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Introduction
Data science is an exciting discipline that allows you to transform raw data
into understanding, insight, and knowledge. The goals of R for Data
Science are to help you learn the most important tools in R that will allow
you to do data science efficiently and reproducibly and to have some fun
along the way! After reading this book, you’ll have the tools to tackle a
wide variety of data science challenges using the best parts of R.

Preface to the Second Edition
Welcome to the second edition of R for Data Science (R4DS)! This is a
major reworking of the first edition, removing material we no longer think
is useful, adding material we wish we included in the first edition, and
generally updating the text and code to reflect changes in best practices.
We’re also very excited to welcome a new co-author: Mine Çetinkaya-
Rundel, a noted data science educator and one of our colleagues at Posit
(the company formerly known as RStudio).

A brief summary of the biggest changes follows:

The first part of the book has been renamed to “Whole Game.” The
goal of this section is to give you the rough details of the “whole
game” of data science before we dive into the details.

The second part of the book is “Visualize.” This part gives data
visualization tools and best practices a more thorough coverage
compared to the first edition. The best place to get all the details is still
the ggplot2 book, but now R4DS covers more of the most important
techniques.

The third part of the book is now called “Transform” and gains new
chapters on numbers, logical vectors, and missing values. These were
previously parts of the data transformation chapter but needed much
more room to cover all the details.

https://oreil.ly/HNIie


The fourth part of the book is called “Import.” It’s a new set of
chapters that goes beyond reading flat text files to working with
spreadsheets, getting data out of databases, working with big data,
rectangling hierarchical data, and scraping data from websites.

The “Program” part remains but has been rewritten from top to bottom
to focus on the most important parts of function writing and iteration.
Function writing now includes details on how to wrap tidyverse
functions (dealing with the challenges of tidy evaluation), since this
has become much easier and more important over the last few years.
We’ve added a new chapter on important base R functions that you’re
likely to see in wild-caught R code.

The “Modeling” part has been removed. We never had enough room to
fully do modeling justice, and there are now much better resources
available. We generally recommend using the tidymodels packages
and reading Tidy Modeling with R by Max Kuhn and Julia Silge
(O’Reilly).

The “Communicate” part remains but has been thoroughly updated to
feature Quarto instead of R Markdown. This edition of the book has
been written in Quarto, and it’s clearly the tool of the future.

What You Will Learn
Data science is a vast field, and there’s no way you can master it all by
reading a single book. This book aims to give you a solid foundation in the
most important tools and enough knowledge to find the resources to learn
more when necessary. Our model of the steps of a typical data science
project looks something like Figure I-1.

https://oreil.ly/0giAa
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Figure I-1. In our model of the data science process, you start with data import and tidying. Next,
you understand your data with an iterative cycle of transforming, visualizing, and modeling. You

finish the process by communicating your results to other humans.

First, you must import your data into R. This typically means that you take
data stored in a file, database, or web application programming interface
(API) and load it into a data frame in R. If you can’t get your data into R,
you can’t do data science on it!

Once you’ve imported your data, it is a good idea to tidy it. Tidying your
data means storing it in a consistent form that matches the semantics of the
dataset with how it is stored. In brief, when your data is tidy, each column is
a variable and each row is an observation. Tidy data is important because
the consistent structure lets you focus your efforts on answering questions
about the data, not fighting to get the data into the right form for different
functions.

Once you have tidy data, a common next step is to transform it.
Transformation includes narrowing in on observations of interest (such as
all people in one city or all data from the last year), creating new variables
that are functions of existing variables (such as computing speed from
distance and time), and calculating a set of summary statistics (such as
counts or means). Together, tidying and transforming are called wrangling
because getting your data in a form that’s natural to work with often feels
like a fight!

Once you have tidy data with the variables you need, there are two main
engines of knowledge generation: visualization and modeling. They have



complementary strengths and weaknesses, so any real data analysis will
iterate between them many times.

Visualization is a fundamentally human activity. A good visualization will
show you things you did not expect or raise new questions about the data. A
good visualization might also hint that you’re asking the wrong question or
that you need to collect different data. Visualizations can surprise you, but
they don’t scale particularly well because they require a human to interpret
them.

Models are complementary tools to visualization. Once you have made your
questions sufficiently precise, you can use a model to answer them. Models
are fundamentally mathematical or computational tools, so they generally
scale well. Even when they don’t, it’s usually cheaper to buy more
computers than it is to buy more brains! But every model makes
assumptions, and by its very nature a model cannot question its own
assumptions. That means a model cannot fundamentally surprise you.

The last step of data science is communication, an absolutely critical part of
any data analysis project. It doesn’t matter how well your models and
visualization have led you to understand the data unless you can also
communicate your results to others.

Surrounding all these tools is programming. Programming is a cross-cutting
tool that you use in nearly every part of a data science project. You don’t
need to be an expert programmer to be a successful data scientist, but
learning more about programming pays off because becoming a better
programmer allows you to automate common tasks and solve new problems
with greater ease.

You’ll use these tools in every data science project, but they’re not enough
for most projects. There’s a rough 80/20 rule at play: you can tackle about
80% of every project using the tools you’ll learn in this book, but you’ll
need other tools to tackle the remaining 20%. Throughout this book, we’ll
point you to resources where you can learn more.



How This Book Is Organized
The previous description of the tools of data science is organized roughly
according to the order in which you use them in an analysis (although, of
course, you’ll iterate through them multiple times). In our experience,
however, learning data importing and tidying first is suboptimal because,
80% of the time, it’s routine and boring, and the other 20% of the time, it’s
weird and frustrating. That’s a bad place to start learning a new subject!
Instead, we’ll start with visualization and transformation of data that’s
already been imported and tidied. That way, when you ingest and tidy your
own data, your motivation will stay high because you know the pain is
worth the effort.

Within each chapter, we try to adhere to a consistent pattern: start with
some motivating examples so you can see the bigger picture and then dive
into the details. Each section of the book is paired with exercises to help
you practice what you’ve learned. Although it can be tempting to skip the
exercises, there’s no better way to learn than by practicing on real problems.

What You Won’t Learn
There are several important topics that this book doesn’t cover. We believe
it’s important to stay ruthlessly focused on the essentials so you can get up
and running as quickly as possible. That means this book can’t cover every
important topic.

Modeling
Modeling is super important for data science, but it’s a big topic, and
unfortunately, we just don’t have the space to give it the coverage it
deserves here. To learn more about modeling, we highly recommend Tidy
Modeling with R by our colleagues Max Kuhn and Julia Silge (O’Reilly).
This book will teach you the tidymodels family of packages, which, as you
might guess from the name, share many conventions with the tidyverse
packages we use in this book.

https://oreil.ly/9Op9s


Big Data
This book proudly and primarily focuses on small, in-memory datasets.
This is the right place to start because you can’t tackle big data unless you
have experience with small data. The tools you learn in the majority of this
book will easily handle hundreds of megabytes of data, and with a bit of
care, you can typically use them to work with a few gigabytes of data. We’ll
also show you how to get data out of databases and parquet files, both of
which are often used to store big data. You won’t necessarily be able to
work with the entire dataset, but that’s not a problem because you need only
a subset or subsample to answer the question you’re interested in.

If you’re routinely working with larger data (10–100 GB, say), we
recommend learning more about data.table. We don’t teach it here because
it uses a different interface than the tidyverse and requires you to learn
some different conventions. However, it is incredibly faster, and the
performance payoff is worth investing some time in learning it if you’re
working with large data.

Python, Julia, and Friends
In this book, you won’t learn anything about Python, Julia, or any other
programming language useful for data science. This isn’t because we think
these tools are bad. They’re not! And in practice, most data science teams
use a mix of languages, often at least R and Python. But we strongly believe
that it’s best to master one tool at a time, and R is a great place to start.

Prerequisites
We’ve made a few assumptions about what you already know to get the
most out of this book. You should be generally numerically literate, and it’s
helpful if you have some basic programming experience already. If you’ve
never programmed before, you might find Hands-On Programming with R
by Garrett Grolemund (O’Reilly) to be a valuable adjunct to this book.

https://oreil.ly/GG4Et
https://oreil.ly/8uiH5


You need four things to run the code in this book: R, RStudio, a collection
of R packages called the tidyverse, and a handful of other packages.
Packages are the fundamental units of reproducible R code. They include
reusable functions, documentation that describes how to use them, and
sample data.

R
To download R, go to CRAN, the comprehensive R archive network. A new
major version of R comes out once a year, and there are two to three minor
releases each year. It’s a good idea to update regularly. Upgrading can be a
bit of a hassle, especially for major versions that require you to re-install all
your packages, but putting it off only makes it worse. We recommend R
4.2.0 or later for this book.

RStudio
RStudio is an integrated development environment (IDE) for R
programming, which you can download from the RStudio download page.
RStudio is updated a couple of times a year, and it will automatically let
you know when a new version is out, so there’s no need to check back. It’s
a good idea to upgrade regularly to take advantage of the latest and greatest
features. For this book, make sure you have at least RStudio 2022.02.0.

When you start RStudio, Figure I-2, you’ll see two key regions in the
interface: the console pane and the output pane. For now, all you need to
know is that you type the R code in the console pane and press Enter to run
it. You’ll learn more as we go along!1

https://oreil.ly/p3_RG
https://oreil.ly/pxF-k


Figure I-2. The RStudio IDE has two key regions: type R code in the console pane on the left, and
look for plots in the output pane on the right.

The Tidyverse
You’ll also need to install some R packages. An R package is a collection of
functions, data, and documentation that extends the capabilities of base R.
Using packages is key to the successful use of R. The majority of the
packages that you will learn in this book are part of the so-called tidyverse.
All packages in the tidyverse share a common philosophy of data and R
programming and are designed to work together.

You can install the complete tidyverse with a single line of code:

install.packages("tidyverse")



On your computer, type that line of code in the console, and then press
Enter to run it. R will download the packages from CRAN and install them
on your computer.

You will not be able to use the functions, objects, or help files in a package
until you load it. Once you have installed a package, you can load it using
the library() function:

library(tidyverse)
#> ── Attaching core tidyverse packages ───────────────────── 
tidyverse 2.0.0 ──
#> ✔ dplyr     1.1.0.9000     ✔ readr     2.1.4     
#> ✔ forcats   1.0.0          ✔ stringr   1.5.0     
#> ✔ ggplot2   3.4.1          ✔ tibble    3.1.8     
#> ✔ lubridate 1.9.2          ✔ tidyr     1.3.0     
#> ✔ purrr     1.0.1          
#> ── Conflicts ─────────────────────────────────────── 
tidyverse_conflicts() ──
#> ✖ dplyr::filter() masks stats::filter()
#> ✖ dplyr::lag()    masks stats::lag()
#> ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) 
to force all 
#>   conflicts to become errors

This tells you that tidyverse loads nine packages: dplyr, forcats, ggplot2,
lubridate, purrr, readr, stringr, tibble, and tidyr. These are considered the
core of the tidyverse because you’ll use them in almost every analysis.

Packages in the tidyverse change fairly frequently. You can see if updates
are available by running tidyverse_update().

Other Packages
There are many other excellent packages that are not part of the tidyverse
because they solve problems in a different domain or are designed with a
different set of underlying principles. This doesn’t make them better or
worse; it just makes them different. In other words, the complement to the
tidyverse is not the messyverse but many other universes of interrelated

https://rdrr.io/r/base/library.html
https://tidyverse.tidyverse.org/reference/tidyverse_update.html


packages. As you tackle more data science projects with R, you’ll learn new
packages and new ways of thinking about data.

We’ll use many packages from outside the tidyverse in this book. For
example, we’ll use the following packages because they provide interesting
data sets for us to work with in the process of learning R:

install.packages(c("arrow", "babynames", "curl", "duckdb", 
"gapminder", "ggrepel",  
"ggridges", "ggthemes", "hexbin", "janitor", "Lahman", "leaflet", 
"maps",  
"nycflights13", "openxlsx", "palmerpenguins", "repurrrsive", 
"tidymodels", "writexl"))

We’ll also use a selection of other packages for one-off examples. You don’t
need to install them now, just remember that whenever you see an error like
this:

library(ggrepel)
#> Error in library(ggrepel) : there is no package called 
‘ggrepel’

it means you need to run install.packages("ggrepel") to install
the package.

Running R Code
The previous section showed you several examples of running R code. The
code in the book looks like this:

1 + 2
#> [1] 3

If you run the same code in your local console, it will look like this:



> 1 + 2 
[1] 3

There are two main differences. In your console, you type after the >, called
the prompt; we don’t show the prompt in the book. In the book, the output
is commented out with #>; in your console, it appears directly after your
code. These two differences mean that if you’re working with an electronic
version of the book, you can easily copy code out of the book and paste it
into the console.

Throughout the book, we use a consistent set of conventions to refer to
code:

Functions are displayed in a code font and followed by parentheses,
like sum() or mean().

Other R objects (such as data or function arguments) are in a code font,
without parentheses, like flights or x.

Sometimes, to make it clear which package an object comes from,
we’ll use the package name followed by two colons, like
dplyr::mutate() or nycflights13::flights. This is also
valid R code.

Other Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates URLs and email addresses.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, keywords, and filenames.

https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/mean.html
https://dplyr.tidyverse.org/reference/mutate.html
https://rdrr.io/pkg/nycflights13/man/flights.html


Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.
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Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-829-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https://oreil.ly/r-for-
data-science-2e.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://www.youtube.com/oreillymedia
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Part I. Whole Game

Our goal in this part of the book is to give you a rapid overview of the main
tools of data science: importing, tidying, transforming, and visualizing data,
as shown in Figure I-1. We want to show you the “whole game” of data
science, giving you just enough of all the major pieces so that you can
tackle real, if simple, datasets. The later parts of the book will hit each of
these topics in more depth, increasing the range of data science challenges
that you can tackle.

Figure I-1. In this section of the book, you’ll learn how to import, tidy, transform, and visualize data.

Four chapters focus on the tools of data science:

Visualization is a great place to start with R programming, because the
payoff is so clear: you get to make elegant and informative plots that
help you understand data. In Chapter 1 you’ll dive into visualization,
learning the basic structure of a ggplot2 plot and powerful techniques
for turning data into plots.

Visualization alone is typically not enough, so in Chapter 3, you’ll
learn the key verbs that allow you to select important variables, filter
out key observations, create new variables, and compute summaries.



In Chapter 5, you’ll learn about tidy data, a consistent way of storing
your data that makes transformation, visualization, and modeling
easier. You’ll learn the underlying principles and how to get your data
into a tidy form.

Before you can transform and visualize your data, you need to first get
your data into R. In Chapter 7 you’ll learn the basics of getting .csv
files into R.

Nestled among these chapters are four other chapters that focus on your R
workflow. In Chapter 2, Chapter 4, and Chapter 6 you’ll learn good
workflow practices for writing and organizing your R code. These will set
you up for success in the long run, as they’ll give you the tools to stay
organized when you tackle real projects. Finally, Chapter 8 will teach you
how to get help and keep learning.



Chapter 1. Data Visualization

Introduction
“The simple graph has brought more information to the data analyst’s
mind than any other device.” —John Tukey

R has several systems for making graphs, but ggplot2 is one of the most
elegant and most versatile. ggplot2 implements the grammar of graphics, a
coherent system for describing and building graphs. With ggplot2, you can
do more faster by learning one system and applying it in many places.

This chapter will teach you how to visualize your data using ggplot2. We
will start by creating a simple scatterplot and use it to introduce aesthetic
mappings and geometric objects—the fundamental building blocks of
ggplot2. We will then walk you through visualizing distributions of single
variables as well as visualizing relationships between two or more
variables. We’ll finish off with saving your plots and troubleshooting tips.

Prerequisites
This chapter focuses on ggplot2, one of the core packages in the tidyverse.
To access the datasets, help pages, and functions used in this chapter, load
the tidyverse by running:

library(tidyverse)
#> ── Attaching core tidyverse packages ───────────────────── 
tidyverse 2.0.0 ──
#> ✔ dplyr     1.1.0.9000     ✔ readr     2.1.4     
#> ✔ forcats   1.0.0          ✔ stringr   1.5.0     
#> ✔ ggplot2   3.4.1          ✔ tibble    3.1.8     
#> ✔ lubridate 1.9.2          ✔ tidyr     1.3.0     
#> ✔ purrr     1.0.1          
#> ── Conflicts ─────────────────────────────────────── 
tidyverse_conflicts() ──
#> ✖ dplyr::filter() masks stats::filter()
#> ✖ dplyr::lag()    masks stats::lag()



#> ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) 
to force all 
#>   conflicts to become errors

That one line of code loads the core tidyverse, the packages that you will
use in almost every data analysis. It also tells you which functions from the
tidyverse conflict with functions in base R (or from other packages you
might have loaded).1

If you run this code and get the error message there is no package
called 'tidyverse', you’ll need to first install it, and then run
library() once again:

install.packages("tidyverse")
library(tidyverse)

You need to install a package only once, but you need to load it every time
you start a new session.

In addition to tidyverse, we will use the palmerpenguins package, which
includes the penguins dataset containing body measurements for
penguins on three islands in the Palmer Archipelago, and the ggthemes
package, which offers a colorblind safe color palette.

library(palmerpenguins)
library(ggthemes)

First Steps
Do penguins with longer flippers weigh more or less than penguins with
shorter flippers? You probably already have an answer, but try to make your
answer precise. What does the relationship between flipper length and body
mass look like? Is it positive? Negative? Linear? Nonlinear? Does the
relationship vary by the species of the penguin? How about by the island
where the penguin lives? Let’s create visualizations that we can use to
answer these questions.

https://rdrr.io/r/base/library.html


The penguins Data Frame
You can test your answers to these questions with the penguins data
frame found in palmerpenguins (aka palmerpenguins::penguins).
A data frame is a rectangular collection of variables (in the columns) and
observations (in the rows). penguins contains 344 observations collected
and made available by Dr. Kristen Gorman and the Palmer Station,
Antarctica LTER.2

To make the discussion easier, let’s define some terms:

Variable

A quantity, quality, or property that you can measure.

Value

The state of a variable when you measure it. The value of a variable
may change from measurement to measurement.

Observation

A set of measurements made under similar conditions (you usually
make all of the measurements in an observation at the same time and on
the same object). An observation will contain several values, each
associated with a different variable. We’ll sometimes refer to an
observation as a data point.

Tabular data

A set of values, each associated with a variable and an observation.
Tabular data is tidy if each value is placed in its own “cell,” each
variable in its own column, and each observation in its own row.

In this context, a variable refers to an attribute of all the penguins, and an
observation refers to all the attributes of a single penguin.

Type the name of the data frame in the console, and R will print a preview
of its contents. Note that it says tibble on top of this preview. In the

https://allisonhorst.github.io/palmerpenguins/reference/penguins.html


tidyverse, we use special data frames called tibbles that you will learn about
soon.

penguins
#> # A tibble: 344 × 8
#>   species island    bill_length_mm bill_depth_mm 
flipper_length_mm
#>   <fct>   <fct>              <dbl>         <dbl>             
<int>
#> 1 Adelie  Torgersen           39.1          18.7               
181
#> 2 Adelie  Torgersen           39.5          17.4               
186
#> 3 Adelie  Torgersen           40.3          18                 
195
#> 4 Adelie  Torgersen           NA            NA                  
NA
#> 5 Adelie  Torgersen           36.7          19.3               
193
#> 6 Adelie  Torgersen           39.3          20.6               
190
#> # … with 338 more rows, and 3 more variables: body_mass_g 
<int>, sex <fct>,
#> #   year <int>

This data frame contains eight columns. For an alternative view, where you
can see all variables and the first few observations of each variable, use
glimpse(). Or, if you’re in RStudio, run View(penguins) to open an
interactive data viewer.

glimpse(penguins)
#> Rows: 344
#> Columns: 8
#> $ species           <fct> Adelie, Adelie, Adelie, Adelie, 
Adelie, Adelie, A…
#> $ island            <fct> Torgersen, Torgersen, Torgersen, 
Torgersen, Torge…
#> $ bill_length_mm    <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 
38.9, 39.2, 34.…
#> $ bill_depth_mm     <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 
17.8, 19.6, 18.…
#> $ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 
195, 193, 190, …
#> $ body_mass_g       <int> 3750, 3800, 3250, NA, 3450, 3650, 

https://pillar.r-lib.org/reference/glimpse.html


3625, 4675, 347…
#> $ sex               <fct> male, female, female, NA, female, 
male, female, m…
#> $ year              <int> 2007, 2007, 2007, 2007, 2007, 2007, 
2007, 2007, 2…

Among the variables in penguins are:

species

A penguin’s species (Adelie, Chinstrap, or Gentoo)

flipper_length_mm

The length of a penguin’s flipper, in millimeters

body_mass_g

The body mass of a penguin, in grams

To learn more about penguins, open its help page by running ?
penguins.

Ultimate Goal
Our ultimate goal in this chapter is to re-create the following visualization
displaying the relationship between flipper lengths and body masses of
these penguins, taking into consideration the species of the penguin.

https://allisonhorst.github.io/palmerpenguins/reference/penguins.html


Creating a ggplot
Let’s re-create this plot step by step.

With ggplot2, you begin a plot with the function ggplot(), defining a
plot object that you then add layers to. The first argument of ggplot() is
the dataset to use in the graph, so ggplot(data = penguins) creates
an empty graph that is primed to display the penguins data, but since we
haven’t told it how to visualize it yet, for now it’s empty. This is not a very
exciting plot, but you can think of it like an empty canvas where you’ll
paint the remaining layers of your plot.

ggplot(data = penguins)

https://ggplot2.tidyverse.org/reference/ggplot.html
https://ggplot2.tidyverse.org/reference/ggplot.html


Next, we need to tell ggplot() how the information from our data will be
visually represented. The mapping argument of the ggplot() function
defines how variables in your dataset are mapped to visual properties
(aesthetics) of your plot. The mapping argument is always defined in the
aes() function, and the x and y arguments of aes() specify which
variables to map to the x- and y-axes. For now, we will map only the flipper
length to the x aesthetic and body mass to the y aesthetic. ggplot2 looks for
the mapped variables in the data argument, in this case, penguins.

The following plot shows the result of adding these mappings.

ggplot( 
  data = penguins, 
  mapping = aes(x = flipper_length_mm, y = body_mass_g)
)

https://ggplot2.tidyverse.org/reference/ggplot.html
https://ggplot2.tidyverse.org/reference/ggplot.html
https://ggplot2.tidyverse.org/reference/aes.html
https://ggplot2.tidyverse.org/reference/aes.html


Our empty canvas now has more structure—it’s clear where flipper lengths
will be displayed (on the x-axis) and where body masses will be displayed
(on the y-axis). But the penguins themselves are not yet on the plot. This is
because we have not yet articulated, in our code, how to represent the
observations from our data frame on our plot.

To do so, we need to define a geom: the geometrical object that a plot uses
to represent data. These geometric objects are made available in ggplot2
with functions that start with geom_. People often describe plots by the
type of geom that the plot uses. For example, bar charts use bar geoms
(geom_bar()), line charts use line geoms (geom_line()), boxplots
use boxplot geoms (geom_boxplot()), scatterplots use point geoms
(geom_point()), and so on.

The function geom_point() adds a layer of points to your plot, which
creates a scatterplot. ggplot2 comes with many geom functions, and each
adds a different type of layer to a plot. You’ll learn a whole bunch of geoms
throughout the book, particularly in Chapter 9.

https://ggplot2.tidyverse.org/reference/geom_bar.html
https://ggplot2.tidyverse.org/reference/geom_path.html
https://ggplot2.tidyverse.org/reference/geom_boxplot.html
https://ggplot2.tidyverse.org/reference/geom_point.html
https://ggplot2.tidyverse.org/reference/geom_point.html


ggplot( 
  data = penguins, 
  mapping = aes(x = flipper_length_mm, y = body_mass_g)
) + 
  geom_point()
#> Warning: Removed 2 rows containing missing values 
(`geom_point()`).

Now we have something that looks like what we might think of as a
“scatterplot.” It doesn’t yet match our “ultimate goal” plot, but using this
plot we can start answering the question that motivated our exploration:
“What does the relationship between flipper length and body mass look
like?” The relationship appears to be positive (as flipper length increases, so
does body mass), fairly linear (the points are clustered around a line instead
of a curve), and moderately strong (there isn’t too much scatter around such
a line). Penguins with longer flippers are generally larger in terms of their
body mass.

Before we add more layers to this plot, let’s pause for a moment and review
the warning message we got:



Removed 2 rows containing missing values (geom_point()).

We’re seeing this message because there are two penguins in our dataset
with missing body mass and/or flipper length values and ggplot2 has no
way of representing them on the plot without both of these values. Like R,
ggplot2 subscribes to the philosophy that missing values should never
silently go missing. This type of warning is probably one of the most
common types of warnings you will see when working with real data—
missing values are a common issue, and you’ll learn more about them
throughout the book, particularly in Chapter 18. For the remaining plots in
this chapter we will suppress this warning so it’s not printed alongside
every single plot we make.

Adding Aesthetics and Layers
Scatterplots are useful for displaying the relationship between two
numerical variables, but it’s always a good idea to be skeptical of any
apparent relationship between two variables and ask if there may be other
variables that explain or change the nature of this apparent relationship. For
example, does the relationship between flipper length and body mass differ
by species? Let’s incorporate species into our plot and see if this reveals any
additional insights into the apparent relationship between these variables.
We will do this by representing species with different colored points.

To achieve this, will we need to modify the aesthetic or the geom? If you
guessed “in the aesthetic mapping, inside of aes(),” you’re already
getting the hang of creating data visualizations with ggplot2! And if not,
don’t worry. Throughout the book you will make many more ggplots and
have many more opportunities to check your intuition as you make them.

ggplot( 
  data = penguins, 
  mapping = aes(x = flipper_length_mm, y = body_mass_g, color = 
species)
) + 
  geom_point()

https://ggplot2.tidyverse.org/reference/geom_point.html
https://ggplot2.tidyverse.org/reference/aes.html


When a categorical variable is mapped to an aesthetic, ggplot2 will
automatically assign a unique value of the aesthetic (here a unique color) to
each unique level of the variable (each of the three species), a process
known as scaling. ggplot2 will also add a legend that explains which values
correspond to which levels.

Now let’s add one more layer: a smooth curve displaying the relationship
between body mass and flipper length. Before you proceed, refer to the
previous code, and think about how we can add this to our existing plot.

Since this is a new geometric object representing our data, we will add a
new geom as a layer on top of our point geom: geom_smooth(). And we
will specify that we want to draw the line of best fit based on a linear model
with method = "lm".

ggplot( 
  data = penguins, 
  mapping = aes(x = flipper_length_mm, y = body_mass_g, color = 
species)
) + 

https://ggplot2.tidyverse.org/reference/geom_smooth.html


  geom_point() + 
  geom_smooth(method = "lm")

We have successfully added lines, but this plot doesn’t look like the plot
from “Ultimate Goal”, which has only one line for the entire dataset as
opposed to separate lines for each of the penguin species.

When aesthetic mappings are defined in ggplot(), at the global level,
they’re passed down to each of the subsequent geom layers of the plot.
However, each geom function in ggplot2 can also take a mapping
argument, which allows for aesthetic mappings at the local level that are
added to those inherited from the global level. Since we want points to be
colored based on species but don’t want the lines to be separated out for
them, we should specify color = species for geom_point() only.

ggplot( 
  data = penguins, 
  mapping = aes(x = flipper_length_mm, y = body_mass_g)
) + 

https://ggplot2.tidyverse.org/reference/ggplot.html
https://ggplot2.tidyverse.org/reference/geom_point.html


  geom_point(mapping = aes(color = species)) + 
  geom_smooth(method = "lm")

Voilà! We have something that looks very much like our ultimate goal,
though it’s not yet perfect. We still need to use different shapes for each
species of penguins and improve labels.

It’s generally not a good idea to represent information using only colors on
a plot, as people perceive colors differently due to color blindness or other
color vision differences. Therefore, in addition to color, we can map
species to the shape aesthetic.

ggplot( 
  data = penguins, 
  mapping = aes(x = flipper_length_mm, y = body_mass_g)
) + 
  geom_point(mapping = aes(color = species, shape = species)) + 
  geom_smooth(method = "lm")



Note that the legend is automatically updated to reflect the different shapes
of the points as well.

Finally, we can improve the labels of our plot using the labs() function in
a new layer. Some of the arguments to labs() might be self-explanatory:
title adds a title, and subtitle adds a subtitle to the plot. Other
arguments match the aesthetic mappings: x is the x-axis label, y is the y-
axis label, and color and shape define the label for the legend. In
addition, we can improve the color palette to be color-blind safe with the
scale_color_colorblind() function from the ggthemes package.

ggplot( 
  data = penguins, 
  mapping = aes(x = flipper_length_mm, y = body_mass_g)
) + 
  geom_point(aes(color = species, shape = species)) + 
  geom_smooth(method = "lm") + 
  labs( 
    title = "Body mass and flipper length", 
    subtitle = "Dimensions for Adelie, Chinstrap, and Gentoo 

https://ggplot2.tidyverse.org/reference/labs.html
https://ggplot2.tidyverse.org/reference/labs.html
https://rdrr.io/pkg/ggthemes/man/colorblind.html


Penguins", 
    x = "Flipper length (mm)", y = "Body mass (g)", 
    color = "Species", shape = "Species" 
  ) + 
  scale_color_colorblind()

We finally have a plot that perfectly matches our “ultimate goal”!

Exercises
1. How many rows are in penguins? How many columns?

2. What does the bill_depth_mm variable in the penguins data
frame describe? Read the help for ?penguins to find out.

3. Make a scatterplot of bill_depth_mm versus bill_length_mm.
That is, make a scatterplot with bill_depth_mm on the y-axis and
bill_length_mm on the x-axis. Describe the relationship between
these two variables.

https://allisonhorst.github.io/palmerpenguins/reference/penguins.html


4. What happens if you make a scatterplot of species versus
bill_depth_mm? What might be a better choice of geom?

5. Why does the following give an error, and how would you fix it?

ggplot(data = penguins) +  
  geom_point()

6. What does the na.rm argument do in geom_point()? What is the
default value of the argument? Create a scatterplot where you
successfully use this argument set to TRUE.

7. Add the following caption to the plot you made in the previous
exercise: “Data come from the palmerpenguins package.” Hint: Take a
look at the documentation for labs().

8. Re-create the following visualization. What aesthetic should
bill_depth_mm be mapped to? And should it be mapped at the
global level or at the geom level?

https://ggplot2.tidyverse.org/reference/geom_point.html
https://ggplot2.tidyverse.org/reference/labs.html


9. Run this code in your head and predict what the output will look like.
Then, run the code in R and check your predictions.

ggplot( 
  data = penguins, 
  mapping = aes(x = flipper_length_mm, y = body_mass_g, color 
= island)
) + 
  geom_point() + 
  geom_smooth(se = FALSE)

10. Will these two graphs look different? Why/why not?

ggplot( 
  data = penguins, 
  mapping = aes(x = flipper_length_mm, y = body_mass_g)
) + 
  geom_point() + 
  geom_smooth() 
 
ggplot() + 
  geom_point( 
    data = penguins, 
    mapping = aes(x = flipper_length_mm, y = body_mass_g) 
  ) + 
  geom_smooth( 
    data = penguins, 
    mapping = aes(x = flipper_length_mm, y = body_mass_g) 
  )

ggplot2 Calls
As we move on from these introductory sections, we’ll transition to a more
concise expression of ggplot2 code. So far we’ve been very explicit, which
is helpful when you are learning:

ggplot( 
  data = penguins, 
  mapping = aes(x = flipper_length_mm, y = body_mass_g)
) + 
  geom_point()



Typically, the first one or two arguments to a function are so important that
you should know them by heart. The first two arguments to ggplot() are
data and mapping; in the remainder of the book, we won’t supply those
names. That saves typing and, by reducing the amount of extra text, makes
it easier to see what’s different between plots. That’s a really important
programming concern that we’ll come back to in Chapter 25.

Rewriting the previous plot more concisely yields:

ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) +  
  geom_point()

In the future, you’ll also learn about the pipe, |>, which will allow you to
create that plot with:

penguins |>  
  ggplot(aes(x = flipper_length_mm, y = body_mass_g)) +  
  geom_point()

Visualizing Distributions
How you visualize the distribution of a variable depends on the type of
variable: categorical or numerical.

A Categorical Variable
A variable is categorical if it can take only one of a small set of values. To
examine the distribution of a categorical variable, you can use a bar chart.
The height of the bars displays how many observations occurred with each
x value.

ggplot(penguins, aes(x = species)) + 
  geom_bar()

https://ggplot2.tidyverse.org/reference/ggplot.html


In bar plots of categorical variables with nonordered levels, like the
previous penguin species, it’s often preferable to reorder the bars based
on their frequencies. Doing so requires transforming the variable to a factor
(how R handles categorical data) and then reordering the levels of that
factor.

ggplot(penguins, aes(x = fct_infreq(species))) + 
  geom_bar()



You will learn more about factors and functions for dealing with factors
(such as fct_infreq()) in Chapter 16.

A Numerical Variable
A variable is numerical (or quantitative) if it can take on a wide range of
numerical values and it is sensible to add, subtract, or take averages with
those values. Numerical variables can be continuous or discrete.

One commonly used visualization for distributions of continuous variables
is a histogram.

ggplot(penguins, aes(x = body_mass_g)) + 
  geom_histogram(binwidth = 200)

https://forcats.tidyverse.org/reference/fct_inorder.html


A histogram divides the x-axis into equally spaced bins and then uses the
height of a bar to display the number of observations that fall in each bin. In
the previous graph, the tallest bar shows that 39 observations have a
body_mass_g value between 3,500 and 3,700 grams, which are the left
and right edges of the bar.

You can set the width of the intervals in a histogram with the binwidth
argument, which is measured in the units of the x variable. You should
always explore a variety of binwidth values when working with
histograms, as different binwidth values can reveal different patterns. In
the following plots, a binwidth of 20 is too narrow, resulting in too many
bars, making it difficult to determine the shape of the distribution. Similarly,
a binwidth of 2,000 is too high, resulting in all data being binned into
only three bars and also making it difficult to determine the shape of the
distribution. A binwidth of 200 provides a sensible balance.

ggplot(penguins, aes(x = body_mass_g)) + 
  geom_histogram(binwidth = 20)



ggplot(penguins, aes(x = body_mass_g)) + 
  geom_histogram(binwidth = 2000)

An alternative visualization for distributions of numerical variables is a
density plot. A density plot is a smoothed-out version of a histogram and a
practical alternative, particularly for continuous data that comes from an
underlying smooth distribution. We won’t go into how geom_density()
estimates the density (you can read more about that in the function
documentation), but let’s explain how the density curve is drawn with an
analogy. Imagine a histogram made out of wooden blocks. Then, imagine
that you drop a cooked spaghetti string over it. The shape the spaghetti will
take draped over blocks can be thought of as the shape of the density curve.
It shows fewer details than a histogram but can make it easier to quickly
glean the shape of the distribution, particularly with respect to modes and
skewness.

ggplot(penguins, aes(x = body_mass_g)) + 
  geom_density()
#> Warning: Removed 2 rows containing non-finite values 
(`stat_density()`).

https://ggplot2.tidyverse.org/reference/geom_density.html


Exercises
1. Make a bar plot of species of penguins, where you assign
species to the y aesthetic. How is this plot different?

2. How are the following two plots different? Which aesthetic, color or
fill, is more useful for changing the color of bars?

ggplot(penguins, aes(x = species)) + 
  geom_bar(color = "red") 
 
ggplot(penguins, aes(x = species)) + 
  geom_bar(fill = "red")

3. What does the bins argument in geom_histogram() do?

4. Make a histogram of the carat variable in the diamonds dataset
that is available when you load the tidyverse package. Experiment with

https://ggplot2.tidyverse.org/reference/geom_histogram.html


different binwidth values. What value reveals the most interesting
patterns?

Visualizing Relationships
To visualize a relationship we need to have at least two variables mapped to
aesthetics of a plot. In the following sections you will learn about
commonly used plots for visualizing relationships between two or more
variables and the geoms used for creating them.

A Numerical and a Categorical Variable
To visualize the relationship between a numerical and a categorical variable
we can use side-by-side box plots. A boxplot is a type of visual shorthand
for measures of position (percentiles) that describe a distribution. It is also
useful for identifying potential outliers. As shown in Figure 1-1, each
boxplot consists of:

A box that indicates the range of the middle half of the data, a distance
known as the interquartile range (IQR), stretching from the 25th
percentile of the distribution to the 75th percentile. In the middle of the
box is a line that displays the median, i.e., 50th percentile, of the
distribution. These three lines give you a sense of the spread of the
distribution and whether the distribution is symmetric about the
median or skewed to one side.

Visual points that display observations that fall more than 1.5 times the
IQR from either edge of the box. These outlying points are unusual so
they are plotted individually.

A line (or whisker) that extends from each end of the box and goes to
the farthest nonoutlier point in the distribution.



Figure 1-1. Diagram depicting how a boxplot is created.

Let’s take a look at the distribution of body mass by species using
geom_boxplot():

ggplot(penguins, aes(x = species, y = body_mass_g)) + 
  geom_boxplot()

https://ggplot2.tidyverse.org/reference/geom_boxplot.html


Alternatively, we can make density plots with geom_density():

ggplot(penguins, aes(x = body_mass_g, color = species)) + 
  geom_density(linewidth = 0.75)

https://ggplot2.tidyverse.org/reference/geom_density.html


We’ve also customized the thickness of the lines using the linewidth
argument to make them stand out a bit more against the background.

Additionally, we can map species to both color and fill aesthetics
and use the alpha aesthetic to add transparency to the filled density
curves. This aesthetic takes values between 0 (completely transparent) and
1 (completely opaque). In the following plot it’s set to 0.5:

ggplot(penguins, aes(x = body_mass_g, color = species, fill = 
species)) + 
  geom_density(alpha = 0.5)



Note the terminology we have used here:

We map variables to aesthetics if we want the visual attribute
represented by that aesthetic to vary based on the values of that
variable.

Otherwise, we set the value of an aesthetic.

Two Categorical Variables
We can use stacked bar plots to visualize the relationship between two
categorical variables. For example, the following two stacked bar plots both
display the relationship between island and species, or, specifically,
visualize the distribution of species within each island.

The first plot shows the frequencies of each species of penguins on each
island. The plot of frequencies shows that there are equal numbers of
Adelies on each island, but we don’t have a good sense of the percentage
balance within each island.



ggplot(penguins, aes(x = island, fill = species)) + 
  geom_bar()

The second plot is a relative frequency plot, created by setting position
= "fill" in the geom, and is more useful for comparing species
distributions across islands since it’s not affected by the unequal numbers of
penguins across the islands. Using this plot we can see that Gentoo
penguins all live on Biscoe island and make up roughly 75% of the
penguins on that island, Chinstrap all live on Dream island and make up
roughly 50% of the penguins on that island, and Adelie live on all three
islands and make up all of the penguins on Torgersen.

ggplot(penguins, aes(x = island, fill = species)) + 
  geom_bar(position = "fill")



In creating these bar charts, we map the variable that will be separated into
bars to the x aesthetic, and the variable that will change the colors inside
the bars to the fill aesthetic.

Two Numerical Variables
So far you’ve learned about scatterplots (created with geom_point())
and smooth curves (created with geom_smooth()) for visualizing the
relationship between two numerical variables. A scatterplot is probably the
most commonly used plot for visualizing the relationship between two
numerical variables.

ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) + 
  geom_point()

https://ggplot2.tidyverse.org/reference/geom_point.html
https://ggplot2.tidyverse.org/reference/geom_smooth.html


Three or More Variables
As we saw in “Adding Aesthetics and Layers”, we can incorporate more
variables into a plot by mapping them to additional aesthetics. For example,
in the following scatterplot the colors of points represent species, and the
shapes of points represent islands:

ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) + 
  geom_point(aes(color = species, shape = island))



However, adding too many aesthetic mappings to a plot makes it cluttered
and difficult to make sense of. Another option, which is particularly useful
for categorical variables, is to split your plot into facets, subplots that each
display one subset of the data.

To facet your plot by a single variable, use facet_wrap(). The first
argument of facet_wrap() is a formula,3 which you create with ~
followed by a variable name. The variable that you pass to
facet_wrap() should be categorical.

ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) + 
  geom_point(aes(color = species, shape = species)) + 
  facet_wrap(~island)

https://ggplot2.tidyverse.org/reference/facet_wrap.html
https://ggplot2.tidyverse.org/reference/facet_wrap.html
https://ggplot2.tidyverse.org/reference/facet_wrap.html


You will learn about many other geoms for visualizing distributions of
variables and relationships between them in Chapter 9.

Exercises
1. The mpg data frame that is bundled with the ggplot2 package contains

234 observations collected by the US Environmental Protection
Agency on 38 car models. Which variables in mpg are categorical?
Which variables are numerical? (Hint: Type ?mpg to read the
documentation for the dataset.) How can you see this information
when you run mpg?

2. Make a scatterplot of hwy versus displ using the mpg data frame.
Next, map a third, numerical variable to color, then size, then both
color and size, and then shape. How do these aesthetics behave
differently for categorical versus numerical variables?

3. In the scatterplot of hwy versus displ, what happens if you map a
third variable to linewidth?

4. What happens if you map the same variable to multiple aesthetics?

5. Make a scatterplot of bill_depth_mm versus bill_length_mm
and color the points by species. What does adding coloring by
species reveal about the relationship between these two variables?
What about faceting by species?

https://ggplot2.tidyverse.org/reference/mpg.html


6. Why does the following yield two separate legends? How would you
fix it to combine the two legends?

ggplot( 
  data = penguins, 
  mapping = aes( 
    x = bill_length_mm, y = bill_depth_mm,  
    color = species, shape = species 
  )
) + 
  geom_point() + 
  labs(color = "Species")

7. Create the two following stacked bar plots. Which question can you
answer with the first one? Which question can you answer with the
second one?

ggplot(penguins, aes(x = island, fill = species)) + 
  geom_bar(position = "fill")
ggplot(penguins, aes(x = species, fill = island)) + 
  geom_bar(position = "fill")

Saving Your Plots
Once you’ve made a plot, you might want to get it out of R by saving it as
an image that you can use elsewhere. That’s the job of ggsave(), which
will save the plot most recently created to disk:

ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) + 
  geom_point()
ggsave(filename = "penguin-plot.png")

This will save your plot to your working directory, a concept you’ll learn
more about in Chapter 6.

If you don’t specify the width and height, they will be taken from the
dimensions of the current plotting device. For reproducible code, you’ll
want to specify them. You can learn more about ggsave() in the
documentation.

https://ggplot2.tidyverse.org/reference/ggsave.html
https://ggplot2.tidyverse.org/reference/ggsave.html


Generally, however, we recommend that you assemble your final reports
using Quarto, a reproducible authoring system that allows you to interleave
your code and your prose and automatically include your plots in your
write-ups. You will learn more about Quarto in Chapter 28.

Exercises
1. Run the following lines of code. Which of the two plots is saved as
mpg-plot.png? Why?

ggplot(mpg, aes(x = class)) + 
  geom_bar()
ggplot(mpg, aes(x = cty, y = hwy)) + 
  geom_point()
ggsave("mpg-plot.png")

2. What do you need to change in the previous code to save the plot as a
PDF instead of a PNG? How could you find out what types of image
files would work in ggsave()?

Common Problems
As you start to run R code, you’re likely to run into problems. Don’t worry
—it happens to everyone. We have all been writing R code for years, but
every day we still write code that doesn’t work on the first try!

Start by carefully comparing the code that you’re running to the code in the
book. R is extremely picky, and a misplaced character can make all the
difference. Make sure that every ( is matched with a ) and every " is
paired with another ". Sometimes you’ll run the code and nothing happens.
Check the left side of your console: if it’s a +, it means that R doesn’t think
you’ve typed a complete expression and it’s waiting for you to finish it. In
this case, it’s usually easy to start from scratch again by pressing Escape to
abort processing the current command.

https://ggplot2.tidyverse.org/reference/ggsave.html


One common problem when creating ggplot2 graphics is to put the + in the
wrong place: it has to come at the end of the line, not the start. In other
words, make sure you haven’t accidentally written code like this:

ggplot(data = mpg)  
+ geom_point(mapping = aes(x = displ, y = hwy))

If you’re still stuck, try the help. You can get help about any R function by
running ?function_name in the console or highlighting the function
name and pressing F1 in RStudio. Don’t worry if the help doesn’t seem that
helpful; instead, skip down to the examples and look for code that matches
what you’re trying to do.

If that doesn’t help, carefully read the error message. Sometimes the answer
will be buried there! But when you’re new to R, even if the answer is in the
error message, you might not yet know how to understand it. Another great
tool is Google: try googling the error message, as it’s likely someone else
has had the same problem and has gotten help online.

Summary
In this chapter, you’ve learned the basics of data visualization with ggplot2.
We started with the basic idea that underpins ggplot2: a visualization is a
mapping from variables in your data to aesthetic properties such as position,
color, size, and shape. You then learned about increasing the complexity
and improving the presentation of your plots layer by layer. You also
learned about commonly used plots for visualizing the distribution of a
single variable, as well as for visualizing relationships between two or more
variables, by levering additional aesthetic mappings and/or splitting your
plot into small multiples using faceting.

We’ll use visualizations again and again throughout this book, introducing
new techniques as we need them, as well as do a deeper dive into creating
visualizations with ggplot2 in Chapter 9 through Chapter 11.



Now that you understand the basics of visualization, in the next chapter
we’re going to switch gears a little and give you some practical workflow
advice. We intersperse workflow advice with data science tools throughout
this part of the book because it’ll help you stay organized as you write
increasing amounts of R code.

1  You can eliminate that message and force conflict resolution to happen on demand by using
the conflicted package, which becomes more important as you load more packages. You can
learn more about conflicted on the package website.

2  Horst AM, Hill AP, Gorman KB (2020). palmerpenguins: Palmer Archipelago (Antarctica)
penguin data. R package version 0.1.0. https://oreil.ly/ncwc5. doi: 10.5281/zenodo.3960218.

3  Here “formula” is the name of the thing created by ~, not a synonym for “equation.”

https://oreil.ly/01bKz
https://oreil.ly/ncwc5


Chapter 2. Workflow: Basics

You now have some experience running R code. We didn’t give you many
details, but you’ve obviously figured out the basics or you would’ve thrown
this book away in frustration! Frustration is natural when you start
programming in R because it is such a stickler for punctuation, and even
one character out of place can cause it to complain. But while you should
expect to be a little frustrated, take comfort in that this experience is typical
and temporary: it happens to everyone, and the only way to get over it is to
keep trying.

Before we go any further, let’s ensure you’ve got a solid foundation in
running R code and that you know some of the most helpful RStudio
features.

Coding Basics
Let’s review some basics we’ve omitted so far in the interest of getting you
plotting as quickly as possible. You can use R to do basic math calculations:

1 / 200 * 30
#> [1] 0.15
(59 + 73 + 2) / 3
#> [1] 44.66667
sin(pi / 2)
#> [1] 1

You can create new objects with the assignment operator <-:

x <- 3 * 4



Note that the value of x is not printed, it’s just stored. If you want to view
the value, type x in the console.

You can combine multiple elements into a vector with c():

primes <- c(2, 3, 5, 7, 11, 13)

And basic arithmetic on vectors is applied to every element of the vector:

primes * 2
#> [1]  4  6 10 14 22 26
primes - 1
#> [1]  1  2  4  6 10 12

All R statements where you create objects, assignment statements, have the
same form:

object_name <- value

When reading that code, say “object name gets value” in your head.

You will make lots of assignments, and <- is a pain to type. You can save
time with RStudio’s keyboard shortcut: Alt+– (the minus sign). Notice that
RStudio automatically surrounds <- with spaces, which is a good code
formatting practice. Code can be miserable to read on a good day, so
giveyoureyesabreak and use spaces.

Comments
R will ignore any text after # for that line. This allows you to write
comments, text that is ignored by R but read by humans. We’ll sometimes
include comments in examples to explain what’s happening with the code.

Comments can be helpful for briefly describing what the code does:

https://rdrr.io/r/base/c.html


# create vector of primes
primes <- c(2, 3, 5, 7, 11, 13) 
 
# multiply primes by 2
primes * 2
#> [1]  4  6 10 14 22 26

With short pieces of code like this, leaving a comment for every single line
of code might not be necessary. But as the code you’re writing gets more
complex, comments can save you (and your collaborators) a lot of time
figuring out what was done in the code.

Use comments to explain the why of your code, not the how or the what.
The what and how of your code are always possible to figure out, even if it
might be tedious, by carefully reading it. If you describe every step in the
comments and then change the code, you will have to remember to update
the comments as well or it will be confusing when you return to your code
in the future.

Figuring out why something was done is much more difficult, if not
impossible. For example, geom_smooth() has an argument called span,
which controls the smoothness of the curve, with larger values yielding a
smoother curve. Suppose you decide to change the value of span from its
default of 0.75 to 0.9: it’s easy for a future reader to understand what is
happening, but unless you note your thinking in a comment, no one will
understand why you changed the default.

For data analysis code, use comments to explain your overall plan of attack
and record important insights as you encounter them. There’s no way to re-
capture this knowledge from the code itself.

What’s in a Name?
Object names must start with a letter and can contain only letters, numbers,
_, and .. You want your object names to be descriptive, so you’ll need to



adopt a convention for multiple words. We recommend snake_case, where
you separate lowercase words with _.

i_use_snake_case
otherPeopleUseCamelCase
some.people.use.periods
And_aFew.People_RENOUNCEconvention

We’ll return to names again when we discuss code style in Chapter 4.

You can inspect an object by typing its name:

x
#> [1] 12

Make another assignment:

this_is_a_really_long_name <- 2.5

To inspect this object, try RStudio’s completion facility: type this, press
Tab, add characters until you have a unique prefix, and then press Return.

Let’s assume you made a mistake and that the value of
this_is_a_really_long_name should be 3.5, not 2.5. You can use
another keyboard shortcut to help you fix it. For example, you can press ↑
to bring the last command you typed and edit it. Or, type this and then press
Cmd/Ctrl+↑ to list all the commands you’ve typed that start with those
letters. Use the arrow keys to navigate and then press Enter to retype the
command. Change 2.5 to 3.5 and rerun.

Make yet another assignment:

r_rocks <- 2^3

Let’s try to inspect it:



r_rock
#> Error: object 'r_rock' not found
R_rocks
#> Error: object 'R_rocks' not found

This illustrates the implied contract between you and R: R will do the
tedious computations for you, but in exchange, you must be completely
precise in your instructions. If not, you’re likely to get an error that says the
object you’re looking for was not found. Typos matter; R can’t read your
mind and say, “Oh, they probably meant r_rocks when they typed
r_rock.” Case matters; similarly, R can’t read your mind and say, “Oh,
they probably meant r_rocks when they typed R_rocks.”

Calling Functions
R has a large collection of built-in functions that are called like this:

function_name(argument1 = value1, argument2 = value2, ...)

Let’s try using seq(), which makes regular sequences of numbers and,
while we’re at it, learn more helpful features of RStudio. Type se and hit
Tab. A pop-up shows you possible completions. Specify seq() by typing
more (a q) to disambiguate or by using ↑/↓ arrows to select. Notice the
floating tooltip that pops up, reminding you of the function’s arguments and
purpose. If you want more help, press F1 to get all the details on the help
tab in the lower-right pane.

When you’ve selected the function you want, press Tab again. RStudio will
add matching opening (() and closing ()) parentheses for you. Type the
name of the first argument, from, and set it equal to 1. Then, type the
name of the second argument, to, and set it equal to 10. Finally, hit Return.

seq(from = 1, to = 10)
#>  [1]  1  2  3  4  5  6  7  8  9 10

https://rdrr.io/r/base/seq.html
https://rdrr.io/r/base/seq.html


We often omit the names of the first several arguments in function calls, so
we can rewrite this as follows:

seq(1, 10)
#>  [1]  1  2  3  4  5  6  7  8  9 10

Type the following code and notice that RStudio provides similar assistance
with the paired quotation marks:

x <- "hello world"

Quotation marks and parentheses must always come in a pair. RStudio does
its best to help you, but it’s still possible to mess up and end up with a
mismatch. If this happens, R will show you the continuation character, +:

> x <- "hello 
+

The + tells you that R is waiting for more input; it doesn’t think you’re
done yet. Usually, this means you’ve forgotten either a " or a ). Either add
the missing pair, or press Esc to abort the expression and try again.

Note that the Environment tab in the upper-right pane displays all of the
objects that you’ve created:



Exercises
1. Why does this code not work?

my_variable <- 10
my_varıable
#> Error in eval(expr, envir, enclos): object 'my_varıable' 
not found

Look carefully! (This may seem like an exercise in pointlessness, but
training your brain to notice even the tiniest difference will pay off
when programming.)

2. Tweak each of the following R commands so that they run correctly:

libary(todyverse) 
 
ggplot(dTA = mpg) +  
  geom_point(maping = aes(x = displ y = hwy)) + 
  geom_smooth(method = "lm)

3. Press Option+Shift+K/Alt+Shift+K. What happens? How can you get
to the same place using the menus?

4. Let’s revisit an exercise from “Saving Your Plots”. Run the following
lines of code. Which of the two plots is saved as mpg-plot.png?
Why?

my_bar_plot <- ggplot(mpg, aes(x = class)) + 
  geom_bar()
my_scatter_plot <- ggplot(mpg, aes(x = cty, y = hwy)) + 
  geom_point()
ggsave(filename = "mpg-plot.png", plot = my_bar_plot)

Summary



Now that you’ve learned a little more about how R code works and gotten
some tips to help you understand your code when you come back to it in the
future, in the next chapter, we’ll continue your data science journey by
teaching you about dplyr, the tidyverse package that helps you transform
data, whether it’s selecting important variables, filtering down to rows of
interest, or computing summary statistics.



Chapter 3. Data Transformation

Introduction
Visualization is an important tool for generating insight, but it’s rare that
you get the data in exactly the right form you need to make the graph you
want. Often you’ll need to create some new variables or summaries to
answer your questions with your data, or maybe you just want to rename
the variables or reorder the observations to make the data a little easier to
work with. You’ll learn how to do all that (and more!) in this chapter, which
will introduce you to data transformation using the dplyr package and a new
dataset on flights that departed New York City in 2013.

The goal of this chapter is to give you an overview of all the key tools for
transforming a data frame. We’ll start with functions that operate on rows
and then columns of a data frame, and then we’ll circle back to talk more
about the pipe, an important tool that you use to combine verbs. We will
then introduce the ability to work with groups. We will end the chapter with
a case study that showcases these functions in action, and we’ll come back
to the functions in more detail in later chapters, as we start to dig into
specific types of data (e.g., numbers, strings, dates).

Prerequisites
In this chapter we’ll focus on the dplyr package, another core member of
the tidyverse. We’ll illustrate the key ideas using data from the nycflights13
package and use ggplot2 to help us understand the data.

library(nycflights13)
library(tidyverse)
#> ── Attaching core tidyverse packages ───────────────────── 
tidyverse 2.0.0 ──
#> ✔ dplyr     1.1.0.9000     ✔ readr     2.1.4     
#> ✔ forcats   1.0.0          ✔ stringr   1.5.0     
#> ✔ ggplot2   3.4.1          ✔ tibble    3.1.8     



#> ✔ lubridate 1.9.2          ✔ tidyr     1.3.0     
#> ✔ purrr     1.0.1          
#> ── Conflicts ─────────────────────────────────────── 
tidyverse_conflicts() ──
#> ✖ dplyr::filter() masks stats::filter()
#> ✖ dplyr::lag()    masks stats::lag()
#> ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) 
to force all 
#>   conflicts to become errors

Take careful note of the conflicts message that’s printed when you load the
tidyverse. It tells you that dplyr overwrites some functions in base R. If you
want to use the base version of these functions after loading dplyr, you’ll
need to use their full names: stats::filter() and stats::lag().
So far we’ve mostly ignored which package a function comes from because
most of the time it doesn’t matter. However, knowing the package can
facilitate finding help as well as related functions, so when we need to be
precise about which function a package comes from, we’ll use the same
syntax as R: packagename::functionname().

nycflights13
To explore the basic dplyr verbs, we’re going to use
nycflights13::flights. This dataset contains all 336,776 flights
that departed from New York City in 2013. The data comes from the US
Bureau of Transportation Statistics and is documented in ?flights.

flights
#> # A tibble: 336,776 × 19
#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
<int>
#> 1  2013     1     1      517            515         2      830  
819
#> 2  2013     1     1      533            529         4      850  
830
#> 3  2013     1     1      542            540         2      923  
850
#> 4  2013     1     1      544            545        -1     1004  
1022

https://rdrr.io/r/stats/filter.html
https://rdrr.io/r/stats/lag.html
https://rdrr.io/pkg/nycflights13/man/flights.html
https://rdrr.io/pkg/nycflights13/man/flights.html


#> 5  2013     1     1      554            600        -6      812  
837
#> 6  2013     1     1      554            558        -4      740  
728
#> # … with 336,770 more rows, and 11 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, 
dest <chr>, …

flights is a tibble, a special type of data frame used by the tidyverse to
avoid some common gotchas. The most important difference between
tibbles and data frames is the way tibbles print; they are designed for large
datasets, so they show only the first few rows and only the columns that fit
on one screen. There are a few options to see everything. If you’re using
RStudio, the most convenient is probably View(flights), which will
open an interactive scrollable and filterable view. Otherwise, you can use
print(flights, width = Inf) to show all columns or use
glimpse():

glimpse(flights)
#> Rows: 336,776
#> Columns: 19
#> $ year           <int> 2013, 2013, 2013, 2013, 2013, 2013, 
2013, 2013, 2013…
#> $ month          <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1…
#> $ day            <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1…
#> $ dep_time       <int> 517, 533, 542, 544, 554, 554, 555, 557, 
557, 558, 55…
#> $ sched_dep_time <int> 515, 529, 540, 545, 600, 558, 600, 600, 
600, 600, 60…
#> $ dep_delay      <dbl> 2, 4, 2, -1, -6, -4, -5, -3, -3, -2, 
-2, -2, -2, -2,…
#> $ arr_time       <int> 830, 850, 923, 1004, 812, 740, 913, 
709, 838, 753, 8…
#> $ sched_arr_time <int> 819, 830, 850, 1022, 837, 728, 854, 
723, 846, 745, 8…
#> $ arr_delay      <dbl> 11, 20, 33, -18, -25, 12, 19, -14, -8, 
8, -2, -3, 7,…
#> $ carrier        <chr> "UA", "UA", "AA", "B6", "DL", "UA", 
"B6", "EV", "B6"…
#> $ flight         <int> 1545, 1714, 1141, 725, 461, 1696, 507, 

https://pillar.r-lib.org/reference/glimpse.html


5708, 79, 301…
#> $ tailnum        <chr> "N14228", "N24211", "N619AA", "N804JB", 
"N668DN", "N…
#> $ origin         <chr> "EWR", "LGA", "JFK", "JFK", "LGA", 
"EWR", "EWR", "LG…
#> $ dest           <chr> "IAH", "IAH", "MIA", "BQN", "ATL", 
"ORD", "FLL", "IA…
#> $ air_time       <dbl> 227, 227, 160, 183, 116, 150, 158, 53, 
140, 138, 149…
#> $ distance       <dbl> 1400, 1416, 1089, 1576, 762, 719, 1065, 
229, 944, 73…
#> $ hour           <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 
6, 6, 5, 6, 6…
#> $ minute         <dbl> 15, 29, 40, 45, 0, 58, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 59…
#> $ time_hour      <dttm> 2013-01-01 05:00:00, 2013-01-01 
05:00:00, 2013-01-0…

In both views, the variables names are followed by abbreviations that tell
you the type of each variable: <int> is short for integer, <dbl> is short
for double (aka real numbers), <chr> for character (aka strings), and
<dttm> for date-time. These are important because the operations you can
perform on a column depend so much on its “type.”

dplyr Basics
You’re about to learn the primary dplyr verbs (functions), which will allow
you to solve the vast majority of your data manipulation challenges. But
before we discuss their individual differences, it’s worth stating what they
have in common:

The first argument is always a data frame.

The subsequent arguments typically describe which columns to operate
on, using the variable names (without quotes).

The output is always a new data frame.

Because each verb does one thing well, solving complex problems will
usually require combining multiple verbs, and we’ll do so with the pipe,
|>. We’ll discuss the pipe more in “The Pipe”, but in brief, the pipe takes



the thing on its left and passes it along to the function on its right so that x
|> f(y) is equivalent to f(x, y), and x |> f(y) |> g(z) is
equivalent to g(f(x, y), z). The easiest way to pronounce the pipe is
“then.” That makes it possible to get a sense of the following code even
though you haven’t yet learned the details:

flights |> 
  filter(dest == "IAH") |>  
  group_by(year, month, day) |>  
  summarize( 
    arr_delay = mean(arr_delay, na.rm = TRUE) 
  )

dplyr’s verbs are organized into four groups based on what they operate on:
rows, columns, groups, and tables. In the following sections, you’ll learn
the most important verbs for rows, columns, and groups; then we’ll come
back to the join verbs that work on tables in Chapter 19. Let’s dive in!

Rows
The most important verbs that operate on rows of a dataset are filter(),
which changes which rows are present without changing their order, and
arrange(), which changes the order of the rows without changing which
are present. Both functions affect only the rows, and the columns are left
unchanged. We’ll also discuss distinct(), which finds rows with
unique values, but unlike arrange() and filter(), it can also
optionally modify the columns.

filter()
filter() allows you to keep rows based on the values of the columns.1
The first argument is the data frame. The second and subsequent arguments
are the conditions that must be true to keep the row. For example, we could
find all flights that departed more than 120 minutes (two hours) late:
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flights |>  
  filter(dep_delay > 120)
#> # A tibble: 9,723 × 19
#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
<int>
#> 1  2013     1     1      848           1835       853     1001  
1950
#> 2  2013     1     1      957            733       144     1056  
853
#> 3  2013     1     1     1114            900       134     1447  
1222
#> 4  2013     1     1     1540           1338       122     2020  
1825
#> 5  2013     1     1     1815           1325       290     2120  
1542
#> 6  2013     1     1     1842           1422       260     1958  
1535
#> # … with 9,717 more rows, and 11 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, 
dest <chr>, …

As well as > (greater than), you can use >= (greater than or equal to), <
(less than), <= (less than or equal to), == (equal to), and != (not equal to).
You can also combine conditions with & or , to indicate “and” (check for
both conditions) or with | to indicate “or” (check for either condition):

# Flights that departed on January 1
flights |>  
  filter(month == 1 & day == 1)
#> # A tibble: 842 × 19
#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
<int>
#> 1  2013     1     1      517            515         2      830  
819
#> 2  2013     1     1      533            529         4      850  
830
#> 3  2013     1     1      542            540         2      923  
850
#> 4  2013     1     1      544            545        -1     1004  
1022



#> 5  2013     1     1      554            600        -6      812  
837
#> 6  2013     1     1      554            558        -4      740  
728
#> # … with 836 more rows, and 11 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, 
dest <chr>, … 
 
# Flights that departed in January or February
flights |>  
  filter(month == 1 | month == 2)
#> # A tibble: 51,955 × 19
#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
<int>
#> 1  2013     1     1      517            515         2      830  
819
#> 2  2013     1     1      533            529         4      850  
830
#> 3  2013     1     1      542            540         2      923  
850
#> 4  2013     1     1      544            545        -1     1004  
1022
#> 5  2013     1     1      554            600        -6      812  
837
#> 6  2013     1     1      554            558        -4      740  
728
#> # … with 51,949 more rows, and 11 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, 
dest <chr>, …

There’s a useful shortcut when you’re combining | and ==: %in%. It keeps
rows where the variable equals one of the values on the right:

# A shorter way to select flights that departed in January or 
February
flights |>  
  filter(month %in% c(1, 2))
#> # A tibble: 51,955 × 19
#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
<int>



#> 1  2013     1     1      517            515         2      830  
819
#> 2  2013     1     1      533            529         4      850  
830
#> 3  2013     1     1      542            540         2      923  
850
#> 4  2013     1     1      544            545        -1     1004  
1022
#> 5  2013     1     1      554            600        -6      812  
837
#> 6  2013     1     1      554            558        -4      740  
728
#> # … with 51,949 more rows, and 11 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, 
dest <chr>, …

We’ll come back to these comparisons and logical operators in more detail
in Chapter 12.

When you run filter(), dplyr executes the filtering operation, creating a
new data frame, and then prints it. It doesn’t modify the existing flights
dataset because dplyr functions never modify their inputs. To save the
result, you need to use the assignment operator, <-:

jan1 <- flights |>  
  filter(month == 1 & day == 1)

Common Mistakes
When you’re starting out with R, the easiest mistake to make is to use =
instead of == when testing for equality. filter() will let you know when
this happens:

flights |>  
  filter(month = 1)
#> Error in `filter()`:
#> ! We detected a named input.
#> ℹ This usually means that you've used `=` instead of `==`.
#> ℹ Did you mean `month == 1`?

Another mistake is writing “or” statements like you would in English:
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flights |>  
  filter(month == 1 | 2)

This “works” in the sense that it doesn’t throw an error, but it doesn’t do
what you want because | first checks the condition month == 1 and then
checks the condition 2, which is not a sensible condition to check. We’ll
learn more about what’s happening here and why in “Boolean Operations”.

arrange()
arrange() changes the order of the rows based on the value of the
columns. It takes a data frame and a set of column names (or more
complicated expressions) to order by. If you provide more than one column
name, each additional column will be used to break ties in the values of
preceding columns. For example, the following code sorts by the departure
time, which is spread over four columns. We get the earliest years first, then
within a year the earliest months, etc.

flights |>  
  arrange(year, month, day, dep_time)
#> # A tibble: 336,776 × 19
#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
<int>
#> 1  2013     1     1      517            515         2      830  
819
#> 2  2013     1     1      533            529         4      850  
830
#> 3  2013     1     1      542            540         2      923  
850
#> 4  2013     1     1      544            545        -1     1004  
1022
#> 5  2013     1     1      554            600        -6      812  
837
#> 6  2013     1     1      554            558        -4      740  
728
#> # … with 336,770 more rows, and 11 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, 
dest <chr>, …
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You can use desc() on a column inside of arrange() to reorder the
data frame based on that column in descending (big-to-small) order. For
example, this code orders flights from most to least delayed:

flights |>  
  arrange(desc(dep_delay))
#> # A tibble: 336,776 × 19
#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
<int>
#> 1  2013     1     9      641            900      1301     1242  
1530
#> 2  2013     6    15     1432           1935      1137     1607  
2120
#> 3  2013     1    10     1121           1635      1126     1239  
1810
#> 4  2013     9    20     1139           1845      1014     1457  
2210
#> 5  2013     7    22      845           1600      1005     1044  
1815
#> 6  2013     4    10     1100           1900       960     1342  
2211
#> # … with 336,770 more rows, and 11 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, 
dest <chr>, …

Note that the number of rows has not changed. We’re only arranging the
data; we’re not filtering it.

distinct()
distinct() finds all the unique rows in a dataset, so in a technical sense,
it primarily operates on the rows. Most of the time, however, you’ll want
the distinct combination of some variables, so you can also optionally
supply column names:

# Remove duplicate rows, if any
flights |>  
  distinct()
#> # A tibble: 336,776 × 19
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#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
<int>
#> 1  2013     1     1      517            515         2      830  
819
#> 2  2013     1     1      533            529         4      850  
830
#> 3  2013     1     1      542            540         2      923  
850
#> 4  2013     1     1      544            545        -1     1004  
1022
#> 5  2013     1     1      554            600        -6      812  
837
#> 6  2013     1     1      554            558        -4      740  
728
#> # … with 336,770 more rows, and 11 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, 
dest <chr>, … 
 
# Find all unique origin and destination pairs
flights |>  
  distinct(origin, dest)
#> # A tibble: 224 × 2
#>   origin dest 
#>   <chr>  <chr>
#> 1 EWR    IAH  
#> 2 LGA    IAH  
#> 3 JFK    MIA  
#> 4 JFK    BQN  
#> 5 LGA    ATL  
#> 6 EWR    ORD  
#> # … with 218 more rows

Alternatively, if you want to keep the other columns when filtering for
unique rows, you can use the .keep_all = TRUE option:

flights |>  
  distinct(origin, dest, .keep_all = TRUE)
#> # A tibble: 224 × 19
#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
<int>
#> 1  2013     1     1      517            515         2      830  



819
#> 2  2013     1     1      533            529         4      850  
830
#> 3  2013     1     1      542            540         2      923  
850
#> 4  2013     1     1      544            545        -1     1004  
1022
#> 5  2013     1     1      554            600        -6      812  
837
#> 6  2013     1     1      554            558        -4      740  
728
#> # … with 218 more rows, and 11 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, 
dest <chr>, …

It’s not a coincidence that all of these distinct flights are on January 1:
distinct() will find the first occurrence of a unique row in the dataset
and discard the rest.

If you want to find the number of occurrences instead, you’re better off
swapping distinct() for count(), and with the sort = TRUE
argument you can arrange them in descending order of number of
occurrences. You’ll learn more about count in “Counts”.

flights |> 
  count(origin, dest, sort = TRUE)
#> # A tibble: 224 × 3
#>   origin dest      n
#>   <chr>  <chr> <int>
#> 1 JFK    LAX   11262
#> 2 LGA    ATL   10263
#> 3 LGA    ORD    8857
#> 4 JFK    SFO    8204
#> 5 LGA    CLT    6168
#> 6 EWR    ORD    6100
#> # … with 218 more rows

Exercises
1. In a single pipeline for each condition, find all flights that meet the

condition:
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Had an arrival delay of two or more hours

Flew to Houston (IAH or HOU)

Were operated by United, American, or Delta

Departed in summer (July, August, and September)

Arrived more than two hours late, but didn’t leave late

Were delayed by at least an hour, but made up more than 30
minutes in flight

2. Sort flights to find the flights with the longest departure delays.
Find the flights that left earliest in the morning.

3. Sort flights to find the fastest flights. (Hint: Try including a math
calculation inside of your function.)

4. Was there a flight on every day of 2013?

5. Which flights traveled the farthest distance? Which traveled the least
distance?

6. Does it matter what order you used filter() and arrange() if
you’re using both? Why/why not? Think about the results and how
much work the functions would have to do.

Columns
There are four important verbs that affect the columns without changing the
rows: mutate() creates new columns that are derived from the existing
columns, select() changes which columns are present, rename()
changes the names of the columns, and relocate() changes the
positions of the columns.

mutate()
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The job of mutate() is to add new columns that are calculated from the
existing columns. In the transform chapters, you’ll learn a large set of
functions that you can use to manipulate different types of variables. For
now, we’ll stick with basic algebra, which allows us to compute the gain,
how much time a delayed flight made up in the air, and the speed in miles
per hour:

flights |>  
  mutate( 
    gain = dep_delay - arr_delay, 
    speed = distance / air_time * 60 
  )
#> # A tibble: 336,776 × 21
#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
<int>
#> 1  2013     1     1      517            515         2      830  
819
#> 2  2013     1     1      533            529         4      850  
830
#> 3  2013     1     1      542            540         2      923  
850
#> 4  2013     1     1      544            545        -1     1004  
1022
#> 5  2013     1     1      554            600        -6      812  
837
#> 6  2013     1     1      554            558        -4      740  
728
#> # … with 336,770 more rows, and 13 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, 
dest <chr>, …

By default, mutate() adds new columns on the right side of your dataset,
which makes it difficult to see what’s happening here. We can use the
.before argument to instead add the variables to the left side:2

flights |>  
  mutate( 
    gain = dep_delay - arr_delay, 
    speed = distance / air_time * 60, 
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    .before = 1 
  )
#> # A tibble: 336,776 × 21
#>    gain speed  year month   day dep_time sched_dep_time 
dep_delay arr_time
#>   <dbl> <dbl> <int> <int> <int>    <int>          <int>     
<dbl>    <int>
#> 1    -9  370.  2013     1     1      517            515         
2      830
#> 2   -16  374.  2013     1     1      533            529         
4      850
#> 3   -31  408.  2013     1     1      542            540         
2      923
#> 4    17  517.  2013     1     1      544            545        
-1     1004
#> 5    19  394.  2013     1     1      554            600        
-6      812
#> 6   -16  288.  2013     1     1      554            558        
-4      740
#> # … with 336,770 more rows, and 12 more variables: 
sched_arr_time <int>,
#> #   arr_delay <dbl>, carrier <chr>, flight <int>, tailnum 
<chr>, …

The . is a sign that .before is an argument to the function, not the name
of a third new variable we are creating. You can also use .after to add
after a variable, and in both .before and .after you can use the
variable name instead of a position. For example, we could add the new
variables after day:

flights |>  
  mutate( 
    gain = dep_delay - arr_delay, 
    speed = distance / air_time * 60, 
    .after = day 
  )

Alternatively, you can control which variables are kept with the .keep
argument. A particularly useful argument is "used", which specifies that
we keep only the columns that were involved or created in the mutate()
step. For example, the following output will contain only the variables
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dep_delay, arr_delay, air_time, gain, hours, and
gain_per_hour:

flights |>  
  mutate( 
    gain = dep_delay - arr_delay, 
    hours = air_time / 60, 
    gain_per_hour = gain / hours, 
    .keep = "used" 
  )

Note that since we haven’t assigned the result of the previous computation
back to flights, the new variables gain, hours, and
gain_per_hour will be printed only and will not be stored in a data
frame. And if we want them to be available in a data frame for future use,
we should think carefully about whether we want the result to be assigned
back to flights, overwriting the original data frame with many more
variables, or to a new object. Often, the right answer is a new object that is
named informatively to indicate its contents, e.g., delay_gain, but you
might also have good reasons for overwriting flights.

select()
It’s not uncommon to get datasets with hundreds or even thousands of
variables. In this situation, the first challenge is often just focusing on the
variables you’re interested in. select() allows you to rapidly zoom in on
a useful subset using operations based on the names of the variables:

Select columns by name:

flights |>  
  select(year, month, day)

Select all columns between year and day (inclusive):

flights |>  
  select(year:day)

https://dplyr.tidyverse.org/reference/select.html


Select all columns except those from year to day (inclusive):

flights |>  
  select(!year:day)

You can also use - instead of ! (and you’re likely to see that in the
wild); we recommend ! because it reads as “not” and combines well
with & and |.

Select all columns that are characters:

flights |>  
  select(where(is.character))

There are a number of helper functions you can use within select():

starts_with("abc")

Matches names that begin with “abc”

ends_with("xyz")

Matches names that end with “xyz”

contains("ijk")

Matches names that contain “ijk”

num_range("x", 1:3)

Matches x1, x2, and x3

See ?select for more details. Once you know regular expressions (the
topic of Chapter 15), you’ll also be able to use matches() to select
variables that match a pattern.

You can rename variables as you select() them by using =. The new
name appears on the left side of the =, and the old variable appears on the
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right side:

flights |>  
  select(tail_num = tailnum)
#> # A tibble: 336,776 × 1
#>   tail_num
#>   <chr>   
#> 1 N14228  
#> 2 N24211  
#> 3 N619AA  
#> 4 N804JB  
#> 5 N668DN  
#> 6 N39463  
#> # … with 336,770 more rows

rename()
If you want to keep all the existing variables and just want to rename a few,
you can use rename() instead of select():

flights |>  
  rename(tail_num = tailnum)
#> # A tibble: 336,776 × 19
#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
<int>
#> 1  2013     1     1      517            515         2      830  
819
#> 2  2013     1     1      533            529         4      850  
830
#> 3  2013     1     1      542            540         2      923  
850
#> 4  2013     1     1      544            545        -1     1004  
1022
#> 5  2013     1     1      554            600        -6      812  
837
#> 6  2013     1     1      554            558        -4      740  
728
#> # … with 336,770 more rows, and 11 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tail_num <chr>, origin <chr>, 
dest <chr>, …
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If you have a bunch of inconsistently named columns and it would be
painful to fix them all by hand, check out janitor::clean_names(),
which provides some useful automated cleaning.

relocate()
Use relocate() to move variables around. You might want to collect
related variables together or move important variables to the front. By
default relocate() moves variables to the front:

flights |>  
  relocate(time_hour, air_time)
#> # A tibble: 336,776 × 19
#>   time_hour           air_time  year month   day dep_time 
sched_dep_time
#>   <dttm>                 <dbl> <int> <int> <int>    <int>       
<int>
#> 1 2013-01-01 05:00:00      227  2013     1     1      517       
515
#> 2 2013-01-01 05:00:00      227  2013     1     1      533       
529
#> 3 2013-01-01 05:00:00      160  2013     1     1      542       
540
#> 4 2013-01-01 05:00:00      183  2013     1     1      544       
545
#> 5 2013-01-01 06:00:00      116  2013     1     1      554       
600
#> 6 2013-01-01 05:00:00      150  2013     1     1      554       
558
#> # … with 336,770 more rows, and 12 more variables: dep_delay 
<dbl>,
#> #   arr_time <int>, sched_arr_time <int>, arr_delay <dbl>, 
carrier <chr>, …

You can also specify where to put them using the .before and .after
arguments, just like in mutate():

flights |>  
  relocate(year:dep_time, .after = time_hour)
flights |>  
  relocate(starts_with("arr"), .before = dep_time)
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Exercises
1. Compare dep_time, sched_dep_time, and dep_delay. How

would you expect those three numbers to be related?

