

Responsive Web Development
with HTML5 and CSS

Building Modern and User-Friendly Websites for All Devices

SAMMIE SMITH

Copyright © 2023 Sammie Smith

All Rights Reserved

Without the publisher's prior written consent and except for what is permitted by American
copyright law and fair use, no part of this book or any excerpts from it may be duplicated in
any way, stored in any database, or transmitted in any way via any mechanism -
mechanical, electronic, photocopy, recording, or otherwise.

Disclaimer and Terms of Use

The publishers and anyone involved in the production of this book made every effort to
ensure its quality. The correctness, application, suitability, or completeness of the contents
of this book are not guaranteed by the authors or publishers. This book only includes
entirely educational information. As a result, you are accepting complete responsibility for
your actions if you choose to put the concepts in this book into practice.

Printed in the United States of America

TABLE OF CONTENTS
TABLE OF CONTENTS

INTRODUCTION

CHAPTER ONE

GETTING STARTED WITH HTML
What is HTML?

What is New in HTML5

Why Learn HTML5

Choosing a Text Editor or IDE

Understanding HTML5 Semantic Markup

How is HTML used in Web Development?

Understanding the basic structure of an HTML document

Basic Tags and Attributes

Creating an HTML Document

Setting up an HTML Document

Adding Content to an HTML Document

Understanding HTML Tags, Attributes, and Values
Adding Comments to an HTML Document

CHAPTER TWO

HTML TEXT FORMATTING
Understanding HTML Headings

Understanding HTML Paragraphs

Understanding HTML Lists
Unordered Lists
Ordered Lists
Nested Lists

Understanding HTML links
Relative URLs
Linking to Specific Parts of a Page

How to Format Text using HTML Tags

How to Add Images to an HTML Document

How to Add Videos to an HTML Document

Using Audio in HTML5

CHAPTER THREE

UNDERSTANDING FORMS AND INPUT
Creating Forms

Text Inputs and Labels

Checkboxes and Radio Buttons

Select Menus and Option Groups

Text Areas and Buttons

Understanding Form Validation

CHAPTER FOUR

UNDERSTANDING TABLES AND LISTS
Creating Tables

Adding Rows and Columns

Styling Tables with CSS

CHAPTER FIVE

ADVANCED HTML5 FEATURES
Canvas and SVG graphics

How to Apply Canva and SVG Graphics

Understanding Web Storage

Understanding Geolocation

Understanding Web Workers

Understanding Drag and Drop

Understanding Web Sockets

Accessibility and SEO

Making your HTML5 Code Accessible

Using Semantic Markup

Applying Semantic Markup

Optimizing for Search Engines

CHAPTER SIX

HTML PRACTICAL EXERCISES
Exercise 1: Creating a Login Page

Exercise 2: Creating a Registration Page

Exercise 3: Create a Simple Personal Portfolio Website

CHAPTER SEVEN

INTRODUCTION TO CSS
What is CSS?

How is CSS used in Web Development?

How CSS works with HTML

Understand the Difference Between CSS and HTML

Benefits of using CSS

Basic CSS Syntax

Writing CSS rules

Selectors and Declarations

Comments in CSS

External and Internal CSS

Linking an External CSS

CHAPTER EIGHT

CSS STYLE PROPERTIES
Text Properties

What are CSS Text Properties?
Applying Text Properties
Font Properties
Applying Font Properties
Color Properties
Applying Color properties

Background Properties
CSS Box Model
Applying CSS Box Model

Understanding the Box Model

Margin, Border, and Padding

Width and Height

CSS Layouts

CSS Floats
Applying Float

Positioning
Applying Positioning

Display
Applying Display

Understanding CSS Grid
Applying CSS Grid

CSS Animations
Applying CSS Animations

CSS transitions

Animating with Keyframes

Undesratanding Flexbox
Applying Flexbox

CSS Variables

Scalable Vector Graphics (SVG)

Writing Efficient CSS

Debugging CSS

The Future of CSS

CHAPTER NINE

HTML AND CSS PRACTICAL EXERCISES
Exercise 1: Design a simple login page with HTML and CSS

Exercise 2: Build a simple landing page for a product with HTML and CSS.

Exercise 3: Create a responsive pricing table with HTML and CSS

CHAPTER TEN

RESPONSIVE WEB DESIGN
Introduction to Responsive Design

Best Practices for Designing Responsive Websites

Tools and Technologies used to Create Responsive Website

Understanding Media Queries
Applying Media Queries

Understanding Mobile-first Design Approach
Applying Mobile-first Design

Responsive Frameworks

Common Challenges and Solutions Associated with Responsive Web Design

Optimizing Images and Managing Complex Layouts

CHAPTER ELEVEN

RESPONSIVE WEBSITES PRACTICAL EXERCISES
Exercise 1: Design a responsive restaurant website

Exercise 2: Create a Responsive Photographer Portfolio

Exercise 3: Develop a Responsive E-commerce Website

Conclusion

INDEX

INTRODUCTION
With the proliferation of smartphones and tablets, responsive web
design has become an essential aspect of modern web
development. Responsive web design is a web development
approach that aims to provide users with an optimal viewing
experience across a wide range of devices, from desktop computers
to mobile phones. HTML (Hypertext Markup Language) and CSS
(Cascading Style Sheets) are two of the core technologies used in
building responsive websites. HTML is used for structuring the
content of a web page, while CSS is used for styling and layout.
Together, these technologies enable developers to create flexible
and adaptable websites that can adjust their layout and content to
match the size and resolution of the user's device.

Throughout the book, we will focus on best practices for building
responsive websites that are accessible, usable, and performant. We
will also cover common pitfalls and mistakes that developers should
avoid, as well as tips and tricks for optimizing performance and user
experience. Throughout the book, you will work on hands-on
exercises and projects, which will help you apply what you have
learned and build your skills. By the end of the book, you will have
the knowledge and confidence to create your web pages and
customize them with CSS.

By the end of this book, you will have a solid understanding of the
principles and techniques of HTML and CSS for responsive web
development. You will be able to build responsive websites that are
optimized for a variety of devices and screen sizes, and that provide
users with a seamless and enjoyable experience. Whether you're a
beginner or an experienced web developer, this book will help you
take your HTML and CSS skills to the next level. So, let's get started!

CHAPTER ONE

GETTING STARTED WITH HTML
In this chapter, we will introduce the basics of HTML, including tags,
attributes, and elements. We will explain how to create an HTML
document, set up a basic structure, and add content.

What is HTML?
HTML stands for Hypertext Markup Language. It is a standard
markup language used to create web pages and other types of
digital content that can be displayed on the internet. HTML provides
a way to structure and format content such as text, images, and
multimedia elements, allowing web browsers to render them in a
visually appealing and organized manner.

HTML works by using a set of tags and attributes to define the
structure and appearance of web page content. These tags are
enclosed in angle brackets (< >) and specify the type of content they
contain. For example, the <h1> tag is used to define a heading,
while the <p> tag is used to define a paragraph. Attributes are used
to provide additional information about a tag, such as its class, id, or
style.

Web developers use HTML in conjunction with CSS (Cascading
Style Sheets) and JavaScript to create dynamic, interactive web
pages. HTML5 is the latest version of the HTML specification and
includes new features such as video and audio elements, as well as
improved support for mobile devices.

What is New in HTML5
HTML5 introduced several new features and improvements over
previous versions of HTML. Some of the key new features include:

Video and Audio Features: Audio and video elements are two essential new
features of HTML5. It makes it possible for site designers to add a video or
audio clip to their pages. HTML5's video element can be styled with CSS and
CSS. Changes can be made to borders, opacity, gradients, reflections,
transitions, transformations, and even animations. By making the code
available for use in embedding their films on other websites, YouTube also
announces video embedding. It helps the web become more and more
interactive with multimedia. To embed any audio clip into a webpage on the
Internet, HTML5 provides a new element called the audio tag that is available
for use.
Header and Footer: The need for a div> tag to divide the two portions is gone
thanks to these new tags. The header is at the top of the page, while the footer
is at the bottom. If you utilize the HTML5 elements header and footer, the
browser will understand what to load first and what to load later.
New input tag types included: An outdated attribute called "input" has been
given new life in HTML by taking on new values like "email," "month,"
"number," "range," "search," "tel," "color," "week," "URL," "time," "date,"
"DateTime-local," and so on. The input tag may now contain the following new
values:

1. ContentEditable: It's a feature that enables content modification by the
user. It makes it simple to tell if what you see is what you get. You will be
able to edit the content by clicking on it.

2. Progress: This tag is used to keep track of a job's progress as it is
finished. The JavaScript progress tag is compatible with it. It has a
progress bar-like appearance.

3. Section: A document can be divided into sections or components using
the section tag. For instance, an article might have several sections,
including a header, footer, section for the main content, and the newest
news, among others.

4. Main: The main tag is used to summarize the page's main content. A
document may include just one main tag, and this tag may not be
contained within the article aside footer, or header tags. There is no
header, footer, or navigation bar.

Figure and figcaption: The addition of a figure and a caption to a document
was not before possible. With the advent of the figure and figcaption tags, it is
now semantically possible to embed an image together with its explanation
into a website. The syntax is as follows:

Placeholders: Before, we had to utilize a little JavaScript to create
placeholders for text fields. Sure, you can first alter the value property as you
see fit, but if the user deletes that information and then clicks away, the input
will be left empty. Using the placeholder property corrects this.
Preload Videos: It's an excellent feature for sharing videos. It explains how to
upload the video and how long it will take the website to load. This notifies the
browser about the improvements made to the user experience of the
webpage. Although it's not a requirement, you should nonetheless add this
feature. It contributes to a more realistic representation of the page.
Controlling the display: The behavior of elements is determined by the
display property. If this attribute is not specified, the default values are applied.
Regular Expressions: To add a certain pattern as an input, we may use a
regular expression. For instance, the most common pattern is [A-Za-z] 5,11.
Both capital and lowercase letters are acceptable. Additionally, it says that the
minimum and maximum character lengths are five and eleven, respectively.
Adaptability: Since its creation, HTML5 has significantly contributed to a
website's ability to offer the best accessibility features. As a result, the
website's usage has been simplified. The accessibility features of HTML5
allow users with virtually any type of disability, including vision impairment,
color blindness, impaired vision, blindness, and more, to access websites. For
instance, the best illustration of providing accessibility in forms is validation.
Labels must be seen clearly.
Inline components: These inline items are very helpful in keeping code
current:
1. mark: It highlights items that have been in some way marked.
2. Time: The website's current time and date are shown using this.
3. Meter: It shows how much space is left available on the storage disk.
4. Progress bar: The progress bar lets you monitor the status of a task you

have been given.
Support for Dynamic Pages: Nowadays, dynamic and interactive websites
are preferred over static ones. The website has a dynamic vibe because of a
few factors:

1. Mark: It highlights items that have been in some way marked.
2. Time: The website's current time and date are shown using this.
3. Meter: It shows how much space is left available on the storage disk.
4. The progress: The progress bar lets you monitor the status of a task you

have been given. Other factors also contribute to the website's dynamic
nature.

Email as a property: The browser automatically takes the instruction from the
code to produce an email in the correct and valid format when we specify the
type of email in a form. Earlier browsers did not make this possible.
Cryptographic Nonces: In this most recent version of HTML, we may now
apply cryptographic nonces to all styles and scripts. Our standard practice is to
use the nonce attribute inside the script and style elements. In essence, this
nonce tag generates a random integer that is only used once. As a result, the
page is updated each time it is refreshed. It's a great feature since it can be
used to increase the content of the page's security, allowing the website to
declare and choose a certain script or style.
Reverse Links: The rev attribute for reverse links is back in use with HTML
5.1. In essence, it gives web users the ability to use the link and anchor tag

elements once more. It also explains the relationship between the linked
document and the current document in reverse.
Photographs with a width of Zero: Now, website developers can adjust the
width of the images to zero. When there is no need to show them to
customers, such as when monitoring picture files because they would
otherwise take up more space, this capability is helpful. Utilizing images with a
zero width and a blank alt tag is advised.
Canvas in HTML5: A canvas is a rectangular area that can be used for pixel-
level actions such, among other things, drawing a line, box, or circle, or
running images. The support for canvas regions in HTML5 has been added.
Below is a sample of a program's code.

Why Learn HTML5
There are many reasons why learning HTML5 is a valuable skill for
anyone interested in web development or design. Here are a few of
the main reasons:

Essential for building websites: HTML5 is the foundation of all modern
websites. Understanding HTML5 is essential for anyone who wants to create,
edit, or customize websites.
Improved web standards: HTML5 is designed to improve web standards and
make the web more accessible and user-friendly. By learning HTML5, you can
help ensure that your websites are built to these standards.
Better multimedia support: HTML5 introduces new elements and features
for embedding multimedia content, such as videos, audio, and images. This
makes it easier to create rich and engaging websites.
Cross-platform compatibility: HTML5 is supported across all major web
browsers and devices, including desktops, laptops, tablets, and smartphones.
This makes it easier to create websites that work seamlessly across different
platforms and devices.
Web application development: HTML5 also provides features and APIs for
building advanced web applications, such as local storage, geolocation, web
sockets, and more. These features can help you create more interactive and
engaging web applications.
High demand for HTML5 developers: There is a high demand for web
developers who are proficient in HTML5, especially those who also have
experience with other web development technologies like CSS and JavaScript.
Learning HTML5 can open up many job opportunities in the tech industry.

Choosing a Text Editor or IDE
Choosing a text editor or Integrated Development Environment (IDE)
is an important step when setting up your HTML5 development
environment. Here are some factors to consider when choosing a
text editor or IDE:

Features: Look for a text editor or IDE that has features that will make your
development process easier, such as syntax highlighting, auto-completion,
code folding, and code snippets.
Ease of use: Choose a text editor or IDE that is easy to use and has an
intuitive user interface. The text editor or IDE should be easy to navigate and
allow you to quickly find the tools you need.
Compatibility: Make sure the text editor or IDE you choose is compatible with
your operating system and other tools you plan to use, such as your web
browser and web server.
Community support: Choose a text editor or IDE that has a large and active
community of users, as this can be a valuable resource for getting help, finding
plugins and extensions, and sharing your work.
Price: Consider the cost of the text editor or IDE. Some text editors, like
Sublime Text and Atom, offer free versions with limited features, while others,
like Visual Studio Code and WebStorm, require a paid license for full access to
all features.

Here are some popular options for text editors and IDEs for HTML5
development:

Visual Studio Code: A free and open-source IDE developed by Microsoft,
with support for HTML, CSS, and JavaScript.
Sublime Text: A lightweight text editor with a free version and a paid license
for additional features.
Atom: A free and open-source text editor developed by GitHub, with support
for HTML, CSS, and JavaScript.
Brackets: A free and open-source text editor developed by Adobe, with
support for HTML, CSS, and JavaScript.
WebStorm: A paid IDE developed by JetBrains, with support for HTML, CSS,
and JavaScript.

Ultimately, the choice of a text editor or IDE is a personal preference,
and it's important to find the one that works best for you and your
workflow. Every exercise contained in this book is deployed using
Visual Studio Code.

Understanding HTML5 Semantic Markup

Semantic markup is the practice of using HTML tags that accurately
describe the meaning and purpose of the content they contain. In
other words, semantic markup is the use of HTML tags to give
meaning to the content of a web page, rather than just for visual
presentation.

For example, consider the following two HTML code snippets:

In the first example, the content is simply marked up as a paragraph.
In the second example, however, the content is marked up using a
header and a heading element, which gives it more meaning and
context.

By using semantic markup, web developers can make their web
pages more accessible to all users, including those who use
assistive technologies, such as screen readers. Semantic markup

also helps search engines better understand the content of a web
page, which can improve search engine rankings.

Some examples of semantic HTML tags include:

<header>: Used to define the header of a section or web page
<nav>: Used to define a section of navigation links
<article>: Used to define a standalone piece of content, such as a blog post or
news article
<section>: Used to define a section of related content
<footer>: Used to define the footer of a section or web page
<aside>: Used to define content that is related to the surrounding content, but
not a part of it

Using semantic markup can help make your HTML code more
meaningful, readable, and accessible.

How is HTML used in Web Development?
HTML is a fundamental part of web development and is used to
create the structure and content of web pages. When a user visits a
website, their web browser retrieves the HTML code from the server
and interprets it to display the content on the screen.

HTML is used in web development in the following ways:

Creating the structure of web pages: HTML provides the basic structure of a
web page by defining headings, paragraphs, lists, tables, and other structural
elements.
Adding content to web pages: HTML is used to add text, images, videos,
audio files, and other types of content to web pages.
Creating links: HTML allows developers to create links between web pages,
enabling users to navigate between them.
Building forms: HTML is used to create web forms that allow users to submit
data to a website, such as contact information or user login details.
Adding metadata: HTML allows developers to add metadata to web pages,
such as title tags, meta descriptions, and keywords. This information is used
by search engines to index and rank web pages.

Note that HTML is a critical component of web development, and
knowledge of HTML is essential for creating functional and attractive
web pages.

Understanding the basic structure of an HTML document

here's a brief overview of the basic structure of an HTML document:

<!DOCTYPE html>: This is the document type declaration, which tells the web
browser which version of HTML the document is written in. For HTML5, this
should always be the first line of your document.
<html>: The <html> tag is used to define the beginning and end of the HTML
document. All the content of the document should be enclosed within these
tags.
<head>: The <head> tag contains meta-information about the document such
as the title of the page, links to CSS stylesheets, and other metadata that is
not displayed in the browser.
<title>: The <title> tag is used to define the title of the document. This title
appears in the browser's title bar and is also used by search engines to
describe the page.
<body>: The <body> tag is used to define the main content of the document.
This is where you put all of the visible content that will be displayed in the
browser.
<h1>, <h2>, <h3>, <h4>, <h5>, <h6>: These are the heading tags, which are
used to define headings and subheadings within the document. <h1> is the
largest heading and <h6> is the smallest.
<p>: The <p> tag is used to define paragraphs of text.
<a>: The <a> tag is used to create hyperlinks to other web pages or other
sections within the same document.
: The tag is used to insert images into the document.
 and : These are the unordered list and list item tags, respectively.
They are used to create bulleted lists.
 and : These are the ordered list and list item tags, respectively. They
are used to create numbered lists.
<div>: The <div> tag is used to group related elements in the document. It is
often used in conjunction with CSS to apply styles to a group of elements.

That's a quick overview of the basic structure of an HTML document.
Keep in mind that there are many more tags and attributes available
in HTML, but these are some of the most commonly used ones.

Basic Tags and Attributes
HTML5 includes a wide variety of tags and attributes that you can
use to create content and structure web pages. Here are some of the
most common HTML tags and attributes:

Tags:

<html>: The root tag that wraps around all other content on the web page.
<head>: Contains meta-information about the web page, such as the page title
and links to external stylesheets and scripts.
<body>: Contains the main content of the web page.

<h1> to <h6>: Used to create headings of varying levels of importance.
<p>: Used to create paragraphs of text.
<a>: Used to create hyperlinks to other web pages or resources.
: Used to insert images into the web page.
 and : Used to create unordered and ordered lists, respectively.
: Used to create list items.
<div> and : Used to group content and apply styles to it.
<form>: Used to create a form for user input.

