For example

 ◦ Google Pub/Sub, which is an asynchronous and scalable 

messaging service acting as an interface between services 

producing messages and services processing those messages

 ◦ Amazon DynamoDB, which is a NoSQL database service

• Connector enhancement: New functionalities are also expected in 

this area, such as including AWS IAM auth support in the Apache 

Kafka connector or enhancement of the Amazon Kinesis connector.
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 Improve Operations and Troubleshooting
Processing unbound data requires the system treating that information to be up and 

running 24/7. Therefore, constant monitoring and managing of those types of systems 

while keeping operating costs under control is incredibly relevant to business. Thus, as 

part of Project Lightspeed, Spark is anticipated to incorporate two new set of features:

• Observability: Structured streaming pipelines will incorporate:

• Additional metrics for troubleshooting streaming performance.

• The mechanism for collection metrics will be unified.

• The capacity to export metrics data to different systems and 

formats will be enhanced.

• Visualization tools will be improved.

• Debuggability: As in the previous point, structured streaming 

pipelines will also integrate capabilities to visualize the following:

• How pipeline operators are grouped and mapped into tasks.

• The tasks running on the executors.

• Executors’ logs and metrics drill down analysis capacity.

10.4  Summary
In this chapter, we discussed the capacities of Spark Structured Streaming when coupled 

with Spark ML to perform real-time predictions. This is one of the more relevant features 

the Apache Spark community is expected to improve as more business applications 

require in-motion data analytics to trigger prompt reaction. After that, we discussed the 

advantages of the new RocksDB State Store to finalize with one of the most expected 

Spark Streaming turning points, the Project Lightspeed, which will drive Spark 

Structured Streaming into the real-time era.

Chapter 10  Future DireCtions For spark streaming
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