2. Brainstorm as many ways as possible to select dep_time,
dep_delay, arr_time, and arr_delay from flights.

3. What happens if you specify the name of the same variable multiple
times in a select() call?

4. What does the any_of() function do? Why might it be helpful in
conjunction with this vector?

variables <- c("year", "month", "day", "dep_delay", 
"arr_delay")

5. Does the result of running the following code surprise you? How do
the select helpers deal with upper- and lowercase by default? How can
you change that default?

flights |> select(contains("TIME"))

6. Rename air_time to air_time_min to indicate units of
measurement and move it to the beginning of the data frame.

7. Why doesn’t the following work, and what does the error mean?

flights |>  
  select(tailnum) |>  
  arrange(arr_delay)
#> Error in `arrange()`:
#> ℹ In argument: `..1 = arr_delay`.
#> Caused by error:
#> ! object 'arr_delay' not found

The Pipe
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We’ve shown you simple examples of the pipe, but its real power arises
when you start to combine multiple verbs.

For example, imagine that you wanted to find the fast flights to Houston’s
IAH airport: you need to combine filter(), mutate(), select(),
and arrange():

flights |>  
  filter(dest == "IAH") |>  
  mutate(speed = distance / air_time * 60) |>  
  select(year:day, dep_time, carrier, flight, speed) |>  
  arrange(desc(speed))
#> # A tibble: 7,198 × 7
#>    year month   day dep_time carrier flight speed
#>   <int> <int> <int>    <int> <chr>    <int> <dbl>
#> 1  2013     7     9      707 UA         226  522.
#> 2  2013     8    27     1850 UA        1128  521.
#> 3  2013     8    28      902 UA        1711  519.
#> 4  2013     8    28     2122 UA        1022  519.
#> 5  2013     6    11     1628 UA        1178  515.
#> 6  2013     8    27     1017 UA         333  515.
#> # … with 7,192 more rows

Even though this pipeline has four steps, it’s easy to skim because the verbs
come at the start of each line: start with the flights data, then filter, then
mutate, then select, and then arrange.

What would happen if we didn’t have the pipe? We could nest each function
call inside the previous call:

arrange( 
  select( 
    mutate( 
      filter( 
        flights,  
        dest == "IAH" 
      ), 
      speed = distance / air_time * 60 
    ), 
    year:day, dep_time, carrier, flight, speed 
  ), 
  desc(speed)
)
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Or we could use a bunch of intermediate objects:

flights1 <- filter(flights, dest == "IAH")
flights2 <- mutate(flights1, speed = distance / air_time * 60)
flights3 <- select(flights2, year:day, dep_time, carrier, flight, 
speed)
arrange(flights3, desc(speed))

While both forms have their time and place, the pipe generally produces
data analysis code that is easier to write and read.

To add the pipe to your code, we recommend using the built-in keyboard
shortcut Ctrl/Cmd+Shift+M. You’ll need to make one change to your
RStudio options to use |> instead of %>%, as shown in Figure 3-1; more on
%>% shortly.

Figure 3-1. To insert |>, make sure the “Use native pipe operator” option is checked.



MAGRITTR
If you’ve been using the tidyverse for a while, you might be familiar with the %>% pipe
provided by the magrittr package. The magrittr package is included in the core
tidyverse, so you can use %>% whenever you load the tidyverse:

library(tidyverse) 
 
mtcars %>%  
  group_by(cyl) %>% 
  summarize(n = n())

For simple cases, |> and %>% behave identically. So why do we recommend the base
pipe? First, because it’s part of base R, it’s always available for you to use, even when
you’re not using the tidyverse. Second, |> is quite a bit simpler than %>%: in the time
between the invention of %>% in 2014 and the inclusion of |> in R 4.1.0 in 2021, we
gained a better understanding of the pipe. This allowed the base implementation to
jettison infrequently used and less important features.

Groups
So far you’ve learned about functions that work with rows and columns.
dplyr gets even more powerful when you add in the ability to work with
groups. In this section, we’ll focus on the most important functions:
group_by(), summarize(), and the slice family of functions.

group_by()
Use group_by() to divide your dataset into groups meaningful for your
analysis:

flights |>  
  group_by(month)
#> # A tibble: 336,776 × 19
#> # Groups:   month [12]
#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
<int>
#> 1  2013     1     1      517            515         2      830  
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819
#> 2  2013     1     1      533            529         4      850  
830
#> 3  2013     1     1      542            540         2      923  
850
#> 4  2013     1     1      544            545        -1     1004  
1022
#> 5  2013     1     1      554            600        -6      812  
837
#> 6  2013     1     1      554            558        -4      740  
728
#> # … with 336,770 more rows, and 11 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, 
dest <chr>, …

group_by() doesn’t change the data, but if you look closely at the
output, you’ll notice that the output indicates that it is “grouped by” month
(Groups: month [12]). This means subsequent operations will now
work “by month.” group_by() adds this grouped feature (referred to as
class) to the data frame, which changes the behavior of the subsequent
verbs applied to the data.

summarize()
The most important grouped operation is a summary, which, if being used
to calculate a single summary statistic, reduces the data frame to have a
single row for each group. In dplyr, this operation is performed by
summarize(),3 as shown by the following example, which computes the
average departure delay by month:

flights |>  
  group_by(month) |>  
  summarize( 
    avg_delay = mean(dep_delay) 
  )
#> # A tibble: 12 × 2
#>   month avg_delay
#>   <int>     <dbl>
#> 1     1        NA
#> 2     2        NA
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#> 3     3        NA
#> 4     4        NA
#> 5     5        NA
#> 6     6        NA
#> # … with 6 more rows

Uh-oh! Something has gone wrong, and all of our results are NAs
(pronounced “N-A”), R’s symbol for missing value. This happened because
some of the observed flights had missing data in the delay column, so when
we calculated the mean including those values, we got an NA result. We’ll
come back to discuss missing values in detail in Chapter 18, but for now
we’ll tell the mean() function to ignore all missing values by setting the
argument na.rm to TRUE:

flights |>  
  group_by(month) |>  
  summarize( 
    delay = mean(dep_delay, na.rm = TRUE) 
  )
#> # A tibble: 12 × 2
#>   month delay
#>   <int> <dbl>
#> 1     1  10.0
#> 2     2  10.8
#> 3     3  13.2
#> 4     4  13.9
#> 5     5  13.0
#> 6     6  20.8
#> # … with 6 more rows

You can create any number of summaries in a single call to
summarize(). You’ll learn various useful summaries in the upcoming
chapters, but one useful summary is n(), which returns the number of rows
in each group:

flights |>  
  group_by(month) |>  
  summarize( 
    delay = mean(dep_delay, na.rm = TRUE),  
    n = n() 
  )

https://rdrr.io/r/base/mean.html
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#> # A tibble: 12 × 3
#>   month delay     n
#>   <int> <dbl> <int>
#> 1     1  10.0 27004
#> 2     2  10.8 24951
#> 3     3  13.2 28834
#> 4     4  13.9 28330
#> 5     5  13.0 28796
#> 6     6  20.8 28243
#> # … with 6 more rows

Means and counts can get you a surprisingly long way in data science!

The slice_ Functions
There are five handy functions that allow you extract specific rows within
each group:

df |> slice_head(n = 1)

Takes the first row from each group

df |> slice_tail(n = 1)

Takes the last row in each group

df |> slice_min(x, n = 1)

Takes the row with the smallest value of column x

df |> slice_max(x, n = 1)

Takes the row with the largest value of column x

df |> slice_sample(n = 1)

takes one random row.

You can vary n to select more than one row, or instead of n =, you can use
prop = 0.1 to select, say, 10% of the rows in each group. For example,



the following code finds the flights that are most delayed upon arrival at
each destination:

flights |>  
  group_by(dest) |>  
  slice_max(arr_delay, n = 1) |> 
  relocate(dest)
#> # A tibble: 108 × 19
#> # Groups:   dest [105]
#>   dest   year month   day dep_time sched_dep_time dep_delay 
arr_time
#>   <chr> <int> <int> <int>    <int>          <int>     <dbl>    
<int>
#> 1 ABQ    2013     7    22     2145           2007        98     
132
#> 2 ACK    2013     7    23     1139            800       219     
1250
#> 3 ALB    2013     1    25      123           2000       323     
229
#> 4 ANC    2013     8    17     1740           1625        75     
2042
#> 5 ATL    2013     7    22     2257            759       898     
121
#> 6 AUS    2013     7    10     2056           1505       351     
2347
#> # … with 102 more rows, and 11 more variables: sched_arr_time 
<int>,
#> #   arr_delay <dbl>, carrier <chr>, flight <int>, tailnum 
<chr>, …

Note that there are 105 destinations but we get 108 rows here. What’s up?
slice_min() and slice_max() keep tied values, so n = 1 means
give us all rows with the highest value. If you want exactly one row per
group, you can set with_ties = FALSE.

This is similar to computing the max delay with summarize(), but you
get the whole corresponding row (or rows if there’s a tie) instead of the
single summary statistic.

Grouping by Multiple Variables
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You can create groups using more than one variable. For example, we could
make a group for each date:

daily <- flights |>   
  group_by(year, month, day)
daily
#> # A tibble: 336,776 × 19
#> # Groups:   year, month, day [365]
#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
<int>
#> 1  2013     1     1      517            515         2      830  
819
#> 2  2013     1     1      533            529         4      850  
830
#> 3  2013     1     1      542            540         2      923  
850
#> 4  2013     1     1      544            545        -1     1004  
1022
#> 5  2013     1     1      554            600        -6      812  
837
#> 6  2013     1     1      554            558        -4      740  
728
#> # … with 336,770 more rows, and 11 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, 
dest <chr>, …

When you summarize a tibble grouped by more than one variable, each
summary peels off the last group. In hindsight, this wasn’t a great way to
make this function work, but it’s difficult to change without breaking
existing code. To make it obvious what’s happening, dplyr displays a
message that tells you how you can change this behavior:

daily_flights <- daily |>  
  summarize(n = n())
#> `summarise()` has grouped output by 'year', 'month'. You can 
override using
#> the `.groups` argument.



If you’re happy with this behavior, you can explicitly request it to suppress
the message:

daily_flights <- daily |>  
  summarize( 
    n = n(),  
    .groups = "drop_last" 
  )

Alternatively, change the default behavior by setting a different value, e.g.,
"drop" to drop all grouping or "keep" to preserve the same groups.

Ungrouping
You might also want to remove grouping from a data frame without using
summarize(). You can do this with ungroup():

daily |>  
  ungroup()
#> # A tibble: 336,776 × 19
#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
<int>
#> 1  2013     1     1      517            515         2      830  
819
#> 2  2013     1     1      533            529         4      850  
830
#> 3  2013     1     1      542            540         2      923  
850
#> 4  2013     1     1      544            545        -1     1004  
1022
#> 5  2013     1     1      554            600        -6      812  
837
#> 6  2013     1     1      554            558        -4      740  
728
#> # … with 336,770 more rows, and 11 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, 
dest <chr>, …

Now let’s see what happens when you summarize an ungrouped data frame:
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daily |>  
  ungroup() |> 
  summarize( 
    avg_delay = mean(dep_delay, na.rm = TRUE),  
    flights = n() 
  )
#> # A tibble: 1 × 2
#>   avg_delay flights
#>       <dbl>   <int>
#> 1      12.6  336776

You get a single row back because dplyr treats all the rows in an ungrouped
data frame as belonging to one group.

.by
dplyr 1.1.0 includes a new, experimental syntax for per-operation grouping,
the .by argument. group_by() and ungroup() aren’t going away, but
you can now also use the .by argument to group within a single operation:

flights |>  
  summarize( 
    delay = mean(dep_delay, na.rm = TRUE),  
    n = n(), 
    .by = month 
  )

Or if you want to group by multiple variables:

flights |>  
  summarize( 
    delay = mean(dep_delay, na.rm = TRUE),  
    n = n(), 
    .by = c(origin, dest) 
  )

.by works with all verbs and has the advantage that you don’t need to use
the .groups argument to suppress the grouping message or ungroup()
when you’re done.
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We didn’t focus on this syntax in this chapter because it was very new when
we wrote the book. We did want to mention it because we think it has a lot
of promise and it’s likely to be quite popular. You can learn more about it in
the dplyr 1.1.0 blog post.

Exercises
1. Which carrier has the worst average delays? Challenge: Can you

disentangle the effects of bad airports versus bad carriers? Why/why
not? (Hint: Think about flights |> group_by(carrier,
dest) |> summarize(n()).)

2. Find the flights that are most delayed upon departure from each
destination.

3. How do delays vary over the course of the day. Illustrate your answer
with a plot.

4. What happens if you supply a negative n to slice_min() and
friends?

5. Explain what count() does in terms of the dplyr verbs you just
learned. What does the sort argument to count() do?

6. Suppose we have the following tiny data frame:

df <- tibble( 
  x = 1:5, 
  y = c("a", "b", "a", "a", "b"), 
  z = c("K", "K", "L", "L", "K")
)

a. Write down what you think the output will look like; then check if
you were correct and describe what group_by() does.

df |> 
  group_by(y)

https://oreil.ly/ySpmy
https://dplyr.tidyverse.org/reference/slice.html
https://dplyr.tidyverse.org/reference/count.html
https://dplyr.tidyverse.org/reference/count.html
https://dplyr.tidyverse.org/reference/group_by.html


b. Write down what you think the output will look like; then check if
you were correct and describe what arrange() does. Also
comment on how it’s different from the group_by() in part (a).

df |> 
  arrange(y)

c. Write down what you think the output will look like; then check if
you were correct and describe what the pipeline does.

df |> 
  group_by(y) |> 
  summarize(mean_x = mean(x))

d. Write down what you think the output will look like; then check if
you were correct and describe what the pipeline does. Then,
comment on what the message says.

df |> 
  group_by(y, z) |> 
  summarize(mean_x = mean(x))

e. Write down what you think the output will look like; then check if
you were correct and describe what the pipeline does. How is the
output different from the one in part (d)?

df |> 
  group_by(y, z) |> 
  summarize(mean_x = mean(x), .groups = "drop")

f. Write down what you think the outputs will look like; then check
if you were correct and describe what each pipeline does. How
are the outputs of the two pipelines different?

df |> 
  group_by(y, z) |> 
  summarize(mean_x = mean(x)) 
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df |> 
  group_by(y, z) |> 
  mutate(mean_x = mean(x))

Case Study: Aggregates and Sample Size
Whenever you do any aggregation, it’s always a good idea to include a
count (n()). That way, you can ensure that you’re not drawing conclusions
based on very small amounts of data. We’ll demonstrate this with some
baseball data from the Lahman package. Specifically, we will compare what
proportion of times a player gets a hit (H) versus the number of times they
try to put the ball in play (AB):

batters <- Lahman::Batting |>  
  group_by(playerID) |>  
  summarize( 
    performance = sum(H, na.rm = TRUE) / sum(AB, na.rm = TRUE), 
    n = sum(AB, na.rm = TRUE) 
  )
batters
#> # A tibble: 20,166 × 3
#>   playerID  performance     n
#>   <chr>           <dbl> <int>
#> 1 aardsda01      0          4
#> 2 aaronha01      0.305  12364
#> 3 aaronto01      0.229    944
#> 4 aasedo01       0          5
#> 5 abadan01       0.0952    21
#> 6 abadfe01       0.111      9
#> # … with 20,160 more rows

When we plot the skill of the batter (measured by the batting average,
performance) against the number of opportunities to hit the ball
(measured by times at bat, n), we see two patterns:

The variation in performance is larger among players with fewer
at-bats. The shape of this plot is very characteristic: whenever you plot
a mean (or other summary statistics) versus group size, you’ll see that
the variation decreases as the sample size increases.4
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There’s a positive correlation between skill (performance) and
opportunities to hit the ball (n) because teams want to give their best
batters the most opportunities to hit the ball.

batters |>  
  filter(n > 100) |>  
  ggplot(aes(x = n, y = performance)) + 
  geom_point(alpha = 1 / 10) +  
  geom_smooth(se = FALSE)

Note the handy pattern for combining ggplot2 and dplyr. You just have to
remember to switch from |>, for dataset processing, to + for adding layers
to your plot.

This also has important implications for ranking. If you naively sort on
desc(performance), the people with the best batting averages are
clearly the ones who tried to put the ball in play very few times and
happened to get a hit; they’re not necessarily the most skilled players:



batters |>  
  arrange(desc(performance))
#> # A tibble: 20,166 × 3
#>   playerID  performance     n
#>   <chr>           <dbl> <int>
#> 1 abramge01           1     1
#> 2 alberan01           1     1
#> 3 banisje01           1     1
#> 4 bartocl01           1     1
#> 5 bassdo01            1     1
#> 6 birasst01           1     2
#> # … with 20,160 more rows

You can find a good explanation of this problem and how to overcome it on
a blog posts by David Robinson and Evan Miller.

Summary
In this chapter, you’ve learned the tools that dplyr provides for working
with data frames. The tools are roughly grouped into three categories: those
that manipulate the rows (such as filter() and arrange()), those that
manipulate the columns (such as select() and mutate()), and those
that manipulate groups (such as group_by() and summarize()). In
this chapter, we focused on these “whole data frame” tools, but you haven’t
yet learned much about what you can do with the individual variable. We’ll
come back to that in Part III, where each chapter will give you tools for a
specific type of variable.

In the next chapter, we’ll pivot back to workflow to discuss the importance
of code style, keeping your code well organized to make it easy for you and
others to read and understand your code.

1  Later, you’ll learn about the slice_*() family, which allows you to choose rows based on
their positions.

2  Remember that in RStudio, the easiest way to see a dataset with many columns is View().

3  Or summarise() if you prefer British English.
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4  *cough* the law of large numbers *cough*



Chapter 4. Workflow: Code
Style

Good coding style is like correct punctuation: you can manage without it,
butitsuremakesthingseasiertoread. Even as a very new programmer, it’s a
good idea to work on your code style. Using a consistent style makes it
easier for others (including future you!) to read your work and is
particularly important if you need to get help from someone else. This
chapter will introduce the most important points of the tidyverse style
guide, which is used throughout this book.

Styling your code will feel a bit tedious to start with, but if you practice it, it
will soon become second nature. Additionally, there are some great tools to
quickly restyle existing code, like the styler package by Lorenz Walthert.
Once you’ve installed it with install.packages("styler"), an
easy way to use it is via RStudio’s command palette. The command palette
lets you use any built-in RStudio command and many addins provided by
packages. Open the palette by pressing Cmd/Ctrl+Shift+P and then type
styler to see all the shortcuts offered by styler. Figure 4-1 shows the results.
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Figure 4-1. RStudio’s command palette makes it easy to access every RStudio command using only
the keyboard.

We’ll use the tidyverse and nycflights13 packages for code examples in this
chapter.

library(tidyverse)
library(nycflights13)

Names
We talked briefly about names in “What’s in a Name?”. Remember that
variable names (those created by <- and those created by mutate())
should use only lowercase letters, numbers, and _. Use _ to separate words
within a name.

# Strive for:
short_flights <- flights |> filter(air_time < 60) 
 
# Avoid:
SHORTFLIGHTS <- flights |> filter(air_time < 60)

As a general rule of thumb, it’s better to prefer long, descriptive names that
are easy to understand rather than concise names that are fast to type. Short
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names save relatively little time when writing code (especially since
autocomplete will help you finish typing them), but it can be time-
consuming when you come back to old code and are forced to puzzle out a
cryptic abbreviation.

If you have a bunch of names for related things, do your best to be
consistent. It’s easy for inconsistencies to arise when you forget a previous
convention, so don’t feel bad if you have to go back and rename things. In
general, if you have a bunch of variables that are a variation on a theme,
you’re better off giving them a common prefix rather than a common suffix
because autocomplete works best on the start of a variable.

Spaces
Put spaces on either side of mathematical operators apart from ^ (i.e., +, -,
==, <, …) and around the assignment operator (<-).

# Strive for
z <- (a + b)^2 / d 
 
# Avoid
z<-( a + b ) ^ 2/d

Don’t put spaces inside or outside parentheses for regular function calls.
Always put a space after a comma, just like in standard English.

# Strive for
mean(x, na.rm = TRUE) 
 
# Avoid
mean (x ,na.rm=TRUE)

It’s OK to add extra spaces if it improves alignment. For example, if you’re
creating multiple variables in mutate(), you might want to add spaces so
that all the = line up.1 This makes it easier to skim the code.
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flights |>  
  mutate( 
    speed      = distance / air_time, 
    dep_hour   = dep_time %/% 100, 
    dep_minute = dep_time %%  100 
  )

Pipes
|> should always have a space before it and should typically be the last
thing on a line. This makes it easier to add new steps, rearrange existing
steps, modify elements within a step, and get a 10,000-foot view by
skimming the verbs on the left side.

# Strive for 
flights |>   
  filter(!is.na(arr_delay), !is.na(tailnum)) |>  
  count(dest) 
 
# Avoid
flights|>filter(!is.na(arr_delay), !is.na(tailnum))|>count(dest)

If the function you’re piping into has named arguments (like mutate() or
summarize()), put each argument on a new line. If the function doesn’t
have named arguments (like select() or filter()), keep everything
on one line unless it doesn’t fit, in which case you should put each
argument on its own line.

# Strive for
flights |>   
  group_by(tailnum) |>  
  summarize( 
    delay = mean(arr_delay, na.rm = TRUE), 
    n = n() 
  ) 
 
# Avoid
flights |> 
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  group_by( 
    tailnum 
  ) |>  
  summarize(delay = mean(arr_delay, na.rm = TRUE), n = n())

After the first step of the pipeline, indent each line by two spaces. RStudio
automatically puts the spaces in for you after a line break following a |>. If
you’re putting each argument on its own line, indent by an extra two spaces.
Make sure ) is on its own line and unindented to match the horizontal
position of the function name.

# Strive for 
flights |>   
  group_by(tailnum) |>  
  summarize( 
    delay = mean(arr_delay, na.rm = TRUE), 
    n = n() 
  ) 
 
# Avoid
flights|> 
  group_by(tailnum) |>  
  summarize( 
             delay = mean(arr_delay, na.rm = TRUE),  
             n = n() 
           ) 
 
# Avoid
flights|> 
  group_by(tailnum) |>  
  summarize( 
  delay = mean(arr_delay, na.rm = TRUE),  
  n = n() 
  )

It’s OK to shirk some of these rules if your pipeline fits easily on one line.
But in our collective experience, it’s common for short snippets to grow
longer, so you’ll usually save time in the long run by starting with all the
vertical space you need.



# This fits compactly on one line
df |> mutate(y = x + 1) 
 
# While this takes up 4x as many lines, it's easily extended to 
# more variables and more steps in the future
df |>  
  mutate( 
    y = x + 1 
  )

Finally, be wary of writing very long pipes, say longer than 10–15 lines. Try
to break them up into smaller subtasks, giving each task an informative
name. The names will help cue the reader into what’s happening and makes
it easier to check that intermediate results are as expected. Whenever you
can give something an informative name, you should, for example when
you fundamentally change the structure of the data, e.g., after pivoting or
summarizing. Don’t expect to get it right the first time! This means
breaking up long pipelines if there are intermediate states that can get good
names.

ggplot2
The same basic rules that apply to the pipe also apply to ggplot2; just treat
+ the same way as |>:

flights |>  
  group_by(month) |>  
  summarize( 
    delay = mean(arr_delay, na.rm = TRUE) 
  ) |>  
  ggplot(aes(x = month, y = delay)) + 
  geom_point() +  
  geom_line()

Again, if you can’t fit all of the arguments to a function onto a single line,
put each argument on its own line:



flights |>  
  group_by(dest) |>  
  summarize( 
    distance = mean(distance), 
    speed = mean(distance / air_time, na.rm = TRUE) 
  ) |>  
  ggplot(aes(x = distance, y = speed)) + 
  geom_smooth( 
    method = "loess", 
    span = 0.5, 
    se = FALSE,  
    color = "white",  
    linewidth = 4 
  ) + 
  geom_point()

Watch for the transition from |> to +. We wish this transition wasn’t
necessary, but unfortunately, ggplot2 was written before the pipe was
discovered.

Sectioning Comments
As your scripts get longer, you can use sectioning comments to break up
your file into manageable pieces:

# Load data -------------------------------------- 
 
# Plot data --------------------------------------

RStudio provides a keyboard shortcut to create these headers
(Cmd/Ctrl+Shift+R) and will display them in the code navigation drop-
down at the bottom left of the editor, as shown in Figure 4-2.



Figure 4-2. After adding sectioning comments to your script, you can easily navigate to them using
the code navigation tool in the bottom left of the script editor.

Exercises
1. Restyle the following pipelines following the previous guidelines:

flights|>filter(dest=="IAH")|>group_by(year,month,day)|>summa
rize(n=n(),
delay=mean(arr_delay,na.rm=TRUE))|>filter(n>10) 
 
flights|>filter(carrier=="UA",dest%in%c("IAH","HOU"),sched_de
p_time>
0900,sched_arr_time<2000)|>group_by(flight)|>summarize(delay=
mean(
arr_delay,na.rm=TRUE),cancelled=sum(is.na(arr_delay)),n=n())|
>filter(n>10)

Summary
In this chapter, you learned the most important principles of code style.
These may feel like a set of arbitrary rules to start with (because they are!),
but over time, as you write more code and share code with more people,
you’ll see how important a consistent style is. And don’t forget about the
styler package: it’s a great way to quickly improve the quality of poorly
styled code.

In the next chapter, we switch back to data science tools, learning about tidy
data. Tidy data is a consistent way of organizing your data frames that is



used throughout the tidyverse. This consistency makes your life easier
because once you have tidy data, it just works with the vast majority of
tidyverse functions. Of course, life is never easy, and most datasets you
encounter in the wild will not already be tidy. So we’ll also teach you how
to use the tidyr package to tidy your untidy data.

1  Since dep_time is in HMM or HHMM format, we use integer division (%/%) to get hour and
remainder (also known as modulo, %%) to get minute.



Chapter 5. Data Tidying

Introduction
“Happy families are all alike; every unhappy family is unhappy in its own way.”
—Leo Tolstoy

“Tidy datasets are all alike, but every messy dataset is messy in its own way.”
—Hadley Wickham

In this chapter, you will learn a consistent way to organize your data in R using a system
called tidy data. Getting your data into this format requires some work up front, but that
work pays off in the long term. Once you have tidy data and the tidy tools provided by
packages in the tidyverse, you will spend much less time munging data from one
representation to another, allowing you to spend more time on the data questions you care
about.

In this chapter, you’ll first learn the definition of tidy data and see it applied to a simple toy
dataset. Then we’ll dive into the primary tool you’ll use for tidying data: pivoting. Pivoting
allows you to change the form of your data without changing any of the values.

Prerequisites
In this chapter, we’ll focus on tidyr, a package that provides a bunch of tools to help tidy up
your messy datasets. tidyr is a member of the core tidyverse.

library(tidyverse)

From this chapter on, we’ll suppress the loading message from library(tidyverse).

Tidy Data
You can represent the same underlying data in multiple ways. The following example
shows the same data organized in three different ways. Each dataset shows the same values
of four variables: country, year, population, and number of documented cases of
tuberculosis (TB), but each dataset organizes the values in a different way.
 

table1
#> # A tibble: 6 × 4
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#>   country      year  cases population
#>   <chr>       <dbl>  <dbl>      <dbl>
#> 1 Afghanistan  1999    745   19987071
#> 2 Afghanistan  2000   2666   20595360
#> 3 Brazil       1999  37737  172006362
#> 4 Brazil       2000  80488  174504898
#> 5 China        1999 212258 1272915272
#> 6 China        2000 213766 1280428583 
 
table2
#> # A tibble: 12 × 4
#>   country      year type           count
#>   <chr>       <dbl> <chr>          <dbl>
#> 1 Afghanistan  1999 cases            745
#> 2 Afghanistan  1999 population  19987071
#> 3 Afghanistan  2000 cases           2666
#> 4 Afghanistan  2000 population  20595360
#> 5 Brazil       1999 cases          37737
#> 6 Brazil       1999 population 172006362
#> # … with 6 more rows 
 
table3
#> # A tibble: 6 × 3
#>   country      year rate             
#>   <chr>     <dbl>     <chr>         
#> 1 Afghanistan  1999 745/19987071     
#> 2 Afghanistan  2000 2666/20595360    
#> 3 Brazil       1999 37737/172006362  
#> 4 Brazil       2000 80488/174504898  
#> 5 China        1999 212258/1272915272
#> 6 China        2000 213766/1280428583

These are all representations of the same underlying data, but they are not equally easy to
use. One of them, table1, will be much easier to work with inside the tidyverse because
it’s tidy.

There are three interrelated rules that make a dataset tidy:

1. Each variable is a column; each column is a variable.

2. Each observation is a row; each row is an observation.

3. Each value is a cell; each cell is a single value.

Figure 5-1 shows the rules visually.



Figure 5-1. Three rules make a dataset tidy: variables are columns, observations are rows, and values are cells.

Why ensure that your data is tidy? There are two main advantages:

1. There’s a general advantage to picking one consistent way of storing data. If you have
a consistent data structure, it’s easier to learn the tools that work with it because they
have an underlying uniformity.

2. There’s a specific advantage to placing variables in columns because it allows R’s
vectorized nature to shine. As you learned in “mutate()” and “summarize()”, most
built-in R functions work with vectors of values. That makes transforming tidy data
feel particularly natural.

dplyr, ggplot2, and all the other packages in the tidyverse are designed to work with tidy
data.

Here are a few small examples showing how you might work with table1:

# Compute rate per 10,000
table1 |> 
  mutate(rate = cases / population * 10000)
#> # A tibble: 6 × 5
#>   country      year  cases population  rate
#>   <chr>       <dbl>  <dbl>      <dbl> <dbl>
#> 1 Afghanistan  1999    745   19987071 0.373
#> 2 Afghanistan  2000   2666   20595360 1.29 
#> 3 Brazil       1999  37737  172006362 2.19 
#> 4 Brazil       2000  80488  174504898 4.61 
#> 5 China        1999 212258 1272915272 1.67 
#> 6 China        2000 213766 1280428583 1.67 
 
# Compute total cases per year
table1 |>  
  group_by(year) |>  
  summarize(total_cases = sum(cases))
#> # A tibble: 2 × 2
#>    year total_cases
#>   <dbl>       <dbl>
#> 1  1999      250740
#> 2  2000      296920 
 
# Visualize changes over time
ggplot(table1, aes(x = year, y = cases)) + 
  geom_line(aes(group = country), color = "grey50") + 



  geom_point(aes(color = country, shape = country)) + 
  scale_x_continuous(breaks = c(1999, 2000)) # x-axis breaks at 1999 and 2000

Exercises
1. For each of the sample tables, describe what each observation and each column

represents.

2. Sketch out the process you’d use to calculate the rate for table2 and table3.
You will need to perform four operations:

a. Extract the number of TB cases per country per year.

b. Extract the matching population per country per year.

c. Divide cases by population, and multiply by 10,000.

d. Store back in the appropriate place.

You haven’t yet learned all the functions you’d need to actually perform these
operations, but you should still be able to think through the transformations you’d
need.

Lengthening Data
The principles of tidy data might seem so obvious that you wonder if you’ll ever encounter
a dataset that isn’t tidy. Unfortunately, however, most real data is untidy. There are two



main reasons:

1. Data is often organized to facilitate some goal other than analysis. For example, it’s
common for data to be structured to make data entry, not analysis, easy.

2. Most people aren’t familiar with the principles of tidy data, and it’s hard to derive
them yourself unless you spend a lot of time working with data.

This means that most real analyses will require at least a little tidying. You’ll begin by
figuring out what the underlying variables and observations are. Sometimes this is easy;
other times you’ll need to consult with the people who originally generated the data. Next,
you’ll pivot your data into a tidy form, with variables in the columns and observations in
the rows.

tidyr provides two functions for pivoting data: pivot_longer() and
pivot_wider(). We’ll first start with pivot_longer() because it’s the most
common case. Let’s dive into some examples.

Data in Column Names
The billboard dataset records the Billboard rank of songs in the year 2000:

billboard
#> # A tibble: 317 × 79
#>   artist       track               date.entered   wk1   wk2   wk3   wk4   
wk5
#>   <chr>        <chr>               <date>       <dbl> <dbl> <dbl> <dbl> 
<dbl>
#> 1 2 Pac        Baby Don't Cry (Ke… 2000-02-26      87    82    72    77    
87
#> 2 2Ge+her      The Hardest Part O… 2000-09-02      91    87    92    NA    
NA
#> 3 3 Doors Down Kryptonite          2000-04-08      81    70    68    67    
66
#> 4 3 Doors Down Loser               2000-10-21      76    76    72    69    
67
#> 5 504 Boyz     Wobble Wobble       2000-04-15      57    34    25    17    
17
#> 6 98^0         Give Me Just One N… 2000-08-19      51    39    34    26    
26
#> # … with 311 more rows, and 71 more variables: wk6 <dbl>, wk7 <dbl>,
#> #   wk8 <dbl>, wk9 <dbl>, wk10 <dbl>, wk11 <dbl>, wk12 <dbl>, wk13 <dbl>, …

In this dataset, each observation is a song. The first three columns (artist, track and
date.entered) are variables that describe the song. Then we have 76 columns (wk1-
wk76) that describe the rank of the song in each week.1 Here, the column names are one
variable (the week), and the cell values are another (the rank).
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To tidy this data, we’ll use pivot_longer():

billboard |>  
  pivot_longer( 
    cols = starts_with("wk"),  
    names_to = "week",  
    values_to = "rank" 
  )
#> # A tibble: 24,092 × 5
#>    artist track                   date.entered week   rank
#>    <chr>  <chr>                   <date>       <chr> <dbl>
#>  1 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk1      87
#>  2 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk2      82
#>  3 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk3      72
#>  4 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk4      77
#>  5 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk5      87
#>  6 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk6      94
#>  7 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk7      99
#>  8 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk8      NA
#>  9 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk9      NA
#> 10 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk10     NA
#> # … with 24,082 more rows

After the data, there are three key arguments:

cols

Specifies which columns need to be pivoted (i.e., which columns aren’t variables). This
argument uses the same syntax as select(), so here we could use !c(artist,

track, date.entered) or starts_with("wk").

names_to

Names the variable stored in the column names; we named that variable week.

values_to

Names the variable stored in the cell values; we named that variable rank.

Note that in the code "week" and "rank" are quoted because those are new variables
we’re creating; they don’t yet exist in the data when we run the pivot_longer() call.

Now let’s turn our attention to the resulting longer data frame. What happens if a song is in
the top 100 for less than 76 weeks? Take 2 Pac’s “Baby Don’t Cry,” for example. The
previous output suggests that it was only in the top 100 for 7 weeks, and all the remaining
weeks are filled in with missing values. These NAs don’t really represent unknown

https://tidyr.tidyverse.org/reference/pivot_longer.html
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observations; they were forced to exist by the structure of the dataset,2 so we can ask
pivot_longer() to get rid of them by setting values_drop_na = TRUE:

billboard |>  
  pivot_longer( 
    cols = starts_with("wk"),  
    names_to = "week",  
    values_to = "rank", 
    values_drop_na = TRUE 
  )
#> # A tibble: 5,307 × 5
#>   artist track                   date.entered week   rank
#>   <chr>  <chr>                   <date>       <chr> <dbl>
#> 1 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk1      87
#> 2 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk2      82
#> 3 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk3      72
#> 4 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk4      77
#> 5 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk5      87
#> 6 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk6      94
#> # … with 5,301 more rows

The number of rows is now much lower, indicating that many rows with NAs were
dropped.

You might also wonder what happens if a song is in the top 100 for more than 76 weeks.
We can’t tell from this data, but you might guess that additional columns such as wk77,
wk78, … would be added to the dataset.

This data is now tidy, but we could make future computation a bit easier by converting
values of week from character strings to numbers using mutate() and
readr::parse_number(). parse_number() is a handy function that will extract
the first number from a string, ignoring all other text.

billboard_longer <- billboard |>  
  pivot_longer( 
    cols = starts_with("wk"),  
    names_to = "week",  
    values_to = "rank", 
    values_drop_na = TRUE 
  ) |>  
  mutate( 
    week = parse_number(week) 
  )
billboard_longer
#> # A tibble: 5,307 × 5
#>   artist track                   date.entered  week  rank
#>   <chr>  <chr>                   <date>       <dbl> <dbl>
#> 1 2 Pac  Baby Don't Cry (Keep... 2000-02-26       1    87
#> 2 2 Pac  Baby Don't Cry (Keep... 2000-02-26       2    82
#> 3 2 Pac  Baby Don't Cry (Keep... 2000-02-26       3    72
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#> 4 2 Pac  Baby Don't Cry (Keep... 2000-02-26       4    77
#> 5 2 Pac  Baby Don't Cry (Keep... 2000-02-26       5    87
#> 6 2 Pac  Baby Don't Cry (Keep... 2000-02-26       6    94
#> # … with 5,301 more rows

Now that we have all the week numbers in one variable and all the rank values in another,
we’re in a good position to visualize how song ranks vary over time. The code is shown
here and the result is in Figure 5-2. We can see that very few songs stay in the top 100 for
more than 20 weeks.

billboard_longer |>  
  ggplot(aes(x = week, y = rank, group = track)) +  
  geom_line(alpha = 0.25) +  
  scale_y_reverse()

Figure 5-2. A line plot showing how the rank of a song changes over time.

How Does Pivoting Work?
Now that you’ve seen how we can use pivoting to reshape our data, let’s take a little time to
gain some intuition about what pivoting does to the data. Let’s start with a simple dataset to
make it easier to see what’s happening. Suppose we have three patients with ids A, B, and
C, and we take two blood pressure measurements on each patient. We’ll create the data
with tribble(), a handy function for constructing small tibbles by hand:

df <- tribble( 
  ~id,  ~bp1, ~bp2, 
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   "A",  100,  120, 
   "B",  140,  115, 
   "C",  120,  125
)

We want our new dataset to have three variables: id (already exists), measurement (the
column names), and value (the cell values). To achieve this, we need to pivot df longer:

df |>  
  pivot_longer( 
    cols = bp1:bp2, 
    names_to = "measurement", 
    values_to = "value" 
  )
#> # A tibble: 6 × 3
#>   id    measurement value
#>   <chr> <chr>       <dbl>
#> 1 A     bp1           100
#> 2 A     bp2           120
#> 3 B     bp1           140
#> 4 B     bp2           115
#> 5 C     bp1           120
#> 6 C     bp2           125

How does the reshaping work? It’s easier to see if we think about it column by column. As
shown in Figure 5-3, the values in the column that was already a variable in the original
dataset (id) need to be repeated, once for each column that is pivoted.

Figure 5-3. Columns that are already variables need to be repeated, once for each column that is pivoted.

The column names become values in a new variable, whose name is defined by
names_to, as shown in Figure 5-4. They need to be repeated once for each row in the
original dataset.



Figure 5-4. The column names of pivoted columns become values in a new column. The values need to be repeated once
for each row of the original dataset.

The cell values also become values in a new variable, with a name defined by
values_to. They are unwound row by row. Figure 5-5 illustrates the process.

Figure 5-5. The number of values is preserved (not repeated) but unwound row by row.

Many Variables in Column Names
A more challenging situation occurs when you have multiple pieces of information
crammed into the column names and you would like to store these in separate new
variables. For example, take the who2 dataset, the source of table1, and friends that you
saw earlier:

who2
#> # A tibble: 7,240 × 58
#>   country      year sp_m_014 sp_m_1524 sp_m_2534 sp_m_3544 sp_m_4554



#>   <chr>       <dbl>    <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
#> 1 Afghanistan  1980       NA        NA        NA        NA        NA
#> 2 Afghanistan  1981       NA        NA        NA        NA        NA
#> 3 Afghanistan  1982       NA        NA        NA        NA        NA
#> 4 Afghanistan  1983       NA        NA        NA        NA        NA
#> 5 Afghanistan  1984       NA        NA        NA        NA        NA
#> 6 Afghanistan  1985       NA        NA        NA        NA        NA
#> # … with 7,234 more rows, and 51 more variables: sp_m_5564 <dbl>,
#> #   sp_m_65 <dbl>, sp_f_014 <dbl>, sp_f_1524 <dbl>, sp_f_2534 <dbl>, …

This dataset, collected by the World Health Organization, records information about
tuberculosis diagnoses. There are two columns that are already variables and are easy to
interpret: country and year. They are followed by 56 columns like sp_m_014,
ep_m_4554, and rel_m_3544. If you stare at these columns for long enough, you’ll
notice there’s a pattern. Each column name is made up of three pieces separated by _. The
first piece, sp/rel/ep, describes the method used for the diagnosis; the second piece, m/f,
is the gender (coded as a binary variable in this dataset); and the third piece,
014/1524/2534/3544/4554/65, is the age range (014 represents 0–14, for example).

So in this case we have six pieces of information recorded in who2: the country and the
year (already columns); the method of diagnosis, the gender category, and the age range
category (contained in the other column names); and the count of patients in that category
(cell values). To organize these six pieces of information in six separate columns, we use
pivot_longer() with a vector of column names for names_to and instructors for
splitting the original variable names into pieces for names_sep as well as a column name
for values_to:

who2 |>  
  pivot_longer( 
    cols = !(country:year), 
    names_to = c("diagnosis", "gender", "age"),  
    names_sep = "_", 
    values_to = "count" 
  )
#> # A tibble: 405,440 × 6
#>   country      year diagnosis gender age   count
#>   <chr>       <dbl> <chr>     <chr>  <chr> <dbl>
#> 1 Afghanistan  1980 sp        m      014      NA
#> 2 Afghanistan  1980 sp        m      1524     NA
#> 3 Afghanistan  1980 sp        m      2534     NA
#> 4 Afghanistan  1980 sp        m      3544     NA
#> 5 Afghanistan  1980 sp        m      4554     NA
#> 6 Afghanistan  1980 sp        m      5564     NA
#> # … with 405,434 more rows

An alternative to names_sep is names_pattern, which you can use to extract
variables from more complicated naming scenarios, once you’ve learned about regular
expressions in Chapter 15.

https://tidyr.tidyverse.org/reference/pivot_longer.html


Conceptually, this is only a minor variation on the simpler case you’ve already seen.
Figure 5-6 shows the basic idea: now, instead of the column names pivoting into a single
column, they pivot into multiple columns. You can imagine this happening in two steps
(first pivoting and then separating), but under the hood it happens in a single step because
that’s faster.

Figure 5-6. Pivoting columns with multiple pieces of information in the names means that each column name now fills in
values in multiple output columns.

Data and Variable Names in the Column Headers
The next step up in complexity is when the column names include a mix of variable values
and variable names. For example, take the household dataset:

household
#> # A tibble: 5 × 5
#>   family dob_child1 dob_child2 name_child1 name_child2
#>    <int> <date>     <date>     <chr>       <chr>      
#> 1      1 1998-11-26 2000-01-29 Susan       Jose       
#> 2      2 1996-06-22 NA         Mark        <NA>       
#> 3      3 2002-07-11 2004-04-05 Sam         Seth       
#> 4      4 2004-10-10 2009-08-27 Craig       Khai       
#> 5      5 2000-12-05 2005-02-28 Parker      Gracie

This dataset contains data about five families, with the names and dates of birth of up to
two children. The new challenge in this dataset is that the column names contain the names
of two variables (dob, name) and the values of another (child, with values 1 or 2). To
solve this problem we again need to supply a vector to names_to but this time we use the
special ".value" sentinel; this isn’t the name of a variable but a unique value that tells
pivot_longer() to do something different. This overrides the usual values_to
argument to use the first component of the pivoted column name as a variable name in the
output.
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household |>  
  pivot_longer( 
    cols = !family,  
    names_to = c(".value", "child"),  
    names_sep = "_",  
    values_drop_na = TRUE 
  )
#> # A tibble: 9 × 4
#>   family child  dob        name 
#>    <int> <chr>  <date>     <chr>
#> 1      1 child1 1998-11-26 Susan
#> 2      1 child2 2000-01-29 Jose 
#> 3      2 child1 1996-06-22 Mark 
#> 4      3 child1 2002-07-11 Sam  
#> 5      3 child2 2004-04-05 Seth 
#> 6      4 child1 2004-10-10 Craig
#> # … with 3 more rows

We again use values_drop_na = TRUE, since the shape of the input forces the
creation of explicit missing variables (e.g., for families with only one child).

Figure 5-7 illustrates the basic idea with a simpler example. When you use ".value" in
names_to, the column names in the input contribute to both values and variable names in
the output.

Figure 5-7. Pivoting with names_to = c(".value", "num") splits the column names into two components: the
first part determines the output column name (x or y), and the second part determines the value of the num column.

Widening Data
So far we’ve used pivot_longer() to solve the common class of problems where
values have ended up in column names. Next we’ll pivot (HA HA) to pivot_wider(),
which makes datasets wider by increasing columns and reducing rows and helps when one
observation is spread across multiple rows. This seems to arise less commonly in the wild,
but it does seem to crop up a lot when dealing with governmental data.

https://tidyr.tidyverse.org/reference/pivot_longer.html
https://tidyr.tidyverse.org/reference/pivot_wider.html


We’ll start by looking at cms_patient_experience, a dataset from the Centers of
Medicare and Medicaid services that collects data about patient experiences:

cms_patient_experience
#> # A tibble: 500 × 5
#>   org_pac_id org_nm                     measure_cd   measure_title   
prf_rate
#>   <chr>      <chr>                      <chr>        <chr>              
<dbl>
#> 1 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP_1  CAHPS for MIPS…       
63
#> 2 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP_2  CAHPS for MIPS…       
87
#> 3 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP_3  CAHPS for MIPS…       
86
#> 4 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP_5  CAHPS for MIPS…       
57
#> 5 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP_8  CAHPS for MIPS…       
85
#> 6 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP_12 CAHPS for MIPS…       
24
#> # … with 494 more rows

The core unit being studied is an organization, but each organization is spread across six
rows, with one row for each measurement taken in the survey organization. We can see the
complete set of values for measure_cd and measure_title by using distinct():

cms_patient_experience |>  
  distinct(measure_cd, measure_title)
#> # A tibble: 6 × 2
#>   measure_cd   measure_title                                                 
#>   <chr>        <chr>                                                         
#> 1 CAHPS_GRP_1  CAHPS for MIPS SSM: Getting Timely Care, Appointments, and 
In…
#> 2 CAHPS_GRP_2  CAHPS for MIPS SSM: How Well Providers Communicate            
#> 3 CAHPS_GRP_3  CAHPS for MIPS SSM: Patient's Rating of Provider              
#> 4 CAHPS_GRP_5  CAHPS for MIPS SSM: Health Promotion and Education            
#> 5 CAHPS_GRP_8  CAHPS for MIPS SSM: Courteous and Helpful Office Staff        
#> 6 CAHPS_GRP_12 CAHPS for MIPS SSM: Stewardship of Patient Resources

Neither of these columns will make particularly great variable names: measure_cd
doesn’t hint at the meaning of the variable, and measure_title is a long sentence
containing spaces. We’ll use measure_cd as the source for our new column names for
now, but in a real analysis you might want to create your own variable names that are both
short and meaningful.

pivot_wider() has the opposite interface to pivot_longer(): instead of choosing
new column names, we need to provide the existing columns that define the values

https://dplyr.tidyverse.org/reference/distinct.html
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(values_from) and the column name (names_from):

cms_patient_experience |>  
  pivot_wider( 
    names_from = measure_cd, 
    values_from = prf_rate 
  )
#> # A tibble: 500 × 9
#>   org_pac_id org_nm                   measure_title   CAHPS_GRP_1 
CAHPS_GRP_2
#>   <chr>      <chr>                    <chr>                 <dbl>       
<dbl>
#> 1 0446157747 USC CARE MEDICAL GROUP … CAHPS for MIPS…          63          
NA
#> 2 0446157747 USC CARE MEDICAL GROUP … CAHPS for MIPS…          NA          
87
#> 3 0446157747 USC CARE MEDICAL GROUP … CAHPS for MIPS…          NA          
NA
#> 4 0446157747 USC CARE MEDICAL GROUP … CAHPS for MIPS…          NA          
NA
#> 5 0446157747 USC CARE MEDICAL GROUP … CAHPS for MIPS…          NA          
NA
#> 6 0446157747 USC CARE MEDICAL GROUP … CAHPS for MIPS…          NA          
NA
#> # … with 494 more rows, and 4 more variables: CAHPS_GRP_3 <dbl>,
#> #   CAHPS_GRP_5 <dbl>, CAHPS_GRP_8 <dbl>, CAHPS_GRP_12 <dbl>

The output doesn’t look quite right; we still seem to have multiple rows for each
organization. That’s because we also need to tell pivot_wider() which column or
columns have values that uniquely identify each row; in this case those are the variables
starting with "org":

cms_patient_experience |>  
  pivot_wider( 
    id_cols = starts_with("org"), 
    names_from = measure_cd, 
    values_from = prf_rate 
  )
#> # A tibble: 95 × 8
#>   org_pac_id org_nm           CAHPS_GRP_1 CAHPS_GRP_2 CAHPS_GRP_3 
CAHPS_GRP_5
#>   <chr>      <chr>                  <dbl>       <dbl>       <dbl>       
<dbl>
#> 1 0446157747 USC CARE MEDICA…          63          87          86          
57
#> 2 0446162697 ASSOCIATION OF …          59          85          83          
63
#> 3 0547164295 BEAVER MEDICAL …          49          NA          75          
44
#> 4 0749333730 CAPE PHYSICIANS…          67          84          85          
65
#> 5 0840104360 ALLIANCE PHYSIC…          66          87          87          
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64
#> 6 0840109864 REX HOSPITAL INC          73          87          84          
67
#> # … with 89 more rows, and 2 more variables: CAHPS_GRP_8 <dbl>,
#> #   CAHPS_GRP_12 <dbl>

This gives us the output that we’re looking for.

How Does pivot_wider() Work?
To understand how pivot_wider() works, let’s again start with a simple dataset. This
time we have two patients with ids A and B; we have three blood pressure measurements
on patient A and two on patient B:

df <- tribble( 
  ~id, ~measurement, ~value, 
  "A",        "bp1",    100, 
  "B",        "bp1",    140, 
  "B",        "bp2",    115,  
  "A",        "bp2",    120, 
  "A",        "bp3",    105
)

We’ll take the values from the value column and the names from the measurement
column:

df |>  
  pivot_wider( 
    names_from = measurement, 
    values_from = value 
  )
#> # A tibble: 2 × 4
#>   id      bp1   bp2   bp3
#>   <chr> <dbl> <dbl> <dbl>
#> 1 A       100   120   105
#> 2 B       140   115    NA

To begin the process, pivot_wider() needs to first figure out what will go in the rows
and columns. The new column names will be the unique values of measurement:

df |>  
  distinct(measurement) |>  
  pull()
#> [1] "bp1" "bp2" "bp3"

https://tidyr.tidyverse.org/reference/pivot_wider.html
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By default, the rows in the output are determined by all the variables that aren’t going into
the new names or values. These are called the id_cols. Here there is only one column,
but in general there can be any number:

df |>  
  select(-measurement, -value) |>  
  distinct()
#> # A tibble: 2 × 1
#>   id   
#>   <chr>
#> 1 A    
#> 2 B

pivot_wider() then combines these results to generate an empty data frame:

df |>  
  select(-measurement, -value) |>  
  distinct() |>  
  mutate(x = NA, y = NA, z = NA)
#> # A tibble: 2 × 4
#>   id    x     y     z    
#>   <chr> <lgl> <lgl> <lgl>
#> 1 A     NA    NA    NA   
#> 2 B     NA    NA    NA

It then fills in all the missing values using the data in the input. In this case, not every cell
in the output has a corresponding value in the input as there’s no third blood pressure
measurement for patient B, so that cell remains missing. We’ll come back to this idea that
pivot_wider() can “make” missing values in Chapter 18.

You might also wonder what happens if there are multiple rows in the input that correspond
to one cell in the output. The following example has two rows that correspond to id A and
measurement bp1:

df <- tribble( 
  ~id, ~measurement, ~value, 
  "A",        "bp1",    100, 
  "A",        "bp1",    102, 
  "A",        "bp2",    120, 
  "B",        "bp1",    140,  
  "B",        "bp2",    115
)

If we attempt to pivot this, we get an output that contains list-columns, which you’ll learn
more about in Chapter 23:

https://tidyr.tidyverse.org/reference/pivot_wider.html
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df |> 
  pivot_wider( 
    names_from = measurement, 
    values_from = value 
  )
#> Warning: Values from `value` are not uniquely identified; output will 
contain
#> list-cols.
#> • Use `values_fn = list` to suppress this warning.
#> • Use `values_fn = {summary_fun}` to summarise duplicates.
#> • Use the following dplyr code to identify duplicates.
#>   {data} %>%
#>   dplyr::group_by(id, measurement) %>%
#>   dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
#>   dplyr::filter(n > 1L)
#> # A tibble: 2 × 3
#>   id    bp1       bp2      
#>   <chr> <list>    <list>   
#> 1 A     <dbl [2]> <dbl [1]>
#> 2 B     <dbl [1]> <dbl [1]>

Since you don’t know how to work with this sort of data yet, you’ll want to follow the hint
in the warning to figure out where the problem is:

df |>  
  group_by(id, measurement) |>  
  summarize(n = n(), .groups = "drop") |>  
  filter(n > 1)
#> # A tibble: 1 × 3
#>   id    measurement     n
#>   <chr> <chr>       <int>
#> 1 A     bp1             2

It’s then up to you to figure out what’s gone wrong with your data and either repair the
underlying damage or use your grouping and summarizing skills to ensure that each
combination of row and column values has only a single row.

Summary
In this chapter you learned about tidy data: data that has variables in columns and
observations in rows. Tidy data makes working in the tidyverse easier, because it’s a
consistent structure understood by most functions; the main challenge is transforming the
data from whatever structure you receive it in to a tidy format. To that end, you learned
about pivot_longer() and pivot_wider(), which allow you to tidy up many
untidy datasets. The examples we presented here are a selection of those from
vignette("pivot", package = "tidyr"), so if you encounter a problem that
this chapter doesn’t help you with, that vignette is a good place to try next.

https://tidyr.tidyverse.org/reference/pivot_longer.html
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Another challenge is that, for a given dataset, it can be impossible to label the longer or the
wider version as the “tidy” one. This is partly a reflection of our definition of tidy data,
where we said tidy data has one variable in each column, but we didn’t actually define
what a variable is (and it’s surprisingly hard to do so). It’s totally fine to be pragmatic and
to say a variable is whatever makes your analysis easiest. So if you’re stuck figuring out
how to do some computation, consider switching up the organization of your data; don’t be
afraid to untidy, transform, and re-tidy as needed!

If you enjoyed this chapter and want to learn more about the underlying theory, you can
learn more about the history and theoretical underpinnings in the “Tidy Data” paper
published in the Journal of Statistical Software.

Now that you’re writing a substantial amount of R code, it’s time to learn more about
organizing your code into files and directories. In the next chapter, you’ll learn all about the
advantages of scripts and projects and some of the many tools that they provide to make
your life easier.

1  The song will be included as long as it was in the top 100 at some point in 2000 and is tracked for up to 72 weeks
after it appears.

2  We’ll come back to this idea in Chapter 18.
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Chapter 6. Workflow: Scripts
and Projects

This chapter will introduce you to two essential tools for organizing your
code: scripts and projects.

Scripts
So far, you have used the console to run code. That’s a great place to start,
but you’ll find it gets cramped pretty quickly as you create more complex
ggplot2 graphics and longer dplyr pipelines. To give yourself more room to
work, use the script editor. Open it by clicking the File menu, selecting New
File, and then selecting R script, or using the keyboard shortcut
Cmd/Ctrl+Shift+N. Now you’ll see four panes, as in Figure 6-1. The script
editor is a great place to experiment with your code. When you want to
change something, you don’t have to retype the whole thing; you can just
edit the script and rerun it. And once you have written code that works and
does what you want, you can save it as a script file to easily return to later.



Figure 6-1. Opening the script editor adds a new pane at the top left of the IDE.

Running Code
The script editor is an excellent place for building complex ggplot2 plots or
long sequences of dplyr manipulations. The key to using the script editor
effectively is to memorize one of the most important keyboard shortcuts:
Cmd/Ctrl+Enter. This executes the current R expression in the console. For
example, take the following code:

library(dplyr)
library(nycflights13) 
 
not_cancelled <- flights |>  
  filter(!is.na(dep_delay)█, !is.na(arr_delay)) 
 
not_cancelled |>  



  group_by(year, month, day) |>  
  summarize(mean = mean(dep_delay))

If your cursor is at █, pressing Cmd/Ctrl+Enter will run the complete
command that generates not_cancelled. It will also move the cursor to
the following statement (beginning with not_cancelled |>). That
makes it easy to step through your complete script by repeatedly pressing
Cmd/Ctrl+Enter.

Instead of running your code expression by expression, you can execute the
complete script in one step with Cmd/Ctrl+Shift+S. Doing this regularly is
a great way to ensure that you’ve captured all the important parts of your
code in the script.

We recommend you always start your script with the packages you need.
That way, if you share your code with others, they can easily see which
packages they need to install. Note, however, that you should never include
install.packages() in a script you share. It’s inconsiderate to hand
off a script that will install something on their computer if they’re not being
careful!

When working through future chapters, we highly recommend starting in
the script editor and practicing your keyboard shortcuts. Over time, sending
code to the console in this way will become so natural that you won’t even
think about it.

RStudio Diagnostics
In the script editor, RStudio will highlight syntax errors with a red squiggly
line and a cross in the sidebar:

Hover over the cross to see what the problem is:

https://rdrr.io/r/utils/install.packages.html


RStudio will also let you know about potential problems:

Saving and Naming
RStudio automatically saves the contents of the script editor when you quit
and automatically reloads it when you re-open. Nevertheless, it’s a good
idea to avoid Untitled1, Untitled2, Untitled3, and so on, and instead save
your scripts with informative names.

It might be tempting to name your files code.R or myscript.R, but you
should think a bit harder before choosing a name for your file. Three
important principles for file naming are as follows:

1. Filenames should be machine readable: avoid spaces, symbols, and
special characters. Don’t rely on case sensitivity to distinguish files.

2. Filenames should be human readable: use filenames to describe what’s
in the file.

3. Filenames should play well with default ordering: start filenames with
numbers so that alphabetical sorting puts them in the order they get
used.



For example, suppose you have the following files in a project folder:

alternative model.R 
code for exploratory analysis.r 
finalreport.qmd 
FinalReport.qmd 
fig 1.png 
Figure_02.png 
model_first_try.R 
run-first.r 
temp.txt

There are a variety of problems here: it’s hard to find which file to run first,
filenames contain spaces, there are two files with the same name but
different capitalization (finalreport versus FinalReport1), and
some names don’t describe their contents (run-first and temp).

Here’s a better way of naming and organizing the same set of files:

01-load-data.R 
02-exploratory-analysis.R 
03-model-approach-1.R 
04-model-approach-2.R 
fig-01.png 
fig-02.png 
report-2022-03-20.qmd 
report-2022-04-02.qmd 
report-draft-notes.txt

Numbering the key scripts makes it obvious in which order to run them, and
a consistent naming scheme makes it easier to see what varies. Additionally,
the figures are labeled similarly, the reports are distinguished by dates
included in the filenames, and temp is renamed to report-draft-
notes to better describe its contents. If you have a lot of files in a
directory, taking organization one step further and placing different types of
files (scripts, figures, etc.) in different directories is recommended.



Projects
One day, you will need to quit R, go do something else, and return to your
analysis later. One day, you will be working on multiple analyses
simultaneously and want to keep them separate. One day, you will need to
bring data from the outside world into R and send numerical results and
figures from R back out into the world.

To handle these real-life situations, you need to make two decisions:

What is the source of truth? What will you save as your lasting record
of what happened?

Where does your analysis live?

What Is the Source of Truth?
As a beginner, it’s OK to rely on your current environment to contain all the
objects you have created throughout your analysis. However, to make it
easier to work on larger projects or collaborate with others, your source of
truth should be the R scripts. With your R scripts (and your data files), you
can re-create the environment. With only your environment, it’s much
harder to re-create your R scripts: either you’ll have to retype a lot of code
from memory (inevitably making mistakes along the way) or you’ll have to
carefully mine your R history.

To help keep your R scripts as the source of truth for your analysis, we
highly recommend that you instruct RStudio not to preserve your
workspace between sessions. You can do this either by running
usethis::use_blank_slate()2 or by mimicking the options shown
in Figure 6-2. This will cause you some short-term pain, because now when
you restart RStudio, it will no longer remember the code that you ran last
time nor will the objects you created or the datasets you read be available to
use. But this short-term pain saves you long-term agony because it forces
you to capture all important procedures in your code. There’s nothing worse
than discovering three months after the fact that you’ve stored only the

https://usethis.r-lib.org/reference/use_blank_slate.html


results of an important calculation in your environment, not the calculation
itself in your code.

Figure 6-2. Copy these selections in your RStudio options to always start your RStudio session with a
clean slate.

There is a great pair of keyboard shortcuts that will work together to make
sure you’ve captured the important parts of your code in the editor:

1. Press Cmd/Ctrl+Shift+0/F10 to restart R.



2. Press Cmd/Ctrl+Shift+S to rerun the current script.

We collectively use this pattern hundreds of times a week.

Alternatively, if you don’t use keyboard shortcuts, you can select Session >
Restart R and then highlight and rerun your current script.

RSTUDIO SERVER
If you’re using RStudio Server, your R session is never restarted by default. When you
close your RStudio Server tab, it might feel like you’re closing R, but the server actually
keeps it running in the background. The next time you return, you’ll be in exactly the
same place you left. This makes it even more important to regularly restart R so that
you’re starting with a clean slate.

Where Does Your Analysis Live?
R has a powerful notion of the working directory. This is where R looks for
files that you ask it to load and where it will put any files that you ask it to
save. RStudio shows your current working directory at the top of the
console:

You can print this out in R code by running getwd():

getwd()
#> [1] "/Users/hadley/Documents/r4ds"

In this R session, the current working directory (think of it as “home”) is in
Hadley’s Documents folder, in a subfolder called r4ds. This code will return
a different result when you run it, because your computer has a different
directory structure than Hadley’s!

https://rdrr.io/r/base/getwd.html


As a beginning R user, it’s OK to let your working directory be your home
directory, documents directory, or any other weird directory on your
computer. But you’re seven chapters into this book, and you’re no longer a
beginner. Soon you should evolve to organizing your projects into
directories and, when working on a project, set R’s working directory to the
associated directory.

You can set the working directory from within R, but we do not recommend
it:

setwd("/path/to/my/CoolProject")

There’s a better way—a way that also puts you on the path to managing
your R work like an expert. That way is the RStudio project.

RStudio Projects
Keeping all the files associated with a given project (input data, R scripts,
analytical results, and figures) in one directory is such a wise and common
practice that RStudio has built-in support for this via projects. Let’s make a
project for you to use while you’re working through the rest of this book.
Select File > New Project, and then follow the steps shown in Figure 6-3.



Figure 6-3. To create new project: (top) first click New Directory, then (middle) click New Project,
then (bottom) fill in the directory (project) name, choose a good subdirectory for its home, and click

Create Project.

Call your project r4ds and think carefully about which subdirectory you
put the project in. If you don’t store it somewhere sensible, it will be hard to
find it in the future!

Once this process is complete, you’ll get a new RStudio project just for this
book. Check that the “home” of your project is the current working
directory:

getwd()
#> [1] /Users/hadley/Documents/r4ds



Now enter the following commands in the script editor and save the file,
calling it diamonds.R. Then, create a new folder called data. You can
do this by clicking the New Folder button in the Files pane in RStudio.
Finally, run the complete script, which will save a PNG and CSV file into
your project directory. Don’t worry about the details; you’ll learn them later
in the book.

library(tidyverse) 
 
ggplot(diamonds, aes(x = carat, y = price)) +  
  geom_hex()
ggsave("diamonds.png") 
 
write_csv(diamonds, "data/diamonds.csv")

Quit RStudio. Inspect the folder associated with your project—notice the
.Rproj file. Double-click that file to re-open the project. Notice you get
back to where you left off: it’s the same working directory and command
history, and all the files you were working on are still open. Because you
followed our instructions, you will, however, have a completely fresh
environment, guaranteeing that you’re starting with a clean slate.

In your favorite OS-specific way, search your computer for
diamonds.png, and you will find the PNG (no surprise) but also the
script that created it (diamonds.R). This is a huge win! One day, you will
want to remake a figure or just understand where it came from. If you
rigorously save figures to files with R code and never with the mouse or the
clipboard, you will be able to reproduce old work with ease!

Relative and Absolute Paths
Once you’re inside a project, you should only ever use relative paths, not
absolute paths. What’s the difference? A relative path is relative to the
working directory, i.e., the project’s home. When Hadley wrote
data/diamonds.csv earlier, it was a shortcut for
/Users/hadley/Documents/r4ds/data/diamonds.csv. But



importantly, if Mine ran this code on her computer, it would point to
/Users/Mine/Documents/r4ds/data/diamonds.csv. This is
why relative paths are important: they’ll work regardless of where the R
project folder ends up.

Absolute paths point to the same place regardless of your working
directory. They look a little different depending on your operating system.
On Windows they start with a drive letter (e.g., C:) or two backslashes
(e.g., \\servername) and on Mac/Linux they start with a slash, /
(e.g., /users/hadley). You should never use absolute paths in your
scripts, because they hinder sharing: no one else will have exactly the same
directory configuration as you.

There’s another important difference between operating systems: how you
separate the components of the path. Mac and Linux uses slashes
(e.g., data/diamonds.csv), and Windows uses backslashes
(e.g., data\diamonds.csv). R can work with either type (no matter
what platform you’re currently using), but unfortunately, backslashes mean
something special to R, and to get a single backslash in the path, you need
to type two backslashes! That makes life frustrating, so we recommend
always using the Linux/Mac style with forward slashes.

Exercises
1. Go to the RStudio Tips Twitter account and find one tip that looks

interesting. Practice using it!

2. What other common mistakes will RStudio diagnostics report? Read
this article on code diagnostics to find out.

Summary
In this chapter, you learned how to organize your R code in scripts (files)
and projects (directories). Much like code style, this may feel like busywork
at first. But as you accumulate more code across multiple projects, you’ll

https://twitter.com/rstudiotips
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learn to appreciate how a little up-front organization can save you a bunch
of time later.

In summary, scripts and projects give you a solid workflow that will serve
you well in the future:

Create one RStudio project for each data analysis project.

Save your scripts (with informative names) in the project, edit them,
and run them in bits or as a whole. Restart R frequently to make sure
you’ve captured everything in your scripts.

Only ever use relative paths, not absolute paths.

Then everything you need is in one place and cleanly separated from all the
other projects you are working on.

So far, we’ve worked with datasets bundled in R packages. This makes it
easier to get some practice on preprepared data, but obviously your data
won’t be available in this way. So in the next chapter, you’re going to learn
how load data from disk into your R session using the readr package.

1  Not to mention that you’re tempting fate by using “final” in the name. The comic Piled
Higher and Deeper has a fun strip on this.

2  If you don’t have this installed, you can install it with
install.packages("usethis").

https://oreil.ly/L9ip0


Chapter 7. Data Import

Introduction
Working with data provided by R packages is a great way to learn data science tools,
but you want to apply what you’ve learned to your own data at some point. In this
chapter, you’ll learn the basics of reading data files into R.

Specifically, this chapter will focus on reading plain-text rectangular files. We’ll start
with practical advice for handling features such as column names, types, and missing
data. You will then learn about reading data from multiple files at once and writing
data from R to a file. Finally, you’ll learn how to handcraft data frames in R.

Prerequisites
In this chapter, you’ll learn how to load flat files in R with the readr package, which is
part of the core tidyverse:

library(tidyverse)

Reading Data from a File
To begin, we’ll focus on the most common rectangular data file type: CSV, which is
short for “comma-separated values.” Here is what a simple CSV file looks like. The
first row, commonly called the header row, gives the column names, and the
following six rows provide the data. The columns are separated, aka delimited, by
commas.

Student ID,Full Name,favourite.food,mealPlan,AGE 
1,Sunil Huffmann,Strawberry yoghurt,Lunch only,4 
2,Barclay Lynn,French fries,Lunch only,5 
3,Jayendra Lyne,N/A,Breakfast and lunch,7 
4,Leon Rossini,Anchovies,Lunch only, 
5,Chidiegwu Dunkel,Pizza,Breakfast and lunch,five 
6,Güvenç Attila,Ice cream,Lunch only,6

Table 7-1 represents of the same data as a table.
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Student ID Full Name
favourite.fo
od mealPlan AGE

 
 

1 Sunil 
Huffmann

Strawberry 
yoghurt

Lunch only 4

2 Barclay Lynn French fries Lunch only 5

3 Jayendra Lyne N/A Breakfast and 
lunch

7

4 Leon Rossini Anchovies Lunch only NA

5 Chidiegwu 
Dunkel

Pizza Breakfast and 
lunch

five

6 Güvenç Attila Ice cream Lunch only 6

We can read this file into R using read_csv(). The first argument is the most
important: the path to the file. You can think about the path as the address of the file:
the file is called students.csv, and it lives in the data folder.

students <- read_csv("data/students.csv")
#> Rows: 6 Columns: 5
#> ── Column specification 

https://readr.tidyverse.org/reference/read_delim.html


─────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (4): Full Name, favourite.food, mealPlan, AGE
#> dbl (1): Student ID
#> 
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet 
this message.

The previous code will work if you have the students.csv file in a data folder
in your project. You can download the students.csv file or you can read it
directly from that URL with this:

students <- read_csv("https://pos.it/r4ds-students-csv")

When you run read_csv(), it prints out a message telling you the number of rows
and columns of data, the delimiter that was used, and the column specifications
(names of columns organized by the type of data the column contains). It also prints
out some information about retrieving the full column specification and how to quiet
this message. This message is an integral part of readr, and we’ll return to it in
“Controlling Column Types”.

Practical Advice
Once you read data in, the first step usually involves transforming it in some way to
make it easier to work with in the rest of your analysis. Let’s take another look at the
students data with that in mind:

students
#> # A tibble: 6 × 5
#>   `Student ID` `Full Name`      favourite.food     mealPlan            
AGE  
#>          <dbl> <chr>            <chr>              <chr>               
<chr>
#> 1            1 Sunil Huffmann   Strawberry yoghurt Lunch only          
4    
#> 2            2 Barclay Lynn     French fries       Lunch only          
5    
#> 3            3 Jayendra Lyne    N/A                Breakfast and lunch 
7    
#> 4            4 Leon Rossini     Anchovies          Lunch only          
<NA> 
#> 5            5 Chidiegwu Dunkel Pizza              Breakfast and lunch 
five 
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#> 6            6 Güvenç Attila    Ice cream          Lunch only          
6

In the favourite.food column, there are a bunch of food items, and then the
character string N/A, which should have been a real NA that R will recognize as “not
available.” This is something we can address using the na argument. By default
read_csv() recognizes only empty strings ("") in this dataset as NAs; we want it
to also recognize the character string "N/A":

students <- read_csv("data/students.csv", na = c("N/A", "")) 
 
students
#> # A tibble: 6 × 5
#>   `Student ID` `Full Name`      favourite.food     mealPlan            
AGE  
#>          <dbl> <chr>            <chr>              <chr>               
<chr>
#> 1            1 Sunil Huffmann   Strawberry yoghurt Lunch only          
4    
#> 2            2 Barclay Lynn     French fries       Lunch only          
5    
#> 3            3 Jayendra Lyne    <NA>               Breakfast and lunch 
7    
#> 4            4 Leon Rossini     Anchovies          Lunch only          
<NA> 
#> 5            5 Chidiegwu Dunkel Pizza              Breakfast and lunch 
five 
#> 6            6 Güvenç Attila    Ice cream          Lunch only          
6

You might also notice that the Student ID and Full Name columns are
surrounded by backticks. That’s because they contain spaces, breaking R’s usual rules
for variable names; they’re nonsyntactic names. To refer to these variables, you need
to surround them with backticks, `:

students |>  
  rename( 
    student_id = `Student ID`, 
    full_name = `Full Name` 
  )
#> # A tibble: 6 × 5
#>   student_id full_name        favourite.food     mealPlan            
AGE  
#>        <dbl> <chr>            <chr>              <chr>               
<chr>
#> 1          1 Sunil Huffmann   Strawberry yoghurt Lunch only          4   
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#> 2          2 Barclay Lynn     French fries       Lunch only          5   
#> 3          3 Jayendra Lyne    <NA>               Breakfast and lunch 7   
#> 4          4 Leon Rossini     Anchovies          Lunch only          
<NA> 
#> 5          5 Chidiegwu Dunkel Pizza              Breakfast and lunch 
five 
#> 6          6 Güvenç Attila    Ice cream          Lunch only          6

An alternative approach is to use janitor::clean_names() to use some
heuristics to turn them all into snake case at once:1

students |> janitor::clean_names()
#> # A tibble: 6 × 5
#>   student_id full_name        favourite_food     meal_plan           
age  
#>        <dbl> <chr>            <chr>              <chr>               
<chr>
#> 1          1 Sunil Huffmann   Strawberry yoghurt Lunch only          4   
#> 2          2 Barclay Lynn     French fries       Lunch only          5   
#> 3          3 Jayendra Lyne    <NA>               Breakfast and lunch 7   
#> 4          4 Leon Rossini     Anchovies          Lunch only          
<NA> 
#> 5          5 Chidiegwu Dunkel Pizza              Breakfast and lunch 
five 
#> 6          6 Güvenç Attila    Ice cream          Lunch only          6

Another common task after reading in data is to consider variable types. For example,
meal_plan is a categorical variable with a known set of possible values, which in R
should be represented as a factor:

students |> 
  janitor::clean_names() |> 
  mutate(meal_plan = factor(meal_plan))
#> # A tibble: 6 × 5
#>   student_id full_name        favourite_food     meal_plan           
age  
#>        <dbl> <chr>            <chr>              <fct>               
<chr>
#> 1          1 Sunil Huffmann   Strawberry yoghurt Lunch only          4   
#> 2          2 Barclay Lynn     French fries       Lunch only          5   
#> 3          3 Jayendra Lyne    <NA>               Breakfast and lunch 7   
#> 4          4 Leon Rossini     Anchovies          Lunch only          
<NA> 
#> 5          5 Chidiegwu Dunkel Pizza              Breakfast and lunch 
five 
#> 6          6 Güvenç Attila    Ice cream          Lunch only          6
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Note that the values in the meal_plan variable have stayed the same, but the type of
variable denoted underneath the variable name has changed from character (<chr>)
to factor (<fct>). You’ll learn more about factors in Chapter 16.

Before you analyze these data, you’ll probably want to fix the age and id columns.
Currently, age is a character variable because one of the observations is typed out as
five instead of a numeric 5. We discuss the details of fixing this issue in Chapter 20.

students <- students |> 
  janitor::clean_names() |> 
  mutate( 
    meal_plan = factor(meal_plan), 
    age = parse_number(if_else(age == "five", "5", age)) 
  ) 
 
students
#> # A tibble: 6 × 5
#>   student_id full_name        favourite_food     meal_plan             
age
#>        <dbl> <chr>            <chr>              <fct>               
<dbl>
#> 1          1 Sunil Huffmann   Strawberry yoghurt Lunch only              
4
#> 2          2 Barclay Lynn     French fries       Lunch only              
5
#> 3          3 Jayendra Lyne    <NA>               Breakfast and lunch     
7
#> 4          4 Leon Rossini     Anchovies          Lunch only             
NA
#> 5          5 Chidiegwu Dunkel Pizza              Breakfast and lunch     
5
#> 6          6 Güvenç Attila    Ice cream          Lunch only              
6

A new function here is if_else(), which has three arguments. The first argument
test should be a logical vector. The result will contain the value of the second
argument, yes, when test is TRUE, and the value of the third argument, no, when it
is FALSE. Here we’re saying if age is the character string "five", make it "5",
and if not, leave it as age. You will learn more about if_else() and logical
vectors in Chapter 12.

Other Arguments
There are a couple of other important arguments that we need to mention, and they’ll
be easier to demonstrate if we first show you a handy trick: read_csv() can read
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text strings that you’ve created and formatted like a CSV file:

read_csv( 
  "a,b,c
  1,2,3
  4,5,6"
)
#> # A tibble: 2 × 3
#>       a     b     c
#>   <dbl> <dbl> <dbl>
#> 1     1     2     3
#> 2     4     5     6

Usually, read_csv() uses the first line of the data for the column names, which is a
common convention. But it’s not uncommon for a few lines of metadata to be
included at the top of the file. You can use skip = n to skip the first n lines or use
comment = "#" to drop all lines that start with, for example, #:

read_csv( 
  "The first line of metadata
  The second line of metadata
  x,y,z
  1,2,3", 
  skip = 2
)
#> # A tibble: 1 × 3
#>       x     y     z
#>   <dbl> <dbl> <dbl>
#> 1     1     2     3 
 
read_csv( 
  "# A comment I want to skip
  x,y,z
  1,2,3", 
  comment = "#"
)
#> # A tibble: 1 × 3
#>       x     y     z
#>   <dbl> <dbl> <dbl>
#> 1     1     2     3

In other cases, the data might not have column names. You can use col_names =
FALSE to tell read_csv() not to treat the first row as headings and instead label
them sequentially from X1 to Xn:
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read_csv( 
  "1,2,3
  4,5,6", 
  col_names = FALSE
)
#> # A tibble: 2 × 3
#>      X1    X2    X3
#>   <dbl> <dbl> <dbl>
#> 1     1     2     3
#> 2     4     5     6

Alternatively, you can pass col_names a character vector, which will be used as the
column names:

read_csv( 
  "1,2,3
  4,5,6", 
  col_names = c("x", "y", "z")
)
#> # A tibble: 2 × 3
#>       x     y     z
#>   <dbl> <dbl> <dbl>
#> 1     1     2     3
#> 2     4     5     6

These arguments are all you need to know to read the majority of CSV files that you’ll
encounter in practice. (For the rest, you’ll need to carefully inspect your .csv file
and read the documentation for read_csv()’s many other arguments.)