Attributes:
id: Used to uniquely identify an element on the web page.
class: Used to group elements together and apply styles to them.
src: Used to specify the URL of an image or other resource.
alt: Used to provide alternative text for images, which is used by screen
readers and search engines.
href: Used to specify the URL that a hyperlink points to.
target: Used to specify where the linked resource should be displayed (e.g. in
a new window or tab).
type: Used to specify the type of input in a form field (e.g. text, password,
checkbox, radio button).

These are just a few of the many HTML tags and attributes available.
As you become more familiar with HTML, you'll discover additional
tags and attributes that can be used to create more complex and
interactive web pages.

Creating an HTML Document
Here are the basic steps to create an HTML document:

Open a text editor on your computer like Visual studio.
Start with the HTML doctype declaration, which is the first line of an HTML
document. It looks like this: <!DOCTYPE html>
Next, create the HTML document structure by adding the <html> element.
This element contains the entire HTML document and has two parts: the
<head> section and the <body> section.
Inside the <head> section, you can add the title of your document using the
<title> element. This is the text that appears in the browser's title bar.
Inside the <body> section, you can add the content of your document using
various HTML elements such as <p> for paragraphs, <h1> for headings,
and for lists, etc.
Once you've added all the content you want, save your file with a .html
extension.

Here's an example of what your HTML document might look like:

This is just a basic example, but you can add more complex
elements, styles, and functionality as you become more comfortable
with HTML.

Setting up an HTML Document
The screenshot below includes the basic structure of an HTML
document, including the <!DOCTYPE html> declaration that tells the
browser that this is an HTML document, the opening and closing
html tags that contain all the HTML code, and the head and body
tags that define the structure of the document.

To set up an HTML document, you can follow these steps:

Open a text editor such as Notepad, Sublime Text, or Visual Studio Code.
Type in the following code to start your HTML document:

Replace the Page Title with the title of your page. This title will appear in the
browser's tab or title bar.
Add any content you want to include within the body tags. This can include
headings, paragraphs, images, links, and other HTML elements.
Save the file with a .html extension, such as index.html.
Open the file in a web browser to view your HTML document. See the
screenshot below.

Adding Content to an HTML Document

To add content to an HTML document, you can use HTML tags to
structure and format the content. Here are the basic steps:

Open a text editor, such as Notepad or Sublime Text.
Create a new file and save it with a .html extension, for example, "index.html".
Begin by adding the basic structure of an HTML document using the following
tags:

The <!DOCTYPE html> tag specifies the document type and should be
included at the beginning of every HTML document.
The <html> tag represents the root element of an HTML document.
The <head> tag contains metadata about the document, such as the title of
the page, which is displayed in the browser tab.
The <title> tag specifies the title of the page.
The <body> tag contains the visible content of the document.
You can add content to the <body> tag using various HTML tags such as:

1. <h1> to <h6> for headings of different sizes
2. <p> for paragraphs
3. and for lists
4. <a> for links
5. for images

6. <table> for tables
7. <div> and for grouping and styling content

For example, to add a heading and paragraph to your HTML document, you
can use the following code:

Save the file and open it in a web browser to see the rendered content.

Understanding HTML Tags, Attributes, and Values
HTML (Hypertext Markup Language) is a markup language used to
create web pages. It consists of tags, attributes, and values, which
are used to structure and format content on a web page.

HTML Tags: HTML tags are used to define the structure of the
content on a web page. They are enclosed in angle brackets (< >)

and come in pairs, with a start tag and an end tag. The start tag
begins with the name of the tag, and the end tag begins with a
forward slash (/) followed by the tag name. For example:

In the above example, the <p> tag is the start tag and the </p> tag is
the end tag. The content "This is a paragraph." is enclosed between
these tags and is formatted as a paragraph.

HTML Attributes: HTML attributes are used to provide additional
information about HTML elements. They are added to the start tag of
an HTML element and consist of a name and a value. The name and
value are separated by an equal sign (=), and the value is enclosed
in quotation marks. For example:

In the above example, the src and alt attributes are added to the
 tag. The src attribute specifies the URL of the image file, and
the alt attribute provides alternative text for the image.

HTML Values: HTML values are used to provide a value for an
attribute. They are enclosed in quotation marks and can be either a
single word or a sentence. For example:

In the above example, the href attribute is used to provide the URL
of the page that the link should point to. The value of the href

attribute is "https://www.google.com". The text "Visit Example"
between the <a> and tags is the content of the link.

Adding Comments to an HTML Document
Comments in an HTML document are used to add notes or
explanations that are not visible to the user but can be read by
developers who are reviewing the code. To add comments to an
HTML document, you can use the following syntax:

Anything that is written between the <!-- and --> tags will be
considered a comment and will not be rendered by the browser. You
can add comments anywhere in the HTML code, including within
tags, after tags, or between content.

Here's an example of adding a comment within an HTML tag:

In this example, the text "This is a comment within the paragraph" is
a comment and will not be visible to the user.

CHAPTER TWO

HTML TEXT FORMATTING
In this chapter, we will explore text formatting in HTML. We will cover
headings, paragraphs, lists, and links. We will explain how to format
text using HTML tags and how to add images to an HTML document.
In HTML, text formatting is essential to make your content look
presentable and readable.

Understanding HTML Headings
HTML headings are used to define the headings or titles of a web
page or a section within a web page. There are six levels of
headings in HTML, which are represented by the h1 to h6 tags.

The h1 tag is the highest level of heading and is usually used for the
main title of the page. The h2 tag is used for subheadings, and so
on, with each subsequent level of heading being used for
increasingly smaller and more specific sections of the page.

Here is an example of how HTML headings might be used on a
simple web page:

In the example above, the h1 tag is used for the main title of the
page, the h2 tag is used for two subheadings, and the h3 tag is used
for a subheading under the second subheading. The actual text of
the headings and content can be customized as needed to suit the
needs of the page.

Understanding HTML Paragraphs
HTML paragraphs are used to structure text into paragraphs, which
are blocks of text that typically convey a complete idea or thought.

To create a paragraph in HTML, you can use the <p> element. The
<p> element is a container tag that is used to enclose text content to
create a paragraph. Here's an example of how to create a paragraph
in HTML:

<p>This is a paragraph.</p>

In this example, the text "This is a paragraph." is enclosed within the
<p> tags, indicating that it is a paragraph.

You can also add additional attributes to the <p> element to provide
more information about the paragraph, such as the class or ID:

In the first example, the class attribute is set to "paragraph", which
can be used to style the paragraph using CSS. In the second
example, the ID attribute is set to "first-paragraph", which can be
used to create links that point directly to that paragraph. Using
paragraphs in HTML can help to organize content on a web page
and make it easier to read and understand.

Understanding HTML Lists
Lists are commonly used in HTML to organize and present
information in a structured way. There are two main types of lists in
HTML: ordered lists and unordered lists.

Unordered Lists
Unordered lists are used to present a list of items in no particular
order. To create an unordered list, you can use the element.
Here's an example:

In the example, the element is used to define the unordered list,
and each item in the list is defined using the (list item) element.

The result will look like this:

Ordered Lists
Ordered lists are used to present a list of items in a specific order. To
create an ordered list, you can use the element. Here's an
example:

In this example, the element is used to define the ordered list,
and each item in the list is defined using the element. The result
will look like this:

Nested Lists
You can also create nested lists in HTML, which means placing one
list inside another list. To do this, you can simply place one list inside
another using the appropriate tags. Here's an example:

In this example, a nested unordered list is created by placing a new
 element inside the second list item. The result will look like:

Using lists in HTML can help to organize and present information in
a clear and structured way, making it easier for users to understand
and navigate.

Understanding HTML links
Links are an important aspect of web pages as they allow users to
navigate between pages or to other resources on the web. To create
a link in HTML, you can use the <a> element, which stands for
anchor. Here's an example of how to create a basic link:

Link text

In this example, the href attribute specifies the URL (Uniform
Resource Locator) of the destination page or resource, and the link
text is the text that the user clicks on to activate the link. When the
user clicks on the link text, the browser will navigate to the URL
specified in the href attribute.

Relative URLs
In addition to absolute URLs, you can also use relative URLs to link
to pages or resources within the same website. Relative URLs

specify the path to the page or resource relative to the current page.
Here's an example:

In this example, the link will navigate to the "about.html" page in the
same directory as the current page.

Linking to Specific Parts of a Page
You can also create links that navigate to specific parts of a page by
using the id attribute. Here's an example:

In this example, the link text "Go to Section 1" will navigate to the
section of the page with the id attribute set to "section1". When the
link is clicked, the page will scroll to the section and highlight it.
Using links in HTML is an important part of creating a user-friendly

website. By using descriptive link text and providing clear and
relevant destinations, you can help users navigate your website
more easily. See the result below:

How to Format Text using HTML Tags
HTML tags are used to format and structure text on a web page.
Here are some common HTML tags and how they are used to format
text:

Headings: Headings are used to organize the content of the page and provide
a visual hierarchy. There are six levels of headings, from h1 (the most
important) to h6 (the least important). To use a heading tag, simply wrap your
text in the appropriate tag.
Paragraphs: Paragraphs are used to separate blocks of text. To create a
paragraph, simply wrap your text in the <p> tag.
Bold and Italic: You can emphasize text using the tag for bold text
and the tag for italic text.
Lists: There are two types of lists in HTML: ordered lists () and unordered
lists (). To create a list, wrap your list items in the appropriate tags:
Links: To create a hyperlink, use the <a> tag and include the URL in the href
attribute.

These are just a few of the most commonly used HTML tags for
formatting text. There are many more tags available for formatting

text, images, tables, and other elements on a web page.

How to Add Images to an HTML Document
To add an image to an HTML document, you can use the tag.
Here's how:

Save the image file to your computer in a location that you can easily find,
such as your desktop.
Open your HTML file in a text editor or an HTML editor.

In the HTML file, add a tag where you want the image to
appear. The tag has two required attributes:

src: This specifies the URL of the image file.
alt: This provides alternative text for the image, which is displayed if the image
can't be loaded.

Here's an example of a tag:

In this example, replace the image path with the actual file path of
your image on your computer. Also, add a short description of the
image. Save the HTML file and open it in your web browser to see
the image as follows.

Note that the src attribute can use either a relative or absolute file
path to specify the location of the image file. If the image file is in the
same directory as the HTML file, you can use a relative file path like
this:

If the image file is in a different directory, you'll need to specify the
path to that directory, like this:

In this example, the image file is located in a subdirectory called
images within the directory containing the HTML file.

How to Add Videos to an HTML Document
To add videos to an HTML5 document, you can use the <video>
element. Here's an example of how to use the <video> element:

In this example, the <video> element creates a video player on the
web page, with the controls attribute indicating that the player
should include basic playback controls such as play, pause, and
volume.

The <source> element within the <video> element specifies the
location of the video file, along with its MIME type. In this example,
there are two <source> elements, one for the MP4 format and one
for the WebM format. The browser will use the first format it can
support. You can include additional <source> elements to support
other video formats.

The text within the <video> element (in this case, "Your browser
does not support the video tag.") is displayed if the user's browser

does not support the <video> element or any of the specified video
formats. See the output of the above screenshot below:

Here are some additional attributes you can use with the <video>
element:

width: Specifies the width of the video player, in pixels.
height: Specifies the height of the video player, in pixels.
autoplay: Specifies that the video should start playing automatically when the
web page loads.
loop: Specifies that the video should play in a continuous loop.
muted: Specifies that the video should play without sound.

Keep in mind that video files can be large, so it's important to
optimize them for web playback to ensure that they load quickly and
don't use too much bandwidth. This can include compressing the
video file and using the appropriate video format for your needs.

Using Audio in HTML5
To embed audio content in an HTML or XHTML document, HTML5
supports the audio> tag. The audio tag in the current HTML5 draft
specification does not list the audio formats that browsers should
support. Ogg, mp3, and wav are the audio formats that are most
frequently used.

Before HTML5, audio files could be introduced to a page by using
the bgsound> tag to integrate background sound. The user was
unable to silence the sound, which was played while the user was
viewing the page. With HTML5, there is no need to link third-party
plugins because audio files may be included using the audio> tag.
HTML or Javascript can be used to control the audio element, and
CSS can be used to style it. To use audio in HTML5, you can use the
<audio> element. Here's an example of how to use the <audio>
element:

In this example, the <audio> element creates an audio player on the
web page, with the controls attribute indicating that the player
should include basic playback controls such as play, pause, and
volume.

The <source> element within the <audio> element specifies the
location of the audio file, along with its MIME type. In this example,
there are two <source> elements, one for the MP3 format and one
for the Ogg Vorbis format. The browser will use the first format it can

support. You can include additional <source> elements to support
other audio formats.

The text within the <audio> element (in this case, "Your browser
does not support the audio tag.") is displayed if the user's browser
does not support the <audio> element or any of the specified audio
formats. See the result of the code above below.

Here are some additional attributes you can use with the <audio>
element:

autoplay: Specifies that the audio should start playing automatically when the
web page loads.
loop: Specifies that the audio should play in a continuous loop.
muted: Specifies that the audio should play without sound.

You can also use JavaScript to control the playback of the audio, for
example, to add additional controls or to change the playback speed.

CHAPTER THREE

UNDERSTANDING FORMS AND INPUT
Understanding forms and input is an essential part of web
development. Forms allow users to submit information to a website,
whether it's creating an account, signing up for a newsletter, or
making a purchase. In this chapter, we will explore the basics of
creating forms and the different types of form elements, such as text
input fields, radio buttons, checkboxes, and select menus. We will
also discuss how to style form elements to create a cohesive and
visually appealing user interface. Understanding forms and input is
crucial for creating effective and user-friendly web applications, so
let's dive in!

Creating Forms
Creating forms involves using several elements and attributes to
allow users to input data or information that can be submitted to a
server for processing. Here are the basic steps to create a form in
HTML5:

1. Use the <form> element to create a form on the web page. The action
attribute specifies the URL where the form data will be submitted, and the
method attribute specifies the HTTP method to use when submitting the form
data (either GET or POST).

2. Use form elements such as <input>, <label>, <textarea>, <select>, and
<button> to create form fields, labels, and buttons.

Example:

In this example, the form includes several form elements such as
text input fields for name and email, a text area for the message, a
dropdown list for gender, and a submit button. Each form element
has its unique attributes, such as type, id, name, and value. See
the output below:

3. Use the for attribute in the <label> element to link the label to its
corresponding form element using the id attribute. This improves accessibility
and user experience by making it easier to select the correct form element.

See the output below.

4. Use the required attribute on the form element to make it mandatory for the
user to enter a value in the form field before submitting the form.

Example:

5. Use the type attribute in the <input> element to specify the type of input field
you want to use, such as text, email, password, radio buttons, checkboxes,
etc.

Example:

Text Inputs and Labels
In HTML, text inputs and labels are used to create user input fields
on a web page. Text inputs allow users to enter text, while labels are
used to describe what type of information should be entered into the
input field.

To create a text input field, you can use the <input> tag with the
type="text" attribute. For example:

In the above code, the label tag is used to describe what information
should be entered into the input field. The for attribute in the label
tag is used to associate the label with the input field using the id
attribute. The id attribute is used to uniquely identify the input field.
The name attribute is used to give the input field a name that can be
used when the form is submitted.

To create a label, you can use the <label> tag. The for attribute in
the label tag should be set to the id attribute of the corresponding
input field. This helps screen readers and other accessibility tools
associate the label with the input field.

In the above code, the type attribute is set to "email" to ensure that
the user enters a valid email address. You can also use other input
types, such as "password", "number", "date", and more, to create
input fields that accept different types of data.

Checkboxes and Radio Buttons
Checkboxes and radio buttons are two types of input fields that are
commonly used in web forms to allow users to make selections from
a list of options.

A checkbox allows the user to select one or more options from a list
of choices. To create a checkbox in HTML, you can use the <input>
tag with the type="checkbox" attribute.

In the above code, each checkbox has a unique id and name
attribute, which allows the server to process the user's selections.
The value attribute is used to define the value associated with each
checkbox when the form is submitted.

A radio button, on the other hand, allows the user to select only one
option from a list of choices. To create a radio button in HTML, you
can use the <input> tag with the type="radio" attribute.

In the above code, each radio button has the same name attribute,
which ensures that only one option can be selected at a time. When
the form is submitted, the value of the selected radio button is sent to
the server.

Select Menus and Option Groups
Select menus and option groups are two more types of input fields
that are commonly used in web forms to allow users to make
selections from a list of options.

A select menu is a drop-down list of options that the user can choose
from. To create a select menu in HTML, you can use the <select>
tag with one or more <option> tags inside.

See the output below.

In the above code, the id and name attributes are used to uniquely
identify the select menu. Each <option> tag has a value attribute
that defines the value associated with that option when the form is
submitted.

Option groups are used to group related options together in a select
menu. To create an option group in HTML, you can use the

<optgroup> tag with one or more <option> tags inside.

See the output below.

In the above code, the <optgroup> tag is used to group the options
into two categories: Japanese Cars and European Cars. The label
attribute is used to define the name of each option group.

Text Areas and Buttons
Text areas and buttons are two additional types of input fields that
are commonly used in web forms to allow users to provide more
detailed information or to submit the form data.

A text area is a multi-line input field that allows the user to enter a
larger amount of text. To create a text area in HTML, you can use the
<textarea> tag with the cols and rows attributes to define the size
of the input field.

In the above code, the id and name attributes are used to uniquely
identify the text area, and the rows and cols attributes are used to
define the number of rows and columns in the text area.

A button is an input field that the user can click to submit the form or
perform some other action. There are three types of buttons in
HTML: submit, reset, and button. The submit button is used to
submit the form data, the reset button is used to reset the form to its
initial state, and the button type is used for custom actions.

In the above code, each button has a type attribute that specifies the
type of button. The text inside the button tags is the label that
appears on the button.

Understanding Form Validation
Form validation is the process of checking the user input in a form to
ensure that it meets certain requirements or constraints. Validation is
important because it helps to ensure the accuracy and consistency
of the data collected through web forms.

HTML5 provides built-in form validation features that allow you to
specify validation requirements for input fields using attributes. The
validation is done automatically in modern web browsers, and the
user will be prompted with error messages if the input does not meet
the specified requirements.

Some of the common attributes that are used for form validation in
HTML5 include:

required: Specifies that the input field must be filled out before the form can
be submitted.
pattern: Specifies a regular expression pattern that the input must match.
min and max: Specifies the minimum and maximum allowed values for a
numeric input field.
minlength and maxlength: Specifies the minimum and maximum lengths of a
text input field.
type: Specifies the type of input, such as email, url, number, or date, and the
browser will validate the input accordingly.

Here is an example of how to use some of these validation
attributes:

In the above code, the required attribute is used to ensure that the
username, email, and password fields are filled out before the form
can be submitted. The minlength attribute is used to specify that the
username and password fields must be at least 5 and 8 characters
long, respectively. The type attribute is used to specify the email and
number input fields and to enable the browser to validate them
accordingly.

CHAPTER FOUR

UNDERSTANDING TABLES AND LISTS
Tables and lists are important HTML elements used to organize and
present information in a structured and readable format on web
pages. Tables are commonly used to display data in rows and
columns, while lists are used to display content in a bulleted or
numbered format.

In this chapter, we will explore how to create and style tables and
lists in HTML. We will also cover some of the advanced features of
tables, such as colspan and rowspan, and show how to create
nested lists. Additionally, we will discuss some best practices for
designing and formatting tables and lists to ensure they are
accessible and easy to read for all users.

By the end of this chapter, you will have a good understanding of
how to use tables and lists to organize and present content on your
web pages. You will also be able to apply various styling techniques
to enhance the visual appearance of your tables and lists.

Creating Tables
To create a table in HTML, you will need to use the <table> element.
Within the table element, you can use other elements to create rows
and cells. Here is a basic example of how to create a simple table
with two rows and two columns:

See the result below.

In the above code, we have created a table with two rows and two
columns. The <tr> element represents a table row, and the <td>
element represents a table cell. The text within each <td> element
will be displayed in the corresponding cell in the table.

By default, the table cells will be separated by borders, but you can
use CSS to change the border style, color, and thickness. You can
also add other elements such as <thead>, <tbody>, and <tfoot> to
further structure your table and add headers or footers.

See the result of the code below.

In this example, we have added an <thead> element to create a
table header with two columns, and a <tfoot> element to create a
table footer with a summary of the data. The <tbody> element
contains the actual data rows of the table.

Tables can also be made more complex with the use of attributes
such as colspan and rowspan, which allow cells to span multiple

columns or rows. Additionally, you can use CSS to style the table
with borders, background colors, and font styles.

Adding Rows and Columns
To add rows and columns to an existing table in HTML, you can use
the <tr> and <td> elements within the table. Here's an example of
how to add a row to an existing table:

See the result of the code above below.

In this example, we have added a new row to the existing table by
inserting a new <tr> element with two <td> elements containing the
text for the new row.

To add a column to an existing table, you can use the colspan
attribute to make a cell span multiple columns:

See the result of the code above below.

In this example, we have added a new column to the existing table
by adding a new <td> element to each row and then used the
colspan attribute to make the second cell in the second-row span
two columns. This creates a table with three columns, where the
second cell in the second row spans two columns.

Styling Tables with CSS
You can style tables in HTML using CSS to change their
appearance, layout, and behavior. Here are some examples of how
to style tables with CSS:

Changing the background color of the table:

Changing the font size and color of the table headers:

Setting a fixed width for the table and its columns:

Adding borders and spacing to the table cells:

Styling alternating rows with different background colors:

Creating Ordered and Unordered Lists

In HTML, you can create both ordered lists and unordered lists using
the and tags, respectively. Here's an example of how to
create an unordered list:

And here's an example of how to create an ordered list:

You can also nest lists inside other lists to create more complex
structures. Here's an example of a nested list:

When creating lists, you can also use the type attribute to specify
the type of list marker for ordered lists. For example, you can use the
type attribute to create a Roman numeral list like this:

You can also use CSS to style lists, for example by changing the
color or size of the markers, or by adding background colors or
borders to the list items.

CHAPTER FIVE

ADVANCED HTML5 FEATURES
Advanced HTML5 features are powerful tools that can be used to
create complex and dynamic web applications. These features
include things like canvas, web sockets, web storage, geolocation,
and more. In this chapter, we'll take a closer look at some of these
advanced features and how they can be used to enhance the
functionality and interactivity of your web pages.

Canvas, for example, is a feature that allows you to create dynamic
graphics and animations directly within your web page. Web sockets
provide a way for real-time communication between a web browser
and a server, enabling features like chat applications and online
games. Web storage allows you to store data on the client-side,
improving performance and reducing the amount of data sent back
and forth between the server and client.

By understanding and utilizing these advanced HTML5 features, you
can create rich and engaging web applications that provide a better
user experience and drive greater engagement and interaction with
your content. In this chapter, we'll explore these features in more
detail and show you how to use them effectively in your web
development projects.

Canvas and SVG graphics
Canvas and SVG are two popular ways of creating graphics in
HTML5. Canvas is a powerful feature that allows you to draw and
manipulate graphics directly within your web page using JavaScript.
With Canvas, you can create dynamic animations, games,
interactive charts, and more. It works by providing a bitmap canvas
on which you can draw shapes, images, and other elements using
JavaScript. The canvas can then be animated and manipulated in

real-time, making it a powerful tool for creating dynamic and
interactive web applications.

SVG (Scalable Vector Graphics) is a markup language for describing
two-dimensional vector graphics. Unlike Canvas, SVG is not a
bitmap-based technology and allows you to create images that are
infinitely scalable without loss of quality. With SVG, you can create
complex graphics, such as charts, diagrams, logos, and even
animations, by using XML-based code. SVG images are also
interactive, allowing you to add links, buttons, and other elements to
create engaging and interactive user experiences.

While both Canvas and SVG can be used to create graphics in
HTML5, they are fundamentally different technologies with different
use cases. Canvas is best suited for creating dynamic and
interactive graphics that require real-time manipulation, such as
games and animations. On the other hand, SVG is ideal for creating
high-quality, scalable vector graphics that can be used in a variety of
contexts, such as logos, charts, and diagrams.

How to Apply Canva and SVG Graphics
To apply Canvas graphics in HTML5, you will need to create a
Canvas element in your HTML document, and then use JavaScript
to draw shapes, images, and other elements on the canvas. Here's a
basic example of how to create a Canvas element:

In the example above, we create a Canvas element with an ID of
"myCanvas" and set its width and height to 500 pixels. To draw on
the canvas, you can use JavaScript to access the canvas context
and use drawing methods to create shapes, lines, and other
elements. Here's an example of how to draw a rectangle on the
canvas:

In this example, we use JavaScript to get the Canvas element by its
ID and then access its context using the getContext() method. We
then set the fill style to red and use the fillRect() method to draw a
rectangle on the canvas with a position of (50, 50) and a width and
height of 100 pixels.

To apply SVG graphics in HTML5, you can create an SVG element
in your HTML document and then use SVG markup language to
define shapes, lines, and other elements. Here's a basic example of
how to create an SVG element:

In this example, we create an SVG element with a width and height
of 500 pixels. We then use the SVG rect element to draw a
rectangle with a position of (50, 50) and a width and height of 100
pixels, with the fill color set to red.

Both Canvas and SVG graphics can be styled with CSS to further
customize their appearance, and both can be animated using
JavaScript to create dynamic and interactive user experiences.

Understanding Web Storage
Web storage is a feature of modern web browsers that allows web
developers to store key-value pairs of data in a user's browser. This
data can be stored either temporarily (session storage) or

permanently (local storage). Web storage provides a way for web
developers to create more responsive and interactive web
applications that can store data on the client-side.

Session storage stores data for a specific browsing session and the
data is cleared when the user closes the browser window. This type
of storage is useful for storing temporary data that is needed for the
current session, such as a user's preferences for a particular web
application.

Local storage, on the other hand, stores data permanently in the
browser until it is cleared by the user or the web application. This
type of storage is useful for storing data that needs to persist across
multiple browsing sessions, such as a user's login information or
settings for a web application.

To use web storage in HTML5, you can use the localStorage and
sessionStorage objects in JavaScript. Here's an example of how to
store and retrieve data using local storage:

In this example, we use the setItem() method to store the key-value
pair "username" and "john" in local storage. We then use the
getItem() method to retrieve the value of the "username" key and
store it in a variable.

Web storage provides a convenient way to store data on the client-
side and can be used to create more responsive and interactive web
applications. However, it's important to be mindful of the amount of
data being stored and to always consider the privacy implications of
storing data on a user's device.

Understanding Geolocation

Geolocation is a feature of modern web browsers that allows web
developers to retrieve the geographical location of a user's device.
This can be useful for a variety of applications, such as providing
location-based services, tracking the movements of a user, or
customizing the content of a web application based on the user's
location.

To use geolocation in HTML5, you can use the
navigator.geolocation object in JavaScript. Here's an example of
how to retrieve the user's current location:

In this example, we use the getCurrentPosition() method to retrieve
the user's current position. The method takes a callback function as
an argument, which is called with a Position object containing the
latitude and longitude coordinates of the user's location.

It's important to note that geolocation is a sensitive feature that
requires the user's permission to access. Most modern web
browsers will prompt the user for permission before allowing a web
application to access their location. As a web developer, it's
important to be transparent about how you're using a user's location
data and to respect their privacy.

Understanding Web Workers
Web workers are a feature of modern web browsers that allow web
developers to run scripts in the background of a web page without
interrupting the user interface. This can be useful for performing

computationally intensive tasks or long-running operations without
blocking the main thread of the web page.

Web workers work by running scripts in a separate thread from the
main thread of the web page. This separate thread can be used to
perform tasks such as data processing, image manipulation, or
network requests. When the web worker has completed its task, it
sends a message back to the main thread with the result of its
computation.

To use web workers in HTML5, you can use the Worker object in
JavaScript. Here's an example of how to create a web worker:

In this example, we create a new web worker by passing the name
of a JavaScript file ("worker.js") to the Worker constructor. We then
send a message to the web worker using the postMessage()
method and receive a message from the web worker using the
onmessage event handler.

Web workers provide a powerful way to run scripts in the
background of a web page without interrupting the user interface.
However, it's important to note that web workers have some
limitations, such as not being able to access the DOM or interact
with the main thread of the web page. As a web developer, it's

important to consider these limitations when deciding whether or not
to use web workers in your web application.

Understanding Drag and Drop
Drag and drop is a user interface feature in HTML5 that allows users
to move elements on a web page by clicking and dragging them to a
new location. Drag and drop is commonly used for tasks such as
rearranging items in a list or moving images on a canvas.

To enable drag and drop in HTML5, you can use the draggable
attribute on elements that you want to be draggable. Here's an
example:

In this example, we've added the draggable attribute to a div
element to make it draggable. When the user clicks and drags the
div, the browser will display a "ghost" image of the element that the
user can drag around the screen.

You can also use the ondragstart, ondrag, and ondragend events to control the behavior
of the draggable element. Here's an example:

In this example, we've added event handlers for the ondragstart,
ondrag, and ondragend events to the div element. These event
handlers allow us to control the behavior of the draggable element,
such as by changing the appearance of the "ghost" image or
updating the position of the element as the user drags it around the
screen.

Drag and drop is a powerful user interface feature that can greatly
enhance the interactivity of web applications. However, it's important
to ensure that drag and drop is implemented in a way that is
accessible and usable for all users, including those who may have
difficulty using a mouse or touch screen.

Understanding Web Sockets
Web Sockets is a protocol in HTML5 that enables two-way
communication between a client and a server over a single, long-
lived connection. This allows for real-time, event-driven
communication between the client and server, and is ideal for
applications such as online gaming, chat applications, and financial
trading platforms.

Web Sockets use the WebSocket API, which is built into modern
web browsers and provides a simple interface for creating and
managing WebSocket connections. Here's an example of how to
create a WebSocket connection in JavaScript:

In this example, we create a new WebSocket connection to a server
at ws://example.com/socket. We then define event handlers for the
onopen, onmessage, and onclose events, which are triggered
when the connection is opened, when incoming messages are
received from the server, and when the connection is closed,
respectively.

Once the WebSocket connection is established, you can use the
send() method to send messages to the server, and the server can
use the same WebSocket connection to send messages back to the
client. This allows for real-time, bidirectional communication between
the client and server.

Accessibility and SEO
Accessibility and SEO are two important factors to consider when
developing websites with HTML. Accessibility refers to designing and
developing websites that are accessible to all users, including those
with disabilities or impairments. SEO, or search engine optimization,
refers to the process of optimizing a website's content and structure
to improve its visibility and ranking in search engine results pages
(SERPs).

Here are some tips for improving accessibility and SEO in HTML:

Accessibility:

Use semantic HTML elements, such as headings, lists, and tables, to structure
content in a meaningful and accessible way.
Provide alternative text descriptions for images, videos, and other non-text
content, using the "alt" attribute in HTML.
Use descriptive link text that accurately reflects the destination of the link.
Ensure that color is not the only means of conveying information, as users with
visual impairments may not be able to distinguish between different colors.
Use keyboard navigation and ensure that all interactive elements can be
accessed and activated using only the keyboard.
Provide captions or transcripts for audio and video content.

SEO:

Use descriptive and relevant titles for pages and headings, using H1, H2, and
other heading tags to structure content.
Use meta descriptions to provide a summary of the content on each page.

Use descriptive URLs that accurately reflect the content of the page.
Use keywords and phrases relevant to the content of the page in headings,
content, and meta data.
Ensure that the website is mobile-friendly and responsive, as mobile
optimization is a key factor in SEO.
Use structured data markup to provide additional information to search
engines about the content of the page.

Making your HTML5 Code Accessible
Making HTML5 code accessible means designing and developing
web content that can be used by people with disabilities.
Accessibility in HTML5 is achieved by using best practices to
optimize your code for use with assistive technologies, such as
screen readers or braille displays.

Here are some tips for making your HTML5 code accessible:

Use semantic HTML elements: Use headings, paragraphs, lists, and tables
to structure content in a meaningful way. These elements help screen readers
to interpret the content more accurately.
Provide text alternatives: Use the "alt" attribute to provide text descriptions
for images, videos, and other non-text content. This allows users who are
visually impaired to understand the content of the page.
Use descriptive link text: Use descriptive text for links, rather than generic
text like "click here." This helps users understand the purpose of the link.
Use descriptive labels: Use descriptive labels for form controls, such as text
fields, radio buttons, and checkboxes. This allows screen readers to accurately
describe the form to users.
Use color carefully: Do not use color as the only means of conveying
information. Ensure that all important information is conveyed through text or
other visual cues.
Provide keyboard navigation: Ensure that all interactive elements can be
accessed and activated using only the keyboard.
Test with assistive technologies: Test your website using screen readers or
other assistive technologies to ensure that it is accessible to users with
disabilities.

Using Semantic Markup
Using semantic markup means using HTML elements to describe
the meaning of the content on a web page, rather than using generic
elements like "div" and "span" for all content. Semantic markup helps
search engines and other automated systems understand the

structure and meaning of the content on a web page, which can
improve the page's search engine ranking and accessibility for users.

Here are some examples of semantic markup elements and when to
use them:

<header>: Use this element to define the header of a web page, including any
navigation menus or branding.
<nav>: Use this element to define the navigation links on a web page.
<main>: Use this element to define the main content of a web page.
<article>: Use this element to define a self-contained unit of content, such as
a blog post or news article.
<section>: Use this element to define a section of content that is thematically
related, such as a chapter in a book or a section of a news article.
<aside>: Use this element to define content that is related to the main content,
but not central to it, such as a sidebar or advertisement.
<footer>: Use this element to define the footer of a web page, including any
copyright information or contact details.

Applying Semantic Markup
To apply semantic markup, you need to choose the appropriate
HTML element that best describes the meaning of the content you
want to display on your web page. Here are some examples of how
to apply semantic markup:

1. Use <header> for the header section of your web page.

2. Use <main> for the main content area of your web page.

3. Use <nav> for the navigation links on your web page.

4. Use <footer> for the footer section of your web page.

5. Use <section> to group related content on your web page.

Optimizing for Search Engines

Here are some tips for optimizing your HTML5 code for search
engines:

Use descriptive page titles and meta descriptions: Use descriptive page
titles and meta descriptions to give search engines and users a clear idea of
what your page is about. Include relevant keywords, but don't stuff them
unnaturally.

Use header tags appropriately: Use header tags (h1, h2, h3, etc.) to
structure your content in a logical hierarchy. This helps search engines
understand the importance of different sections of your page.
Include relevant keywords in your content: Use relevant keywords in your
content, but don't overdo it. Make sure the keywords fit naturally into the
content.
Use descriptive and relevant URLs: Use descriptive and relevant URLs that
reflect the content of your page. Avoid using long or irrelevant URLs.

Optimize your images: Optimize your images by using descriptive file names
and alt text, and compressing the file size for faster loading times. This can
help your images show up in image searches.

Use internal linking: Use internal links to connect related pages and content
on your website. This helps search engines understand the organization of
your website and the relationship between different pages.

CHAPTER SIX

HTML PRACTICAL EXERCISES
The HTML Practical Exercises chapter is a collection of practical
exercises designed to help you master HTML coding skills by
creating various types of websites. This chapter includes a range of
projects, from simple to complex, to suit the needs of different skill
levels. These projects cover a wide range of topics, including basic
HTML tags and attributes, forms, tables and lists, multimedia,
canvas, and SVG graphics, and advanced HTML features like web
storage, geolocation, and web workers. Each project is designed to
challenge your coding abilities and help you develop your problem-
solving skills. By completing these projects, you can gain a better
understanding of how HTML works, improve your code quality, and
create functional and visually appealing websites. Whether you are a
beginner or an experienced web developer, the HTML Practical
Exercises chapter can help you refine your skills and become a
proficient HTML coder.

Exercise 1: Creating a Login Page
You will need to first create a folder for your code files, ensuring that
both the index file and the subordinate files are together in the same
folder. Do this for every single project you are carrying out.

<!DOCTYPE html>

<html>

<head>

<meta charset='utf-8'>

<meta http-equiv='X-UA-Compatible' content='IE=edge'>

<title>Example Page</title>

<meta name='viewport' content='width=device-width, initial-
scale=1'>

<link rel='stylesheet' type='text/css' media='screen'
href='main.css'>

<script src='main.js'></script>

</head>

<body>

<form>

 <h1>Login Page</h1>

 <label for="username">Username:</label>

 <input type="text" id="username" name="username"
required>

 <label for="password">Password:</label>

 <input type="password" id="password" name="password"
required>

 <input type="submit" value="Login">

</form>

</body>

</html>

Create an HTML file with the name “index.html” and replicate the
code above.

See the result below.

Exercise 2: Creating a Registration Page
Below is an example of a basic registration form using HTML code:

<!DOCTYPE html>

<html>

<head>

 <meta charset='utf-8'>

 <meta http-equiv='X-UA-Compatible' content='IE=edge'>

 <title>Example Page</title>

 <meta name='viewport' content='width=device-width, initial-
scale=1'>

 <link rel='stylesheet' type='text/css' media='screen'
href='main.css'>

 <script src='main.js'></script>

</head>

<body>

 <h2>Registration Form</h2>

 <form>

 <label for="username">Username:</label>

 <input type="text" id="username" name="username" required>

 <label for="password">Password:</label>

 <input type="password" id="password" name="password"
required>

 <label for="email">Email:</label>

 <input type="email" id="email" name="email" required>

 <label for="dob">Date of Birth:</label>

 <input type="date" id="dob" name="dob">

 <input type="submit" value="Register">

 </form>

</body>

</html>

The representation of the above code in Visual Studio Code is
shown below.

See the result below.

Exercise 3: Create a Simple Personal Portfolio Website
It should include the following:

Home page: This page should include your name, a brief introduction about
yourself, and links to your other pages.
About page: This page should provide more detailed information about
yourself, your skills, education, and work experience.
Projects page: This page should showcase some of your past projects and
include descriptions and images.
Contact page: This page should include a contact form where visitors can
reach out to you, as well as your social media links and any other relevant
contact information.

The code below will guide you on this.