Other File Types
Once you’ve mastered read_csv(), using readr’s other functions is
straightforward; it’s just a matter of knowing which function to reach for:

read_csv2()

Reads semicolon-separated files. These use ; instead of , to separate fields and

are common in countries that use , as the decimal marker.

read_tsv()

Reads tab-delimited files.

read_delim()
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Reads in files with any delimiter, attempting to automatically guess the delimiter if
you don’t specify it.

read_fwf()

Reads fixed-width files. You can specify fields by their widths with
fwf_widths() or by their positions with fwf_positions().

read_table()

Reads a common variation of fixed-width files where columns are separated by
whitespace.

read_log()

Reads Apache-style log files.

Exercises
1. What function would you use to read a file where fields were separated with |?

2. Apart from file, skip, and comment, what other arguments do
read_csv() and read_tsv() have in common?

3. What are the most important arguments to read_fwf()?

4. Sometimes strings in a CSV file contain commas. To prevent them from causing
problems, they need to be surrounded by a quoting character, like " or '. By
default, read_csv() assumes that the quoting character will be ". To read the
following text into a data frame, what argument to read_csv() do you need to
specify?

"x,y\n1,'a,b'"

5. Identify what is wrong with each of the following inline CSV files. What
happens when you run the code?

read_csv("a,b\n1,2,3\n4,5,6")
read_csv("a,b,c\n1,2\n1,2,3,4")
read_csv("a,b\n\"1")
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read_csv("a,b\n1,2\na,b")
read_csv("a;b\n1;3")

6. Practice referring to nonsyntactic names in the following data frame by:

a. Extracting the variable called 1.

b. Plotting a scatterplot of 1 versus 2.

c. Creating a new column called 3, which is 2 divided by 1.

d. Renaming the columns to one, two, and three:

annoying <- tibble( 
  `1` = 1:10, 
  `2` = `1` * 2 + rnorm(length(`1`))
)

Controlling Column Types
A CSV file doesn’t contain any information about the type of each variable
(i.e., whether it’s a logical, number, string, etc.), so readr will try to guess the type.
This section describes how the guessing process works, how to resolve some common
problems that cause it to fail, and, if needed, how to supply the column types yourself.
Finally, we’ll mention a few general strategies that are useful if readr is failing
catastrophically and you need to get more insight into the structure of your file.

Guessing Types
readr uses a heuristic to figure out the column types. For each column, it pulls the
values of 1,0002 rows spaced evenly from the first row to the last, ignoring missing
values. It then works through the following questions:

Does it contain only F, T, FALSE, or TRUE (ignoring case)? If so, it’s a logical.

Does it contain only numbers (e.g., 1, -4.5, 5e6, Inf)? If so, it’s a number.

Does it match the ISO8601 standard? If so, it’s a date or date-time. (We’ll return
to date-times in more detail in “Creating Date/Times”.)

Otherwise, it must be a string.

You can see that behavior in action in this simple example:



read_csv("
  logical,numeric,date,string
  TRUE,1,2021-01-15,abc
  false,4.5,2021-02-15,def
  T,Inf,2021-02-16,ghi
")
#> # A tibble: 3 × 4
#>   logical numeric date       string
#>   <lgl>     <dbl> <date>     <chr> 
#> 1 TRUE        1   2021-01-15 abc   
#> 2 FALSE       4.5 2021-02-15 def   
#> 3 TRUE      Inf   2021-02-16 ghi

This heuristic works well if you have a clean dataset, but in real life, you’ll encounter
a selection of weird and beautiful failures.

Missing Values, Column Types, and Problems
The most common way column detection fails is that a column contains unexpected
values, and you get a character column instead of a more specific type. One of the
most common causes for this is a missing value, recorded using something other than
the NA that readr expects.

Take this simple one-column CSV file as an example:

simple_csv <- "
  x
  10
  .
  20
  30"

If we read it without any additional arguments, x becomes a character column:

read_csv(simple_csv)
#> # A tibble: 4 × 1
#>   x    
#>   <chr>
#> 1 10   
#> 2 .    
#> 3 20   
#> 4 30

In this small case, you can easily see the missing value .. But what happens if you
have thousands of rows with only a few missing values represented by .s sprinkled



among them? One approach is to tell readr that x is a numeric column and then see
where it fails. You can do that with the col_types argument, which takes a named
list where the names match the column names in the CSV file:

df <- read_csv( 
  simple_csv,  
  col_types = list(x = col_double())
)
#> Warning: One or more parsing issues, call `problems()` on your data 
frame for
#> details, e.g.:
#>   dat <- vroom(...)
#>   problems(dat)

Now read_csv() reports that there was a problem and tells us we can find out
more with problems():

problems(df)
#> # A tibble: 1 × 5
#>     row   col expected actual file                                    
#>   <int> <int> <chr>    <chr>  <chr>                                   
#> 1     3     1 a double .      /private/tmp/RtmpAYlSop/file392d445cf269

This tells us that there was a problem in row 3, column 1 where readr expected a
double but got a .. That suggests this dataset uses . for missing values. So then we
set na = ".", and the automatic guessing succeeds, giving us the numeric column
that we want:

read_csv(simple_csv, na = ".")
#> # A tibble: 4 × 1
#>       x
#>   <dbl>
#> 1    10
#> 2    NA
#> 3    20
#> 4    30

Column Types
readr provides a total of nine column types for you to use:

col_logical() and col_double() read logicals and real numbers.
They’re relatively rarely needed (except as shown previously), since readr will
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usually guess them for you.

col_integer() reads integers. We seldom distinguish integers and doubles in
this book because they’re functionally equivalent, but reading integers explicitly
can occasionally be useful because they occupy half the memory of doubles.

col_character() reads strings. This can be useful to specify explicitly
when you have a column that is a numeric identifier, i.e., long series of digits that
identifies an object but doesn’t make sense to apply mathematical operations to.
Examples include phone numbers, Social Security numbers, credit card numbers,
and so on.

col_factor(), col_date(), and col_datetime() create factors,
dates, and date-times, respectively; you’ll learn more about those when we get to
those data types in Chapter 16 and Chapter 17.

col_number() is a permissive numeric parser that will ignore non-numeric
components and is particularly useful for currencies. You’ll learn more about it in
Chapter 13.

col_skip() skips a column so it’s not included in the result, which can be
useful for speeding up reading the data if you have a large CSV file and you want
to use only some of the columns.

It’s also possible to override the default column by switching from list() to
cols() and specifying .default:

another_csv <- "
x,y,z
1,2,3" 
 
read_csv( 
  another_csv,  
  col_types = cols(.default = col_character())
)
#> # A tibble: 1 × 3
#>   x     y     z    
#>   <chr> <chr> <chr>
#> 1 1     2     3

Another useful helper is cols_only(), which will read in only the columns you
specify:
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read_csv( 
  another_csv, 
  col_types = cols_only(x = col_character())
)
#> # A tibble: 1 × 1
#>   x    
#>   <chr>
#> 1 1

Reading Data from Multiple Files
Sometimes your data is split across multiple files instead of being contained in a
single file. For example, you might have sales data for multiple months, with each
month’s data in a separate file: 01-sales.csv for January, 02-sales.csv for
February, and 03-sales.csv for March. With read_csv() you can read these
data in at once and stack them on top of each other in a single data frame.

sales_files <- c("data/01-sales.csv", "data/02-sales.csv", "data/03-
sales.csv")
read_csv(sales_files, id = "file")
#> # A tibble: 19 × 6
#>   file              month    year brand  item     n
#>   <chr>             <chr>   <dbl> <dbl> <dbl> <dbl>
#> 1 data/01-sales.csv January  2019     1  1234     3
#> 2 data/01-sales.csv January  2019     1  8721     9
#> 3 data/01-sales.csv January  2019     1  1822     2
#> 4 data/01-sales.csv January  2019     2  3333     1
#> 5 data/01-sales.csv January  2019     2  2156     9
#> 6 data/01-sales.csv January  2019     2  3987     6
#> # … with 13 more rows

Once again, the previous code will work if you have the CSV files in a data folder in
your project. You can download these files from https://oreil.ly/jVd8o,
https://oreil.ly/RYsgM, and https://oreil.ly/4uZOm or you can read them directly with:

sales_files <- c( 
  "https://pos.it/r4ds-01-sales", 
  "https://pos.it/r4ds-02-sales", 
  "https://pos.it/r4ds-03-sales"
)
read_csv(sales_files, id = "file")

The id argument adds a new column called file to the resulting data frame that
identifies the file the data come from. This is especially helpful in circumstances
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where the files you’re reading in do not have an identifying column that can help you
trace the observations back to their original sources.

If you have many files you want to read in, it can get cumbersome to write out their
names as a list. Instead, you can use the base list.files() function to find the
files for you by matching a pattern in the filenames. You’ll learn more about these
patterns in Chapter 15.

sales_files <- list.files("data", pattern = "sales\\.csv$", full.names = 
TRUE)
sales_files
#> [1] "data/01-sales.csv" "data/02-sales.csv" "data/03-sales.csv"

Writing to a File
readr also comes with two useful functions for writing data to disk: write_csv()
and write_tsv(). The most important arguments to these functions are x (the data
frame to save) and file (the location to save it). You can also specify how missing
values are written with na, as well as whether you want to append to an existing
file.

write_csv(students, "students.csv")

Now let’s read that CSV file back in. Note that the variable type information that you
just set up is lost when you save to CSV because you’re starting over with reading
from a plain-text file again:

students
#> # A tibble: 6 × 5
#>   student_id full_name        favourite_food     meal_plan             
age
#>        <dbl> <chr>            <chr>              <fct>               
<dbl>
#> 1          1 Sunil Huffmann   Strawberry yoghurt Lunch only              
4
#> 2          2 Barclay Lynn     French fries       Lunch only              
5
#> 3          3 Jayendra Lyne    <NA>               Breakfast and lunch     
7
#> 4          4 Leon Rossini     Anchovies          Lunch only             
NA
#> 5          5 Chidiegwu Dunkel Pizza              Breakfast and lunch     
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5
#> 6          6 Güvenç Attila    Ice cream          Lunch only              
6
write_csv(students, "students-2.csv")
read_csv("students-2.csv")
#> # A tibble: 6 × 5
#>   student_id full_name        favourite_food     meal_plan             
age
#>        <dbl> <chr>            <chr>              <chr>               
<dbl>
#> 1          1 Sunil Huffmann   Strawberry yoghurt Lunch only              
4
#> 2          2 Barclay Lynn     French fries       Lunch only              
5
#> 3          3 Jayendra Lyne    <NA>               Breakfast and lunch     
7
#> 4          4 Leon Rossini     Anchovies          Lunch only             
NA
#> 5          5 Chidiegwu Dunkel Pizza              Breakfast and lunch     
5
#> 6          6 Güvenç Attila    Ice cream          Lunch only              
6

This makes CSVs a little unreliable for caching interim results—you need to re-create
the column specification every time you load in. There are two main alternatives:

write_rds() and read_rds() are uniform wrappers around the base
functions readRDS() and saveRDS(). These store data in R’s custom binary
format called RDS. This means that when you reload the object, you are loading
the exact same R object that you stored.

write_rds(students, "students.rds")
read_rds("students.rds")
#> # A tibble: 6 × 5
#>   student_id full_name        favourite_food     meal_plan           
age
#>        <dbl> <chr>            <chr>              <fct>               
<dbl>
#> 1          1 Sunil Huffmann   Strawberry yoghurt Lunch only          
4
#> 2          2 Barclay Lynn     French fries       Lunch only          
5
#> 3          3 Jayendra Lyne    <NA>               Breakfast and 
lunch     7
#> 4          4 Leon Rossini     Anchovies          Lunch only          
NA
#> 5          5 Chidiegwu Dunkel Pizza              Breakfast and 
lunch     5
#> 6          6 Güvenç Attila    Ice cream          Lunch only          
6
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The arrow package allows you to read and write parquet files, a fast binary file
format that can be shared across programming languages. We’ll return to arrow
in more depth in Chapter 22.

library(arrow)
write_parquet(students, "students.parquet")
read_parquet("students.parquet")
#> # A tibble: 6 × 5
#>   student_id full_name        favourite_food     meal_plan           
age
#>        <dbl> <chr>            <chr>              <fct>               
<dbl>
#> 1          1 Sunil Huffmann   Strawberry yoghurt Lunch only          
4
#> 2          2 Barclay Lynn     French fries       Lunch only          
5
#> 3          3 Jayendra Lyne    NA                 Breakfast and 
lunch     7
#> 4          4 Leon Rossini     Anchovies          Lunch only          
NA
#> 5          5 Chidiegwu Dunkel Pizza              Breakfast and 
lunch     5
#> 6          6 Güvenç Attila    Ice cream          Lunch only          
6

Parquet tends to be much faster than RDS and is usable outside of R but does require
the arrow package.

Data Entry
Sometimes you’ll need to assemble a tibble “by hand” doing a little data entry in your
R script. There are two useful functions to help you do this, which differ in whether
you lay out the tibble by columns or by rows. tibble() works by column:

tibble( 
  x = c(1, 2, 5),  
  y = c("h", "m", "g"), 
  z = c(0.08, 0.83, 0.60)
)
#> # A tibble: 3 × 3
#>       x y         z
#>   <dbl> <chr> <dbl>
#> 1     1 h      0.08
#> 2     2 m      0.83
#> 3     5 g      0.6

https://tibble.tidyverse.org/reference/tibble.html


Laying out the data by column can make it hard to see how the rows are related, so an
alternative is tribble(), short for transposed tibble, which lets you lay out your
data row by row. tribble() is customized for data entry in code: column headings
start with ~ and entries are separated by commas. This makes it possible to lay out
small amounts of data in an easy-to-read form:

tribble( 
  ~x, ~y, ~z, 
  1, "h", 0.08, 
  2, "m", 0.83, 
  5, "g", 0.60
)
#> # A tibble: 3 × 3
#>   x         y     z
#>   <chr> <dbl> <dbl>
#> 1        1 h  0.08
#> 2        2 m  0.83
#> 3        5 g  0.6

Summary
In this chapter, you learned how to load CSV files with read_csv() and to do your
own data entry with tibble() and tribble(). You’ve learned how CSV files
work, some of the problems you might encounter, and how to overcome them. We’ll
come to data import a few times in this book: Chapter 20 will show you how to load
data from Excel and Google Sheets, Chapter 21 from databases, Chapter 22 from
parquet files, Chapter 23 from JSON, and Chapter 24 from websites.

We’re just about at the end of this section of the book, but there’s one important last
topic to cover: how to get help. So in the next chapter, you’ll learn some good places
to look for help, how to create a reprex to maximize your chances of getting good
help, and some general advice on keeping up with the world of R.

1  The janitor package is not part of the tidyverse, but it offers handy functions for data cleaning and works
well within data pipelines that use |>.

2  You can override the default of 1,000 with the guess_max argument.

https://tibble.tidyverse.org/reference/tribble.html
https://tibble.tidyverse.org/reference/tribble.html
https://readr.tidyverse.org/reference/read_delim.html
https://tibble.tidyverse.org/reference/tibble.html
https://tibble.tidyverse.org/reference/tribble.html
https://oreil.ly/-J8GX


Chapter 8. Workflow: Getting
Help

This book is not an island; there is no single resource that will allow you to
master R. As you begin to apply the techniques described in this book to
your own data, you will soon find questions that we do not answer. This
section describes a few tips on how to get help and to help you keep
learning.

Google Is Your Friend
If you get stuck, start with Google. Typically adding “R” to a query is
enough to restrict it to relevant results: if the search isn’t useful, it often
means that there aren’t any R-specific results available. Additionally,
adding package names like “tidyverse” or “ggplot2” will help narrow down
the results to code that will feel more familiar to you as well, e.g., “how to
make a boxplot in R” versus “how to make a boxplot in R with ggplot2.”
Google is particularly useful for error messages. If you get an error message
and you have no idea what it means, try googling it! Chances are that
someone else has been confused by it in the past, and there will be help
somewhere on the web. (If the error message isn’t in English, run
Sys.setenv(LANGUAGE = "en") and rerun the code; you’re more
likely to find help for English error messages.)

If Google doesn’t help, try Stack Overflow. Start by spending a little time
searching for an existing answer, including [R], to restrict your search to
questions and answers that use R.

Making a reprex

https://oreil.ly/RxSNB


If your googling doesn’t find anything useful, it’s a really good idea to
prepare a reprex, short for minimal reproducible example. A good reprex
makes it easier for other people to help you, and often you’ll figure out the
problem yourself in the course of making it. There are two parts to creating
a reprex:

First, you need to make your code reproducible. This means you need
to capture everything, i.e., include any library() calls and create
all necessary objects. The easiest way to make sure you’ve done this is
using the reprex package.

Second, you need to make it minimal. Strip away everything that is not
directly related to your problem. This usually involves creating a much
smaller and simpler R object than the one you’re facing in real life or
even using built-in data.

That sounds like a lot of work! And it can be, but it has a great payoff:

80% of the time, creating an excellent reprex reveals the source of
your problem. It’s amazing how often the process of writing up a self-
contained and minimal example allows you to answer your own
question.

The other 20% of the time, you will have captured the essence of your
problem in a way that is easy for others to play with. This substantially
improves your chances of getting help!

When creating a reprex by hand, it’s easy to accidentally miss something,
meaning your code can’t be run on someone else’s computer. Avoid this
problem by using the reprex package, which is installed as part of the
tidyverse. Let’s say you copy this code onto your clipboard (or, on RStudio
Server or Cloud, select it):

y <- 1:4
mean(y)

Then call reprex(), where the default output is formatted for GitHub:

https://rdrr.io/r/base/library.html


reprex::reprex()

A nicely rendered HTML preview will display in RStudio’s Viewer (if
you’re in RStudio) or your default browser otherwise. The reprex is
automatically copied to your clipboard (on RStudio Server or Cloud, you
will need to copy this yourself):

``` r 
y <- 1:4 
mean(y) 
#> [1] 2.5 
```

This text is formatted in a special way, called Markdown, which can be
pasted to sites like StackOverflow or GitHub, which will automatically
render it to look like code. Here’s what that Markdown would look like
rendered on GitHub:

y <- 1:4
mean(y)
#> [1] 2.5

Anyone else can copy, paste, and run this immediately.

There are three things you need to include to make your example
reproducible: required packages, data, and code.

Packages should be loaded at the top of the script so it’s easy to see
which ones the example needs. This is a good time to check that
you’re using the latest version of each package; you may have
discovered a bug that’s been fixed since you installed or last updated
the package. For packages in the tidyverse, the easiest way to check is
to run tidyverse_update().

The easiest way to include data is to use dput() to generate the R
code needed to re-create it. For example, to re-create the mtcars
dataset in R, perform the following steps:

https://rdrr.io/r/base/dput.html


Run dput(mtcars) in R.

Copy the output.

In reprex, type mtcars <-, and then paste.

Try to use the smallest subset of your data that still reveals the
problem.

Spend a little bit of time ensuring that your code is easy for others to
read:

Make sure you’ve used spaces and your variable names are
concise yet informative.

Use comments to indicate where your problem lies.

Do your best to remove everything that is not related to the
problem.

The shorter your code is, the easier it is to understand and the easier it
is to fix.

Finish by checking that you have actually made a reproducible example by
starting a fresh R session and copying and pasting your script.

Creating reprexes is not trivial, and it will take some practice to learn to
create good, truly minimal reprexes. However, learning to ask questions that
include the code and investing the time to make it reproducible will
continue to pay off as you learn and master R.

Investing in Yourself
You should also spend some time preparing yourself to solve problems
before they occur. Investing a little time in learning R each day will pay off
handsomely in the long run. One way is to follow what the tidyverse team is
doing on the tidyverse blog. To keep up with the R community more

https://oreil.ly/KS82J


broadly, we recommend reading R Weekly: it’s a community effort to
aggregate the most interesting news in the R community each week.

Summary
This chapter concludes the “Whole Game” part of the book. You’ve now
seen the most important parts of the data science process: visualization,
transformation, tidying, and importing. Now that you’ve gotten a holistic
view of the whole process, we can start to get into the details of small
pieces.

The next part of the book, “Visualize,” does a deeper dive into the grammar
of graphics and creating data visualizations with ggplot2, showcases how to
use the tools you’ve learned so far to conduct exploratory data analysis, and
introduces good practices for creating plots for communication.

https://oreil.ly/uhknU


Part II. Visualize

After reading the first part of the book, you understand (at least
superficially) the most important tools for doing data science. Now it’s time
to start diving into the details. In this part of the book, you’ll learn about
visualizing data in further depth in Figure II-1.

Figure II-1. Data visualization is often the first step in data exploration.

Each chapter addresses one to a few aspects of creating a data visualization:

In Chapter 9 you will learn about the layered grammar of graphics.

In Chapter 10, you’ll combine visualization with your curiosity and
skepticism to ask and answer interesting questions about data.

Finally, in Chapter 11 you will learn how to take your exploratory
graphics, elevate them, and turn them into expository graphics,
graphics that help the newcomer to your analysis understand what’s
going on as quickly and easily as possible.

These three chapters get you started in the world of visualization, but there
is much more to learn. The absolute best place to learn more is the ggplot2
book: ggplot2: Elegant Graphics for Data Analysis (Springer). It goes into

https://oreil.ly/SO1yG


much more depth about the underlying theory and has many more examples
of how to combine the individual pieces to solve practical problems.
Another great resource is the ggplot2 extensions gallery. This site lists
many of the packages that extend ggplot2 with new geoms and scales. It’s a
great place to start if you’re trying to do something that seems hard with
ggplot2.

https://oreil.ly/m0OW5


Chapter 9. Layers

Introduction
In Chapter 1, you learned much more than just how to make scatterplots,
bar charts, and boxplots. You learned a foundation that you can use to make
any type of plot with ggplot2.

In this chapter, you’ll expand on that foundation as you learn about the
layered grammar of graphics. We’ll start with a deeper dive into aesthetic
mappings, geometric objects, and facets. Then, you will learn about
statistical transformations ggplot2 makes under the hood when creating a
plot. These transformations are used to calculate new values to plot, such as
the heights of bars in a bar plot or medians in a box plot. You will also learn
about position adjustments, which modify how geoms are displayed in your
plots. Finally, we’ll briefly introduce coordinate systems.

We will not cover every single function and option for each of these layers,
but we will walk you through the most important and commonly used
functionality provided by ggplot2 as well as introduce you to packages that
extend ggplot2.

Prerequisites
This chapter focuses on ggplot2. To access the datasets, help pages, and
functions used in this chapter, load the tidyverse by running this code:

library(tidyverse)

Aesthetic Mappings
“The greatest value of a picture is when it forces us to notice what we
never expected to see.” —John Tukey



Remember that the mpg data frame bundled with the ggplot2 package
contains 234 observations on 38 car models.

mpg
#> # A tibble: 234 × 11
#>   manufacturer model displ  year   cyl trans      drv     cty   
hwy fl   
#>   <chr>        <chr> <dbl> <int> <int> <chr>      <chr> <int> 
<int> <chr>
#> 1 audi         a4      1.8  1999     4 auto(l5)   f        18   
29 p    
#> 2 audi         a4      1.8  1999     4 manual(m5) f        21   
29 p    
#> 3 audi         a4      2    2008     4 manual(m6) f        20   
31 p    
#> 4 audi         a4      2    2008     4 auto(av)   f        21   
30 p    
#> 5 audi         a4      2.8  1999     6 auto(l5)   f        16   
26 p    
#> 6 audi         a4      2.8  1999     6 manual(m5) f        18   
26 p    
#> # … with 228 more rows, and 1 more variable: class <chr>

Among the variables in mpg are:

displ

A car’s engine size, in liters. A numerical variable.

hwy

A car’s fuel efficiency on the highway, in miles per gallon (mpg). A car
with a low fuel efficiency consumes more fuel than a car with a high
fuel efficiency when they travel the same distance. A numerical
variable.

class

Type of car. A categorical variable.



Let’s start by visualizing the relationship between displ and hwy for
various classes of cars. We can do this with a scatterplot where the
numerical variables are mapped to the x and y aesthetics and the
categorical variable is mapped to an aesthetic like color or shape.

# Left
ggplot(mpg, aes(x = displ, y = hwy, color = class)) + 
  geom_point() 
 
# Right
ggplot(mpg, aes(x = displ, y = hwy, shape = class)) + 
  geom_point()
#> Warning: The shape palette can deal with a maximum of 6 
discrete values
#> because more than 6 becomes difficult to discriminate; you 
have 7.
#> Consider specifying shapes manually if you must have them.
#> Warning: Removed 62 rows containing missing values 
(`geom_point()`).

When class is mapped to shape, we get two warnings:

1: The shape palette can deal with a maximum of 6 discrete values
because more than 6 becomes difficult to discriminate; you have 7.
Consider specifying shapes manually if you must have them.

2: Removed 62 rows containing missing values (geom_point()).

Since ggplot2 will use only six shapes at a time, by default, additional
groups will go unplotted when you use the shape aesthetic. The second

https://ggplot2.tidyverse.org/reference/geom_point.html


warning is related—there are 62 SUVs in the dataset and they’re not
plotted.

Similarly, we can map class to size or alpha aesthetics as well, which
control the shape and the transparency of the points, respectively.

# Left
ggplot(mpg, aes(x = displ, y = hwy, size = class)) + 
  geom_point()
#> Warning: Using size for a discrete variable is not advised. 
 
# Right
ggplot(mpg, aes(x = displ, y = hwy, alpha = class)) + 
  geom_point()
#> Warning: Using alpha for a discrete variable is not advised.

Both of these produce warnings as well:

Using alpha for a discrete variable is not advised.

Mapping an unordered discrete (categorical) variable (class) to an
ordered aesthetic (size or alpha) is generally not a good idea because it
implies a ranking that does not in fact exist.

Once you map an aesthetic, ggplot2 takes care of the rest. It selects a
reasonable scale to use with the aesthetic, and it constructs a legend that
explains the mapping between levels and values. For x and y aesthetics,
ggplot2 does not create a legend, but it creates an axis line with tick marks
and a label. The axis line provides the same information as a legend; it
explains the mapping between locations and values.



You can also set the visual properties of your geom manually as an
argument of your geom function (outside of aes()) instead of relying on a
variable mapping to determine the appearance. For example, we can make
all of the points in our plot blue:

ggplot(mpg, aes(x = displ, y = hwy)) +  
  geom_point(color = "blue")

Here, the color doesn’t convey information about a variable; it changes only
the appearance of the plot. You’ll need to pick a value that makes sense for
that aesthetic:

The name of a color as a character string, e.g., color = "blue"

The size of a point in mm, e.g., size = 1

The shape of a point as a number, e.g, shape = 1, as shown in
Figure 9-1

https://ggplot2.tidyverse.org/reference/aes.html


Figure 9-1. R has 25 built-in shapes that are identified by numbers. There are some seeming
duplicates: for example, 0, 15, and 22 are all squares. The difference comes from the interaction of
the color and fill aesthetics. The hollow shapes (0–14) have a border determined by color;

the solid shapes (15–20) are filled with color; and the filled shapes (21–24) have a border of
color and are filled with fill. Shapes are arranged to keep similar shapes next to each other.

So far we have discussed aesthetics that we can map or set in a scatterplot,
when using a point geom. You can learn more about all possible aesthetic
mappings in the aesthetic specifications vignette.

The specific aesthetics you can use for a plot depend on the geom you use
to represent the data. In the next section we dive deeper into geoms.

Exercises
1. Create a scatterplot of hwy versus displ where the points are pink

filled-in triangles.

2. Why did the following code not result in a plot with blue points?

ggplot(mpg) +  
  geom_point(aes(x = displ, y = hwy, color = "blue"))

3. What does the stroke aesthetic do? What shapes does it work with?
(Hint: Use ?geom_point.)

https://oreil.ly/SP6zV
https://ggplot2.tidyverse.org/reference/geom_point.html


4. What happens if you map an aesthetic to something other than a
variable name, like aes(color = displ < 5)? Note, you’ll also
need to specify x and y.

Geometric Objects
How are these two plots similar?

Both plots contain the same x variable and the same y variable, and both
describe the same data. But the plots are not identical. Each plot uses a
different geometric object, geom, to represent the data. The plot on the left
uses the point geom, and the plot on the right uses the smooth geom, a
smooth line fitted to the data.

To change the geom in your plot, change the geom function that you add to
ggplot(). For instance, to make the previous plot, you can use the
following code:

# Left
ggplot(mpg, aes(x = displ, y = hwy)) +  
  geom_point() 
 
# Right
ggplot(mpg, aes(x = displ, y = hwy)) +  
  geom_smooth()
#> `geom_smooth()` using method = 'loess' and formula = 'y ~ x'

https://ggplot2.tidyverse.org/reference/ggplot.html


Every geom function in ggplot2 takes a mapping argument, either defined
locally in the geom layer or globally in the ggplot() layer. However, not
every aesthetic works with every geom. You could set the shape of a point,
but you couldn’t set the “shape” of a line. If you try, ggplot2 will silently
ignore that aesthetic mapping. On the other hand, you could set the linetype
of a line. geom_smooth() will draw a different line, with a different
linetype, for each unique value of the variable that you map to linetype.

# Left
ggplot(mpg, aes(x = displ, y = hwy, shape = drv)) +  
  geom_smooth() 
 
# Right
ggplot(mpg, aes(x = displ, y = hwy, linetype = drv)) +  
  geom_smooth()

Here, geom_smooth() separates the cars into three lines based on their
drv value, which describes a car’s drivetrain. One line describes all of the
points that have a 4 value, one line describes all of the points that have an f
value, and one line describes all of the points that have an r value. Here, 4
stands for four-wheel drive, f for front-wheel drive, and r for rear-wheel
drive.

If this sounds strange, we can make it clearer by overlaying the lines on top
of the raw data and then coloring everything according to drv.

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) +  
  geom_point() + 
  geom_smooth(aes(linetype = drv))

https://ggplot2.tidyverse.org/reference/ggplot.html
https://ggplot2.tidyverse.org/reference/geom_smooth.html
https://ggplot2.tidyverse.org/reference/geom_smooth.html


Notice that this plot contains two geoms in the same graph.

Many geoms, like geom_smooth(), use a single geometric object to
display multiple rows of data. For these geoms, you can set the group
aesthetic to a categorical variable to draw multiple objects. ggplot2 will
draw a separate object for each unique value of the grouping variable. In
practice, ggplot2 will automatically group the data for these geoms
whenever you map an aesthetic to a discrete variable (as in the linetype
example). It is convenient to rely on this feature because the group
aesthetic by itself does not add a legend or distinguishing features to the
geoms.

# Left
ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_smooth() 
 
# Middle
ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_smooth(aes(group = drv)) 
 

https://ggplot2.tidyverse.org/reference/geom_smooth.html


# Right
ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_smooth(aes(color = drv), show.legend = FALSE)

If you place mappings in a geom function, ggplot2 will treat them as local
mappings for the layer. It will use these mappings to extend or overwrite the
global mappings for that layer only. This makes it possible to display
different aesthetics in different layers.

ggplot(mpg, aes(x = displ, y = hwy)) +  
  geom_point(aes(color = class)) +  
  geom_smooth()



You can use the same idea to specify different data for each layer. Here,
we use red points as well as open circles to highlight two-seater cars. The
local data argument in geom_point() overrides the global data argument
in ggplot() for that layer only.

ggplot(mpg, aes(x = displ, y = hwy)) +  
  geom_point() +  
  geom_point( 
    data = mpg |> filter(class == "2seater"),  
    color = "red" 
  ) + 
  geom_point( 
    data = mpg |> filter(class == "2seater"),  
    shape = "circle open", size = 3, color = "red" 
  )

https://ggplot2.tidyverse.org/reference/geom_point.html
https://ggplot2.tidyverse.org/reference/ggplot.html


Geoms are the fundamental building blocks of ggplot2. You can completely
transform the look of your plot by changing its geom, and different geoms
can reveal different features of your data. For example, the following
histogram and density plot reveal that the distribution of highway mileage is
bimodal and right skewed, while the boxplot reveals two potential outliers:

# Left
ggplot(mpg, aes(x = hwy)) + 
  geom_histogram(binwidth = 2) 
 
# Middle
ggplot(mpg, aes(x = hwy)) + 
  geom_density() 
 
# Right
ggplot(mpg, aes(x = hwy)) + 
  geom_boxplot()



ggplot2 provides more than 40 geoms, but these geoms don’t cover all the
possible plots one could make. If you need a different geom, look into
extension packages first to see if someone else has already implemented it.
For example, the ggridges package is useful for making ridgeline plots,
which can be useful for visualizing the density of a numerical variable for
different levels of a categorical variable. In the following plot, not only did
we use a new geom (geom_density_ridges()), but we have also
mapped the same variable to multiple aesthetics (drv to y, fill, and
color) as well as set an aesthetic (alpha = 0.5) to make the density
curves transparent.

library(ggridges) 
 
ggplot(mpg, aes(x = hwy, y = drv, fill = drv, color = drv)) + 
  geom_density_ridges(alpha = 0.5, show.legend = FALSE)
#> Picking joint bandwidth of 1.28

The best place to get a comprehensive overview of all of the geoms ggplot2
offers, as well as all functions in the package, is the reference page. To learn
more about any single geom, use the help (e.g., ?geom_smooth).

https://oreil.ly/ARL_4
https://oreil.ly/pPIuL
https://wilkelab.org/ggridges/reference/geom_density_ridges.html
https://oreil.ly/cIFgm
https://ggplot2.tidyverse.org/reference/geom_smooth.html


Exercises
1. What geom would you use to draw a line chart? A boxplot? A

histogram? An area chart?

2. Earlier in this chapter we used show.legend without explaining it:

ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_smooth(aes(color = drv), show.legend = FALSE)

What does show.legend = FALSE do here? What happens if you
remove it? Why do you think we used it earlier?

3. What does the se argument to geom_smooth() do?

4. Re-create the R code necessary to generate the following graphs. Note
that wherever a categorical variable is used in the plot, it’s drv.

Facets
In Chapter 1 you learned about faceting with facet_wrap(), which
splits a plot into subplots that each display one subset of the data based on a
categorical variable.

https://ggplot2.tidyverse.org/reference/geom_smooth.html
https://ggplot2.tidyverse.org/reference/facet_wrap.html


ggplot(mpg, aes(x = displ, y = hwy)) +  
  geom_point() +  
  facet_wrap(~cyl)

To facet your plot with the combination of two variables, switch from
facet_wrap() to facet_grid(). The first argument of
facet_grid() is also a formula, but now it’s a double-sided formula:
rows ~ cols.

ggplot(mpg, aes(x = displ, y = hwy)) +  
  geom_point() +  
  facet_grid(drv ~ cyl)

https://ggplot2.tidyverse.org/reference/facet_wrap.html
https://ggplot2.tidyverse.org/reference/facet_grid.html
https://ggplot2.tidyverse.org/reference/facet_grid.html


By default each of the facets share the same scale and range for x and y
axes. This is useful when you want to compare data across facets, but it can
be limiting when you want to visualize the relationship within each facet
better. Setting the scales argument in a faceting function to "free" will
allow for different axis scales across both rows and columns, "free_x"
will allow for different scales across rows, and "free_y" will allow for
different scales across columns.

ggplot(mpg, aes(x = displ, y = hwy)) +  
  geom_point() +  
  facet_grid(drv ~ cyl, scales = "free_y")



Exercises
1. What happens if you facet on a continuous variable?

2. What do the empty cells in the plot with facet_grid(drv ~
cyl) mean? Run the following code. How do the cells relate to the
resulting plot?

ggplot(mpg) +  
  geom_point(aes(x = drv, y = cyl))

3. What plots does the following code make? What does . do?

ggplot(mpg) +  
  geom_point(aes(x = displ, y = hwy)) + 
  facet_grid(drv ~ .) 
 
ggplot(mpg) +  
  geom_point(aes(x = displ, y = hwy)) + 
  facet_grid(. ~ cyl)



4. Take the first faceted plot in this section:

ggplot(mpg) +  
  geom_point(aes(x = displ, y = hwy)) +  
  facet_wrap(~ class, nrow = 2)

What are the advantages to using faceting instead of the color
aesthetic? What are the disadvantages? How might the balance change
if you had a larger dataset?

5. Read ?facet_wrap. What does nrow do? What does ncol do?
What other options control the layout of the individual panels? Why
doesn’t facet_grid() have nrow and ncol arguments?

6. Which of the following plots makes it easier to compare engine size
(displ) across cars with different drivetrains? What does this say
about when to place a faceting variable across rows or columns?

ggplot(mpg, aes(x = displ)) +  
  geom_histogram() +  
  facet_grid(drv ~ .) 
 
ggplot(mpg, aes(x = displ)) +  
  geom_histogram() + 
  facet_grid(. ~ drv)

7. Re-create the following plot using facet_wrap() instead of
facet_grid(). How do the positions of the facet labels change?

ggplot(mpg) +  
  geom_point(aes(x = displ, y = hwy)) + 
  facet_grid(drv ~ .)

Statistical Transformations
Consider a basic bar chart drawn with geom_bar() or geom_col().
The following chart displays the total number of diamonds in the
diamonds dataset, grouped by cut. The diamonds dataset is in the

https://ggplot2.tidyverse.org/reference/facet_wrap.html
https://ggplot2.tidyverse.org/reference/facet_grid.html
https://ggplot2.tidyverse.org/reference/facet_wrap.html
https://ggplot2.tidyverse.org/reference/facet_grid.html
https://ggplot2.tidyverse.org/reference/geom_bar.html
https://ggplot2.tidyverse.org/reference/geom_bar.html


ggplot2 package and contains information on about 54,000 diamonds,
including the price, carat, color, clarity, and cut of each
diamond. The chart shows that more diamonds are available with high-
quality cuts than with low-quality cuts.

ggplot(diamonds, aes(x = cut)) +  
  geom_bar()

On the x-axis, the chart displays cut, a variable from diamonds. On the
y-axis, it displays count, but count is not a variable in diamonds! Where
does count come from? Many graphs, like scatterplots, plot the raw values
of your dataset. Other graphs, like bar charts, calculate new values to plot:

Bar charts, histograms, and frequency polygons bin your data and then
plot bin counts, the number of points that fall in each bin.

Smoothers fit a model to your data and then plot predictions from the
model.



Boxplots compute the five-number summary of the distribution and
then display that summary as a specially formatted box.

The algorithm used to calculate new values for a graph is called a stat, short
for statistical transformation. Figure 9-2 shows how this process works with
geom_bar().

Figure 9-2. When creating a bar chart, we first start with the raw data, then aggregate it to count the
number of observations in each bar, and finally map those computed variables to plot aesthetics.

You can learn which stat a geom uses by inspecting the default value for the
stat argument. For example, ?geom_bar shows that the default value
for stat is “count,” which means that geom_bar() uses
stat_count(). stat_count() is documented on the same page as
geom_bar(). If you scroll down, the section called “Computed variables”
explains that it computes two new variables: count and prop.

Every geom has a default stat, and every stat has a default geom. This
means you can typically use geoms without worrying about the underlying
statistical transformation. However, there are three reasons why you might
need to use a stat explicitly:

1. You might want to override the default stat. In the following code, we
change the stat of geom_bar() from count (the default) to identity.
This lets us map the height of the bars to the raw values of a y variable.

https://ggplot2.tidyverse.org/reference/geom_bar.html
https://ggplot2.tidyverse.org/reference/geom_bar.html
https://ggplot2.tidyverse.org/reference/geom_bar.html
https://ggplot2.tidyverse.org/reference/geom_bar.html
https://ggplot2.tidyverse.org/reference/geom_bar.html
https://ggplot2.tidyverse.org/reference/geom_bar.html
https://ggplot2.tidyverse.org/reference/geom_bar.html


diamonds |> 
  count(cut) |> 
  ggplot(aes(x = cut, y = n)) + 
  geom_bar(stat = "identity")

2. You might want to override the default mapping from transformed
variables to aesthetics. For example, you might want to display a bar
chart of proportions, rather than counts:

ggplot(diamonds, aes(x = cut, y = after_stat(prop), group = 
1)) +  
  geom_bar()



To find the possible variables that can be computed by the stat, look
for the section titled “Computed variables” in the help for
geom_bar().

3. You might want to draw greater attention to the statistical
transformation in your code. For example, you might use
stat_summary(), which summarizes the y values for each unique
x value, to draw attention to the summary that you’re computing:

ggplot(diamonds) +  
  stat_summary( 
    aes(x = cut, y = depth), 
    fun.min = min, 
    fun.max = max, 
    fun = median 
  )

https://ggplot2.tidyverse.org/reference/geom_bar.html
https://ggplot2.tidyverse.org/reference/stat_summary.html


ggplot2 provides more than 20 stats for you to use. Each stat is a function,
so you can get help in the usual way, e.g., ?stat_bin.

Exercises
1. What is the default geom associated with stat_summary()? How

could you rewrite the previous plot to use that geom function instead
of the stat function?

2. What does geom_col() do? How is it different from
geom_bar()?

3. Most geoms and stats come in pairs that are almost always used in
concert. Make a list of all the pairs. What do they have in common?
(Hint: Read through the documentation.)

4. What variables does stat_smooth() compute? What arguments
control its behavior?

https://ggplot2.tidyverse.org/reference/geom_histogram.html
https://ggplot2.tidyverse.org/reference/stat_summary.html
https://ggplot2.tidyverse.org/reference/geom_bar.html
https://ggplot2.tidyverse.org/reference/geom_bar.html
https://ggplot2.tidyverse.org/reference/geom_smooth.html


5. In our proportion bar chart, we need to set group = 1. Why? In
other words, what is the problem with these two graphs?

ggplot(diamonds, aes(x = cut, y = after_stat(prop))) +  
  geom_bar()
ggplot(diamonds, aes(x = cut, fill = color, y = 
after_stat(prop))) +  
  geom_bar()

Position Adjustments
There’s one more piece of magic associated with bar charts. You can color a
bar chart using either the color aesthetic or, more usefully, the fill
aesthetic:

# Left
ggplot(mpg, aes(x = drv, color = drv)) +  
  geom_bar() 
 
# Right
ggplot(mpg, aes(x = drv, fill = drv)) +  
  geom_bar()

Note what happens if you map the fill aesthetic to another variable, like
class: the bars are automatically stacked. Each colored rectangle
represents a combination of drv and class.

ggplot(mpg, aes(x = drv, fill = class)) +  
  geom_bar()



The stacking is performed automatically using the position adjustment
specified by the position argument. If you don’t want a stacked bar
chart, you can use one of three other options: "identity", "dodge", or
"fill".

position = "identity" will place each object exactly where it
falls in the context of the graph. This is not very useful for bars,
because it overlaps them. To see that overlapping, we need to make the
bars either slightly transparent by setting alpha to a small value or
completely transparent by setting fill = NA.

# Left
ggplot(mpg, aes(x = drv, fill = class)) +  
  geom_bar(alpha = 1/5, position = "identity") 
 
# Right
ggplot(mpg, aes(x = drv, color = class)) +  
  geom_bar(fill = NA, position = "identity")



The identity position adjustment is more useful for 2D geoms, like
points, where it is the default.

position = "fill" works like stacking but makes each set of
stacked bars the same height. This makes it easier to compare
proportions across groups.

position = "dodge" places overlapping objects directly beside
one another. This makes it easier to compare individual values.

# Left
ggplot(mpg, aes(x = drv, fill = class)) +  
  geom_bar(position = "fill") 
 
# Right
ggplot(mpg, aes(x = drv, fill = class)) +  
  geom_bar(position = "dodge")

There’s one other type of adjustment that’s not useful for bar charts but can
be very useful for scatterplots. Recall our first scatterplot. Did you notice



that the plot displays only 126 points, even though there are 234
observations in the dataset?

The underlying values of hwy and displ are rounded so the points appear
on a grid, and many points overlap each other. This problem is known as
overplotting. This arrangement makes it difficult to see the distribution of
the data. Are the data points spread equally throughout the graph, or is there
one special combination of hwy and displ that contains 109 values?

You can avoid this gridding by setting the position adjustment to
“jitter”. Using position = "jitter" adds a small amount of
random noise to each point. This spreads the points out because no two
points are likely to receive the same amount of random noise.

ggplot(mpg, aes(x = displ, y = hwy)) +  
  geom_point(position = "jitter")



Adding randomness seems like a strange way to improve your plot, but
while it makes your graph less accurate at small scales, it makes your graph
more revealing at large scales. Because this is such a useful operation,
ggplot2 comes with a shorthand for geom_point(position =
"jitter"): geom_jitter().

To learn more about a position adjustment, look up the help page associated
with each adjustment:

?position_dodge

?position_fill

?position_identity

?position_jitter

?position_stack

Exercises

https://ggplot2.tidyverse.org/reference/geom_jitter.html
https://ggplot2.tidyverse.org/reference/position_dodge.html
https://ggplot2.tidyverse.org/reference/position_stack.html
https://ggplot2.tidyverse.org/reference/position_identity.html
https://ggplot2.tidyverse.org/reference/position_jitter.html
https://ggplot2.tidyverse.org/reference/position_stack.html


1. What is the problem with the following plot? How could you improve
it?

ggplot(mpg, aes(x = cty, y = hwy)) +  
  geom_point()

2. What, if anything, is the difference between the two plots? Why?

ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_point()
ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_point(position = "identity")

3. What parameters to geom_jitter() control the amount of
jittering?

4. Compare and contrast geom_jitter() with geom_count().

5. What’s the default position adjustment for geom_boxplot()?
Create a visualization of the mpg dataset that demonstrates it.

Coordinate Systems
Coordinate systems are probably the most complicated part of ggplot2. The
default coordinate system is the Cartesian coordinate system where the x
and y positions act independently to determine the location of each point.
There are two other coordinate systems that are occasionally helpful.

coord_quickmap() sets the aspect ratio correctly for geographic
maps. This is important if you’re plotting spatial data with ggplot2. We
don’t have the space to discuss maps in this book, but you can learn
more in the Maps chapter of ggplot2: Elegant Graphics for Data
Analysis (Springer).

nz <- map_data("nz") 
 
ggplot(nz, aes(x = long, y = lat, group = group)) + 
  geom_polygon(fill = "white", color = "black") 

https://ggplot2.tidyverse.org/reference/geom_jitter.html
https://ggplot2.tidyverse.org/reference/geom_jitter.html
https://ggplot2.tidyverse.org/reference/geom_count.html
https://ggplot2.tidyverse.org/reference/geom_boxplot.html
https://ggplot2.tidyverse.org/reference/coord_map.html
https://oreil.ly/45GHE


 
ggplot(nz, aes(x = long, y = lat, group = group)) + 
  geom_polygon(fill = "white", color = "black") + 
  coord_quickmap()



coord_polar() uses polar coordinates. Polar coordinates reveal an
interesting connection between a bar chart and a Coxcomb chart.

bar <- ggplot(data = diamonds) +  
  geom_bar( 
    mapping = aes(x = clarity, fill = clarity),  
    show.legend = FALSE, 
    width = 1 
  ) +  
  theme(aspect.ratio = 1) 
 
bar + coord_flip()
bar + coord_polar()

Exercises
1. Turn a stacked bar chart into a pie chart using coord_polar().

2. What’s the difference between coord_quickmap() and
coord_map()?

3. What does the following plot tell you about the relationship between
city and highway mpg? Why is coord_fixed() important? What
does geom_abline() do?

ggplot(data = mpg, mapping = aes(x = cty, y = hwy)) + 
  geom_point() +  

https://ggplot2.tidyverse.org/reference/coord_polar.html
https://ggplot2.tidyverse.org/reference/coord_polar.html
https://ggplot2.tidyverse.org/reference/coord_map.html
https://ggplot2.tidyverse.org/reference/coord_map.html
https://ggplot2.tidyverse.org/reference/coord_fixed.html
https://ggplot2.tidyverse.org/reference/geom_abline.html


  geom_abline() + 
  coord_fixed()

The Layered Grammar of Graphics
We can expand on the graphing template you learned in “ggplot2 Calls” by
adding position adjustments, stats, coordinate systems, and faceting:

ggplot(data = <DATA>) +  
  <GEOM_FUNCTION>( 
     mapping = aes(<MAPPINGS>), 
     stat = <STAT>,  
     position = <POSITION> 
  ) + 
  <COORDINATE_FUNCTION> + 
  <FACET_FUNCTION>

Our new template takes seven parameters, the bracketed words that appear
in the template. In practice, you rarely need to supply all seven parameters
to make a graph because ggplot2 will provide useful defaults for everything
except the data, the mappings, and the geom function.

The seven parameters in the template compose the grammar of graphics, a
formal system for building plots. The grammar of graphics is based on the
insight that you can uniquely describe any plot as a combination of a
dataset, a geom, a set of mappings, a stat, a position adjustment, a
coordinate system, a faceting scheme, and a theme.

To see how this works, consider how you could build a basic plot from
scratch: you could start with a dataset and then transform it into the
information that you want to display (with a stat). Next, you could choose a
geometric object to represent each observation in the transformed data. You
could then use the aesthetic properties of the geoms to represent variables in
the data. You would map the values of each variable to the levels of an
aesthetic. These steps are illustrated in Figure 9-3. You’d then select a
coordinate system to place the geoms into, using the location of the objects
(which is itself an aesthetic property) to display the values of the x and y
variables.



Figure 9-3. These are the steps for going from raw data to a table of frequencies to a bar plot where
the heights of the bar represent the frequencies.

At this point, you would have a complete graph, but you could further
adjust the positions of the geoms within the coordinate system (a position
adjustment) or split the graph into subplots (faceting). You could also
extend the plot by adding one or more additional layers, where each
additional layer uses a dataset, a geom, a set of mappings, a stat, and a
position adjustment.

You could use this method to build any plot that you imagine. In other
words, you can use the code template that you’ve learned in this chapter to
build hundreds of thousands of unique plots.

If you’d like to learn more about the theoretical underpinnings of ggplot2,
you might enjoy reading “A Layered Grammar of Graphics”, the scientific
paper that describes the theory of ggplot2 in detail.

Summary
In this chapter you learned about the layered grammar of graphics starting
with aesthetics and geometries to build a simple plot, facets for splitting the
plot into subsets, statistics for understanding how geoms are calculated,
position adjustments for controlling the fine details of position when geoms
might otherwise overlap, and coordinate systems that allow you to
fundamentally change what x and y mean. One layer we have not yet
touched on is theme, which we will introduce in “Themes”.

https://oreil.ly/8fZzE


Two very useful resources for getting an overview of the complete ggplot2
functionality are the ggplot2 cheatsheet and the ggplot2 package website.

An important lesson you should take from this chapter is that when you feel
the need for a geom that is not provided by ggplot2, it’s always a good idea
to look into whether someone else has already solved your problem by
creating a ggplot2 extension package that offers that geom.

https://oreil.ly/NlKZF
https://oreil.ly/W6ci8


Chapter 10. Exploratory Data
Analysis

Introduction
This chapter will show you how to use visualization and transformation to
explore your data in a systematic way, a task that statisticians call
exploratory data analysis, or EDA for short. EDA is an iterative cycle. You:

1. Generate questions about your data.

2. Search for answers by visualizing, transforming, and modeling your
data.

3. Use what you learn to refine your questions and/or generate new
questions.

EDA is not a formal process with a strict set of rules. More than anything,
EDA is a state of mind. During the initial phases of EDA you should feel
free to investigate every idea that occurs to you. Some of these ideas will
pan out, and some will be dead ends. As your exploration continues, you
will home in on a few particularly productive insights that you’ll eventually
write up and communicate to others.

EDA is an important part of any data analysis, even if the primary research
questions are handed to you on a platter, because you always need to
investigate the quality of your data. Data cleaning is just one application of
EDA: you ask questions about whether your data meets your expectations.
To do data cleaning, you’ll need to deploy all the tools of EDA:
visualization, transformation, and modeling.

Prerequisites



In this chapter we’ll combine what you’ve learned about dplyr and ggplot2
to interactively ask questions, answer them with data, and then ask new
questions.

library(tidyverse)

Questions
“There are no routine statistical questions, only questionable statistical
routines.” —Sir David Cox

“Far better an approximate answer to the right question, which is often
vague, than an exact answer to the wrong question, which can always be
made precise.” —John Tukey

Your goal during EDA is to develop an understanding of your data. The
easiest way to do this is to use questions as tools to guide your
investigation. When you ask a question, the question focuses your attention
on a specific part of your dataset and helps you decide which graphs,
models, or transformations to make.

EDA is fundamentally a creative process. And like most creative processes,
the key to asking quality questions is to generate a large quantity of
questions. It is difficult to ask revealing questions at the start of your
analysis because you do not know what insights can be gleaned from your
dataset. On the other hand, each new question that you ask will expose you
to a new aspect of your data and increase your chance of making a
discovery. You can quickly drill down into the most interesting parts of your
data—and develop a set of thought-provoking questions—if you follow up
each question with a new question based on what you find.

There is no rule about which questions you should ask to guide your
research. However, two types of questions will always be useful for making
discoveries within your data. You can loosely word these questions as:

1. What type of variation occurs within my variables?



2. What type of covariation occurs between my variables?

The rest of this chapter will look at these two questions. We’ll explain what
variation and covariation are, and we’ll show you several ways to answer
each question.

Variation
Variation is the tendency of the values of a variable to change from
measurement to measurement. You can see variation easily in real life; if
you measure any continuous variable twice, you will get two different
results. This is true even if you measure quantities that are constant, like the
speed of light. Each of your measurements will include a small amount of
error that varies from measurement to measurement. Variables can also vary
if you measure across different subjects (e.g., the eye colors of different
people) or at different times (e.g., the energy levels of an electron at
different moments). Every variable has its own pattern of variation, which
can reveal interesting information about how it varies between
measurements on the same observation as well as across observations. The
best way to understand that pattern is to visualize the distribution of the
variable’s values, which you’ve learned about in Chapter 1.

We’ll start our exploration by visualizing the distribution of weights
(carat) of about 54,000 diamonds from the diamonds dataset. Since
carat is a numerical variable, we can use a histogram:

ggplot(diamonds, aes(x = carat)) + 
  geom_histogram(binwidth = 0.5)



Now that you can visualize variation, what should you look for in your
plots? And what type of follow-up questions should you ask? We’ve put
together a list in the next section of the most useful types of information
that you will find in your graphs, along with some follow-up questions for
each type of information. The key to asking good follow-up questions will
be to rely on your curiosity (what do you want to learn more about?) as well
as your skepticism (how could this be misleading?).

Typical Values
In both bar charts and histograms, tall bars show the common values of a
variable, and shorter bars show less-common values. Places that do not
have bars reveal values that were not seen in your data. To turn this
information into useful questions, look for anything unexpected:

Which values are the most common? Why?

Which values are rare? Why? Does that match your expectations?



Can you see any unusual patterns? What might explain them?

Let’s take a look at the distribution of carat for smaller diamonds:

smaller <- diamonds |>  
  filter(carat < 3) 
 
ggplot(smaller, aes(x = carat)) + 
  geom_histogram(binwidth = 0.01)

This histogram suggests several interesting questions:

Why are there more diamonds at whole carats and common fractions
of carats?

Why are there more diamonds slightly to the right of each peak than
there are slightly to the left of each peak?

Visualizations can also reveal clusters, which suggest that subgroups exist
in your data. To understand the subgroups, ask:



How are the observations within each subgroup similar to each other?

How are the observations in separate clusters different from each
other?

How can you explain or describe the clusters?

Why might the appearance of clusters be misleading?

Some of these questions can be answered with the data, while some will
require domain expertise about the data. Many of them will prompt you to
explore a relationship between variables, for example, to see if the values of
one variable can explain the behavior of another variable. We’ll get to that
shortly.

Unusual Values
Outliers are observations that are unusual, in other words, data points that
don’t seem to fit the pattern. Sometimes outliers are data entry errors,
sometimes they are simply values at the extremes that happened to be
observed in this data collection, and other times they suggest important new
discoveries. When you have a lot of data, outliers are sometimes difficult to
see in a histogram. For example, take the distribution of the y variable from
the diamonds dataset. The only evidence of outliers is the unusually wide
limits on the x-axis.

ggplot(diamonds, aes(x = y)) +  
  geom_histogram(binwidth = 0.5)



There are so many observations in the common bins that the rare bins are
very short, making it difficult to see them (although maybe if you stare
intently at 0, you’ll spot something). To make it easy to see the unusual
values, we need to zoom to small values of the y-axis with
coord_cartesian():

ggplot(diamonds, aes(x = y)) +  
  geom_histogram(binwidth = 0.5) + 
  coord_cartesian(ylim = c(0, 50))

https://ggplot2.tidyverse.org/reference/coord_cartesian.html


coord_cartesian() also has an xlim() argument for when you need
to zoom into the x-axis. ggplot2 also has xlim() and ylim() functions
that work slightly differently: they throw away the data outside the limits.

This allows us to see that there are three unusual values: 0, ~30, and ~60.
We pluck them out with dplyr:

unusual <- diamonds |>  
  filter(y < 3 | y > 20) |>  
  select(price, x, y, z) |> 
  arrange(y)
unusual
#> # A tibble: 9 × 4
#>   price     x     y     z
#>   <int> <dbl> <dbl> <dbl>
#> 1  5139  0      0    0   
#> 2  6381  0      0    0   
#> 3 12800  0      0    0   
#> 4 15686  0      0    0   
#> 5 18034  0      0    0   
#> 6  2130  0      0    0   
#> 7  2130  0      0    0   

https://ggplot2.tidyverse.org/reference/coord_cartesian.html
https://ggplot2.tidyverse.org/reference/lims.html
https://ggplot2.tidyverse.org/reference/lims.html
https://ggplot2.tidyverse.org/reference/lims.html


#> 8  2075  5.15  31.8  5.12
#> 9 12210  8.09  58.9  8.06

The y variable measures one of the three dimensions of these diamonds, in
mm. We know that diamonds can’t have a width of 0mm, so these values
must be incorrect. By doing EDA, we have discovered missing data that
were coded as 0, which we never would have found by simply searching for
NAs. Going forward we might choose to re-code these values as NAs to
prevent misleading calculations. We might also suspect that measurements
of 32mm and 59mm are implausible: those diamonds are more than an inch
long but don’t cost hundreds of thousands of dollars!

It’s good practice to repeat your analysis with and without the outliers. If
they have minimal effect on the results and you can’t figure out why they’re
there, it’s reasonable to omit them and move on. However, if they have a
substantial effect on your results, you shouldn’t drop them without
justification. You’ll need to figure out what caused them (e.g., a data entry
error) and disclose that you removed them in your write-up.

Exercises
1. Explore the distribution of each of the x, y, and z variables in
diamonds. What do you learn? Think about a diamond and how you
might decide which dimension is the length, width, and depth.

2. Explore the distribution of price. Do you discover anything unusual
or surprising? (Hint: Carefully think about the binwidth and make
sure you try a wide range of values.)

3. How many diamonds are 0.99 carat? How many are 1 carat? What do
you think is the cause of the difference?

4. Compare and contrast coord_cartesian() and xlim() or
ylim() when zooming in on a histogram. What happens if you leave
binwidth unset? What happens if you try to zoom so only half a bar
shows?

https://ggplot2.tidyverse.org/reference/coord_cartesian.html
https://ggplot2.tidyverse.org/reference/lims.html
https://ggplot2.tidyverse.org/reference/lims.html


Unusual Values
If you’ve encountered unusual values in your dataset and simply want to
move on to the rest of your analysis, you have two options:

1. Drop the entire row with the strange values:

diamonds2 <- diamonds |>  
  filter(between(y, 3, 20))

We don’t recommend this option because one invalid value doesn’t
imply that all the other values for that observation are also invalid.
Additionally, if you have low-quality data, by the time that you’ve
applied this approach to every variable you might find that you don’t
have any data left!

2. Instead, we recommend replacing the unusual values with missing
values. The easiest way to do this is to use mutate() to replace the
variable with a modified copy. You can use the if_else() function
to replace unusual values with NA:

diamonds2 <- diamonds |>  
  mutate(y = if_else(y < 3 | y > 20, NA, y))

It’s not obvious where you should plot missing values, so ggplot2 doesn’t
include them in the plot, but it does warn that they’ve been removed:

ggplot(diamonds2, aes(x = x, y = y)) +  
  geom_point()
#> Warning: Removed 9 rows containing missing values 
(`geom_point()`).

https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/if_else.html


To suppress that warning, set na.rm = TRUE:

ggplot(diamonds2, aes(x = x, y = y)) +  
  geom_point(na.rm = TRUE)

Other times you want to understand what makes observations with missing
values different to observations with recorded values. For example, in
nycflights13::flights,1 missing values in the dep_time
variable indicate that the flight was cancelled. So you might want to
compare the scheduled departure times for cancelled and noncancelled
times. You can do this by making a new variable, using is.na() to check
whether dep_time is missing.

nycflights13::flights |>  
  mutate( 
    cancelled = is.na(dep_time), 
    sched_hour = sched_dep_time %/% 100, 
    sched_min = sched_dep_time %% 100, 
    sched_dep_time = sched_hour + (sched_min / 60) 
  ) |>  

https://rdrr.io/pkg/nycflights13/man/flights.html
https://rdrr.io/r/base/NA.html


  ggplot(aes(x = sched_dep_time)) +  
  geom_freqpoly(aes(color = cancelled), binwidth = 1/4)

However, this plot isn’t great because there are many more noncancelled
flights than cancelled flights. In the next section, we’ll explore some
techniques for improving this comparison.

Exercises
1. What happens to missing values in a histogram? What happens to

missing values in a bar chart? Why is there a difference in how
missing values are handled in histograms and bar charts?

2. What does na.rm = TRUE do in mean() and sum()?

3. Re-create the frequency plot of scheduled_dep_time colored by
whether the flight was cancelled or not. Also facet by the cancelled
variable. Experiment with different values of the scales variable in

https://rdrr.io/r/base/mean.html
https://rdrr.io/r/base/sum.html


the faceting function to mitigate the effect of more noncancelled flights
than cancelled flights.

Covariation
If variation describes the behavior within a variable, covariation describes
the behavior between variables. Covariation is the tendency for the values
of two or more variables to vary together in a related way. The best way to
spot covariation is to visualize the relationship between two or more
variables.

A Categorical and a Numerical Variable
For example, let’s explore how the price of a diamond varies with its
quality (measured by cut) using geom_freqpoly():

ggplot(diamonds, aes(x = price)) +  
  geom_freqpoly(aes(color = cut), binwidth = 500, linewidth = 
0.75)

https://ggplot2.tidyverse.org/reference/geom_histogram.html


Note that ggplot2 uses an ordered color scale for cut because it’s defined
as an ordered factor variable in the data. You’ll learn more about these in
“Ordered Factors”.

The default appearance of geom_freqpoly() is not that useful here
because the height, determined by the overall count, differs so much across
cuts, making it hard to see the differences in the shapes of their
distributions.

To make the comparison easier, we need to swap what is displayed on the y-
axis. Instead of displaying count, we’ll display the density, which is the
count standardized so that the area under each frequency polygon is 1:

ggplot(diamonds, aes(x = price, y = after_stat(density))) +  
  geom_freqpoly(aes(color = cut), binwidth = 500, linewidth = 
0.75)

https://ggplot2.tidyverse.org/reference/geom_histogram.html


Note that we’re mapping the density the y, but since density is not a
variable in the diamonds dataset, we need to first calculate it. We use the
after_stat() function to do so.

There’s something rather surprising about this plot: it appears that fair
diamonds (the lowest quality) have the highest average price! But maybe
that’s because frequency polygons are a little hard to interpret; there’s a lot
going on in this plot.

A visually simpler plot for exploring this relationship is using side-by-side
boxplots:

ggplot(diamonds, aes(x = cut, y = price)) + 
  geom_boxplot()

https://ggplot2.tidyverse.org/reference/aes_eval.html


We see much less information about the distribution, but the boxplots are
much more compact so we can more easily compare them (and fit more on
one plot). It supports the counterintuitive finding that better-quality
diamonds are typically cheaper! In the exercises, you’ll be challenged to
figure out why.

cut is an ordered factor: fair is worse than good, which is worse than very
good and so on. Many categorical variables don’t have such an intrinsic
order, so you might want to reorder them to make a more informative
display. One way to do that is with fct_reorder(). You’ll learn more
about that function in “Modifying Factor Order”, but we wanted to give you
a quick preview here because it’s so useful. For example, take the class
variable in the mpg dataset. You might be interested to know how highway
mileage varies across classes:

ggplot(mpg, aes(x = class, y = hwy)) + 
  geom_boxplot()

https://forcats.tidyverse.org/reference/fct_reorder.html


To make the trend easier to see, we can reorder class based on the median
value of hwy:

ggplot(mpg, aes(x = fct_reorder(class, hwy, median), y = hwy)) + 
  geom_boxplot()



If you have long variable names, geom_boxplot() will work better if
you flip it 90°. You can do that by exchanging the x and y aesthetic
mappings:

ggplot(mpg, aes(x = hwy, y = fct_reorder(class, hwy, median))) + 
  geom_boxplot()

Exercises

1. Use what you’ve learned to improve the visualization of the departure
times of cancelled versus noncancelled flights.

2. Based on EDA, what variable in the diamonds dataset appears to be
most important for predicting the price of a diamond? How is that
variable correlated with cut? Why does the combination of those two
relationships lead to lower-quality diamonds being more expensive?

3. Instead of exchanging the x and y variables, add coord_flip() as a
new layer to the vertical boxplot to create a horizontal one. How does

https://ggplot2.tidyverse.org/reference/geom_boxplot.html
https://ggplot2.tidyverse.org/reference/coord_flip.html


this compare to exchanging the variables?

4. One problem with boxplots is that they were developed in an era of
much smaller datasets and tend to display a prohibitively large number
of “outlying values.” One approach to remedy this problem is the letter
value plot. Install the lvplot package, and try using geom_lv() to
display the distribution of price versus cut. What do you learn? How
do you interpret the plots?

5. Create a visualization of diamond prices versus a categorical variable
from the diamonds dataset using geom_violin(), then a faceted
geom_histogram(), then a colored geom_freqpoly(), and
then a colored geom_density(). Compare and contrast the four
plots. What are the pros and cons of each method of visualizing the
distribution of a numerical variable based on the levels of a categorical
variable?

6. If you have a small dataset, it’s sometimes useful to use
geom_jitter() to avoid overplotting to more easily see the
relationship between a continuous and categorical variable. The
ggbeeswarm package provides a number of methods similar to
geom_jitter(). List them and briefly describe what each one
does.

Two Categorical Variables
To visualize the covariation between categorical variables, you’ll need to
count the number of observations for each combination of levels of these
categorical variables. One way to do that is to rely on the built-in
geom_count():

ggplot(diamonds, aes(x = cut, y = color)) + 
  geom_count()

https://ggplot2.tidyverse.org/reference/geom_violin.html
https://ggplot2.tidyverse.org/reference/geom_histogram.html
https://ggplot2.tidyverse.org/reference/geom_histogram.html
https://ggplot2.tidyverse.org/reference/geom_density.html
https://ggplot2.tidyverse.org/reference/geom_jitter.html
https://ggplot2.tidyverse.org/reference/geom_jitter.html
https://ggplot2.tidyverse.org/reference/geom_count.html


The size of each circle in the plot displays how many observations occurred
at each combination of values. Covariation will appear as a strong
correlation between specific x values and specific y values.

Another approach for exploring the relationship between these variables is
computing the counts with dplyr:

diamonds |>  
  count(color, cut)
#> # A tibble: 35 × 3
#>   color cut           n
#>   <ord> <ord>     <int>
#> 1 D     Fair        163
#> 2 D     Good        662
#> 3 D     Very Good  1513
#> 4 D     Premium    1603
#> 5 D     Ideal      2834
#> 6 E     Fair        224
#> # … with 29 more rows

Then visualize with geom_tile() and the fill aesthetic:

https://ggplot2.tidyverse.org/reference/geom_tile.html


diamonds |>  
  count(color, cut) |>   
  ggplot(aes(x = color, y = cut)) + 
  geom_tile(aes(fill = n))

If the categorical variables are unordered, you might want to use the
seriation package to simultaneously reorder the rows and columns to more
clearly reveal interesting patterns. For larger plots, you might want to try
the heatmaply package, which creates interactive plots.

Exercises

1. How could you rescale the previous count dataset to more clearly show
the distribution of cut within color, or color within cut?

2. What different data insights do you get with a segmented bar chart if
color is mapped to the x aesthetic and cut is mapped to the fill
aesthetic? Calculate the counts that fall into each of the segments.



3. Use geom_tile() together with dplyr to explore how average flight
departure delays vary by destination and month of year. What makes
the plot difficult to read? How could you improve it?

Two Numerical Variables
You’ve already seen one great way to visualize the covariation between two
numerical variables: draw a scatterplot with geom_point(). You can see
covariation as a pattern in the points. For example, you can see a positive
relationship between the carat size and price of a diamond: diamonds with
more carats have a higher price. The relationship is exponential.

ggplot(smaller, aes(x = carat, y = price)) + 
  geom_point()

(In this section we’ll use the smaller dataset to stay focused on the bulk
of the diamonds that are smaller than 3 carats.)

https://ggplot2.tidyverse.org/reference/geom_tile.html
https://ggplot2.tidyverse.org/reference/geom_point.html


Scatterplots become less useful as the size of your dataset grows, because
points begin to overplot and pile up into areas of uniform black, making it
hard to judge differences in the density of the data across the two-
dimensional space as well as making it hard to spot the trend. You’ve
already seen one way to fix the problem: using the alpha aesthetic to add
transparency.

ggplot(smaller, aes(x = carat, y = price)) +  
  geom_point(alpha = 1 / 100)

But using transparency can be challenging for very large datasets. Another
solution is to use bins. Previously you used geom_histogram() and
geom_freqpoly() to bin in one dimension. Now you’ll learn how to
use geom_bin2d() and geom_hex() to bin in two dimensions.

geom_bin2d() and geom_hex() divide the coordinate plane into 2D
bins and then use a fill color to display how many points fall into each bin.
geom_bin2d() creates rectangular bins. geom_hex() creates

https://ggplot2.tidyverse.org/reference/geom_histogram.html
https://ggplot2.tidyverse.org/reference/geom_histogram.html
https://ggplot2.tidyverse.org/reference/geom_bin_2d.html
https://ggplot2.tidyverse.org/reference/geom_hex.html
https://ggplot2.tidyverse.org/reference/geom_bin_2d.html
https://ggplot2.tidyverse.org/reference/geom_hex.html
https://ggplot2.tidyverse.org/reference/geom_bin_2d.html
https://ggplot2.tidyverse.org/reference/geom_hex.html


hexagonal bins. You will need to install the hexbin package to use
geom_hex().

ggplot(smaller, aes(x = carat, y = price)) + 
  geom_bin2d() 
 
# install.packages("hexbin")
ggplot(smaller, aes(x = carat, y = price)) + 
  geom_hex()

Another option is to bin one continuous variable so it acts like a categorical
variable. Then you can use one of the techniques for visualizing the
combination of a categorical and a continuous variable that you learned
about. For example, you could bin carat and then for each group display
a boxplot:

ggplot(smaller, aes(x = carat, y = price)) +  
  geom_boxplot(aes(group = cut_width(carat, 0.1)))

https://ggplot2.tidyverse.org/reference/geom_hex.html


cut_width(x, width), as used here, divides x into bins of width
width. By default, boxplots look roughly the same (apart from the number
of outliers) regardless of how many observations there are, so it’s difficult
to tell that each boxplot summarizes a different number of points. One way
to show that is to make the width of the boxplot proportional to the number
of points with varwidth = TRUE.

Exercises

1. Instead of summarizing the conditional distribution with a boxplot,
you could use a frequency polygon. What do you need to consider
when using cut_width() versus cut_number()? How does that
impact a visualization of the 2D distribution of carat and price?

2. Visualize the distribution of carat, partitioned by price.

3. How does the price distribution of very large diamonds compare to
small diamonds? Is it as you expect, or does it surprise you?

https://ggplot2.tidyverse.org/reference/cut_interval.html
https://ggplot2.tidyverse.org/reference/cut_interval.html


4. Combine two of the techniques you’ve learned to visualize the
combined distribution of cut, carat, and price.

5. Two-dimensional plots reveal outliers that are not visible in one-
dimensional plots. For example, some points in the following plot have
an unusual combination of x and y values, which makes the points
outliers even though their x and y values appear normal when
examined separately. Why is a scatterplot a better display than a
binned plot for this case?

diamonds |>  
  filter(x >= 4) |>  
  ggplot(aes(x = x, y = y)) + 
  geom_point() + 
  coord_cartesian(xlim = c(4, 11), ylim = c(4, 11))

6. Instead of creating boxes of equal width with cut_width(), we
could create boxes that contain roughly equal number of points with
cut_number(). What are the advantages and disadvantages of this
approach?

ggplot(smaller, aes(x = carat, y = price)) +  
  geom_boxplot(aes(group = cut_number(carat, 20)))

Patterns and Models
If a systematic relationship exists between two variables, it will appear as a
pattern in the data. If you spot a pattern, ask yourself:

Could this pattern be due to coincidence (i.e., random chance)?

How can you describe the relationship implied by the pattern?

How strong is the relationship implied by the pattern?

What other variables might affect the relationship?

https://ggplot2.tidyverse.org/reference/cut_interval.html
https://ggplot2.tidyverse.org/reference/cut_interval.html


Does the relationship change if you look at individual subgroups of the
data?

Patterns in your data provide clues about relationships; i.e., they reveal
covariation. If you think of variation as a phenomenon that creates
uncertainty, covariation is a phenomenon that reduces it. If two variables
covary, you can use the values of one variable to make better predictions
about the values of the second. If the covariation is due to a causal
relationship (a special case), then you can use the value of one variable to
control the value of the second.

Models are a tool for extracting patterns out of data. For example, consider
the diamonds data. It’s hard to understand the relationship between cut and
price, because cut and carat, and carat and price, are tightly related. It’s
possible to use a model to remove the very strong relationship between
price and carat to explore the subtleties that remain. The following code fits
a model that predicts price from carat and then computes the residuals
(the difference between the predicted value and the actual value). The
residuals give us a view of the price of the diamond, once the effect of carat
has been removed. Note that instead of using the raw values of price and
carat, we log transform them first and fit a model to the log-transformed
values. Then, we exponentiate the residuals to put them back in the scale of
raw prices.

library(tidymodels) 
 
diamonds <- diamonds |> 
  mutate( 
    log_price = log(price), 
    log_carat = log(carat) 
  ) 
 
diamonds_fit <- linear_reg() |> 
  fit(log_price ~ log_carat, data = diamonds) 
 
diamonds_aug <- augment(diamonds_fit, new_data = diamonds) |> 
  mutate(.resid = exp(.resid)) 
 



ggplot(diamonds_aug, aes(x = carat, y = .resid)) +  
  geom_point()

Once you’ve removed the strong relationship between carat and price, you
can see what you expect in the relationship between cut and price: relative
to their size, better-quality diamonds are more expensive.

ggplot(diamonds_aug, aes(x = cut, y = .resid)) +  
  geom_boxplot()



We’re not discussing modeling in this book because understanding what
models are and how they work is easiest once you have tools for data
wrangling and programming in hand.

Summary
In this chapter you learned a variety of tools to help you understand the
variation within your data. You saw a technique that works with a single
variable at a time and with a pair of variables. This might seem painfully
restrictive if you have tens or hundreds of variables in your data, but they’re
the foundation upon which all other techniques are built.

In the next chapter, we’ll focus on the tools we can use to communicate our
results.

1  Remember that when we need to be explicit about where a function (or dataset) comes from,
we’ll use the special form package::function() or package::dataset.



Chapter 11. Communication

Introduction
In Chapter 10, you learned how to use plots as tools for exploration. When
you make exploratory plots, you know—even before looking—which
variables the plot will display. You made each plot for a purpose, could
quickly look at it, and could then move on to the next plot. In the course of
most analyses, you’ll produce tens or hundreds of plots, most of which are
immediately thrown away.

Now that you understand your data, you need to communicate your
understanding to others. Your audience will likely not share your
background knowledge and will not be deeply invested in the data. To help
others quickly build up a good mental model of the data, you will need to
invest considerable effort in making your plots as self-explanatory as
possible. In this chapter, you’ll learn some of the tools that ggplot2 provides
to do so.

This chapter focuses on the tools you need to create good graphics. We
assume that you know what you want and just need to know how to do it.
For that reason, we highly recommend pairing this chapter with a good
general visualization book. We particularly like The Truthful Art by Albert
Cairo (New Riders). It doesn’t teach the mechanics of creating
visualizations but instead focuses on what you need to think about to create
effective graphics.