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-
scale=1.0">

 <title>Project 3</title>

</head>

<body>

 <body>

 <header>

 <h1>Sammie Smith</h1>

 <nav>

 Home

 About

 Projects

 Contact

 </nav>

 </header>

 <main>

 <section>

 <h2>About Me</h2>

 <p>

 A certified Computer Scientist, HSE professional, writer, front-
end developer using (HTML, CSS, and JavaScript), can run basic
programs using (Java, C++, and Visual Basic), a graphic designer,
proficient in the use of Microsoft Office Suite, an accomplished
teacher, and a counselor, instructing classes of different sizes and
ability levels, experienced in business sales, experienced in agro
extension services, can run software installations and troubleshoot

basic computer problems. An analytical thinker, self-motivated,
results-driven professional with experience in leadership,
organization, finance management, and people management, a fast
learner that pays close attention to details and is ready to learn
something new. I seek to deploy my skills and my knowledge to
promote the growth and advancement of the organization and
pursue her goals to realize the objectives of the organization while
building a strong career for myself.

 </p>

 </section>

 <section>

 <h2>My Skills</h2>

 Writing

 Menial skill in the use of HTML,CSS, JAVA, Visual Basic
and C++ Programming Languages

 Proficient in Microsoft Word, Excel, Power Point Publisher, Access etc.

 Fast learner, good team player, result oriented with excellent
motivational skills

 Advance skill in the use of Corel Draw and Photoshop

 </section>

 <section>

 <h2>Education</h2>

 <p>

 2018-2019: The Federal Polytechnic, Bida

 Higher National Diploma (Upper Credit) – Computer Science.

2015-2016: Niger State Polytechnic, Zungeru

 National Diploma (Distinction) - Computer Science.

2013: Day Secondary School, Eyagi Bida

 SSCE (O’Level).

2011-2013: Government Technical College, Bida

SSCE (O’Level).

2007-2010: Day Secondary School, Gaba, Niger State

 JSCE

2000-2006: St. Jude’s Nursery/Primary School Gaba, Niger State

 First School Leaving Certificate.

 </p>

 </section>

 <section>

 <h2>Work Experience</h2>

 <p>

 National Youth Service Corps: 18-05-2021 – 17-05-2022.

 Taught VOC1, VOC2 & VOC3 students Computer Craft Studies
(CSS), make lesson notes, organized practical classes for the
students using a projector, assess the student’s performances during
practical sections, conducted exams for the students, run end of
term school projects for the students, scanned, type and print
documents.

Jiwo Academy Dutsen Kura Gwari, Minna: 10-02-2021 – 02-05-2021

 I taught the Secondary school section as an ICT subject
Teacher, and organized computer practical classes for the students, I
also volunteered to type the student's test questions, input the
students’ scores, and generate their exam report sheet using a
computer program and afterward printed them.

POS Partnership Business: 11-06-2020 – 20th-04-2021

Transaction management, payment processing, sales reporting, customer relationship
management, and employee management.

N-power: 04-08-2018 – 30-07-2020

Served as Agro Extension Officer under Lavun LGA (Gaba Ward), took farmer's Data and
Survey using ODK COLLECT App, sensitizing farmers on good farm practices.

St. Jude’s Nursery/Primary School, Gaba: 01-09-2013 – 05-01-2015

Taught the pupils of Primary Six (6) as a Class teacher taking them all subjects, taking
register attendance, making lesson notes, and writing lesson plans. The school that almost
closed down witnessed a great turnaround academically and financially as they yield to my
advice on school management.

Recharge Card Retailer: 01-02-2010 – 05-01-2011

 Buying recharge cards from wholesalers, selling the recharge card to the customers,
and maximizing profits.

Volunteer Experience:

 Helped to upload GTC teachers' E-affidavit and other documents on their Rivers State
teacher’s dashboard, from 31st August to 11th September 2021.

 Helped to design Divine Grace POS Berners, also helped to design jotter cover page
for NCCF Opobo Zone for their batch B 2020 NCCF Send forth.

 </p>

 </section>

 </main>

 <footer>

 <p>Contact Me:</p>

 Email: sammiesmith@gmail.com

 Phone: 123-456-7890

 LinkedIn

 GitHub

 Twitter

 </footer>

</body>

</html>

You can create a new file for About and save it with “about.html”,
Projects and save with

“projects.html”, Contact and save with “contact.html” within the same
folder. Copy and paste the index file code on each of the files
created, then remove the necessary elements that are not needed,
and replace them with the required information. When that is done,
your project would be completed. The screenshot below contains
part of the code.

See the result from the browser below.

CHAPTER SEVEN

INTRODUCTION TO CSS
CSS (Cascading Style Sheets) is a language used to describe the
presentation of a document written in HTML (Hypertext Markup
Language). It is used to add style and formatting to web pages and
can control the layout, typography, colors, and other visual elements
of a webpage. CSS can be used to create responsive designs that
adapt to different screen sizes and devices, and it can be used in
conjunction with HTML and JavaScript to create dynamic and
interactive web pages. Understanding CSS is essential for creating
professional-looking and functional websites.

What is CSS?
CSS stands for Cascading Style Sheets. It is a styling language used
to describe the presentation of a document written in HTML or XML,
including colors, layout, fonts, and other visual elements. CSS
separates the content of a web page from its presentation, allowing
for more flexible and efficient website design. By using CSS, web
developers can control the look and feel of a website across multiple
web pages and devices, making it easier to maintain and update.

How is CSS used in Web Development?
CSS works by selecting HTML elements and defining how they
should be displayed. For example, you can select all paragraphs on
a page and set their font size, color, and line height to create a
consistent look throughout the document. CSS can be applied to
HTML elements directly or through classes and IDs, which allows for
more targeted styling.

CSS is an essential part of modern web development and is used to
create visually appealing and user-friendly websites. It allows
developers to separate the content and structure of a webpage from
its presentation, making it easier to maintain and update. With CSS,
you can create responsive designs that adapt to different screen
sizes and devices, and add animations and interactive elements to
enhance the user experience.

How CSS works with HTML
CSS works with HTML by targeting and styling the HTML elements
within a webpage. HTML provides the structure and content of the
webpage, while CSS is used to control the presentation and layout of
that content.

CSS selectors are used to target HTML elements, and then
properties are applied to those elements to change their
appearance. For example, the following CSS code would target all
<p> elements and set their font size to 16 pixels:

This would make all paragraphs within the HTML document have a
font size of 16 pixels. CSS can be applied to HTML documents in a
few different ways, such as through an external stylesheet file or
inline styles within the HTML document.

Understand the Difference Between CSS and HTML
HTML and CSS are two separate languages used in web
development. HTML, or HyperText Markup Language, is used for
creating the structure and content of a web page. It defines the
various elements that make up the page, such as headings,
paragraphs, images, and links.

CSS, or Cascading Style Sheets, is used for styling the presentation
of the web page. It defines how the HTML elements should be
displayed, such as the color, font, size, and layout. CSS can be used
to create complex page layouts and visually appealing designs.

In short, while HTML defines the content and structure of a web
page, CSS defines its presentation and style. They work together to
create a complete and functional website.

Benefits of using CSS
There are several benefits of using CSS in web development:

Separation of presentation and content: CSS allows for a clear separation
between the presentation and content of a web page, making it easier to
maintain and update the design without affecting the content.
Consistency: CSS enables the designer to apply consistent styles to multiple
pages, ensuring that the look and feel of the website are uniform.
Flexibility: CSS provides flexibility in design by allowing for the use of various
layout and positioning techniques, as well as the ability to create responsive
designs that adapt to different screen sizes.
Faster page load times: By separating the presentation and content, CSS
reduces the amount of code needed to load a web page, resulting in faster
page load times.
Accessibility: CSS makes it easier to create accessible websites by providing
the ability to apply styles to specific elements, such as headings and links, and
improving the readability of the content.

Basic CSS Syntax
The basic syntax of CSS consists of a selector and a set of
declarations:

The selector selects the HTML element(s) that you want to apply the
styles, and the declarations define the styles themselves. Each
declaration consists of a property and its value, separated by a
colon.

Here is an example:

In this example, h1 is the selector that targets all h1 HTML elements,
and the declarations define the styles that will be applied to them:
blue text color, 24px font size, and centered text alignment.

Writing CSS rules
Writing CSS rules involves selecting HTML elements and applying
style properties to them. The basic syntax for writing a CSS rule is:

Selector: Specifies which HTML element(s) the rule applies to
Property: Defines the aspect of the element that we want to style
Value: Sets the value of the property

For example, to set the font color of all paragraph elements to red,
we would use the following CSS rule:

Multiple properties can be applied to the same selector, by
separating them with a semicolon (;). For example:

This rule sets the font size of all h1 elements to 24 pixels, sets the
color to blue, and centers the text.

Selectors and Declarations
In CSS, selectors and declarations are used to target specific HTML
elements and apply styling rules to them.

Selectors are patterns used to select the elements that you want to
style, while declarations define the styling rules that you want to
apply to those elements. For example, consider the following CSS
code:

In this example, the h1 selector targets all <h1> elements on the
page, and the declarations inside the curly braces apply the styling

rules. The color declaration sets the text color to red, and the font-
size declaration sets the font size to 24 pixels.

Selectors can target specific elements based on their tag name,
class, ID, attribute, or a combination of these factors. There are also
pseudo-classes and pseudo-elements that allow you to target
elements based on their state or position within the document.

Declarations can include a variety of properties, such as color, font,
background, border, margin, padding, and more. Each property can
have a value assigned to it, such as a color name, a numeric value,
a percentage, or a keyword.

Comments in CSS
In CSS, you can add comments to your code to make it more
readable and easier to understand. Comments are not displayed on
the web page and do not affect the styling of your elements.

To add comments in CSS, you can use the /* */ syntax. Anything
written between /* and */ will be considered a comment and will not
be executed by the browser. For example:

You can also use comments to temporarily disable a block of code
without deleting it. This can be useful when testing different styles for
your elements. Simply add /* at the beginning of the code you want
to disable and */ at the end to re-enable it. For example:

In the example above, the first block of code is commented out and
will not be executed by the browser, while the second block will
apply the color blue to all h1 elements on the page.

External and Internal CSS
External and Internal CSS are two ways of organizing CSS code on
a web page.

Internal CSS is CSS code that is placed within the head section of
an HTML document, using the <style> tag. It applies only to the
current web page and cannot be used on other pages on the
website. Internal CSS is useful for small, single-page websites or for
making quick changes to a specific page without affecting the rest of
the site.

Here is an example of internal CSS code:

See the corresponding result below.

External CSS is CSS code that is stored in a separate .css file and
linked to the HTML document using the <link> tag in the head
section of the HTML document. This allows the CSS to be used
across multiple web pages on a website. External CSS is useful for
larger websites with multiple pages and for maintaining consistency
across the site.

Here is an example of external CSS code:

Below is the corresponding style.css file:

The corresponding result is shown below.

Linking an External CSS
Linking an external CSS file to an HTML document involves the
following steps:

Create a CSS file: Create a new file and save it with a ".css" extension, e.g.
"styles.css". This file will contain all of your CSS code.
Add CSS code: Add your CSS code to the "styles.css" file. This can include
any selectors, declarations, and rules that you want to apply to your HTML
document.
Link the CSS file to your HTML document: In the head section of your HTML
document, add a link element that specifies the location of the CSS file. The
link element should look like this:

You can replace the "styles.css" name or path with the actual path to your CSS
file. This path can be a relative or absolute URL.

Save your files: Save both your HTML and CSS files.

After these steps, your HTML document will be linked to the external CSS file,
and any styles you defined in the CSS file will be applied to your HTML
elements.

CHAPTER EIGHT

CSS STYLE PROPERTIES
CSS Style Properties are essential tools for web developers to
customize the appearance of HTML elements. These properties
allow developers to control the size, color, font, layout, and other
visual characteristics of web pages. In this chapter, we will explore
the various CSS Style Properties available and how they can be
used to create visually appealing websites, alongside several other
CSS components. We will also look at how to combine multiple style
properties to create complex designs and layouts. By the end of this
chapter, you will have a good understanding of how to use CSS
Style Properties to customize the look and feel of your web pages.

Text Properties
CSS Text Properties refer to the different properties that are used to
style text content in HTML documents. These properties include font
styles, font sizes, font weights, line heights, text alignments, and text
decorations. With CSS Text Properties, you can control the
appearance of text on your website, making it more visually
appealing and easy to read.

In this chapter, we will explore the different CSS Text Properties and
how they can be used to enhance the appearance of your website's
text content. We will also provide examples and best practices for
using these properties effectively, so you can create beautiful and
readable text on your website. Whether you are a beginner or an
experienced web developer, understanding CSS Text Properties is
essential for creating great web content.

What are CSS Text Properties?
Text properties in CSS are used to style and format the content of
text elements within an HTML document. These properties allow

developers to control the font family, font size, font weight, line
height, text alignment, text decoration, and text transformation.

By using text properties in CSS, you can enhance the readability and
appearance of your web pages. For example, you can change the
font size to make the text more legible, adjust the line height to
improve the spacing between lines, and add text decoration to
highlight important text.

Some of the commonly used text properties in CSS include font-
family, font-size, font-weight, line-height, text-align, text-decoration,
and text-transform. In the following sections, we will explore these
properties in more detail and learn how to use them to create
effective and attractive web designs.

Applying Text Properties
To apply text properties in CSS, you can use the following syntax:

Here's an example of applying text properties to an h1 element:

In this example, we set the font family to Arial or any sans-serif font,
font size to 32 pixels, font-weight to bold, color to #333, text
alignment to center, text transformation to uppercase, line height to
1.2 times the font size, and letter spacing to 1 pixel.

These text properties can be applied to any HTML element, such as
paragraphs, headings, and lists, to change their appearance and
improve the readability of the text.

Font Properties
Font properties in CSS are used to control the size, style, weight,
and family of the text. Here are some common font properties:

font-size: sets the size of the font. It can be specified in pixels, ems, rems, or
other units.
font-style: sets the style of the font, such as italic, oblique, or normal.
font-weight: sets the weight of the font, such as bold, bolder, lighter, or
normal.
font-family: sets the font family for the text, such as Arial, Times New Roman,
or Verdana.
text-transform: transforms the text to uppercase, lowercase, or capitalized.
text-decoration: adds decoration to the text, such as underline, overline, line-
through, or none.

Applying Font Properties
To apply these font properties, you can use CSS rules with selectors
to target specific HTML elements, and then add the desired font
properties to the declarations within the rules. For example:

This rule applies to all <h1> elements and sets the font size to 36
pixels, the font weight to bold, the font family to Arial or sans-serif (if
Arial is not available), the text-transform to uppercase, and the text-
decoration to underline.

Color Properties
Color properties in CSS allow you to specify the color of text,
background, borders, and other elements on a webpage. There are
several ways to define colors in CSS, including:

Named colors: CSS has predefined names for 140 different colors, such as
"red", "blue", "green", etc.
Hexadecimal notation: This method allows you to specify a color using a six-
digit code that represents the amount of red, green, and blue in the color.
RGB notation: This method specifies the amount of red, green, and blue in a
color using three numbers between 0 and 255.
HSL notation: This method specifies the color using its hue, saturation, and
lightness values.

In addition to specifying colors for specific elements, you can also
use CSS to apply color to specific parts of an element, such as its
border or background. CSS also allows you to apply transparency to
colors using the "opacity" property.

Applying Color properties
To apply color properties in CSS, you can use different color models
like RGB, RGBA, Hexadecimal, HSL, HSLA, etc. Here are some
examples:

1. Using RGB values:

2. Using Hexadecimal values:

3. Using HSL values:

You can also apply color to specific elements using selectors:

You can also set the opacity of colors using RGBA and HSLA values:

In addition to text color and background color, you can also use color
properties to set border color, box shadow color, and other visual
effects in CSS.

Background Properties

related attributes of an element. These properties allow designers to
customize the background of a webpage or specific sections of a
webpage to make it more visually appealing.

The background properties in CSS include:

background-color: This property is used to set the background color of an
element.
background-image: This property is used to set the background image of an
element.
background-repeat: This property is used to specify whether or not the
background image should be repeated vertically, horizontally, or not at all.
background-position: This property is used to set the starting position of the
background image.
background-size: This property is used to set the size of the background
image.
background-attachment: This property is used to specify whether the
background image should be fixed or scroll with the content of the element.

CSS Box Model
The CSS box model is a layout concept that defines the rectangular
boxes that are generated for HTML elements in a web page. Each
box consists of four parts: content, padding, border, and margin.
Understanding the box model is essential for creating well-designed
and visually appealing web pages.

The content area is the space where the actual content of an
element, such as text or an image, is displayed. The padding is the
space between the content and the border. The border is the line
that surrounds the content and padding. The margin is the space
between the border and the next element on the page.

The box model is important in CSS because it affects the layout and
spacing of elements on a page. By adjusting the padding, border,
and margin properties of an element, web developers can control the
space around and between elements. This can help create a
consistent and visually pleasing layout for a web page.

CSS provides several properties for adjusting the box model,
including padding, border, and margin. These properties can be set
individually for each side of the box, or all sides at once. Additionally,

the box-sizing property can be used to control how the width and
height of an element are calculated, including whether or not they
include padding and border.

Applying CSS Box Model
To apply the CSS box model, you can use the following properties:

Width and height: You can set the width and height of an element using the
width and height properties. By default, the width and height of an element
are set to auto.
Padding: You can add padding to an element using the padding property.
Padding is the space between the element's content and its border.
Border: You can add a border to an element using the border property. The
border surrounds the element's padding and content.
Margin: You can add a margin to an element using the margin property.
Margin is the space between the element's border and the adjacent elements.

Here's an example of how to apply the CSS box model:

In this example, we have a div element with the class container. We
have set its width to 500px, height to 300px, added 20px of padding,
a 2px solid black border, and 20px of margin. The content of the div
element is "This is an example of the CSS box model."

Understanding the Box Model
The CSS box model is a fundamental concept in web design that
explains how elements are structured on a web page. Every HTML
element is considered a box, and the box model defines how those
boxes are laid out, sized, and styled.

The box model consists of four parts: content, padding, border, and
margin. The content is the actual text, image, or other media that the

element contains. The padding is the space between the content and
the border. The border is a line or area that surrounds the padding
and content. The margin is the space between the border and the
neighboring elements.

The size of each box is determined by the content plus the padding,
border, and margin. For example, if an element has a width of 100
pixels and a padding of 10 pixels, the total width of the box would be
120 pixels (100 pixels for the content and 10 pixels of padding on
either side).

Margin, Border, and Padding
Margin, border, and padding are three important properties of the
CSS box model. They determine the size and spacing of an element
on a web page.

Margin: The space outside the border of an element. It creates a gap between
two adjacent elements. You can use a margin to control the amount of white
space around an element.
Border: The line that surrounds an element. It can be set to a specific width,
style, and color. A border can be used to visually separate an element from
other content.
Padding: The space between the content of an element and its border. You
can use padding to add space between the content and the border or to create
a visual effect within an element.

All of these properties can be set using CSS. You can specify values
for each of them separately or use the shorthand property to set
them all at once. For example, the following code sets a margin of 10
pixels on all sides, a border with a width of 1 pixel, and a padding of
5 pixels inside the border:

Width and Height

In CSS, the width and height properties are used to set the
dimensions of an element.