Prerequisites
In this chapter, we’ll focus once again on ggplot2. We’ll also use a little
dplyr for data manipulation; scales to override the default breaks, labels,
transformations and palettes; and a few ggplot2 extension packages,
including ggrepel by Kamil Slowikowski and patchwork by Thomas Lin

https://oreil.ly/QIr_w
https://oreil.ly/IVSL4
https://oreil.ly/xWxVV


Pedersen. Don’t forget that you’ll need to install those packages with
install.packages() if you don’t already have them.

library(tidyverse)
library(scales)
library(ggrepel)
library(patchwork)

Labels
The easiest place to start when turning an exploratory graphic into an
expository graphic is with good labels. You add labels with the labs()
function:

ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_point(aes(color = class)) + 
  geom_smooth(se = FALSE) + 
  labs( 
    x = "Engine displacement (L)", 
    y = "Highway fuel economy (mpg)", 
    color = "Car type", 
    title = "Fuel efficiency generally decreases with engine 
size", 
    subtitle = "Two seaters (sports cars) are an exception 
because of their light weight", 
    caption = "Data from fueleconomy.gov" 
  )

https://rdrr.io/r/utils/install.packages.html
https://ggplot2.tidyverse.org/reference/labs.html


The purpose of a plot title is to summarize the main finding. Avoid titles
that just describe what the plot is, e.g., “A scatterplot of engine
displacement vs. fuel economy.”

If you need to add more text, there are two other useful labels: subtitle
adds additional detail in a smaller font beneath the title, and caption adds
text at the bottom right of the plot, often used to describe the source of the
data. You can also use labs() to replace the axis and legend titles. It’s
usually a good idea to replace short variable names with more detailed
descriptions and to include the units.

It’s possible to use mathematical equations instead of text strings. Just
switch "" out for quote() and read about the available options in ?
plotmath:

df <- tibble( 
  x = 1:10, 
  y = cumsum(x^2)
) 
 

https://ggplot2.tidyverse.org/reference/labs.html
https://rdrr.io/r/base/substitute.html
https://rdrr.io/r/grDevices/plotmath.html


ggplot(df, aes(x, y)) + 
  geom_point() + 
  labs( 
    x = quote(x[i]), 
    y = quote(sum(x[i] ^ 2, i == 1, n)) 
  )

Exercises
1. Create one plot on the fuel economy data with customized title,
subtitle, caption, x, y, and color labels.

2. Re-create the following plot using the fuel economy data. Note that
both the colors and shapes of points vary by type of drivetrain.



3. Take an exploratory graphic that you’ve created in the last month, and
add informative titles to make it easier for others to understand.

Annotations
In addition to labeling major components of your plot, it’s often useful to
label individual observations or groups of observations. The first tool you
have at your disposal is geom_text(). geom_text() is similar to
geom_point(), but it has an additional aesthetic: label. This makes it
possible to add textual labels to your plots.

There are two possible sources of labels. First, you might have a tibble that
provides labels. In the following plot we pull out the cars with the highest
engine size in each drive type and save their information as a new data
frame called label_info:

label_info <- mpg |> 
  group_by(drv) |> 

https://ggplot2.tidyverse.org/reference/geom_text.html
https://ggplot2.tidyverse.org/reference/geom_text.html
https://ggplot2.tidyverse.org/reference/geom_point.html


  arrange(desc(displ)) |> 
  slice_head(n = 1) |> 
  mutate( 
    drive_type = case_when( 
      drv == "f" ~ "front-wheel drive", 
      drv == "r" ~ "rear-wheel drive", 
      drv == "4" ~ "4-wheel drive" 
    ) 
  ) |> 
  select(displ, hwy, drv, drive_type) 
 
label_info
#> # A tibble: 3 × 4
#> # Groups:   drv [3]
#>   displ   hwy drv   drive_type       
#>   <dbl> <int> <chr> <chr>            
#> 1   6.5    17 4     4-wheel drive    
#> 2   5.3    25 f     front-wheel drive
#> 3   7      24 r     rear-wheel drive

Then, we use this new data frame to directly label the three groups to
replace the legend with labels placed directly on the plot. Using the
fontface and size arguments we can customize the look of the text
labels. They’re larger than the rest of the text on the plot and bolded.
(theme(legend.position = "none") turns all the legends off—
we’ll talk about it more shortly.)

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) + 
  geom_point(alpha = 0.3) + 
  geom_smooth(se = FALSE) + 
  geom_text( 
    data = label_info,  
    aes(x = displ, y = hwy, label = drive_type), 
    fontface = "bold", size = 5, hjust = "right", vjust = 
"bottom" 
  ) + 
  theme(legend.position = "none")
#> `geom_smooth()` using method = 'loess' and formula = 'y ~ x'



Note the use of hjust (horizontal justification) and vjust (vertical
justification) to control the alignment of the label.

However, the annotated plot we just made is hard to read because the labels
overlap with each other and with the points. We can use the
geom_label_repel() function from the ggrepel package to address
both of these issues. This useful package will automatically adjust labels so
that they don’t overlap:

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) + 
  geom_point(alpha = 0.3) + 
  geom_smooth(se = FALSE) + 
  geom_label_repel( 
    data = label_info,  
    aes(x = displ, y = hwy, label = drive_type), 
    fontface = "bold", size = 5, nudge_y = 2 
  ) + 
  theme(legend.position = "none")
#> `geom_smooth()` using method = 'loess' and formula = 'y ~ x'

https://rdrr.io/pkg/ggrepel/man/geom_text_repel.html


You can also use the same idea to highlight certain points on a plot with
geom_text_repel() from the ggrepel package. Note another handy
technique used here: we added a second layer of large, hollow points to
further highlight the labeled points.

potential_outliers <- mpg |> 
  filter(hwy > 40 | (hwy > 20 & displ > 5)) 
   
ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_point() + 
  geom_text_repel(data = potential_outliers, aes(label = model)) 
+ 
  geom_point(data = potential_outliers, color = "red") + 
  geom_point( 
    data = potential_outliers,  
    color = "red", size = 3, shape = "circle open" 
  )

https://rdrr.io/pkg/ggrepel/man/geom_text_repel.html


Remember, in addition to geom_text() and geom_label(), you have
many other geoms in ggplot2 available to help annotate your plot. A couple
ideas:

Use geom_hline() and geom_vline() to add reference lines.
We often make them thick (linewidth = 2) and white (color =
white) and draw them underneath the primary data layer. That makes
them easy to see, without drawing attention away from the data.

Use geom_rect() to draw a rectangle around points of interest. The
boundaries of the rectangle are defined by aesthetics xmin, xmax,
ymin, and ymax. Alternatively, look into the ggforce package,
specifically geom_mark_hull(), which allows you to annotate
subsets of points with hulls.

Use geom_segment() with the arrow argument to draw attention
to a point with an arrow. Use aesthetics x and y to define the starting
location, and use xend and yend to define the end location.

https://ggplot2.tidyverse.org/reference/geom_text.html
https://ggplot2.tidyverse.org/reference/geom_text.html
https://ggplot2.tidyverse.org/reference/geom_abline.html
https://ggplot2.tidyverse.org/reference/geom_abline.html
https://ggplot2.tidyverse.org/reference/geom_tile.html
https://oreil.ly/DZtL1
https://ggforce.data-imaginist.com/reference/geom_mark_hull.html
https://ggplot2.tidyverse.org/reference/geom_segment.html


Another handy function for adding annotations to plots is annotate().
As a rule of thumb, geoms are generally useful for highlighting a subset of
the data, while annotate() is useful for adding one or a few annotation
elements to a plot.

To demonstrate using annotate(), let’s create some text to add to our
plot. The text is a bit long, so we’ll use stringr::str_wrap() to
automatically add line breaks to it given the number of characters you want
per line:

trend_text <- "Larger engine sizes tend to\nhave lower fuel 
economy." |> 
  str_wrap(width = 30)
trend_text
#> [1] "Larger engine sizes tend to\nhave lower fuel economy."

Then, we add two layers of annotation: one with a label geom and the other
with a segment geom. The x and y aesthetics in both define where the
annotation should start, and the xend and yend aesthetics in the segment
annotation define the starting location of the end location of the segment.
Note also that the segment is styled as an arrow.

ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_point() + 
  annotate( 
    geom = "label", x = 3.5, y = 38, 
    label = trend_text, 
    hjust = "left", color = "red" 
  ) + 
  annotate( 
    geom = "segment", 
    x = 3, y = 35, xend = 5, yend = 25, color = "red", 
    arrow = arrow(type = "closed") 
  )

https://ggplot2.tidyverse.org/reference/annotate.html
https://ggplot2.tidyverse.org/reference/annotate.html
https://ggplot2.tidyverse.org/reference/annotate.html
https://stringr.tidyverse.org/reference/str_wrap.html


Annotation is a powerful tool for communicating main takeaways and
interesting features of your visualizations. The only limit is your
imagination (and your patience with positioning annotations to be
aesthetically pleasing)!

Exercises
1. Use geom_text() with infinite positions to place text at the four

corners of the plot.

2. Use annotate() to add a point geom in the middle of your last plot
without having to create a tibble. Customize the shape, size, or color of
the point.

3. How do labels with geom_text() interact with faceting? How can
you add a label to a single facet? How can you put a different label in
each facet? (Hint: Think about the dataset that is being passed to
geom_text().)

https://ggplot2.tidyverse.org/reference/geom_text.html
https://ggplot2.tidyverse.org/reference/annotate.html
https://ggplot2.tidyverse.org/reference/geom_text.html
https://ggplot2.tidyverse.org/reference/geom_text.html


4. What arguments to geom_label() control the appearance of the
background box?

5. What are the four arguments to arrow()? How do they work? Create
a series of plots that demonstrate the most important options.

Scales
The third way you can make your plot better for communication is to adjust
the scales. Scales control how the aesthetic mappings manifest visually.

Default Scales
Normally, ggplot2 automatically adds scales for you. For example, when
you type:

ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_point(aes(color = class))

ggplot2 automatically adds default scales behind the scenes:

ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_point(aes(color = class)) + 
  scale_x_continuous() + 
  scale_y_continuous() + 
  scale_color_discrete()

Note the naming scheme for scales: scale_ followed by the name of the
aesthetic, then _, and then the name of the scale. The default scales are
named according to the type of variable they align with: continuous,
discrete, date-time, or date. scale_x_continuous() puts the numeric
values from displ on a continuous number line on the x-axis,
scale_color_discrete() chooses colors for each class of car, etc.
There are lots of nondefault scales, which you’ll learn about next.

The default scales have been carefully chosen to do a good job for a wide
range of inputs. Nevertheless, you might want to override the defaults for

https://ggplot2.tidyverse.org/reference/geom_text.html
https://rdrr.io/r/grid/arrow.html
https://ggplot2.tidyverse.org/reference/scale_continuous.html
https://ggplot2.tidyverse.org/reference/scale_colour_discrete.html


two reasons:

You might want to tweak some of the parameters of the default scale.
This allows you to do things like change the breaks on the axes, or the
key labels on the legend.

You might want to replace the scale altogether and use a completely
different algorithm. Often you can do better than the default because
you know more about the data.

Axis Ticks and Legend Keys
Collectively axes and legends are called guides. Axes are used for x and y
aesthetics; legends are used for everything else.

There are two primary arguments that affect the appearance of the ticks on
the axes and the keys on the legend: breaks and labels. The breaks
argument controls the position of the ticks or the values associated with the
keys. The labels argument controls the text label associated with each
tick/key. The most common use of breaks is to override the default
choice:

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) + 
  geom_point() + 
  scale_y_continuous(breaks = seq(15, 40, by = 5)) 



You can use labels in the same way (a character vector the same length
as breaks), but you can also set it to NULL to suppress the labels
altogether. This can be useful for maps or for publishing plots where you
can’t share the absolute numbers. You can also use breaks and labels
to control the appearance of legends. For discrete scales for categorical
variables, labels can be a named list of the existing levels names and the
desired labels for them.

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) + 
  geom_point() + 
  scale_x_continuous(labels = NULL) + 
  scale_y_continuous(labels = NULL) + 
  scale_color_discrete(labels = c("4" = "4-wheel", "f" = "front", 
"r" = "rear"))



The labels argument coupled with labeling functions from the scales
package is also useful for formatting numbers as currency, percent, etc. The
plot on the left shows default labeling with label_dollar(), which
adds a dollar sign as well as a thousand separator comma. The plot on the
right adds further customization by dividing dollar values by 1,000 and
adding a suffix “K” (for “thousands”) as well as adding custom breaks.
Note that breaks is in the original scale of the data.

# Left
ggplot(diamonds, aes(x = price, y = cut)) + 
  geom_boxplot(alpha = 0.05) + 
  scale_x_continuous(labels = label_dollar()) 
 
# Right
ggplot(diamonds, aes(x = price, y = cut)) + 
  geom_boxplot(alpha = 0.05) + 
  scale_x_continuous( 
    labels = label_dollar(scale = 1/1000, suffix = "K"),  
    breaks = seq(1000, 19000, by = 6000) 
  )

https://scales.r-lib.org/reference/label_dollar.html


Another handy label function is label_percent():

ggplot(diamonds, aes(x = cut, fill = clarity)) + 
  geom_bar(position = "fill") + 
  scale_y_continuous(name = "Percentage", labels = 
label_percent())

Another use of breaks is when you have relatively few data points and
want to highlight exactly where the observations occur. For example, take
this plot that shows when each US president started and ended their term:

https://scales.r-lib.org/reference/label_percent.html


presidential |> 
  mutate(id = 33 + row_number()) |> 
  ggplot(aes(x = start, y = id)) + 
  geom_point() + 
  geom_segment(aes(xend = end, yend = id)) + 
  scale_x_date(name = NULL, breaks = presidential$start, 
date_labels = "'%y")

Note that for the breaks argument we pulled out the start variable as a
vector with presidential$start because we can’t do an aesthetic
mapping for this argument. Also note that the specification of breaks and
labels for date and date-time scales is a little different:

date_labels takes a format specification, in the same form as
parse_datetime().

date_breaks (not shown here) takes a string like “2 days” or “1
month.”

Legend Layout

https://readr.tidyverse.org/reference/parse_datetime.html


You will most often use breaks and labels to tweak the axes. While
they both also work for legends, there are a few other techniques you are
more likely to use.

To control the overall position of the legend, you need to use a theme()
setting. We’ll come back to themes at the end of the chapter, but in brief,
they control the nondata parts of the plot. The theme setting
legend.position controls where the legend is drawn:

base <- ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_point(aes(color = class)) 
 
base + theme(legend.position = "right") # the default
base + theme(legend.position = "left")
base +  
  theme(legend.position = "top") + 
  guides(col = guide_legend(nrow = 3))
base +  
  theme(legend.position = "bottom") + 
  guides(col = guide_legend(nrow = 3))

https://ggplot2.tidyverse.org/reference/theme.html


If your plot is short and wide, place the legend at the top or bottom, and if
it’s tall and narrow, place the legend at the left or right. You can also use
legend.position = "none" to suppress the display of the legend
altogether.

To control the display of individual legends, use guides() along with
guide_legend() or guide_colorbar(). The following example
shows two important settings: controlling the number of rows the legend
uses with nrow, and overriding one of the aesthetics to make the points
bigger. This is particularly useful if you have used a low alpha to display
many points on a plot.

ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_point(aes(color = class)) + 
  geom_smooth(se = FALSE) + 
  theme(legend.position = "bottom") + 
  guides(color = guide_legend(nrow = 2, override.aes = list(size 
= 4)))
#> `geom_smooth()` using method = 'loess' and formula = 'y ~ x'

https://ggplot2.tidyverse.org/reference/guides.html
https://ggplot2.tidyverse.org/reference/guide_legend.html
https://ggplot2.tidyverse.org/reference/guide_colourbar.html


Note that the name of the argument in guides() matches the name of the
aesthetic, just like in labs().

Replacing a Scale
Instead of just tweaking the details a little, you can instead replace the scale
altogether. There are two types of scales you’re most likely to want to
switch out: continuous position scales and color scales. Fortunately, the
same principles apply to all the other aesthetics, so once you’ve mastered
position and color, you’ll be able to quickly pick up other scale
replacements.

It’s useful to plot transformations of your variable. For example, it’s easier
to see the precise relationship between carat and price if we log
transform them:

# Left
ggplot(diamonds, aes(x = carat, y = price)) + 
  geom_bin2d() 
 
# Right
ggplot(diamonds, aes(x = log10(carat), y = log10(price))) + 
  geom_bin2d()

However, the disadvantage of this transformation is that the axes are now
labeled with the transformed values, making it hard to interpret the plot.
Instead of doing the transformation in the aesthetic mapping, we can instead

https://ggplot2.tidyverse.org/reference/guides.html
https://ggplot2.tidyverse.org/reference/labs.html


do it with the scale. This is visually identical, except the axes are labeled on
the original data scale.

ggplot(diamonds, aes(x = carat, y = price)) + 
  geom_bin2d() +  
  scale_x_log10() +  
  scale_y_log10()

Another scale that is frequently customized is color. The default categorical
scale picks colors that are evenly spaced around the color wheel. Useful
alternatives are the ColorBrewer scales, which have been hand tuned to
work better for people with common types of color blindness. The
following two plots look similar, but there is enough difference in the
shades of red and green that the dots on the right can be distinguished even
by people with red-green color blindness.1

ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_point(aes(color = drv)) 
 
ggplot(mpg, aes(x = displ, y = hwy)) + 



  geom_point(aes(color = drv)) + 
  scale_color_brewer(palette = "Set1")

Don’t forget simpler techniques for improving accessibility. If there are just
a few colors, you can add a redundant shape mapping. This will also help
ensure your plot is interpretable in black and white.

ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_point(aes(color = drv, shape = drv)) + 
  scale_color_brewer(palette = "Set1")



The ColorBrewer scales are documented online and made available in R via
the RColorBrewer package, by Erich Neuwirth. Figure 11-1 shows the
complete list of all palettes. The sequential (top) and diverging (bottom)
palettes are particularly useful if your categorical values are ordered or have
a “middle.” This often arises if you’ve used cut() to make a continuous
variable into a categorical variable.

https://oreil.ly/LNHAy
https://rdrr.io/r/base/cut.html


Figure 11-1. All ColorBrewer scales.



When you have a predefined mapping between values and colors, use
scale_color_manual(). For example, if we map presidential party to
color, we want to use the standard mapping of red for Republicans and blue
for Democrats. One approach for assigning these colors is using hex color
codes:

presidential |> 
  mutate(id = 33 + row_number()) |> 
  ggplot(aes(x = start, y = id, color = party)) + 
  geom_point() + 
  geom_segment(aes(xend = end, yend = id)) + 
  scale_color_manual(values = c(Republican = "#E81B23", 
Democratic = "#00AEF3"))

For continuous color, you can use the built-in
scale_color_gradient() or scale_fill_gradient(). If you
have a diverging scale, you can use scale_color_gradient2(). That
allows you to give, for example, positive and negative values different

https://ggplot2.tidyverse.org/reference/scale_manual.html
https://ggplot2.tidyverse.org/reference/scale_gradient.html
https://ggplot2.tidyverse.org/reference/scale_gradient.html
https://ggplot2.tidyverse.org/reference/scale_gradient.html


colors. That’s sometimes also useful if you want to distinguish points above
or below the mean.

Another option is to use the viridis color scales. The designers, Nathaniel
Smith and Stéfan van der Walt, carefully tailored continuous color schemes
that are perceptible to people with various forms of color blindness as well
as perceptually uniform in both color and black and white. These scales are
available as continuous (c), discrete (d), and binned (b) palettes in ggplot2.

df <- tibble( 
  x = rnorm(10000), 
  y = rnorm(10000)
) 
 
ggplot(df, aes(x, y)) + 
  geom_hex() + 
  coord_fixed() + 
  labs(title = "Default, continuous", x = NULL, y = NULL) 
 
ggplot(df, aes(x, y)) + 
  geom_hex() + 
  coord_fixed() + 
  scale_fill_viridis_c() + 
  labs(title = "Viridis, continuous", x = NULL, y = NULL) 
 
ggplot(df, aes(x, y)) + 
  geom_hex() + 
  coord_fixed() + 
  scale_fill_viridis_b() + 
  labs(title = "Viridis, binned", x = NULL, y = NULL)

Note that all color scales come in two varieties: scale_color_*() and
scale_fill_*() for the color and fill aesthetics, respectively (the



color scales are available in both UK and US spellings).

Zooming
There are three ways to control the plot limits:

Adjusting what data are plotted

Setting the limits in each scale

Setting xlim and ylim in coord_cartesian()

We’ll demonstrate these options in a series of plots. The plot on the left
shows the relationship between engine size and fuel efficiency, colored by
type of drivetrain. The plot on the right shows the same variables but
subsets the data plotted. Subsetting the data has affected the x and y scales
as well as the smooth curve.

# Left
ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_point(aes(color = drv)) + 
  geom_smooth() 
 
# Right
mpg |> 
  filter(displ >= 5 & displ <= 6 & hwy >= 10 & hwy <= 25) |> 
  ggplot(aes(x = displ, y = hwy)) + 
  geom_point(aes(color = drv)) + 
  geom_smooth()

https://ggplot2.tidyverse.org/reference/coord_cartesian.html


Let’s compare these to the two following plots where the plot on the left
sets the limits on individual scales and the plot on the right sets them in
coord_cartesian(). We can see that reducing the limits is equivalent
to subsetting the data. Therefore, to zoom in on a region of the plot, it’s
generally best to use coord_cartesian().

# Left
ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_point(aes(color = drv)) + 
  geom_smooth() + 
  scale_x_continuous(limits = c(5, 6)) + 
  scale_y_continuous(limits = c(10, 25)) 
 
# Right
ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_point(aes(color = drv)) + 
  geom_smooth() + 
  coord_cartesian(xlim = c(5, 6), ylim = c(10, 25))

On the other hand, setting the limits on individual scales is generally
more useful if you want to expand the limits, e.g., to match scales across
different plots. For example, if we extract two classes of cars and plot them
separately, it’s difficult to compare the plots because all three scales (the x-
axis, the y-axis, and the color aesthetic) have different ranges.

suv <- mpg |> filter(class == "suv")
compact <- mpg |> filter(class == "compact") 
 
# Left
ggplot(suv, aes(x = displ, y = hwy, color = drv)) + 

https://ggplot2.tidyverse.org/reference/coord_cartesian.html
https://ggplot2.tidyverse.org/reference/coord_cartesian.html


  geom_point() 
 
# Right
ggplot(compact, aes(x = displ, y = hwy, color = drv)) + 
  geom_point()

One way to overcome this problem is to share scales across multiple plots,
training the scales with the limits of the full data.

x_scale <- scale_x_continuous(limits = range(mpg$displ))
y_scale <- scale_y_continuous(limits = range(mpg$hwy))
col_scale <- scale_color_discrete(limits = unique(mpg$drv)) 
 
# Left
ggplot(suv, aes(x = displ, y = hwy, color = drv)) + 
  geom_point() + 
  x_scale + 
  y_scale + 
  col_scale 
 
# Right
ggplot(compact, aes(x = displ, y = hwy, color = drv)) + 
  geom_point() + 
  x_scale + 
  y_scale + 
  col_scale



In this particular case, you could have simply used faceting, but this
technique is useful more generally, if, for instance, you want to spread plots
over multiple pages of a report.

Exercises
1. Why doesn’t the following code override the default scale?

df <- tibble( 
  x = rnorm(10000), 
  y = rnorm(10000)
) 
 
ggplot(df, aes(x, y)) + 
  geom_hex() + 
  scale_color_gradient(low = "white", high = "red") + 
  coord_fixed()

2. What is the first argument to every scale? How does it compare to
labs()?

3. Change the display of the presidential terms by:

a. Combining the two variants that customize colors and x-axis
breaks

b. Improving the display of the y-axis

c. Labeling each term with the name of the president

https://ggplot2.tidyverse.org/reference/labs.html


d. Adding informative plot labels

e. Placing breaks every four years (this is trickier than it seems!)

4. First, create the following plot. Then, modify the code using
override.aes to make the legend easier to see.

ggplot(diamonds, aes(x = carat, y = price)) + 
  geom_point(aes(color = cut), alpha = 1/20)

Themes
Finally, you can customize the nondata elements of your plot with a theme:

ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_point(aes(color = class)) + 
  geom_smooth(se = FALSE) + 
  theme_bw()



ggplot2 includes the eight themes shown in Figure 11-2, with
theme_gray() as the default.2 Many more are included in add-on
packages like ggthemes, by Jeffrey Arnold. You can also create your own
themes, if you are trying to match a particular corporate or journal style.

Figure 11-2. The eight themes built in to ggplot2.

It’s also possible to control individual components of each theme, such as
the size and color of the font used for the y-axis. We’ve already seen that
legend.position controls where the legend is drawn. There are many

https://ggplot2.tidyverse.org/reference/ggtheme.html
https://oreil.ly/F1nga


other aspects of the legend that can be customized with theme(). For
example, in the following plot we change the direction of the legend as well
as put a black border around it. Note that customization of the legend box
and plot title elements of the theme are done with element_*()
functions. These functions specify the styling of nondata components; e.g.,
the title text is bolded in the face argument of element_text(), and
the legend border color is defined in the color argument of
element_rect(). The theme elements that control the position of the
title and the caption are plot.title.position and
plot.caption.position, respectively. In the following plot these are
set to "plot" to indicate these elements are aligned to the entire plot area,
instead of the plot panel (the default). A few other helpful theme()
components are used to change the placement for formatting the title and
caption text.

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) + 
  geom_point() + 
  labs( 
    title = "Larger engine sizes tend to have lower fuel 
economy", 
    caption = "Source: https://fueleconomy.gov." 
  ) + 
  theme( 
    legend.position = c(0.6, 0.7), 
    legend.direction = "horizontal", 
    legend.box.background = element_rect(color = "black"), 
    plot.title = element_text(face = "bold"), 
    plot.title.position = "plot", 
    plot.caption.position = "plot", 
    plot.caption = element_text(hjust = 0) 
  )

https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/element.html
https://ggplot2.tidyverse.org/reference/element.html
https://ggplot2.tidyverse.org/reference/theme.html


For an overview of all theme() components, see the help with ?theme.
The ggplot2 book is also a great place to go for the full details on theming.

Exercises
1. Pick a theme offered by the ggthemes package and apply it to the last

plot you made.

2. Make the axis labels of your plot blue and bold.

Layout
So far we talked about how to create and modify a single plot. What if you
have multiple plots you want to lay out in a certain way? The patchwork
package allows you to combine separate plots into the same graphic. We
loaded this package earlier in the chapter.

https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/theme.html
https://oreil.ly/T4Jxn


To place two plots next to each other, you can simply add them to each
other. Note that you first need to create the plots and save them as objects
(in the following example they’re called p1 and p2). Then, you place them
next to each other with +.

p1 <- ggplot(mpg, aes(x = displ, y = hwy)) +  
  geom_point() +  
  labs(title = "Plot 1")
p2 <- ggplot(mpg, aes(x = drv, y = hwy)) +  
  geom_boxplot() +  
  labs(title = "Plot 2")
p1 + p2

It’s important to note that in the previous code chunk we did not use a new
function from the patchwork package. Instead, the package added a new
functionality to the + operator.

You can also create complex plot layouts with patchwork. In the following,
| places the p1 and p3 next to each other, and / moves p2 to the next line:

p3 <- ggplot(mpg, aes(x = cty, y = hwy)) +  
  geom_point() +  
  labs(title = "Plot 3")
(p1 | p3) / p2



Additionally, patchwork allows you to collect legends from multiple plots
into one common legend, customize the placement of the legend as well as
dimensions of the plots, and add a common title, subtitle, caption, etc., to
your plots. Here we created five plots. We turned off the legends on the box
plots and the scatterplot and collected the legends for the density plots at the
top of the plot with & theme(legend.position = "top"). Note
the use of the & operator here instead of the usual +. This is because we’re
modifying the theme for the patchwork plot as opposed to the individual
ggplots. The legend is placed on top, inside the guide_area(). Finally,
we have also customized the heights of the various components of our
patchwork—the guide has a height of 1, the box plots 3, the density plots 2,
and the faceted scatterplot 4. Patchwork divides up the area you have
allotted for your plot using this scale and places the components
accordingly.

https://patchwork.data-imaginist.com/reference/guide_area.html


p1 <- ggplot(mpg, aes(x = drv, y = cty, color = drv)) +  
  geom_boxplot(show.legend = FALSE) +  
  labs(title = "Plot 1") 
 
p2 <- ggplot(mpg, aes(x = drv, y = hwy, color = drv)) +  
  geom_boxplot(show.legend = FALSE) +  
  labs(title = "Plot 2") 
 
p3 <- ggplot(mpg, aes(x = cty, color = drv, fill = drv)) +  
  geom_density(alpha = 0.5) +  
  labs(title = "Plot 3") 
 
p4 <- ggplot(mpg, aes(x = hwy, color = drv, fill = drv)) +  
  geom_density(alpha = 0.5) +  
  labs(title = "Plot 4") 
 
p5 <- ggplot(mpg, aes(x = cty, y = hwy, color = drv)) +  
  geom_point(show.legend = FALSE) +  
  facet_wrap(~drv) + 
  labs(title = "Plot 5") 
 
(guide_area() / (p1 + p2) / (p3 + p4) / p5) + 
  plot_annotation( 
    title = "City and highway mileage for cars with different 
drivetrains", 
    caption = "Source: https://fueleconomy.gov." 
  ) + 
  plot_layout( 
    guides = "collect", 
    heights = c(1, 3, 2, 4) 
    ) & 
  theme(legend.position = "top")



If you’d like to learn more about combining and laying out multiple plots
with patchwork, we recommend looking through the guides on the package
website.

Exercises
1. What happens if you omit the parentheses in the following plot layout.

Can you explain why this happens?

https://oreil.ly/xWxVV


p1 <- ggplot(mpg, aes(x = displ, y = hwy)) +  
  geom_point() +  
  labs(title = "Plot 1")
p2 <- ggplot(mpg, aes(x = drv, y = hwy)) +  
  geom_boxplot() +  
  labs(title = "Plot 2")
p3 <- ggplot(mpg, aes(x = cty, y = hwy)) +  
  geom_point() +  
  labs(title = "Plot 3") 
 
(p1 | p2) / p3

Using the three plots from the previous exercise, re-create the following
patchwork:

Summary



In this chapter you learned about adding plot labels such as title, subtitle,
and caption as well as modifying default axis labels, using annotation to add
informational text to your plot or to highlight specific data points,
customizing the axis scales, and changing the theme of your plot. You also
learned about combining multiple plots in a single graph using both simple
and complex plot layouts.

While you’ve so far learned about how to make many different types of
plots and how to customize them using a variety of techniques, we’ve
barely scratched the surface of what you can create with ggplot2. If you
want to get a comprehensive understanding of ggplot2, we recommend
reading the book ggplot2: Elegant Graphics for Data Analysis (Springer).
Other useful resources are the R Graphics Cookbook by Winston Chang
(O’Reilly) and Fundamentals of Data Visualization by Claus Wilke
(O’Reilly).

1  You can use a tool like SimDaltonism to simulate color blindness to test these images.

2  Many people wonder why the default theme has a gray background. This was a deliberate
choice because it puts the data forward while still making the grid lines visible. The white grid
lines are visible (which is important because they significantly aid position judgments), but
they have little visual impact, and we can easily tune them out. The gray background gives the
plot a similar typographic color to the text, ensuring that the graphics fit in with the flow of a
document without jumping out with a bright white background. Finally, the gray background
creates a continuous field of color, which ensures that the plot is perceived as a single visual
entity.

https://oreil.ly/T4Jxn
https://oreil.ly/CK_sd
https://oreil.ly/uJRYK
https://oreil.ly/i11yd


Part III. Transform

The second part of the book was a deep dive into data visualization. In this
part of the book, you’ll learn about the most important types of variables
that you’ll encounter inside a data frame and learn the tools you can use to
work with them.

Figure III-1. The options for data transformation depend heavily on the type of data involved, the
subject of this part of the book.

You can read these chapters as you need them; they’re designed to be
largely standalone so that they can be read out of order.

Chapter 12 teaches you about logical vectors. These are the simplest
types of vectors, but they are extremely powerful. You’ll learn how to
create them with numeric comparisons, how to combine them with
Boolean algebra, how to use them in summaries, and how to use them
for condition transformations.

Chapter 13 dives into tools for vectors of numbers, the powerhouse of
data science. You’ll learn more about counting and a bunch of
important transformation and summary functions.



Chapter 14 gives you the tools to work with strings: you’ll slice them,
you’ll dice them, and you’ll stick them back together again. This
chapter mostly focuses on the stringr package, but you’ll also learn
some more tidyr functions devoted to extracting data from character
strings.

Chapter 15 introduces you to regular expressions, a powerful tool for
manipulating strings. This chapter will take you from thinking that a
cat walked over your keyboard to reading and writing complex string
patterns.

Chapter 16 introduces factors: the data type that R uses to store
categorical data. You use a factor when a variable has a fixed set of
possible values, or when you want to use a nonalphabetical ordering of
a string.

Chapter 17 gives you the key tools for working with dates and date-
times. Unfortunately, the more you learn about date-times, the more
complicated they seem to get, but with the help of the lubridate
package, you’ll learn to how to overcome the most common
challenges.

Chapter 18 discusses missing values in depth. We’ve discussed them a
couple of times in isolation, but now it’s time to discuss them
holistically, helping you come to grips with the difference between
implicit and explicit missing values and how and why you might
convert between them.

Chapter 19 finishes up this part of the book by giving you the tools to
join two (or more) data frames together. Learning about joins will
force you to grapple with the idea of keys and think about how you
identify each row in a dataset.



Chapter 12. Logical Vectors

Introduction
In this chapter, you’ll learn tools for working with logical vectors. Logical
vectors are the simplest type of vector because each element can be only
one of three possible values: TRUE, FALSE, and NA. It’s relatively rare to
find logical vectors in your raw data, but you’ll create and manipulate them
in the course of almost every analysis.

We’ll begin by discussing the most common way of creating logical
vectors: with numeric comparisons. Then you’ll learn about how you can
use Boolean algebra to combine different logical vectors, as well as some
useful summaries. We’ll finish off with if_else() and case_when(),
two useful functions for making conditional changes powered by logical
vectors.

Prerequisites
Most of the functions you’ll learn about in this chapter are provided by base
R, so we don’t need the tidyverse, but we’ll still load it so we can use
mutate(), filter(), and friends to work with data frames. We’ll also
continue to draw examples from the nycflights13::flights
dataset.

library(tidyverse)
library(nycflights13)

However, as we start to cover more tools, there won’t always be a perfect
real example. So we’ll start making up some dummy data with c():

x <- c(1, 2, 3, 5, 7, 11, 13)
x * 2
#> [1]  2  4  6 10 14 22 26

https://dplyr.tidyverse.org/reference/if_else.html
https://dplyr.tidyverse.org/reference/case_when.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/filter.html
https://rdrr.io/pkg/nycflights13/man/flights.html
https://rdrr.io/r/base/c.html


This makes it easier to explain individual functions at the cost of making it
harder to see how it might apply to your data problems. Just remember that
any manipulation we do to a free-floating vector, you can do to a variable
inside a data frame with mutate() and friends.

df <- tibble(x)
df |>  
  mutate(y = x *  2)
#> # A tibble: 7 × 2
#>       x     y
#>   <dbl> <dbl>
#> 1     1     2
#> 2     2     4
#> 3     3     6
#> 4     5    10
#> 5     7    14
#> 6    11    22
#> # … with 1 more row

Comparisons
A common way to create a logical vector is via a numeric comparison with
<, <=, >, >=, !=, and ==. So far, we’ve mostly created logical variables
transiently within filter()—they are computed, used, and then thrown
away. For example, the following filter finds all daytime departures that
arrive roughly on time:

flights |>  
  filter(dep_time > 600 & dep_time < 2000 & abs(arr_delay) < 20)
#> # A tibble: 172,286 × 19
#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
<int>
#> 1  2013     1     1      601            600         1      844  
850
#> 2  2013     1     1      602            610        -8      812  
820
#> 3  2013     1     1      602            605        -3      821  
805
#> 4  2013     1     1      606            610        -4      858  
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910
#> 5  2013     1     1      606            610        -4      837  
845
#> 6  2013     1     1      607            607         0      858  
915
#> # … with 172,280 more rows, and 11 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, 
dest <chr>, …

It’s useful to know that this is a shortcut and you can explicitly create the
underlying logical variables with mutate():

flights |>  
  mutate( 
    daytime = dep_time > 600 & dep_time < 2000, 
    approx_ontime = abs(arr_delay) < 20, 
    .keep = "used" 
  )
#> # A tibble: 336,776 × 4
#>   dep_time arr_delay daytime approx_ontime
#>      <int>     <dbl> <lgl>   <lgl>        
#> 1      517        11 FALSE   TRUE         
#> 2      533        20 FALSE   FALSE        
#> 3      542        33 FALSE   FALSE        
#> 4      544       -18 FALSE   TRUE         
#> 5      554       -25 FALSE   FALSE        
#> 6      554        12 FALSE   TRUE         
#> # … with 336,770 more rows

This is particularly useful for more complicated logic because naming the
intermediate steps makes it easier to both read your code and check that
each step has been computed correctly.

All told, the initial filter is equivalent to the following:

flights |>  
  mutate( 
    daytime = dep_time > 600 & dep_time < 2000, 
    approx_ontime = abs(arr_delay) < 20, 
  ) |>  
  filter(daytime & approx_ontime)

https://dplyr.tidyverse.org/reference/mutate.html


Floating-Point Comparison
Beware of using == with numbers. For example, it looks like this vector
contains the numbers 1 and 2:

x <- c(1 / 49 * 49, sqrt(2) ^ 2)
x
#> [1] 1 2

But if you test them for equality, you get FALSE:

x == c(1, 2)
#> [1] FALSE FALSE

What’s going on? Computers store numbers with a fixed number of decimal
places, so there’s no way to exactly represent 1/49 or sqrt(2), and
subsequent computations will be very slightly off. We can see the exact
values by calling print() with the digits1 argument:

print(x, digits = 16)
#> [1] 0.9999999999999999 2.0000000000000004

You can see why R defaults to rounding these numbers; they really are very
close to what you expect.

Now that you’ve seen why == is failing, what can you do about it? One
option is to use dplyr::near(), which ignores small differences:

near(x, c(1, 2))
#> [1] TRUE TRUE

Missing Values
Missing values represent the unknown, so they are “contagious”: almost
any operation involving an unknown value will also be unknown:

NA > 5
#> [1] NA
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10 == NA
#> [1] NA

The most confusing result is this one:

NA == NA
#> [1] NA

It’s easiest to understand why this is true if we artificially supply a little
more context:

# We don't know how old Mary is
age_mary <- NA 
 
# We don't know how old John is
age_john <- NA 
 
# Are Mary and John the same age?
age_mary == age_john
#> [1] NA
# We don't know!

So if you want to find all flights where dep_time is missing, the
following code doesn’t work because dep_time == NA will yield NA for
every single row, and filter() automatically drops missing values:

flights |>  
  filter(dep_time == NA)
#> # A tibble: 0 × 19
#> # … with 19 variables: year <int>, month <int>, day <int>, 
dep_time <int>,
#> #   sched_dep_time <int>, dep_delay <dbl>, arr_time <int>, …

Instead we’ll need a new tool: is.na().

is.na()
is.na(x) works with any type of vector and returns TRUE for missing
values and FALSE for everything else:
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is.na(c(TRUE, NA, FALSE))
#> [1] FALSE  TRUE FALSE
is.na(c(1, NA, 3))
#> [1] FALSE  TRUE FALSE
is.na(c("a", NA, "b"))
#> [1] FALSE  TRUE FALSE

We can use is.na() to find all the rows with a missing dep_time:

flights |>  
  filter(is.na(dep_time))
#> # A tibble: 8,255 × 19
#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
<int>
#> 1  2013     1     1       NA           1630        NA       NA  
1815
#> 2  2013     1     1       NA           1935        NA       NA  
2240
#> 3  2013     1     1       NA           1500        NA       NA  
1825
#> 4  2013     1     1       NA            600        NA       NA  
901
#> 5  2013     1     2       NA           1540        NA       NA  
1747
#> 6  2013     1     2       NA           1620        NA       NA  
1746
#> # … with 8,249 more rows, and 11 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, 
dest <chr>, …

is.na() can also be useful in arrange(). arrange() usually puts all
the missing values at the end, but you can override this default by first
sorting by is.na():

flights |>  
  filter(month == 1, day == 1) |>  
  arrange(dep_time)
#> # A tibble: 842 × 19
#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
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<int>
#> 1  2013     1     1      517            515         2      830  
819
#> 2  2013     1     1      533            529         4      850  
830
#> 3  2013     1     1      542            540         2      923  
850
#> 4  2013     1     1      544            545        -1     1004  
1022
#> 5  2013     1     1      554            600        -6      812  
837
#> 6  2013     1     1      554            558        -4      740  
728
#> # … with 836 more rows, and 11 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, 
dest <chr>, … 
 
flights |>  
  filter(month == 1, day == 1) |>  
  arrange(desc(is.na(dep_time)), dep_time)
#> # A tibble: 842 × 19
#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
<int>
#> 1  2013     1     1       NA           1630        NA       NA  
1815
#> 2  2013     1     1       NA           1935        NA       NA  
2240
#> 3  2013     1     1       NA           1500        NA       NA  
1825
#> 4  2013     1     1       NA            600        NA       NA  
901
#> 5  2013     1     1      517            515         2      830  
819
#> 6  2013     1     1      533            529         4      850  
830
#> # … with 836 more rows, and 11 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, 
dest <chr>, …

We’ll come back to cover missing values in more depth in Chapter 18.

Exercises



1. How does dplyr::near() work? Type near to see the source
code. Is sqrt(2)^2 near 2?

2. Use mutate(), is.na(), and count() together to describe how
the missing values in dep_time, sched_dep_time, and
dep_delay are connected.

Boolean Algebra
Once you have multiple logical vectors, you can combine them using
Boolean algebra. In R, & is “and,” | is “or,” ! is “not,” and xor() is
exclusive or.2 For example, df |> filter(!is.na(x)) finds all
rows where x is not missing, and df |> filter(x < -10 | x >
0) finds all rows where x is smaller than -10 or bigger than 0. Figure 12-1
shows the complete set of Boolean operations and how they work.

Figure 12-1. The complete set of Boolean operations. x is the left circle, y is the right circle, and the
shaded region show which parts each operator selects.

As well as & and |, R also has && and ||. Don’t use them in dplyr
functions! These are called short-circuiting operators and only ever return a
single TRUE or FALSE. They’re important for programming, not data
science.
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Missing Values
The rules for missing values in Boolean algebra are a little tricky to explain
because they seem inconsistent at first glance:

df <- tibble(x = c(TRUE, FALSE, NA)) 
 
df |>  
  mutate( 
    and = x & NA, 
    or = x | NA 
  )
#> # A tibble: 3 × 3
#>   x     and   or   
#>   <lgl> <lgl> <lgl>
#> 1 TRUE  NA    TRUE 
#> 2 FALSE FALSE NA   
#> 3 NA    NA    NA

To understand what’s going on, think about NA | TRUE. A missing value
in a logical vector means that the value could be either TRUE or FALSE.
TRUE | TRUE and FALSE | TRUE are both TRUE because at least one
of them is TRUE. So NA | TRUE must also be TRUE because NA can
either be TRUE or FALSE. However, NA | FALSE is NA because we
don’t know if NA is TRUE or FALSE. Similar reasoning applies with NA &
FALSE.

Order of Operations
Note that the order of operations doesn’t work like English. Take the
following code that finds all flights that departed in November or
December:

flights |>  
   filter(month == 11 | month == 12)

You might be tempted to write it like you’d say in English: “Find all flights
that departed in November or December”:



flights |>  
   filter(month == 11 | 12)
#> # A tibble: 336,776 × 19
#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
<int>
#> 1  2013     1     1      517            515         2      830  
819
#> 2  2013     1     1      533            529         4      850  
830
#> 3  2013     1     1      542            540         2      923  
850
#> 4  2013     1     1      544            545        -1     1004  
1022
#> 5  2013     1     1      554            600        -6      812  
837
#> 6  2013     1     1      554            558        -4      740  
728
#> # … with 336,770 more rows, and 11 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, 
dest <chr>, …

This code doesn’t error, but it also doesn’t seem to have worked. What’s
going on? Here, R first evaluates month == 11 creating a logical vector,
which we call nov. It computes nov | 12. When you use a number with
a logical operator, it converts everything apart from 0 to TRUE, so this is
equivalent to nov | TRUE, which will always be TRUE, so every row
will be selected:

flights |>  
  mutate( 
    nov = month == 11, 
    final = nov | 12, 
    .keep = "used" 
  )
#> # A tibble: 336,776 × 3
#>   month nov   final
#>   <int> <lgl> <lgl>
#> 1     1 FALSE TRUE 
#> 2     1 FALSE TRUE 
#> 3     1 FALSE TRUE 
#> 4     1 FALSE TRUE 



#> 5     1 FALSE TRUE 
#> 6     1 FALSE TRUE 
#> # … with 336,770 more rows

%in%
An easy way to avoid the problem of getting your ==s and |s in the right
order is to use %in%. x %in% y returns a logical vector the same length
as x that is TRUE whenever a value in x is anywhere in y.

1:12 %in% c(1, 5, 11)
#>  [1]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE 
FALSE  TRUE FALSE
letters[1:10] %in% c("a", "e", "i", "o", "u")
#>  [1]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE 
FALSE

So to find all flights in November and December, we could write:

flights |>  
  filter(month %in% c(11, 12))

Note that %in% obeys different rules for NA to ==, as NA %in% NA is
TRUE.

c(1, 2, NA) == NA
#> [1] NA NA NA
c(1, 2, NA) %in% NA
#> [1] FALSE FALSE  TRUE

This can make for a useful shortcut:

flights |>  
  filter(dep_time %in% c(NA, 0800))
#> # A tibble: 8,803 × 19
#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
<int>
#> 1  2013     1     1      800            800         0     1022  
1014



#> 2  2013     1     1      800            810       -10      949  
955
#> 3  2013     1     1       NA           1630        NA       NA  
1815
#> 4  2013     1     1       NA           1935        NA       NA  
2240
#> 5  2013     1     1       NA           1500        NA       NA  
1825
#> 6  2013     1     1       NA            600        NA       NA  
901
#> # … with 8,797 more rows, and 11 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, 
dest <chr>, …

Exercises
1. Find all flights where arr_delay is missing but dep_delay is not.

Find all flights where neither arr_time nor sched_arr_time is
missing, but arr_delay is.

2. How many flights have a missing dep_time? What other variables
are missing in these rows? What might these rows represent?

3. Assuming that a missing dep_time implies that a flight is cancelled,
look at the number of cancelled flights per day. Is there a pattern? Is
there a connection between the proportion of canceled flights and the
average delay of non-cancelled flights?

Summaries
The following sections describe some useful techniques for summarizing
logical vectors. As well as functions that only work specifically with logical
vectors, you can also use functions that work with numeric vectors.

Logical Summaries
There are two main logical summaries: any() and all(). any(x) is the
equivalent of |; it’ll return TRUE if there are any TRUEs in x. all(x) is
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equivalent of &; it’ll return TRUE only if all values of x are TRUEs. Like all
summary functions, they’ll return NA if there are any missing values
present, and as usual you can make the missing values go away with
na.rm = TRUE.

For example, we could use all() and any() to find out if every flight
was delayed on departure by at most an hour or if any flights were delayed
on arrival by five hours or more. And using group_by() allows us to do
that by day:

flights |>  
  group_by(year, month, day) |>  
  summarize( 
    all_delayed = all(dep_delay <= 60, na.rm = TRUE), 
    any_long_delay = any(arr_delay >= 300, na.rm = TRUE), 
    .groups = "drop" 
  )
#> # A tibble: 365 × 5
#>    year month   day all_delayed any_long_delay
#>   <int> <int> <int> <lgl>       <lgl>         
#> 1  2013     1     1 FALSE       TRUE          
#> 2  2013     1     2 FALSE       TRUE          
#> 3  2013     1     3 FALSE       FALSE         
#> 4  2013     1     4 FALSE       FALSE         
#> 5  2013     1     5 FALSE       TRUE          
#> 6  2013     1     6 FALSE       FALSE         
#> # … with 359 more rows

In most cases, however, any() and all() are a little too crude, and it
would be nice to be able to get a little more detail about how many values
are TRUE or FALSE. That leads us to the numeric summaries.

Numeric Summaries of Logical Vectors
When you use a logical vector in a numeric context, TRUE becomes 1, and
FALSE becomes 0. This makes sum() and mean() useful with logical
vectors because sum(x) gives the number of TRUEs and mean(x) gives
the proportion of TRUEs (because mean() is just sum() divided by
length()).
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That, for example, allows us to see the proportion of flights that were
delayed on departure by at most an hour and the number of flights that were
delayed on arrival by five hours or more:

flights |>  
  group_by(year, month, day) |>  
  summarize( 
    all_delayed = mean(dep_delay <= 60, na.rm = TRUE), 
    any_long_delay = sum(arr_delay >= 300, na.rm = TRUE), 
    .groups = "drop" 
  )
#> # A tibble: 365 × 5
#>    year month   day all_delayed any_long_delay
#>   <int> <int> <int>       <dbl>          <int>
#> 1  2013     1     1       0.939              3
#> 2  2013     1     2       0.914              3
#> 3  2013     1     3       0.941              0
#> 4  2013     1     4       0.953              0
#> 5  2013     1     5       0.964              1
#> 6  2013     1     6       0.959              0
#> # … with 359 more rows

Logical Subsetting
There’s one final use for logical vectors in summaries: you can use a logical
vector to filter a single variable to a subset of interest. This makes use of the
base [ (pronounced subset) operator, which you’ll learn more about in
“Selecting Multiple Elements with [”.

Imagine we wanted to look at the average delay just for flights that were
actually delayed. One way to do so would be to first filter the flights and
then calculate the average delay:

flights |>  
  filter(arr_delay > 0) |>  
  group_by(year, month, day) |>  
  summarize( 
    behind = mean(arr_delay), 
    n = n(), 
    .groups = "drop" 
  )
#> # A tibble: 365 × 5
#>    year month   day behind     n



#>   <int> <int> <int>  <dbl> <int>
#> 1  2013     1     1   32.5   461
#> 2  2013     1     2   32.0   535
#> 3  2013     1     3   27.7   460
#> 4  2013     1     4   28.3   297
#> 5  2013     1     5   22.6   238
#> 6  2013     1     6   24.4   381
#> # … with 359 more rows

This works, but what if we wanted to also compute the average delay for
flights that arrived early? We’d need to perform a separate filter step and
then figure out how to combine the two data frames together.3 Instead, you
could use [ to perform an inline filtering: arr_delay[arr_delay >
0] will yield only the positive arrival delays.

This leads to:

flights |>  
  group_by(year, month, day) |>  
  summarize( 
    behind = mean(arr_delay[arr_delay > 0], na.rm = TRUE), 
    ahead = mean(arr_delay[arr_delay < 0], na.rm = TRUE), 
    n = n(), 
    .groups = "drop" 
  )
#> # A tibble: 365 × 6
#>    year month   day behind ahead     n
#>   <int> <int> <int>  <dbl> <dbl> <int>
#> 1  2013     1     1   32.5 -12.5   842
#> 2  2013     1     2   32.0 -14.3   943
#> 3  2013     1     3   27.7 -18.2   914
#> 4  2013     1     4   28.3 -17.0   915
#> 5  2013     1     5   22.6 -14.0   720
#> 6  2013     1     6   24.4 -13.6   832
#> # … with 359 more rows

Also note the difference in the group size: in the first chunk, n() gives the
number of delayed flights per day; in the second, n() gives the total
number of flights.

Exercises
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1. What will sum(is.na(x)) tell you? How about
mean(is.na(x))?

2. What does prod() return when applied to a logical vector? What
logical summary function is it equivalent to? What does min() return
when applied to a logical vector? What logical summary function is it
equivalent to? Read the documentation and perform a few
experiments.

Conditional Transformations
One of the most powerful features of logical vectors are their use for
conditional transformations, i.e., doing one thing for condition x and doing
something different for condition y. There are two important tools for this:
if_else() and case_when().

if_else()
If you want to use one value when a condition is TRUE and another value
when it’s FALSE, you can use dplyr::if_else().4 You’ll always use
the first three argument of if_else(). The first argument, condition,
is a logical vector; the second, true, gives the output when the condition is
true; and the third, false, gives the output if the condition is false.

Let’s begin with a simple example of labeling a numeric vector as either
“+ve” (positive) or “-ve” (negative):

x <- c(-3:3, NA)
if_else(x > 0, "+ve", "-ve")
#> [1] "-ve" "-ve" "-ve" "-ve" "+ve" "+ve" "+ve" NA

There’s an optional fourth argument, missing, which will be used if the
input is NA:

if_else(x > 0, "+ve", "-ve", "???")
#> [1] "-ve" "-ve" "-ve" "-ve" "+ve" "+ve" "+ve" "???"
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You can also use vectors for the true and false arguments. For example,
this allows us to create a minimal implementation of abs():

if_else(x < 0, -x, x)
#> [1]  3  2  1  0  1  2  3 NA

So far all the arguments have used the same vectors, but you can of course
mix and match. For example, you could implement a simple version of
coalesce() like this:

x1 <- c(NA, 1, 2, NA)
y1 <- c(3, NA, 4, 6)
if_else(is.na(x1), y1, x1)
#> [1] 3 1 2 6

You might have noticed a small infelicity in our previous labeling example:
zero is neither positive nor negative. We could resolve this by adding an
additional if_else():

if_else(x == 0, "0", if_else(x < 0, "-ve", "+ve"), "???")
#> [1] "-ve" "-ve" "-ve" "0"   "+ve" "+ve" "+ve" "???"

This is already a little hard to read, and you can imagine it would only get
harder if you have more conditions. Instead, you can switch to
dplyr::case_when().

case_when()
dplyr’s case_when() is inspired by SQL’s CASE statement and provides
a flexible way of performing different computations for different
conditions. It has a special syntax that unfortunately looks like nothing else
you’ll use in the tidyverse. It takes pairs that look like condition ~
output. condition must be a logical vector; when it’s TRUE, output
will be used.

This means we could re-create our previous nested if_else() as
follows:
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x <- c(-3:3, NA)
case_when( 
  x == 0   ~ "0", 
  x < 0    ~ "-ve",  
  x > 0    ~ "+ve", 
  is.na(x) ~ "???"
)
#> [1] "-ve" "-ve" "-ve" "0"   "+ve" "+ve" "+ve" "???"

This is more code, but it’s also more explicit.

To explain how case_when() works, let’s explore some simpler cases. If
none of the cases matches, the output gets an NA:

case_when( 
  x < 0 ~ "-ve", 
  x > 0 ~ "+ve"
)
#> [1] "-ve" "-ve" "-ve" NA    "+ve" "+ve" "+ve" NA

If you want to create a “default”/catchall value, use TRUE on the left side:

case_when( 
  x < 0 ~ "-ve", 
  x > 0 ~ "+ve", 
  TRUE ~ "???"
)
#> [1] "-ve" "-ve" "-ve" "???" "+ve" "+ve" "+ve" "???"

Note that if multiple conditions match, only the first will be used:

case_when( 
  x > 0 ~ "+ve", 
  x > 2 ~ "big"
)
#> [1] NA    NA    NA    NA    "+ve" "+ve" "+ve" NA

Just like with if_else() you can use variables on both sides of the ~,
and you can mix and match variables as needed for your problem. For
example, we could use case_when() to provide some human-readable
labels for the arrival delay:
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flights |>  
  mutate( 
    status = case_when( 
      is.na(arr_delay)      ~ "cancelled", 
      arr_delay < -30       ~ "very early", 
      arr_delay < -15       ~ "early", 
      abs(arr_delay) <= 15  ~ "on time", 
      arr_delay < 60        ~ "late", 
      arr_delay < Inf       ~ "very late", 
    ), 
    .keep = "used" 
  )
#> # A tibble: 336,776 × 2
#>   arr_delay status 
#>       <dbl> <chr>  
#> 1        11 on time
#> 2        20 late   
#> 3        33 late   
#> 4       -18 early  
#> 5       -25 early  
#> 6        12 on time
#> # … with 336,770 more rows

Be wary when writing this sort of complex case_when() statement; my
first two attempts used a mix of < and >, and I kept accidentally creating
overlapping conditions.

Compatible Types
Note that both if_else() and case_when() require compatible types
in the output. If they’re not compatible, you’ll see errors like this:

if_else(TRUE, "a", 1)
#> Error in `if_else()`:
#> ! Can't combine `true` <character> and `false` <double>. 
 
case_when( 
  x < -1 ~ TRUE,   
  x > 0  ~ now()
)
#> Error in `case_when()`:
#> ! Can't combine `..1 (right)` <logical> and `..2 (right)` 
<datetime<local>>.
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Overall, relatively few types are compatible, because automatically
converting one type of vector to another is a common source of errors. Here
are the most important cases that are compatible:

Numeric and logical vectors are compatible, as we discussed in
“Numeric Summaries of Logical Vectors”.

Strings and factors (Chapter 16) are compatible, because you can think
of a factor as a string with a restricted set of values.

Dates and date-times, which we’ll discuss in Chapter 17, are
compatible because you can think of a date as a special case of date-
time.

NA, which is technically a logical vector, is compatible with everything
because every vector has some way of representing a missing value.

We don’t expect you to memorize these rules, but they should become
second nature over time because they are applied consistently throughout
the tidyverse.

Exercises
1. A number is even if it’s divisible by two, which in R you can find out

with x %% 2 == 0. Use this fact and if_else() to determine
whether each number between 0 and 20 is even or odd.

2. Given a vector of days like x <- c("Monday", "Saturday",
"Wednesday"), use an ifelse() statement to label them as
weekends or weekdays.

3. Use ifelse() to compute the absolute value of a numeric vector
called x.

4. Write a case_when() statement that uses the month and day
columns from flights to label a selection of important US holidays
(e.g., New Years Day, Fourth of July, Thanksgiving, and Christmas).
First create a logical column that is either TRUE or FALSE, and then
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create a character column that either gives the name of the holiday or
is NA.

Summary
The definition of a logical vector is simple because each value must be
either TRUE, FALSE, or NA. But logical vectors provide a huge amount of
power. In this chapter, you learned how to create logical vectors with >, <,
<=, =>, ==, !=, and is.na(); how to combine them with !, &, and |;
and how to summarize them with any(), all(), sum(), and mean().
You also learned the powerful if_else() and case_when() functions
that allow you to return values depending on the value of a logical vector.

We’ll see logical vectors again and again in the following chapters. For
example, in Chapter 14, you’ll learn about str_detect(x,
pattern), which returns a logical vector that’s TRUE for the elements of
x that match the pattern, and in Chapter 17, you’ll create logical vectors
from the comparison of dates and times. But for now, we’re going to move
onto the next most important type of vector: numeric vectors.

1  R normally calls print for you (i.e., x is a shortcut for print(x)), but calling it explicitly is
useful if you want to provide other arguments.

2  That is, xor(x, y) is true if x is true or y is true, but not both. This is how we usually use
“or” in English. “Both” is not usually an acceptable answer to the question “Would you like ice
cream or cake?”

3  We’ll cover this in Chapter 19.

4  dplyr’s if_else() is similar to base R’s ifelse(). There are two main advantages of
if_else() over ifelse(): you can choose what should happen to missing values, and
if_else() is much more likely to give you a meaningful error if your variables have
incompatible types.
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Chapter 13. Numbers

Introduction
Numeric vectors are the backbone of data science, and you’ve already used
them a bunch of times earlier in the book. Now it’s time to systematically
survey what you can do with them in R, ensuring that you’re well situated
to tackle any future problem involving numeric vectors.

We’ll start by giving you a couple of tools to make numbers if you have
strings and then go into a little more detail on count(). Then we’ll dive
into various numeric transformations that pair well with mutate(),
including more general transformations that can be applied to other types of
vectors but are often used with numeric vectors. We’ll finish off by
covering the summary functions that pair well with summarize() and
show you how they can also be used with mutate().

Prerequisites
This chapter mostly uses functions from base R, which are available
without loading any packages. But we still need the tidyverse because we’ll
use these base R functions inside of tidyverse functions such as mutate()
and filter(). Like in the previous chapter, we’ll use real examples from
nycflights13, as well as toy examples made with c() and tribble().

library(tidyverse)
library(nycflights13)

Making Numbers
In most cases, you’ll get numbers already recorded in one of R’s numeric
types: integer or double. In some cases, however, you’ll encounter them as
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strings, possibly because you’ve created them by pivoting from column
headers or because something has gone wrong in your data import process.

readr provides two useful functions for parsing strings into numbers:
parse_double() and parse_number(). Use parse_double()
when you have numbers that have been written as strings:

x <- c("1.2", "5.6", "1e3")
parse_double(x)
#> [1]    1.2    5.6 1000.0

Use parse_number() when the string contains non-numeric text that
you want to ignore. This is particularly useful for currency data and
percentages:

x <- c("$1,234", "USD 3,513", "59%")
parse_number(x)
#> [1] 1234 3513   59

Counts
It’s surprising how much data science you can do with just counts and a
little basic arithmetic, so dplyr strives to make counting as easy as possible
with count(). This function is great for quick exploration and checks
during analysis:

flights |> count(dest)
#> # A tibble: 105 × 2
#>   dest      n
#>   <chr> <int>
#> 1 ABQ     254
#> 2 ACK     265
#> 3 ALB     439
#> 4 ANC       8
#> 5 ATL   17215
#> 6 AUS    2439
#> # … with 99 more rows
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(Despite the advice in Chapter 4, we usually put count() on a single line
because it’s usually used at the console for a quick check that a calculation
is working as expected.)

If you want to see the most common values, add sort = TRUE:

flights |> count(dest, sort = TRUE)
#> # A tibble: 105 × 2
#>   dest      n
#>   <chr> <int>
#> 1 ORD   17283
#> 2 ATL   17215
#> 3 LAX   16174
#> 4 BOS   15508
#> 5 MCO   14082
#> 6 CLT   14064
#> # … with 99 more rows

And remember that if you want to see all the values, you can use |>
View() or |> print(n = Inf).

You can perform the same computation “by hand” with group_by(),
summarize(), and n(). This is useful because it allows you to compute
other summaries at the same time:

flights |>  
  group_by(dest) |>  
  summarize( 
    n = n(), 
    delay = mean(arr_delay, na.rm = TRUE) 
  )
#> # A tibble: 105 × 3
#>   dest      n delay
#>   <chr> <int> <dbl>
#> 1 ABQ     254  4.38
#> 2 ACK     265  4.85
#> 3 ALB     439 14.4 
#> 4 ANC       8 -2.5 
#> 5 ATL   17215 11.3 
#> 6 AUS    2439  6.02
#> # … with 99 more rows

https://dplyr.tidyverse.org/reference/count.html
https://dplyr.tidyverse.org/reference/group_by.html
https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/context.html


n() is a special summary function that doesn’t take any arguments and
instead accesses information about the “current” group. This means that it
works only inside dplyr verbs:

n()
#> Error in `n()`:
#> ! Must only be used inside data-masking verbs like `mutate()`,
#>   `filter()`, and `group_by()`.

There are a couple of variants of n() and count() that you might find
useful:

n_distinct(x) counts the number of distinct (unique) values of
one or more variables. For example, we could figure out which
destinations are served by the most carriers:

flights |>  
  group_by(dest) |>  
  summarize(carriers = n_distinct(carrier)) |>  
  arrange(desc(carriers))
#> # A tibble: 105 × 2
#>   dest  carriers
#>   <chr>    <int>
#> 1 ATL          7
#> 2 BOS          7
#> 3 CLT          7
#> 4 ORD          7
#> 5 TPA          7
#> 6 AUS          6
#> # … with 99 more rows

A weighted count is a sum. For example, you could “count” the
number of miles each plane flew:

flights |>  
  group_by(tailnum) |>  
  summarize(miles = sum(distance))
#> # A tibble: 4,044 × 2
#>   tailnum  miles
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#>   <chr>    <dbl>
#> 1 D942DN    3418
#> 2 N0EGMQ  250866
#> 3 N10156  115966
#> 4 N102UW   25722
#> 5 N103US   24619
#> 6 N104UW   25157
#> # … with 4,038 more rows

Weighted counts are a common problem, so count() has a wt
argument that does the same thing:

flights |> count(tailnum, wt = distance)

You can count missing values by combining sum() and is.na(). In
the flights dataset this represents flights that are cancelled:

flights |>  
  group_by(dest) |>  
  summarize(n_cancelled = sum(is.na(dep_time)))  
#> # A tibble: 105 × 2
#>   dest  n_cancelled
#>   <chr>       <int>
#> 1 ABQ             0
#> 2 ACK             0
#> 3 ALB            20
#> 4 ANC             0
#> 5 ATL           317
#> 6 AUS            21
#> # … with 99 more rows

Exercises
1. How can you use count() to count the number rows with a missing

value for a given variable?

2. Expand the following calls to count() to instead use group_by(),
summarize(), and arrange():

a. flights |> count(dest, sort = TRUE)
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b. flights |> count(tailnum, wt = distance)

Numeric Transformations
Transformation functions work well with mutate() because their output
is the same length as the input. The vast majority of transformation
functions are already built into base R. It’s impractical to list them all, so
this section will show the most useful ones. As an example, while R
provides all the trigonometric functions that you might dream of, we don’t
list them here because they’re rarely needed for data science.

Arithmetic and Recycling Rules
We introduced the basics of arithmetic (+, -, *, /, ^) in Chapter 2 and have
used them a bunch since. These functions don’t need a huge amount of
explanation because they do what you learned in grade school. But we need
to briefly talk about the recycling rules, which determine what happens
when the left and right sides have different lengths. This is important for
operations like flights |> mutate(air_time = air_time /
60) because there are 336,776 numbers on the left of / but only one on the
right.

R handles mismatched lengths by recycling, or repeating, the short vector.
We can see this in operation more easily if we create some vectors outside
of a data frame:

x <- c(1, 2, 10, 20)
x / 5
#> [1] 0.2 0.4 2.0 4.0
# is shorthand for
x / c(5, 5, 5, 5)
#> [1] 0.2 0.4 2.0 4.0

Generally, you want to recycle only single numbers (i.e., vectors of length
1), but R will recycle any shorter length vector. It usually (but not always)
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gives you a warning if the longer vector isn’t a multiple of the shorter:

x * c(1, 2)
#> [1]  1  4 10 40
x * c(1, 2, 3)
#> Warning in x * c(1, 2, 3): longer object length is not a 
multiple of shorter
#> object length
#> [1]  1  4 30 20

These recycling rules are also applied to logical comparisons (==, <, <=, >,
>=, !=) and can lead to a surprising result if you accidentally use ==
instead of %in% and the data frame has an unfortunate number of rows. For
example, take this code, which attempts to find all flights in January and
February:

flights |>  
  filter(month == c(1, 2))
#> # A tibble: 25,977 × 19
#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
<int>
#> 1  2013     1     1      517            515         2      830  
819
#> 2  2013     1     1      542            540         2      923  
850
#> 3  2013     1     1      554            600        -6      812  
837
#> 4  2013     1     1      555            600        -5      913  
854
#> 5  2013     1     1      557            600        -3      838  
846
#> 6  2013     1     1      558            600        -2      849  
851
#> # … with 25,971 more rows, and 11 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, 
dest <chr>, …



The code runs without error, but it doesn’t return what you want. Because
of the recycling rules, it finds flights in odd-numbered rows that departed in
January and flights in even numbered rows that departed in February.
Unfortunately, there’s no warning because flights has an even number
of rows.

To protect you from this type of silent failure, most tidyverse functions use
a stricter form of recycling that recycles only single values. Unfortunately,
that doesn’t help here, or in many other cases, because the key computation
is performed by the base R function ==, not filter().

Minimum and Maximum
The arithmetic functions work with pairs of variables. Two closely related
functions are pmin() and pmax(), which when given two or more
variables will return the smallest or largest value in each row:

df <- tribble( 
  ~x, ~y, 
  1,  3, 
  5,  2, 
  7, NA,
) 
 
df |>  
  mutate( 
    min = pmin(x, y, na.rm = TRUE), 
    max = pmax(x, y, na.rm = TRUE) 
  )
#> # A tibble: 3 × 4
#>       x     y   min   max
#>   <dbl> <dbl> <dbl> <dbl>
#> 1     1     3     1     3
#> 2     5     2     2     5
#> 3     7    NA     7     7

Note that these are different from the summary functions min() and
max(), which take multiple observations and return a single value. You
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can tell that you’ve used the wrong form when all the minimums and all the
maximums have the same value:

df |>  
  mutate( 
    min = min(x, y, na.rm = TRUE), 
    max = max(x, y, na.rm = TRUE) 
  )
#> # A tibble: 3 × 4
#>       x     y   min   max
#>   <dbl> <dbl> <dbl> <dbl>
#> 1     1     3     1     7
#> 2     5     2     1     7
#> 3     7    NA     1     7

Modular Arithmetic
Modular arithmetic is the technical name for the type of math you did
before you learned about decimal places, i.e., division that yields a whole
number and a remainder. In R, %/% does integer division, and %% computes
the remainder:

1:10 %/% 3
#>  [1] 0 0 1 1 1 2 2 2 3 3
1:10 %% 3
#>  [1] 1 2 0 1 2 0 1 2 0 1

Modular arithmetic is handy for the flights dataset, because we can use
it to unpack the sched_dep_time variable into hour and minute:

flights |>  
  mutate( 
    hour = sched_dep_time %/% 100, 
    minute = sched_dep_time %% 100, 
    .keep = "used" 
  )
#> # A tibble: 336,776 × 3
#>   sched_dep_time  hour minute
#>            <int> <dbl>  <dbl>



#> 1            515     5     15
#> 2            529     5     29
#> 3            540     5     40
#> 4            545     5     45
#> 5            600     6      0
#> 6            558     5     58
#> # … with 336,770 more rows

We can combine that with the mean(is.na(x)) trick from “Summaries”
to see how the proportion of cancelled flights varies over the course of the
day. The results are shown in Figure 13-1.

flights |>  
  group_by(hour = sched_dep_time %/% 100) |>  
  summarize(prop_cancelled = mean(is.na(dep_time)), n = n()) |>  
  filter(hour > 1) |>  
  ggplot(aes(x = hour, y = prop_cancelled)) + 
  geom_line(color = "grey50") +  
  geom_point(aes(size = n))



Figure 13-1. A line plot with scheduled departure hour on the x-axis, and proportion of cancelled
flights on the y-axis. Cancellations seem to accumulate over the course of the day until 8 p.m., and

very late flights are much less likely to be cancelled.

Logarithms
Logarithms are an incredibly useful transformation for dealing with data
that ranges across multiple orders of magnitude and for converting
exponential growth to linear growth. In R, you have a choice of three
logarithms: log() (the natural log, base e), log2() (base 2), and
log10() (base 10). We recommend using log2() or log10().
log2() is easy to interpret because a difference of 1 on the log scale
corresponds to doubling on the original scale, and a difference of -1
corresponds to halving, whereas log10() is easy to back-transform
because, for example, 3 is 10^3 = 1000. The inverse of log() is exp();
to compute the inverse of log2() or log10(), you’ll need to use 2^ or
10^.
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Rounding
Use round(x) to round a number to the nearest integer:

round(123.456)
#> [1] 123

You can control the precision of the rounding with the second argument,
digits. round(x, digits) rounds to the nearest 10^-n, so
digits = 2 will round to the nearest 0.01. This definition is useful
because it implies round(x, -3) will round to the nearest thousand,
which indeed it does:

round(123.456, 2)  # two digits
#> [1] 123.46
round(123.456, 1)  # one digit
#> [1] 123.5
round(123.456, -1) # round to nearest ten
#> [1] 120
round(123.456, -2) # round to nearest hundred
#> [1] 100

There’s one weirdness with round() that seems surprising at first glance:

round(c(1.5, 2.5))
#> [1] 2 2

round() uses what’s known as “round half to even” or Banker’s
rounding: if a number is halfway between two integers, it will be rounded to
the even integer. This is a good strategy because it keeps the rounding
unbiased: half of all 0.5s are rounded up, and half are rounded down.

round() is paired with floor(), which always rounds down, and
ceiling(), which always rounds up:

x <- 123.456 
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floor(x)
#> [1] 123
ceiling(x)
#> [1] 124

These functions don’t have a digits argument, so you can instead scale
down, round, and then scale back up:

# Round down to nearest two digits
floor(x / 0.01) * 0.01
#> [1] 123.45
# Round up to nearest two digits
ceiling(x / 0.01) * 0.01
#> [1] 123.46

You can use the same technique if you want to round() to a multiple of
some other number:

# Round to nearest multiple of 4
round(x / 4) * 4
#> [1] 124 
 
# Round to nearest 0.25
round(x / 0.25) * 0.25
#> [1] 123.5

Cutting Numbers into Ranges
Use cut()1 to break up (aka bin) a numeric vector into discrete buckets:

x <- c(1, 2, 5, 10, 15, 20)
cut(x, breaks = c(0, 5, 10, 15, 20))
#> [1] (0,5]   (0,5]   (0,5]   (5,10]  (10,15] (15,20]
#> Levels: (0,5] (5,10] (10,15] (15,20]

The breaks don’t need to be evenly spaced:
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cut(x, breaks = c(0, 5, 10, 100))
#> [1] (0,5]    (0,5]    (0,5]    (5,10]   (10,100] (10,100]
#> Levels: (0,5] (5,10] (10,100]

You can optionally supply your own labels. Note that there should be
one less labels than breaks.

cut(x,  
  breaks = c(0, 5, 10, 15, 20),  
  labels = c("sm", "md", "lg", "xl")
)
#> [1] sm sm sm md lg xl
#> Levels: sm md lg xl

Any values outside of the range of the breaks will become NA:

y <- c(NA, -10, 5, 10, 30)
cut(y, breaks = c(0, 5, 10, 15, 20))
#> [1] <NA>   <NA>   (0,5]  (5,10] <NA>  
#> Levels: (0,5] (5,10] (10,15] (15,20]

See the documentation for other useful arguments such as right and
include.lowest, which control if the intervals are [a, b) or (a,
b] and if the lowest interval should be [a, b].

Cumulative and Rolling Aggregates
Base R provides cumsum(), cumprod(), cummin(), and cummax()
for running, or cumulative, sums, products, and mins and maxes. dplyr
provides cummean() for cumulative means. Cumulative sums tend to
come up the most in practice:

x <- 1:10
cumsum(x)
#>  [1]  1  3  6 10 15 21 28 36 45 55
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If you need more complex rolling or sliding aggregates, try the slider
package.

Exercises
1. Explain in words what each line of the code used to generate

Figure 13-1 does.

2. What trigonometric functions does R provide? Guess some names and
look up the documentation. Do they use degrees or radians?

3. Currently dep_time and sched_dep_time are convenient to look
at but hard to compute with because they’re not really continuous
numbers. You can see the basic problem by running the following
code; there’s a gap between each hour:

flights |>  
  filter(month == 1, day == 1) |>  
  ggplot(aes(x = sched_dep_time, y = dep_delay)) + 
  geom_point()

Convert them to a more truthful representation of time (either
fractional hours or minutes since midnight).

4. Round dep_time and arr_time to the nearest five minutes.

General Transformations
The following sections describe some general transformations that are often
used with numeric vectors but can be applied to all other column types.

Ranks
dplyr provides a number of ranking functions inspired by SQL, but you
should always start with dplyr::min_rank(). It uses the typical
method for dealing with ties, e.g., 1st, 2nd, 2nd, 4th.
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x <- c(1, 2, 2, 3, 4, NA)
min_rank(x)
#> [1]  1  2  2  4  5 NA

Note that the smallest values get the lowest ranks; use desc(x) to give the
largest values the smallest ranks:

min_rank(desc(x))
#> [1]  5  3  3  2  1 NA

If min_rank() doesn’t do what you need, look at the variants
dplyr::row_number(), dplyr::dense_rank(),
dplyr::percent_rank(), and dplyr::cume_dist(). See the
documentation for details.

df <- tibble(x = x)
df |>  
  mutate( 
    row_number = row_number(x), 
    dense_rank = dense_rank(x), 
    percent_rank = percent_rank(x), 
    cume_dist = cume_dist(x) 
  )
#> # A tibble: 6 × 5
#>       x row_number dense_rank percent_rank cume_dist
#>   <dbl>      <int>      <int>        <dbl>     <dbl>
#> 1     1          1          1         0          0.2
#> 2     2          2          2         0.25       0.6
#> 3     2          3          2         0.25       0.6
#> 4     3          4          3         0.75       0.8
#> 5     4          5          4         1          1  
#> 6    NA         NA         NA        NA         NA

You can achieve many of the same results by picking the appropriate
ties.method argument to base R’s rank(); you’ll probably also want
to set na.last = "keep" to keep NAs as NA.

https://dplyr.tidyverse.org/reference/row_number.html
https://dplyr.tidyverse.org/reference/row_number.html
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https://dplyr.tidyverse.org/reference/percent_rank.html
https://dplyr.tidyverse.org/reference/percent_rank.html
https://rdrr.io/r/base/rank.html


row_number() can also be used without any arguments when inside a
dplyr verb. In this case, it’ll give the number of the “current” row. When
combined with %% or %/%, this can be a useful tool for dividing data into
similarly sized groups:

df <- tibble(id = 1:10) 
 
df |>  
  mutate( 
    row0 = row_number() - 1, 
    three_groups = row0 %% 3, 
    three_in_each_group = row0 %/% 3 
  )
#> # A tibble: 10 × 4
#>      id  row0 three_groups three_in_each_group
#>   <int> <dbl>        <dbl>               <dbl>
#> 1     1     0            0                   0
#> 2     2     1            1                   0
#> 3     3     2            2                   0
#> 4     4     3            0                   1
#> 5     5     4            1                   1
#> 6     6     5            2                   1
#> # … with 4 more rows

Offsets
dplyr::lead() and dplyr::lag() allow you to refer the values just
before or just after the “current” value. They return a vector of the same
length as the input, padded with NAs at the start or end:

x <- c(2, 5, 11, 11, 19, 35)
lag(x)
#> [1] NA  2  5 11 11 19
lead(x)
#> [1]  5 11 11 19 35 NA

x - lag(x) gives you the difference between the current and
previous value:

https://dplyr.tidyverse.org/reference/row_number.html
https://dplyr.tidyverse.org/reference/lead-lag.html
https://dplyr.tidyverse.org/reference/lead-lag.html


x - lag(x)
#> [1] NA  3  6  0  8 16

x == lag(x) tells you when the current value changes:

x == lag(x)
#> [1]    NA FALSE FALSE  TRUE FALSE FALSE

You can lead or lag by more than one position by using the second
argument, n.

Consecutive Identifiers
Sometimes you want to start a new group every time some event occurs.
For example, when you’re looking at website data, it’s common to want to
break up events into sessions, where you begin a new session after a gap of
more than x minutes since the last activity. For example, imagine you have
the times when someone visited a website:

events <- tibble( 
  time = c(0, 1, 2, 3, 5, 10, 12, 15, 17, 19, 20, 27, 28, 30)
)

You’ve computed the time between each event and figured out if there’s a
gap that’s big enough to qualify:

events <- events |>  
  mutate( 
    diff = time - lag(time, default = first(time)), 
    has_gap = diff >= 5 
  )
events
#> # A tibble: 14 × 3
#>    time  diff has_gap
#>   <dbl> <dbl> <lgl>  
#> 1     0     0 FALSE  



#> 2     1     1 FALSE  
#> 3     2     1 FALSE  
#> 4     3     1 FALSE  
#> 5     5     2 FALSE  
#> 6    10     5 TRUE   
#> # … with 8 more rows

But how do we go from that logical vector to something that we can
group_by()? cumsum(), from “Cumulative and Rolling Aggregates”,
comes to the rescue as gap, i.e., has_gap is TRUE, will increment group
by one (“Numeric Summaries of Logical Vectors”):

events |> mutate( 
  group = cumsum(has_gap)
)
#> # A tibble: 14 × 4
#>    time  diff has_gap group
#>   <dbl> <dbl> <lgl>   <int>
#> 1     0     0 FALSE       0
#> 2     1     1 FALSE       0
#> 3     2     1 FALSE       0
#> 4     3     1 FALSE       0
#> 5     5     2 FALSE       0
#> 6    10     5 TRUE        1
#> # … with 8 more rows

Another approach for creating grouping variables is
consecutive_id(), which starts a new group every time one of its
arguments changes. For example, inspired by this StackOverflow question,
imagine you have a data frame with a bunch of repeated values:

df <- tibble( 
  x = c("a", "a", "a", "b", "c", "c", "d", "e", "a", "a", "b", 
"b"), 
  y = c(1, 2, 3, 2, 4, 1, 3, 9, 4, 8, 10, 199)
)

If you want to keep the first row from each repeated x, you could use
group_by(), consecutive_id(), and slice_head():

https://dplyr.tidyverse.org/reference/group_by.html
https://rdrr.io/r/base/cumsum.html
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df |>  
  group_by(id = consecutive_id(x)) |>  
  slice_head(n = 1)
#> # A tibble: 7 × 3
#> # Groups:   id [7]
#>   x         y    id
#>   <chr> <dbl> <int>
#> 1 a         1     1
#> 2 b         2     2
#> 3 c         4     3
#> 4 d         3     4
#> 5 e         9     5
#> 6 a         4     6
#> # … with 1 more row

Exercises
1. Find the 10 most delayed flights using a ranking function. How do you

want to handle ties? Carefully read the documentation for
min_rank().

2. Which plane (tailnum) has the worst on-time record?

3. What time of day should you fly if you want to avoid delays as much
as possible?

4. What does flights |> group_by(dest) |>
filter(row_number() < 4) do? What does flights |>
group_by(dest) |> filter(row_number(dep_delay)
< 4) do?

5. For each destination, compute the total minutes of delay. For each
flight, compute the proportion of the total delay for its destination.

6. Delays are typically temporally correlated: even once the problem that
caused the initial delay has been resolved, later flights are delayed to
allow earlier flights to leave. Using lag(), explore how the average
flight delay for an hour is related to the average delay for the previous
hour.

https://dplyr.tidyverse.org/reference/row_number.html
https://dplyr.tidyverse.org/reference/lead-lag.html


flights |>  
  mutate(hour = dep_time %/% 100) |>  
  group_by(year, month, day, hour) |>  
  summarize( 
    dep_delay = mean(dep_delay, na.rm = TRUE), 
    n = n(), 
    .groups = "drop" 
  ) |>  
  filter(n > 5)

7. Look at each destination. Can you find flights that are suspiciously fast
(i.e., flights that represent a potential data entry error)? Compute the
air time of a flight relative to the shortest flight to that destination.
Which flights were most delayed in the air?

8. Find all destinations that are flown by at least two carriers. Use those
destinations to come up with a relative ranking of the carriers based on
their performance for the same destination.

Numeric Summaries
Just using the counts, means, and sums that we’ve introduced already can
get you a long way, but R provides many other useful summary functions.
Here is a selection that you might find useful.

Center
So far, we’ve mostly used mean() to summarize the center of a vector of
values. As we’ve seen in “Case Study: Aggregates and Sample Size”,
because the mean is the sum divided by the count, it is sensitive to even just
a few unusually high or low values. An alternative is to use the median(),
which finds a value that lies in the “middle” of the vector, i.e., 50% of the
values are above it and 50% are below it. Depending on the shape of the
distribution of the variable you’re interested in, mean or median might be a
better measure of center. For example, for symmetric distributions we

https://rdrr.io/r/base/mean.html
https://rdrr.io/r/stats/median.html


generally report the mean, while for skewed distributions we usually report
the median.

Figure 13-2 compares the mean to the median departure delay (in minutes)
for each destination. The median delay is always smaller than the mean
delay because flights sometimes leave multiple hours late, but they never
leave multiple hours early.

flights |> 
  group_by(year, month, day) |> 
  summarize( 
    mean = mean(dep_delay, na.rm = TRUE), 
    median = median(dep_delay, na.rm = TRUE), 
    n = n(), 
    .groups = "drop" 
  ) |>  
  ggplot(aes(x = mean, y = median)) +  
  geom_abline(slope = 1, intercept = 0, color = "white", 
linewidth = 2) + 
  geom_point()



Figure 13-2. A scatterplot showing the differences of summarizing hourly departure delay with
median instead of mean.

You might also wonder about the mode, or the most common value. This is
a summary that works well only for very simple cases (which is why you
might have learned about it in high school), but it doesn’t work well for
many real datasets. If the data is discrete, there may be multiple most
common values, and if the data is continuous, there might be no most
common value because every value is ever so slightly different. For these
reasons, the mode tends not to be used by statisticians, and there’s no mode
function included in base R.2

Minimum, Maximum, and Quantiles
What if you’re interested in locations other than the center? min() and
max() will give you the largest and smallest values. Another powerful tool
is quantile(), which is a generalization of the median: quantile(x,
0.25) will find the value of x that is greater than 25% of the values,

https://rdrr.io/r/base/Extremes.html
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quantile(x, 0.5) is equivalent to the median, and quantile(x,
0.95) will find the value that’s greater than 95% of the values.

For the flights data, you might want to look at the 95% quantile of
delays rather than the maximum, because it will ignore the 5% of most
delayed flights, which can be quite extreme.

flights |> 
  group_by(year, month, day) |> 
  summarize( 
    max = max(dep_delay, na.rm = TRUE), 
    q95 = quantile(dep_delay, 0.95, na.rm = TRUE), 
    .groups = "drop" 
  )
#> # A tibble: 365 × 5
#>    year month   day   max   q95
#>   <int> <int> <int> <dbl> <dbl>
#> 1  2013     1     1   853  70.1
#> 2  2013     1     2   379  85  
#> 3  2013     1     3   291  68  
#> 4  2013     1     4   288  60  
#> 5  2013     1     5   327  41  
#> 6  2013     1     6   202  51  
#> # … with 359 more rows

Spread
Sometimes you’re not so interested in where the bulk of the data lies, but in
how it is spread out. Two commonly used summaries are the standard
deviation, sd(x), and the inter-quartile range, IQR(). We won’t explain
sd() here since you’re probably already familiar with it, but IQR() might
be new—it’s quantile(x, 0.75) - quantile(x, 0.25) and
gives you the range that contains the middle 50% of the data.

We can use this to reveal a small oddity in the flights data. You might
expect the spread of the distance between origin and destination to be zero,
since airports are always in the same place. But the following code reveals a
data oddity for airport EGE:

https://rdrr.io/r/stats/IQR.html
https://rdrr.io/r/stats/sd.html
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flights |>  
  group_by(origin, dest) |>  
  summarize( 
    distance_sd = IQR(distance),  
    n = n(), 
    .groups = "drop" 
  ) |>  
  filter(distance_sd > 0)
#> # A tibble: 2 × 4
#>   origin dest  distance_sd     n
#>   <chr>  <chr>       <dbl> <int>
#> 1 EWR    EGE             1   110
#> 2 JFK    EGE             1   103

Distributions
It’s worth remembering that all of the summary statistics described earlier
are a way of reducing the distribution to a single number. This means
they’re fundamentally reductive, and if you pick the wrong summary, you
can easily miss important differences between groups. That’s why it’s
always a good idea to visualize the distribution before committing to your
summary statistics.

Figure 13-3 shows the overall distribution of departure delays. The
distribution is so skewed that we have to zoom in to see the bulk of the data.
This suggests that the mean is unlikely to be a good summary, and we might
prefer the median instead.



Figure 13-3. (Left) The histogram of the full data is extremely skewed, making it hard to get any
details. (Right) Zooming into delays of less than two hours makes it possible to see what’s happening

with the bulk of the observations.

It’s also a good idea to check that distributions for subgroups resemble the
whole. In the following plot, 365 frequency polygons of dep_delay, one
for each day, are overlaid. The distributions seem to follow a common
pattern, suggesting it’s fine to use the same summary for each day.

flights |> 
  filter(dep_delay < 120) |>  
  ggplot(aes(x = dep_delay, group = interaction(day, month))) +  
  geom_freqpoly(binwidth = 5, alpha = 1/5)



Don’t be afraid to explore your own custom summaries specifically tailored
for the data that you’re working with. In this case, that might mean
separately summarizing the flights that left early versus the flights that left
late, or given that the values are so heavily skewed, you might try a log
transformation. Finally, don’t forget what you learned in “Case Study:
Aggregates and Sample Size”: whenever creating numerical summaries, it’s
a good idea to include the number of observations in each group.

Positions
There’s one final type of summary that’s useful for numeric vectors but also
works with every other type of value: extracting a value at a specific
position: first(x), last(x), and nth(x, n).

For example, we can find the first and last departure for each day:

flights |>  
  group_by(year, month, day) |>  
  summarize( 



    first_dep = first(dep_time, na_rm = TRUE),  
    fifth_dep = nth(dep_time, 5, na_rm = TRUE), 
    last_dep = last(dep_time, na_rm = TRUE) 
  )
#> `summarise()` has grouped output by 'year', 'month'. You can 
override using
#> the `.groups` argument.
#> # A tibble: 365 × 6
#> # Groups:   year, month [12]
#>    year month   day first_dep fifth_dep last_dep
#>   <int> <int> <int>     <int>     <int>    <int>
#> 1  2013     1     1       517       554     2356
#> 2  2013     1     2        42       535     2354
#> 3  2013     1     3        32       520     2349
#> 4  2013     1     4        25       531     2358
#> 5  2013     1     5        14       534     2357
#> 6  2013     1     6        16       555     2355
#> # … with 359 more rows

(Note that because dplyr functions use _ to separate components of function
and arguments names, these functions use na_rm instead of na.rm.)

If you’re familiar with [, which we’ll come back to in “Selecting Multiple
Elements with [”, you might wonder if you ever need these functions. There
are three reasons: the default argument allows you to provide a default if
the specified position doesn’t exist, the order_by argument allows you to
locally override the order of the rows, and the na_rm argument allows you
to drop missing values.

Extracting values at positions is complementary to filtering on ranks.
Filtering gives you all variables, with each observation in a separate row:

flights |>  
  group_by(year, month, day) |>  
  mutate(r = min_rank(sched_dep_time)) |>  
  filter(r %in% c(1, max(r)))
#> # A tibble: 1,195 × 20
#> # Groups:   year, month, day [365]
#>    year month   day dep_time sched_dep_time dep_delay arr_time 
sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>  
<int>



#> 1  2013     1     1      517            515         2      830  
819
#> 2  2013     1     1     2353           2359        -6      425  
445
#> 3  2013     1     1     2353           2359        -6      418  
442
#> 4  2013     1     1     2356           2359        -3      425  
437
#> 5  2013     1     2       42           2359        43      518  
442
#> 6  2013     1     2      458            500        -2      703  
650
#> # … with 1,189 more rows, and 12 more variables: arr_delay 
<dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, 
dest <chr>, …

With mutate()
As the names suggest, the summary functions are typically paired with
summarize(). However, because of the recycling rules we discussed in
“Arithmetic and Recycling Rules”, they can also be usefully paired with
mutate(), particularly when you want do some sort of group
standardization. For example:

x / sum(x)

Calculates the proportion of a total.

(x - mean(x)) / sd(x)

Computes a Z-score (standardized to mean 0 and standard deviation 1).

(x - min(x)) / (max(x) - min(x))

Standardizes to range [0, 1].

x / first(x)

Computes an index based on the first observation.

https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/mutate.html


Exercises
1. Brainstorm at least five ways to assess the typical delay characteristics

of a group of flights. When is mean() useful? When is median()
useful? When might you want to use something else? Should you use
arrival delay or departure delay? Why might you want to use data from
planes?

2. Which destinations show the greatest variation in air speed?

3. Create a plot to further explore the adventures of EGE. Can you find
any evidence that the airport moved locations? Can you find another
variable that might explain the difference?

Summary
You’re already familiar with many tools for working with numbers, and
after reading this chapter you now know how to use them in R. You also
learned a handful of useful general transformations that are commonly, but
not exclusively, applied to numeric vectors such as ranks and offsets.
Finally, you worked through a number of numeric summaries and discussed
a few of the statistical challenges that you should consider.

Over the next two chapters, we’ll dive into working with strings with the
stringr package. Strings are a big topic, so they get two chapters, one on the
fundamentals of strings and one on regular expressions.

1  ggplot2 provides some helpers for common cases in cut_interval(), cut_number(),
and cut_width(). ggplot2 is an admittedly weird place for these functions to live, but they
are useful as part of histogram computation and were written before any other parts of the
tidyverse existed.

2  The mode() function does something quite different!

https://rdrr.io/r/base/mean.html
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Chapter 14. Strings

Introduction
So far, you’ve used a bunch of strings without learning much about the
details. Now it’s time to dive into them, learn what makes strings tick, and
master some of the powerful string manipulation tools you have at your
disposal.

We’ll begin with the details of creating strings and character vectors. You’ll
then dive into creating strings from data, then the opposite: extracting
strings from data. We’ll then discuss tools that work with individual letters.
The chapter finishes with functions that work with individual letters and a
brief discussion of where your expectations from English might steer you
wrong when working with other languages.

We’ll keep working with strings in the next chapter, where you’ll learn
more about the power of regular expressions.

Prerequisites
In this chapter, we’ll use functions from the stringr package, which is part
of the core tidyverse. We’ll also use the babynames data since it provides
some fun strings to manipulate.

library(tidyverse)
library(babynames)

You can quickly tell when you’re using a stringr function because all stringr
functions start with str_. This is particularly useful if you use RStudio
because typing str_ will trigger autocomplete, allowing you to jog your
memory of the available functions.



Creating a String
We created strings in passing earlier in the book but didn’t discuss the
details. First, you can create a string using either single quotes (') or double
quotes ("). There’s no difference in behavior between the two, so in the
interest of consistency, the tidyverse style guide recommends using ",
unless the string contains multiple ".

string1 <- "This is a string"
string2 <- 'If I want to include a "quote" inside a string, I use 
single quotes'

If you forget to close a quote, you’ll see +, the continuation prompt:

> "This is a string without a closing quote 
+  
+  
+ HELP I'M STUCK IN A STRING

If this happens to you and you can’t figure out which quote to close, press
Escape to cancel and try again.

Escapes
To include a literal single or double quote in a string, you can use \ to
“escape” it:

double_quote <- "\"" # or '"'
single_quote <- '\'' # or "'"

https://oreil.ly/_zF3d


So if you want to include a literal backslash in your string, you’ll need to
escape it: "\\":

backslash <- "\\"

Beware that the printed representation of a string is not the same as the
string itself because the printed representation shows the escapes (in other
words, when you print a string, you can copy and paste the output to re-
create that string). To see the raw contents of the string, use
str_view():1

x <- c(single_quote, double_quote, backslash)
x
#> [1] "'"  "\"" "\\" 
 
str_view(x)
#> [1] │ '
#> [2] │ "
#> [3] │ \

Raw Strings
Creating a string with multiple quotes or backslashes gets confusing
quickly. To illustrate the problem, let’s create a string that contains the
contents of the code block where we define the double_quote and
single_quote variables:

tricky <- "double_quote <- \"\\\"\" # or '\"'
single_quote <- '\\'' # or \"'\""
str_view(tricky)
#> [1] │ double_quote <- "\"" # or '"'
#>     │ single_quote <- '\'' # or "'"

That’s a lot of backslashes! (This is sometimes called leaning toothpick
syndrome.) To eliminate the escaping, you can instead use a raw string:2

tricky <- r"(double_quote <- "\"" # or '"'
single_quote <- '\'' # or "'")"
str_view(tricky)

https://stringr.tidyverse.org/reference/str_view.html
https://oreil.ly/Fs-YL


#> [1] │ double_quote <- "\"" # or '"'
#>     │ single_quote <- '\'' # or "'"

A raw string usually starts with r"( and finishes with )". But if your string
contains )", you can instead use r"[]" or r"{}", and if that’s still not
enough, you can insert any number of dashes to make the opening and
closing pairs unique, e.g., `r"--()--", `r"---()---", etc. Raw
strings are flexible enough to handle any text.

Other Special Characters
As well as \", \', and \\, there are a handful of other special characters
that may come in handy. The most common are \n, a new line, and \t, tab.
You’ll also sometimes see strings containing Unicode escapes that start with
\u or \U. This is a way of writing non-English characters that work on all
systems. You can see the complete list of other special characters in ?
Quotes.

x <- c("one\ntwo", "one\ttwo", "\u00b5", "\U0001f604")
x
#> [1] "one\ntwo" "one\ttwo" "µ"        "ߘ䢊str_view(x)
#> [1] │ one
#>     │ two
#> [2] │ one{\t}two
#> [3] │ µ
伯ߘ │ [4] <#

Note that str_view() uses a blue background for tabs to make them
easier to spot. One of the challenges of working with text is that there’s a
variety of ways that whitespace can end up in the text, so this background
helps you recognize that something strange is going on.

Exercises
1. Create strings that contain the following values:

a. He said "That's amazing!"

https://rdrr.io/r/base/Quotes.html
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b. \a\b\c\d

c. \\\\\\

2. Create the following string in your R session and print it. What
happens to the special “\u00a0”? How does str_view() display it?
Can you do a little Googling to figure out what this special character
is?

x <- "This\u00a0is\u00a0tricky"

Creating Many Strings from Data
Now that you’ve learned the basics of creating a string or two by “hand,”
we’ll go into the details of creating strings from other strings. This will help
you solve the common problem where you have some text you wrote that
you want to combine with strings from a data frame. For example, you
might combine “Hello” with a name variable to create a greeting. We’ll
show you how to do this with str_c() and str_glue() and how you
can use them with mutate(). That naturally raises the question of what
stringr functions you might use with summarize(), so we’ll finish this
section with a discussion of str_flatten(), which is a summary
function for strings.

str_c()
str_c() takes any number of vectors as arguments and returns a character
vector:

str_c("x", "y")
#> [1] "xy"
str_c("x", "y", "z")
#> [1] "xyz"
str_c("Hello ", c("John", "Susan"))
#> [1] "Hello John"  "Hello Susan"

https://stringr.tidyverse.org/reference/str_view.html
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str_c() is similar to the base paste0() but is designed to be used with
mutate() by obeying the usual tidyverse rules for recycling and
propagating missing values:

df <- tibble(name = c("Flora", "David", "Terra", NA))
df |> mutate(greeting = str_c("Hi ", name, "!"))
#> # A tibble: 4 × 2
#>   name  greeting 
#>   <chr> <chr>    
#> 1 Flora Hi Flora!
#> 2 David Hi David!
#> 3 Terra Hi Terra!
#> 4 <NA>  <NA>

If you want missing values to display in another way, use coalesce() to
replace them. Depending on what you want, you might use it either inside
or outside of str_c():

df |>  
  mutate( 
    greeting1 = str_c("Hi ", coalesce(name, "you"), "!"), 
    greeting2 = coalesce(str_c("Hi ", name, "!"), "Hi!") 
  )
#> # A tibble: 4 × 3
#>   name  greeting1 greeting2
#>   <chr> <chr>     <chr>    
#> 1 Flora Hi Flora! Hi Flora!
#> 2 David Hi David! Hi David!
#> 3 Terra Hi Terra! Hi Terra!
#> 4 <NA>  Hi you!   Hi!

str_glue()
If you are mixing many fixed and variable strings with str_c(), you’ll
notice that you type a lot of "s, making it hard to see the overall goal of the
code. An alternative approach is provided by the glue package via
str_glue().3 You give it a single string that has a special feature:
anything inside {} will be evaluated like it’s outside of the quotes:
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df |> mutate(greeting = str_glue("Hi {name}!"))
#> # A tibble: 4 × 2
#>   name  greeting 
#>   <chr> <glue>   
#> 1 Flora Hi Flora!
#> 2 David Hi David!
#> 3 Terra Hi Terra!
#> 4 <NA>  Hi NA!

As you can see, str_glue() currently converts missing values to the
string "NA", unfortunately making it inconsistent with str_c().

You also might wonder what happens if you need to include a regular { or
} in your string. You’re on the right track if you guess you’ll need to escape
it somehow. The trick is that glue uses a slightly different escaping
technique: instead of prefixing with a special character like \, you double
up the special characters:

df |> mutate(greeting = str_glue("{{Hi {name}!}}"))
#> # A tibble: 4 × 2
#>   name  greeting   
#>   <chr> <glue>     
#> 1 Flora {Hi Flora!}
#> 2 David {Hi David!}
#> 3 Terra {Hi Terra!}
#> 4 <NA>  {Hi NA!}

str_flatten()
str_c() and str_glue() work well with mutate() because their
output is the same length as their inputs. What if you want a function that
works well with summarize(), i.e., something that always returns a
single string? That’s the job of str_flatten():4 it takes a character
vector and combines each element of the vector into a single string:

str_flatten(c("x", "y", "z"))
#> [1] "xyz"
str_flatten(c("x", "y", "z"), ", ")
#> [1] "x, y, z"
str_flatten(c("x", "y", "z"), ", ", last = ", and ")
#> [1] "x, y, and z"
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This makes it work well with summarize():

df <- tribble( 
  ~ name, ~ fruit, 
  "Carmen", "banana", 
  "Carmen", "apple", 
  "Marvin", "nectarine", 
  "Terence", "cantaloupe", 
  "Terence", "papaya", 
  "Terence", "mandarin"
)
df |> 
  group_by(name) |>  
  summarize(fruits = str_flatten(fruit, ", "))
#> # A tibble: 3 × 2
#>   name    fruits                     
#>   <chr>   <chr>                      
#> 1 Carmen  banana, apple              
#> 2 Marvin  nectarine                  
#> 3 Terence cantaloupe, papaya, mandarin

Exercises
1. Compare and contrast the results of paste0() with str_c() for

the following inputs:

str_c("hi ", NA)
str_c(letters[1:2], letters[1:3])

2. What’s the difference between paste() and paste0()? How can
you re-create the equivalent of paste() with str_c()?

3. Convert the following expressions from str_c() to str_glue()
or vice versa:

a. str_c("The price of ", food, " is ", price)

b. str_glue("I'm {age} years old and live in
{country}")

c. str_c("\\section{", title, "}")
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Extracting Data from Strings
It’s common for multiple variables to be crammed together into a single
string. In this section, you’ll learn how to use four tidyr functions to extract
them:

df |> separate_longer_delim(col, delim)

df |> separate_longer_position(col, width)

df |> separate_wider_delim(col, delim, names)

df |> separate_wider_position(col, widths)

If you look closely, you can see there’s a common pattern here:
separate_, then longer or wider, then _, then delim or
position. That’s because these four functions are composed of two
simpler primitives:

Just like with pivot_longer() and pivot_wider(), _longer
functions make the input data frame longer by creating new rows, and
_wider functions make the input data frame wider by generating new
columns.

delim splits up a string with a delimiter like ", " or " ";
position splits at specified widths, like c(3, 5, 2).

We’ll return to the last member of this family,
separate_wider_regex(), in Chapter 15. It’s the most flexible of the
wider functions, but you need to know something about regular
expressions before you can use it.

The following two sections will give you the basic idea behind these
separate functions, first separating into rows (which is a little simpler) and
then separating into columns. We’ll finish off by discussing the tools that
the wider functions give you to diagnose problems.

Separating into Rows
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Separating a string into rows tends to be most useful when the number of
components varies from row to row. The most common case is requiring
separate_longer_delim() to split based on a delimiter:

df1 <- tibble(x = c("a,b,c", "d,e", "f"))
df1 |>  
  separate_longer_delim(x, delim = ",")
#> # A tibble: 6 × 1
#>   x    
#>   <chr>
#> 1 a    
#> 2 b    
#> 3 c    
#> 4 d    
#> 5 e    
#> 6 f

It’s rarer to see separate_longer_position() in the wild, but some
older datasets do use a compact format where each character is used to
record a value:

df2 <- tibble(x = c("1211", "131", "21"))
df2 |>  
  separate_longer_position(x, width = 1)
#> # A tibble: 9 × 1
#>   x    
#>   <chr>
#> 1 1    
#> 2 2    
#> 3 1    
#> 4 1    
#> 5 1    
#> 6 3    
#> # … with 3 more rows

Separating into Columns
Separating a string into columns tends to be most useful when there are a
fixed number of components in each string, and you want to spread them
into columns. They are slightly more complicated than their longer
equivalents because you need to name the columns. For example, in the
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following dataset, x is made up of a code, an edition number, and a year,
separated by ".". To use separate_wider_delim(), we supply the
delimiter and the names in two arguments:

df3 <- tibble(x = c("a10.1.2022", "b10.2.2011", "e15.1.2015"))
df3 |>  
  separate_wider_delim( 
    x, 
    delim = ".", 
    names = c("code", "edition", "year") 
  )
#> # A tibble: 3 × 3
#>   code  edition year 
#>   <chr> <chr>   <chr>
#> 1 a10   1       2022 
#> 2 b10   2       2011 
#> 3 e15   1       2015

If a specific piece is not useful, you can use an NA name to omit it from the
results:

df3 |>  
  separate_wider_delim( 
    x, 
    delim = ".", 
    names = c("code", NA, "year") 
  )
#> # A tibble: 3 × 2
#>   code  year 
#>   <chr> <chr>
#> 1 a10   2022 
#> 2 b10   2011 
#> 3 e15   2015

separate_wider_position() works a little differently because you
typically want to specify the width of each column. So you give it a named
integer vector, where the name gives the name of the new column, and the
value is the number of characters it occupies. You can omit values from the
output by not naming them:
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df4 <- tibble(x = c("202215TX", "202122LA", "202325CA"))  
df4 |>  
  separate_wider_position( 
    x, 
    widths = c(year = 4, age = 2, state = 2) 
  )
#> # A tibble: 3 × 3
#>   year  age   state
#>   <chr> <chr> <chr>
#> 1 2022  15    TX   
#> 2 2021  22    LA   
#> 3 2023  25    CA

Diagnosing Widening Problems
separate_wider_delim()5 requires a fixed and known set of
columns. What happens if some of the rows don’t have the expected
number of pieces? There are two possible problems, too few or too many
pieces, so separate_wider_delim() provides two arguments to help:
too_few and too_many. Let’s first look at the too_few case with the
following sample dataset:

df <- tibble(x = c("1-1-1", "1-1-2", "1-3", "1-3-2", "1")) 
 
df |>  
  separate_wider_delim( 
    x, 
    delim = "-", 
    names = c("x", "y", "z") 
  )
#> Error in `separate_wider_delim()`:
#> ! Expected 3 pieces in each element of `x`.
#> ! 2 values were too short.
#> ℹ Use `too_few = "debug"` to diagnose the problem.
#> ℹ Use `too_few = "align_start"/"align_end"` to silence this 
message.

You’ll notice that we get an error, but the error gives us some suggestions
on how you might proceed. Let’s start by debugging the problem:

debug <- df |>  
  separate_wider_delim( 
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    x, 
    delim = "-", 
    names = c("x", "y", "z"), 
    too_few = "debug" 
  )
#> Warning: Debug mode activated: adding variables `x_ok`, 
`x_pieces`, and
#> `x_remainder`.
debug
#> # A tibble: 5 × 6
#>   x     y     z     x_ok  x_pieces x_remainder
#>   <chr> <chr> <chr> <lgl>    <int> <chr>      
#> 1 1-1-1 1     1     TRUE         3 ""         
#> 2 1-1-2 1     2     TRUE         3 ""         
#> 3 1-3   3     <NA>  FALSE        2 ""         
#> 4 1-3-2 3     2     TRUE         3 ""         
#> 5 1     <NA>  <NA>  FALSE        1 ""

When you use the debug mode, you get three extra columns added to the
output: x_ok, x_pieces, and x_remainder (if you separate a variable
with a different name, you’ll get a different prefix). Here, x_ok lets you
quickly find the inputs that failed:

debug |> filter(!x_ok)
#> # A tibble: 2 × 6
#>   x     y     z     x_ok  x_pieces x_remainder
#>   <chr> <chr> <chr> <lgl>    <int> <chr>      
#> 1 1-3   3     <NA>  FALSE        2 ""         
#> 2 1     <NA>  <NA>  FALSE        1 ""

x_pieces tells us how many pieces were found, compared to the
expected three (the length of names). x_remainder isn’t useful when
there are too few pieces, but we’ll see it again shortly.

Sometimes looking at this debugging information will reveal a problem
with your delimiter strategy or suggest that you need to do more
preprocessing before separating. In that case, fix the problem upstream and
make sure to remove too_few = "debug" to ensure that new problems
become errors.



In other cases, you may want to fill in the missing pieces with NAs and
move on. That’s the job of too_few = "align_start" and
too_few = "align_end", which allow you to control where the NAs
should go:

df |>  
  separate_wider_delim( 
    x, 
    delim = "-", 
    names = c("x", "y", "z"), 
    too_few = "align_start" 
  )
#> # A tibble: 5 × 3
#>   x     y     z    
#>   <chr> <chr> <chr>
#> 1 1     1     1    
#> 2 1     1     2    
#> 3 1     3     <NA> 
#> 4 1     3     2    
#> 5 1     <NA>  <NA>

The same principles apply if you have too many pieces:

df <- tibble(x = c("1-1-1", "1-1-2", "1-3-5-6", "1-3-2", "1-3-5-
7-9")) 
 
df |>  
  separate_wider_delim( 
    x, 
    delim = "-", 
    names = c("x", "y", "z") 
  )
#> Error in `separate_wider_delim()`:
#> ! Expected 3 pieces in each element of `x`.
#> ! 2 values were too long.
#> ℹ Use `too_many = "debug"` to diagnose the problem.
#> ℹ Use `too_many = "drop"/"merge"` to silence this message.

But now, when we debug the result, you can see the purpose of
x_remainder:

debug <- df |>  
  separate_wider_delim( 



    x, 
    delim = "-", 
    names = c("x", "y", "z"), 
    too_many = "debug" 
  )
#> Warning: Debug mode activated: adding variables `x_ok`, 
`x_pieces`, and
#> `x_remainder`.
debug |> filter(!x_ok)
#> # A tibble: 2 × 6
#>   x         y     z     x_ok  x_pieces x_remainder
#>   <chr>     <chr> <chr> <lgl>    <int> <chr>      
#> 1 1-3-5-6   3     5     FALSE        4 -6         
#> 2 1-3-5-7-9 3     5     FALSE        5 -7-9

You have a slightly different set of options for handling too many pieces:
you can either silently “drop” any additional pieces or “merge” them all into
the final column:

df |>  
  separate_wider_delim( 
    x, 
    delim = "-", 
    names = c("x", "y", "z"), 
    too_many = "drop" 
  )
#> # A tibble: 5 × 3
#>   x     y     z    
#>   <chr> <chr> <chr>
#> 1 1     1     1    
#> 2 1     1     2    
#> 3 1     3     5    
#> 4 1     3     2    
#> 5 1     3     5 
 
 
df |>  
  separate_wider_delim( 
    x, 
    delim = "-", 
    names = c("x", "y", "z"), 
    too_many = "merge" 
  )
#> # A tibble: 5 × 3
#>   x     y     z    
#>   <chr> <chr> <chr>



#> 1 1     1     1    
#> 2 1     1     2    
#> 3 1     3     5-6  
#> 4 1     3     2    
#> 5 1     3     5-7-9

Letters
In this section, we’ll introduce you to functions that allow you to work with
the individual letters within a string. You’ll learn how to find the length of a
string, extract substrings, and handle long strings in plots and tables.

Length
str_length() tells you the number of letters in the string:

str_length(c("a", "R for data science", NA))
#> [1]  1 18 NA

You could use this with count() to find the distribution of lengths of US
baby names and then with filter() to look at the longest names, which
happen to have 15 letters:6

babynames |> 
  count(length = str_length(name), wt = n)
#> # A tibble: 14 × 2
#>   length        n
#>    <int>    <int>
#> 1      2   338150
#> 2      3  8589596
#> 3      4 48506739
#> 4      5 87011607
#> 5      6 90749404
#> 6      7 72120767
#> # … with 8 more rows 
 
babynames |>  
  filter(str_length(name) == 15) |>  
  count(name, wt = n, sort = TRUE)
#> # A tibble: 34 × 2
#>   name                n
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#>   <chr>           <int>
#> 1 Franciscojavier   123
#> 2 Christopherjohn   118
#> 3 Johnchristopher   118
#> 4 Christopherjame   108
#> 5 Christophermich    52
#> 6 Ryanchristopher    45
#> # … with 28 more rows

Subsetting
You can extract parts of a string using str_sub(string, start,
end), where start and end are the positions where the substring should
start and end. The start and end arguments are inclusive, so the length
of the returned string will be end - start + 1:

x <- c("Apple", "Banana", "Pear")
str_sub(x, 1, 3)
#> [1] "App" "Ban" "Pea"

You can use negative values to count back from the end of the string: -1 is
the last character, -2 is the second to last character, etc.

str_sub(x, -3, -1)
#> [1] "ple" "ana" "ear"

Note that str_sub() won’t fail if the string is too short: it will just return
as much as possible:

str_sub("a", 1, 5)
#> [1] "a"

We could use str_sub() with mutate() to find the first and last letters
of each name:

babynames |>  
  mutate( 
    first = str_sub(name, 1, 1), 
    last = str_sub(name, -1, -1) 
  )

https://stringr.tidyverse.org/reference/str_sub.html
https://stringr.tidyverse.org/reference/str_sub.html
https://dplyr.tidyverse.org/reference/mutate.html


#> # A tibble: 1,924,665 × 7
#>    year sex   name          n   prop first last 
#>   <dbl> <chr> <chr>     <int>  <dbl> <chr> <chr>
#> 1  1880 F     Mary       7065 0.0724 M     y    
#> 2  1880 F     Anna       2604 0.0267 A     a    
#> 3  1880 F     Emma       2003 0.0205 E     a    
#> 4  1880 F     Elizabeth  1939 0.0199 E     h    
#> 5  1880 F     Minnie     1746 0.0179 M     e    
#> 6  1880 F     Margaret   1578 0.0162 M     t    
#> # … with 1,924,659 more rows

Exercises
1. When computing the distribution of the length of baby names, why did

we use wt = n?

2. Use str_length() and str_sub() to extract the middle letter
from each baby name. What will you do if the string has an even
number of characters?

3. Are there any major trends in the length of baby names over time?
What about the popularity of first and last letters?

Non-English Text
So far, we’ve focused on English language text, which is particularly easy
to work with for two reasons. First, the English alphabet is relatively
simple: there are just 26 letters. Second (and maybe more important), the
computing infrastructure we use today was predominantly designed by
English speakers. Unfortunately, we don’t have room for a full treatment of
non-English languages. Still, we wanted to draw your attention to some of
the biggest challenges you might encounter: encoding, letter variations, and
locale-dependent functions.

Encoding
When working with non-English text, the first challenge is often the
encoding. To understand what’s going on, we need to dive into how
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computers represent strings. In R, we can get at the underlying
representation of a string using charToRaw():

charToRaw("Hadley")
#> [1] 48 61 64 6c 65 79

Each of these six hexadecimal numbers represents one letter: 48 is H, 61 is
a, and so on. The mapping from hexadecimal number to character is the
encoding, and in this case, the encoding is called ASCII. ASCII does a great
job of representing English characters because it’s the American Standard
Code for Information Interchange.

Things aren’t so easy for languages other than English. In the early days of
computing, there were many competing standards for encoding non-English
characters. For example, there were two different encodings for Europe:
Latin1 (aka ISO-8859-1) was used for Western European languages, and
Latin2 (aka ISO-8859-2) was used for Central European languages. In
Latin1, the byte b1 is ±, but in Latin2, it’s ą! Fortunately, today there is one
standard that is supported almost everywhere: UTF-8. UTF-8 can encode
just about every character used by humans today and many extra symbols
like emojis.

readr uses UTF-8 everywhere. This is a good default but will fail for data
produced by older systems that don’t use UTF-8. If this happens, your
strings will look weird when you print them. Sometimes just one or two
characters might be messed up; other times, you’ll get complete gibberish.
For example, here are two inline CSVs with unusual encodings:7

x1 <- "text\nEl Ni\xf1o was particularly bad this year"
read_csv(x1)
#> # A tibble: 1 × 1
#>   text                                       
#>   <chr>                                      
#> 1 "El Ni\xf1o was particularly bad this year" 
 
x2 <- "text\n\x82\xb1\x82\xf1\x82\xc9\x82\xbf\x82\xcd"
read_csv(x2)
#> # A tibble: 1 × 1
#>   text                                      
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#>   <chr>                                     
#> 1 "\x82\xb1\x82\xf1\x82\xc9\x82\xbf\x82\xcd"

To read these correctly, you specify the encoding via the locale
argument:

read_csv(x1, locale = locale(encoding = "Latin1"))
#> # A tibble: 1 × 1
#>   text                                  
#>   <chr>                                 
#> 1 El Niño was particularly bad this year 
 
read_csv(x2, locale = locale(encoding = "Shift-JIS"))
#> # A tibble: 1 × 1
#>   text      
#>   <chr>     
#> 1 こんにちは

How do you find the correct encoding? If you’re lucky, it’ll be included
somewhere in the data documentation. Unfortunately, that’s rarely the case,
so readr provides guess_encoding() to help you figure it out. It’s not
foolproof and works better when you have lots of text (unlike here), but it’s
a reasonable place to start. Expect to try a few different encodings before
you find the right one.

Encodings are a rich and complex topic; we’ve only scratched the surface
here. If you’d like to learn more, we recommend reading the detailed
explanation.

Letter Variations
Working in languages with accents poses a significant challenge when
determining the position of letters (e.g., with str_length() and
str_sub()) as accented letters might be encoded as a single individual
character (e.g., ü) or as two characters by combining an unaccented letter
(e.g., u) with a diacritic mark (e.g., ¨). For example, this code shows two
ways of representing ü that look identical:
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u <- c("\u00fc", "u\u0308")
str_view(u)
#> [1] │ ü
#> [2] │ ü

But both strings differ in length, and their first characters are different:

str_length(u)
#> [1] 1 2
str_sub(u, 1, 1)
#> [1] "ü" "u"

Finally, note that a comparison of these strings with == interprets these
strings as different, while the handy str_equal() function in stringr
recognizes that both have the same appearance:

u[[1]] == u[[2]]
#> [1] FALSE 
 
str_equal(u[[1]], u[[2]])
#> [1] TRUE

Locale-Dependent Functions
Finally, there are a handful of stringr functions whose behavior depends on
your locale. A locale is similar to a language but includes an optional
region specifier to handle regional variations within a language. A locale is
specified by a lowercase language abbreviation, optionally followed by a _
and an uppercase region identifier. For example, “en” is English, “en_GB”
is British English, and “en_US” is American English. If you don’t already
know the code for your language, Wikipedia has a good list, and you can
see which are supported in stringr by looking at
stringi::stri_locale_list().

Base R string functions automatically use the locale set by your operating
system. This means that base R string functions do what you expect for
your language, but your code might work differently if you share it with
someone who lives in a different country. To avoid this problem, stringr
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defaults to English rules by using the “en” locale and requires you to
specify the locale argument to override it. Fortunately, there are two sets
of functions where the locale really matters: changing case and sorting.

The rules for changing cases differ among languages. For example, Turkish
has two i’s: with and without a dot. Since they’re two distinct letters,
they’re capitalized differently:

str_to_upper(c("i", "ı"))
#> [1] "I" "I"
str_to_upper(c("i", "ı"), locale = "tr")
#> [1] "İ" "I"

Sorting strings depends on the order of the alphabet, and the order of the
alphabet is not the same in every language!8 Here’s an example: in Czech,
“ch” is a compound letter that appears after h in the alphabet.

str_sort(c("a", "c", "ch", "h", "z"))
#> [1] "a"  "c"  "ch" "h"  "z"
str_sort(c("a", "c", "ch", "h", "z"), locale = "cs")
#> [1] "a"  "c"  "h"  "ch" "z"

This also comes up when sorting strings with dplyr::arrange(),
which is why it also has a locale argument.

Summary
In this chapter, you learned about some of the power of the stringr package
such as how to create, combine, and extract strings, and about some of the
challenges you might face with non-English strings. Now it’s time to learn
one of the most important and powerful tools for working with strings:
regular expressions. Regular expressions are a concise but expressive
language for describing patterns within strings and are the topic of the next
chapter.
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1  Or use the base R function writeLines().

2  Available in R 4.0.0 and newer.

3  If you’re not using stringr, you can also access it directly with glue::glue().

4  The base R equivalent is paste() used with the collapse argument.

5  The same principles apply to separate_wider_position() and
separate_wider_regex().

6  Looking at these entries, we’d guess that the babynames data drops spaces or hyphens and
truncates after 15 letters.

7  Here I’m using the special \x to encode binary data directly into a string.

8  Sorting in languages that don’t have an alphabet, like Chinese, is more complicated still.

https://rdrr.io/r/base/writeLines.html
https://glue.tidyverse.org/reference/glue.html
https://rdrr.io/r/base/paste.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html


Chapter 15. Regular
Expressions

Introduction
In Chapter 14, you learned a whole bunch of useful functions for working
with strings. This chapter will focus on functions that use regular
expressions, a concise and powerful language for describing patterns within
strings. The term regular expression is a bit of a mouthful, so most people
abbreviate it to regex1 or regexp.

The chapter starts with the basics of regular expressions and the most useful
stringr functions for data analysis. We’ll then expand your knowledge of
patterns and cover seven important new topics (escaping, anchoring,
character classes, shorthand classes, quantifiers, precedence, and grouping).
Next, we’ll talk about some of the other types of patterns that stringr
functions can work with and the various “flags” that allow you to tweak the
operation of regular expressions. We’ll finish with a survey of other places
in the tidyverse and base R where you might use regexes.

Prerequisites
In this chapter, we’ll use regular expression functions from stringr and tidyr,
both core members of the tidyverse, as well as data from the babynames
package:

library(tidyverse)
library(babynames)

Through this chapter, we’ll use a mix of simple inline examples so you can
get the basic idea, the baby names data, and three character vectors from
stringr:



fruit contains the names of 80 fruits.

words contains 980 common English words.

sentences contains 720 short sentences.

Pattern Basics
We’ll use str_view() to learn how regex patterns work. We used
str_view() in the previous chapter to better understand a string versus
its printed representation, and now we’ll use it with its second argument, a
regular expression. When this is supplied, str_view() will show only
the elements of the string vector that match, surrounding each match with
<> and, where possible, highlighting the match in blue.

The simplest patterns consist of letters and numbers that match those
characters exactly:

str_view(fruit, "berry")
#>  [6] │ bil<berry>
#>  [7] │ black<berry>
#> [10] │ blue<berry>
#> [11] │ boysen<berry>
#> [19] │ cloud<berry>
#> [21] │ cran<berry>
#> ... and 8 more

Letters and numbers match exactly and are called literal characters. Most
punctuation characters, like ., +, *, [, ], and ?, have special meanings2

and are called metacharacters. For example, . will match any character,3 so
"a." will match any string that contains an “a” followed by another
character:

str_view(c("a", "ab", "ae", "bd", "ea", "eab"), "a.")
#> [2] │ <ab>
#> [3] │ <ae>
#> [6] │ e<ab>

https://stringr.tidyverse.org/reference/str_view.html
https://stringr.tidyverse.org/reference/str_view.html
https://stringr.tidyverse.org/reference/str_view.html


Or we could find all the fruits that contain an “a,” followed by three letters,
followed by an “e”:

str_view(fruit, "a...e")
#>  [1] │ <apple>
#>  [7] │ bl<ackbe>rry
#> [48] │ mand<arine>
#> [51] │ nect<arine>
#> [62] │ pine<apple>
#> [64] │ pomegr<anate>
#> ... and 2 more

Quantifiers control how many times a pattern can match:

? makes a pattern optional (i.e., it matches 0 or 1 times).

+ lets a pattern repeat (i.e., it matches at least once).

* lets a pattern be optional or repeat (i.e., it matches any number of
times, including 0).

# ab? matches an "a", optionally followed by a "b".
str_view(c("a", "ab", "abb"), "ab?")
#> [1] │ <a>
#> [2] │ <ab>
#> [3] │ <ab>b 
 
# ab+ matches an "a", followed by at least one "b".
str_view(c("a", "ab", "abb"), "ab+")
#> [2] │ <ab>
#> [3] │ <abb> 
 
# ab* matches an "a", followed by any number of "b"s.
str_view(c("a", "ab", "abb"), "ab*")
#> [1] │ <a>
#> [2] │ <ab>
#> [3] │ <abb>

Character classes are defined by [] and let you match a set of characters;
e.g., [abcd] matches “a”, “b”, “c”, or “d.” You can also invert the match
by starting with ^: [^abcd] matches anything except “a”, “b”, “c”, or “d.”



We can use this idea to find the words containing an “x” surrounded by
vowels or a “y” surrounded by consonants:

str_view(words, "[aeiou]x[aeiou]")
#> [284] │ <exa>ct
#> [285] │ <exa>mple
#> [288] │ <exe>rcise
#> [289] │ <exi>st
str_view(words, "[^aeiou]y[^aeiou]")
#> [836] │ <sys>tem
#> [901] │ <typ>e

You can use alternation, |, to pick between one or more alternative
patterns. For example, the following patterns look for fruits containing
“apple,” “melon,” or “nut” or a repeated vowel:

str_view(fruit, "apple|melon|nut")
#>  [1] │ <apple>
#> [13] │ canary <melon>
#> [20] │ coco<nut>
#> [52] │ <nut>
#> [62] │ pine<apple>
#> [72] │ rock <melon>
#> ... and 1 more
str_view(fruit, "aa|ee|ii|oo|uu")
#>  [9] │ bl<oo>d orange
#> [33] │ g<oo>seberry
#> [47] │ lych<ee>
#> [66] │ purple mangost<ee>n

Regular expressions are very compact and use a lot of punctuation
characters, so they can seem overwhelming and hard to read at first. Don’t
worry: you’ll get better with practice, and simple patterns will soon become
second nature. Let’s kick off that process by practicing with some useful
stringr functions.

Key Functions
Now that you understand the basics of regular expressions, let’s use them
with some stringr and tidyr functions. In the following section, you’ll learn



how to detect the presence or absence of a match, how to count the number
of matches, how to replace a match with fixed text, and how to extract text
using a pattern.

Detect Matches
str_detect() returns a logical vector that is TRUE if the pattern
matches an element of the character vector and FALSE otherwise:

str_detect(c("a", "b", "c"), "[aeiou]")
#> [1]  TRUE FALSE FALSE

Since str_detect() returns a logical vector of the same length as the
initial vector, it pairs well with filter(). For example, this code finds all
the most popular names containing a lowercase “x”:

babynames |>  
  filter(str_detect(name, "x")) |>  
  count(name, wt = n, sort = TRUE)
#> # A tibble: 974 × 2
#>   name           n
#>   <chr>      <int>
#> 1 Alexander 665492
#> 2 Alexis    399551
#> 3 Alex      278705
#> 4 Alexandra 232223
#> 5 Max       148787
#> 6 Alexa     123032
#> # … with 968 more rows

We can also use str_detect() with summarize() by pairing it with
sum() or mean(): sum(str_detect(x, pattern)) tells you the
number of observations that match, and mean(str_detect(x,
pattern)) tells you the proportion that match. For example, the
following snippet computes and visualizes the proportion of baby names4
that contain “x,” broken down by year. It looks like they’ve radically
increased in popularity lately!

https://stringr.tidyverse.org/reference/str_detect.html
https://stringr.tidyverse.org/reference/str_detect.html
https://dplyr.tidyverse.org/reference/filter.html
https://stringr.tidyverse.org/reference/str_detect.html
https://dplyr.tidyverse.org/reference/summarise.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/mean.html


babynames |>  
  group_by(year) |>  
  summarize(prop_x = mean(str_detect(name, "x"))) |>  
  ggplot(aes(x = year, y = prop_x)) +  
  geom_line()

There are two functions that are closely related to str_detect():
str_subset() and str_which(). str_subset() returns a
character vector containing only the strings that match. str_which()
returns an integer vector giving the positions of the strings that match.

Count Matches
The next step up in complexity from str_detect() is str_count():
rather than a true or false, it tells you how many matches there are in each
string.

x <- c("apple", "banana", "pear")
str_count(x, "p")
#> [1] 2 0 1

https://stringr.tidyverse.org/reference/str_detect.html
https://stringr.tidyverse.org/reference/str_subset.html
https://stringr.tidyverse.org/reference/str_which.html
https://stringr.tidyverse.org/reference/str_subset.html
https://stringr.tidyverse.org/reference/str_which.html
https://stringr.tidyverse.org/reference/str_detect.html
https://stringr.tidyverse.org/reference/str_count.html


Note that each match starts at the end of the previous match; i.e., regex
matches never overlap. For example, in "abababa", how many times will
the pattern "aba" match? Regular expressions say two, not three:

str_count("abababa", "aba")
#> [1] 2
str_view("abababa", "aba")
#> [1] │ <aba>b<aba>

It’s natural to use str_count() with mutate(). The following
example uses str_count() with character classes to count the number
of vowels and consonants in each name:

babynames |>  
  count(name) |>  
  mutate( 
    vowels = str_count(name, "[aeiou]"), 
    consonants = str_count(name, "[^aeiou]") 
  )
#> # A tibble: 97,310 × 4
#>   name          n vowels consonants
#>   <chr>     <int>  <int>      <int>
#> 1 Aaban        10      2          3
#> 2 Aabha         5      2          3
#> 3 Aabid         2      2          3
#> 4 Aabir         1      2          3
#> 5 Aabriella     5      4          5
#> 6 Aada          1      2          2
#> # … with 97,304 more rows

If you look closely, you’ll notice that there’s something off with our
calculations: “Aaban” contains three a’s, but our summary reports only two
vowels. That’s because regular expressions are case sensitive. There are
three ways we could fix this:

Add the uppercase vowels to the character class:
str_count(name, "[aeiouAEIOU]").

Tell the regular expression to ignore case: str_count(name,
regex("[aeiou]", ignore_case = TRUE)). We’ll talk

https://stringr.tidyverse.org/reference/str_count.html
https://dplyr.tidyverse.org/reference/mutate.html
https://stringr.tidyverse.org/reference/str_count.html


about more in “Regex Flags”.

Use str_to_lower() to convert the names to lowercase:
str_count(str_to_lower(name), "[aeiou]").

This variety of approaches is pretty typical when working with strings—
there are often multiple ways to reach your goal, either by making your
pattern more complicated or by doing some preprocessing on your string. If
you get stuck trying one approach, it can often be useful to switch gears and
tackle the problem from a different perspective.

Since we’re applying two functions to the name, I think it’s easier to
transform it first:

babynames |>  
  count(name) |>  
  mutate( 
    name = str_to_lower(name), 
    vowels = str_count(name, "[aeiou]"), 
    consonants = str_count(name, "[^aeiou]") 
  )
#> # A tibble: 97,310 × 4
#>   name          n vowels consonants
#>   <chr>     <int>  <int>      <int>
#> 1 aaban        10      3          2
#> 2 aabha         5      3          2
#> 3 aabid         2      3          2
#> 4 aabir         1      3          2
#> 5 aabriella     5      5          4
#> 6 aada          1      3          1
#> # … with 97,304 more rows

Replace Values
As well as detecting and counting matches, we can also modify them with
str_replace() and str_replace_all(). str_replace()
replaces the first match, and as the name suggests,
str_replace_all() replaces all matches:

x <- c("apple", "pear", "banana")
str_replace_all(x, "[aeiou]", "-")

https://stringr.tidyverse.org/reference/case.html
https://stringr.tidyverse.org/reference/str_replace.html
https://stringr.tidyverse.org/reference/str_replace.html
https://stringr.tidyverse.org/reference/str_replace.html
https://stringr.tidyverse.org/reference/str_replace.html


#> [1] "-ppl-"  "p--r"   "b-n-n-"

str_remove() and str_remove_all() are handy shortcuts for
str_replace(x, pattern, ""):

x <- c("apple", "pear", "banana")
str_remove_all(x, "[aeiou]")
#> [1] "ppl" "pr"  "bnn"

These functions are naturally paired with mutate() when doing data
cleaning, and you’ll often apply them repeatedly to peel off layers of
inconsistent formatting.

Extract Variables
The last function we’ll discuss uses regular expressions to extract data out
of one column into one or more new columns:
separate_wider_regex(). It’s a peer of the
separate_wider_position() and separate_wider_delim()
functions that you learned about in “Separating into Columns”. These
functions live in tidyr because they operate on (columns of) data frames,
rather than individual vectors.

Let’s create a simple dataset to show how it works. Here we have some data
derived from babynames where we have the name, gender, and age of a
bunch of people in a rather weird format:5

df <- tribble( 
  ~str, 
  "<Sheryl>-F_34", 
  "<Kisha>-F_45",  
  "<Brandon>-N_33", 
  "<Sharon>-F_38",  
  "<Penny>-F_58", 
  "<Justin>-M_41",  
  "<Patricia>-F_84",  
)

https://stringr.tidyverse.org/reference/str_remove.html
https://stringr.tidyverse.org/reference/str_remove.html
https://dplyr.tidyverse.org/reference/mutate.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html


To extract this data using separate_wider_regex() we just need to
construct a sequence of regular expressions that match each piece. If we
want the contents of that piece to appear in the output, we give it a name:

df |>  
  separate_wider_regex( 
    str, 
    patterns = c( 
      "<",  
      name = "[A-Za-z]+",  
      ">-",  
      gender = ".", "_",  
      age = "[0-9]+" 
    ) 
  )
#> # A tibble: 7 × 3
#>   name    gender age  
#>   <chr>   <chr>  <chr>
#> 1 Sheryl  F      34   
#> 2 Kisha   F      45   
#> 3 Brandon N      33   
#> 4 Sharon  F      38   
#> 5 Penny   F      58   
#> 6 Justin  M      41   
#> # … with 1 more row

If the match fails, you can use too_short = "debug" to figure out
what went wrong, just like separate_wider_delim() and
separate_wider_position().

Exercises
1. What baby name has the most vowels? What name has the highest

proportion of vowels? (Hint: What is the denominator?)

2. Replace all forward slashes in "a/b/c/d/e" with backslashes. What
happens if you attempt to undo the transformation by replacing all
backslashes with forward slashes? (We’ll discuss the problem very
soon.)

https://tidyr.tidyverse.org/reference/separate_wider_delim.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html


3. Implement a simple version of str_to_lower() using
str_replace_all().

4. Create a regular expression that will match telephone numbers as
commonly written in your country.

Pattern Details
Now that you understand the basics of the pattern language and how to use
it with some stringr and tidyr functions, it’s time to dig into more of the
details. First, we’ll start with escaping, which allows you to match
metacharacters that would otherwise be treated specially. Next, you’ll learn
about anchors, which allow you to match the start or end of the string.
Then, you’ll more learn about character classes and their shortcuts, which
allow you to match any character from a set. Next, you’ll learn the final
details of quantifiers, which control how many times a pattern can match.
Then, we have to cover the important (but complex) topic of operator
precedence and parentheses. And we’ll finish off with some details of
grouping components of the pattern.

The terms we use here are the technical names for each component. They’re
not always the most evocative of their purpose, but it’s helpful to know the
correct terms if you later want to google for more details.

Escaping
To match a literal ., you need an escape, which tells the regular expression
to match metacharacters6 literally. Like strings, regexps use the backslash
for escaping. So, to match a ., you need the regexp \.. Unfortunately, this
creates a problem. We use strings to represent regular expressions, and \ is
also used as an escape symbol in strings. So to create the regular expression
\., we need the string "\\.", as the following example shows:

# To create the regular expression \., we need to use \\.
dot <- "\\." 
 

https://stringr.tidyverse.org/reference/case.html
https://stringr.tidyverse.org/reference/str_replace.html


# But the expression itself only contains one \
str_view(dot)
#> [1] │ \. 
 
# And this tells R to look for an explicit .
str_view(c("abc", "a.c", "bef"), "a\\.c")
#> [2] │ <a.c>

In this book, we’ll usually write regular expression without quotes, like \..
If we need to emphasize what you’ll actually type, we’ll surround it with
quotes and add extra escapes, like "\\.".

If \ is used as an escape character in regular expressions, how do you
match a literal \? Well, you need to escape it, creating the regular
expression \\. To create that regular expression, you need to use a string,
which also needs to escape \. That means to match a literal \ you need to
write "\\\\"—you need four backslashes to match one!

x <- "a\\b"
str_view(x)
#> [1] │ a\b
str_view(x, "\\\\")
#> [1] │ a<\>b

Alternatively, you might find it easier to use the raw strings you learned
about in “Raw Strings”. That lets you avoid one layer of escaping:

str_view(x, r"{\\}")
#> [1] │ a<\>b

If you’re trying to match a literal ., $, |, *, +, ?, {, }, (, ), there’s an
alternative to using a backslash escape. You can use a character class: [.],
[$], [|], ... all match the literal values:

str_view(c("abc", "a.c", "a*c", "a c"), "a[.]c")
#> [2] │ <a.c>
str_view(c("abc", "a.c", "a*c", "a c"), ".[*]c")
#> [3] │ <a*c>



Anchors
By default, regular expressions will match any part of a string. If you want
to match at the start or end you need to anchor the regular expression using
^ to match the start or $ to match the end:

str_view(fruit, "^a")
#> [1] │ <a>pple
#> [2] │ <a>pricot
#> [3] │ <a>vocado
str_view(fruit, "a$")
#>  [4] │ banan<a>
#> [15] │ cherimoy<a>
#> [30] │ feijo<a>
#> [36] │ guav<a>
#> [56] │ papay<a>
#> [74] │ satsum<a>

It’s tempting to think that $ should match the start of a string, because that’s
how we write dollar amounts, but that’s not what regular expressions want.

To force a regular expression to match only the full string, anchor it with
both ^ and $:

str_view(fruit, "apple")
#>  [1] │ <apple>
#> [62] │ pine<apple>
str_view(fruit, "^apple$")
#> [1] │ <apple>

You can also match the boundary between words (i.e., the start or end of a
word) with \b. This can be particularly useful when using RStudio’s find
and replace tool. For example, to find all uses of sum(), you can search for
\bsum\b to avoid matching summarize, summary, rowsum, and so
on:

x <- c("summary(x)", "summarize(df)", "rowsum(x)", "sum(x)")
str_view(x, "sum")
#> [1] │ <sum>mary(x)
#> [2] │ <sum>marize(df)
#> [3] │ row<sum>(x)

https://rdrr.io/r/base/sum.html


#> [4] │ <sum>(x)
str_view(x, "\\bsum\\b")
#> [4] │ <sum>(x)

When used alone, anchors will produce a zero-width match:

str_view("abc", c("$", "^", "\\b"))
#> [1] │ abc<>
#> [2] │ <>abc
#> [3] │ <>abc<>

This helps you understand what happens when you replace a standalone
anchor:

str_replace_all("abc", c("$", "^", "\\b"), "--")
#> [1] "abc--"   "--abc"   "--abc--"

Character Classes
A character class, or character set, allows you to match any character in a
set. As we discussed, you can construct your own sets with [], where
[abc] matches “a,” “b,” or “c” and [^abc] matches any character except
“a,” “b,” or “c.” Apart from ^ there are two other characters that have
special meaning inside []:

- defines a range; e.g., [a-z] matches any lowercase letter, and [0-
9] matches any number.

\ escapes special characters, so [\^\-\]] matches ^, -, or ].

Here are a few examples:

x <- "abcd ABCD 12345 -!@#%."
str_view(x, "[abc]+")
#> [1] │ <abc>d ABCD 12345 -!@#%.
str_view(x, "[a-z]+")
#> [1] │ <abcd> ABCD 12345 -!@#%.
str_view(x, "[^a-z0-9]+")
#> [1] │ abcd< ABCD >12345< -!@#%.> 
 



# You need an escape to match characters that are otherwise
# special inside of []
str_view("a-b-c", "[a-c]")
#> [1] │ <a>-<b>-<c>
str_view("a-b-c", "[a\\-c]")
#> [1] │ <a><->b<-><c>

Some character classes are used so commonly that they get their own
shortcut. You’ve already seen ., which matches any character apart from a
newline. There are three other particularly useful pairs:7

\d matches any digit.
\D matches anything that isn’t a digit.

\s matches any whitespace (e.g., space, tab, newline).
\S matches anything that isn’t whitespace.

\w matches any “word” character, i.e., letters and numbers.
\W matches any “nonword” character.

The following code demonstrates the six shortcuts with a selection of
letters, numbers, and punctuation characters:

x <- "abcd ABCD 12345 -!@#%."
str_view(x, "\\d+")
#> [1] │ abcd ABCD <12345> -!@#%.
str_view(x, "\\D+")
#> [1] │ <abcd ABCD >12345< -!@#%.>
str_view(x, "\\s+")
#> [1] │ abcd< >ABCD< >12345< >-!@#%.
str_view(x, "\\S+")
#> [1] │ <abcd> <ABCD> <12345> <-!@#%.>
str_view(x, "\\w+")
#> [1] │ <abcd> <ABCD> <12345> -!@#%.
str_view(x, "\\W+")
#> [1] │ abcd< >ABCD< >12345< -!@#%.>

Quantifiers
Quantifiers control how many times a pattern matches. In “Pattern Basics”
you learned about ? (0 or 1 matches), + (1 or more matches), and * (0 or



more matches). For example, colou?r will match American or British
spelling, \d+ will match one or more digits, and \s? will optionally match
a single item of whitespace. You can also specify the number of matches
precisely with {}:

{n} matches exactly n times.

{n,} matches at least n times.

{n,m} matches between n and m times.

Operator Precedence and Parentheses
What does ab+ match? Does it match “a” followed by one or more “b”s, or
does it match “ab” repeated any number of times? What does ^a|b$
match? Does it match the complete string a or the complete string b, or does
it match a string starting with a or a string ending with b?

The answer to these questions is determined by operator precedence, similar
to the PEMDAS or BEDMAS rules you might have learned in school. You
know that a + b * c is equivalent to a + (b * c) not (a + b) *
c because * has higher precedence and + has lower precedence: you
compute * before +.

Similarly, regular expressions have their own precedence rules: quantifiers
have high precedence, and alternation has low precedence, which means
that ab+ is equivalent to a(b+), and ^a|b$ is equivalent to (^a)|
(b$). Just like with algebra, you can use parentheses to override the usual
order. But unlike algebra, you’re unlikely to remember the precedence rules
for regexes, so feel free to use parentheses liberally.

Grouping and Capturing
As well as overriding operator precedence, parentheses have another
important effect: they create capturing groups that allow you to use
subcomponents of the match.

https://rdrr.io/r/base/Paren.html


The first way to use a capturing group is to refer to it within a match with a
back reference: \1 refers to the match contained in the first parenthesis, \2
in the second parenthesis, and so on. For example, the following pattern
finds all fruits that have a repeated pair of letters:

str_view(fruit, "(..)\\1")
#>  [4] │ b<anan>a
#> [20] │ <coco>nut
#> [22] │ <cucu>mber
#> [41] │ <juju>be
#> [56] │ <papa>ya
#> [73] │ s<alal> berry

This one finds all words that start and end with the same pair of letters:

str_view(words, "^(..).*\\1$")
#> [152] │ <church>
#> [217] │ <decide>
#> [617] │ <photograph>
#> [699] │ <require>
#> [739] │ <sense>

You can also use back references in str_replace(). For example, this
code switches the order of the second and third words in sentences:

sentences |>  
  str_replace("(\\w+) (\\w+) (\\w+)", "\\1 \\3 \\2") |>  
  str_view()
#> [1] │ The canoe birch slid on the smooth planks.
#> [2] │ Glue sheet the to the dark blue background.
#> [3] │ It's to easy tell the depth of a well.
#> [4] │ These a days chicken leg is a rare dish.
#> [5] │ Rice often is served in round bowls.
#> [6] │ The of juice lemons makes fine punch.
#> ... and 714 more

If you want to extract the matches for each group, you can use
str_match(). But str_match() returns a matrix, so it’s not
particularly easy to work with:8
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sentences |>  
  str_match("the (\\w+) (\\w+)") |>  
  head()
#>      [,1]                [,2]     [,3]    
#> [1,] "the smooth planks" "smooth" "planks"
#> [2,] "the sheet to"      "sheet"  "to"    
#> [3,] "the depth of"      "depth"  "of"    
#> [4,] NA                  NA       NA      
#> [5,] NA                  NA       NA      
#> [6,] NA                  NA       NA

You could convert to a tibble and name the columns:

sentences |>  
  str_match("the (\\w+) (\\w+)") |>  
  as_tibble(.name_repair = "minimal") |>  
  set_names("match", "word1", "word2")
#> # A tibble: 720 × 3
#>   match             word1  word2 
#>   <chr>             <chr>  <chr> 
#> 1 the smooth planks smooth planks
#> 2 the sheet to      sheet  to    
#> 3 the depth of      depth  of    
#> 4 <NA>              <NA>   <NA>  
#> 5 <NA>              <NA>   <NA>  
#> 6 <NA>              <NA>   <NA>  
#> # … with 714 more rows

But then you’ve basically re-created your own version of
separate_wider_regex(). Indeed, behind the scenes,
separate_wider_regex() converts your vector of patterns to a single
regex that uses grouping to capture the named components.

Occasionally, you’ll want to use parentheses without creating matching
groups. You can create a noncapturing group with (?:).

x <- c("a gray cat", "a grey dog")
str_match(x, "gr(e|a)y")
#>      [,1]   [,2]
#> [1,] "gray" "a" 
#> [2,] "grey" "e"
str_match(x, "gr(?:e|a)y")
#>      [,1]  

https://tidyr.tidyverse.org/reference/separate_wider_delim.html
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#> [1,] "gray"
#> [2,] "grey"

Exercises
1. How would you match the literal string "'\? How about "$^$"?

2. Explain why each of these patterns don’t match a \: "\", "\\",
"\\\".

3. Given the corpus of common words in stringr::words, create
regular expressions that find all words that:

a. Start with “y.”

b. Don’t start with “y.”

c. End with “x.”

d. Are exactly three letters long. (Don’t cheat by using
str_length()!)

e. Have seven letters or more.

f. Contain a vowel-consonant pair.

g. Contain at least two vowel-consonant pairs in a row.

h. Only consist of repeated vowel-consonant pairs.

4. Create 11 regular expressions that match the British or American
spellings for each of the following words: airplane/aeroplane,
aluminum/aluminium, analog/analogue, ass/arse, center/centre,
defense/defence, donut/doughnut, gray/grey, modeling/modelling,
skeptic/sceptic, summarize/summarise. Try to make the shortest
possible regex!

5. Switch the first and last letters in words. Which of those strings are
still words?

https://stringr.tidyverse.org/reference/stringr-data.html
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6. Describe in words what these regular expressions match (read
carefully to see if each entry is a regular expression or a string that
defines a regular expression):

a. ^.*$

b. "\\{.+\\}"

c. \d{4}-\d{2}-\d{2}

d. "\\\\{4}"

e. \..\..\..

f. (.)\1\1

g. "(..)\\1"

7. Solve the beginner regexp crosswords.

Pattern Control
It’s possible to exercise extra control over the details of the match by using
a pattern object instead of just a string. This allows you to control the so-
called regex flags and match various types of fixed strings, as described
next.

Regex Flags
A number of settings can be used to control the details of the regexp. These
settings are often called flags in other programming languages. In stringr,
you can use them by wrapping the pattern in a call to regex(). The most
useful flag is probably ignore_case = TRUE because it allows
characters to match either their uppercase or lowercase forms:

bananas <- c("banana", "Banana", "BANANA")
str_view(bananas, "banana")
#> [1] │ <banana>
str_view(bananas, regex("banana", ignore_case = TRUE))

https://oreil.ly/Db3NF
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#> [1] │ <banana>
#> [2] │ <Banana>
#> [3] │ <BANANA>

If you’re doing a lot of work with multiline strings (i.e., strings that contain
\n), dotall and multiline may also be useful:

dotall = TRUE lets . match everything, including \n:

x <- "Line 1\nLine 2\nLine 3"
str_view(x, ".Line")
str_view(x, regex(".Line", dotall = TRUE))
#> [1] │ Line 1<
#>     │ Line> 2<
#>     │ Line> 3

multiline = TRUE makes ^ and $ match the start and end of each
line rather than the start and end of the complete string:

x <- "Line 1\nLine 2\nLine 3"
str_view(x, "^Line")
#> [1] │ <Line> 1
#>     │ Line 2
#>     │ Line 3
str_view(x, regex("^Line", multiline = TRUE))
#> [1] │ <Line> 1
#>     │ <Line> 2
#>     │ <Line> 3

Finally, if you’re writing a complicated regular expression and you’re
worried you might not understand it in the future, you might try
comments = TRUE. It tweaks the pattern language to ignore spaces and
new lines, as well as everything after #. This allows you to use comments
and whitespace to make complex regular expressions more
understandable,9 as in the following example:

phone <- regex( 
  r"(
    \(?     # optional opening parens
    (\d{3}) # area code
    [)\-]?  # optional closing parens or dash



    \ ?     # optional space
    (\d{3}) # another three numbers
    [\ -]?  # optional space or dash
    (\d{4}) # four more numbers
  )",  
  comments = TRUE
) 
 
str_extract(c("514-791-8141", "(123) 456 7890", "123456"), phone)
#> [1] "514-791-8141"   "(123) 456 7890" NA

If you’re using comments and want to match a space, newline, or #, you’ll
need to escape it with \.

Fixed Matches
You can opt out of the regular expression rules by using fixed():

str_view(c("", "a", "."), fixed("."))
#> [3] │ <.>

fixed() also gives you the ability to ignore case:

str_view("x X", "X")
#> [1] │ x <X>
str_view("x X", fixed("X", ignore_case = TRUE))
#> [1] │ <x> <X>

If you’re working with non-English text, you will probably want coll()
instead of fixed(), as it implements the full rules for capitalization as
used by the locale you specify. See “Non-English Text” for more details
on locales.

str_view("i İ ı I", fixed("İ", ignore_case = TRUE))
#> [1] │ i <İ> ı I
str_view("i İ ı I", coll("İ", ignore_case = TRUE, locale = "tr"))
#> [1] │ <i> <İ> ı I

Practice
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To put these ideas into practice, we’ll solve a few semi-authentic problems
next. We’ll discuss three general techniques:

Checking your work by creating simple positive and negative controls

Combining regular expressions with Boolean algebra

Creating complex patterns using string manipulation

Check Your Work
First, let’s find all sentences that start with “The.” Using the ^ anchor alone
is not enough:

str_view(sentences, "^The")
#>  [1] │ <The> birch canoe slid on the smooth planks.
#>  [4] │ <The>se days a chicken leg is a rare dish.
#>  [6] │ <The> juice of lemons makes fine punch.
#>  [7] │ <The> box was thrown beside the parked truck.
#>  [8] │ <The> hogs were fed chopped corn and garbage.
#> [11] │ <The> boy was there when the sun rose.
#> ... and 271 more

That pattern also matches sentences starting with words like They or
These. We need to make sure that the “e” is the last letter in the word,
which we can do by adding a word boundary:

str_view(sentences, "^The\\b")
#>  [1] │ <The> birch canoe slid on the smooth planks.
#>  [6] │ <The> juice of lemons makes fine punch.
#>  [7] │ <The> box was thrown beside the parked truck.
#>  [8] │ <The> hogs were fed chopped corn and garbage.
#> [11] │ <The> boy was there when the sun rose.
#> [13] │ <The> source of the huge river is the clear spring.
#> ... and 250 more

What about finding all sentences that begin with a pronoun?

str_view(sentences, "^She|He|It|They\\b")
#>  [3] │ <It>'s easy to tell the depth of a well.
#> [15] │ <He>lp the woman get back to her feet.



#> [27] │ <He>r purse was full of useless trash.
#> [29] │ <It> snowed, rained, and hailed the same morning.
#> [63] │ <He> ran half way to the hardware store.
#> [90] │ <He> lay prone and hardly moved a limb.
#> ... and 57 more

A quick inspection of the results shows that we’re getting some spurious
matches. That’s because we’ve forgotten to use parentheses:

str_view(sentences, "^(She|He|It|They)\\b")
#>   [3] │ <It>'s easy to tell the depth of a well.
#>  [29] │ <It> snowed, rained, and hailed the same morning.
#>  [63] │ <He> ran half way to the hardware store.
#>  [90] │ <He> lay prone and hardly moved a limb.
#> [116] │ <He> ordered peach pie with ice cream.
#> [127] │ <It> caught its hind paw in a rusty trap.
#> ... and 51 more

You might wonder how you might spot such a mistake if it didn’t occur in
the first few matches. A good technique is to create a few positive and
negative matches and use them to test that your pattern works as expected:

pos <- c("He is a boy", "She had a good time")
neg <- c("Shells come from the sea", "Hadley said 'It's a great 
day'") 
 
pattern <- "^(She|He|It|They)\\b"
str_detect(pos, pattern)
#> [1] TRUE TRUE
str_detect(neg, pattern)
#> [1] FALSE FALSE

It’s typically much easier to come up with good positive examples than
negative examples, because it takes a while before you’re good enough with
regular expressions to predict where your weaknesses are. Nevertheless,
they’re still useful: as you work on the problem, you can slowly accumulate
a collection of your mistakes, ensuring that you never make the same
mistake twice.