The width property is used to set the width of an element, and it can
take a value in pixels, percentages, ems, or other CSS length units.
For example:

The above CSS rule sets the width of all div elements to 200 pixels.
The height property is used to set the height of an element, and it
can also take a value in pixels, percentages, ems, or other CSS
length units. For example:

The above CSS rule sets the height of all div elements to 100 pixels.
When the width and height properties are used together with the
box model properties (padding, border, and margin), they
determine the total size of an element on the web page.

CSS Layouts
CSS layouts refer to the arrangement of elements on a web page. A
good layout is essential for creating an attractive and easy-to-use
website. CSS provides a wide variety of tools for creating layouts,
including:

Display property: This property determines the type of box an element
generates. The most commonly used values are block, inline, and inline-block.

Positioning: This property determines the position of an element on a page.
There are four values: static, relative, absolute, and fixed.
Float: This property moves an element to the left or right of its container.
Clear: This property is used to clear floated elements.
Flexbox: This is a new layout module introduced in CSS3. It is a powerful tool
for creating flexible and responsive layouts.
Grid: This is another layout module introduced in CSS3. It allows developers
to create complex grid-based layouts.

CSS Floats
Float is a CSS property that allows an element to be positioned to
the left or right of its parent container, allowing other content to flow
around it. This property is commonly used for creating column
layouts and image galleries.

When an element is floated, it is taken out of the normal document
flow, meaning that other elements will flow around it. To use the float
property, you simply apply it to the element that you want to float,
and then set the width and margin properties to position it correctly.

Floats can be useful for creating complex layouts, but they can also
cause problems if not used correctly. For example, floated elements
may overlap or push other content out of position, and they can also
be difficult to work with when it comes to responsive design.

To avoid these issues, it's important to use clearfix techniques to
clear floats and ensure that your layout remains stable across
different devices and screen sizes. Additionally, CSS Grid and
Flexbox layouts provide more modern and flexible alternatives to
using floats for layout design.

Applying Float
To apply a float in CSS, you need to use the float property. The
value of the property can be left or right to specify which direction
the element should be floated. For example, if you want to float an
image to the right of a paragraph of text, you would use the following
CSS:

This will cause the image to float to the right, allowing text to flow around it on the left.

It's important to note that when you float an element, it will be taken
out of the normal flow of the document, which can have an impact on
the layout of other elements. To prevent this, you can use the clear
property to specify that no floating elements should appear on a
particular side of the element. For example, to clear all floats to the
left of an element, you would use the following CSS:

This will cause the element to be placed below any elements that
have been floated to the left.

Positioning
Positioning in CSS refers to how an element is placed on a web
page, either with the browser window, the containing element, or
other elements on the page. There are four different types of
positioning in CSS:

Static Positioning: This is the default positioning for all HTML elements,
where the element appears in the order it is written in the HTML code.
Relative Positioning: This type of positioning allows an element to be moved
from its normal position by a specified number of pixels or percentage values,
while still taking up its original space in the document flow.
Absolute Positioning: This type of positioning allows an element to be
positioned relative to its closest positioned ancestor element, or if none exists,
relative to the initial containing block. It is removed from the normal document
flow and will not affect the position of other elements on the page.
Fixed Positioning: This type of positioning is similar to absolute positioning,
but the element is positioned relative to the browser window rather than its
containing element. The element remains in the same position even if the user
scrolls the page.

By using CSS positioning, web developers can create complex
layouts and positioning effects on their web pages. However, it is
important to use positioning judiciously, as it can be difficult to
maintain consistency across different screen sizes and devices.

Applying Positioning
To apply positioning in CSS, you can use the position property.
There are four different values you can use for the position
property:

static: This is the default value, and it means that the element will flow in the
normal document flow.
relative: This value positions the element relative to its normal position in the
document flow. You can then use the top, bottom, left, and right properties to
move the element to its normal position.
absolute: This value positions the element relative to its closest positioned
ancestor. If there is no positioned ancestor, the element will be positioned
relative to the document body. You can then use the top, bottom, left, and
right properties to move the element with its closest positioned ancestor.
fixed: This value positions the element relative to the viewport, meaning that it
will always stay in the same position even if the page is scrolled. You can then
use the top, bottom, left, and right properties to move the element with the
viewport.

Below is an example of how to use the position property:

This will position the element with the class box 20 pixels down and
50 pixels to the right of its normal position in the document flow.

Display
In CSS, the display property is used to define the type of box used
to represent an HTML element. It has a variety of values that control

how the element is displayed and interacts with other elements on
the page.

The most common display values are:

block: The element is displayed as a block-level element, with a line break
before and after the element. This is the default display value for elements
such as <div> and <p>.
inline: The element is displayed as an inline-level element, with no line break
before or after the element. This is the default display value for elements such
as and <a>.
inline-block: The element is displayed as an inline-level block container, with
a line break before and after the element. This is useful for elements that need
to be both inline and have a width or height, such as images or form controls.
none: The element is not displayed on the page at all. This is often used for
elements that are hidden based on user interaction or for accessibility
purposes.
flex: The element is displayed as a flex container, which allows for easy
creation of flexible layouts. This is often used for responsive web design.
grid: The element is displayed as a grid container, which allows for more
complex layouts than the flex property. This is also used for responsive web
design.
table: The element is displayed as a table element, with the same behavior as
the <table> HTML element. This is useful for creating layouts with a fixed
number of columns or rows.

Applying Display
By using the display property, you can control the layout of your
web pages and create more effective designs. Below is an example
of how to apply the display property:

Understanding CSS Grid
CSS Grid is a two-dimensional layout system that allows developers
to create complex grid layouts with ease. It is a relatively new
addition to CSS, first introduced in 2017, and has quickly become a
popular way to create responsive and flexible layouts.

With CSS Grid, developers can define rows and columns and then
place content within those areas. This allows for a high degree of
flexibility in layout design, as elements can be placed anywhere
within the grid, regardless of their order in the HTML document.

CSS Grid also supports responsive design, allowing for easy
reordering of content and the ability to change the layout based on
screen size or device orientation.

Some key features of CSS Grid include:

Two-dimensional grid layouts
Ability to define rows and columns
Placing content within grid areas
Support for responsive design
Control over the sizing and spacing of grid elements

Applying CSS Grid

To apply CSS Grid, you need to follow these steps:

Define the parent container as a grid container by setting the display property
to the grid.
Specify the number of rows and columns for the grid using the grid-template-
rows and grid-template-columns properties.
Define the size and spacing of the grid items using the grid-template-rows and
grid-template-columns properties.
Position the grid items within the grid using the grid-row and grid-column
properties.

Below is an example of how to apply CSS Grid:

HTML code:

CSS code:

In this example, we have created a grid container with 2 rows and 3
columns using the grid-template-rows and grid-template-columns
properties. We have also set the size and spacing of the grid items
using the grid-template-rows and grid-template-columns
properties and positioned them within the grid using the grid-row
and grid-column properties. The result will be a 2x3 grid with 6 grid
items inside. The result of the HTML and CSS code above is shown
below.

CSS Animations
CSS Animations refer to the process of adding motion or movement
to elements on a web page using CSS (Cascading Style Sheets).
This is done by defining specific animations using CSS rules, which
can be applied to different HTML elements such as text, images,
buttons, and other page elements.

Animations can be used to create engaging and interactive effects
on a web page, such as transitions, fades, rotations, and more. They
can also be used to add visual interest and enhance the user
experience. CSS Animations are typically defined using the
@keyframes rule, which allows you to specify different stages of
animation and the CSS properties that should be applied at each
stage.

Some of the benefits of using CSS Animations include:

They are lightweight and don't require additional JavaScript or other libraries
They can be easily customized and adjusted to fit your specific needs
They are supported by all modern web browsers
They can help improve the overall user experience and engagement on a
website.

When using CSS Animations, it's important to consider factors such
as performance, browser compatibility, and accessibility. Animations

should be used thoughtfully and sparingly, and should not interfere
with the functionality of the website or make it difficult for users to
navigate or interact with the content.

Applying CSS Animations
To apply CSS Animations, you need to follow these steps:

Define the keyframes: Keyframes are used to define the animation. You can
define the animation at different stages using percentage values.
Assign the keyframes to an element: You can assign the keyframes to an
element using the animation-name property.
Set the duration and timing function: You can set the duration of the animation
and timing function using the animation-duration and animation-timing-function
properties.
Specify the animation direction and iteration count: You can specify the
direction of the animation and the number of times the animation should be
repeated using the animation-direction and animation-iteration-count
properties.

Here is an example of how to apply a simple CSS animation:

In this example, we define a keyframe called example that changes
the background color of the element from red to yellow to blue
throughout the animation. We then assign this keyframe to a div
element and specify the duration, timing function, delay, iteration
count, and direction of the animation using the relevant CSS
properties. See the web result below.

CSS transitions
CSS transitions are a way to create smooth and gradual animations
between two states of an element. They allow you to define how an
element should change its properties over a specified duration and
timing function.

To apply a CSS transition, you need to first define the starting state
of the element using CSS properties. Then, you can use the
transition property to specify the duration, timing function, and other
parameters of the animation.

Here's an example of a CSS transition that changes the background
color of a button when it's hovered over:

HTML Code:

CSS Code:

In this example, we define a button with a blue background color and
white text. We also set the transition property to background-color
0.3s ease, which means that the transition will last for 0.3 seconds
and will use the ease timing function.

When the button is hovered over, we apply a new background color
of red using the :hover pseudo-class. Because of the transition
property, the background color change will be smooth and gradual
over the specified duration and timing function.

You can apply CSS transitions to a wide range of CSS properties,
including background color, font size, width, height, opacity, and
more.

Animating with Keyframes
Animating with keyframes is a CSS technique that allows you to
create complex animations with more control than traditional
transitions. It involves defining the animation steps at different points
in time, using the @keyframes rule, and then applying that
animation to an element using the animation property.

Here's an example of using keyframes to create a simple animation:

In this example, we've defined a div element with a blue background
color and a set width and height. We then apply the example
animation to it using the animation-name property. We specify the
duration of the animation, the easing function, and how many times it
should repeat using the animation-duration, animation-timing-
function, and animation-iteration-count properties, respectively.

The actual animation is defined in the @keyframes rule. Here, we
define the animation steps at different points in time: at 0%, the
background color is blue, at 50% it's green, and at 100% it's blue
again. By using the animation property to apply the example

animation to the div, we get a looping animation where the
background color fades between blue and green.

Undesratanding Flexbox
Flexbox is a layout module in CSS that provides a flexible way to
layout, align and distribute space among items in a container. With
Flexbox, you can create flexible and responsive layouts that can
adapt to different screen sizes and orientations.

Flexbox consists of two important components: the container (also
known as the flex container) and the items (also known as the flex
items). The container is used to group and control the layout of the
items inside it. The items are the individual elements inside the
container that can be arranged and aligned using flexbox properties.

Some of the key flexbox properties include:

display: flex - specifies that the container should use flexbox layout
flex-direction - specifies the direction of the main axis (row or column) along
which the items should be laid out
justify-content - specifies how the items should be aligned along the main
axis (e.g. center, start, end, space-between, etc.)
align-items - specifies how the items should be aligned along the cross axis
(e.g. center, start, end, stretch, etc.)
flex-wrap - specifies whether the items should wrap to the next line if there is
not enough space on a single line
flex-grow - specifies how much an item should grow relative to other items in
the container
flex-shrink - specifies how much an item should shrink relative to other items
in the container
flex-basis - specifies the initial size of an item before any remaining space is
distributed.

Applying Flexbox
Below is an example of how to use Flexbox to create a simple
navigation bar:

HTML code:

CSS code:

In this example, the nav element is set to display: flex, which turns it
into a flex container. The justify-content property is set to space-
between, which aligns the child elements with equal space between
them. The align-items property is set to center, which vertically
centers the child elements. The ul element is also set to display: flex,
which turns it into a flex container, and the child li elements are given
a margin to separate them. Finally, the “a” element is styled with
white text color and no text decoration.

This creates a horizontal navigation bar with equal spacing between
the items, centered vertically within the nav element. The navigation
bar is also given a dark background color and white text color. See
the result below.

CSS Variables
CSS variables, also known as CSS custom properties, are a
powerful feature of modern CSS that allows you to define a variable
once and use it throughout your CSS code. They are similar to
variables in programming languages, in that they allow you to store
and reuse values.

To define a CSS variable, you can use the -- syntax followed by a
name and value:

This creates a variable named --main-color with a value of #f00. You
can then use this variable in other parts of your CSS code:

This sets the color of all h1 elements to the value of the --main-
color variable. CSS variables are useful for some reasons. For one,
they allow you to define a value once and use it throughout your
code, which can save you a lot of time and effort. They also allow
you to easily change the value of a property across your entire
website by simply updating the variable value in one place.

CSS variables can also be used in combination with JavaScript,
which allows you to dynamically change the value of a variable
based on user input or other events. This can be especially useful for
creating dynamic and interactive websites.

Scalable Vector Graphics (SVG)
Scalable Vector Graphics (SVG) is an XML-based vector image
format for two-dimensional graphics that supports interactivity and
animation. It was developed by the World Wide Web Consortium
(W3C) and was first released in 2001. SVG images are resolution-
independent, meaning they can be scaled to any size without losing
their quality.

SVG images are created using shapes, lines, and curves, and can
be edited using text editors or specialized software such as Adobe
Illustrator. They can also be created programmatically using
JavaScript.

In web development, SVG is commonly used for creating logos,
icons, and other graphical elements that need to be scalable and
responsive. It can also be used for creating interactive graphics and
animations. SVG images can be embedded directly into HTML using
the <svg> element or can be included as an external file using the
 element or CSS background property.

To apply Scalable Vector Graphics (SVG), you can embed SVG
directly into your HTML code using the <svg> element, or you can
include it as an external file using the element.

To embed SVG directly, you can add the <svg> element to your
HTML code with its required attributes, such as width and height,
and then add shapes and other graphic elements inside the <svg>
element using SVG syntax. For example:

This example creates an SVG element with a width and height of
200 pixels and a light gray background. It then adds a red square, a
green circle, and a blue triangle using SVG syntax within the <svg>
element.

To include an SVG file as an external file, you can use the
element with the src attribute set to the URL of the SVG file. For
example:

In this example, the element includes an SVG image with the
src attribute set to "image.svg" and a width and height of 200 pixels.

CSS Custom Fonts

Custom fonts in CSS refer to fonts that are not commonly available
on most devices but can be imported and used on a web page.
Using custom fonts can add a unique touch to the design of a
website and can make it stand out from other sites that use only
common fonts.

To use custom fonts in CSS, you first need to download the font files
and add them to your website's directory. Then, you can use the

@font-face rule to import the font into your CSS. The @font-face rule
specifies the font family name and the URL of the font file, and can
also include other properties such as font-weight and font-style.

Here is an example of how to use the @font-face rule to import a
custom font:

In this example, the font family name is set to 'MyCustomFont', and
the font files are located in the same directory as the CSS file. The
font-weight is set to 400 (normal) and the font-style is set to normal.
Finally, the font family is applied to the body element, with the
fallback font being a sans-serif font.

CSS Best Practices

CSS Best Practices are a set of guidelines or recommendations for
writing clean, maintainable, and efficient CSS code. They help
developers to write better code, avoid common mistakes, and make
their code more scalable and reusable.

Some common CSS best practices include:

Use meaningful and consistent class names: Class names should
accurately describe the content they represent and be consistent throughout
the project.
Avoid using inline styles: Inline styles make it difficult to maintain and update
code, as they are scattered throughout the HTML markup.
Use a consistent indentation style: Use consistent indentation to improve
readability and make it easier to identify the structure of your code.

Use shorthand properties when possible: Shorthand properties allow you to
write more concise code and reduce the overall file size.
Keep your code organized: Organize your code into separate files, and
group related styles together.
Avoid using excessive specificity: Excessive specificity makes it difficult to
override styles and can lead to specificity wars.
Use comments to document your code: Comments can be used to describe
the purpose and function of your code and make it easier to maintain.
Minimize the use of !important: The !important rule should be used
sparingly, as it can make it difficult to override styles.
Use a CSS preprocessor: CSS preprocessors, such as Sass or Less, can
help you write more efficient and maintainable CSS code.
Test your code in multiple browsers: Testing your code in multiple browsers
helps to ensure cross-browser compatibility and avoid unexpected rendering
issues.

Writing Efficient CSS
Writing efficient CSS is an important skill to ensure that your web
pages load quickly and smoothly. Here are some best practices for
writing efficient CSS:

Minimize the use of selectors: The more complex your CSS selectors are,
the slower the browser will be able to render the page. Try to use the simplest
selectors possible and avoid using too many descendant selectors.
Use shorthand properties: Instead of using separate properties for margin,
padding, and borders, use the shorthand properties. This reduces the amount
of CSS you need to write and can also make your code easier to read.
Avoid using too many fonts: Using too many different fonts on a page can
slow down page load time. Try to limit yourself to using two or three fonts.
Use CSS resets: Browsers have their default styles for HTML elements, which
can cause inconsistencies in how your web pages look. Using a CSS reset like
Normalize.css can help ensure that your web pages look consistent across
different browsers.
Group-related CSS properties: When writing CSS, group related properties
together. For example, instead of writing separate rules for margin-top, margin-
bottom, margin-left, and margin-right, group them in a margin rule.
Use efficient CSS animations: When using CSS animations, avoid using too
many keyframes or animating too many properties at once. This can slow
down page load time and make your animations less smooth.

Debugging CSS
Debugging CSS is an important part of web development. Here are
some tips for debugging CSS:

Use the browser's built-in developer tools: Most modern web browsers
come with built-in developer tools that allow you to inspect and debug your
CSS. You can use the elements tab to view the HTML and CSS of your web
page, and the console tab to view any errors or warnings.
Check for typos and syntax errors: CSS is very sensitive to typos and
syntax errors. Check your CSS code for any typos, missing semicolons, or
other syntax errors.
Use meaningful class and ID names: Use class and ID names that are
descriptive and meaningful. This will make it easier to understand your CSS
code and debug any issues.
Use comments to organize your code: Use comments to organize your CSS
code and make it easier to understand. This can also help you identify any
issues or bugs in your code.
Use a CSS preprocessor: CSS preprocessors like Sass or Less can help you
write more efficient and organized CSS code. They also offer features like
variables and mixins that can help you avoid repeating code.
Use a CSS linter: A CSS linter can help you identify and fix common CSS
errors and improve the overall quality of your code.
Test your code in different browsers: CSS can behave differently in different
browsers, so it's important to test your code in multiple browsers to ensure it
works as expected.

The Future of CSS
The future of CSS is an exciting prospect, as new features and
capabilities are constantly being developed and implemented. Here
are some of the trends and developments that are shaping the future
of CSS:

CSS Grid: CSS Grid is a powerful layout system that allows for complex
layouts to be created quickly and easily. It has already gained widespread
adoption and is becoming the standard for layout design.
CSS Custom Properties: CSS custom properties, or variables, allow
developers to define reusable values and apply them to various parts of their
CSS, making it easier to maintain and update styles.
CSS Animations and Transitions: CSS animations and transitions are
becoming more sophisticated, with new properties and features being added
that allow for more complex and interactive animations.
Responsive Web Design: Responsive design has already become the
standard for web design, but as more devices and screen sizes emerge, the
need for responsive design will only continue to grow.
Accessibility: Accessibility is becoming increasingly important, and CSS
plays a vital role in making websites accessible to all users. New CSS features
and techniques are being developed to make it easier to create accessible
designs.