Boolean Operations



Imagine we want to find words that contain only consonants. One technique
is to create a character class that contains all letters except for the vowels
([^aeiou]), then allow that to match any number of letters
([^aeiou]+), and then force it to match the whole string by anchoring to
the beginning and the end (^[^aeiou]+$):

str_view(words, "^[^aeiou]+$")
#> [123] │ <by>
#> [249] │ <dry>
#> [328] │ <fly>
#> [538] │ <mrs>
#> [895] │ <try>
#> [952] │ <why>

But you can make this problem a bit easier by flipping the problem around.
Instead of looking for words that contain only consonants, we could look
for words that don’t contain any vowels:

str_view(words[!str_detect(words, "[aeiou]")])
#> [1] │ by
#> [2] │ dry
#> [3] │ fly
#> [4] │ mrs
#> [5] │ try
#> [6] │ why

This is a useful technique whenever you’re dealing with logical
combinations, particularly those involving “and” or “not.” For example,
imagine if you want to find all words that contain “a” and “b.” There’s no
“and” operator built in to regular expressions, so we have to tackle it by
looking for all words that contain an “a” followed by a “b,” or a “b”
followed by an “a”:

str_view(words, "a.*b|b.*a")
#>  [2] │ <ab>le
#>  [3] │ <ab>out
#>  [4] │ <ab>solute
#> [62] │ <availab>le
#> [66] │ <ba>by



#> [67] │ <ba>ck
#> ... and 24 more

It’s simpler to combine the results of two calls to str_detect():

words[str_detect(words, "a") & str_detect(words, "b")]
#>  [1] "able"      "about"     "absolute"  "available" "baby"     
"back"     
#>  [7] "bad"       "bag"       "balance"   "ball"      "bank"     
"bar"      
#> [13] "base"      "basis"     "bear"      "beat"      "beauty"   
"because"  
#> [19] "black"     "board"     "boat"      "break"     
"brilliant" "britain"  
#> [25] "debate"    "husband"   "labour"    "maybe"     
"probable"  "table"

What if we wanted to see if there was a word that contains all vowels? If we
did it with patterns, we’d need to generate 5! (120) different patterns:

words[str_detect(words, "a.*e.*i.*o.*u")]
# ...
words[str_detect(words, "u.*o.*i.*e.*a")]

It’s much simpler to combine five calls to str_detect():

words[ 
  str_detect(words, "a") & 
  str_detect(words, "e") & 
  str_detect(words, "i") & 
  str_detect(words, "o") & 
  str_detect(words, "u")
]
#> character(0)

In general, if you get stuck trying to create a single regexp that solves your
problem, take a step back and think if you could break the problem down
into smaller pieces, solving each challenge before moving onto the next
one.

https://stringr.tidyverse.org/reference/str_detect.html
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Creating a Pattern with Code
What if we wanted to find all sentences that mention a color? The basic
idea is simple: we just combine alternation with word boundaries:

str_view(sentences, "\\b(red|green|blue)\\b")
#>   [2] │ Glue the sheet to the dark <blue> background.
#>  [26] │ Two <blue> fish swam in the tank.
#>  [92] │ A wisp of cloud hung in the <blue> air.
#> [148] │ The spot on the blotter was made by <green> ink.
#> [160] │ The sofa cushion is <red> and of light weight.
#> [174] │ The sky that morning was clear and bright <blue>.
#> ... and 20 more

But as the number of colors grows, it would quickly get tedious to construct
this pattern by hand. Wouldn’t it be nice if we could store the colors in a
vector?

rgb <- c("red", "green", "blue")

Well, we can! We’d just need to create the pattern from the vector using
str_c() and str_flatten():

str_c("\\b(", str_flatten(rgb, "|"), ")\\b")
#> [1] "\\b(red|green|blue)\\b"

We could make this pattern more comprehensive if we had a good list of
colors. One place we could start from is the list of built-in colors that R can
use for plots:

str_view(colors())
#> [1] │ white
#> [2] │ aliceblue
#> [3] │ antiquewhite
#> [4] │ antiquewhite1
#> [5] │ antiquewhite2
#> [6] │ antiquewhite3
#> ... and 651 more

But let’s first eliminate the numbered variants:

https://stringr.tidyverse.org/reference/str_c.html
https://stringr.tidyverse.org/reference/str_flatten.html


cols <- colors()
cols <- cols[!str_detect(cols, "\\d")]
str_view(cols)
#> [1] │ white
#> [2] │ aliceblue
#> [3] │ antiquewhite
#> [4] │ aquamarine
#> [5] │ azure
#> [6] │ beige
#> ... and 137 more

Then we can turn this into one giant pattern. We won’t show the pattern
here because it’s huge, but you can see it working:

pattern <- str_c("\\b(", str_flatten(cols, "|"), ")\\b")
str_view(sentences, pattern)
#>   [2] │ Glue the sheet to the dark <blue> background.
#>  [12] │ A rod is used to catch <pink> <salmon>.
#>  [26] │ Two <blue> fish swam in the tank.
#>  [66] │ Cars and busses stalled in <snow> drifts.
#>  [92] │ A wisp of cloud hung in the <blue> air.
#> [112] │ Leaves turn <brown> and <yellow> in the fall.
#> ... and 57 more

In this example, cols contains only numbers and letters, so you don’t need
to worry about metacharacters. But in general, whenever you create patterns
from existing strings, it’s wise to run them through str_escape() to
ensure they match literally.

Exercises
1. For each of the following challenges, try solving them by using both a

single regular expression and a combination of multiple
str_detect() calls:

a. Find all words that start or end with x.

b. Find all words that start with a vowel and end with a consonant.

c. Are there any words that contain at least one of each different
vowel?

https://stringr.tidyverse.org/reference/str_escape.html
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2. Construct patterns to find evidence for and against the rule “i before e
except after c.”

3. colors() contains a number of modifiers like “lightgray” and
“darkblue.” How could you automatically identify these modifiers?
(Think about how you might detect and then remove the colors that are
modified.)

4. Create a regular expression that finds any base R dataset. You can get a
list of these datasets via a special use of the data() function:
data(package = "datasets")$results[, "Item"].
Note that a number of old datasets are individual vectors; these contain
the name of the grouping “data frame” in parentheses, so you’ll need
to strip them off.

Regular Expressions in Other Places
Just like in the stringr and tidyr functions, there are many other places in R
where you can use regular expressions. The following sections describe
some other useful functions in the wider tidyverse and base R.

Tidyverse
There are three other particularly useful places where you might want to use
regular expressions:

matches(pattern) will select all variables whose name matches
the supplied pattern. It’s a “tidyselect” function that you can use
anywhere in any tidyverse function that selects variables (e.g.,
select(), rename_with(), and across()).

pivot_longer()’s names_pattern argument takes a vector of
regular expressions, just like separate_wider_regex(). It’s
useful when extracting data from variable names with a complex
structure.

https://rdrr.io/r/grDevices/colors.html
https://rdrr.io/r/utils/data.html
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The delim argument in separate_longer_delim() and
sepa rate_ wider_delim() usually matches a fixed string, but
you can use regex() to make it match a pattern. This is useful, for
example, if you want to match a comma that is optionally followed by
a space, i.e., regex(", ?").

Base R
apropos(pattern) searches all objects available from the global
environment that match the given pattern. This is useful if you can’t quite
remember the name of a function:

apropos("replace")
#> [1] "%+replace%"       "replace"          "replace_na"      
#> [4] "setReplaceMethod" "str_replace"      "str_replace_all" 
#> [7] "str_replace_na"   "theme_replace"

list.files(path, pattern) lists all files in path that match a
regular expression pattern. For example, you can find all the R
Markdown files in the current directory with:

head(list.files(pattern = "\\.Rmd$"))
#> character(0)

It’s worth noting that the pattern language used by base R is slightly
different from that used by stringr. That’s because stringr is built on top of
the stringi package, which is in turn built on top of the ICU engine, whereas
base R functions use either the TRE engine or the PCRE engine, depending
on whether you’ve set perl = TRUE. Fortunately, the basics of regular
expressions are so well established that you’ll encounter few variations
when working with the patterns you’ll learn in this book. You only need to
be aware of the difference when you start to rely on advanced features like
complex Unicode character ranges or special features that use the (?…)
syntax.
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Summary
With every punctuation character potentially overloaded with meaning,
regular expressions are one of the most compact languages out there.
They’re definitely confusing at first, but as you train your eyes to read them
and your brain to understand them, you unlock a powerful skill that you can
use in R and in many other places.

In this chapter, you’ve started your journey to become a regular expression
master by learning the most useful stringr functions and the most important
components of the regular expression language. And there are plenty of
resources to learn more.

A good place to start is vignette("regular-expressions",
package = "stringr"): it documents the full set of syntax supported
by stringr. Another useful reference is https://oreil.ly/MVwoC. It’s not R
specific, but you can use it to learn about the most advanced features of
regexes and how they work under the hood.

It’s also good to know that stringr is implemented on top of the stringi
package by Marek Gagolewski. If you’re struggling to find a function that
does what you need in stringr, don’t be afraid to look in stringi. You’ll find
stringi easy to pick up because it follows many of the same conventions as
stringr.

In the next chapter, we’ll talk about a data structure closely related to
strings: factors. Factors are used to represent categorical data in R, i.e., data
with a fixed and known set of possible values identified by a vector of
strings.

1  You can pronounce it with either a hard-g (“reg-x”) or a soft-g (“rej-x”).

2  You’ll learn how to escape these special meanings in “Escaping”.

3  Well, any character apart from \n.

4  This gives us the proportion of names that contain an “x”; if you wanted the proportion of
babies with a name containing an x, you’d need to perform a weighted mean.

https://stringr.tidyverse.org/articles/regular-expressions.html
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5  We wish we could reassure you that you’d never see something this weird in real life, but
unfortunately over the course of your career you’re likely to see much weirder!

6  The complete set of metacharacters is .^$\|*+?{}[]().

7  Remember, to create a regular expression containing \d or \s, you’ll need to escape the \ for
the string, so you’ll type "\\d" or "\\s".

8  Mostly because we never discuss matrices in this book!

9  comments = TRUE is particularly effective in combination with a raw string, as we use
here.



Chapter 16. Factors

Introduction
Factors are used for categorical variables, variables that have a fixed and known
set of possible values. They are also useful when you want to display character
vectors in a nonalphabetical order.

We’ll start by motivating why factors are needed for data analysis1 and how you
can create them with factor(). We’ll then introduce you to the gss_cat
dataset, which contains a bunch of categorical variables to experiment with.
You’ll then use that dataset to practice modifying the order and values of
factors, before we finish up with a discussion of ordered factors.

Prerequisites
Base R provides some basic tools for creating and manipulating factors. We’ll
supplement these with the forcats package, which is part of the core tidyverse. It
provides tools for dealing with categorical variables (and it’s an anagram of
factors!) using a wide range of helpers for working with factors.

library(tidyverse)

Factor Basics
Imagine that you have a variable that records the month:

x1 <- c("Dec", "Apr", "Jan", "Mar")

Using a string to record this variable has two problems:

1. There are only 12 possible months, and there’s nothing saving you from
typos:

x2 <- c("Dec", "Apr", "Jam", "Mar")

https://rdrr.io/r/base/factor.html


2. It doesn’t sort in a useful way:

sort(x1)
#> [1] "Apr" "Dec" "Jan" "Mar"

You can fix both of these problems with a factor. To create a factor, you must
start by creating a list of the valid levels:

month_levels <- c( 
  "Jan", "Feb", "Mar", "Apr", "May", "Jun",  
  "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
)

Now you can create a factor:

y1 <- factor(x1, levels = month_levels)
y1
#> [1] Dec Apr Jan Mar
#> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
 
sort(y1)
#> [1] Jan Mar Apr Dec
#> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Any values not in the level will be silently converted to NA:

y2 <- factor(x2, levels = month_levels)
y2
#> [1] Dec  Apr  <NA> Mar 
#> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

This seems risky, so you might want to use forcats::fct() instead:

y2 <- fct(x2, levels = month_levels)
#> Error in `fct()`:
#> ! All values of `x` must appear in `levels` or `na`
#> ℹ Missing level: "Jam"

If you omit the levels, they’ll be taken from the data in alphabetical order:

factor(x1)
#> [1] Dec Apr Jan Mar
#> Levels: Apr Dec Jan Mar

https://forcats.tidyverse.org/reference/fct.html


Sorting alphabetically is slightly risky because not every computer will sort
strings in the same way. So forcats::fct() orders by first appearance:

fct(x1)
#> [1] Dec Apr Jan Mar
#> Levels: Dec Apr Jan Mar

If you ever need to access the set of valid levels directly, you can do so with
levels():

levels(y2)
#>  [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" 
"Nov" "Dec"

You can also create a factor when reading your data with readr with
col_factor():

csv <- "
month,value
Jan,12
Feb,56
Mar,12" 
 
df <- read_csv(csv, col_types = cols(month = 
col_factor(month_levels)))
df$month
#> [1] Jan Feb Mar
#> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

General Social Survey
For the rest of this chapter, we’re going to use forcats::gss_cat. It’s a
sample of data from the General Social Survey, a long-running US survey
conducted by the independent research organization NORC at the University of
Chicago. The survey has thousands of questions, so in gss_cat Hadley
selected a handful that will illustrate some common challenges you’ll encounter
when working with factors.

gss_cat
#> # A tibble: 21,483 × 9
#>    year marital         age race  rincome        partyid           

https://forcats.tidyverse.org/reference/fct.html
https://rdrr.io/r/base/levels.html
https://readr.tidyverse.org/reference/parse_factor.html
https://forcats.tidyverse.org/reference/gss_cat.html
https://oreil.ly/3qBI5


#>   <int> <fct>         <int> <fct> <fct>          <fct>             
#> 1  2000 Never married    26 White $8000 to 9999  Ind,near rep      
#> 2  2000 Divorced         48 White $8000 to 9999  Not str 
republican
#> 3  2000 Widowed          67 White Not applicable Independent       
#> 4  2000 Never married    39 White Not applicable Ind,near rep      
#> 5  2000 Divorced         25 White Not applicable Not str democrat  
#> 6  2000 Married          25 White $20000 - 24999 Strong democrat   
#> # … with 21,477 more rows, and 3 more variables: relig <fct>, 
denom <fct>,
#> #   tvhours <int>

(Remember, since this dataset is provided by a package, you can get more
information about the variables with ?gss_cat.)

When factors are stored in a tibble, you can’t see their levels so easily. One way
to view them is with count():

gss_cat |> 
  count(race)
#> # A tibble: 3 × 2
#>   race      n
#>   <fct> <int>
#> 1 Other  1959
#> 2 Black  3129
#> 3 White 16395

When working with factors, the two most common operations are changing the
order of the levels and changing the values of the levels. Those operations are
described in the following sections.

Exercise
1. Explore the distribution of rincome (reported income). What makes the

default bar chart hard to understand? How could you improve the plot?

2. What is the most common relig in this survey? What’s the most
common partyid?

3. Which relig does denom (denomination) apply to? How can you find
out with a table? How can you find out with a visualization?

https://forcats.tidyverse.org/reference/gss_cat.html
https://dplyr.tidyverse.org/reference/count.html


Modifying Factor Order
It’s often useful to change the order of the factor levels in a visualization. For
example, imagine you want to explore the average number of hours spent
watching TV per day across religions:

relig_summary <- gss_cat |> 
  group_by(relig) |> 
  summarize( 
    tvhours = mean(tvhours, na.rm = TRUE), 
    n = n() 
  ) 
 
ggplot(relig_summary, aes(x = tvhours, y = relig)) +  
  geom_point()

It is hard to read this plot because there’s no overall pattern. We can improve it
by reordering the levels of relig using fct_reorder().
fct_reorder() takes three arguments:

f, the factor whose levels you want to modify.

x, a numeric vector that you want to use to reorder the levels.

https://forcats.tidyverse.org/reference/fct_reorder.html
https://forcats.tidyverse.org/reference/fct_reorder.html


Optionally, fun, a function that’s used if there are multiple values of x for
each value of f. The default value is median.

ggplot(relig_summary, aes(x = tvhours, y = fct_reorder(relig, 
tvhours))) + 
  geom_point()

Reordering religion makes it much easier to see that people in the “Don’t know”
category watch much more TV, and Hinduism and other Eastern religions watch
much less.

As you start making more complicated transformations, we recommend moving
them out of aes() and into a separate mutate() step. For example, you
could rewrite the previous plot as:

relig_summary |> 
  mutate( 
    relig = fct_reorder(relig, tvhours) 
  ) |> 
  ggplot(aes(x = tvhours, y = relig)) + 
  geom_point()

https://ggplot2.tidyverse.org/reference/aes.html
https://dplyr.tidyverse.org/reference/mutate.html


What if we create a similar plot looking at how average age varies across
reported income level?

rincome_summary <- gss_cat |> 
  group_by(rincome) |> 
  summarize( 
    age = mean(age, na.rm = TRUE), 
    n = n() 
  ) 
 
ggplot(rincome_summary, aes(x = age, y = fct_reorder(rincome, age))) 
+  
  geom_point()

Here, arbitrarily reordering the levels isn’t a good idea! That’s because
rincome already has a principled order that we shouldn’t mess with. Reserve
fct_reorder() for factors whose levels are arbitrarily ordered.

However, it does make sense to pull “Not applicable” to the front with the other
special levels. You can use fct_relevel(). It takes a factor, f, and then any
number of levels that you want to move to the front of the line.

https://forcats.tidyverse.org/reference/fct_reorder.html
https://forcats.tidyverse.org/reference/fct_relevel.html


ggplot(rincome_summary, aes(x = age, y = fct_relevel(rincome, "Not 
applicable"))) + 
  geom_point()

Why do you think the average age for “Not applicable” is so high?

Another type of reordering is useful when you are coloring the lines on a plot.
fct_reorder2(f, x, y) reorders the factor f by the y values associated
with the largest x values. This makes the plot easier to read because the colors
of the line at the far right of the plot will line up with the legend.

by_age <- gss_cat |> 
  filter(!is.na(age)) |>  
  count(age, marital) |> 
  group_by(age) |> 
  mutate( 
    prop = n / sum(n) 
  ) 
 
ggplot(by_age, aes(x = age, y = prop, color = marital)) + 
  geom_line(linewidth = 1) +  
  scale_color_brewer(palette = "Set1") 
 
ggplot(by_age, aes(x = age, y = prop, color = fct_reorder2(marital, 
age, prop))) + 



  geom_line(linewidth = 1) + 
  scale_color_brewer(palette = "Set1") +  
  labs(color = "marital") 

Finally, for bar plots, you can use fct_infreq() to order levels in
decreasing frequency: this is the simplest type of reordering because it doesn’t
need any extra variables. Combine it with fct_rev() if you want them in
increasing frequency so that in the bar plot the largest values are on the right,
not the left.

gss_cat |> 
  mutate(marital = marital |> fct_infreq() |> fct_rev()) |> 
  ggplot(aes(x = marital)) + 
  geom_bar()

https://forcats.tidyverse.org/reference/fct_inorder.html
https://forcats.tidyverse.org/reference/fct_rev.html


Exercises
1. There are some suspiciously high numbers in tvhours. Is the mean a

good summary?

2. For each factor in gss_cat identify whether the order of the levels is
arbitrary or principled.

3. Why did moving “Not applicable” to the front of the levels move it to the
bottom of the plot?

Modifying Factor Levels
More powerful than changing the orders of the levels is changing their values.
This allows you to clarify labels for publication and collapse levels for high-
level displays. The most general and powerful tool is fct_recode(). It
allows you to recode, or change, the value of each level. For example, take the
partyid variable from the gss_cat data frame:

https://forcats.tidyverse.org/reference/fct_recode.html


gss_cat |> count(partyid)
#> # A tibble: 10 × 2
#>   partyid                n
#>   <fct>              <int>
#> 1 No answer            154
#> 2 Don't know             1
#> 3 Other party          393
#> 4 Strong republican   2314
#> 5 Not str republican  3032
#> 6 Ind,near rep        1791
#> # … with 4 more rows

The levels are terse and inconsistent. Let’s tweak them to be longer and use a
parallel construction. Like most rename and recoding functions in the tidyverse,
the new values go on the left, and the old values go on the right:

gss_cat |> 
  mutate( 
    partyid = fct_recode(partyid, 
      "Republican, strong"    = "Strong republican", 
      "Republican, weak"      = "Not str republican", 
      "Independent, near rep" = "Ind,near rep", 
      "Independent, near dem" = "Ind,near dem", 
      "Democrat, weak"        = "Not str democrat", 
      "Democrat, strong"      = "Strong democrat" 
    ) 
  ) |> 
  count(partyid)
#> # A tibble: 10 × 2
#>   partyid                   n
#>   <fct>                 <int>
#> 1 No answer               154
#> 2 Don't know                1
#> 3 Other party             393
#> 4 Republican, strong     2314
#> 5 Republican, weak       3032
#> 6 Independent, near rep  1791
#> # … with 4 more rows

fct_recode() will leave the levels that aren’t explicitly mentioned as is and
will warn you if you accidentally refer to a level that doesn’t exist.

To combine groups, you can assign multiple old levels to the same new level:

gss_cat |> 
  mutate( 
    partyid = fct_recode(partyid, 

https://forcats.tidyverse.org/reference/fct_recode.html


      "Republican, strong"    = "Strong republican", 
      "Republican, weak"      = "Not str republican", 
      "Independent, near rep" = "Ind,near rep", 
      "Independent, near dem" = "Ind,near dem", 
      "Democrat, weak"        = "Not str democrat", 
      "Democrat, strong"      = "Strong democrat", 
      "Other"                 = "No answer", 
      "Other"                 = "Don't know", 
      "Other"                 = "Other party" 
    ) 
  )

Use this technique with care: if you group levels that are truly different, you
will end up with misleading results.

If you want to collapse a lot of levels, fct_collapse() is a useful variant of
fct_recode(). For each new variable, you can provide a vector of old
levels:

gss_cat |> 
  mutate( 
    partyid = fct_collapse(partyid, 
      "other" = c("No answer", "Don't know", "Other party"), 
      "rep" = c("Strong republican", "Not str republican"), 
      "ind" = c("Ind,near rep", "Independent", "Ind,near dem"), 
      "dem" = c("Not str democrat", "Strong democrat") 
    ) 
  ) |> 
  count(partyid)
#> # A tibble: 4 × 2
#>   partyid     n
#>   <fct>   <int>
#> 1 other     548
#> 2 rep      5346
#> 3 ind      8409
#> 4 dem      7180

Sometimes you just want to lump together the small groups to make a plot or
table simpler. That’s the job of the fct_lump_*() family of functions.
fct_lump_lowfreq() is a simple starting point that progressively lumps
the smallest group’s categories into “Other,” always keeping “Other” as the
smallest category.

gss_cat |> 
  mutate(relig = fct_lump_lowfreq(relig)) |> 

https://forcats.tidyverse.org/reference/fct_collapse.html
https://forcats.tidyverse.org/reference/fct_recode.html
https://forcats.tidyverse.org/reference/fct_lump.html


  count(relig)
#> # A tibble: 2 × 2
#>   relig          n
#>   <fct>      <int>
#> 1 Protestant 10846
#> 2 Other      10637

In this case it’s not very helpful: it is true that the majority of Americans in this
survey are Protestant, but we’d probably like to see some more details! Instead,
we can use fct_lump_n() to specify that we want exactly 10 groups:

gss_cat |> 
  mutate(relig = fct_lump_n(relig, n = 10)) |> 
  count(relig, sort = TRUE)
#> # A tibble: 10 × 2
#>   relig          n
#>   <fct>      <int>
#> 1 Protestant 10846
#> 2 Catholic    5124
#> 3 None        3523
#> 4 Christian    689
#> 5 Other        458
#> 6 Jewish       388
#> # … with 4 more rows

Read the documentation to learn about fct_lump_min() and
fct_lump_prop(), which are useful in other cases.

Exercises
1. How have the proportions of people identifying as Democrat, Republican,

and Independent changed over time?

2. How could you collapse rincome into a small set of categories?

3. Notice there are 9 groups (excluding other) in the previous fct_lump
example. Why not 10? (Hint: Type ?fct_lump, and find the default for
the argument other_level is “Other.”)

Ordered Factors

https://forcats.tidyverse.org/reference/fct_lump.html
https://forcats.tidyverse.org/reference/fct_lump.html
https://forcats.tidyverse.org/reference/fct_lump.html
https://forcats.tidyverse.org/reference/fct_lump.html


Before we go on, there’s a special type of factor that needs to be mentioned
briefly: ordered factors. Ordered factors, created with ordered(), imply a
strict ordering and equal distance between levels: the first level is “less than”
the second level by the same amount that the second level is “less than” the
third level, and so on. You can recognize them when printing because they use
< between the factor levels:

ordered(c("a", "b", "c"))
#> [1] a b c
#> Levels: a < b < c

In practice, ordered() factors behave similarly to regular factors. There are
only two places where you might notice different behavior:

If you map an ordered factor to color or fill in ggplot2, it will default to
scale_color_viridis()/scale_fill_viridis(), a color
scale that implies a ranking.

If you use an ordered function in a linear model, it will use “polygonal
contrasts.” These are mildly useful, but you are unlikely to have heard of
them unless you have a PhD in statistics, and even then you probably don’t
routinely interpret them. If you want to learn more, we recommend
vignette("contrasts", package = "faux") by Lisa
DeBruine.

Given the arguable utility of these differences, we don’t generally recommend
using ordered factors.

Summary
This chapter introduced you to the handy forcats package for working with
factors, explaining the most commonly used functions. forcats contains a wide
range of other helpers that we didn’t have space to discuss here, so whenever
you’re facing a factor analysis challenge that you haven’t encountered before, I
highly recommend skimming the reference index to see if there’s a canned
function that can help solve your problem.

https://rdrr.io/r/base/factor.html
https://rdrr.io/r/base/factor.html
https://oreil.ly/J_IIg


If you want to learn more about factors after reading this chapter, we
recommend reading Amelia McNamara and Nicholas Horton’s paper,
“Wrangling categorical data in R”. This paper lays out some of the history
discussed in “stringsAsFactors: An unauthorized biography” and
“stringsAsFactors = <sigh>”, and compares the tidy approaches to categorical
data outlined in this book with base R methods. An early version of the paper
helped motivate and scope the forcats package; thanks, Amelia and Nick!

In the next chapter we’ll switch gears to start learning about dates and times in
R. Dates and times seem deceptively simple, but as you’ll soon see, the more
you learn about them, the more complex they seem to get!

1  They’re also really important for modeling.

https://oreil.ly/zPh8E
https://oreil.ly/Z9mkP
https://oreil.ly/phWQo


Chapter 17. Dates and Times

Introduction
This chapter will show you how to work with dates and times in R. At first glance,
dates and times seem simple. You use them all the time in your regular life, and they
don’t seem to cause much confusion. However, the more you learn about dates and
times, the more complicated they seem to get!

To warm up, think about how many days there are in a year and how many hours there
are in a day. You probably remembered that most years have 365 days, but leap years
have 366. Do you know the full rule for determining if a year is a leap year?1 The
number of hours in a day is a little less obvious: most days have 24 hours, but in places
that use daylight saving time (DST), one day each year has 23 hours and another has 25.

Dates and times are hard because they have to reconcile two physical phenomena (the
rotation of Earth and its orbit around the sun) with a whole raft of geopolitical
phenomena including months, time zones, and DST. This chapter won’t teach you every
last detail about dates and times, but it will give you a solid grounding of practical skills
that will help you with common data analysis challenges.

We’ll begin by showing you how to create date-times from various inputs, and then
once you’ve got a date-time, you’ll learn how you can extract components such as year,
month, and day. We’ll then dive into the tricky topic of working with time spans, which
come in a variety of flavors depending on what you’re trying to do. We’ll conclude with
a brief discussion of the additional challenges posed by time zones.

Prerequisites
This chapter will focus on the lubridate package, which makes it easier to work with
dates and times in R. As of the latest tidyverse release, lubridate is part of core
tidyverse. We will also need nycflights13 for practice data.

library(tidyverse)
library(nycflights13)

Creating Date/Times
There are three types of date/time data that refer to an instant in time:



A date. Tibbles print this as <date>.

A time within a day. Tibbles print this as <time>.

A date-time is a date plus a time: it uniquely identifies an instant in time (typically
to the nearest second). Tibbles print this as <dttm>. Base R calls these POSIXct,
but that doesn’t exactly trip off the tongue.

In this chapter we are going to focus on dates and date-times as R doesn’t have a native
class for storing times. If you need one, you can use the hms package.

You should always use the simplest possible data type that works for your needs. That
means if you can use a date instead of a date-time, you should. Date-times are
substantially more complicated because of the need to handle time zones, which we’ll
come back to at the end of the chapter.

To get the current date or date-time, you can use today() or now():

today()
#> [1] "2023-03-12"
now()
#> [1] "2023-03-12 13:07:31 CDT"

Otherwise, the following sections describe the four ways you’re likely to create a
date/time:

While reading a file with readr

From a string

From individual date-time components

From an existing date/time object

During Import
If your CSV contains an ISO8601 date or date-time, you don’t need to do anything;
readr will automatically recognize it:

csv <- "
  date,datetime
  2022-01-02,2022-01-02 05:12
"
read_csv(csv)
#> # A tibble: 1 × 2
#>   date       datetime           
#>   <date>     <dttm>             
#> 1 2022-01-02 2022-01-02 05:12:00

https://lubridate.tidyverse.org/reference/now.html
https://lubridate.tidyverse.org/reference/now.html


If you haven’t heard of ISO8601 before, it’s an international standard for writing dates
where the components of a date are organized from biggest to smallest separated by -.
For example, in ISO8601 May 3, 2022, is 2022-05-03. ISO8601 dates can also
include times, where hour, minute, and second are separated by :, and the date and time
components are separated by either a T or a space. For example, you could write 4:26
p.m. on May 3, 2022, as either 2022-05-03 16:26 or 2022-05-03T16:26.

For other date-time formats, you’ll need to use col_types plus col_date() or
col_datetime() along with a date-time format. The date-time format used by readr
is a standard used across many programming languages, describing a date component
with a % followed by a single character. For example, %Y-%m-%d specifies a date that’s
a year, -, month (as number) -, day. Table 17-1 lists all the options.

https://oreil.ly/19K7t
https://readr.tidyverse.org/reference/parse_datetime.html
https://readr.tidyverse.org/reference/parse_datetime.html
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Type Code Meaning Example

Year %Y 4-digit year 2021

%y 2-digit year 21

Month %m Number 2

%b Abbreviated name Feb

%B Full name February

Day %d Two digits 02

%e One or two digits 2

Time %H 24-hour hour 13

%I 12-hour hour 1

%p a.m./p.m. pm

%M Minutes 35

%S Seconds 45

%OS Seconds with decimal 
component

45.35

%Z Time zone name America/Chicag
o

%z Offset from UTC +0800

Other %. Skip one nondigit :



Type Code Meaning Example

%* Skip any number of nondigits

This code shows a few options applied to a very ambiguous date:

csv <- "
  date
  01/02/15
" 
 
read_csv(csv, col_types = cols(date = col_date("%m/%d/%y")))
#> # A tibble: 1 × 1
#>   date      
#>   <date>    
#> 1 2015-01-02 
 
read_csv(csv, col_types = cols(date = col_date("%d/%m/%y")))
#> # A tibble: 1 × 1
#>   date      
#>   <date>    
#> 1 2015-02-01 
 
read_csv(csv, col_types = cols(date = col_date("%y/%m/%d")))
#> # A tibble: 1 × 1
#>   date      
#>   <date>    
#> 1 2001-02-15

Note that no matter how you specify the date format, it’s always displayed the same
way once you get it into R.

If you’re using %b or %B and working with non-English dates, you’ll also need to
provide a locale(). See the list of built-in languages in date_names_langs(),
or create your own with date_names().

From Strings
The date-time specification language is powerful but requires careful analysis of the
date format. An alternative approach is to use lubridate’s helpers, which attempt to
automatically determine the format once you specify the order of the component. To use
them, identify the order in which year, month, and day appear in your dates; then
arrange “y,” “m,” and “d” in the same order. That gives you the name of the lubridate
function that will parse your date. For example:

https://readr.tidyverse.org/reference/locale.html
https://readr.tidyverse.org/reference/date_names.html
https://readr.tidyverse.org/reference/date_names.html


ymd("2017-01-31")
#> [1] "2017-01-31"
mdy("January 31st, 2017")
#> [1] "2017-01-31"
dmy("31-Jan-2017")
#> [1] "2017-01-31"

ymd() and friends create dates. To create a date-time, add an underscore and one or
more of “h”, “m”, and “s” to the name of the parsing function:

ymd_hms("2017-01-31 20:11:59")
#> [1] "2017-01-31 20:11:59 UTC"
mdy_hm("01/31/2017 08:01")
#> [1] "2017-01-31 08:01:00 UTC"

You can also force the creation of a date-time from a date by supplying a time zone:

ymd("2017-01-31", tz = "UTC")
#> [1] "2017-01-31 UTC"

Here I use the UTC2 timezone, which you might also know as GMT, or Greenwich
Mean Time, the time at 0° longitude.3 It doesn’t use daylight saving time, making it a
bit easier to compute with.

From Individual Components
Instead of a single string, sometimes you’ll have the individual components of the date-
time spread across multiple columns. This is what we have in the flights data:

flights |>  
  select(year, month, day, hour, minute)
#> # A tibble: 336,776 × 5
#>    year month   day  hour minute
#>   <int> <int> <int> <dbl>  <dbl>
#> 1  2013     1     1     5     15
#> 2  2013     1     1     5     29
#> 3  2013     1     1     5     40
#> 4  2013     1     1     5     45
#> 5  2013     1     1     6      0
#> 6  2013     1     1     5     58
#> # … with 336,770 more rows

To create a date/time from this sort of input, use make_date() for dates, or use
make_datetime() for date-times:

flights |>  
  select(year, month, day, hour, minute) |>  

https://lubridate.tidyverse.org/reference/ymd.html
https://lubridate.tidyverse.org/reference/make_datetime.html
https://lubridate.tidyverse.org/reference/make_datetime.html


  mutate(departure = make_datetime(year, month, day, hour, minute))
#> # A tibble: 336,776 × 6
#>    year month   day  hour minute departure          
#>   <int> <int> <int> <dbl>  <dbl> <dttm>             
#> 1  2013     1     1     5     15 2013-01-01 05:15:00
#> 2  2013     1     1     5     29 2013-01-01 05:29:00
#> 3  2013     1     1     5     40 2013-01-01 05:40:00
#> 4  2013     1     1     5     45 2013-01-01 05:45:00
#> 5  2013     1     1     6      0 2013-01-01 06:00:00
#> 6  2013     1     1     5     58 2013-01-01 05:58:00
#> # … with 336,770 more rows

Let’s do the same thing for each of the four time columns in flights. The times are
represented in a slightly odd format, so we use modulus arithmetic to pull out the hour
and minute components. Once we’ve created the date-time variables, we focus in on the
variables we’ll explore in the rest of the chapter.

make_datetime_100 <- function(year, month, day, time) { 
  make_datetime(year, month, day, time %/% 100, time %% 100)
} 
 
flights_dt <- flights |>  
  filter(!is.na(dep_time), !is.na(arr_time)) |>  
  mutate( 
    dep_time = make_datetime_100(year, month, day, dep_time), 
    arr_time = make_datetime_100(year, month, day, arr_time), 
    sched_dep_time = make_datetime_100(year, month, day, sched_dep_time), 
    sched_arr_time = make_datetime_100(year, month, day, sched_arr_time) 
  ) |>  
  select(origin, dest, ends_with("delay"), ends_with("time")) 
 
flights_dt
#> # A tibble: 328,063 × 9
#>   origin dest  dep_delay arr_delay dep_time            sched_dep_time     
#>   <chr>  <chr>     <dbl>     <dbl> <dttm>              <dttm>             
#> 1 EWR    IAH           2        11 2013-01-01 05:17:00 2013-01-01 
05:15:00
#> 2 LGA    IAH           4        20 2013-01-01 05:33:00 2013-01-01 
05:29:00
#> 3 JFK    MIA           2        33 2013-01-01 05:42:00 2013-01-01 
05:40:00
#> 4 JFK    BQN          -1       -18 2013-01-01 05:44:00 2013-01-01 
05:45:00
#> 5 LGA    ATL          -6       -25 2013-01-01 05:54:00 2013-01-01 
06:00:00
#> 6 EWR    ORD          -4        12 2013-01-01 05:54:00 2013-01-01 
05:58:00
#> # … with 328,057 more rows, and 3 more variables: arr_time <dttm>,
#> #   sched_arr_time <dttm>, air_time <dbl>

With this data, we can visualize the distribution of departure times across the year:



flights_dt |>  
  ggplot(aes(x = dep_time)) +  
  geom_freqpoly(binwidth = 86400) # 86400 seconds = 1 day

Or within a single day:

flights_dt |>  
  filter(dep_time < ymd(20130102)) |>  
  ggplot(aes(x = dep_time)) +  
  geom_freqpoly(binwidth = 600) # 600 s = 10 minutes



Note that when you use date-times in a numeric context (like in a histogram), 1 means 1
second, so a binwidth of 86400 means one day. For dates, 1 means 1 day.

From Other Types
You may want to switch between a date-time and a date. That’s the job of
as_datetime() and as_date():

as_datetime(today())
#> [1] "2023-03-12 UTC"
as_date(now())
#> [1] "2023-03-12"

Sometimes you’ll get date/times as numeric offsets from the “Unix epoch,” 1970-01-01.
If the offset is in seconds, use as_datetime(); if it’s in days, use as_date().

as_datetime(60 * 60 * 10)
#> [1] "1970-01-01 10:00:00 UTC"
as_date(365 * 10 + 2)
#> [1] "1980-01-01"

Exercises
1. What happens if you parse a string that contains invalid dates?

ymd(c("2010-10-10", "bananas"))

https://lubridate.tidyverse.org/reference/as_date.html
https://lubridate.tidyverse.org/reference/as_date.html
https://lubridate.tidyverse.org/reference/as_date.html
https://lubridate.tidyverse.org/reference/as_date.html


2. What does the tzone argument to today() do? Why is it important?

3. For each of the following date-times, show how you’d parse it using a readr
column specification and a lubridate function.

d1 <- "January 1, 2010"
d2 <- "2015-Mar-07"
d3 <- "06-Jun-2017"
d4 <- c("August 19 (2015)", "July 1 (2015)")
d5 <- "12/30/14" # Dec 30, 2014
t1 <- "1705"
t2 <- "11:15:10.12 PM"

Date-Time Components
Now that you know how to get date-time data into R’s date-time data structures, let’s
explore what you can do with them. This section will focus on the accessor functions
that let you get and set individual components. The next section will look at how
arithmetic works with date-times.

Getting Components
You can pull out individual parts of the date with the accessor functions year(),
month(), mday() (day of the month), yday() (day of the year), wday() (day of
the week), hour(), minute(), and second(). These are effectively the opposites
of make_datetime().

datetime <- ymd_hms("2026-07-08 12:34:56") 
 
year(datetime)
#> [1] 2026
month(datetime)
#> [1] 7
mday(datetime)
#> [1] 8 
 
yday(datetime)
#> [1] 189
wday(datetime)
#> [1] 4

For month() and wday() you can set label = TRUE to return the abbreviated
name of the month or day of the week. Set abbr = FALSE to return the full name.

month(datetime, label = TRUE)
#> [1] Jul

https://lubridate.tidyverse.org/reference/now.html
https://lubridate.tidyverse.org/reference/year.html
https://lubridate.tidyverse.org/reference/month.html
https://lubridate.tidyverse.org/reference/day.html
https://lubridate.tidyverse.org/reference/day.html
https://lubridate.tidyverse.org/reference/day.html
https://lubridate.tidyverse.org/reference/hour.html
https://lubridate.tidyverse.org/reference/minute.html
https://lubridate.tidyverse.org/reference/second.html
https://lubridate.tidyverse.org/reference/make_datetime.html
https://lubridate.tidyverse.org/reference/month.html
https://lubridate.tidyverse.org/reference/day.html


#> 12 Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < ... < 
Dec
wday(datetime, label = TRUE, abbr = FALSE)
#> [1] Wednesday
#> 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < ... < 
Saturday

We can use wday() to see that more flights depart during the week than on the
weekend:

flights_dt |>  
  mutate(wday = wday(dep_time, label = TRUE)) |>  
  ggplot(aes(x = wday)) + 
  geom_bar()

We can also look at the average departure delay by minute within the hour. There’s an
interesting pattern: flights leaving in minutes 20–30 and 50–60 have much lower delays
than the rest of the hour!

flights_dt |>  
  mutate(minute = minute(dep_time)) |>  
  group_by(minute) |>  
  summarize( 
    avg_delay = mean(dep_delay, na.rm = TRUE), 
    n = n() 
  ) |>  
  ggplot(aes(x = minute, y = avg_delay)) + 
  geom_line()

https://lubridate.tidyverse.org/reference/day.html


Interestingly, if we look at the scheduled departure time, we don’t see such a strong
pattern:

sched_dep <- flights_dt |>  
  mutate(minute = minute(sched_dep_time)) |>  
  group_by(minute) |>  
  summarize( 
    avg_delay = mean(arr_delay, na.rm = TRUE), 
    n = n() 
  ) 
 
ggplot(sched_dep, aes(x = minute, y = avg_delay)) + 
  geom_line()



So why do we see that pattern with the actual departure times? Well, like much data
collected by humans, there’s a strong bias toward flights leaving at “nice” departure
times, as Figure 17-1 shows. Always be alert for this sort of pattern whenever you work
with data that involves human judgment!

Figure 17-1. A frequency polygon showing the number of flights scheduled to depart each hour. You can see a strong
preference for round numbers like 0 and 30 and generally for numbers that are a multiple of five.



Rounding
An alternative approach to plotting individual components is to round the date to a
nearby unit of time, with floor_date(), round_date(), and
ceiling_date(). Each function takes a vector of dates to adjust and then the name
of the unit to round down (floor), round up (ceiling), or round to. This, for example,
allows us to plot the number of flights per week:

flights_dt |>  
  count(week = floor_date(dep_time, "week")) |>  
  ggplot(aes(x = week, y = n)) + 
  geom_line() +  
  geom_point()

You can use rounding to show the distribution of flights across the course of a day by
computing the difference between dep_time and the earliest instant of that day:

flights_dt |>  
  mutate(dep_hour = dep_time - floor_date(dep_time, "day")) |>  
  ggplot(aes(x = dep_hour)) + 
  geom_freqpoly(binwidth = 60 * 30)
#> Don't know how to automatically pick scale for object of type <difftime>.
#> Defaulting to continuous.

https://lubridate.tidyverse.org/reference/round_date.html
https://lubridate.tidyverse.org/reference/round_date.html
https://lubridate.tidyverse.org/reference/round_date.html


Computing the difference between a pair of date-times yields a difftime (more on that in
“Intervals”). We can convert that to an hms object to get a more useful x-axis:

flights_dt |>  
  mutate(dep_hour = hms::as_hms(dep_time - floor_date(dep_time, "day"))) |>  
  ggplot(aes(x = dep_hour)) + 
  geom_freqpoly(binwidth = 60 * 30)



Modifying Components
You can also use each accessor function to modify the components of a date/time. This
doesn’t come up much in data analysis but can be useful when cleaning data that has
clearly incorrect dates.

(datetime <- ymd_hms("2026-07-08 12:34:56"))
#> [1] "2026-07-08 12:34:56 UTC" 
 
year(datetime) <- 2030
datetime
#> [1] "2030-07-08 12:34:56 UTC"
month(datetime) <- 01
datetime
#> [1] "2030-01-08 12:34:56 UTC"
hour(datetime) <- hour(datetime) + 1
datetime
#> [1] "2030-01-08 13:34:56 UTC"

Alternatively, rather than modifying an existing variable, you can create a new date-
time with update(). This also allows you to set multiple values in one step:

update(datetime, year = 2030, month = 2, mday = 2, hour = 2)
#> [1] "2030-02-02 02:34:56 UTC"

If values are too big, they will roll over:

update(ymd("2023-02-01"), mday = 30)
#> [1] "2023-03-02"
update(ymd("2023-02-01"), hour = 400)
#> [1] "2023-02-17 16:00:00 UTC"

Exercises
1. How does the distribution of flight times within a day change over the course of

the year?

2. Compare dep_time, sched_dep_time, and dep_delay. Are they
consistent? Explain your findings.

3. Compare air_time with the duration between the departure and arrival. Explain
your findings. (Hint: Consider the location of the airport.)

4. How does the average delay time change over the course of a day? Should you use
dep_time or sched_dep_time? Why?

https://rdrr.io/r/stats/update.html


5. On what day of the week should you leave if you want to minimize the chance of a
delay?

6. What makes the distribution of diamonds$carat and
flights$sched_dep_time similar?

7. Confirm our hypothesis that the early departures of flights in minutes 20–30 and
50–60 are caused by scheduled flights that leave early. Hint: Create a binary
variable that tells you whether a flight was delayed.

Time Spans
Next you’ll learn about how arithmetic with dates works, including subtraction,
addition, and division. Along the way, you’ll learn about three important classes that
represent time spans:

Durations

Represent an exact number of seconds

Periods

Represent human units like weeks and months

Intervals

Represent a starting and ending point

How do you pick between duration, periods, and intervals? As always, pick the simplest
data structure that solves your problem. If you care only about physical time, use a
duration; if you need to add human times, use a period; and if you need to figure out
how long a span is in human units, use an interval.

Durations
In R, when you subtract two dates, you get a difftime object:

# How old is Hadley?
h_age <- today() - ymd("1979-10-14")
h_age
#> Time difference of 15855 days



A difftime class object records a time span of seconds, minutes, hours, days, or
weeks. This ambiguity can make difftimes a little painful to work with, so lubridate
provides an alternative that always uses seconds: the duration.

as.duration(h_age)
#> [1] "1369872000s (~43.41 years)"

Durations come with a bunch of convenient constructors:

dseconds(15)
#> [1] "15s"
dminutes(10)
#> [1] "600s (~10 minutes)"
dhours(c(12, 24))
#> [1] "43200s (~12 hours)" "86400s (~1 days)"
ddays(0:5)
#> [1] "0s"                "86400s (~1 days)"  "172800s (~2 days)"
#> [4] "259200s (~3 days)" "345600s (~4 days)" "432000s (~5 days)"
dweeks(3)
#> [1] "1814400s (~3 weeks)"
dyears(1)
#> [1] "31557600s (~1 years)"

Durations always record the time span in seconds. Larger units are created by
converting minutes, hours, days, weeks, and years to seconds: 60 seconds in a minute,
60 minutes in an hour, 24 hours in a day, and 7 days in a week. Larger time units are
more problematic. A year uses the “average” number of days in a year, i.e., 365.25.
There’s no way to convert a month to a duration, because there’s just too much
variation.

You can add and multiply durations:

2 * dyears(1)
#> [1] "63115200s (~2 years)"
dyears(1) + dweeks(12) + dhours(15)
#> [1] "38869200s (~1.23 years)"

You can add and subtract durations to and from days:

tomorrow <- today() + ddays(1)
last_year <- today() - dyears(1)

However, because durations represent an exact number of seconds, sometimes you
might get an unexpected result:



one_am <- ymd_hms("2026-03-08 01:00:00", tz = "America/New_York") 
 
one_am
#> [1] "2026-03-08 01:00:00 EST"
one_am + ddays(1)
#> [1] "2026-03-09 02:00:00 EDT"

Why is one day after 1 a.m. March 8, returning as 2 a.m. on March 9? If you look
carefully at the date, you might also notice that the time zones have changed. March 8
has only 23 hours because it’s when DST starts, so if we add a full day’s worth of
seconds, we end up with a different time.

Periods
To solve this problem, lubridate provides periods. Periods are time spans but don’t have
a fixed length in seconds; instead, they work with “human” times, like days and
months. That allows them to work in a more intuitive way:

one_am
#> [1] "2026-03-08 01:00:00 EST"
one_am + days(1)
#> [1] "2026-03-09 01:00:00 EDT"

Like durations, periods can be created with a number of friendly constructor functions:

hours(c(12, 24))
#> [1] "12H 0M 0S" "24H 0M 0S"
days(7)
#> [1] "7d 0H 0M 0S"
months(1:6)
#> [1] "1m 0d 0H 0M 0S" "2m 0d 0H 0M 0S" "3m 0d 0H 0M 0S" "4m 0d 0H 0M 0S"
#> [5] "5m 0d 0H 0M 0S" "6m 0d 0H 0M 0S"

You can add and multiply periods:

10 * (months(6) + days(1))
#> [1] "60m 10d 0H 0M 0S"
days(50) + hours(25) + minutes(2)
#> [1] "50d 25H 2M 0S"

And of course, add them to dates. Compared to durations, periods are more likely to do
what you expect:

# A leap year
ymd("2024-01-01") + dyears(1)
#> [1] "2024-12-31 06:00:00 UTC"
ymd("2024-01-01") + years(1)



#> [1] "2025-01-01" 
 
# Daylight savings time
one_am + ddays(1)
#> [1] "2026-03-09 02:00:00 EDT"
one_am + days(1)
#> [1] "2026-03-09 01:00:00 EDT"

Let’s use periods to fix an oddity related to our flight dates. Some planes appear to have
arrived at their destination before they departed from New York City:

flights_dt |>  
  filter(arr_time < dep_time)  
#> # A tibble: 10,633 × 9
#>   origin dest  dep_delay arr_delay dep_time            sched_dep_time     
#>   <chr>  <chr>     <dbl>     <dbl> <dttm>              <dttm>             
#> 1 EWR    BQN           9        -4 2013-01-01 19:29:00 2013-01-01 
19:20:00
#> 2 JFK    DFW          59        NA 2013-01-01 19:39:00 2013-01-01 
18:40:00
#> 3 EWR    TPA          -2         9 2013-01-01 20:58:00 2013-01-01 
21:00:00
#> 4 EWR    SJU          -6       -12 2013-01-01 21:02:00 2013-01-01 
21:08:00
#> 5 EWR    SFO          11       -14 2013-01-01 21:08:00 2013-01-01 
20:57:00
#> 6 LGA    FLL         -10        -2 2013-01-01 21:20:00 2013-01-01 
21:30:00
#> # … with 10,627 more rows, and 3 more variables: arr_time <dttm>,
#> #   sched_arr_time <dttm>, air_time <dbl>

These are overnight flights. We used the same date information for both the departure
and the arrival times, but these flights arrived on the following day. We can fix this by
adding days(1) to the arrival time of each overnight flight:

flights_dt <- flights_dt |>  
  mutate( 
    overnight = arr_time < dep_time, 
    arr_time = arr_time + days(overnight), 
    sched_arr_time = sched_arr_time + days(overnight) 
  )

Now all of our flights obey the laws of physics:

flights_dt |>  
  filter(arr_time < dep_time)  
#> # A tibble: 0 × 10
# … with 10 variables: origin <chr>, dest <chr>, dep_delay <dbl>,
#   arr_delay <dbl>, dep_time <dttm>, sched_dep_time <dttm>, …



# ℹ Use `colnames()` to see all variable names
#> # … with 10,627 more rows, and 4 more variables: 

Intervals
What does dyears(1) / ddays(365) return? It’s not quite 1, because
dyears() is defined as the number of seconds per average year, which is 365.25 days.

What does years(1) / days(1) return? Well, if the year is 2015, it should return
365, but if it is 2016, it should return 366! There’s not quite enough information for
lubridate to give a single clear answer. What it does instead is give an estimate:

years(1) / days(1)
#> [1] 365.25

If you want a more accurate measurement, you’ll have to use an interval. An interval is
a pair of starting and ending date times, or you can think of it as a duration with a
starting point.

You can create an interval by writing start %--% end:

y2023 <- ymd("2023-01-01") %--% ymd("2024-01-01")
y2024 <- ymd("2024-01-01") %--% ymd("2025-01-01") 
 
y2023
#> [1] 2023-01-01 UTC--2024-01-01 UTC
y2024
#> [1] 2024-01-01 UTC--2025-01-01 UTC

You could then divide it by days() to find out how many days fit in the year:

y2023 / days(1)
#> [1] 365
y2024 / days(1)
#> [1] 366

Exercises
1. Explain days(!overnight) and days(overnight) to someone who has

just started learning R. What is the key fact you need to know?

2. Create a vector of dates giving the first day of every month in 2015. Create a
vector of dates giving the first day of every month in the current year.

3. Write a function that, given your birthday (as a date), returns how old you are in
years.

https://lubridate.tidyverse.org/reference/period.html


4. Why can’t (today() %--% (today() + years(1))) / months(1)
work?

Time Zones
Time zones are an enormously complicated topic because of their interaction with
geopolitical entities. Fortunately we don’t need to dig into all the details as they’re not
all important for data analysis, but there are a few challenges we’ll need to tackle head
on.

The first challenge is that everyday names of time zones tend to be ambiguous. For
example, if you’re American, you’re probably familiar with Eastern Standard Time
(EST). However, both Australia and Canada also have EST! To avoid confusion, R uses
the international standard IANA time zones. These use a consistent naming scheme
{area}/{location}, typically in the form {continent}/{city} or
{ocean}/{city}. Examples include “America/New_York,” “Europe/Paris,” and
“Pacific/Auckland.”

You might wonder why the time zone uses a city when typically you think of time
zones as associated with a country or region within a country. This is because the IANA
database has to record decades worth of time zone rules. Over the course of decades,
countries change names (or break apart) fairly frequently, but city names tend to stay
the same. Another problem is that the name needs to reflect not only the current
behavior but also the complete history. For example, there are time zones for both
“America/New_York” and “America/Detroit.” These cities both currently use Eastern
Standard Time, but in 1969–1972 Michigan (the state in which Detroit is located) did
not follow DST, so it needs a different name. It’s worth reading the raw time zone
database just to read some of these stories!

You can find out what R thinks your current time zone is with Sys.timezone():

Sys.timezone()
#> [1] "America/Chicago"

(If R doesn’t know, you’ll get an NA.)

And see the complete list of all time zone names with OlsonNames():

length(OlsonNames())
#> [1] 597
head(OlsonNames())
#> [1] "Africa/Abidjan"     "Africa/Accra"       "Africa/Addis_Ababa"
#> [4] "Africa/Algiers"     "Africa/Asmara"      "Africa/Asmera"

https://oreil.ly/NwvsT
https://rdrr.io/r/base/timezones.html
https://rdrr.io/r/base/timezones.html


In R, the time zone is an attribute of the date-time that only controls printing. For
example, these three objects represent the same instant in time:

x1 <- ymd_hms("2024-06-01 12:00:00", tz = "America/New_York")
x1
#> [1] "2024-06-01 12:00:00 EDT" 
 
x2 <- ymd_hms("2024-06-01 18:00:00", tz = "Europe/Copenhagen")
x2
#> [1] "2024-06-01 18:00:00 CEST" 
 
x3 <- ymd_hms("2024-06-02 04:00:00", tz = "Pacific/Auckland")
x3
#> [1] "2024-06-02 04:00:00 NZST"

You can verify that they’re the same time using subtraction:

x1 - x2
#> Time difference of 0 secs
x1 - x3
#> Time difference of 0 secs

Unless otherwise specified, lubridate always uses UTC. UTC is the standard time zone
used by the scientific community and is roughly equivalent to GMT. It does not have
DST, which makes a convenient representation for computation. Operations that
combine date-times, like c(), will often drop the time zone. In that case, the date-times
will display in the time zone of the first element:

x4 <- c(x1, x2, x3)
x4
#> [1] "2024-06-01 12:00:00 EDT" "2024-06-01 12:00:00 EDT"
#> [3] "2024-06-01 12:00:00 EDT"

You can change the time zone in two ways:

Keep the instant in time the same, and change how it’s displayed. Use this when
the instant is correct but you want a more natural display.

x4a <- with_tz(x4, tzone = "Australia/Lord_Howe")
x4a
#> [1] "2024-06-02 02:30:00 +1030" "2024-06-02 02:30:00 +1030"
#> [3] "2024-06-02 02:30:00 +1030"
x4a - x4
#> Time differences in secs
#> [1] 0 0 0

https://rdrr.io/r/base/c.html


(This also illustrates another challenge of time zones: they’re not all integer hour
offsets!)

Change the underlying instant in time. Use this when you have an instant that has
been labeled with the incorrect time zone and you need to fix it.

x4b <- force_tz(x4, tzone = "Australia/Lord_Howe")
x4b
#> [1] "2024-06-01 12:00:00 +1030" "2024-06-01 12:00:00 +1030"
#> [3] "2024-06-01 12:00:00 +1030"
x4b - x4
#> Time differences in hours
#> [1] -14.5 -14.5 -14.5

Summary
This chapter introduced you to the tools that lubridate provides to help you work with
date-time data. Working with dates and times can seem harder than necessary, but we
hope this chapter has helped you see why—date-times are more complex than they
seem at first glance, and handling every possible situation adds complexity. Even if
your data never crosses a DST boundary or involves a leap year, the functions need to
be able to handle it.

The next chapter gives a roundup of missing values. You’ve seen them in a few places
and have no doubt encountered them in your own analysis, and it’s now time to provide
a grab bag of useful techniques for dealing with them.

1  A year is a leap year if it’s divisible by 4, unless it’s also divisible by 100, except if it’s also divisible by 400.
In other words, in every set of 400 years, there’s 97 leap years.

2  You might wonder what UTC stands for. It’s a compromise between the English “Coordinated Universal
Time” and French “Temps Universel Coordonné.”

3  No prizes for guessing which country came up with the longitude system.



Chapter 18. Missing Values

Introduction
You’ve already learned the basics of missing values earlier in the book. You
first saw them in Chapter 1 where they resulted in a warning when making
a plot as well as in “summarize()” where they interfered with computing
summary statistics, and you learned about their infectious nature and how to
check for their presence in “Missing Values”. Now we’ll come back to them
in more depth so you can learn more of the details.

We’ll start by discussing some general tools for working with missing
values recorded as NAs. We’ll then explore the idea of implicitly missing
values, values are that are simply absent from your data, and show some
tools you can use to make them explicit. We’ll finish off with a related
discussion of empty groups, caused by factor levels that don’t appear in the
data.

Prerequisites
The functions for working with missing data mostly come from dplyr and
tidyr, which are core members of the tidyverse.

library(tidyverse)

Explicit Missing Values
To begin, let’s explore a few handy tools for creating or eliminating missing
explicit values, i.e., cells where you see an NA.

Last Observation Carried Forward



A common use for missing values is as a data entry convenience. When
data is entered by hand, missing values sometimes indicate that the value in
the previous row has been repeated (or carried forward):

treatment <- tribble( 
  ~person,           ~treatment, ~response, 
  "Derrick Whitmore", 1,         7, 
  NA,                 2,         10, 
  NA,                 3,         NA, 
  "Katherine Burke",  1,         4
)

You can fill in these missing values with tidyr::fill(). It works like
select(), taking a set of columns:

treatment |> 
  fill(everything())
#> # A tibble: 4 × 3
#>   person           treatment response
#>   <chr>                <dbl>    <dbl>
#> 1 Derrick Whitmore         1        7
#> 2 Derrick Whitmore         2       10
#> 3 Derrick Whitmore         3       10
#> 4 Katherine Burke          1        4

This treatment is sometimes called “last observation carried forward,” or
locf for short. You can use the .direction argument to fill in missing
values that have been generated in more exotic ways.

Fixed Values
Sometimes missing values represent some fixed and known value, most
commonly 0. You can use dplyr::coalesce() to replace them:

x <- c(1, 4, 5, 7, NA)
coalesce(x, 0)
#> [1] 1 4 5 7 0

Sometimes you’ll hit the opposite problem where some concrete value
actually represents a missing value. This typically arises in data generated

https://tidyr.tidyverse.org/reference/fill.html
https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/reference/coalesce.html


by older software that doesn’t have a proper way to represent missing
values, so it must instead use some special value like 99 or -999.

If possible, handle this when reading in the data, for example, by using the
na argument to readr::read_csv(), e.g., read_csv(path, na
= "99"). If you discover the problem later or your data source doesn’t
provide a way to handle it on read, you can use dplyr::na_if():

x <- c(1, 4, 5, 7, -99)
na_if(x, -99)
#> [1]  1  4  5  7 NA

NaN
Before we continue, there’s one special type of missing value that you’ll
encounter from time to time: a NaN (pronounced “nan”), or not a number.
It’s not that important to know about because it generally behaves just like
NA:

x <- c(NA, NaN)
x * 10
#> [1]  NA NaN
x == 1
#> [1] NA NA
is.na(x)
#> [1] TRUE TRUE

In the rare case you need to distinguish an NA from a NaN, you can use
is.nan(x).

You’ll generally encounter a NaN when you perform a mathematical
operation that has an indeterminate result:

0 / 0  
#> [1] NaN
0 * Inf
#> [1] NaN
Inf - Inf
#> [1] NaN
sqrt(-1)

https://readr.tidyverse.org/reference/read_delim.html
https://dplyr.tidyverse.org/reference/na_if.html


#> Warning in sqrt(-1): NaNs produced
#> [1] NaN

Implicit Missing Values
So far we’ve talked about missing values that are explicitly missing; i.e.,
you can see an NA in your data. But missing values can also be implicitly
missing, if an entire row of data is simply absent from the data. Let’s
illustrate the difference with a simple dataset that records the price of some
stock each quarter:

stocks <- tibble( 
  year  = c(2020, 2020, 2020, 2020, 2021, 2021, 2021), 
  qtr   = c(   1,    2,    3,    4,    2,    3,    4), 
  price = c(1.88, 0.59, 0.35,   NA, 0.92, 0.17, 2.66)
)

This dataset has two missing observations:

The price in the fourth quarter of 2020 is explicitly missing, because
its value is NA.

The price for the first quarter of 2021 is implicitly missing, because
it simply does not appear in the dataset.

One way to think about the difference is with this Zen-like koan:

An explicit missing value is the presence of an absence.

An implicit missing value is the absence of a presence.

Sometimes you want to make implicit missings explicit to have something
physical to work with. In other cases, explicit missings are forced upon you
by the structure of the data, and you want to get rid of them. The following
sections discuss some tools for moving between implicit and explicit
missingness.

Pivoting



You’ve already seen one tool that can make implicit missings explicit, and
vice versa: pivoting. Making data wider can make implicit missing values
explicit because every combination of the rows and new columns must have
some value. For example, if we pivot stocks to put the quarter in the
columns, both missing values become explicit:

stocks |> 
  pivot_wider( 
    names_from = qtr,  
    values_from = price 
  )
#> # A tibble: 2 × 5
#>    year   `1`   `2`   `3`   `4`
#>   <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1  2020  1.88  0.59  0.35 NA   
#> 2  2021 NA     0.92  0.17  2.66

By default, making data longer preserves explicit missing values, but if they
are structurally missing values that exist only because the data is not tidy,
you can drop them (make them implicit) by setting values_drop_na =
TRUE. See the examples in “Tidy Data” for more details.

Complete
tidyr::complete() allows you to generate explicit missing values by
providing a set of variables that define the combination of rows that should
exist. For example, we know that all combinations of year and qtr
should exist in the stocks data:

stocks |> 
  complete(year, qtr)
#> # A tibble: 8 × 3
#>    year   qtr price
#>   <dbl> <dbl> <dbl>
#> 1  2020     1  1.88
#> 2  2020     2  0.59
#> 3  2020     3  0.35
#> 4  2020     4 NA   
#> 5  2021     1 NA   

https://tidyr.tidyverse.org/reference/complete.html


#> 6  2021     2  0.92
#> # … with 2 more rows

Typically, you’ll call complete() with names of existing variables,
filling in the missing combinations. However, sometimes the individual
variables are themselves incomplete, so you can instead provide your own
data. For example, you might know that the stocks dataset is supposed to
run from 2019 to 2021, so you could explicitly supply those values for
year:

stocks |> 
  complete(year = 2019:2021, qtr)
#> # A tibble: 12 × 3
#>    year   qtr price
#>   <dbl> <dbl> <dbl>
#> 1  2019     1 NA   
#> 2  2019     2 NA   
#> 3  2019     3 NA   
#> 4  2019     4 NA   
#> 5  2020     1  1.88
#> 6  2020     2  0.59
#> # … with 6 more rows

If the range of a variable is correct but not all values are present, you could
use full_seq(x, 1) to generate all values from min(x) to max(x)
spaced out by 1.

In some cases, the complete set of observations can’t be generated by a
simple combination of variables. In that case, you can do manually what
complete() does for you: create a data frame that contains all the rows
that should exist (using whatever combination of techniques you need) and
then combine it with your original dataset with dplyr::full_join().

Joins
This brings us to another important way of revealing implicitly missing
observations: joins. You’ll learn more about joins in Chapter 19, but we
wanted to quickly mention them to you here since you can often know that
values are missing from one dataset only when you compare it another.
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dplyr::anti_join(x, y) is a useful tool here because it selects only
the rows in x that don’t have a match in y. For example, we can use two
anti_join()s to reveal that we’re missing information for 4 airports and
722 planes mentioned in flights:

library(nycflights13) 
 
flights |>  
  distinct(faa = dest) |>  
  anti_join(airports)
#> Joining with `by = join_by(faa)`
#> # A tibble: 4 × 1
#>   faa  
#>   <chr>
#> 1 BQN  
#> 2 SJU  
#> 3 STT  
#> 4 PSE 
 
flights |>  
  distinct(tailnum) |>  
  anti_join(planes)
#> Joining with `by = join_by(tailnum)`
#> # A tibble: 722 × 1
#>   tailnum
#>   <chr>  
#> 1 N3ALAA 
#> 2 N3DUAA 
#> 3 N542MQ 
#> 4 N730MQ 
#> 5 N9EAMQ 
#> 6 N532UA 
#> # … with 716 more rows

Exercises
1. Can you find any relationship between the carrier and the rows that

appear to be missing from planes?

Factors and Empty Groups

https://dplyr.tidyverse.org/reference/filter-joins.html


A final type of missingness is the empty group, a group that doesn’t contain
any observations, which can arise when working with factors. For example,
imagine we have a dataset that contains some health information about
people:

health <- tibble( 
  name   = c("Ikaia", "Oletta", "Leriah", "Dashay", "Tresaun"), 
  smoker = factor(c("no", "no", "no", "no", "no"), levels = 
c("yes", "no")), 
  age    = c(34, 88, 75, 47, 56),
)

And say we want to count the number of smokers with
dplyr::count():

health |> count(smoker)
#> # A tibble: 1 × 2
#>   smoker     n
#>   <fct>  <int>
#> 1 no         5

This dataset contains only nonsmokers, but we know that smokers exist; the
group of nonsmoker is empty. We can request count() to keep all the
groups, even those not seen in the data, by using .drop = FALSE:

health |> count(smoker, .drop = FALSE)
#> # A tibble: 2 × 2
#>   smoker     n
#>   <fct>  <int>
#> 1 yes        0
#> 2 no         5

The same principle applies to ggplot2’s discrete axes, which will also drop
levels that don’t have any values. You can force them to display by
supplying drop = FALSE to the appropriate discrete axis:

ggplot(health, aes(x = smoker)) + 
  geom_bar() + 
  scale_x_discrete() 
 

https://dplyr.tidyverse.org/reference/count.html
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ggplot(health, aes(x = smoker)) + 
  geom_bar() + 
  scale_x_discrete(drop = FALSE)

The same problem comes up more generally with dplyr::group_by().
And again you can use .drop = FALSE to preserve all factor levels:

health |>  
  group_by(smoker, .drop = FALSE) |>  
  summarize( 
    n = n(), 
    mean_age = mean(age), 
    min_age = min(age), 
    max_age = max(age), 
    sd_age = sd(age) 
  )
#> # A tibble: 2 × 6
#>   smoker     n mean_age min_age max_age sd_age
#>   <fct>  <int>    <dbl>   <dbl>   <dbl>  <dbl>
#> 1 yes        0      NaN     Inf    -Inf   NA  
#> 2 no         5       60      34      88   21.6

We get some interesting results here because when summarizing an empty
group, the summary functions are applied to zero-length vectors. There’s an
important distinction between empty vectors, which have length 0, and
missing values, each of which has length 1.

# A vector containing two missing values
x1 <- c(NA, NA)
length(x1)
#> [1] 2 
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# A vector containing nothing
x2 <- numeric()
length(x2)
#> [1] 0

All summary functions work with zero-length vectors, but they may return
results that are surprising at first glance. Here we see mean(age)
returning NaN because mean(age) = sum(age)/length(age),
which here is 0/0. max() and min() return -Inf and Inf for empty vectors,
so if you combine the results with a nonempty vector of new data and
recompute, you’ll get the minimum or maximum of the new data.1

Sometimes a simpler approach is to perform the summary and then make
the implicit missings explicit with complete():

health |>  
  group_by(smoker) |>  
  summarize( 
    n = n(), 
    mean_age = mean(age), 
    min_age = min(age), 
    max_age = max(age), 
    sd_age = sd(age) 
  ) |>  
  complete(smoker)
#> # A tibble: 2 × 6
#>   smoker     n mean_age min_age max_age sd_age
#>   <fct>  <int>    <dbl>   <dbl>   <dbl>  <dbl>
#> 1 yes       NA       NA      NA      NA   NA  
#> 2 no         5       60      34      88   21.6

The main drawback of this approach is that you get an NA for the count,
even though you know that it should be zero.

Summary
Missing values are weird! Sometimes they’re recorded as an explicit NA,
but other times you notice them only by their absence. This chapter has
given you some tools for working with explicit missing values and some
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tools for uncovering implicit missing values, and we discussed some of the
ways that implicit can become explicit, and vice versa.

In the next chapter, we tackle the final chapter in this part of the book: joins.
This is a bit of a change from the chapters so far because we’re going to
discuss tools that work with data frames as a whole, not something that you
put inside a data frame.

1  In other words, min(c(x, y)) is always equal to min(min(x), min(y)).



Chapter 19. Joins

Introduction
It’s rare that a data analysis involves only a single data frame. Typically you have many
data frames, and you must join them together to answer the questions that you’re interested
in. This chapter will introduce you to two important types of joins:

Mutating joins, which add new variables to one data frame from matching
observations in another.

Filtering joins, which filter observations from one data frame based on whether they
match an observation in another.

We’ll begin by discussing keys, the variables used to connect a pair of data frames in a
join. We cement the theory with an examination of the keys in the datasets from the
nycflights13 package and then use that knowledge to start joining data frames together.
Next we’ll discuss how joins work, focusing on their action on the rows. We’ll finish up
with a discussion of non-equi joins, a family of joins that provide a more flexible way of
matching keys than the default equality relationship.

Prerequisites
In this chapter, we’ll explore the five related datasets from nycflights13 using the join
functions from dplyr.

library(tidyverse)
library(nycflights13)

Keys
To understand joins, you need to first understand how two tables can be connected through
a pair of keys, within each table. In this section, you’ll learn about the two types of key and
see examples of both in the datasets of the nycflights13 package. You’ll also learn how to
check that your keys are valid and what to do if your table lacks a key.

Primary and Foreign Keys
Every join involves a pair of keys: a primary key and a foreign key. A primary key is a
variable or set of variables that uniquely identifies each observation. When more than one
variable is needed, the key is called a compound key. For example, in nycflights13:



airlines records two pieces of data about each airline: its carrier code and its full
name. You can identify an airline with its two-letter carrier code, making carrier
the primary key.

airlines
#> # A tibble: 16 × 2
#>   carrier name                    
#>   <chr>   <chr>                   
#> 1 9E      Endeavor Air Inc.       
#> 2 AA      American Airlines Inc.  
#> 3 AS      Alaska Airlines Inc.    
#> 4 B6      JetBlue Airways         
#> 5 DL      Delta Air Lines Inc.    
#> 6 EV      ExpressJet Airlines Inc.
#> # … with 10 more rows

airports records data about each airport. You can identify each airport by its three-
letter airport code, making faa the primary key.

airports
#> # A tibble: 1,458 × 8
#>   faa   name                            lat   lon   alt    tz dst  
#>   <chr> <chr>                         <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 04G   Lansdowne Airport              41.1 -80.6  1044    -5 A    
#> 2 06A   Moton Field Municipal Airport  32.5 -85.7   264    -6 A    
#> 3 06C   Schaumburg Regional            42.0 -88.1   801    -6 A    
#> 4 06N   Randall Airport                41.4 -74.4   523    -5 A    
#> 5 09J   Jekyll Island Airport          31.1 -81.4    11    -5 A    
#> 6 0A9   Elizabethton Municipal Airpo…  36.4 -82.2  1593    -5 A    
#> # … with 1,452 more rows, and 1 more variable: tzone <chr>

planes records data about each plane. You can identify a plane by its tail number,
making tailnum the primary key.

planes
#> # A tibble: 3,322 × 9
#>   tailnum  year type              manufacturer    model     engines
#>   <chr>   <int> <chr>             <chr>           <chr>       <int>
#> 1 N10156   2004 Fixed wing multi… EMBRAER         EMB-145XR       2
#> 2 N102UW   1998 Fixed wing multi… AIRBUS INDUSTR… A320-214        2
#> 3 N103US   1999 Fixed wing multi… AIRBUS INDUSTR… A320-214        2
#> 4 N104UW   1999 Fixed wing multi… AIRBUS INDUSTR… A320-214        2
#> 5 N10575   2002 Fixed wing multi… EMBRAER         EMB-145LR       2
#> 6 N105UW   1999 Fixed wing multi… AIRBUS INDUSTR… A320-214        2
#> # … with 3,316 more rows, and 3 more variables: seats <int>,
#> #   speed <int>, engine <chr>

weather records data about the weather at the origin airports. You can identify each
observation by the combination of location and time, making origin and
time_hour the compound primary key.



weather
#> # A tibble: 26,115 × 15
#>   origin  year month   day  hour  temp  dewp humid wind_dir
#>   <chr>  <int> <int> <int> <int> <dbl> <dbl> <dbl>    <dbl>
#> 1 EWR     2013     1     1     1  39.0  26.1  59.4      270
#> 2 EWR     2013     1     1     2  39.0  27.0  61.6      250
#> 3 EWR     2013     1     1     3  39.0  28.0  64.4      240
#> 4 EWR     2013     1     1     4  39.9  28.0  62.2      250
#> 5 EWR     2013     1     1     5  39.0  28.0  64.4      260
#> 6 EWR     2013     1     1     6  37.9  28.0  67.2      240
#> # … with 26,109 more rows, and 6 more variables: wind_speed <dbl>,
#> #   wind_gust <dbl>, precip <dbl>, pressure <dbl>, visib <dbl>, …

A foreign key is a variable (or set of variables) that corresponds to a primary key in another
table. For example:

flights$tailnum is a foreign key that corresponds to the primary key
planes$tailnum.

flights$carrier is a foreign key that corresponds to the primary key
airlines$carrier.

flights$origin is a foreign key that corresponds to the primary key
airports$faa.

flights$dest is a foreign key that corresponds to the primary key
airports$faa.

flights$origin-flights$time_hour is a compound foreign key that
corresponds to the compound primary key weather$origin-
weather$time_hour.

These relationships are summarized visually in Figure 19-1.



Figure 19-1. Connections between all five data frames in the nycflights13 package. Variables making up a primary key
are gray and are connected to their corresponding foreign keys with arrows.

You’ll notice a nice feature in the design of these keys: the primary and foreign keys almost
always have the same names, which, as you’ll see shortly, will make your joining life much
easier. It’s also worth noting the opposite relationship: almost every variable name used in
multiple tables has the same meaning in each place. There’s only one exception: year
means year of departure in flights and year of manufacturer in planes. This will
become important when we start actually joining tables together.

Checking Primary Keys
Now that that we’ve identified the primary keys in each table, it’s good practice to verify
that they do indeed uniquely identify each observation. One way to do that is to count()
the primary keys and look for entries where n is greater than one. This reveals that
planes and weather both look good:

planes |>  
  count(tailnum) |>  
  filter(n > 1)
#> # A tibble: 0 × 2
#> # … with 2 variables: tailnum <chr>, n <int> 
 
weather |>  
  count(time_hour, origin) |>  
  filter(n > 1)
#> # A tibble: 0 × 3
#> # … with 3 variables: time_hour <dttm>, origin <chr>, n <int>

You should also check for missing values in your primary keys—if a value is missing, then
it can’t identify an observation!

https://dplyr.tidyverse.org/reference/count.html


planes |>  
  filter(is.na(tailnum))
#> # A tibble: 0 × 9
#> # … with 9 variables: tailnum <chr>, year <int>, type <chr>,
#> #   manufacturer <chr>, model <chr>, engines <int>, seats <int>, … 
 
weather |>  
  filter(is.na(time_hour) | is.na(origin))
#> # A tibble: 0 × 15
#> # … with 15 variables: origin <chr>, year <int>, month <int>, day <int>,
#> #   hour <int>, temp <dbl>, dewp <dbl>, humid <dbl>, wind_dir <dbl>, …

Surrogate Keys
So far we haven’t talked about the primary key for flights. It’s not super important
here, because there are no data frames that use it as a foreign key, but it’s still useful to
consider because it’s easier to work with observations if we have some way to describe
them to others.

After a little thinking and experimentation, we determined that there are three variables that
together uniquely identify each flight:

flights |>  
  count(time_hour, carrier, flight) |>  
  filter(n > 1)
#> # A tibble: 0 × 4
#> # … with 4 variables: time_hour <dttm>, carrier <chr>, flight <int>, n <int>

Does the absence of duplicates automatically make time_hour-carrier-flight a
primary key? It’s certainly a good start, but it doesn’t guarantee it. For example, are
altitude and latitude a good primary key for airports?

airports |> 
  count(alt, lat) |>  
  filter(n > 1)
#> # A tibble: 1 × 3
#>     alt   lat     n
#>   <dbl> <dbl> <int>
#> 1    13  40.6     2

Identifying an airport by its altitude and latitude is clearly a bad idea, and in general it’s not
possible to know from the data alone whether a combination of variables makes a good
primary key. But for flights, the combination of time_hour, carrier, and flight
seems reasonable because it would be really confusing for an airline and its customers if
there were multiple flights with the same flight number in the air at the same time.

That said, we might be better off introducing a simple numeric surrogate key using the row
number:



flights2 <- flights |>  
  mutate(id = row_number(), .before = 1)
flights2
#> # A tibble: 336,776 × 20
#>      id  year month   day dep_time sched_dep_time dep_delay arr_time
#>   <int> <int> <int> <int>    <int>          <int>     <dbl>    <int>
#> 1     1  2013     1     1      517            515         2      830
#> 2     2  2013     1     1      533            529         4      850
#> 3     3  2013     1     1      542            540         2      923
#> 4     4  2013     1     1      544            545        -1     1004
#> 5     5  2013     1     1      554            600        -6      812
#> 6     6  2013     1     1      554            558        -4      740
#> # … with 336,770 more rows, and 12 more variables: sched_arr_time <int>,
#> #   arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, …

Surrogate keys can be particularly useful when communicating to other humans: it’s much
easier to tell someone to take a look at flight 2001 than to say look at UA430, which
departed at 9 a.m. on January 3, 2013.

Exercises
1. We forgot to draw the relationship between weather and airports in Figure 19-

1. What is the relationship, and how should it appear in the diagram?

2. weather contains information for only the three origin airports in NYC. If it
contained weather records for all airports in the US, what additional connection would
it make to flights?

3. The year, month, day, hour, and origin variables almost form a compound key
for weather, but there’s one hour that has duplicate observations. Can you figure out
what’s special about that hour?