CHAPTER NINE

HTML AND CSS PRACTICAL EXERCISES
This chapter consists of HTML and CSS Practical Exercises that are
intended to boost beginners and advanced web developer ‘ability in
building professional websites with HTML and CSS.

Exercise 1: Design a simple login page with HTML and
CSS

Below is an example of HTML and CSS code for a simple Login
page.

HTML Code:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-
scale=1.0">

 <title>Login Page</title>

 <link rel="stylesheet" type="text/css" href="style.css">

</head>

<body>

 <div class="login-container">

 <h1>Login</h1>

 <form>

 <label for="username">Username</label>

 <input type="text" id="username" name="username">

 <label for="password">Password</label>

 <input type="password" id="password" name="password">

 <button type="submit">Sign In</button>

 </form>

 </div>

</body>

</html>

CSS Code:

Create a CSS file and include the following code.

body {

 margin: 0;

 padding: 0;

 font-family: Arial, sans-serif;

 background-color: #f2f2f2;

}

.login-container {

 width: 400px;

 margin: 100px auto;

 background-color: #bbbbbb;

 padding: 30px;

 border-radius: 5px;

 box-shadow: 0px 0px 10px 0px rgba(0,0,0,0.3);

}

h1 {

 text-align: center;

 margin-bottom: 30px;

}

form {

 display: flex;

 flex-direction: column;

}

label {

 margin-bottom: 5px;

}

input {

 padding: 10px;

 margin-bottom: 20px;

 border: none;

 border-radius: 5px;

}

button {

 background-color: #4CAF50;

 color: white;

 padding: 10px;

 border: none;

 border-radius: 5px;

 cursor: pointer;

}

button:hover {

 background-color: #3e8e41;

}

The web result is shown below.

Exercise 2: Build a simple landing page for a product
with HTML and CSS.

Below is an example of HTML and CSS code for a simple landing
page for a product:

HTML code:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-
scale=1.0">

 <title>Product Landing Page</title>

 <link rel="stylesheet" href="style.css">

</head>

<body>

 <header>

 <nav>

 Home

 Features

 Pricing

 Contact

 </nav>

 <h1>Mouse</h1>

 </header>

 <main>

 <section>

 <h2>Features</h2>

 Rechageable

 8hrs Battery Life

 Grey Color

 </section>

 <section>

 <h2>Pricing</h2>

 <p>Price: $20</p>

 <button>Buy Now</button>

 </section>

 </main>

 <footer>

 <p>Copyright; 2023 Sammie Smith. All rights reserved.</p>

 </footer>

</body>

</html>

CSS code:

Create a CSS file and include the following code.

body {

 font-family: Arial, sans-serif;

 margin: 0;

 padding: 0;

 }

 header {

 background-color: #333;

 color: white;

 padding: 20px;

 display: flex;

 justify-content: space-between;

 align-items: center;

 }

 nav ul {

 list-style: none;

 margin: 0;

 padding: 0;

 display: flex;

 }

 nav li {

 margin-right: 20px;

 }

 nav li:last-child {

 margin-right: 0;

 }

 nav a {

 color: white;

 text-decoration: none;

 }

 main {

 padding: 20px;

 max-width: 800px;

 margin: 0 auto;

 }

 section {

 margin-bottom: 40px;

 }

 h2 {

 margin-top: 0;

 }

 ul {

 list-style: none;

 margin: 0;

 padding: 0;

 }

 p {

 margin: 0;

 }

 button {

 background-color: #333;

 color: white;

 border: none;

 padding: 10px 20px;

 border-radius: 5px;

 cursor: pointer;

 font-size: 16px;

 }

 button:hover {

 background-color: #666;

 }

 footer {

 background-color: #ccc;

 padding: 20px;

 text-align: center;

 }

This code creates a simple landing page with a navigation bar,
product name, features section, pricing section, and footer. You can
customize the content and styling to fit your product's needs. See the
web result below.

Note that you can modify the exercise above to suite your project.

Exercise 3: Create a responsive pricing table with HTML
and CSS

Below is an example of a responsive pricing table using HTML and
CSS:

HTML Code:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-
scale=1.0">

 <title>Pricing Table</title>

 <link rel="stylesheet" type="text/css" href="style.css">

 </head>

 <body>

 <div class="pricing-table">

 <div class="plan">

 <h2>Basic</h2>

 <h3>$10/month</h3>

 1 User

 5GB Storage

 Unlimited Projects

 Free Support

 Choose Plan

 </div>

 <div class="plan popular">

 <h2>Pro</h2>

 <h3>$20/month</h3>

 5 Users

 20GB Storage

 Unlimited Projects

 Free Support

 Choose Plan

 </div>

 <div class="plan">

 <h2>Advanced</h2>

 <h3>$30/month</h3>

 Unlimited Users

 50GB Storage

 Unlimited Projects

 Free Support

 Choose Plan

 </div>

 </div>

</body>

</html>

CSS Code:

Create a CSS file and include the following code.

.pricing-table {

 display: flex;

 justify-content: space-around;

 flex-wrap: wrap;

 }

 .plan {

 text-align: center;

 margin: 20px;

 padding: 20px;

 border: 1px solid #ccc;

 width: 30%;

 max-width: 300px;

 transition: all 0.3s ease-in-out;

 }

 .plan:hover {

 transform: scale(1.1);

 box-shadow: 0 5px 10px rgba(0,0,0,0.3);

 }

 .popular {

 background-color: #f9f9f9;

 }

 h2, h3 {

 margin: 0;

 }

 ul {

 list-style: none;

 padding: 0;

 }

 li {

 padding: 10px 0;

 }

 .button {

 display: inline-block;

 padding: 10px 20px;

 margin-top: 20px;

 background-color: #333;

 color: #fff;

 text-decoration: none;

 border-radius: 4px;

 }

The web result is shown as follows.

CHAPTER TEN

RESPONSIVE WEB DESIGN
Responsive web design is an approach to web design that focuses
on creating websites that are optimized for a variety of devices and
screen sizes. With the increasing popularity of mobile devices,
responsive web design has become essential for ensuring that
websites are accessible and user-friendly on all devices.

Responsive web design involves using CSS media queries to adjust
the layout and content of a website based on the size of the screen it
is being viewed on. This allows for a seamless user experience,
regardless of the device being used to access the website.

In this chapter, we will explore the principles of responsive web
design, including best practices for designing responsive websites
and the tools and technologies used to create them. We will also
cover some common challenges and solutions associated with
responsive web design, such as optimizing images and managing
complex layouts.

Introduction to Responsive Design
Responsive design is an approach to web design that ensures
websites and applications look good and function well across
multiple devices and screen sizes. With the growing use of mobile
devices to access the internet, responsive design has become a
critical aspect of modern web development.

Responsive design typically involves using a combination of
techniques, such as fluid layouts, flexible images, and media
queries, to create websites that can adapt to different screen sizes
and resolutions. The goal of responsive design is to provide a
seamless and consistent user experience, regardless of the device
being used to access the website. This means that elements on the

page will reposition, resize, or even disappear based on the screen
size and orientation, without losing any functionality or readability.

Responsive design ensures that websites and applications are
accessible to all users, regardless of the device they are using and
helps to ensure that they can navigate and interact with the content
in the most efficient and user-friendly way possible.

Best Practices for Designing Responsive Websites
Below are some best practices for designing responsive websites:

Mobile-first approach: Start by designing for the smallest screen size first
and then gradually move towards larger screen sizes. This ensures that the
website is optimized for smaller screens and loads faster.
Use a responsive framework: Responsive frameworks like Bootstrap provide
a grid system that helps in creating responsive layouts quickly. This also
ensures that the website is compatible with different screen sizes.
Optimize images: Large images can slow down the website's loading time, so
it's important to optimize them for web use. You can use image compression
tools like TinyPNG or JPEGmini to reduce the size of images without affecting
their quality.
Use media queries: Media queries allow you to apply different styles to
different screen sizes. This helps in creating a consistent user experience
across different devices.
Test on multiple devices: It's important to test the website on different
devices to ensure that it looks and functions correctly on all of them. You can
use tools like BrowserStack or Device Mode in Google Chrome to test the
website on different devices.
Keep it simple: Avoid using too many complex design elements or animations
that can slow down the website's loading time. Stick to simple and clean
design principles that are easy to read and navigate on smaller screens.
Use scalable fonts: Use fonts that are scalable and easy to read on smaller
screens. Avoid using fonts that are too small or difficult to read on smaller
screens.

Tools and Technologies used to Create Responsive
Website

There are several tools and technologies used to create responsive
websites. Some of the most popular ones include:

HTML and CSS: These are the basic building blocks of any website and are
used to create the structure and style of the website.

CSS frameworks: Frameworks like Bootstrap and Foundation provide pre-
built CSS styles and components that make it easier to create responsive
websites.
CSS preprocessors: Preprocessors like Sass and Less allow developers to
write CSS more efficiently by providing features like variables, nesting, and
mixins.
JavaScript: JavaScript can be used to add interactivity and dynamic behavior
to a website. It is often used for things like responsive navigation menus and
sliders.
Responsive design tools: There are many tools available that help with
responsive design, such as media query generators, viewport testing tools,
and responsive design frameworks.
Content management systems (CMS): CMS platforms like WordPress,
Drupal, and Joomla have built-in responsive design features and templates
that can be used to create responsive websites.
Mobile app development platforms: Platforms like React Native and Flutter
allow developers to create mobile apps that are optimized for different devices
and screen sizes.

Understanding Media Queries
Media queries are a CSS technique used for styling web pages
based on the device or screen size they are viewed on. With media
queries, you can define different styles for different devices or screen
sizes, such as desktops, laptops, tablets, and mobile devices.

Media queries work by checking the width and height of the viewport,
which is the area of the browser window where the web page is
displayed. You can set a specific style for a particular viewport size
or range of sizes by using the @media rule in CSS.

For example, you could define a media query for screens with a
maximum width of 768 pixels and set a different font size and layout
for that size range. This allows you to create a more user-friendly
and consistent experience across different devices.

Media queries can also be used to apply different styles based on
other characteristics of the device, such as orientation (landscape or
portrait), resolution, or color depth.

Applying Media Queries

To apply media queries in CSS, you first need to specify the media
type you want to apply the styles to. The most common media type
is the screen, which is used for devices with a screen, such as
desktop computers, laptops, tablets, and smartphones. Other media
types include print, which is used for printing, and speech, which is
used for screen readers.

To apply styles to a specific media type, you can use the @media
rule followed by the media type in parentheses, like this:

Within the media query block, you can write styles that will only apply
when the specified media type is in use. For example, you can set
different font sizes, colors, or layout properties for desktop and
mobile devices.

You can also use media queries to specify different styles based on
the width or height of the device's screen. For example, you can
write styles that will only apply when the screen width is less than or
equal to 768 pixels:

This will apply the styles within the media query block when the
screen width is 768 pixels or less. You can also use the min-width
property to specify a minimum screen width for the styles to apply.

By using media queries, you can create responsive designs that
adjust to different screen sizes and devices, making your website
more user-friendly and accessible.

Understanding Mobile-first Design Approach
Mobile-first design is a design approach in which a website or
application is designed for mobile devices first and then scaled up to
fit larger screens such as desktops or laptops. This approach
assumes that more people access websites through their mobile
devices than their desktops, and it aims to create an optimal
experience for mobile users.

When designing for mobile first, the focus is on creating a
streamlined, efficient user experience that prioritizes the most
important content and tasks. This often involves using a minimalist
design, simplifying navigation, and using large, easy-to-read fonts
and buttons.

Once the mobile design is in place, the design can be scaled up to fit
larger screens. This involves using media queries to adjust the
layout and styling of the website based on the screen size of the
device being used.

Mobile-first design has become increasingly important as mobile
devices have become the primary way that people access the
internet. By designing with mobile in mind, developers can ensure
that their websites are accessible and usable for the majority of their
audience.

Applying Mobile-first Design
To carry out a mobile-first design using CSS, follow these steps:

Start with a mobile-first CSS file, which contains styles for the smallest screen
sizes first, and then gradually adds styles for larger screen sizes as necessary.
For example:

Use responsive units such as em and % instead of fixed units like px to
ensure that elements scale properly on different screen sizes.
Use a responsive framework such as Bootstrap or Foundation, which provide
pre-built CSS classes and components for creating responsive layouts.
Use CSS media queries to target specific screen sizes and apply custom
styles as needed.
Test your design on various devices and screen sizes to ensure that it looks
good and functions properly across all platforms.

Study the code below to understand how to implement Mobile-first
Design.

HTML Code:

<!DOCTYPE html>

<html>

<head>

 <meta charset='utf-8'>

 <meta http-equiv='X-UA-Compatible' content='IE=edge'>

 <title>Example Page</title>

 <meta name='viewport' content='width=device-width, initial-
scale=1'>

 <link rel='stylesheet' type='text/css' media='screen'
href='main.css'>

 <script src='main.js'></script>

</head>

<body>

<header>

 <h1>My Website</h1>

 <nav>

 Home

 About

 Contact

 </nav>

</header>

<main>

 <section>

 <h2>About Me</h2>

 <p>Hi, my name is John Doe and I am a web
developer.</p>

 </section>

 <section>

 <h2>Recent Work</h2>

 <div class="work">

 </div>

 </section>

</main>

<footer>

 <p> Copyrights @ 2023 My Website. All Rights Reserved.</p>

</footer>

</body>

</html>

Afterward, create a CSS external file and link it to your html file and
include the code below. Ensure to use information suitable to the
project you are working on.

CSS Code:

* {

box-sizing: border-box;

}

body {

font-family: Arial, sans-serif;

font-size: 16px;

margin: 0;

padding: 0;

}

header {

background-color: #333;

color: #fff;

padding: 10px;

}

nav ul {

list-style: none;

margin: 0;

padding: 0;

display: flex;

flex-wrap: wrap;

}

nav li {

margin: 0 10px;

}

nav a {

color: #fff;

text-decoration: none;

}

main {

padding: 20px;

}

section {

margin-bottom: 20px;

}

section h2 {

font-size: 24px;

margin-bottom: 10px;

}

section p {

font-size: 16px;

line-height: 1.5;

}

.work {

display: flex;

flex-wrap: wrap;

}

.work a {

flex: 1 1 300px;

margin: 10px;

}

@media screen and (min-width: 768px) {

header {

 display: flex;

 justify-content: space-between;

 align-items: center;

}

nav {

 flex: 1;

}

main {

 display: flex;

 flex-wrap: wrap;

}

section {

 flex: 1;

 margin: 0 10px;

}

.work a {

 margin: 10px 0;

}

}

This code includes a simple header, navigation, main content with
two sections, and a footer. The CSS includes styles for mobile
devices with a small screen width of fewer than 768 pixels, as well
as larger screen sizes with a media query. When the screen width is
at least 768 pixels, the header, and main content are displayed using
a flexbox layout. See the result below.

Note that you can always modify the codes in this guide to suit your taste.

Responsive Frameworks
Responsive frameworks are pre-built collections of CSS and
JavaScript files that provide a foundation for creating responsive web

designs. They typically include a grid system and pre-defined styles
for common HTML elements, as well as pre-built components like
navigation menus, buttons, and forms.

Using a responsive framework can greatly simplify the process of
building responsive websites, as it eliminates the need to write
custom CSS for every design element. Instead, developers can use
the framework's pre-built classes and components to quickly create
responsive layouts and designs.

Some popular responsive frameworks include Bootstrap,
Foundation, and Bulma. These frameworks are widely used and
well-documented, making them a great choice for both beginner and
experienced developers.

Note that to make a completely interactive website with a powerful
feature you would require all the frameworks put together, but this
book is limited to HTML and CSS.

Common Challenges and Solutions Associated with
Responsive Web Design

Responsive web design can present some challenges that need to
be addressed to provide a seamless experience across all devices.
Some common challenges and solutions associated with responsive
web design include:

Device compatibility: With the wide variety of devices available today, ensuring
that your website looks good on all of them can be a challenge. The solution is
to use responsive design techniques that adapt to different screen sizes, such
as flexible grids, responsive images, and media queries.
Content prioritization: When designing for smaller screens, it's important to
prioritize content so that the most important information is displayed first. One
solution is to use a mobile-first approach, where you design for the smallest
screen size first and then add more content and features as the screen size
increases.
Navigation: Navigation menus can be tricky on small screens, as they can take
up valuable screen real estate. A solution is to use a hamburger menu, where
the menu is hidden behind a small icon until the user taps on it.
Performance: Large images and complex layouts can slow down the
performance of your website, especially on mobile devices with slower internet
connections. A solution is to optimize images and use techniques such as lazy
loading to improve page speed.

Testing: Testing your website on different devices and screen sizes can be
time-consuming and difficult. A solution is to use responsive design testing
tools that allow you to preview your website on different devices and screen
sizes, such as BrowserStack, Responsinator, or Am I Responsive.

Optimizing Images and Managing Complex Layouts
As part of the process of building responsive websites, optimizing
images and managing complex layouts are two critical areas to focus
on.

Optimizing images involves reducing the file size of images to
improve website performance and load times. This can be achieved
through techniques such as compressing images, resizing images to
the appropriate dimensions, and using the appropriate image file
format. There are also various tools available to help optimize
images, such as Photoshop and online tools like TinyPNG.

Managing complex layouts involves creating layouts that work
across a variety of screen sizes and devices. This can be achieved
through the use of CSS grid systems and frameworks, which provide
pre-defined grids and responsive design patterns that can be easily
adapted to different screen sizes. Additionally, designing with a
mobile-first approach can help ensure that the most important
content is prioritized for smaller screens, with additional content and
layout elements added as the screen size increases.

Other common challenges in responsive web design include issues
with typography, navigation, and performance optimization. However,
with careful planning and attention to detail, these challenges can be
overcome, resulting in a well-designed and functional responsive
website.

CHAPTER ELEVEN

RESPONSIVE WEBSITES PRACTICAL
EXERCISES

In this chapter, we will focus on practical exercises that will help you
create a responsive website from scratch. You will learn how to use
HTML and CSS to build a website that looks good on desktop
computers, tablets, and smartphones.

We will cover various topics such as layout design, media queries,
and responsive images. By the end of this chapter, you will be able
to create a website that looks great on any device, making it
accessible to a wider audience.

Exercise 1: Design a responsive restaurant website
Design a responsive restaurant website with a homepage, menu
page, reservation page, and contact page. Use responsive design
techniques to ensure the website looks good on all devices and
provides a user-friendly experience for customers with HTML and
CSS.

Below is an example of how you can create a restaurant website.