4. We know that some days of the year are special and fewer people than usual fly on
them (e.g., Christmas Eve and Christmas Day). How might you represent that data as
a data frame? What would be the primary key? How would it connect to the existing
data frames?

5. Draw a diagram illustrating the connections between the Batting, People, and
Salaries data frames in the Lahman package. Draw another diagram that shows
the relationship between People, Managers, and AwardsManagers. How
would you characterize the relationship between the Batting, Pitching, and
Fielding data frames?

Basic Joins



Now that you understand how data frames are connected via keys, we can start using joins
to better understand the flights dataset. dplyr provides six join functions:

left_join()

inner_join()

right_join()

full_join()

semi_join()

anti_join()

They all have the same interface: they take a pair of data frames (x and y) and return a data
frame. The order of the rows and columns in the output is primarily determined by x.

In this section, you’ll learn how to use one mutating join, left_join(), and two
filtering joins, semi_join() and anti_join(). In the next section, you’ll learn
exactly how these functions work and about the remaining inner_join(),
right_join(), and full_join().

Mutating Joins
A mutating join allows you to combine variables from two data frames: it first matches
observations by their keys and then copies across variables from one data frame to the
other. Like mutate(), the join functions add variables to the right, so if your dataset has
many variables, you won’t see the new ones. For these examples, we’ll make it easier to
see what’s going on by creating a narrower dataset with just six variables:1

flights2 <- flights |>  
  select(year, time_hour, origin, dest, tailnum, carrier)
flights2
#> # A tibble: 336,776 × 6
#>    year time_hour           origin dest  tailnum carrier
#>   <int> <dttm>              <chr>  <chr> <chr>   <chr>  
#> 1  2013 2013-01-01 05:00:00 EWR    IAH   N14228  UA     
#> 2  2013 2013-01-01 05:00:00 LGA    IAH   N24211  UA     
#> 3  2013 2013-01-01 05:00:00 JFK    MIA   N619AA  AA     
#> 4  2013 2013-01-01 05:00:00 JFK    BQN   N804JB  B6     
#> 5  2013 2013-01-01 06:00:00 LGA    ATL   N668DN  DL     
#> 6  2013 2013-01-01 05:00:00 EWR    ORD   N39463  UA     
#> # … with 336,770 more rows

There are four types of mutating join, but there’s one that you’ll use almost all of the time:
left_join(). It’s special because the output will always have the same rows as x.2 The
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primary use of left_join() is to add additional metadata. For example, we can use
left_join() to add the full airline name to the flights2 data:

flights2 |> 
  left_join(airlines)
#> Joining with `by = join_by(carrier)`
#> # A tibble: 336,776 × 7
#>    year time_hour           origin dest  tailnum carrier name                
#>   <int> <dttm>              <chr>  <chr> <chr>   <chr>   <chr>               
#> 1  2013 2013-01-01 05:00:00 EWR    IAH   N14228  UA      United Air Lines 
In…
#> 2  2013 2013-01-01 05:00:00 LGA    IAH   N24211  UA      United Air Lines 
In…
#> 3  2013 2013-01-01 05:00:00 JFK    MIA   N619AA  AA      American Airlines 
I…
#> 4  2013 2013-01-01 05:00:00 JFK    BQN   N804JB  B6      JetBlue Airways     
#> 5  2013 2013-01-01 06:00:00 LGA    ATL   N668DN  DL      Delta Air Lines 
Inc.
#> 6  2013 2013-01-01 05:00:00 EWR    ORD   N39463  UA      United Air Lines 
In…
#> # … with 336,770 more rows

Or we could find out the temperature and wind speed when each plane departed:

flights2 |>  
  left_join(weather |> select(origin, time_hour, temp, wind_speed))
#> Joining with `by = join_by(time_hour, origin)`
#> # A tibble: 336,776 × 8
#>    year time_hour           origin dest  tailnum carrier  temp wind_speed
#>   <int> <dttm>              <chr>  <chr> <chr>   <chr>   <dbl>      <dbl>
#> 1  2013 2013-01-01 05:00:00 EWR    IAH   N14228  UA       39.0       12.7
#> 2  2013 2013-01-01 05:00:00 LGA    IAH   N24211  UA       39.9       15.0
#> 3  2013 2013-01-01 05:00:00 JFK    MIA   N619AA  AA       39.0       15.0
#> 4  2013 2013-01-01 05:00:00 JFK    BQN   N804JB  B6       39.0       15.0
#> 5  2013 2013-01-01 06:00:00 LGA    ATL   N668DN  DL       39.9       16.1
#> 6  2013 2013-01-01 05:00:00 EWR    ORD   N39463  UA       39.0       12.7
#> # … with 336,770 more rows

Or what size of plane was flying:

flights2 |>  
  left_join(planes |> select(tailnum, type, engines, seats))
#> Joining with `by = join_by(tailnum)`
#> # A tibble: 336,776 × 9
#>    year time_hour           origin dest  tailnum carrier type                
#>   <int> <dttm>              <chr>  <chr> <chr>   <chr>   <chr>               
#> 1  2013 2013-01-01 05:00:00 EWR    IAH   N14228  UA      Fixed wing multi 
en…
#> 2  2013 2013-01-01 05:00:00 LGA    IAH   N24211  UA      Fixed wing multi 
en…
#> 3  2013 2013-01-01 05:00:00 JFK    MIA   N619AA  AA      Fixed wing multi 
en…
#> 4  2013 2013-01-01 05:00:00 JFK    BQN   N804JB  B6      Fixed wing multi 
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en…
#> 5  2013 2013-01-01 06:00:00 LGA    ATL   N668DN  DL      Fixed wing multi 
en…
#> 6  2013 2013-01-01 05:00:00 EWR    ORD   N39463  UA      Fixed wing multi 
en…
#> # … with 336,770 more rows, and 2 more variables: engines <int>, seats <int>

When left_join() fails to find a match for a row in x, it fills in the new variables with
missing values. For example, there’s no information about the plane with tail number
N3ALAA so the type, engines, and seats will be missing:

flights2 |>  
  filter(tailnum == "N3ALAA") |>  
  left_join(planes |> select(tailnum, type, engines, seats))
#> Joining with `by = join_by(tailnum)`
#> # A tibble: 63 × 9
#>    year time_hour           origin dest  tailnum carrier type  engines seats
#>   <int> <dttm>              <chr>  <chr> <chr>   <chr>   <chr>   <int> <int>
#> 1  2013 2013-01-01 06:00:00 LGA    ORD   N3ALAA  AA      <NA>       NA    NA
#> 2  2013 2013-01-02 18:00:00 LGA    ORD   N3ALAA  AA      <NA>       NA    NA
#> 3  2013 2013-01-03 06:00:00 LGA    ORD   N3ALAA  AA      <NA>       NA    NA
#> 4  2013 2013-01-07 19:00:00 LGA    ORD   N3ALAA  AA      <NA>       NA    NA
#> 5  2013 2013-01-08 17:00:00 JFK    ORD   N3ALAA  AA      <NA>       NA    NA
#> 6  2013 2013-01-16 06:00:00 LGA    ORD   N3ALAA  AA      <NA>       NA    NA
#> # … with 57 more rows

We’ll come back to this problem a few times in the rest of the chapter.

Specifying Join Keys
By default, left_join() will use all variables that appear in both data frames as the
join key, the so-called natural join. This is a useful heuristic, but it doesn’t always work.
For example, what happens if we try to join flights2 with the complete planes
dataset?

flights2 |>  
  left_join(planes)
#> Joining with `by = join_by(year, tailnum)`
#> # A tibble: 336,776 × 13
#>    year time_hour           origin dest  tailnum carrier type  manufacturer
#>   <int> <dttm>              <chr>  <chr> <chr>   <chr>   <chr> <chr>       
#> 1  2013 2013-01-01 05:00:00 EWR    IAH   N14228  UA      <NA>  <NA>        
#> 2  2013 2013-01-01 05:00:00 LGA    IAH   N24211  UA      <NA>  <NA>        
#> 3  2013 2013-01-01 05:00:00 JFK    MIA   N619AA  AA      <NA>  <NA>        
#> 4  2013 2013-01-01 05:00:00 JFK    BQN   N804JB  B6      <NA>  <NA>        
#> 5  2013 2013-01-01 06:00:00 LGA    ATL   N668DN  DL      <NA>  <NA>        
#> 6  2013 2013-01-01 05:00:00 EWR    ORD   N39463  UA      <NA>  <NA>        
#> # … with 336,770 more rows, and 5 more variables: model <chr>,
#> #   engines <int>, seats <int>, speed <int>, engine <chr>
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We get a lot of missing matches because our join is trying to use tailnum and year as a
compound key. Both flights and planes have a year column, but they mean
different things: flights$year is the year the flight occurred, and planes$year is
the year the plane was built. We only want to join on tailnum, so we need to provide an
explicit specification with join_by():

flights2 |>  
  left_join(planes, join_by(tailnum))
#> # A tibble: 336,776 × 14
#>   year.x time_hour           origin dest  tailnum carrier year.y
#>    <int> <dttm>              <chr>  <chr> <chr>   <chr>    <int>
#> 1   2013 2013-01-01 05:00:00 EWR    IAH   N14228  UA        1999
#> 2   2013 2013-01-01 05:00:00 LGA    IAH   N24211  UA        1998
#> 3   2013 2013-01-01 05:00:00 JFK    MIA   N619AA  AA        1990
#> 4   2013 2013-01-01 05:00:00 JFK    BQN   N804JB  B6        2012
#> 5   2013 2013-01-01 06:00:00 LGA    ATL   N668DN  DL        1991
#> 6   2013 2013-01-01 05:00:00 EWR    ORD   N39463  UA        2012
#> # … with 336,770 more rows, and 7 more variables: type <chr>,
#> #   manufacturer <chr>, model <chr>, engines <int>, seats <int>, …

Note that the year variables are disambiguated in the output with a suffix (year.x and
year.y), which tells you whether the variable came from the x or y argument. You can
override the default suffixes with the suffix argument.

join_by(tailnum) is short for join_by(tailnum == tailnum). It’s important
to know about this fuller form for two reasons. First, it describes the relationship between
the two tables: the keys must be equal. That’s why this type of join is often called an equi
join. You’ll learn about non-equi joins in “Filtering Joins”.

Second, it’s how you specify different join keys in each table. For example, there are two
ways to join the flight2 and airports table: either by dest or by origin:

flights2 |>  
  left_join(airports, join_by(dest == faa))
#> # A tibble: 336,776 × 13
#>    year time_hour           origin dest  tailnum carrier name                
#>   <int> <dttm>              <chr>  <chr> <chr>   <chr>   <chr>               
#> 1  2013 2013-01-01 05:00:00 EWR    IAH   N14228  UA      George Bush 
Interco…
#> 2  2013 2013-01-01 05:00:00 LGA    IAH   N24211  UA      George Bush 
Interco…
#> 3  2013 2013-01-01 05:00:00 JFK    MIA   N619AA  AA      Miami Intl          
#> 4  2013 2013-01-01 05:00:00 JFK    BQN   N804JB  B6      <NA>                
#> 5  2013 2013-01-01 06:00:00 LGA    ATL   N668DN  DL      Hartsfield Jackson 
…
#> 6  2013 2013-01-01 05:00:00 EWR    ORD   N39463  UA      Chicago Ohare Intl  
#> # … with 336,770 more rows, and 6 more variables: lat <dbl>, lon <dbl>,
#> #   alt <dbl>, tz <dbl>, dst <chr>, tzone <chr> 
 
flights2 |>  
  left_join(airports, join_by(origin == faa))
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#> # A tibble: 336,776 × 13
#>    year time_hour           origin dest  tailnum carrier name               
#>   <int> <dttm>              <chr>  <chr> <chr>   <chr>   <chr>              
#> 1  2013 2013-01-01 05:00:00 EWR    IAH   N14228  UA      Newark Liberty Intl
#> 2  2013 2013-01-01 05:00:00 LGA    IAH   N24211  UA      La Guardia         
#> 3  2013 2013-01-01 05:00:00 JFK    MIA   N619AA  AA      John F Kennedy Intl
#> 4  2013 2013-01-01 05:00:00 JFK    BQN   N804JB  B6      John F Kennedy Intl
#> 5  2013 2013-01-01 06:00:00 LGA    ATL   N668DN  DL      La Guardia         
#> 6  2013 2013-01-01 05:00:00 EWR    ORD   N39463  UA      Newark Liberty Intl
#> # … with 336,770 more rows, and 6 more variables: lat <dbl>, lon <dbl>,
#> #   alt <dbl>, tz <dbl>, dst <chr>, tzone <chr>

In older code you might see a different way of specifying the join keys, using a character
vector:

by = "x" corresponds to join_by(x).

by = c("a" = "x") corresponds to join_by(a == x).

Now that it exists, we prefer join_by() since it provides a clearer and more flexible
specification.

inner_join(), right_join(), and full_join() have the same interface as
left_join(). The difference is which rows they keep: left join keeps all the rows in x,
the right join keeps all rows in y, the full join keeps all rows in either x or y, and the inner
join keeps only those rows that occur in both x and y. We’ll come back to these in more
detail later.

Filtering Joins
As you might guess, the primary action of a filtering join is to filter the rows. There are two
types: semi-joins and anti-joins. Semi-joins keep all rows in x that have a match in y. For
example, we could use a semi-join to filter the airports dataset to show just the origin
airports:

airports |>  
  semi_join(flights2, join_by(faa == origin))
#> # A tibble: 3 × 8
#>   faa   name                  lat   lon   alt    tz dst   tzone           
#>   <chr> <chr>               <dbl> <dbl> <dbl> <dbl> <chr> <chr>           
#> 1 EWR   Newark Liberty Intl  40.7 -74.2    18    -5 A     America/New_York
#> 2 JFK   John F Kennedy Intl  40.6 -73.8    13    -5 A     America/New_York
#> 3 LGA   La Guardia           40.8 -73.9    22    -5 A     America/New_York

Or just the destinations:

airports |>  
  semi_join(flights2, join_by(faa == dest))
#> # A tibble: 101 × 8
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#>   faa   name                     lat    lon   alt    tz dst   tzone          
#>   <chr> <chr>                  <dbl>  <dbl> <dbl> <dbl> <chr> <chr>          
#> 1 ABQ   Albuquerque Internati…  35.0 -107.   5355    -7 A     America/Denver 
#> 2 ACK   Nantucket Mem           41.3  -70.1    48    -5 A     
America/New_Yo…
#> 3 ALB   Albany Intl             42.7  -73.8   285    -5 A     
America/New_Yo…
#> 4 ANC   Ted Stevens Anchorage…  61.2 -150.    152    -9 A     
America/Anchor…
#> 5 ATL   Hartsfield Jackson At…  33.6  -84.4  1026    -5 A     
America/New_Yo…
#> 6 AUS   Austin Bergstrom Intl   30.2  -97.7   542    -6 A     
America/Chicago
#> # … with 95 more rows

Anti-joins are the opposite: they return all rows in x that don’t have a match in y. They’re
useful for finding missing values that are implicit in the data, the topic of “Implicit Missing
Values”. Implicitly missing values don’t show up as NAs but instead exist only as an
absence. For example, we can find rows that are missing from airports by looking for
flights that don’t have a matching destination airport:

flights2 |>  
  anti_join(airports, join_by(dest == faa)) |>  
  distinct(dest)
#> # A tibble: 4 × 1
#>   dest 
#>   <chr>
#> 1 BQN  
#> 2 SJU  
#> 3 STT  
#> 4 PSE

Or we can find which tailnums are missing from planes:

flights2 |> 
  anti_join(planes, join_by(tailnum)) |>  
  distinct(tailnum)
#> # A tibble: 722 × 1
#>   tailnum
#>   <chr>  
#> 1 N3ALAA 
#> 2 N3DUAA 
#> 3 N542MQ 
#> 4 N730MQ 
#> 5 N9EAMQ 
#> 6 N532UA 
#> # … with 716 more rows

Exercises



1. Find the 48 hours (over the course of the whole year) that have the worst delays.
Cross-reference it with the weather data. Can you see any patterns?

2. Imagine you’ve found the top 10 most popular destinations using this code:

top_dest <- flights2 |> 
  count(dest, sort = TRUE) |> 
  head(10)

How can you find all flights to those destinations?

3. Does every departing flight have corresponding weather data for that hour?

4. What do the tail numbers that don’t have a matching record in planes have in
common? (Hint: One variable explains about 90% of the problems.)

5. Add a column to planes that lists every carrier that has flown that plane. You
might expect that there’s an implicit relationship between plane and airline, because
each plane is flown by a single airline. Confirm or reject this hypothesis using the
tools you’ve learned in previous chapters.

6. Add the latitude and the longitude of the origin and destination airport to flights.
Is it easier to rename the columns before or after the join?

7. Compute the average delay by destination and then join on the airports data frame
so you can show the spatial distribution of delays. Here’s an easy way to draw a map
of the United States:

airports |> 
  semi_join(flights, join_by(faa == dest)) |> 
  ggplot(aes(x = lon, y = lat)) + 
    borders("state") + 
    geom_point() + 
    coord_quickmap()

You might want to use the size or color of the points to display the average delay
for each airport.

8. What happened on June 13, 2013? Draw a map of the delays, and then use Google to
cross-reference with the weather.

How Do Joins Work?
Now that you’ve used joins a few times, it’s time to learn more about how they work,
focusing on how each row in x matches rows in y. We’ll begin by introducing a visual
representation of joins, using the simple tibbles defined next and shown in Figure 19-2. In



these examples we’ll use a single key called key and a single value column (val_x and
val_y), but the ideas all generalize to multiple keys and multiple values.

x <- tribble( 
  ~key, ~val_x, 
     1, "x1", 
     2, "x2", 
     3, "x3"
)
y <- tribble( 
  ~key, ~val_y, 
     1, "y1", 
     2, "y2", 
     4, "y3"
)

Figure 19-2. Graphical representation of two simple tables. The colored key columns map background color to key
value. The gray columns represent the “value” columns that are carried along for the ride.

Figure 19-3 introduces the foundation for our visual representation. It shows all potential
matches between x and y as the intersection between lines drawn from each row of x and
each row of y. The rows and columns in the output are primarily determined by x, so the x
table is horizontal and lines up with the output.



Figure 19-3. To understand how joins work, it’s useful to think of every possible match. Here we show that with a grid of
connecting lines.

To describe a specific type of join, we indicate matches with dots. The matches determine
the rows in the output, a new data frame that contains the key, the x values, and the y
values. For example, Figure 19-4 shows an inner join, where rows are retained if and only
if the keys are equal.

Figure 19-4. An inner join matches each row in x to the row in y that has the same value of key. Each match becomes a
row in the output.



We can apply the same principles to explain the outer joins, which keep observations that
appear in at least one of the data frames. These joins work by adding an additional “virtual”
observation to each data frame. This observation has a key that matches if no other key
matches, as well as values filled with NA. There are three types of outer joins:

A left join keeps all observations in x, as shown in Figure 19-5. Every row of x is
preserved in the output because it can fall back to matching a row of NAs in y.

Figure 19-5. A visual representation of the left join where every row in x appears in the output.

A right join keeps all observations in y, as shown in Figure 19-6. Every row of y is
preserved in the output because it can fall back to matching a row of NAs in x. The
output still matches x as much as possible; any extra rows from y are added to the
end.



Figure 19-6. A visual representation of the right join where every row of y appears in the output.

A full join keeps all observations that appear in x or y, as shown in Figure 19-7.
Every row of x and y is included in the output because both x and y have a fallback
row of NAs. Again, the output starts with all rows from x, followed by the remaining
unmatched y rows.

Figure 19-7. A visual representation of the full join where every row in x and y appears in the output.



Another way to show how the types of outer join differ is with a Venn diagram, as in
Figure 19-8. However, this is not a great representation because while it might jog your
memory about which rows are preserved, it fails to illustrate what’s happening with the
columns.

Figure 19-8. Venn diagrams showing the difference between inner, left, right, and full joins.

The joins shown here are the so-called equi joins, where rows match if the keys are equal.
Equi joins are the most common type of join, so we’ll typically omit the equi prefix and
just say “inner join” rather than “equi inner join.” We’ll come back to non-equi joins in
“Filtering Joins”.

Row Matching
So far we’ve explored what happens if a row in x matches zero or one rows in y. What
happens if it matches more than one row? To understand what’s going on, let’s first narrow
our focus to inner_join() and then draw a picture, as shown in Figure 19-9.

Figure 19-9. The three ways a row in x can match. x1 matches one row in y, x2 matches two rows in y, and x3 matches
zero rows in y. Note that while there are three rows in x and three rows in the output, there isn’t a direct correspondence

between the rows.

There are three possible outcomes for a row in x:

If it doesn’t match anything, it’s dropped.
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If it matches one row in y, it’s preserved.

If it matches more than one row in y, it’s duplicated once for each match.

In principle, this means there’s no guaranteed correspondence between the rows in the
output and the rows in x, but in practice, this rarely causes problems. There is, however,
one particularly dangerous case that can cause a combinatorial explosion of rows. Imagine
joining the following two tables:

df1 <- tibble(key = c(1, 2, 2), val_x = c("x1", "x2", "x3"))
df2 <- tibble(key = c(1, 2, 2), val_y = c("y1", "y2", "y3"))

While the first row in df1 matches only one row in df2, the second and third rows both
match two rows. This is sometimes called a many-to-many join and will cause dplyr to emit
a warning:

df1 |>  
  inner_join(df2, join_by(key))
#> Warning in inner_join(df1, df2, join_by(key)): 
#> Detected an unexpected many-to-many relationship between `x` and `y`.
#> ℹ Row 2 of `x` matches multiple rows in `y`.
#> ℹ Row 2 of `y` matches multiple rows in `x`.
#> ℹ If a many-to-many relationship is expected, set `relationship =
#>   "many-to-many"` to silence this warning.
#> # A tibble: 5 × 3
#>     key val_x val_y
#>   <dbl> <chr> <chr>
#> 1     1 x1    y1   
#> 2     2 x2    y2   
#> 3     2 x2    y3   
#> 4     2 x3    y2   
#> 5     2 x3    y3

If you are doing this deliberately, you can set relationship = "many-to-many",
as the warning suggests.

Filtering Joins
The number of matches also determines the behavior of the filtering joins. The semi-join
keeps rows in x that have one or more matches in y, as in Figure 19-10. The anti-join
keeps rows in x that match zero rows in y, as in Figure 19-11. In both cases, only the
existence of a match is important; it doesn’t matter how many times it matches. This means
that filtering joins never duplicate rows like mutating joins do.



Figure 19-10. In a semi-join it only matters that there is a match; otherwise, values in y don’t affect the output.

Figure 19-11. An anti-join is the inverse of a semi-join, dropping rows from x that have a match in y.

Non-Equi Joins
So far you’ve seen only equi joins, joins where the rows match if the x key equals the y
key. Now we’re going to relax that restriction and discuss other ways of determining if a
pair of rows match.

But before we can do that, we need to revisit a simplification we made previously. In equi
joins the x keys and y are always equal, so we need to show only one in the output. We can
request that dplyr keep both keys with keep = TRUE, leading to the following code and
the redrawn inner_join() in Figure 19-12.
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x |> left_join(y, by = "key", keep = TRUE)
#> # A tibble: 3 × 4
#>   key.x val_x key.y val_y
#>   <dbl> <chr> <dbl> <chr>
#> 1     1 x1        1 y1   
#> 2     2 x2        2 y2   
#> 3     3 x3       NA <NA>

Figure 19-12. An inner join showing both x and y keys in the output.

When we move away from equi joins, we’ll always show the keys, because the key values
will often be different. For example, instead of matching only when the x$key and
y$key are equal, we could match whenever the x$key is greater than or equal to the
y$key, leading to Figure 19-13. dplyr’s join functions understand this distinction between
equi and non-equi joins so will always show both keys when you perform a non-equi join.

Figure 19-13. A non-equi join where the x key must be greater than or equal to the y key. Many rows generate multiple
matches.

Non-equi join isn’t a particularly useful term because it only tells you what the join is not,
not what it is. dplyr helps by identifying four particularly useful types of non-equi join:



Cross joins

Match every pair of rows.

Inequality joins

Use <, <=, >, and >= instead of ==.

Rolling joins

Similar to inequality joins but only find the closest match.

Overlap joins

A special type of inequality join designed to work with ranges.

Each of these is described in more detail in the following sections.

Cross Joins
A cross join matches everything, as in Figure 19-14, generating the Cartesian product of
rows. This means the output will have nrow(x) * nrow(y) rows.

Figure 19-14. A cross join matches each row in x with every row in y.



Cross joins are useful when generating permutations. For example, the following code
generates every possible pair of names. Since we’re joining df to itself, this is sometimes
called a self-join. Cross joins use a different join function because there’s no distinction
between inner/left/right/full when you’re matching every row.

df <- tibble(name = c("John", "Simon", "Tracy", "Max"))
df |> cross_join(df)
#> # A tibble: 16 × 2
#>   name.x name.y
#>   <chr>  <chr> 
#> 1 John   John  
#> 2 John   Simon 
#> 3 John   Tracy 
#> 4 John   Max   
#> 5 Simon  John  
#> 6 Simon  Simon 
#> # … with 10 more rows

Inequality Joins
Inequality joins use <, <=, >=, or > to restrict the set of possible matches, as in Figure 19-
13 and Figure 19-15.

Figure 19-15. An inequality join where x is joined to y on rows where the key of x is less than the key of y. This makes a
triangular shape in the top-left corner.



Inequality joins are extremely general, so general that it’s hard to come up with meaningful
specific use cases. One small useful technique is to use them to restrict the cross join so
that instead of generating all permutations, we generate all combinations:

df <- tibble(id = 1:4, name = c("John", "Simon", "Tracy", "Max")) 
 
df |> left_join(df, join_by(id < id))
#> # A tibble: 7 × 4
#>    id.x name.x  id.y name.y
#>   <int> <chr>  <int> <chr> 
#> 1     1 John       2 Simon 
#> 2     1 John       3 Tracy 
#> 3     1 John       4 Max   
#> 4     2 Simon      3 Tracy 
#> 5     2 Simon      4 Max   
#> 6     3 Tracy      4 Max   
#> # … with 1 more row

Rolling Joins
Rolling joins are a special type of inequality join where instead of getting every row that
satisfies the inequality, you get just the closest row, as in Figure 19-16. You can turn any
inequality join into a rolling join by adding closest(). For example,
join_by(closest(x <= y)) matches the smallest y that’s greater than or equal to
x, and join_by(closest(x > y)) matches the biggest y that’s less than x.

Figure 19-16. A rolling join is similar to a greater-than-or-equal inequality join but matches only the first value.



Rolling joins are particularly useful when you have two tables of dates that don’t perfectly
line up and you want to find, for example, the closest date in table 1 that comes before (or
after) some date in table 2.

For example, imagine that you’re in charge of the party planning commission for your
office. Your company is rather cheap so instead of having individual parties, you have a
party only once each quarter. The rules for determining when a party will be held are a
little complex: parties are always on a Monday, you skip the first week of January since a
lot of people are on holiday, and the first Monday of Q3 2022 is July 4, so that has to be
pushed back a week. That leads to the following party days:

parties <- tibble( 
  q = 1:4, 
  party = ymd(c("2022-01-10", "2022-04-04", "2022-07-11", "2022-10-03"))
)

Now imagine that you have a table of employee birthdays:

employees <- tibble( 
  name = sample(babynames::babynames$name, 100), 
  birthday = ymd("2022-01-01") + (sample(365, 100, replace = TRUE) - 1)
)
employees
#> # A tibble: 100 × 2
#>   name    birthday  
#>   <chr>   <date>    
#> 1 Case    2022-09-13
#> 2 Shonnie 2022-03-30
#> 3 Burnard 2022-01-10
#> 4 Omer    2022-11-25
#> 5 Hillel  2022-07-30
#> 6 Curlie  2022-12-11
#> # … with 94 more rows

And for each employee we want to find the first party date that comes after (or on) their
birthday. We can express that with a rolling join:

employees |>  
  left_join(parties, join_by(closest(birthday >= party)))
#> # A tibble: 100 × 4
#>   name    birthday       q party     
#>   <chr>   <date>     <int> <date>    
#> 1 Case    2022-09-13     3 2022-07-11
#> 2 Shonnie 2022-03-30     1 2022-01-10
#> 3 Burnard 2022-01-10     1 2022-01-10
#> 4 Omer    2022-11-25     4 2022-10-03
#> 5 Hillel  2022-07-30     3 2022-07-11
#> 6 Curlie  2022-12-11     4 2022-10-03
#> # … with 94 more rows



There is, however, one problem with this approach: the folks with birthdays before January
10 don’t get a party:

employees |>  
  anti_join(parties, join_by(closest(birthday >= party)))
#> # A tibble: 0 × 2
#> # … with 2 variables: name <chr>, birthday <date>

To resolve that issue we’ll need to tackle the problem a different way, with overlap joins.

Overlap Joins
Overlap joins provide three helpers that use inequality joins to make it easier to work with
intervals:

between(x, y_lower, y_upper) is short for x >= y_lower, x <=
y_upper.

within(x_lower, x_upper, y_lower, y_upper) is short for x_lower
>= y_lower, x_upper <= y_upper.

overlaps(x_lower, x_upper, y_lower, y_upper) is short for
x_lower <= y_upper, x_upper >= y_lower.

Let’s continue the birthday example to see how you might use them. There’s one problem
with the strategy we used earlier: there’s no party preceding the birthdays from January 1 to
9. So it might be better to to be explicit about the date ranges that each party span, and
make a special case for those early birthdays:

parties <- tibble( 
  q = 1:4, 
  party = ymd(c("2022-01-10", "2022-04-04", "2022-07-11", "2022-10-03")), 
  start = ymd(c("2022-01-01", "2022-04-04", "2022-07-11", "2022-10-03")), 
  end = ymd(c("2022-04-03", "2022-07-11", "2022-10-02", "2022-12-31"))
)
parties
#> # A tibble: 4 × 4
#>       q party      start      end       
#>   <int> <date>     <date>     <date>    
#> 1     1 2022-01-10 2022-01-01 2022-04-03
#> 2     2 2022-04-04 2022-04-04 2022-07-11
#> 3     3 2022-07-11 2022-07-11 2022-10-02
#> 4     4 2022-10-03 2022-10-03 2022-12-31

Hadley is hopelessly bad at data entry, so he also wanted to check that the party periods
don’t overlap. One way to do this is by using a self-join to check whether any start-end
interval overlaps with another:



parties |>  
  inner_join(parties, join_by(overlaps(start, end, start, end), q < q)) |>  
  select(start.x, end.x, start.y, end.y)
#> # A tibble: 1 × 4
#>   start.x    end.x      start.y    end.y     
#>   <date>     <date>     <date>     <date>    
#> 1 2022-04-04 2022-07-11 2022-07-11 2022-10-02

Oops, there is an overlap, so let’s fix that problem and continue:

parties <- tibble( 
  q = 1:4, 
  party = ymd(c("2022-01-10", "2022-04-04", "2022-07-11", "2022-10-03")), 
  start = ymd(c("2022-01-01", "2022-04-04", "2022-07-11", "2022-10-03")), 
  end = ymd(c("2022-04-03", "2022-07-10", "2022-10-02", "2022-12-31"))
)

Now we can match each employee to their party. This is a good place to use unmatched
= "error" because we want to quickly find out if any employees didn’t get assigned a
party:

employees |>  
  inner_join(parties, join_by(between(birthday, start, end)), unmatched = 
"error")
#> # A tibble: 100 × 6
#>   name    birthday       q party      start      end       
#>   <chr>   <date>     <int> <date>     <date>     <date>    
#> 1 Case    2022-09-13     3 2022-07-11 2022-07-11 2022-10-02
#> 2 Shonnie 2022-03-30     1 2022-01-10 2022-01-01 2022-04-03
#> 3 Burnard 2022-01-10     1 2022-01-10 2022-01-01 2022-04-03
#> 4 Omer    2022-11-25     4 2022-10-03 2022-10-03 2022-12-31
#> 5 Hillel  2022-07-30     3 2022-07-11 2022-07-11 2022-10-02
#> 6 Curlie  2022-12-11     4 2022-10-03 2022-10-03 2022-12-31
#> # … with 94 more rows

Exercises
1. Can you explain what’s happening with the keys in this equi join? Why are they

different?

x |> full_join(y, by = "key")
#> # A tibble: 4 × 3
#>     key val_x val_y
#>   <dbl> <chr> <chr>
#> 1     1 x1    y1   
#> 2     2 x2    y2   
#> 3     3 x3    <NA> 
#> 4     4 <NA>  y3 
 
x |> full_join(y, by = "key", keep = TRUE)
#> # A tibble: 4 × 4
#>   key.x val_x key.y val_y



#>   <dbl> <chr> <dbl> <chr>
#> 1     1 x1        1 y1   
#> 2     2 x2        2 y2   
#> 3     3 x3       NA <NA> 
#> 4    NA <NA>      4 y3

2. When finding if any party period overlapped with another party period, we used q <
q in the join_by()? Why? What happens if you remove this inequality?

Summary
In this chapter, you learned how to use mutating and filtering joins to combine data from a
pair of data frames. Along the way you learned how to identify keys, and you learned the
difference between primary and foreign keys. You also understand how joins work and
how to figure out how many rows the output will have. Finally, you gained a glimpse into
the power of non-equi joins and saw a few interesting use cases.

This chapter concludes the “Transform” part of the book where the focus was on the tools
you could use with individual columns and tibbles. You learned about dplyr and base
functions for working with logical vectors, numbers, and complete tables; stringr functions
for working strings; lubridate functions for working with date-times; and forcats functions
for working with factors.

In the next part of the book, you’ll learn more about getting various types of data into R in
a tidy form.

1  Remember that in RStudio you can also use View() to avoid this problem.

2  That’s not 100% true, but you’ll get a warning whenever it isn’t.

https://dplyr.tidyverse.org/reference/join_by.html
https://rdrr.io/r/utils/View.html


Part IV. Import

In this part of the book, you’ll learn how to import a wider range of data
into R, as well as how to get it into a form useful form for analysis.
Sometimes this is just a matter of calling a function from the appropriate
data import package. But in more complex cases it might require both
tidying and transformation to get to the tidy rectangle that you’d prefer to
work with.

Figure IV-1. Data import is the beginning of the data science process; without data you can’t do data
science!

In this part of the book you’ll learn how to access data stored in the
following ways:

In Chapter 20, you’ll learn how to import data from Excel spreadsheets
and Google Sheets.

In Chapter 21, you’ll learn about getting data out of a database and
into R (and you’ll also learn a little about how to get data out of R and
into a database).

In Chapter 22, you’ll learn about Arrow, a powerful tool for working
with out-of-memory data, particularly when it’s stored in the parquet



format.

In Chapter 23, you’ll learn how to work with hierarchical data,
including the deeply nested lists produced by data stored in the JSON
format.

In Chapter 24, you’ll learn web “scraping,” the art and science of
extracting data from web pages.

There are two important tidyverse packages that we don’t discuss here:
haven and xml2. If you are working with data from SPSS, Stata, and SAS
files, check out the haven package. If you’re working with XML data,
check out the xml2 package. Otherwise, you’ll need to do some research to
figure out which package you’ll need to use; Google is your friend here.

https://oreil.ly/cymF4
https://oreil.ly/lQNBa


Chapter 20. Spreadsheets

Introduction
In Chapter 7 you learned about importing data from plain-text files like .csv and .tsv.
Now it’s time to learn how to get data out of a spreadsheet, either an Excel spreadsheet
or a Google Sheet. This will build on much of what you’ve learned in Chapter 7, but we
will also discuss additional considerations and complexities when working with data
from spreadsheets.

If you or your collaborators are using spreadsheets for organizing data, we strongly
recommend reading the paper “Data Organization in Spreadsheets” by Karl Broman and
Kara Woo. The best practices presented in this paper will save you much headache when
you import data from a spreadsheet into R to analyze and visualize.

Excel
Microsoft Excel is a widely used spreadsheet software program where data are organized
in worksheets inside of spreadsheet files.

Prerequisites
In this section, you’ll learn how to load data from Excel spreadsheets in R with the
readxl package. This package is noncore tidyverse, so you need to load it explicitly, but it
is installed automatically when you install the tidyverse package. Later, we’ll also use
the writexl package, which allows us to create Excel spreadsheets.

library(readxl)
library(tidyverse)
library(writexl)

Getting Started
Most of readxl’s functions allow you to load Excel spreadsheets into R:

read_xls() reads Excel files with the XLS format.

read_xlsx() reads Excel files with the XLSX format.

read_excel() can read files with both the XLS and XLSX formats. It guesses
the file type based on the input.

https://oreil.ly/Ejuen
https://readxl.tidyverse.org/reference/read_excel.html
https://readxl.tidyverse.org/reference/read_excel.html
https://readxl.tidyverse.org/reference/read_excel.html


These functions all have similar syntax just like other functions we have previously
introduced for reading other types of files, e.g., read_csv(), read_table(), etc.
For the rest of the chapter we will focus on using read_excel().

Reading Excel Spreadsheets
Figure 20-1 shows what the spreadsheet we’re going to read into R looks like in Excel.

Figure 20-1. Spreadsheet called students.xlsx in Excel.

The first argument to read_excel() is the path to the file to read.

students <- read_excel("data/students.xlsx")

read_excel() will read the file in as a tibble.

students
#> # A tibble: 6 × 5
#>   `Student ID` `Full Name`      favourite.food     mealPlan            AGE  
#>          <dbl> <chr>            <chr>              <chr>               
<chr>
#> 1            1 Sunil Huffmann   Strawberry yoghurt Lunch only          4    
#> 2            2 Barclay Lynn     French fries       Lunch only          5    
#> 3            3 Jayendra Lyne    N/A                Breakfast and lunch 7    
#> 4            4 Leon Rossini     Anchovies          Lunch only          
<NA> 
#> 5            5 Chidiegwu Dunkel Pizza              Breakfast and lunch 
five 
#> 6            6 Güvenç Attila    Ice cream          Lunch only          6

We have six students in the data and five variables on each student. However, there are a
few things we might want to address in this dataset:

https://readr.tidyverse.org/reference/read_delim.html
https://readr.tidyverse.org/reference/read_table.html
https://readxl.tidyverse.org/reference/read_excel.html
https://readxl.tidyverse.org/reference/read_excel.html
https://readxl.tidyverse.org/reference/read_excel.html


1. The column names are all over the place. You can provide column names that
follow a consistent format; we recommend snake_case using the col_names
argument.

read_excel( 
  "data/students.xlsx", 
  col_names = c( 
    "student_id", "full_name", "favourite_food", "meal_plan", "age")
)
#> # A tibble: 7 × 5
#>   student_id full_name        favourite_food     meal_plan           
age  
#>   <chr>      <chr>            <chr>              <chr>               
<chr>
#> 1 Student ID Full Name        favourite.food     mealPlan            
AGE  
#> 2 1          Sunil Huffmann   Strawberry yoghurt Lunch only          
4    
#> 3 2          Barclay Lynn     French fries       Lunch only          
5    
#> 4 3          Jayendra Lyne    N/A                Breakfast and lunch 
7    
#> 5 4          Leon Rossini     Anchovies          Lunch only          
<NA> 
#> 6 5          Chidiegwu Dunkel Pizza              Breakfast and lunch 
five 
#> 7 6          Güvenç Attila    Ice cream          Lunch only          
6

Unfortunately, this didn’t quite do the trick. We now have the variable names we
want, but what was previously the header row now shows up as the first observation
in the data. You can explicitly skip that row using the skip argument.

read_excel( 
  "data/students.xlsx", 
  col_names = c("student_id", "full_name", "favourite_food", 
"meal_plan", "age"), 
  skip = 1
)
#> # A tibble: 6 × 5
#>   student_id full_name        favourite_food     meal_plan           
age  
#>        <dbl> <chr>            <chr>              <chr>               
<chr>
#> 1          1 Sunil Huffmann   Strawberry yoghurt Lunch only          
4    
#> 2          2 Barclay Lynn     French fries       Lunch only          
5    
#> 3          3 Jayendra Lyne    N/A                Breakfast and lunch 
7    
#> 4          4 Leon Rossini     Anchovies          Lunch only          
<NA> 



#> 5          5 Chidiegwu Dunkel Pizza              Breakfast and lunch 
five 
#> 6          6 Güvenç Attila    Ice cream          Lunch only          
6

2. In the favourite_food column, one of the observations is N/A, which stands
for “not available,” but it’s currently not recognized as an NA (note the contrast
between this N/A and the age of the fourth student in the list). You can specify
which character strings should be recognized as NAs with the na argument. By
default, only "" (empty string, or, in the case of reading from a spreadsheet, an
empty cell or a cell with the formula =NA()) is recognized as an NA.

read_excel( 
  "data/students.xlsx", 
  col_names = c("student_id", "full_name", "favourite_food", 
"meal_plan", "age"), 
  skip = 1, 
  na = c("", "N/A")
)
#> # A tibble: 6 × 5
#>   student_id full_name        favourite_food     meal_plan           
age  
#>        <dbl> <chr>            <chr>              <chr>               
<chr>
#> 1          1 Sunil Huffmann   Strawberry yoghurt Lunch only          
4    
#> 2          2 Barclay Lynn     French fries       Lunch only          
5    
#> 3          3 Jayendra Lyne    <NA>               Breakfast and lunch 
7    
#> 4          4 Leon Rossini     Anchovies          Lunch only          
<NA> 
#> 5          5 Chidiegwu Dunkel Pizza              Breakfast and lunch 
five 
#> 6          6 Güvenç Attila    Ice cream          Lunch only          
6

3. One other remaining issue is that age is read in as a character variable, but it really
should be numeric. Just like with read_csv() and friends for reading data from
flat files, you can supply a col_types argument to read_excel() and specify
the column types for the variables you read in. The syntax is a bit different, though.
Your options are "skip", "guess", "logical", "numeric", "date",
"text", or "list".

read_excel( 
  "data/students.xlsx", 
  col_names = c("student_id", "full_name", "favourite_food", 
"meal_plan", "age"), 
  skip = 1, 

https://readr.tidyverse.org/reference/read_delim.html
https://readxl.tidyverse.org/reference/read_excel.html


  na = c("", "N/A"), 
  col_types = c("numeric", "text", "text", "text", "numeric")
)
#> Warning: Expecting numeric in E6 / R6C5: got 'five'
#> # A tibble: 6 × 5
#>   student_id full_name        favourite_food     meal_plan             
age
#>        <dbl> <chr>            <chr>              <chr>               
<dbl>
#> 1          1 Sunil Huffmann   Strawberry yoghurt Lunch only            
4
#> 2          2 Barclay Lynn     French fries       Lunch only            
5
#> 3          3 Jayendra Lyne    <NA>               Breakfast and lunch   
7
#> 4          4 Leon Rossini     Anchovies          Lunch only            
NA
#> 5          5 Chidiegwu Dunkel Pizza              Breakfast and lunch   
NA
#> 6          6 Güvenç Attila    Ice cream          Lunch only            
6

However, this didn’t quite produce the desired result either. By specifying that age
should be numeric, we have turned the one cell with the non-numeric entry (which
had the value five) into an NA. In this case, we should read age in as "text" and
then make the change once the data is loaded in R.

students <- read_excel( 
  "data/students.xlsx", 
  col_names = c("student_id", "full_name", "favourite_food", 
"meal_plan", "age"), 
  skip = 1, 
  na = c("", "N/A"), 
  col_types = c("numeric", "text", "text", "text", "text")
) 
 
students <- students |> 
  mutate( 
    age = if_else(age == "five", "5", age), 
    age = parse_number(age) 
  ) 
 
students
#> # A tibble: 6 × 5
#>   student_id full_name        favourite_food     meal_plan             
age
#>        <dbl> <chr>            <chr>              <chr>               
<dbl>
#> 1          1 Sunil Huffmann   Strawberry yoghurt Lunch only            
4
#> 2          2 Barclay Lynn     French fries       Lunch only            
5
#> 3          3 Jayendra Lyne    <NA>               Breakfast and lunch   



7
#> 4          4 Leon Rossini     Anchovies          Lunch only            
NA
#> 5          5 Chidiegwu Dunkel Pizza              Breakfast and lunch   
5
#> 6          6 Güvenç Attila    Ice cream          Lunch only            
6

It took us multiple steps and trial and error to load the data in exactly the format we
want, and this is not unexpected. Data science is an iterative process, and the process of
iteration can be even more tedious when reading data in from spreadsheets compared to
other plain-text, rectangular data files because humans tend to input data into
spreadsheets and use them not just for data storage but also for sharing and
communication.

There is no way to know exactly what the data will look like until you load it and take a
look at it. Well, there is one way, actually. You can open the file in Excel and take a peek.
If you’re going to do so, we recommend making a copy of the Excel file to open and
browse interactively while leaving the original data file untouched and reading into R
from the untouched file. This will ensure you don’t accidentally overwrite anything in
the spreadsheet while inspecting it. You should also not be afraid of doing what we did
here: load the data, take a peek, make adjustments to your code, load it again, and repeat
until you’re happy with the result.

Reading Worksheets
An important feature that distinguishes spreadsheets from flat files is the notion of
multiple sheets, called worksheets. Figure 20-2 shows an Excel spreadsheet with
multiple worksheets. The data come from the palmerpenguins package. Each worksheet
contains information on penguins from a different island where data were collected.

You can read a single worksheet from a spreadsheet with the sheet argument in
read_excel(). The default, which we’ve been relying on up until now, is the first
sheet.

read_excel("data/penguins.xlsx", sheet = "Torgersen Island")
#> # A tibble: 52 × 8
#>   species island    bill_length_mm     bill_depth_mm      
flipper_length_mm
#>   <chr>   <chr>     <chr>              <chr>              <chr>            
#> 1 Adelie  Torgersen 39.1               18.7               181              
#> 2 Adelie  Torgersen 39.5               17.399999999999999 186              
#> 3 Adelie  Torgersen 40.299999999999997 18                 195              
#> 4 Adelie  Torgersen NA                 NA                 NA               
#> 5 Adelie  Torgersen 36.700000000000003 19.3               193              
#> 6 Adelie  Torgersen 39.299999999999997 20.6               190              

https://readxl.tidyverse.org/reference/read_excel.html


#> # … with 46 more rows, and 3 more variables: body_mass_g <chr>, sex <chr>,
#> #   year <dbl>

Figure 20-2. Spreadsheet called penguins.xlsx in Excel containing three worksheets.

Some variables that appear to contain numerical data are read in as characters due to the
character string "NA" not being recognized as a true NA.

penguins_torgersen <- read_excel( 
  "data/penguins.xlsx", sheet = "Torgersen Island", na = "NA"
) 
 
penguins_torgersen
#> # A tibble: 52 × 8
#>   species island    bill_length_mm bill_depth_mm flipper_length_mm
#>   <chr>   <chr>              <dbl>         <dbl>             <dbl>
#> 1 Adelie  Torgersen           39.1          18.7               181
#> 2 Adelie  Torgersen           39.5          17.4               186
#> 3 Adelie  Torgersen           40.3          18                 195
#> 4 Adelie  Torgersen           NA            NA                  NA
#> 5 Adelie  Torgersen           36.7          19.3               193
#> 6 Adelie  Torgersen           39.3          20.6               190
#> # … with 46 more rows, and 3 more variables: body_mass_g <dbl>, sex <chr>,
#> #   year <dbl>

Alternatively, you can use excel_sheets() to get information on all worksheets in
an Excel spreadsheet and then read the one(s) you’re interested in.

excel_sheets("data/penguins.xlsx")
#> [1] "Torgersen Island" "Biscoe Island"    "Dream Island"

https://readxl.tidyverse.org/reference/excel_sheets.html


Once you know the names of the worksheets, you can read them in individually with
read_excel().

penguins_biscoe <- read_excel("data/penguins.xlsx", sheet = "Biscoe Island", 
na = "NA")
penguins_dream  <- read_excel("data/penguins.xlsx", sheet = "Dream Island", 
na = "NA")

In this case, the full penguins dataset is spread across three worksheets in the
spreadsheet. Each worksheet has the same number of columns but different numbers of
rows.

dim(penguins_torgersen)
#> [1] 52  8
dim(penguins_biscoe)
#> [1] 168   8
dim(penguins_dream)
#> [1] 124   8

We can put them together with bind_rows():

penguins <- bind_rows(penguins_torgersen, penguins_biscoe, penguins_dream)
penguins
#> # A tibble: 344 × 8
#>   species island    bill_length_mm bill_depth_mm flipper_length_mm
#>   <chr>   <chr>              <dbl>         <dbl>             <dbl>
#> 1 Adelie  Torgersen           39.1          18.7               181
#> 2 Adelie  Torgersen           39.5          17.4               186
#> 3 Adelie  Torgersen           40.3          18                 195
#> 4 Adelie  Torgersen           NA            NA                  NA
#> 5 Adelie  Torgersen           36.7          19.3               193
#> 6 Adelie  Torgersen           39.3          20.6               190
#> # … with 338 more rows, and 3 more variables: body_mass_g <dbl>, sex 
<chr>,
#> #   year <dbl>

In Chapter 26 we’ll talk about ways of doing this sort of task without repetitive code.

https://readxl.tidyverse.org/reference/read_excel.html
https://dplyr.tidyverse.org/reference/bind_rows.html


Reading Part of a Sheet
Since many use Excel spreadsheets for presentation as well as for data storage, it’s quite
common to find cell entries in a spreadsheet that are not part of the data you want to read
into R. Figure 20-3 shows such a spreadsheet: in the middle of the sheet is what looks
like a data frame, but there is extraneous text in cells above and below the data.

Figure 20-3. Spreadsheet called deaths.xlsx in Excel.

This spreadsheet is one of the example spreadsheets provided in the readxl package. You
can use the readxl_example() function to locate the spreadsheet on your system in
the directory where the package is installed. This function returns the path to the
spreadsheet, which you can use in read_excel() as usual.

deaths_path <- readxl_example("deaths.xlsx")
deaths <- read_excel(deaths_path)
#> New names:
#> • `` -> `...2`
#> • `` -> `...3`
#> • `` -> `...4`
#> • `` -> `...5`
#> • `` -> `...6`
deaths
#> # A tibble: 18 × 6
#>   `Lots of people`    ...2       ...3  ...4     ...5          ...6          
#>   <chr>               <chr>      <chr> <chr>    <chr>         <chr>         
#> 1 simply cannot resi… <NA>       <NA>  <NA>     <NA>          some notes    
#> 2 at                  the        top   <NA>     of            their 
spreadsh…
#> 3 or                  merging    <NA>  <NA>     <NA>          cells         
#> 4 Name                Profession Age   Has kids Date of birth Date of 

https://readxl.tidyverse.org/reference/readxl_example.html
https://readxl.tidyverse.org/reference/read_excel.html


death  
#> 5 David Bowie         musician   69    TRUE     17175         42379         
#> 6 Carrie Fisher       actor      60    TRUE     20749         42731         
#> # … with 12 more rows

The top three rows and the bottom four rows are not part of the data frame. It’s possible
to eliminate these extraneous rows using the skip and n_max arguments, but we
recommend using cell ranges. In Excel, the top-left cell is A1. As you move across
columns to the right, the cell label moves down the alphabet, i.e., B1, C1, etc. And as
you move down a column, the number in the cell label increases, i.e., A2, A3, etc.

Here the data we want to read in starts in cell A5 and ends in cell F15. In spreadsheet
notation, this is A5:F15, which we supply to the range argument:

read_excel(deaths_path, range = "A5:F15")
#> # A tibble: 10 × 6
#>   Name          Profession   Age `Has kids` `Date of birth`    
#>   <chr>         <chr>      <dbl> <lgl>      <dttm>             
#> 1 David Bowie   musician      69 TRUE       1947-01-08 00:00:00
#> 2 Carrie Fisher actor         60 TRUE       1956-10-21 00:00:00
#> 3 Chuck Berry   musician      90 TRUE       1926-10-18 00:00:00
#> 4 Bill Paxton   actor         61 TRUE       1955-05-17 00:00:00
#> 5 Prince        musician      57 TRUE       1958-06-07 00:00:00
#> 6 Alan Rickman  actor         69 FALSE      1946-02-21 00:00:00
#> # … with 4 more rows, and 1 more variable: `Date of death` <dttm>

Data Types
In CSV files, all values are strings. This is not particularly true to the data, but it is
simple: everything is a string.

The underlying data in Excel spreadsheets is more complex. A cell can be one of four
things:

A Boolean, like TRUE, FALSE, or NA

A number, like “10” or “10.5”

A datetime, which can also include time like “11/1/21” or “11/1/21 3:00 PM”

A text string, like “ten”

When working with spreadsheet data, it’s important to keep in mind that the underlying
data can be very different than what you see in the cell. For example, Excel has no notion
of an integer. All numbers are stored as floating points, but you can choose to display the
data with a customizable number of decimal points. Similarly, dates are actually stored as
numbers, specifically the number of seconds since January 1, 1970. You can customize
how you display the date by applying formatting in Excel. Confusingly, it’s also possible



to have something that looks like a number but is actually a string (e.g., type '10 into a
cell in Excel).

These differences between how the underlying data are stored versus how they’re
displayed can cause surprises when the data are loaded into R. By default readxl will
guess the data type in a given column. A recommended workflow is to let readxl guess
the column types, confirm that you’re happy with the guessed column types, and if not,
go back and re-import specifying col_types, as shown in “Reading Excel
Spreadsheets”.

Another challenge is when you have a column in your Excel spreadsheet that has a mix
of these types, e.g., some cells are numeric, others text, others dates. When importing the
data into R, readxl has to make some decisions. In these cases you can set the type for
this column to "list", which will load the column as a list of length 1 vectors, where
the type of each element of the vector is guessed.

NOTE
Sometimes data is stored in more exotic ways, like the color of the cell background or whether the text is
bold. In such cases, you might find the tidyxl package useful. See https://oreil.ly/jNskS for more on
strategies for working with nontabular data from Excel.

Writing to Excel
Let’s create a small data frame that we can then write out. Note that item is a factor and
quantity is an integer.

bake_sale <- tibble( 
  item     = factor(c("brownie", "cupcake", "cookie")), 
  quantity = c(10, 5, 8)
) 
 
bake_sale
#> # A tibble: 3 × 2
#>   item    quantity
#>   <fct>      <dbl>
#> 1 brownie       10
#> 2 cupcake        5
#> 3 cookie         8

You can write data back to disk as an Excel file using write_xlsx() from the writexl
package:

write_xlsx(bake_sale, path = "data/bake-sale.xlsx")

https://oreil.ly/CU5XP
https://oreil.ly/jNskS
https://docs.ropensci.org/writexl/reference/write_xlsx.html
https://oreil.ly/Gzphe


Figure 20-4 shows what the data looks like in Excel. Note that column names are
included and bold. These names can be turned off by setting the col_names and
format_headers arguments to FALSE.

Figure 20-4. Spreadsheet called bake_sale.xlsx in Excel.

Just like reading from a CSV, information on data type is lost when we read the data
back in. This makes Excel files unreliable for caching interim results as well. For
alternatives, see “Writing to a File”.

read_excel("data/bake-sale.xlsx")
#> # A tibble: 3 × 2
#>   item    quantity
#>   <chr>      <dbl>
#> 1 brownie       10
#> 2 cupcake        5
#> 3 cookie         8

Formatted Output
The writexl package is a lightweight solution for writing a simple Excel spreadsheet, but
if you’re interested in additional features such as writing to sheets within a spreadsheet
and styling, you will want to use the openxlsx package. We won’t go into the details of
using this package here, but we recommend reading https://oreil.ly/clwtE for an
extensive discussion on further formatting functionality for data written from R to Excel
with openxlsx.

Note that this package is not part of the tidyverse, so the functions and workflows may
feel unfamiliar. For example, function names are camelCase, multiple functions can’t be

https://oreil.ly/JtHOt
https://oreil.ly/clwtE


composed in pipelines, and arguments are in a different order than they tend to be in the
tidyverse. However, this is OK. As your R learning and usage expands outside of this
book, you will encounter lots of different styles used in various R packages that you
might use to accomplish specific goals in R. A good way of familiarizing yourself with
the coding style used in a new package is to run the examples provided in the function
documentation to get a feel for the syntax and the output formats as well as reading any
vignettes that might come with the package.

Exercises
1. In an Excel file, create the following dataset and save it as survey.xlsx.

Alternatively, you can download it as an Excel file.

Then, read it into R, with survey_id as a character variable and n_pets as a
numerical variable.

#> # A tibble: 6 × 2 
#>   survey_id n_pets 
#>     <chr>  <dbl> 
#>   1 1      0 
#>   2 2      1 
#>   3 3     NA 
#>   4 4      2 
#>   5 5      2 
#>   6 6     NA

https://oreil.ly/03oQy


2. In another Excel file, create the following dataset and save it as roster.xlsx.
Alternatively, you can download it as an Excel file.

Then, read it into R. The resulting data frame should be called roster and should
look like the following:

#> # A tibble: 12 × 3 
#>    group subgroup    id 
#>    <dbl> <chr>    <dbl> 
#>  1     1 A            1 
#>  2     1 A            2 
#>  3     1 A            3 
#>  4     1 B            4 
#>  5     1 B            5 
#>  6     1 B            6 
#>  7     1 B            7 
#>  8     2 A            8 
#>  9     2 A            9 
#> 10     2 B           10 

https://oreil.ly/E4dIi


#> 11     2 B           11 
#> 12     2 B           12

3. In a new Excel file, create the following dataset and save it as sales.xlsx.
Alternatively, you can download it as an Excel file.

a. Read sales.xlsx in and save as sales. The data frame should look like the
following, with id and n as column names and nine rows:

https://oreil.ly/m6q7i


#> # A tibble: 9 × 2 
#>   id      n     
#>   <chr>   <chr> 
#> 1 Brand 1 n     
#> 2 1234    8     
#> 3 8721    2     
#> 4 1822    3     
#> 5 Brand 2 n     
#> 6 3333    1     
#> 7 2156    3     
#> 8 3987    6     
#> 9 3216    5

b. Modify sales further to get it into the following tidy format with three columns
(brand, id, and n) and seven rows of data. Note that id and n are numeric, and
brand is a character variable.

#> # A tibble: 7 × 3 
#>   brand      id     n 
#>   <chr>   <dbl> <dbl> 
#> 1 Brand 1  1234     8 
#> 2 Brand 1  8721     2 
#> 3 Brand 1  1822     3 
#> 4 Brand 2  3333     1 
#> 5 Brand 2  2156     3 
#> 6 Brand 2  3987     6 
#> 7 Brand 2  3216     5

4. Re-create the bake_sale data frame, and write it out to an Excel file using the
write.xlsx() function from the openxlsx package.

5. In Chapter 7 you learned about the janitor::clean_names() function to
turn column names into snake case. Read the students.xlsx file that we
introduced earlier in this section and use this function to “clean” the column names.

6. What happens if you try to read in a file with an .xlsx extension with
read_xls()?

Google Sheets
Google Sheets is another widely used spreadsheet program. It’s free and web-based. Just
like with Excel, in Google Sheets data are organized in worksheets (also called sheets)
inside of spreadsheet files.

Prerequisites

https://rdrr.io/pkg/janitor/man/clean_names.html
https://readxl.tidyverse.org/reference/read_excel.html


This section will also focus on spreadsheets, but this time you’ll be loading data from a
Google Sheet with the googlesheets4 package. This package is noncore tidyverse as well,
so you need to load it explicitly:

library(googlesheets4)
library(tidyverse)

A quick note about the name of the package: googlesheets4 uses v4 of the Sheets API v4
to provide an R interface to Google Sheets.

Getting Started
The main function of the googlesheets4 package is read_sheet(), which reads a
Google Sheet from a URL or a file ID. This function also goes by the name
range_read().

You can also create a new sheet with gs4_create() or write to an existing sheet with
sheet_write() and friends.

In this section we’ll work with the same datasets as the ones in the Excel section to
highlight similarities and differences between workflows for reading data from Excel and
Google Sheets. The readxl and googlesheets4 packages are both designed to mimic the
functionality of the readr package, which provides the read_csv() function you saw
in Chapter 7. Therefore, many of the tasks can be accomplished with simply swapping
out read_excel() for read_sheet(). However you’ll also see that Excel and
Google Sheets don’t behave in the same way; therefore, other tasks may require further
updates to the function calls.

Reading Google Sheets
Figure 20-5 shows what the spreadsheet we’re going to read into R looks like in Google
Sheets. This is the same dataset as in Figure 20-1, except it’s stored in a Google Sheet
instead of Excel.

https://oreil.ly/VMlBY
https://googlesheets4.tidyverse.org/reference/range_read.html
https://googlesheets4.tidyverse.org/reference/range_read.html
https://googlesheets4.tidyverse.org/reference/gs4_create.html
https://googlesheets4.tidyverse.org/reference/sheet_write.html
https://readr.tidyverse.org/reference/read_delim.html
https://readxl.tidyverse.org/reference/read_excel.html
https://googlesheets4.tidyverse.org/reference/range_read.html


Figure 20-5. Google Sheet called students in a browser window.

The first argument to read_sheet() is the URL of the file to read, and it returns a
tibble.

These URLs are not pleasant to work with, so you’ll often want to identify a sheet by its
ID.

students_sheet_id <- "1V1nPp1tzOuutXFLb3G9Eyxi3qxeEhnOXUzL5_BcCQ0w"
students <- read_sheet(students_sheet_id)
#> ✔ Reading from students.
#> ✔ Range Sheet1.
students
#> # A tibble: 6 × 5
#>   `Student ID` `Full Name`      favourite.food     mealPlan            AGE  
#>          <dbl> <chr>            <chr>              <chr>               
<list>
#> 1            1 Sunil Huffmann   Strawberry yoghurt Lunch only          
<dbl> 
#> 2            2 Barclay Lynn     French fries       Lunch only          
<dbl> 
#> 3            3 Jayendra Lyne    N/A                Breakfast and lunch 
<dbl> 
#> 4            4 Leon Rossini     Anchovies          Lunch only          
<NULL>
#> 5            5 Chidiegwu Dunkel Pizza              Breakfast and lunch 
<chr> 
#> 6            6 Güvenç Attila    Ice cream          Lunch only          
<dbl>

Just like we did with read_excel(), we can supply column names, NA strings, and
column types to read_sheet().

https://googlesheets4.tidyverse.org/reference/range_read.html
https://oreil.ly/c7DEP
https://readxl.tidyverse.org/reference/read_excel.html
https://googlesheets4.tidyverse.org/reference/range_read.html


students <- read_sheet( 
  students_sheet_id, 
  col_names = c("student_id", "full_name", "favourite_food", "meal_plan", 
"age"), 
  skip = 1, 
  na = c("", "N/A"), 
  col_types = "dcccc"
)
#> ✔ Reading from students.
#> ✔ Range 2:10000000. 
 
students
#> # A tibble: 6 × 5
#>   student_id full_name        favourite_food     meal_plan           age  
#>        <dbl> <chr>            <chr>              <chr>               <chr>
#> 1          1 Sunil Huffmann   Strawberry yoghurt Lunch only          4    
#> 2          2 Barclay Lynn     French fries       Lunch only          5    
#> 3          3 Jayendra Lyne    <NA>               Breakfast and lunch 7    
#> 4          4 Leon Rossini     Anchovies          Lunch only          <NA> 
#> 5          5 Chidiegwu Dunkel Pizza              Breakfast and lunch five 
#> 6          6 Güvenç Attila    Ice cream          Lunch only          6

Note that we defined column types a bit differently here, using short codes. For example,
“dcccc” stands for “double, character, character, character, character.”

It’s also possible to read individual sheets from Google Sheets. Let’s read the “Torgersen
Island” sheet from the penguins Google Sheet:

penguins_sheet_id <- "1aFu8lnD_g0yjF5O-K6SFgSEWiHPpgvFCF0NY9D6LXnY"
read_sheet(penguins_sheet_id, sheet = "Torgersen Island")
#> ✔ Reading from penguins.
#> ✔ Range ''Torgersen Island''.
#> # A tibble: 52 × 8
#>   species island    bill_length_mm bill_depth_mm flipper_length_mm
#>   <chr>   <chr>     <list>         <list>        <list>           
#> 1 Adelie  Torgersen <dbl [1]>      <dbl [1]>     <dbl [1]>        
#> 2 Adelie  Torgersen <dbl [1]>      <dbl [1]>     <dbl [1]>        
#> 3 Adelie  Torgersen <dbl [1]>      <dbl [1]>     <dbl [1]>        
#> 4 Adelie  Torgersen <chr [1]>      <chr [1]>     <chr [1]>        
#> 5 Adelie  Torgersen <dbl [1]>      <dbl [1]>     <dbl [1]>        
#> 6 Adelie  Torgersen <dbl [1]>      <dbl [1]>     <dbl [1]>        
#> # … with 46 more rows, and 3 more variables: body_mass_g <list>, sex 
<chr>,
#> #   year <dbl>

You can obtain a list of all sheets within a Google Sheet with sheet_names():

sheet_names(penguins_sheet_id)
#> [1] "Torgersen Island" "Biscoe Island"    "Dream Island"

https://oreil.ly/qgKTY
https://googlesheets4.tidyverse.org/reference/sheet_properties.html


Finally, just like with read_excel(), we can read in a portion of a Google Sheet by
defining a range in read_sheet(). Note that we’re also using the
gs4_example() function to locate an example Google Sheet that comes with the
following googlesheets4 package:

deaths_url <- gs4_example("deaths")
deaths <- read_sheet(deaths_url, range = "A5:F15")
#> ✔ Reading from deaths.
#> ✔ Range A5:F15.
deaths
#> # A tibble: 10 × 6
#>   Name          Profession   Age `Has kids` `Date of birth`    
#>   <chr>         <chr>      <dbl> <lgl>      <dttm>             
#> 1 David Bowie   musician      69 TRUE       1947-01-08 00:00:00
#> 2 Carrie Fisher actor         60 TRUE       1956-10-21 00:00:00
#> 3 Chuck Berry   musician      90 TRUE       1926-10-18 00:00:00
#> 4 Bill Paxton   actor         61 TRUE       1955-05-17 00:00:00
#> 5 Prince        musician      57 TRUE       1958-06-07 00:00:00
#> 6 Alan Rickman  actor         69 FALSE      1946-02-21 00:00:00
#> # … with 4 more rows, and 1 more variable: `Date of death` <dttm>

Writing to Google Sheets
You can write from R to Google Sheets with write_sheet(). The first argument is
the data frame to write, and the second argument is the name (or other identifier) of the
Google Sheet to write to:

write_sheet(bake_sale, ss = "bake-sale")

If you’d like to write your data to a specific (work)sheet inside a Google Sheet, you can
specify that with the sheet argument as well:

write_sheet(bake_sale, ss = "bake-sale", sheet = "Sales")

Authentication
While you can read from a public Google Sheet without authenticating with your Google
account, reading a private sheet or writing to a sheet requires authentication so that
googlesheets4 can view and manage your Google Sheets.

When you attempt to read in a sheet that requires authentication, googlesheets4 will
direct you to a web browser with a prompt to sign in to your Google account and grant
permission to operate on your behalf with Google Sheets. However, if you want to
specify a specific Google account, authentication scope, etc., you can do so with
gs4_auth(), e.g., gs4_auth(email = "mine@example.com"), which will

https://readxl.tidyverse.org/reference/read_excel.html
https://googlesheets4.tidyverse.org/reference/range_read.html
https://googlesheets4.tidyverse.org/reference/gs4_examples.html
https://googlesheets4.tidyverse.org/reference/sheet_write.html
https://googlesheets4.tidyverse.org/reference/gs4_auth.html


force the use of a token associated with a specific email. For further authentication
details, we recommend reading the googlesheets4 auth vignette.

Exercises
1. Read the students dataset from earlier in the chapter from Excel and also from

Google Sheets, with no additional arguments supplied to the read_excel() and
read_sheet() functions. Are the resulting data frames in R exactly the same? If
not, how are they different?

2. Read the Google Sheet titled survey, with survey_id as a character variable and
n_pets as a numerical variable.

3. Read the Google Sheet titled roster. The resulting data frame should be called
roster and should look like the following:

#> # A tibble: 12 × 3 
#>    group subgroup    id 
#>    <dbl> <chr>    <dbl> 
#>  1     1 A            1 
#>  2     1 A            2 
#>  3     1 A            3 
#>  4     1 B            4 
#>  5     1 B            5 
#>  6     1 B            6 
#>  7     1 B            7 
#>  8     2 A            8 
#>  9     2 A            9 
#> 10     2 B           10 
#> 11     2 B           11 
#> 12     2 B           12

Summary
Microsoft Excel and Google Sheets are two of the most popular spreadsheet systems.
Being able to interact with data stored in Excel and Google Sheets files directly from R
is a superpower! In this chapter, you learned how to read data into R from spreadsheets
from Excel with read_excel() from the readxl package and from Google Sheets
with read_sheet() from the googlesheets4 package. These functions work very
similarly to each other and have similar arguments for specifying column names, NA
strings, rows to skip on top of the file you’re reading in, etc. Additionally, both functions
make it possible to read a single sheet from a spreadsheet.

On the other hand, writing to an Excel file requires a different package and function
(writexl::write_xlsx()), while you can write to a Google Sheet with the

https://oreil.ly/G28nV
https://readxl.tidyverse.org/reference/read_excel.html
https://googlesheets4.tidyverse.org/reference/range_read.html
https://oreil.ly/PYENq
https://oreil.ly/sAjBM
https://readxl.tidyverse.org/reference/read_excel.html
https://googlesheets4.tidyverse.org/reference/range_read.html
https://docs.ropensci.org/writexl/reference/write_xlsx.html


googlesheets4 package, with write_sheet().

In the next chapter, you’ll learn about a different data source, databases, and how to read
data from that source into R.

https://googlesheets4.tidyverse.org/reference/sheet_write.html


Chapter 21. Databases

Introduction
A huge amount of data lives in databases, so it’s essential that you know
how to access it. Sometimes you can ask someone to download a snapshot
into a .csv file for you, but this gets painful quickly: every time you need
to make a change, you’ll have to communicate with another human. You
want to be able to reach into the database directly to get the data you need,
when you need it.

In this chapter, you’ll first learn the basics of the DBI package: how to use
it to connect to a database and then retrieve data with a SQL1 query. SQL,
short for Structured Query Language, is the lingua franca of databases and
is an important language for all data scientists to learn. That said, we’re not
going to start with SQL, but instead we’ll teach you dbplyr, which can
translate your dplyr code to SQL. We’ll use that as a way to teach you some
of the most important features of SQL. You won’t become a SQL master by
the end of the chapter, but you will be able to identify the most important
components and understand what they do.

Prerequisites
In this chapter, we’ll introduce DBI and dbplyr. DBI is a low-level interface
that connects to databases and executes SQL; dbplyr is a high-level
interface that translates your dplyr code to SQL queries and then executes
them with DBI.

library(DBI)
library(dbplyr)
library(tidyverse)



Database Basics
At the simplest level, you can think about a database as a collection of data
frames, called tables in database terminology. Like a data.frame, a
database table is a collection of named columns, where every value in the
column is the same type. There are three high-level differences between
data frames and database tables:

Database tables are stored on disk and can be arbitrarily large. Data
frames are stored in memory and are fundamentally limited (although
that limit is still plenty large for many problems).

Database tables almost always have indexes. Much like the index of a
book, a database index makes it possible to quickly find rows of
interest without having to look at every single row. Data frames and
tibbles don’t have indexes, but data tables do, which is one of the
reasons that they’re so fast.

Most classical databases are optimized for rapidly collecting data, not
analyzing existing data. These databases are called row-oriented
because the data is stored row by row, rather than column by column
like R. More recently, there’s been much development of column-
oriented databases that make analyzing the existing data much faster.

Databases are run by database management systems (DBMS for short),
which come in three basic forms:

Client-server DBMS run on a powerful central server, which you
connect from your computer (the client). They are great for sharing
data with multiple people in an organization. Popular client-server
DBMS include PostgreSQL, MariaDB, SQL Server, and Oracle.

Cloud DBMS, like Snowflake, Amazon’s RedShift, and Google’s
BigQuery, are similar to client-server DBMS, but they run in the
cloud. This means they can easily handle extremely large datasets and
can automatically provide more compute resources as needed.



In-process DBMS, like SQLite or duckdb, run entirely on your
computer. They’re great for working with large datasets where you’re
the primary user.

Connecting to a Database
To connect to the database from R, you’ll use a pair of packages:

You’ll always use DBI (database interface) because it provides a set of
generic functions that connect to the database, upload data, run SQL
queries, etc.

You’ll also use a package tailored for the DBMS you’re connecting to.
This package translates the generic DBI commands into the specifics
needed for a given DBMS. There’s usually one package for each
DBMS, e.g., RPostgres for PostgreSQL and RMariaDB for MySQL.

If you can’t find a specific package for your DBMS, you can usually use the
odbc package instead. This uses the ODBC protocol supported by many
DBMS. odbc requires a little more setup because you’ll also need to install
an ODBC driver and tell the odbc package where to find it.

Concretely, you create a database connection using DBI::dbConnect().
The first argument selects the DBMS,2 and then the second and subsequent
arguments describe how to connect to it (i.e., where it lives and the
credentials that you need to access it). The following code shows a couple
of typical examples:

con <- DBI::dbConnect( 
  RMariaDB::MariaDB(),  
  username = "foo"
)
con <- DBI::dbConnect( 
  RPostgres::Postgres(),  
  hostname = "databases.mycompany.com",  
  port = 1234
)

https://dbi.r-dbi.org/reference/dbConnect.html


The precise details of the connection vary a lot from DBMS to DBMS, so
unfortunately we can’t cover all the details here. This means you’ll need to
do a little research on your own. Typically you can ask the other data
scientists in your team or talk to your DBA (database administrator). The
initial setup will often take a little fiddling (and maybe some googling) to
get it right, but you’ll generally need to do it only once.

In This Book
Setting up a client-server or cloud DBMS would be a pain for this book, so
we’ll instead use an in-process DBMS that lives entirely in an R package:
duckdb. Thanks to the magic of DBI, the only difference between using
duckdb and any other DBMS is how you’ll connect to the database. This
makes it great to teach with because you can easily run this code as well as
easily take what you learn and apply it elsewhere.

Connecting to duckdb is particularly simple because the defaults create a
temporary database that is deleted when you quit R. That’s great for
learning because it guarantees that you’ll start from a clean slate every time
you restart R:

con <- DBI::dbConnect(duckdb::duckdb())

duckdb is a high-performance database that’s designed very much for the
needs of a data scientist. We use it here because it’s easy to get started with,
but it’s also capable of handling gigabytes of data with great speed. If you
want to use duckdb for a real data analysis project, you’ll also need to
supply the dbdir argument to make a persistent database and tell duckdb
where to save it. Assuming you’re using a project (Chapter 6), it’s
reasonable to store it in the duckdb directory of the current project:

con <- DBI::dbConnect(duckdb::duckdb(), dbdir = "duckdb")

Load Some Data



Since this is a new database, we need to start by adding some data. Here
we’ll add the mpg and diamonds datasets from ggplot2 using
DBI::dbWriteTable(). The simplest usage of dbWriteTable()
needs three arguments: a database connection, the name of the table to
create in the database, and a data frame of data.

dbWriteTable(con, "mpg", ggplot2::mpg)
dbWriteTable(con, "diamonds", ggplot2::diamonds)

If you’re using duckdb in a real project, we highly recommend learning
about duckdb_read_csv() and duckdb_register_arrow().
These give you powerful and performant ways to quickly load data directly
into duckdb, without having to first load it into R. We’ll also show off a
useful technique for loading multiple files into a database in “Writing to a
Database”.

DBI Basics
You can check that the data is loaded correctly by using a couple of other
DBI functions: dbListTable() lists all tables in the database,3 and
dbReadTable() retrieves the contents of a table.

dbListTables(con)
#> [1] "diamonds" "mpg" 
 
con |>  
  dbReadTable("diamonds") |>  
  as_tibble()
#> # A tibble: 53,940 × 10
#>   carat cut       color clarity depth table price     x     y   
z
#>   <dbl> <fct>     <fct> <fct>   <dbl> <dbl> <int> <dbl> <dbl> 
<dbl>
#> 1  0.23 Ideal     E     SI2      61.5    55   326  3.95  3.98  
2.43
#> 2  0.21 Premium   E     SI1      59.8    61   326  3.89  3.84  
2.31
#> 3  0.23 Good      E     VS1      56.9    65   327  4.05  4.07  

https://dbi.r-dbi.org/reference/dbWriteTable.html
https://dbi.r-dbi.org/reference/dbWriteTable.html
https://dbi.r-dbi.org/reference/dbReadTable.html


2.31
#> 4  0.29 Premium   I     VS2      62.4    58   334  4.2   4.23  
2.63
#> 5  0.31 Good      J     SI2      63.3    58   335  4.34  4.35  
2.75
#> 6  0.24 Very Good J     VVS2     62.8    57   336  3.94  3.96  
2.48
#> # … with 53,934 more rows

dbReadTable() returns a data.frame, so we use as_tibble() to
convert it into a tibble so that it prints nicely.