HTML Code:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-
scale=1.0">

 <title>Restaurant Homepage</title>

 <link rel="stylesheet" href="style.css">

</head>

<body>

 <header>

 <nav>

 Home

 Menu

 Reservation

 Contact

 </nav>

 </header>

 <main>

 <section class="hero">

 <h1>Welcome to Our Restaurant</h1>

 <p>Enjoy delicious food and great ambiance</p>

 See Menu

 </section>

 <section class="menu">

 <h2>Our Menu</h2>

 <h3>Pizza</h3>

 <p>Delicious pizza with fresh toppings</p>

 $10

 <h3>Burger</h3>

 <p>Classic burger with all the fixings</p>

 $8

 <h3>Pasta</h3>

 <p>Freshly made pasta with delicious sauce</p>

 $12

 </section>

 <section class="reservation">

 <h2>Make a Reservation</h2>

 <form>

 <label for="name">Name:</label>

 <input type="text" id="name" name="name">

 <label for="email">Email:</label>

 <input type="email" id="email" name="email">

 <label for="date">Date:</label>

 <input type="date" id="date" name="date">

 <label for="time">Time:</label>

 <input type="time" id="time" name="time">

 <label for="guests">Number of Guests:</label>

 <input type="number" id="guests" name="guests">

 <button type="submit">Submit</button>

 </form>

 </section>

 <section class="contact">

 <h2>Contact Us</h2>

 <form>

 <label for="name">Name:</label>

 <input type="text" id="name" name="name">

 <label for="email">Email:</label>

 <input type="email" id="email" name="email">

 <label for="message">Message:</label>

 <textarea id="message" name="message"></textarea>

 <button type="submit">Submit</button>

 </form>

 </section>

 </main>

 <footer>

 <p>© 2023 Yummies Restaurant</p>

 </footer>

</body>

</html>

CSS Code:

/* Global styles */

* {

 box-sizing: border-box;

 margin: 0;

 padding: 0;

 }

 body {

 font-family: Arial, sans-serif;

 }

 header {

 background-color: #333;

 color: #fff;

 padding: 10px;

 }

 nav ul {

 list-style: none;

 margin: 0;

 padding: 0;

 }

 nav li {

 display: inline-block;

 margin-right: 20px;

 }

 nav a {

 color: #fff;

 text-decoration: none;

 }

 main {

 padding: 20px;

 }

 section {

 margin-bottom: 40px;

 }

 h1 {

 font-size: 48px;

 margin-bottom: 20px;

 }

 h2 {

 font-size: 36px;

 margin-bottom: 10px;

 }

 ul {

 list-style: none;

 margin: 0;

 padding: 0;

 }

 li {

 display: flex;

 margin-bottom: 20px;

 }

 img {

 margin-right: 20px;

 }

 span {

 margin-left: auto;

 font-weight: bold;

 }

 form {

 display: flex;

 flex-direction: column;

 }

 label {

 margin-bottom: 10px;

 }

 input,

 textarea,

 button {

 padding: 10px;

 margin-bottom: 20px;

 border: 1px solid #ccc;

 border-radius: 5px;

 }

 input:focus,

 textarea:focus {

 outline: none;

 border-color: #333;

 }

 button {

 background-color: #333;

 color: #fff;

 border: none;

 cursor: pointer;

 }

 button:hover {

 background-color: #555;

 }

 footer {

 background-color: #333;

 color: #fff;

 text-align: center;

 padding: 10px;

 }

 /* Media queries */

 @media (min-width: 768px) {

 /* Header */

 nav li {

 margin-right: 40px;

 }

 /* Sections */

 section {

 display: flex;

 flex-wrap: wrap;

 }

 .hero {

 flex-basis: 50%;

 padding-right: 40px;

 }

 .menu,

 .reservation,

 .contact {

 flex-basis: 27%;

 padding-left: 22px;

 padding-right: 22px;

 }

 /* Form fields */

 label,

 input,

 textarea,

 button {

 width: 100%;

 }

 /* Form buttons */

 button {

 width: 50%;

 margin-left: auto;

 margin-right: auto;

 }

 }

See the web results below.

Exercise 2: Create a Responsive Photographer Portfolio
Create a responsive online portfolio for a photographer, artist, or
designer. Showcase their work in a visually appealing way, using
responsive design techniques to ensure the website looks good on
all devices with HTML and CSS.

Below is an example of HTML and CSS code to create a responsive
online portfolio for a photographer:

HTML Code:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-
scale=1.0">

 <title>Photographer Portfolio</title>

 <link rel="stylesheet" href="style.css">

 </head>

 <body>

 <header>

 <nav>

 Home

 Portfolio

 About

 Contact

 </nav>

 </header>

 <main>

 <section class="hero">

 <h1>Welcome to My Portfolio</h1>

 <p>Check out my latest work</p>

 </section>

 <section class="portfolio">

 <h2>My Portfolio</h2>

 <h3>Photograph 1</h3>

 <h3>Photograph 2</h3>

 <h3>Photograph 3</h3>

 <h3>Photograph 4</h3>

 </section>

 <section class="about">

 <h2>About Me</h2>

 <p>Hi, I'm a photographer based in New York City. I specialize in landscape and
portrait photography. My goal is to capture the beauty of the world and tell stories through
my photographs.</p>

 </section>

 <section class="contact">

 <h2>Contact Me</h2>

 <form>

 <label for="name">Name:</label>

 <input type="text" id="name" name="name">

 <label for="email">Email:</label>

 <input type="email" id="email" name="email">

 <label for="message">Message:</label>

 <textarea id="message" name="message"></textarea>

 <button type="submit">Submit</button>

 </form>

 </section>

 </main>

 <footer>

 <p>© 2023 Sammie Smith</p>

 </footer>

</body>

</html>

CSS Code:

/* Global Styles */

* {

 box-sizing: border-box;

 margin: 0;

 padding: 0;

 }

 body {

 font-family: Arial, sans-serif;

 font-size: 16px;

 line-height: 1.5;

 color: #130101;

 }

 a {

 text-decoration: none;

 color: #4b0b0b;

 }

 ul {

 list-style: none;

 }

 img {

 max-width: 100%;

 height: auto;

 }

 /* Header Styles */

 header {

 background-color: #7c7a7a;

 border-bottom: 1px solid #696262;

 }

 nav ul {

 display: flex;

 justify-content: space-between;

 align-items: center;

 margin: 0;

 padding: 1rem;

 }

 nav li {

 margin: 0 1rem;

 }

 nav a {

 font-weight: bold;

 letter-spacing: 1px;

 text-transform: uppercase;

 }

 /* Hero Section Styles */

 .hero {

 background-image: url(https://via.placeholder.com/1200x600);

 background-size: cover;

 background-position: center;

 height: 60vh;

 display: flex;

 flex-direction: column;

 justify-content: center;

 align-items: center;

 text-align: center;

 }

 .hero h1 {

 font-size: 3rem;

 margin-bottom: 1rem;

 color: #791818;

 text-shadow: 2px 2px #333;

 }

 .hero p {

 font-size: 1.5rem;

 color: #442222;

 text-shadow: 2px 2px #418d58;

 }

 /* Portfolio Section Styles */

 .portfolio {

 padding: 2rem;

 }

 .portfolio h2 {

 font-size: 2rem;

 margin-bottom: 1rem;

 }

 .portfolio li {

 margin-bottom: 2rem;

 }

 .portfolio h3 {

 font-size: 1.5rem;

 margin-top: 1rem;

 }

 /* About Section Styles */

 .about {

 padding: 2rem;

 }

 .about h2 {

 font-size: 2rem;

 margin-bottom: 1rem;

 }

 /* Contact Section Styles */

 .contact {

 padding: 2rem;

 }

 .contact h2 {

 font-size: 2rem;

 margin-bottom: 1rem;

 }

 label {

 display: block;

 margin-bottom: 0.5rem;

 }

 input,

 textarea {

 display: block;

 width: 100%;

 padding: 0.5rem;

 margin-bottom: 1rem;

 border: 1px solid #ccc;

 border-radius: 4px;

 }

 button[type="submit"] {

 background-color: #333;

 color: #fff;

 border: none;

 padding: 0.5rem 1rem;

 border-radius: 4px;

 cursor: pointer;

 font-size: 1rem;

 text-transform: uppercase;

 }

 button[type="submit"]:hover {

 background-color: #444;

 }

 /* Footer Styles */

 footer {

 background-color: #333;

 color: #fff;

 text-align: center;

 padding: 1rem;

 }

See the web result below.

Exercise 3: Develop a Responsive E-commerce Website
Develop a responsive e-commerce website with a homepage,
product listing page, and product details page. Use responsive
design techniques to ensure the website looks good on all devices
and provides a seamless shopping experience with HTML and CSS.

Below is an example of a responsive e-commerce website.

HTML Code:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-
scale=1.0">

 <title>Responsive E-commerce Website</title>

 <link rel="stylesheet" href="style.css">

</head>

<body>

 <header>

 <nav>

 Home

 Shop

 Contact

 Cart

 </nav>

 </header>

 <main>

 <section class="hero">

 <h1>Welcome to our E-commerce Website</h1>

 <p>Shop the latest products now</p>

 Shop Now

 </section>

 <section class="featured-products">

 <h2>Featured Products</h2>

 <h3>Product 1</h3>

 <p>$20.00</p>

 <h3>Product 2</h3>

 <p>$25.00</p>

 <h3>Product 3</h3>

 <p>$30.00</p>

 </section>

 </main>

 <footer>

 <p>© 2023 Sammie Smith</p>

 </footer>

</body>

</html>

CSS Code:

/* Global Styles */

* {

 box-sizing: border-box;

 margin: 0;

 padding: 0;

 }

 body {

 font-family: Arial, sans-serif;

 font-size: 16px;

 line-height: 1.5;

 }

 a {

 text-decoration: none;

 }

 ul {

 list-style: none;

 }

 /* Header Styles */

 header {

 background-color: #333;

 color: #d6d4d4;

 padding: 1rem;

 }

 nav ul {

 display: flex;

 justify-content: space-between;

 }

 nav ul li {

 margin-right: 1rem;

 }

 nav ul li:last-child {

 margin-right: 0;

 }

 nav ul li a {

 color: #fff;

 }

 nav ul li a:hover {

 text-decoration: underline;

 }

 /* Hero Styles */

 .hero {

 background-image: url('https://via.placeholder.com/1920x1080');

 background-size: cover;

 background-position: center center;

 height: 500px;

 display: flex;

 flex-direction: column;

 justify-content: center;

 align-items: center;

 text-align: center;

 color: #fff;

 }

 .hero h1 {

 font-size: 3rem;

 margin-bottom: 1rem;

 }

 .hero p {

 font-size: 1.5rem;

 margin-bottom: 1.5rem;

 }

 .btn {

 background-color: #3c8014;

 color: #333;

 padding: 0.5rem 1rem;

 border-radius: 0.5rem;

 font-size: 1rem;

 transition: background-color 0.3s ease;

 }

 .btn:hover {

 background-color: #1f725d;

 color: #f3f3f5;

 cursor: pointer;

 }

 /* Featured Products Styles */

 .featured-products {

 padding: 2rem;

 }

 .featured-products h2 {

 font-size: 2rem;

 margin-bottom: 1rem;

 }

 .featured-products ul {

 display: flex;

 justify-content: space-between;

 flex-wrap: wrap;

 }

 .featured-products li {

 margin-bottom: 2rem;

 flex-basis: calc(33.33% - 1rem);

 }

 .featured-products li a {

 display: block;

 text-align: center;

 color: #333;

 }

 .featured-products li h3 {

 margin: 1rem 0;

 font-size: 1.5rem;

 }

 .featured-products li p {

 margin-bottom: 1rem;

 font-size: 1.2rem;

 }

 .featured-products li img {

 width: 100%;

 height: auto;

 }

 /* Footer Styles */

 footer {

 background-color: #adacac;

 padding: 1rem;

 text-align: center;

 }

See the results of the web view below.

CONCLUSION
This book has offered a comprehensive guide to learning HTML and
CSS, covering both the fundamental concepts and more advanced
techniques. It has provided an overview of how to create accessible
and search-engine-optimized web pages and has also given insights
into the best practices and tips for working with HTML and CSS.

By using responsive design techniques, web developers can ensure
that their websites look good on all devices, from desktop computers
to smartphones and tablets. This is crucial in today's digital
landscape, where users access websites from a variety of devices
and screen sizes. Creating a responsive website with HTML and
CSS requires attention to detail and a solid understanding of both
languages. Developers must be familiar with the latest HTML and
CSS standards, as well as best practices for web design and
development.

HTML and CSS are powerful tools for creating responsive websites
that provide a seamless user experience across all devices. As
technology continues to evolve, web developers must stay up-to-
date with the latest trends and techniques to ensure that their
websites remain relevant and effective in meeting the needs of their
users.

With this knowledge, readers will be able to create visually
appealing, responsive, and accessible web pages that meet the
needs of their users. Whether you are a beginner or an experienced
developer, this book has provided you with the tools and knowledge
necessary to create websites that are both functional and visually
appealing.

INDEX

A

alt, alt, alt, alt, alt, alt, alt, alt, alt, alt, alt, alt, alt, alt, alt, alt, alt, alt, alt, alt
alternative, alternative, alternative, alternative
animation, animation, animation, animation, animation, animation, animation, animation, animation,
animation, animation, animation, animation
Animations, Animations
animations, animations, animations, animations, animations, animations
Animations, Animations
animations
Animations, Animations, Animations, Animations, Animations
animations, animations, animations, animations
Animations
animations, animations
APIs
article, article, article, article, article
assistive, assistive, assistive
Atom, Atom
attribute, attribute, attribute, attribute, attribute, attribute, attribute, attribute, attribute, attribute,
attribute, attribute, attribute, attribute, attribute, attribute, attribute, attribute, attribute, attribute,
attribute, attribute, attribute, attribute, attribute, attribute, attribute, attribute, attribute, attribute,
attribute, attribute, attribute, attribute, attribute, attribute, attribute, attribute, attribute, attribute,
attribute
Attributes, Attributes
attributes, attributes
Attributes
attributes
Attributes
attributes
Attributes
attributes
Attributes
attributes
Attributes
attributes, attributes, attributes, attributes, attributes, attributes, attributes, attributes, attributes,
attributes, attributes, attributes, attributes, attributes, attributes, attributes, attributes, attributes
audio, audio, audio, audio, audio, audio, audio, audio, audio, audio, audio, audio, audio, audio, audio

B

blocks, blocks, blocks
body, body, body, body, body, body, body, body, body, body, body, body, body, body, body, body,
body, body, body, body, body, body, body, body, body, body, body, body, body, body, body, body,
body, body, body, body, body
border, border, border, border, border, border, border, border, border, border, border, border, border,
border, border, border, border, border, border, border, border, border, border, border, border, border,
border, border, border, border, border, border, border, border, border, border, border, border, border,
border, border, border, border
borders, borders, borders, borders, borders, borders, borders
box model, box model, box model, box model, box model, box model, box model, box model, box
model, box model
box-sizing, box-sizing, box-sizing, box-sizing, box-sizing
Brackets
browser, browser, browser, browser, browser, browser, browser, browser, browser, browser, browser,
browser, browser, browser, browser, browser, browser, browser, browser, browser, browser, browser,
browser, browser, browser, browser, browser, browser, browser, browser, browser, browser, browser,
browser, browser, browser, browser, browser, browser
button, button, button, button, button, button, button, button, button, button, button, button, button,
button, button, button, button, button, button, button, button, button, button, button, button, button,
button, button, button, button

C

Canvas, Canvas, Canvas, Canvas, Canvas, Canvas, Canvas, Canvas, Canvas, Canvas, Canvas
client, client, client, client, client
code, code, code, code, code, code, code, code, code, code, code, code, code, code, code, code, code,
code, code, code, code, code, code, code, code, code, code, code, code, code, code, code, code, code,
code, code, code, code, code, code, code, code, code, code, code, code, code, code, code, code, code,
code, code, code, code, code, code, code, code, code, code, code, code, code, code, code, code, code,
code, code, code, code, code, code, code, code, code, code, code, code, code, code, code, code, code,
code, code, code, code, code, code
color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color,
color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color,
color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color,
color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color,

color, color, color, color, color, color, color, color, color, color, color, color, color, color, color, color,
color, color, color, color, color, color, color, color, color
columns, columns, columns, columns, columns, columns, columns, columns, columns, columns,
columns, columns, columns, columns, columns, columns
compatibility, compatibility, compatibility, compatibility
connection, connection, connection, connection
connections, connections
consistency, consistency, consistency
content, content, content, content, content, content, content, content, content, content, content,
content, content, content, content, content, content, content, content, content, content, content,
content, content, content, content, content, content, content, content, content, content, content,
content, content, content, content, content, content, content, content, content, content, content,
content, content, content, content, content, content, content, content, content, content, content,
content, content, content, content, content, content, content, content, content, content, content,
content, content, content, content, content, content, content, content, content, content, content,
content, content, content, content, content, content, content, content, content, content, content,
content, content, content, content, content, content, content, content, content, content, content,
content, content, content, content, content, content, content, content, content, content, content,
content, content, content, content, content, content, content, content, content, content, content,
content, content, content, content, content, content, content, content, content, content, content,
content, content, content
controls, controls, controls, controls, controls
create, create, create, create, create, create, create, create, create, create, create, create, create, create,
create, create, create, create, create, create, create, create, create, create, create, create, create, create,
create, create, create, create, create, create, create, create, create, create, create, create, create, create,
create, create, create, create, create, create, create, create, create, create, create, create, create, create,
create, create, create, create, create, create, create, create, create, create, create, create, create, create,
create, create, create, create, create, create, create, create, create, create, create, create, create, create,
create, create, create, create, create, create, create, create, create, create, create, create, create, create,
create, create, create, create, create, create, create, create, create, create, create, create, create, create,
create, create, create, create, create, create
Cross-platform
cryptographic
CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS,
CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS,
CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS,
CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS,

CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS,
CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS,
CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS,
CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS,
CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS,
CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS,
CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS,
CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS,
CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS,
CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS,
CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS, CSS
custom, custom, custom, custom, custom, custom, custom, custom

D

debug, debug
Debugging, Debugging, Debugging
developers, developers, developers, developers, developers, developers, developers, developers,
developers, developers, developers, developers, developers, developers, developers, developers,
developers, developers, developers, developers, developers, developers, developers, developers,
developers, developers, developers, developers, developers
Developers
developers
digital, digital
direction, direction, direction, direction, direction, direction, direction, direction
directory, directory, directory, directory, directory, directory
display, display, display, display, display, display, display, display, display, display, display, display,
display, display, display, display, display, display, display, display, display, display, display, display,
display, display, display, display, display, display, display, display, display, display
div, div,
div, div, div
document, document, document, document, document, document, document, document, document,
document, document, document, document, document, document, document, document, document,
document, document, document, document, document, document, document, document, document,
document, document, document, document, document, document, document, document, document,
document, document, document, document, document, document, document, document, document,
document, document, document, document, document, document, document, document, document,

document, document, document, document, document, document, document, document, document,
document
duration, duration, duration, duration, duration, duration
dynamic, dynamic, dynamic, dynamic, dynamic, dynamic, dynamic, dynamic, dynamic, dynamic,
dynamic

E

editor, editor, editor, editor, editor, editor, editor, editor, editor, editor, editor, editor, editor, editor
elements, elements, elements, elements, elements, elements, elements, elements, elements, elements,
elements, elements, elements, elements, elements, elements, elements, elements, elements, elements,
elements, elements, elements, elements, elements, elements, elements, elements, elements, elements,
elements, elements, elements, elements, elements, elements, elements, elements, elements, elements,
elements, elements, elements, elements, elements, elements, elements, elements, elements, elements,
elements, elements, elements, elements, elements, elements, elements, elements, elements, elements,
elements, elements, elements, elements, elements, elements, elements, elements, elements, elements,
elements, elements, elements, elements, elements, elements, elements, elements, elements, elements,
elements, elements, elements, elements, elements, elements, elements, elements, elements, elements,
elements, elements, elements, elements, elements, elements, elements, elements, elements, elements,
elements, elements, elements, elements, elements, elements, elements
embedding, embedding
enclose
exercises, exercises, exercises
expression, expression
Expressions
external, external, external, external, external, external, external, external, external

F

features, features, features, features, features, features, features, features, features, features, features,
features, features, features, features, features, features, features, features, features, features, features,
features, features
Flexbox, Flexbox, Flexbox, Flexbox, Flexbox, Flexbox, Flexbox, Flexbox, Flexbox
fonts, fonts, fonts, fonts, fonts, fonts
footer, footer, footer, footer, footer, footer, footer, footer, footer, footer, footer, footer, footer, footer,
footer, footer, footer, footer, footer, footer, footer, footer, footer, footer, footer
forms, forms, forms, forms, forms, forms, forms, forms, forms, forms
functional, functional, functional, functional, functional, functional

H

head, head, head, head, head, head, head, head, head, head, head, head, head, head, head, head, head,
head, head, head, head, head, head, head, head, head, head, head, head
header, header, header, header, header, header, header, header, header, header, header, header,
header, header, header, header, header, header, header, header, header, header, header, header,
header, header, header, header
heading, heading, heading, heading, heading, heading, heading
height, height, height, height, height, height, height, height, height, height, height, height, height,
height, height, height, height, height, height, height, height, height, height, height, height, height,
height, height, height, height
HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML,
HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML,
HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML,
HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML,
HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML,
HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML,
HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML,
HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML,
HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML,
HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML,
HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML,
HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML,
HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML,
HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML,
HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML,
HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML,
HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML,
HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML, HTML,
HTML, HTML, HTML
HTML5, HTML5, HTML5, HTML5, HTML5, HTML5, HTML5, HTML5, HTML5, HTML5,
HTML5, HTML5, HTML5, HTML5, HTML5, HTML5, HTML5, HTML5, HTML5, HTML5,
HTML5, HTML5, HTML5, HTML5, HTML5, HTML5, HTML5, HTML5, HTML5, HTML5,
HTML5, HTML5, HTML5, HTML5, HTML5, HTML5, HTML5, HTML5, HTML5, HTML5,
HTML5, HTML5, HTML5, HTML5, HTML5, HTML5, HTML5, HTML5, HTML5, HTML5

I

ID, ID, ID, ID, ID, ID
IDE, IDE, IDE, IDE, IDE, IDE, IDE, IDE, IDE, IDE, IDE
images, images, images, images, images, images, images, images, images, images, images, images,
images, images, images, images, images, images, images, images, images, images, images, images,
images, images, images, images, images, images, images, images, images, images, images
inline, inline, inline, inline, inline, inline, inline, inline
interactive, interactive, interactive, interactive, interactive, interactive, interactive, interactive,
interactive, interactive, interactive, interactive, interactive, interactive, interactive, interactive,
interactive, interactive, interactive, interactive
interacts

K

keyframes, keyframes, keyframes, keyframes, keyframes, keyframes, keyframes

L

language, language, language, language, language, language
layout, layout, layout, layout, layout, layout, layout, layout, layout, layout, layout, layout, layout,
layout, layout, layout, layout, layout, layout, layout, layout, layout, layout, layout, layout, layout,
layout, layout, layout, layout
links
Links
links, links, links, links, links, links, links, links, links, links
Links
links, links
Links
links, links, links, links, links, links, links, links, links
list, list,
list, list, list, list, list, list, list, list
lists, lists, lists, lists, lists, lists, lists, lists, lists, lists, lists, lists, lists, lists, lists, lists, lists, lists, lists,
lists, lists, lists, lists, lists

M

Main
margin, margin, margin, margin, margin, margin, margin, margin, margin, margin, margin, margin,
margin, margin, margin, margin, margin, margin, margin, margin, margin, margin, margin, margin,
margin, margin, margin, margin, margin, margin, margin, margin, margin, margin, margin, margin,

margin, margin, margin, margin, margin, margin, margin, margin, margin, margin, margin, margin,
margin, margin, margin, margin, margin, margin, margin, margin, margin, margin, margin, margin,
margin, margin, margin, margin, margin, margin, margin, margin, margin, margin, margin, margin,
margin, margin, margin, margin
markup, markup, markup, markup, markup, markup, markup, markup, markup, markup, markup,
markup
match, match
meta, meta, meta, meta, meta, meta, meta, meta, meta, meta, meta, meta, meta, meta, meta, meta,
meta, meta, meta, meta, meta, meta, meta, meta, meta, meta, meta, meta, meta, meta, meta, meta,
meta, meta, meta, meta
Meter, Meter
minlength, minlength
modern, modern, modern, modern, modern, modern, modern, modern, modern, modern, modern,
modern, modern, modern
multimedia, multimedia, multimedia, multimedia
multiple, multiple, multiple, multiple, multiple, multiple, multiple, multiple, multiple, multiple,
multiple

N

nav, nav,
nav, nav, nav, nav, nav, nav, nav, nav, nav, nav, nav, nav, nav, nav, nav, nav
navigation, navigation, navigation, navigation, navigation, navigation, navigation, navigation,
navigation, navigation, navigation, navigation, navigation, navigation, navigation
Nested, Nested

O

option, option, option, option, option, option, option
Ordered
ordered, ordered, ordered
Ordered, Ordered
ordered, ordered, ordered
Ordered
ordered, ordered, ordered

P

padding, padding, padding, padding, padding, padding, padding, padding, padding, padding, padding,
padding, padding, padding, padding, padding, padding, padding, padding, padding, padding, padding,
padding, padding, padding, padding, padding, padding, padding, padding, padding, padding, padding,
padding, padding, padding, padding, padding, padding, padding, padding, padding, padding, padding,
padding, padding, padding, padding, padding, padding, padding, padding, padding, padding, padding,
padding, padding
pages, pages, pages, pages, pages, pages, pages, pages, pages, pages, pages, pages, pages, pages,
pages, pages, pages, pages, pages, pages, pages, pages, pages, pages, pages, pages, pages, pages,
pages, pages, pages, pages, pages, pages, pages, pages, pages, pages, pages, pages
paragraph, paragraph, paragraph, paragraph, paragraph, paragraph, paragraph, paragraph, paragraph,
paragraph, paragraph, paragraph, paragraph
pattern, pattern
pixels, pixels, pixels, pixels, pixels, pixels, pixels, pixels, pixels, pixels, pixels, pixels, pixels, pixels,
pixels, pixels, pixels, pixels, pixels, pixels, pixels, pixels, pixels, pixels, pixels
Placeholders
Preload
presentation, presentation, presentation, presentation, presentation, presentation, presentation,
presentation, presentation
professional, professional, professional
Progress, Progress
properties, properties, properties, properties, properties, properties, properties, properties, properties,
properties, properties, properties, properties, properties, properties, properties, properties, properties,
properties, properties, properties, properties, properties, properties, properties, properties, properties,
properties, properties, properties, properties, properties, properties, properties, properties, properties,
properties, properties, properties, properties, properties, properties, properties, properties, properties,
properties, properties, properties, properties, properties, properties, properties, properties, properties,
properties, properties, properties
property, property, property, property, property, property, property, property, property, property,
property, property, property, property, property, property, property, property, property, property,
property, property, property, property, property, property, property, property, property, property,
property, property, property, property, property, property, property, property, property, property,
property, property, property, property, property
protocol

Q

queries, queries, queries, queries, queries, queries, queries, queries, queries, queries, queries, queries,
queries, queries

R

Registration, Registration, Registration
Relative, Relative, Relative, Relative
required, required, required, required, required, required, required, required, required, required,
required
reset, reset
Responsive
responsive
Responsive, Responsive, Responsive, Responsive, Responsive
responsive
Responsive, Responsive
responsive
Responsive
responsive, responsive, responsive, responsive, responsive, responsive, responsive, responsive,
responsive, responsive, responsive, responsive, responsive, responsive, responsive, responsive,
responsive
Responsive
responsive, responsive, responsive
Responsive
responsive
Responsive
responsive
Responsive, Responsive
responsive
Responsive
responsive
Responsive, Responsive
responsive, responsive
Responsive, Responsive
responsive, responsive, responsive
Responsive
responsive, responsive, responsive, responsive, responsive
Responsive, Responsive
responsive, responsive, responsive
Responsive, Responsive
responsive, responsive, responsive

Responsive
responsive, responsive, responsive, responsive, responsive, responsive, responsive
Responsive
responsive, responsive
Responsive
responsive, responsive
Responsive
responsive, responsive, responsive
Reverse
rows, rows, rows, rows, rows, rows, rows, rows, rows, rows, rows, rows, rows, rows, rows

S

Scalable, Scalable, Scalable, Scalable, Scalable
screen, screen, screen, screen, screen, screen, screen, screen, screen, screen, screen, screen, screen,
screen, screen, screen, screen, screen, screen, screen, screen, screen, screen, screen, screen, screen,
screen, screen, screen, screen, screen, screen, screen, screen, screen, screen, screen, screen, screen,
screen, screen, screen, screen, screen, screen, screen, screen, screen, screen
Section
section, section, section, section, section, section, section, section, section
Section
section, section, section, section, section, section, section, section, section, section, section, section,
section, section, section, section, section, section, section, section, section, section, section, section,
section, section, section, section, section, section, section, section, section, section, section, section,
section, section, section, section, section, section, section, section, section, section, section, section,
section
Section, Section, Section, Section
section, section, section, section
security
semantic, semantic, semantic, semantic, semantic, semantic, semantic, semantic, semantic
server, server, server, server, server, server, server, server, server
sizes, sizes, sizes, sizes, sizes, sizes, sizes, sizes, sizes, sizes, sizes, sizes, sizes, sizes, sizes, sizes,
sizes, sizes, sizes, sizes, sizes, sizes, sizes, sizes, sizes, sizes, sizes, sizes, sizes, sizes, sizes
skill, skill, skill, skill, skill
skills, skills, skills, skills, skills, skills
smartphones, smartphones, smartphones, smartphones, smartphones
Sockets, Sockets, Sockets, Sockets

style, style, style, style, style, style, style, style, style, style, style, style, style, style, style, style, style,
style, style, style, style, style, style, style, style, style, style, style, style, style, style, style, style, style,
style, style, style, style, style, style, style, style, style
Styling, Styling, Styling
subheading
Sublime, Sublime, Sublime, Sublime
submit, submit, submit, submit, submit, submit, submit, submit, submit, submit, submit, submit,
submit
SVG, SVG, SVG, SVG, SVG, SVG, SVG, SVG, SVG, SVG, SVG, SVG, SVG, SVG, SVG, SVG,
SVG, SVG, SVG, SVG, SVG

T

Tables, Tables, Tables, Tables, Tables, Tables
tablets, tablets, tablets, tablets, tablets, tablets
tag, tag,
tag, tag,
tag, tag, tag, tag, tag, tag, tag, tag, tag, tag, tag
tags, tags, tags, tags, tags, tags, tags, tags, tags, tags, tags, tags, tags, tags, tags, tags, tags, tags, tags,
tags, tags, tags, tags, tags, tags, tags, tags, tags, tags, tags, tags, tags, tags, tags, tags, tags, tags, tags,
tags
tech
techniques, techniques, techniques, techniques, techniques, techniques, techniques, techniques,
techniques, techniques, techniques, techniques, techniques, techniques, techniques
technologies, technologies, technologies, technologies, technologies, technologies, technologies,
technologies
technology, technology
Time, Time, Time
title, title, title, title, title, title, title, title, title, title, title, title, title, title, title, title, title, title, title, title
trends, trends
type, type, type, type, type, type, type, type, type, type, type, type, type, type, type, type, type, type,
type, type, type, type, type, type, type, type, type, type, type, type, type, type, type, type, type, type,
type, type, type, type, type, type, type, type, type, type, type, type, type, type, type, type, type, type,
type, type, type, type, type, type, type, type

U

unordered, unordered, unordered, unordered, unordered, unordered, unordered, unordered

URL, URL, URL, URL, URL, URL, URL, URL, URL, URL, URL, URL
URLs, URLs, URLs, URLs, URLs
user, user, user, user, user, user, user, user, user, user, user, user, user, user, user, user, user, user,
user, user, user, user, user, user, user, user, user, user, user, user, user, user, user, user, user, user,
user, user, user, user, user, user, user, user, user, user, user, user, user, user, user, user, user, user,
user, user, user, user, user, user, user, user, user, user
users, users, users, users, users, users, users, users, users, users, users, users, users, users, users, users,
users, users, users, users, users, users, users, users, users, users, users, users, users, users, users, users,
users, users, users

V

validation, validation, validation, validation, validation
value, value, value, value, value, value, value, value, value, value, value, value, value, value, value,
value, value, value, value, value, value, value, value, value, value, value, value, value, value
video, video, video, video, video, video, video, video, video, video, video, video, video, video, video
Videos, Videos
videos, videos, videos
Videos
videos, videos, videos
Visual Studio, Visual Studio, Visual Studio, Visual Studio, Visual Studio

W

Web, Web, Web, Web, Web, Web, Web
web, web, web, web, web
Web
web, web, web, web, web, web
Web
web, web, web, web, web, web, web
Web
web, web, web, web, web, web, web, web, web, web, web, web, web, web, web, web, web, web,
web, web, web, web, web, web, web, web, web, web, web, web, web, web, web, web, web, web,
web, web, web, web, web, web, web, web, web, web
Web
web, web
Web, Web
web, web, web, web

Web
web, web, web
Web, Web
web
Web
web, web, web
Web
web, web, web
Web, Web, Web
web, web, web, web, web, web, web, web, web, web, web, web, web, web, web, web
Web
web, web, web, web, web, web, web, web, web, web, web, web, web, web, web, web, web, web,
web, web, web, web, web, web, web, web, web, web, web, web
Web
web, web, web, web, web, web
Web
web, web, web, web, web, web, web, web, web, web, web, web, web, web
Web
web, web, web, web, web, web, web, web, web
web pages, web pages, web pages, web pages, web pages
website, website, website, website, website, website, website, website, website, website, website,
website, website, website, website, website, website, website, website, website, website, website,
website, website, website, website, website, website, website, website, website, website, website,
website, website, website, website, website, website, website, website, website, website, website,
website, website, website, website, website, website, website, website, website, website, website,
website, website, website, website
websites, websites, websites, websites, websites, websites, websites, websites, websites, websites,
websites, websites, websites, websites, websites, websites, websites, websites, websites, websites,
websites, websites, websites, websites, websites, websites, websites, websites, websites, websites,
websites, websites, websites, websites, websites, websites, websites
WebSocket, WebSocket, WebSocket
WebStorm, WebStorm
width, width, width, width, width, width, width, width, width, width, width, width, width, width,
width, width, width, width, width, width, width, width, width, width, width, width, width, width,
width, width, width, width, width, width, width, width, width, width, width, width, width, width,
width, width, width, width, width, width, width

	TABLE OF CONTENTS
	INTRODUCTION
	CHAPTER ONE
	GETTING STARTED WITH HTML
	What is HTML?
	What is New in HTML5
	Why Learn HTML5
	Choosing a Text Editor or IDE
	Understanding HTML5 Semantic Markup
	How is HTML used in Web Development?
	Understanding the basic structure of an HTML document
	Basic Tags and Attributes
	Creating an HTML Document
	Setting up an HTML Document
	Adding Content to an HTML Document
	Understanding HTML Tags, Attributes, and Values

	CHAPTER TWO
	HTML TEXT FORMATTING
	Understanding HTML Headings Top of Form
	Understanding HTML Paragraphs
	Understanding HTML Lists
	Understanding HTML links
	How to Format Text using HTML Tags
	How to Add Images to an HTML Document
	How to Add Videos to an HTML Document
	Using Audio in HTML5

	CHAPTER THREE
	UNDERSTANDING FORMS AND INPUT
	Creating Forms
	Text Inputs and Labels
	Checkboxes and Radio Buttons
	Select Menus and Option Groups
	Text Areas and Buttons
	Understanding Form Validation

	CHAPTER FOUR
	UNDERSTANDING TABLES AND LISTS
	Creating Tables
	Adding Rows and Columns
	Styling Tables with CSS

	CHAPTER FIVE
	ADVANCED HTML5 FEATURES
	Canvas and SVG graphics
	Understanding Web Storage
	Understanding Geolocation
	Understanding Web Workers
	Understanding Drag and Drop
	Understanding Web Sockets
	Accessibility and SEO
	Making your HTML5 Code Accessible
	Using Semantic Markup
	Applying Semantic Markup
	Optimizing for Search Engines

	CHAPTER SIX
	HTML PRACTICAL EXERCISES
	Exercise 1: Creating a Login Page
	Exercise 2: Creating a Registration Page
	Exercise 3: Create a Simple Personal Portfolio Website

	CHAPTER SEVEN
	INTRODUCTION TO CSS
	What is CSS?
	How is CSS used in Web Development?
	How CSS works with HTML
	Understand the Difference Between CSS and HTML
	Benefits of using CSS
	Basic CSS Syntax
	Writing CSS rules
	Selectors and Declarations
	Comments in CSS
	External and Internal CSS
	Linking an External CSS

	CHAPTER EIGHT
	CSS STYLE PROPERTIES
	Text Properties
	What are CSS Text Properties?
	Background Properties
	Understanding the Box Model
	Margin, Border, and Padding
	Width and Height
	CSS Layouts
	CSS Floats
	Positioning
	Display
	Understanding CSS Grid
	CSS Animations
	CSS transitions
	Animating with Keyframes
	Undesratanding Flexbox
	CSS Variables
	Scalable Vector Graphics (SVG)
	Writing Efficient CSS
	Debugging CSS
	The Future of CSS

	CHAPTER NINE
	HTML AND CSS PRACTICAL EXERCISES
	Exercise 1: Design a simple login page with HTML and CSS
	Exercise 2: Build a simple landing page for a product with HTML and CSS.
	Exercise 3: Create a responsive pricing table with HTML and CSS

	CHAPTER TEN
	RESPONSIVE WEB DESIGN
	Introduction to Responsive Design
	Best Practices for Designing Responsive Websites
	Tools and Technologies used to Create Responsive Website
	Understanding Media Queries
	Understanding Mobile-first Design Approach
	Responsive Frameworks
	Common Challenges and Solutions Associated with Responsive Web Design
	Optimizing Images and Managing Complex Layouts

	CHAPTER ELEVEN
	RESPONSIVE WEBSITES PRACTICAL EXERCISES
	Exercise 1: Design a responsive restaurant website
	Exercise 2: Create a Responsive Photographer Portfolio
	Exercise 3: Develop a Responsive E-commerce Website

	CONCLUSION
	INDEX