If you already know SQL, you can use dbGetQuery() to get the results
of running a query on the database:

sql <- "
  SELECT carat, cut, clarity, color, price 
  FROM diamonds 
  WHERE price > 15000
"
as_tibble(dbGetQuery(con, sql))
#> # A tibble: 1,655 × 5
#>   carat cut       clarity color price
#>   <dbl> <fct>     <fct>   <fct> <int>
#> 1  1.54 Premium   VS2     E     15002
#> 2  1.19 Ideal     VVS1    F     15005
#> 3  2.1  Premium   SI1     I     15007
#> 4  1.69 Ideal     SI1     D     15011
#> 5  1.5  Very Good VVS2    G     15013
#> 6  1.73 Very Good VS1     G     15014
#> # … with 1,649 more rows

If you’ve never seen SQL before, don’t worry! You’ll learn more about it
shortly. But if you read it carefully, you might guess that it selects five
columns of the diamonds dataset and all the rows where price is greater
than 15,000.

dbplyr Basics

https://dbi.r-dbi.org/reference/dbReadTable.html
https://tibble.tidyverse.org/reference/as_tibble.html
https://dbi.r-dbi.org/reference/dbGetQuery.html


Now that we’ve connected to a database and loaded up some data, we can
start to learn about dbplyr. dbplyr is a dplyr backend, which means you
keep writing dplyr code but the backend executes it differently. In this,
dbplyr translates to SQL; other backends include dtplyr, which translates to
data.table, and multidplyr, which executes your code on multiple cores.

To use dbplyr, you must first use tbl() to create an object that represents
a database table:

diamonds_db <- tbl(con, "diamonds")
diamonds_db
#> # Source:   table<diamonds> [?? x 10]
#> # Database: DuckDB 0.6.1 [root@Darwin 22.3.0:R 4.2.1/:memory:]
#>   carat cut       color clarity depth table price     x     y   
z
#>   <dbl> <fct>     <fct> <fct>   <dbl> <dbl> <int> <dbl> <dbl> 
<dbl>
#> 1  0.23 Ideal     E     SI2      61.5    55   326  3.95  3.98  
2.43
#> 2  0.21 Premium   E     SI1      59.8    61   326  3.89  3.84  
2.31
#> 3  0.23 Good      E     VS1      56.9    65   327  4.05  4.07  
2.31
#> 4  0.29 Premium   I     VS2      62.4    58   334  4.2   4.23  
2.63
#> 5  0.31 Good      J     SI2      63.3    58   335  4.34  4.35  
2.75
#> 6  0.24 Very Good J     VVS2     62.8    57   336  3.94  3.96  
2.48
#> # … with more rows
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NOTE
 

There are two other common ways to interact with a database. First, many corporate
databases are very large so you need some hierarchy to keep all the tables organized. In
that case you might need to supply a schema, or a catalog and a schema, to pick the
table you’re interested in:

diamonds_db <- tbl(con, in_schema("sales", "diamonds"))
diamonds_db <- tbl( 
  con, in_catalog("north_america", "sales", "diamonds") 
  )

Other times you might want to use your own SQL query as a starting point:

diamonds_db <- tbl(con, sql("SELECT * FROM diamonds"))

This object is lazy; when you use dplyr verbs on it, dplyr doesn’t do any
work: it just records the sequence of operations that you want to perform
and performs them only when needed. For example, take the following
pipeline:

big_diamonds_db <- diamonds_db |>  
  filter(price > 15000) |>  
  select(carat:clarity, price) 
 
big_diamonds_db
#> # Source:   SQL [?? x 5]
#> # Database: DuckDB 0.6.1 [root@Darwin 22.3.0:R 4.2.1/:memory:]
#>   carat cut       color clarity price
#>   <dbl> <fct>     <fct> <fct>   <int>
#> 1  1.54 Premium   E     VS2     15002
#> 2  1.19 Ideal     F     VVS1    15005
#> 3  2.1  Premium   I     SI1     15007
#> 4  1.69 Ideal     D     SI1     15011
#> 5  1.5  Very Good G     VVS2    15013
#> 6  1.73 Very Good G     VS1     15014
#> # … with more rows



You can tell this object represents a database query because it prints the
DBMS name at the top, and while it tells you the number of columns, it
typically doesn’t know the number of rows. This is because finding the total
number of rows usually requires executing the complete query, something
we’re trying to avoid.

You can see the SQL code generated by dplyr with the show_query()
function. If you know dplyr, this is a great way to learn SQL! Write some
dplyr code, get dbplyr to translate it to SQL and then try to figure out how
the two languages match up.

big_diamonds_db |> 
  show_query()
#> <SQL>
#> SELECT carat, cut, color, clarity, price
#> FROM diamonds
#> WHERE (price > 15000.0)

To get all the data back into R, you call collect(). Behind the scenes,
this generates the SQL, calls dbGetQuery() to get the data, and then
turns the result into a tibble:

big_diamonds <- big_diamonds_db |>  
  collect()
big_diamonds
#> # A tibble: 1,655 × 5
#>   carat cut       color clarity price
#>   <dbl> <fct>     <fct> <fct>   <int>
#> 1  1.54 Premium   E     VS2     15002
#> 2  1.19 Ideal     F     VVS1    15005
#> 3  2.1  Premium   I     SI1     15007
#> 4  1.69 Ideal     D     SI1     15011
#> 5  1.5  Very Good G     VVS2    15013
#> 6  1.73 Very Good G     VS1     15014
#> # … with 1,649 more rows

Typically, you’ll use dbplyr to select the data you want from the database,
performing basic filtering and aggregation using the translations described
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next. Then, once you’re ready to analyze the data with functions that are
unique to R, you’ll collect the data using collect() to get an in-memory
tibble and continue your work with pure R code.

SQL
The rest of the chapter will teach you a little SQL through the lens of
dbplyr. It’s a rather nontraditional introduction to SQL, but we hope it will
get you quickly up to speed with the basics. Luckily, if you understand
dplyr, you’re in a great place to quickly pick up SQL because so many of
the concepts are the same.

We’ll explore the relationship between dplyr and SQL using a couple of old
friends from the nycflights13 package: flights and planes. These
datasets are easy to get into our learning database because dbplyr comes
with a function that copies the tables from nycflights13 to our database:

dbplyr::copy_nycflights13(con)
#> Creating table: airlines
#> Creating table: airports
#> Creating table: flights
#> Creating table: planes
#> Creating table: weather
flights <- tbl(con, "flights")
planes <- tbl(con, "planes")

 

SQL Basics
The top-level components of SQL are called statements. Common
statements include CREATE for defining new tables, INSERT for adding
data, and SELECT for retrieving data. We will on focus on SELECT
statements, also called queries, because they are almost exclusively what
you’ll use as a data scientist.

https://dplyr.tidyverse.org/reference/compute.html


A query is made up of clauses. There are five important clauses: SELECT,
FROM, WHERE, ORDER BY, and GROUP BY. Every query must have the
SELECT4 and FROM5 clauses, and the simplest query is SELECT * FROM
table, which selects all columns from the specified table. This is what
dbplyr generates for an unadulterated table:

flights |> show_query()
#> <SQL>
#> SELECT *
#> FROM flights
planes |> show_query()
#> <SQL>
#> SELECT *
#> FROM planes

WHERE and ORDER BY control which rows are included and how they are
ordered:

flights |>  
  filter(dest == "IAH") |>  
  arrange(dep_delay) |> 
  show_query()
#> <SQL>
#> SELECT *
#> FROM flights
#> WHERE (dest = 'IAH')
#> ORDER BY dep_delay

GROUP BY converts the query to a summary, causing aggregation to
happen:

flights |>  
  group_by(dest) |>  
  summarize(dep_delay = mean(dep_delay, na.rm = TRUE)) |>  
  show_query()
#> <SQL>
#> SELECT dest, AVG(dep_delay) AS dep_delay
#> FROM flights
#> GROUP BY dest



There are two important differences between dplyr verbs and SELECT
clauses:

In SQL, case doesn’t matter: you can write select, SELECT, or
even SeLeCt. In this book we’ll stick with the common convention of
writing SQL keywords in uppercase to distinguish them from table or
variables names.

In SQL, order matters: you must always write the clauses in the order
SELECT, FROM, WHERE, GROUP BY, and ORDER BY. Confusingly,
this order doesn’t match how the clauses are actually evaluated, which
is first FROM and then WHERE, GROUP BY, SELECT, and ORDER
BY.

The following sections explore each clause in more detail.

NOTE
 

Note that while SQL is a standard, it is extremely complex, and no database follows the
standard exactly. While the main components that we’ll focus on in this book are similar
between DBMSs, there are many minor variations. Fortunately, dbplyr is designed to
handle this problem and generates different translations for different databases. It’s not
perfect, but it’s continually improving, and if you hit a problem, you can file an issue on
GitHub to help us do better.

SELECT
The SELECT clause is the workhorse of queries and performs the same job
as select(), mutate(), rename(), relocate(), and, as you’ll
learn in the next section, summarize().

select(), rename(), and relocate() have very direct translations
to SELECT as they just affect where a column appears (if at all) along with
its name:
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planes |>  
  select(tailnum, type, manufacturer, model, year) |>  
  show_query()
#> <SQL>
#> SELECT tailnum, "type", manufacturer, model, "year"
#> FROM planes 
 
planes |>  
  select(tailnum, type, manufacturer, model, year) |>  
  rename(year_built = year) |>  
  show_query()
#> <SQL>
#> SELECT tailnum, "type", manufacturer, model, "year" AS 
year_built
#> FROM planes 
 
planes |>  
  select(tailnum, type, manufacturer, model, year) |>  
  relocate(manufacturer, model, .before = type) |>  
  show_query()
#> <SQL>
#> SELECT tailnum, manufacturer, model, "type", "year"
#> FROM planes

This example also shows you how SQL does renaming. In SQL
terminology, renaming is called aliasing and is done with AS. Note that
unlike mutate(), the old name is on the left, and the new name is on the
right.

https://dplyr.tidyverse.org/reference/mutate.html


NOTE
 

In the previous examples, note that "year" and "type" are wrapped in double
quotes. That’s because these are reserved words in duckdb, so dbplyr quotes them to
avoid any potential confusion between column/table names and SQL operators.

When working with other databases, you’re likely to see every variable name quoted
because only a handful of client packages, like duckdb, know what all the reserved
words are, so they quote everything to be safe:

SELECT "tailnum", "type", "manufacturer", "model", 
"year"
FROM "planes"

Some other database systems use backticks instead of quotes:

SELECT `tailnum`, `type`, `manufacturer`, `model`, 
`year`
FROM `planes`

The translations for mutate() are similarly straightforward: each variable
becomes a new expression in SELECT:

flights |>  
  mutate( 
    speed = distance / (air_time / 60) 
  ) |>  
  show_query()
#> <SQL>
#> SELECT *, distance / (air_time / 60.0) AS speed
#> FROM flights

We’ll come back to the translation of individual components (like /) in
“Function Translations”.

FROM

https://dplyr.tidyverse.org/reference/mutate.html


The FROM clause defines the data source. It’s going to be rather
uninteresting for a little while, because we’re just using single tables. You’ll
see more complex examples once we hit the join functions.

GROUP BY
group_by() is translated to the GROUP BY6 clause, and
summarize() is translated to the SELECT clause:

diamonds_db |>  
  group_by(cut) |>  
  summarize( 
    n = n(), 
    avg_price = mean(price, na.rm = TRUE) 
  ) |>  
  show_query()
#> <SQL>
#> SELECT cut, COUNT(*) AS n, AVG(price) AS avg_price
#> FROM diamonds
#> GROUP BY cut

We’ll come back to what’s happening with translating n() and mean() in
“Function Translations”.

WHERE
filter() is translated to the WHERE clause:

flights |>  
  filter(dest == "IAH" | dest == "HOU") |>  
  show_query()
#> <SQL>
#> SELECT *
#> FROM flights
#> WHERE (dest = 'IAH' OR dest = 'HOU') 
 
flights |>  
  filter(arr_delay > 0 & arr_delay < 20) |>  
  show_query()

https://dplyr.tidyverse.org/reference/group_by.html
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#> <SQL>
#> SELECT *
#> FROM flights
#> WHERE (arr_delay > 0.0 AND arr_delay < 20.0)

There are a few important details to note here:

| becomes OR, and & becomes AND.

SQL uses = for comparison, not ==. SQL doesn’t have assignment, so
there’s no potential for confusion there.

SQL uses only '' for strings, not "". In SQL, "" is used to identify
variables, like R’s ``.

Another useful SQL operator is IN, which is close to R’s %in%:

flights |>  
  filter(dest %in% c("IAH", "HOU")) |>  
  show_query()
#> <SQL>
#> SELECT *
#> FROM flights
#> WHERE (dest IN ('IAH', 'HOU'))

SQL uses NULL instead of NA. NULLs behave similarly to NAs. The main
difference is that while they’re “infectious” in comparisons and arithmetic,
they are silently dropped when summarizing. dbplyr will remind you about
this behavior the first time you hit it:

flights |>  
  group_by(dest) |>  
  summarize(delay = mean(arr_delay))
#> Warning: Missing values are always removed in SQL aggregation 
functions.
#> Use `na.rm = TRUE` to silence this warning
#> This warning is displayed once every 8 hours.
#> # Source:   SQL [?? x 2]
#> # Database: DuckDB 0.6.1 [root@Darwin 22.3.0:R 4.2.1/:memory:]
#>   dest   delay



#>   <chr>  <dbl>
#> 1 ATL   11.3  
#> 2 ORD    5.88 
#> 3 RDU   10.1  
#> 4 IAD   13.9  
#> 5 DTW    5.43 
#> 6 LAX    0.547
#> # … with more rows

If you want to learn more about how NULLs work, you might enjoy “The
Three-Valued Logic of SQL” by Markus Winand.

In general, you can work with NULLs using the functions you’d use for NAs
in R:

flights |>  
  filter(!is.na(dep_delay)) |>  
  show_query()
#> <SQL>
#> SELECT *
#> FROM flights
#> WHERE (NOT((dep_delay IS NULL)))

This SQL query illustrates one of the drawbacks of dbplyr: while the SQL
is correct, it isn’t as simple as you might write by hand. In this case, you
could drop the parentheses and use a special operator that’s easier to read:

WHERE "dep_delay" IS NOT NULL

Note that if you filter() a variable that you created using a summarize,
dbplyr will generate a HAVING clause, rather than a WHERE clause. This is
a one of the idiosyncrasies of SQL: WHERE is evaluated before SELECT
and GROUP BY, so SQL needs another clause that’s evaluated afterward.

diamonds_db |>  
  group_by(cut) |>  
  summarize(n = n()) |>  
  filter(n > 100) |>  

https://oreil.ly/PTwQz
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  show_query()
#> <SQL>
#> SELECT cut, COUNT(*) AS n
#> FROM diamonds
#> GROUP BY cut
#> HAVING (COUNT(*) > 100.0)

ORDER BY
Ordering rows involves a straightforward translation from arrange() to
the ORDER BY clause:

flights |>  
  arrange(year, month, day, desc(dep_delay)) |>  
  show_query()
#> <SQL>
#> SELECT *
#> FROM flights
#> ORDER BY "year", "month", "day", dep_delay DESC

Notice how desc() is translated to DESC: this is one of the many dplyr
functions whose name was directly inspired by SQL.

Subqueries
Sometimes it’s not possible to translate a dplyr pipeline into a single
SELECT statement and you need to use a subquery. A subquery is just a
query used as a data source in the FROM clause, instead of the usual table.

dbplyr typically uses subqueries to work around the limitations of SQL. For
example, expressions in the SELECT clause can’t refer to columns that
were just created. That means that the following (silly) dplyr pipeline needs
to happen in two steps: the first (inner) query computes year1, and then
the second (outer) query can compute year2:

flights |>  
  mutate( 
    year1 = year + 1, 

https://dplyr.tidyverse.org/reference/arrange.html
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    year2 = year1 + 1 
  ) |>  
  show_query()
#> <SQL>
#> SELECT *, year1 + 1.0 AS year2
#> FROM (
#>   SELECT *, "year" + 1.0 AS year1
#>   FROM flights
#> ) q01

You’ll also see this if you attempted to filter() a variable that you just
created. Remember, even though WHERE is written after SELECT, it’s
evaluated before it, so we need a subquery in this (silly) example:

flights |>  
  mutate(year1 = year + 1) |>  
  filter(year1 == 2014) |>  
  show_query()
#> <SQL>
#> SELECT *
#> FROM (
#>   SELECT *, "year" + 1.0 AS year1
#>   FROM flights
#> ) q01
#> WHERE (year1 = 2014.0)

Sometimes dbplyr will create a subquery where it’s not needed because it
doesn’t yet know how to optimize that translation. As dbplyr improves over
time, these cases will get rarer but will probably never go away.

Joins
If you’re familiar with dplyr’s joins, SQL joins are similar. Here’s a simple
example:

flights |>  
  left_join(planes |> rename(year_built = year), by = "tailnum") 
|>  
  show_query()
#> <SQL>

https://dplyr.tidyverse.org/reference/filter.html


#> SELECT
#>   flights.*,
#>   planes."year" AS year_built,
#>   "type",
#>   manufacturer,
#>   model,
#>   engines,
#>   seats,
#>   speed,
#>   engine
#> FROM flights
#> LEFT JOIN planes
#>   ON (flights.tailnum = planes.tailnum)

The main thing to notice here is the syntax: SQL joins use subclauses of the
FROM clause to bring in additional tables, using ON to define how the tables
are related.

dplyr’s names for these functions are so closely connected to SQL that you
can easily guess the equivalent SQL for inner_join(),
right_join(), and full_join():

SELECT flights.*, "type", manufacturer, model, engines, seats, 
speed
FROM flights
INNER JOIN planes ON (flights.tailnum = planes.tailnum) 
 
SELECT flights.*, "type", manufacturer, model, engines, seats, 
speed
FROM flights
RIGHT JOIN planes ON (flights.tailnum = planes.tailnum) 
 
SELECT flights.*, "type", manufacturer, model, engines, seats, 
speed
FROM flights
FULL JOIN planes ON (flights.tailnum = planes.tailnum)

You’re likely to need many joins when working with data from a database.
That’s because database tables are often stored in a highly normalized form,
where each “fact” is stored in a single place, and to keep a complete dataset
for analysis, you need to navigate a complex network of tables connected
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by primary and foreign keys. If you hit this scenario, the dm package, by
Tobias Schieferdecker, Kirill Müller, and Darko Bergant, is a lifesaver. It
can automatically determine the connections between tables using the
constraints that DBAs often supply, visualize the connections so you can
see what’s going on, and generate the joins you need to connect one table to
another.

Other Verbs
dbplyr also translates other verbs such as distinct(), slice_*(), and
intersect(), as well as a growing selection of tidyr functions such as
pivot_longer() and pivot_wider(). The easiest way to see the
full set of what’s currently available is to visit the dbplyr website.

Exercises
1. What is distinct() translated to? How about head()?

2. Explain what each of the following SQL queries do and try to re-create
them using dbplyr:

SELECT *  

FROM flights

WHERE dep_delay < arr_delay 

 

SELECT *, distance / (airtime / 60) AS speed

FROM flights

Function Translations
So far we’ve focused on the big picture of how dplyr verbs are translated to
the clauses of a query. Now we’re going to zoom in a little and talk about
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the translation of the R functions that work with individual columns;
e.g., what happens when you use mean(x) in summarize()?

To help see what’s going on, we’ll use a couple of little helper functions
that run a summarize() or mutate() and show the generated SQL.
That will make it a little easier to explore a few variations and see how
summaries and transformations can differ.

summarize_query <- function(df, ...) { 
  df |>  
    summarize(...) |>  
    show_query()
}
mutate_query <- function(df, ...) { 
  df |>  
    mutate(..., .keep = "none") |>  
    show_query()
}

Let’s dive in with some summaries! Looking at the following code, you’ll
notice that some summary functions, such as mean(), have a relatively
simple translation, while others like median() are much more complex.
The complexity is typically higher for operations that are common in
statistics but less common in databases.

flights |>  
  group_by(year, month, day) |>   
  summarize_query( 
    mean = mean(arr_delay, na.rm = TRUE), 
    median = median(arr_delay, na.rm = TRUE) 
  )
#> `summarise()` has grouped output by "year" and "month". You 
can override
#> using the `.groups` argument.
#> <SQL>
#> SELECT
#>   "year",
#>   "month",
#>   "day",
#>   AVG(arr_delay) AS mean,
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#>   PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY arr_delay) AS 
median
#> FROM flights
#> GROUP BY "year", "month", "day"

The translation of summary functions becomes more complicated when you
use them inside a mutate() because they have to turn into so-called
window functions. In SQL, you turn an ordinary aggregation function into a
window function by adding OVER after it:

flights |>  
  group_by(year, month, day) |>   
  mutate_query( 
    mean = mean(arr_delay, na.rm = TRUE), 
  )
#> <SQL>
#> SELECT
#>   "year",
#>   "month",
#>   "day",
#>   AVG(arr_delay) OVER (PARTITION BY "year", "month", "day") AS 
mean
#> FROM flights

In SQL, the GROUP BY clause is used exclusively for summaries, so here
you can see that the grouping has moved from the PARTITION BY
argument to OVER.

Window functions include all functions that look forward or backward, such
as lead() and lag(), which look at the “previous” or “next” value,
respectively:

flights |>  
  group_by(dest) |>   
  arrange(time_hour) |>  
  mutate_query( 
    lead = lead(arr_delay), 
    lag = lag(arr_delay) 
  )
#> <SQL>
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#> SELECT
#>   dest,
#>   LEAD(arr_delay, 1, NULL) OVER (PARTITION BY dest ORDER BY 
time_hour) AS lead,
#>   LAG(arr_delay, 1, NULL) OVER (PARTITION BY dest ORDER BY 
time_hour) AS lag
#> FROM flights
#> ORDER BY time_hour

Here it’s important to arrange() the data, because SQL tables have no
intrinsic order. In fact, if you don’t use arrange(), you might get the
rows back in a different order every time! Notice for window functions, the
ordering information is repeated: the ORDER BY clause of the main query
doesn’t automatically apply to window functions.

Another important SQL function is CASE WHEN. It’s used as the
translation of if_else() and case_when(), the dplyr function that it
directly inspired. Here are a couple of simple examples:

flights |>  
  mutate_query( 
    description = if_else(arr_delay > 0, "delayed", "on-time") 
  )
#> <SQL>
#> SELECT CASE WHEN 
#>   (arr_delay > 0.0) THEN 'delayed' 
#>   WHEN NOT (arr_delay > 0.0) THEN 'on-time' END AS description
#> FROM flights
flights |>  
  mutate_query( 
    description =  
      case_when( 
        arr_delay < -5 ~ "early",  
        arr_delay < 5 ~ "on-time", 
        arr_delay >= 5 ~ "late" 
      ) 
  )
#> <SQL>
#> SELECT CASE
#> WHEN (arr_delay < -5.0) THEN 'early'
#> WHEN (arr_delay < 5.0) THEN 'on-time'
#> WHEN (arr_delay >= 5.0) THEN 'late'
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#> END AS description
#> FROM flights

CASE WHEN is also used for some other functions that don’t have a direct
translation from R to SQL. A good example of this is cut():

flights |>  
  mutate_query( 
    description =  cut( 
      arr_delay,  
      breaks = c(-Inf, -5, 5, Inf),  
      labels = c("early", "on-time", "late") 
    ) 
  )
#> <SQL>
#> SELECT CASE
#> WHEN (arr_delay <= -5.0) THEN 'early'
#> WHEN (arr_delay <= 5.0) THEN 'on-time'
#> WHEN (arr_delay > 5.0) THEN 'late'
#> END AS description
#> FROM flights

dbplyr also translates common string and date-time manipulation functions,
which you can learn about in vignette("translation-
function", package = "dbplyr"). dbplyr’s translations are
certainly not perfect, and there are many R functions that aren’t translated
yet, but dbplyr does a surprisingly good job covering the functions that
you’ll use most of the time.

Summary
In this chapter you learned how to access data from databases. We focused
on dbplyr, a dplyr “backend” that allows you to write the dplyr code you’re
familiar with and have it be automatically translated to SQL. We used that
translation to teach you a little SQL; it’s important to learn some SQL
because it’s the most commonly used language for working with data and
knowing some will make it easier for you to communicate with other data
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folks who don’t use R. If you’ve finished this chapter and would like to
learn more about SQL, we have two recommendations:

SQL for Data Scientists by Renée M. P. Teate is an introduction to
SQL designed specifically for the needs of data scientists and includes
examples of the sort of highly interconnected data you’re likely to
encounter in real organizations.

Practical SQL by Anthony DeBarros is written from the perspective of
a data journalist (a data scientist specialized in telling compelling
stories) and goes into more detail about getting your data into a
database and running your own DBMS.

In the next chapter, we’ll learn about another dplyr backend for working
with large data: arrow. The arrow package is designed for working with
large files on disk and is a natural complement to databases.

1  SQL is either pronounced “s”-“q”-“l” or “sequel.”

2  Typically, this is the only function you’ll use from the client package, so we recommend using
:: to pull out that one function, rather than loading the complete package with library().

3  At least, all the tables that you have permission to see.

4  Confusingly, depending on the context, SELECT is either a statement or a clause. To avoid
this confusion, we’ll generally use SELECT query instead of SELECT statement.

5  Technically, only the SELECT is required, since you can write queries like SELECT 1+1 to
perform basic calculations. But if you want to work with data (as you always do!), you’ll also
need a FROM clause.

6  This is no coincidence: the dplyr function name was inspired by the SQL clause.
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Chapter 22. Arrow

Introduction
CSV files are designed to be easily read by humans. They’re a good
interchange format because they’re simple and they can be read by every
tool under the sun. But CSV files aren’t efficient: you have to do quite a lot
of work to read the data into R. In this chapter, you’ll learn about a
powerful alternative: the parquet format, an open standards–based format
widely used by big data systems.

We’ll pair parquet files with Apache Arrow, a multilanguage toolbox
designed for efficient analysis and transport of large datasets. We’ll use
Apache Arrow via the arrow package, which provides a dplyr backend
allowing you to analyze larger-than-memory datasets using familiar dplyr
syntax. As an additional benefit, arrow is extremely fast; you’ll see some
examples later in the chapter.

Both arrow and dbplyr provide dplyr backends, so you might wonder when
to use each. In many cases, the choice is made for you, as in the data is
already in a database or in parquet files, and you’ll want to work with it as
is. But if you’re starting with your own data (perhaps CSV files), you can
either load it into a database or convert it to parquet. In general, it’s hard to
know what will work best, so in the early stages of your analysis, we
encourage you to try both and pick the one that works the best for you.

(A big thanks to Danielle Navarro who contributed the initial version of this
chapter.)

Prerequisites
In this chapter, we’ll continue to use the tidyverse, particularly dplyr, but
we’ll pair it with the arrow package, which was designed specifically for
working with large data:

https://oreil.ly/ClE7D
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library(tidyverse)
library(arrow)

Later in the chapter, we’ll also see some connections between arrow and
duckdb, so we’ll also need dbplyr and duckdb:

library(dbplyr, warn.conflicts = FALSE)
library(duckdb)
#> Loading required package: DBI

Getting the Data
We begin by getting a dataset worthy of these tools: a dataset of item
checkouts from Seattle public libraries, available online at Seattle Open
Data. This dataset contains 41,389,465 rows that tell you how many times
each book was checked out each month from April 2005 to October 2022.

The following code will get you a cached copy of the data. The data is a 9
GB CSV file, so it will take some time to download. I highly recommend
using curl::multidownload() to get very large files as it’s built for
exactly this purpose: it gives you a progress bar, and it can resume the
download if it’s interrupted.

dir.create("data", showWarnings = FALSE) 
 
curl::multi_download( 
  "https://r4ds.s3.us-west-2.amazonaws.com/seattle-library-
checkouts.csv", 
  "data/seattle-library-checkouts.csv", 
  resume = TRUE
)

Opening a Dataset

https://oreil.ly/u56DR


Let’s start by taking a look at the data. At 9 GB, this file is large enough
that we probably don’t want to load the whole thing into memory. A good
rule of thumb is that you usually want at least twice as much memory as the
size of the data, and many laptops top out at 16 GB. This means we want to
avoid read_csv() and instead use arrow::open_dataset():

seattle_csv <- open_dataset( 
  sources = "data/seattle-library-checkouts.csv",  
  format = "csv"
)

What happens when this code is run? open_dataset() will scan a few
thousand rows to figure out the structure of the dataset. Then it records
what it’s found and stops; it will only read further rows as you specifically
request them. This metadata is what we see if we print seattle_csv:

seattle_csv
#> FileSystemDataset with 1 csv file
#> UsageClass: string
#> CheckoutType: string
#> MaterialType: string
#> CheckoutYear: int64
#> CheckoutMonth: int64
#> Checkouts: int64
#> Title: string
#> ISBN: null
#> Creator: string
#> Subjects: string
#> Publisher: string
#> PublicationYear: string

The first line in the output tells you that seattle_csv is stored locally
on disk as a single CSV file; it will be loaded into memory only as needed.
The remainder of the output tells you the column type that arrow has
imputed for each column.

We can see what’s actually in with glimpse(). This reveals that there are
~41 million rows and 12 columns and shows us a few values.

https://readr.tidyverse.org/reference/read_delim.html
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seattle_csv |> glimpse()
#> FileSystemDataset with 1 csv file
#> 41,389,465 rows x 12 columns
#> $ UsageClass      <string> "Physical", "Physical", "Digital", 
"Physical", "Ph…
#> $ CheckoutType    <string> "Horizon", "Horizon", "OverDrive", 
"Horizon", "Hor…
#> $ MaterialType    <string> "BOOK", "BOOK", "EBOOK", "BOOK", 
"SOUNDDISC", "BOO…
#> $ CheckoutYear     <int64> 2016, 2016, 2016, 2016, 2016, 2016, 
2016, 2016, 20…
#> $ CheckoutMonth    <int64> 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 
6, 6, 6, 6, 6,…
#> $ Checkouts        <int64> 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 
3, 2, 1, 3, 2,…
#> $ Title           <string> "Super rich : a guide to having it 
all / Russell S…
#> $ ISBN            <string> "", "", "", "", "", "", "", "", "", 
"", "", "", ""…
#> $ Creator         <string> "Simmons, Russell", "Barclay, 
James, 1965-", "Tim …
#> $ Subjects        <string> "Self realization, Conduct of life, 
Attitude Psych…
#> $ Publisher       <string> "Gotham Books,", "Pyr,", "Random 
House, Inc.", "Di…
#> $ PublicationYear <string> "c2011.", "2010.", "2015", "2005.", 
"c2004.", "c20…

We can start to use this dataset with dplyr verbs, using collect() to
force arrow to perform the computation and return some data. For example,
this code tells us the total number of checkouts per year:

seattle_csv |>  
  count(CheckoutYear, wt = Checkouts) |>  
  arrange(CheckoutYear) |>  
  collect()
#> # A tibble: 18 × 2
#>   CheckoutYear       n
#>          <int>   <int>
#> 1         2005 3798685
#> 2         2006 6599318
#> 3         2007 7126627
#> 4         2008 8438486
#> 5         2009 9135167

https://dplyr.tidyverse.org/reference/compute.html


#> 6         2010 8608966
#> # … with 12 more rows

Thanks to arrow, this code will work regardless of how large the underlying
dataset is. But it’s currently rather slow: on Hadley’s computer, it took ~10s
to run. That’s not terrible given how much data we have, but we can make it
much faster by switching to a better format.

The Parquet Format
To make this data easier to work with, let’s switch to the parquet file format
and split it up into multiple files. The following sections will first introduce
you to parquet and partitioning and then apply what we learned to the
Seattle library data.

Advantages of Parquet
Like CSV, parquet is used for rectangular data, but instead of being a text
format that you can read with any file editor, it’s a custom binary format
designed specifically for the needs of big data. This means that:

Parquet files are usually smaller than the equivalent CSV file. Parquet
relies on efficient encodings to keep file size down and supports file
compression. This helps make parquet files fast because there’s less
data to move from disk to memory.

Parquet files have a rich type system. As we talked about in
“Controlling Column Types”, a CSV file does not provide any
information about column types. For example, a CSV reader has to
guess whether "08-10-2022" should be parsed as a string or a date.
In contrast, parquet files store data in a way that records the type along
with the data.

Parquet files are “column-oriented.” This means they’re organized
column by column, much like R’s data frame. This typically leads to
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better performance for data analysis tasks compared to CSV files,
which are organized row by row.

Parquet files are “chunked,” which makes it possible to work on
different parts of the file at the same time and, if you’re lucky, to skip
some chunks altogether.

Partitioning
As datasets get larger and larger, storing all the data in a single file gets
increasingly painful, and it’s often useful to split large datasets across many
files. When this structuring is done intelligently, this strategy can lead to
significant improvements in performance because many analyses will
require only a subset of the files.

There are no hard and fast rules about how to partition your dataset: the
results will depend on your data, access patterns, and the systems that read
the data. You’re likely to need to do some experimentation before you find
the ideal partitioning for your situation. As a rough guide, arrow suggests
that you avoid files smaller than 20 MB and larger than 2 GB and avoid
partitions that produce more than 10,000 files. You should also try to
partition by variables that you filter by; as you’ll see shortly, that allows
arrow to skip a lot of work by reading only the relevant files.

Rewriting the Seattle Library Data
Let’s apply these ideas to the Seattle library data to see how they play out in
practice. We’re going to partition by CheckoutYear, since it’s likely
some analyses will want to look at only recent data and partitioning by year
yields 18 chunks of a reasonable size.

To rewrite the data, we define the partition using dplyr::group_by()
and then save the partitions to a directory with
arrow::write_dataset(). write_dataset() has two important
arguments: a directory where we’ll create the files and the format we’ll use.

https://dplyr.tidyverse.org/reference/group_by.html
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pq_path <- "data/seattle-library-checkouts"

seattle_csv |> 
  group_by(CheckoutYear) |> 
  write_dataset(path = pq_path, format = "parquet")

This takes about a minute to run; as we’ll see shortly this is an initial
investment that pays off by making future operations much much faster.

Let’s take a look at what we just produced:

tibble( 
  files = list.files(pq_path, recursive = TRUE), 
  size_MB = file.size(file.path(pq_path, files)) / 1024^2
)
#> # A tibble: 18 × 2
#>   files                            size_MB
#>   <chr>                              <dbl>
#> 1 CheckoutYear=2005/part-0.parquet    109.
#> 2 CheckoutYear=2006/part-0.parquet    164.
#> 3 CheckoutYear=2007/part-0.parquet    178.
#> 4 CheckoutYear=2008/part-0.parquet    195.
#> 5 CheckoutYear=2009/part-0.parquet    214.
#> 6 CheckoutYear=2010/part-0.parquet    222.
#> # … with 12 more rows

Our single 9 GB CSV file has been rewritten into 18 parquet files. The
filenames use a “self-describing” convention used by the Apache Hive
project. Hive-style partitions name folders with a “key=value” convention,
so as you might guess, the CheckoutYear=2005 directory contains all
the data where CheckoutYear is 2005. Each file is between 100 and 300
MB and the total size is now around 4 GB, a little more than half the size of
the original CSV file. This is as we expect since parquet is a much more
efficient format.

Using dplyr with Arrow
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Now that we’ve created these parquet files, we’ll need to read them in
again. We use open_dataset() again, but this time we give it a
directory:

seattle_pq <- open_dataset(pq_path)

Now we can write our dplyr pipeline. For example, we could count the total
number of books checked out in each month for the last five years:

query <- seattle_pq |>  
  filter(CheckoutYear >= 2018, MaterialType == "BOOK") |> 
  group_by(CheckoutYear, CheckoutMonth) |> 
  summarize(TotalCheckouts = sum(Checkouts)) |> 
  arrange(CheckoutYear, CheckoutMonth)

Writing dplyr code for arrow data is conceptually similar to dbplyr, as
discussed in Chapter 21: you write dplyr code, which is automatically
transformed into a query that the Apache Arrow C++ library understands,
which is then executed when you call collect(). If we print out the
query object, we can see a little information about what we expect Arrow
to return when the execution takes place:

query
#> FileSystemDataset (query)
#> CheckoutYear: int32
#> CheckoutMonth: int64
#> TotalCheckouts: int64
#> 
#> * Grouped by CheckoutYear
#> * Sorted by CheckoutYear [asc], CheckoutMonth [asc]
#> See $.data for the source Arrow object

And we can get the results by calling collect():

query |> collect()
#> # A tibble: 58 × 3
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#> # Groups:   CheckoutYear [5]
#>   CheckoutYear CheckoutMonth TotalCheckouts
#>          <int>         <int>          <int>
#> 1         2018             1         355101
#> 2         2018             2         309813
#> 3         2018             3         344487
#> 4         2018             4         330988
#> 5         2018             5         318049
#> 6         2018             6         341825
#> # … with 52 more rows

Like dbplyr, arrow understands only some R expressions, so you may not
be able to write exactly the same code you usually would. However, the list
of operations and functions supported is fairly extensive and continues to
grow; find a complete list of currently supported functions in ?acero.

Performance
Let’s take a quick look at the performance impact of switching from CSV to
parquet. First, let’s time how long it takes to calculate the number of books
checked out in each month of 2021, when the data is stored as a single large
CSV file:

seattle_csv |>  
  filter(CheckoutYear == 2021, MaterialType == "BOOK") |> 
  group_by(CheckoutMonth) |> 
  summarize(TotalCheckouts = sum(Checkouts)) |> 
  arrange(desc(CheckoutMonth)) |> 
  collect() |>  
  system.time()
#>    user  system elapsed 
#>  11.997   1.189  11.343

Now let’s use our new version of the dataset in which the Seattle library
checkout data has been partitioned into 18 smaller parquet files:

seattle_pq |>  
  filter(CheckoutYear == 2021, MaterialType == "BOOK") |> 
  group_by(CheckoutMonth) |> 
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  summarize(TotalCheckouts = sum(Checkouts)) |> 
  arrange(desc(CheckoutMonth)) |> 
  collect() |>  
  system.time()
#>    user  system elapsed 
#>   0.272   0.063   0.063

The ~100x speedup in performance is attributable to two factors: the
multifile partitioning and the format of individual files:

Partitioning improves performance because this query uses
CheckoutYear == 2021 to filter the data, and arrow is smart
enough to recognize that it needs to read only 1 of the 18 parquet files.

The parquet format improves performance by storing data in a binary
format that can be read more directly into memory. The column-wise
format and rich metadata means that arrow needs to read only the four
columns actually used in the query (CheckoutYear,
MaterialType, CheckoutMonth, and Checkouts).

This massive difference in performance is why it pays off to convert large
CSVs to parquet!

Using dbplyr with Arrow
There’s one last advantage of parquet and arrow—it’s easy to turn an arrow
dataset into a DuckDB database (Chapter 21) by calling
arrow::to_duckdb():

seattle_pq |>  
  to_duckdb() |> 
  filter(CheckoutYear >= 2018, MaterialType == "BOOK") |> 
  group_by(CheckoutYear) |> 
  summarize(TotalCheckouts = sum(Checkouts)) |> 
  arrange(desc(CheckoutYear)) |> 
  collect()
#> Warning: Missing values are always removed in SQL aggregation 
functions.
#> Use `na.rm = TRUE` to silence this warning
#> This warning is displayed once every 8 hours.

https://arrow.apache.org/docs/r/reference/to_duckdb.html


#> # A tibble: 5 × 2
#>   CheckoutYear TotalCheckouts
#>          <int>          <dbl>
#> 1         2022        2431502
#> 2         2021        2266438
#> 3         2020        1241999
#> 4         2019        3931688
#> 5         2018        3987569

The neat thing about to_duckdb() is that the transfer doesn’t involve
any memory copying and speaks to the goals of the arrow ecosystem:
enabling seamless transitions from one computing environment to another.

Summary
In this chapter, you got a taste of the arrow package, which provides a dplyr
backend for working with large on-disk datasets. It can work with CSV
files, and it’s much much faster if you convert your data to parquet. Parquet
is a binary data format that’s designed specifically for data analysis on
modern computers. Far fewer tools can work with parquet files compared to
CSV, but its partitioned, compressed, and columnar structure makes it much
more efficient to analyze.

Next up you’ll learn about your first nonrectangular data source, which
you’ll handle using tools provided by the tidyr package. We’ll focus on data
that comes from JSON files, but the general principles apply to tree-like
data regardless of its source.

https://arrow.apache.org/docs/r/reference/to_duckdb.html


Chapter 23. Hierarchical Data

Introduction
In this chapter, you’ll learn the art of data rectangling, taking data that is fundamentally
hierarchical, or tree-like, and converting it into a rectangular data frame made up of rows
and columns. This is important because hierarchical data is surprisingly common,
especially when working with data that comes from the web.

To learn about rectangling, you’ll need to first learn about lists, the data structure that
makes hierarchical data possible. Then you’ll learn about two crucial tidyr functions:
tidyr::unnest_longer() and tidyr::unnest_wider(). We’ll then show you
a few case studies, applying these simple functions again and again to solve real problems.
We’ll finish off by talking about JSON, the most frequent source of hierarchical datasets
and a common format for data exchange on the web.

Prerequisites
In this chapter, we’ll use many functions from tidyr, a core member of the tidyverse. We’ll
also use repurrrsive to provide some interesting datasets for rectangling practice, and we’ll
finish by using jsonlite to read JSON files into R lists.

library(tidyverse)
library(repurrrsive)
library(jsonlite)

Lists
So far you’ve worked with data frames that contain simple vectors such as integers,
numbers, characters, date-times, and factors. These vectors are simple because they’re
homogeneous: every element is of the same data type. If you want to store elements of
different types in the same vector, you’ll need a list, which you create with list():

x1 <- list(1:4, "a", TRUE)
x1
#> [[1]]
#> [1] 1 2 3 4
#> 
#> [[2]]
#> [1] "a"
#> 
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#> [[3]]
#> [1] TRUE

It’s often convenient to name the components, or children, of a list, which you can do in the
same way as naming the columns of a tibble:

x2 <- list(a = 1:2, b = 1:3, c = 1:4)
x2
#> $a
#> [1] 1 2
#> 
#> $b
#> [1] 1 2 3
#> 
#> $c
#> [1] 1 2 3 4

Even for these simple lists, printing takes up quite a lot of space. A useful alternative is
str(), which generates a compact display of the structure, de-emphasizing the contents:

str(x1)
#> List of 3
#>  $ : int [1:4] 1 2 3 4
#>  $ : chr "a"
#>  $ : logi TRUE
str(x2)
#> List of 3
#>  $ a: int [1:2] 1 2
#>  $ b: int [1:3] 1 2 3
#>  $ c: int [1:4] 1 2 3 4

As you can see, str() displays each child of the list on its own line. It displays the name,
if present; then an abbreviation of the type; and then the first few values.

Hierarchy
Lists can contain any type of object, including other lists. This makes them suitable for
representing hierarchical (tree-like) structures:

x3 <- list(list(1, 2), list(3, 4))
str(x3)
#> List of 2
#>  $ :List of 2
#>   ..$ : num 1
#>   ..$ : num 2
#>  $ :List of 2
#>   ..$ : num 3
#>   ..$ : num 4
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This is notably different from c(), which generates a flat vector:

c(c(1, 2), c(3, 4))
#> [1] 1 2 3 4 
 
x4 <- c(list(1, 2), list(3, 4))
str(x4)
#> List of 4
#>  $ : num 1
#>  $ : num 2
#>  $ : num 3
#>  $ : num 4

As lists get more complex, str() gets more useful, as it lets you see the hierarchy at a
glance:

x5 <- list(1, list(2, list(3, list(4, list(5)))))
str(x5)
#> List of 2
#>  $ : num 1
#>  $ :List of 2
#>   ..$ : num 2
#>   ..$ :List of 2
#>   .. ..$ : num 3
#>   .. ..$ :List of 2
#>   .. .. ..$ : num 4
#>   .. .. ..$ :List of 1
#>   .. .. .. ..$ : num 5

As lists get even larger and more complex, str() eventually starts to fail, and you’ll need
to switch to View().1 Figure 23-1 shows the result of calling View(x5). The viewer
starts by showing just the top level of the list, but you can interactively expand any of the
components to see more, as in Figure 23-2. RStudio will also show you the code you need
to access that element, as in Figure 23-3. We’ll come back to how this code works in
“Selecting a Single Element with $ and [[”.
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Figure 23-1. The RStudio view lets you interactively explore a complex list. The viewer opens showing only the top level
of the list.

Figure 23-2. Clicking the right-facing triangle expands that component of the list so that you can also see its children.



Figure 23-3. You can repeat this operation as many times as needed to get to the data you’re interested in. Note the
bottom-left corner: if you click an element of the list, RStudio will give you the subsetting code needed to access it, in this

case x5[[2]][[2]][[2]].

List Columns
Lists can also live inside a tibble, where we call them list columns. List columns are useful
because they allow you to place objects in a tibble that wouldn’t usually belong in there. In
particular, list columns are used a lot in the tidymodels ecosystem, because they allow you
to store things like model outputs or resamples in a data frame.

Here’s a simple example of a list column:

df <- tibble( 
  x = 1:2,  
  y = c("a", "b"), 
  z = list(list(1, 2), list(3, 4, 5))
)
df
#> # A tibble: 2 × 3
#>       x y     z         
#>   <int> <chr> <list>    
#> 1     1 a     <list [2]>
#> 2     2 b     <list [3]>

There’s nothing special about lists in a tibble; they behave like any other column:

df |>  
  filter(x == 1)
#> # A tibble: 1 × 3
#>       x y     z         
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#>   <int> <chr> <list>    
#> 1     1 a     <list [2]>

Computing with list columns is harder, but that’s because computing with lists is harder in
general; we’ll come back to that in Chapter 26. In this chapter, we’ll focus on unnesting list
columns into regular variables so you can use your existing tools on them.

The default print method just displays a rough summary of the contents. The list column
could be arbitrarily complex, so there’s no good way to print it. If you want to see it, you’ll
need to pull out just the one list column and apply one of the techniques that you’ve
learned previously, like df |> pull(z) |> str() or df |> pull(z) |>
View().

BASE R
It’s possible to put a list in a column of a data.frame, but it’s a lot fiddlier because data.frame()
treats a list as a list of columns:

data.frame(x = list(1:3, 3:5))
#>   x.1.3 x.3.5
#> 1     1     3
#> 2     2     4
#> 3     3     5

You can force data.frame() to treat a list as a list of rows by wrapping it in list I(), but the result
doesn’t print particularly well:

data.frame( 
  x = I(list(1:2, 3:5)),  
  y = c("1, 2", "3, 4, 5")
)
#>         x       y
#> 1    1, 2    1, 2
#> 2 3, 4, 5 3, 4, 5

It’s easier to use list columns with tibbles because tibble() treats lists like vectors and the print method
has been designed with lists in mind.

Unnesting
Now that you’ve learned the basics of lists and list columns, let’s explore how you can turn
them back into regular rows and columns. Here we’ll use simple sample data so you can
get the basic idea; in the next section we’ll switch to real data.

List columns tend to come in two basic forms: named and unnamed. When the children are
named, they tend to have the same names in every row. For example, in df1, every
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element of list column y has two elements named a and b. Named list columns naturally
unnest into columns: each named element becomes a new named column.

df1 <- tribble( 
  ~x, ~y, 
  1, list(a = 11, b = 12), 
  2, list(a = 21, b = 22), 
  3, list(a = 31, b = 32),
)

When the children are unnamed, the number of elements tends to vary from row to row.
For example, in df2, the elements of list column y are unnamed and vary in length from
one to three. Unnamed list columns naturally unnest into rows: you’ll get one row for each
child.

df2 <- tribble( 
  ~x, ~y, 
  1, list(11, 12, 13), 
  2, list(21), 
  3, list(31, 32),
)

tidyr provides two functions for these two cases: unnest_wider() and
unnest_longer(). The following sections explain how they work.

unnest_wider()
When each row has the same number of elements with the same names, like df1, it’s
natural to put each component into its own column with unnest_wider():

df1 |>  
  unnest_wider(y)
#> # A tibble: 3 × 3
#>       x     a     b
#>   <dbl> <dbl> <dbl>
#> 1     1    11    12
#> 2     2    21    22
#> 3     3    31    32

By default, the names of the new columns come exclusively from the names of the list
elements, but you can use the names_sep argument to request that they combine the
column name and the element name. This is useful for disambiguating repeated names.

df1 |>  
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  unnest_wider(y, names_sep = "_")
#> # A tibble: 3 × 3
#>       x   y_a   y_b
#>   <dbl> <dbl> <dbl>
#> 1     1    11    12
#> 2     2    21    22
#> 3     3    31    32

unnest_longer()
When each row contains an unnamed list, it’s most natural to put each element into its own
row with unnest_longer():

df2 |>  
  unnest_longer(y)
#> # A tibble: 6 × 2
#>       x     y
#>   <dbl> <dbl>
#> 1     1    11
#> 2     1    12
#> 3     1    13
#> 4     2    21
#> 5     3    31
#> 6     3    32

Note how x is duplicated for each element inside of y: we get one row of output for each
element inside the list column. But what happens if one of the elements is empty, as in the
following example?

df6 <- tribble( 
  ~x, ~y, 
  "a", list(1, 2), 
  "b", list(3), 
  "c", list()
)
df6 |> unnest_longer(y)
#> # A tibble: 3 × 2
#>   x         y
#>   <chr> <dbl>
#> 1 a         1
#> 2 a         2
#> 3 b         3

We get zero rows in the output, so the row effectively disappears. If you want to preserve
that row, add NA in y, set keep_empty = TRUE.

Inconsistent Types

https://tidyr.tidyverse.org/reference/unnest_longer.html


What happens if you unnest a list column that contains different types of vectors? For
example, take the following dataset where list column y contains two numbers, a character,
and a logical, which can’t normally be mixed in a single column:

df4 <- tribble( 
  ~x, ~y, 
  "a", list(1), 
  "b", list("a", TRUE, 5)
)

unnest_longer() always keeps the set of columns unchanged, while changing the
number of rows. So what happens? How does unnest_longer() produce five rows
while keeping everything in y?

df4 |>  
  unnest_longer(y)
#> # A tibble: 4 × 2
#>   x     y        
#>   <chr> <list>   
#> 1 a     <dbl [1]>
#> 2 b     <chr [1]>
#> 3 b     <lgl [1]>
#> 4 b     <dbl [1]>

As you can see, the output contains a list column, but every element of the list column
contains a single element. Because unnest_longer() can’t find a common type of
vector, it keeps the original types in a list column. You might wonder if this breaks the
commandment that every element of a column must be the same type. It doesn’t: every
element is a list, even though the contents are of different types.

Dealing with inconsistent types is challenging and the details depend on the precise nature
of the problem and your goals, but you’ll most likely need tools from Chapter 26.

Other Functions
tidyr has a few other useful rectangling functions that we’re not going to cover in this
book:

unnest_auto() automatically picks between unnest_longer() and
unnest_wider() based on the structure of the list column. It’s great for rapid
exploration, but ultimately it’s a bad idea because it doesn’t force you to understand
how your data is structured and makes your code harder to understand.

unnest() expands both rows and columns. It’s useful when you have a list column
that contains a 2D structure like a data frame, which you don’t see in this book, but
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you might encounter if you use the tidymodels ecosystem.

These functions are good to know about as you might encounter them when reading other
people’s code or tackling rarer rectangling challenges yourself.

Exercises
1. What happens when you use unnest_wider() with unnamed list columns like
df2? What argument is now necessary? What happens to missing values?

2. What happens when you use unnest_longer() with named list columns like
df1? What additional information do you get in the output? How can you suppress
that extra detail?

3. From time to time you encounter data frames with multiple list columns with aligned
values. For example, in the following data frame, the values of y and z are aligned
(i.e., y and z will always have the same length within a row, and the first value of y
corresponds to the first value of z). What happens if you apply two
unnest_longer() calls to this data frame? How can you preserve the relationship
between x and y? (Hint: Carefully read the docs.)

df4 <- tribble( 
  ~x, ~y, ~z, 
  "a", list("y-a-1", "y-a-2"), list("z-a-1", "z-a-2"), 
  "b", list("y-b-1", "y-b-2", "y-b-3"), list("z-b-1", "z-b-2", "z-b-3")
)

Case Studies
The main difference between the simple examples we used earlier and real data is that real
data typically contains multiple levels of nesting that require multiple calls to
unnest_longer() and/or unnest_wider(). To show that in action, this section
works through three real rectangling challenges using datasets from the repurrrsive
package.

Very Wide Data
We’ll start with gh_repos. This is a list that contains data about a collection of GitHub
repositories retrieved using the GitHub API. It’s a deeply nested list, so it’s difficult to
show the structure in this book; we recommend exploring a little on your own with
View(gh_repos) before we continue.
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gh_repos is a list, but our tools work with list columns, so we’ll begin by putting it into
a tibble. We call this column json for reasons we’ll get to later.

repos <- tibble(json = gh_repos)
repos
#> # A tibble: 6 × 1
#>   json       
#>   <list>     
#> 1 <list [30]>
#> 2 <list [30]>
#> 3 <list [30]>
#> 4 <list [26]>
#> 5 <list [30]>
#> 6 <list [30]>

This tibble contains six rows, one row for each child of gh_repos. Each row contains a
unnamed list with either 26 or 30 rows. Since these are unnamed, we’ll start with
unnest_longer() to put each child in its own row:

repos |>  
  unnest_longer(json)
#> # A tibble: 176 × 1
#>   json             
#>   <list>           
#> 1 <named list [68]>
#> 2 <named list [68]>
#> 3 <named list [68]>
#> 4 <named list [68]>
#> 5 <named list [68]>
#> 6 <named list [68]>
#> # … with 170 more rows

At first glance, it might seem like we haven’t improved the situation: while we have more
rows (176 instead of 6), each element of json is still a list. However, there’s an important
difference: now each element is a named list, so we can use unnest_wider() to put
each element into its own column:

repos |>  
  unnest_longer(json) |>  
  unnest_wider(json)  
#> # A tibble: 176 × 68
#>         id name        full_name         owner        private html_url       
#>      <int> <chr>       <chr>             <list>       <lgl>   <chr>          
#> 1 61160198 after       gaborcsardi/after <named list> FALSE   
https://github…
#> 2 40500181 argufy      gaborcsardi/argu… <named list> FALSE   
https://github…
#> 3 36442442 ask         gaborcsardi/ask   <named list> FALSE   
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https://github…
#> 4 34924886 baseimports gaborcsardi/base… <named list> FALSE   
https://github…
#> 5 61620661 citest      gaborcsardi/cite… <named list> FALSE   
https://github…
#> 6 33907457 clisymbols  gaborcsardi/clis… <named list> FALSE   
https://github…
#> # … with 170 more rows, and 62 more variables: description <chr>,
#> #   fork <lgl>, url <chr>, forks_url <chr>, keys_url <chr>, …

This has worked, but the result is a little overwhelming: there are so many columns that
tibble doesn’t even print all of them! We can see them all with names() and here we look
at the first 10:

repos |>  
  unnest_longer(json) |>  
  unnest_wider(json) |>  
  names() |>  
  head(10)
#>  [1] "id"          "name"        "full_name"   "owner"       "private"    
#>  [6] "html_url"    "description" "fork"        "url"         "forks_url"

Let’s pull out a few that look interesting:

repos |>  
  unnest_longer(json) |>  
  unnest_wider(json) |>  
  select(id, full_name, owner, description)
#> # A tibble: 176 × 4
#>         id full_name               owner             description             
#>      <int> <chr>                   <list>            <chr>                   
#> 1 61160198 gaborcsardi/after       <named list [17]> Run Code in the 
Backgro…
#> 2 40500181 gaborcsardi/argufy      <named list [17]> Declarative function 
ar…
#> 3 36442442 gaborcsardi/ask         <named list [17]> Friendly CLI 
interactio…
#> 4 34924886 gaborcsardi/baseimports <named list [17]> Do we get warnings for 
…
#> 5 61620661 gaborcsardi/citest      <named list [17]> Test R package and 
repo…
#> 6 33907457 gaborcsardi/clisymbols  <named list [17]> Unicode symbols for 
CLI…
#> # … with 170 more rows

You can use this to work back to understand how gh_repos was structured: each child
was a GitHub user containing a list of up to 30 GitHub repositories that they created.

owner is another list column, and since it contains a named list, we can use
unnest_wider() to get at the values:
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repos |>  
  unnest_longer(json) |>  
  unnest_wider(json) |>  
  select(id, full_name, owner, description) |>  
  unnest_wider(owner)
#> Error in `unnest_wider()`:
#> ! Can't duplicate names between the affected columns and the original
#>   data.
#> ✖ These names are duplicated:
#>   ℹ `id`, from `owner`.
#> ℹ Use `names_sep` to disambiguate using the column name.
#> ℹ Or use `names_repair` to specify a repair strategy.

Uh-oh, this list column also contains an id column, and we can’t have two id columns in
the same data frame. As suggested, let’s use names_sep to resolve the problem:

repos |>  
  unnest_longer(json) |>  
  unnest_wider(json) |>  
  select(id, full_name, owner, description) |>  
  unnest_wider(owner, names_sep = "_")
#> # A tibble: 176 × 20
#>         id full_name               owner_login owner_id owner_avatar_url     
#>      <int> <chr>                   <chr>          <int> <chr>                
#> 1 61160198 gaborcsardi/after       gaborcsardi   660288 
https://avatars.gith…
#> 2 40500181 gaborcsardi/argufy      gaborcsardi   660288 
https://avatars.gith…
#> 3 36442442 gaborcsardi/ask         gaborcsardi   660288 
https://avatars.gith…
#> 4 34924886 gaborcsardi/baseimports gaborcsardi   660288 
https://avatars.gith…
#> 5 61620661 gaborcsardi/citest      gaborcsardi   660288 
https://avatars.gith…
#> 6 33907457 gaborcsardi/clisymbols  gaborcsardi   660288 
https://avatars.gith…
#> # … with 170 more rows, and 15 more variables: owner_gravatar_id <chr>,
#> #   owner_url <chr>, owner_html_url <chr>, owner_followers_url <chr>, …

This gives another wide dataset, but you can get the sense that owner appears to contain a
lot of additional data about the person who “owns” the repository.

Relational Data
Nested data is sometimes used to represent data that we’d usually spread across multiple
data frames. For example, take got_chars, which contains data about characters that
appear in the Game of Thrones books and TV series. Like gh_repos, it’s a list, so we
start by turning it into a list column of a tibble:



chars <- tibble(json = got_chars)
chars
#> # A tibble: 30 × 1
#>   json             
#>   <list>           
#> 1 <named list [18]>
#> 2 <named list [18]>
#> 3 <named list [18]>
#> 4 <named list [18]>
#> 5 <named list [18]>
#> 6 <named list [18]>
#> # … with 24 more rows

The json column contains named elements, so we’ll start by widening it:

chars |>  
  unnest_wider(json)
#> # A tibble: 30 × 18
#>   url                    id name            gender culture    born           
#>   <chr>               <int> <chr>           <chr>  <chr>      <chr>          
#> 1 https://www.anapio…  1022 Theon Greyjoy   Male   "Ironborn" "In 278 AC or 
…
#> 2 https://www.anapio…  1052 Tyrion Lannist… Male   ""         "In 273 AC, 
at…
#> 3 https://www.anapio…  1074 Victarion Grey… Male   "Ironborn" "In 268 AC or 
…
#> 4 https://www.anapio…  1109 Will            Male   ""         ""             
#> 5 https://www.anapio…  1166 Areo Hotah      Male   "Norvoshi" "In 257 AC or 
…
#> 6 https://www.anapio…  1267 Chett           Male   ""         "At Hag's 
Mire"
#> # … with 24 more rows, and 12 more variables: died <chr>, alive <lgl>,
#> #   titles <list>, aliases <list>, father <chr>, mother <chr>, …

Then we select a few columns to make it easier to read:

characters <- chars |>  
  unnest_wider(json) |>  
  select(id, name, gender, culture, born, died, alive)
characters
#> # A tibble: 30 × 7
#>      id name              gender culture    born              died           
#>   <int> <chr>             <chr>  <chr>      <chr>             <chr>          
#> 1  1022 Theon Greyjoy     Male   "Ironborn" "In 278 AC or 27… ""             
#> 2  1052 Tyrion Lannister  Male   ""         "In 273 AC, at C… ""             
#> 3  1074 Victarion Greyjoy Male   "Ironborn" "In 268 AC or be… ""             
#> 4  1109 Will              Male   ""         ""                "In 297 AC, 
at…
#> 5  1166 Areo Hotah        Male   "Norvoshi" "In 257 AC or be… ""             
#> 6  1267 Chett             Male   ""         "At Hag's Mire"   "In 299 AC, 
at…
#> # … with 24 more rows, and 1 more variable: alive <lgl>



This dataset also contains many list columns:

chars |>  
  unnest_wider(json) |>  
  select(id, where(is.list))
#> # A tibble: 30 × 8
#>      id titles    aliases    allegiances books     povBooks tvSeries 
playedBy
#>   <int> <list>    <list>     <list>      <list>    <list>   <list>   <list>  
#> 1  1022 <chr [2]> <chr [4]>  <chr [1]>   <chr [3]> <chr>    <chr>    <chr>   
#> 2  1052 <chr [2]> <chr [11]> <chr [1]>   <chr [2]> <chr>    <chr>    <chr>   
#> 3  1074 <chr [2]> <chr [1]>  <chr [1]>   <chr [3]> <chr>    <chr>    <chr>   
#> 4  1109 <chr [1]> <chr [1]>  <NULL>      <chr [1]> <chr>    <chr>    <chr>   
#> 5  1166 <chr [1]> <chr [1]>  <chr [1]>   <chr [3]> <chr>    <chr>    <chr>   
#> 6  1267 <chr [1]> <chr [1]>  <NULL>      <chr [2]> <chr>    <chr>    <chr>   
#> # … with 24 more rows

Let’s explore the titles column. It’s an unnamed list column, so we’ll unnest it into
rows:

chars |>  
  unnest_wider(json) |>  
  select(id, titles) |>  
  unnest_longer(titles)
#> # A tibble: 59 × 2
#>      id titles                                              
#>   <int> <chr>                                               
#> 1  1022 Prince of Winterfell                                
#> 2  1022 Lord of the Iron Islands (by law of the green lands)
#> 3  1052 Acting Hand of the King (former)                    
#> 4  1052 Master of Coin (former)                             
#> 5  1074 Lord Captain of the Iron Fleet                      
#> 6  1074 Master of the Iron Victory                          
#> # … with 53 more rows

You might expect to see this data in its own table because it would be easy to join to the
characters data as needed. Let’s do that, which requires a little cleaning: removing the rows
containing empty strings and renaming titles to title since each row now contains
only a single title.

titles <- chars |>  
  unnest_wider(json) |>  
  select(id, titles) |>  
  unnest_longer(titles) |>  
  filter(titles != "") |>  
  rename(title = titles)
titles
#> # A tibble: 52 × 2
#>      id title                                               



#>   <int> <chr>                                               
#> 1  1022 Prince of Winterfell                                
#> 2  1022 Lord of the Iron Islands (by law of the green lands)
#> 3  1052 Acting Hand of the King (former)                    
#> 4  1052 Master of Coin (former)                             
#> 5  1074 Lord Captain of the Iron Fleet                      
#> 6  1074 Master of the Iron Victory                          
#> # … with 46 more rows

You could imagine creating a table like this for each of the list columns and then using
joins to combine them with the character data as you need it.

Deeply Nested
We’ll finish off these case studies with a list column that’s very deeply nested and requires
repeated rounds of unnest_wider() and unnest_longer() to unravel:
gmaps_cities. This is a two-column tibble containing five city names and the results of
using Google’s geocoding API to determine their location:

gmaps_cities
#> # A tibble: 5 × 2
#>   city       json            
#>   <chr>      <list>          
#> 1 Houston    <named list [2]>
#> 2 Washington <named list [2]>
#> 3 New York   <named list [2]>
#> 4 Chicago    <named list [2]>
#> 5 Arlington  <named list [2]>

json is a list column with internal names, so we start with an unnest_wider():

gmaps_cities |>  
  unnest_wider(json)
#> # A tibble: 5 × 3
#>   city       results    status
#>   <chr>      <list>     <chr> 
#> 1 Houston    <list [1]> OK    
#> 2 Washington <list [2]> OK    
#> 3 New York   <list [1]> OK    
#> 4 Chicago    <list [1]> OK    
#> 5 Arlington  <list [2]> OK

This gives us the status and the results. We’ll drop the status column since they’re
all OK; in a real analysis, you’d also want to capture all the rows where status !=
"OK" and figure out what went wrong. results is an unnamed list, with either one or
two elements (we’ll see why shortly), so we’ll unnest it into rows:

https://tidyr.tidyverse.org/reference/unnest_wider.html
https://tidyr.tidyverse.org/reference/unnest_longer.html
https://oreil.ly/cdBWZ
https://tidyr.tidyverse.org/reference/unnest_wider.html


gmaps_cities |>  
  unnest_wider(json) |>  
  select(-status) |>  
  unnest_longer(results)
#> # A tibble: 7 × 2
#>   city       results         
#>   <chr>      <list>          
#> 1 Houston    <named list [5]>
#> 2 Washington <named list [5]>
#> 3 Washington <named list [5]>
#> 4 New York   <named list [5]>
#> 5 Chicago    <named list [5]>
#> 6 Arlington  <named list [5]>
#> # … with 1 more row

Now results is a named list, so we’ll use unnest_wider():

locations <- gmaps_cities |>  
  unnest_wider(json) |>  
  select(-status) |>  
  unnest_longer(results) |>  
  unnest_wider(results)
locations
#> # A tibble: 7 × 6
#>   city       address_compone…¹ formatted_address geometry     place_id       
#>   <chr>      <list>            <chr>             <list>       <chr>          
#> 1 Houston    <list [4]>        Houston, TX, USA  <named list> 
ChIJAYWNSLS4QI…
#> 2 Washington <list [2]>        Washington, USA   <named list> ChIJ-
bDD5__lhV…
#> 3 Washington <list [4]>        Washington, DC, … <named list> ChIJW-
T2Wt7Gt4…
#> 4 New York   <list [3]>        New York, NY, USA <named list> 
ChIJOwg_06VPwo…
#> 5 Chicago    <list [4]>        Chicago, IL, USA  <named list> 
ChIJ7cv00DwsDo…
#> 6 Arlington  <list [4]>        Arlington, TX, U… <named list> 
ChIJ05gI5NJiTo…
#> # … with 1 more row, 1 more variable: types <list>, and abbreviated variable
#> #   name ¹address_components

Now we can see why two cities got two results: Washington matched both Washington
state and Washington, DC, and Arlington matched Arlington, Virginia, and Arlington,
Texas.

There are a few different places we could go from here. We might want to determine the
exact location of the match, which is stored in the geometry list column:

locations |>  
  select(city, formatted_address, geometry) |>  
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  unnest_wider(geometry)
#> # A tibble: 7 × 6
#>   city       formatted_address   bounds           location     location_type
#>   <chr>      <chr>               <list>           <list>       <chr>        
#> 1 Houston    Houston, TX, USA    <named list [2]> <named list> APPROXIMATE  
#> 2 Washington Washington, USA     <named list [2]> <named list> APPROXIMATE  
#> 3 Washington Washington, DC, USA <named list [2]> <named list> APPROXIMATE  
#> 4 New York   New York, NY, USA   <named list [2]> <named list> APPROXIMATE  
#> 5 Chicago    Chicago, IL, USA    <named list [2]> <named list> APPROXIMATE  
#> 6 Arlington  Arlington, TX, USA  <named list [2]> <named list> APPROXIMATE  
#> # … with 1 more row, and 1 more variable: viewport <list>

That gives us new bounds (a rectangular region) and location (a point). We can
unnest location to see the latitude (lat) and longitude (lng):

locations |>  
  select(city, formatted_address, geometry) |>  
  unnest_wider(geometry) |>  
  unnest_wider(location)
#> # A tibble: 7 × 7
#>   city       formatted_address   bounds             lat    lng location_type
#>   <chr>      <chr>               <list>           <dbl>  <dbl> <chr>        
#> 1 Houston    Houston, TX, USA    <named list [2]>  29.8  -95.4 APPROXIMATE  
#> 2 Washington Washington, USA     <named list [2]>  47.8 -121.  APPROXIMATE  
#> 3 Washington Washington, DC, USA <named list [2]>  38.9  -77.0 APPROXIMATE  
#> 4 New York   New York, NY, USA   <named list [2]>  40.7  -74.0 APPROXIMATE  
#> 5 Chicago    Chicago, IL, USA    <named list [2]>  41.9  -87.6 APPROXIMATE  
#> 6 Arlington  Arlington, TX, USA  <named list [2]>  32.7  -97.1 APPROXIMATE  
#> # … with 1 more row, and 1 more variable: viewport <list>

Extracting the bounds requires a few more steps:

locations |>  
  select(city, formatted_address, geometry) |>  
  unnest_wider(geometry) |>  
  # focus on the variables of interest 
  select(!location:viewport) |> 
  unnest_wider(bounds)
#> # A tibble: 7 × 4
#>   city       formatted_address   northeast        southwest       
#>   <chr>      <chr>               <list>           <list>          
#> 1 Houston    Houston, TX, USA    <named list [2]> <named list [2]>
#> 2 Washington Washington, USA     <named list [2]> <named list [2]>
#> 3 Washington Washington, DC, USA <named list [2]> <named list [2]>
#> 4 New York   New York, NY, USA   <named list [2]> <named list [2]>
#> 5 Chicago    Chicago, IL, USA    <named list [2]> <named list [2]>
#> 6 Arlington  Arlington, TX, USA  <named list [2]> <named list [2]>
#> # … with 1 more row

We then rename southwest and northeast (the corners of the rectangle) so we can
use names_sep to create short but evocative names:



locations |>  
  select(city, formatted_address, geometry) |>  
  unnest_wider(geometry) |>  
  select(!location:viewport) |> 
  unnest_wider(bounds) |>  
  rename(ne = northeast, sw = southwest) |>  
  unnest_wider(c(ne, sw), names_sep = "_")  
#> # A tibble: 7 × 6
#>   city       formatted_address   ne_lat ne_lng sw_lat sw_lng
#>   <chr>      <chr>                <dbl>  <dbl>  <dbl>  <dbl>
#> 1 Houston    Houston, TX, USA      30.1  -95.0   29.5  -95.8
#> 2 Washington Washington, USA       49.0 -117.    45.5 -125. 
#> 3 Washington Washington, DC, USA   39.0  -76.9   38.8  -77.1
#> 4 New York   New York, NY, USA     40.9  -73.7   40.5  -74.3
#> 5 Chicago    Chicago, IL, USA      42.0  -87.5   41.6  -87.9
#> 6 Arlington  Arlington, TX, USA    32.8  -97.0   32.6  -97.2
#> # … with 1 more row

Note how we unnest two columns simultaneously by supplying a vector of variable names
to unnest_wider().

Once you’ve discovered the path to get to the components you’re interested in, you can
extract them directly using another tidyr function, hoist():

locations |>  
  select(city, formatted_address, geometry) |>  
  hoist( 
    geometry, 
    ne_lat = c("bounds", "northeast", "lat"), 
    sw_lat = c("bounds", "southwest", "lat"), 
    ne_lng = c("bounds", "northeast", "lng"), 
    sw_lng = c("bounds", "southwest", "lng"), 
  )

If these case studies have whetted your appetite for more real-life rectangling, you can see
a few more examples in vignette("rectangling", package = "tidyr").

Exercises
1. Roughly estimate when gh_repos was created. Why can you only roughly estimate

the date?

2. The owner column of gh_repo contains a lot of duplicated information because
each owner can have many repos. Can you construct an owners data frame that
contains one row for each owner? (Hint: Does distinct() work with list-
cols?)
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3. Follow the steps used for titles to create similar tables for the aliases, allegiances,
books, and TV series for the Game of Thrones characters.

4. Explain the following code line by line. Why is it interesting? Why does it work for
got_chars but might not work in general?

tibble(json = got_chars) |>  
  unnest_wider(json) |>  
  select(id, where(is.list)) |>  
  pivot_longer( 
    where(is.list),  
    names_to = "name",  
    values_to = "value" 
  ) |>   
  unnest_longer(value)

5. In gmaps_cities, what does address_components contain? Why does the
length vary between rows? Unnest it appropriately to figure it out. (Hint: types
always appears to contain two elements. Does unnest_wider() make it easier to
work with than unnest_longer()?)

JSON
All of the case studies in the previous section were sourced from wild-caught JSON. JSON
is short for JavaScript Object Notation and is the way that most web APIs return data. It’s
important to understand it because while JSON and R’s data types are pretty similar, there
isn’t a perfect one-to-one mapping, so it’s good to understand a bit about JSON if things go
wrong.

Data Types
JSON is a simple format designed to be easily read and written by machines, not humans.
It has six key data types. Four of them are scalars:

The simplest type is a null (null), which plays the same role as NA in R. It represents
the absence of data.

A string is much like a string in R but must always use double quotes.

A number is similar to R’s numbers: they can use integer (e.g., 123), decimal
(e.g., 123.45), or scientific (e.g., 1.23e3) notation. JSON doesn’t support Inf, -Inf,
or NaN.

A boolean is similar to R’s TRUE and FALSE but uses lowercase true and false.

https://tidyr.tidyverse.org/reference/unnest_wider.html
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JSON’s strings, numbers, and Booleans are pretty similar to R’s character, numeric, and
logical vectors. The main difference is that JSON’s scalars can represent only a single
value. To represent multiple values you need to use one of the two remaining types: arrays
and objects.

Both arrays and objects are similar to lists in R; the difference is whether they’re named.
An array is like an unnamed list and is written with []. For example, [1, 2, 3] is an
array containing three numbers, and [null, 1, "string", false] is an array that
contains a null, a number, a string, and a Boolean. An object is like a named list and is
written with {}. The names (keys in JSON terminology) are strings, so they must be
surrounded by quotes. For example, {"x": 1, "y": 2} is an object that maps x to 1
and y to 2.

Note that JSON doesn’t have any native way to represent dates or date-times, so they’re
often stored as strings, and you’ll need to use readr::parse_date() or
readr::parse_datetime() to turn them into the correct data structure. Similarly,
JSON’s rules for representing floating-point numbers in JSON are a little imprecise, so
you’ll also sometimes find numbers stored in strings. Apply
readr::parse_double() as needed to get the correct variable type.

jsonlite
To convert JSON into R data structures, we recommend the jsonlite package, by Jeroen
Ooms. We’ll use only two jsonlite functions: read_json() and parse_json(). In
real life, you’ll use read_json() to read a JSON file from disk. For example, the
repurrsive package also provides the source for gh_user as a JSON file, and you can read
it with read_json():

# A path to a json file inside the package:
gh_users_json()
#> [1] 
"/Users/hadley/Library/R/arm64/4.2/library/repurrrsive/extdata/gh_users.json" 
 
# Read it with read_json()
gh_users2 <- read_json(gh_users_json()) 
 
# Check it's the same as the data we were using previously
identical(gh_users, gh_users2)
#> [1] TRUE

In this book, we’ll also use parse_json(), since it takes a string containing JSON,
which makes it good for generating simple examples. To get started, here are three simple
JSON datasets, starting with a number, then putting a few numbers in an array, and then
putting that array in an object:

https://rdrr.io/r/base/Paren.html
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str(parse_json('1'))
#>  int 1
str(parse_json('[1, 2, 3]'))
#> List of 3
#>  $ : int 1
#>  $ : int 2
#>  $ : int 3
str(parse_json('{"x": [1, 2, 3]}'))
#> List of 1
#>  $ x:List of 3
#>   ..$ : int 1
#>   ..$ : int 2
#>   ..$ : int 3

jsonlite has another important function called fromJSON(). We don’t use it here because
it performs automatic simplification (simplifyVector = TRUE). This often works
well, particularly in simple cases, but we think you’re better off doing the rectangling
yourself so you know exactly what’s happening and can more easily handle the most
complicated nested structures.

Starting the Rectangling Process
In most cases, JSON files contain a single top-level array, because they’re designed to
provide data about multiple “things,” e.g., multiple pages, multiple records, or multiple
results. In this case, you’ll start your rectangling with tibble(json) so that each
element becomes a row:

json <- '[
  {"name": "John", "age": 34},
  {"name": "Susan", "age": 27}
]'
df <- tibble(json = parse_json(json))
df
#> # A tibble: 2 × 1
#>   json            
#>   <list>          
#> 1 <named list [2]>
#> 2 <named list [2]> 
 
df |>  
  unnest_wider(json)
#> # A tibble: 2 × 2
#>   name    age
#>   <chr> <int>
#> 1 John     34
#> 2 Susan    27

In rarer cases, the JSON file consists of a single top-level JSON object, representing one
“thing.” In this case, you’ll need to kick off the rectangling process by wrapping it in a list,
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before you put it in a tibble:

json <- '{
  "status": "OK", 
  "results": [
    {"name": "John", "age": 34},
    {"name": "Susan", "age": 27}
 ]
}
'
df <- tibble(json = list(parse_json(json)))
df
#> # A tibble: 1 × 1
#>   json            
#>   <list>          
#> 1 <named list [2]> 
 
df |>  
  unnest_wider(json) |>  
  unnest_longer(results) |>  
  unnest_wider(results)
#> # A tibble: 2 × 3
#>   status name    age
#>   <chr>  <chr> <int>
#> 1 OK     John     34
#> 2 OK     Susan    27

Alternatively, you can reach inside the parsed JSON and start with the bit that you actually
care about:

df <- tibble(results = parse_json(json)$results)
df |>  
  unnest_wider(results)
#> # A tibble: 2 × 2
#>   name    age
#>   <chr> <int>
#> 1 John     34
#> 2 Susan    27

Exercises
1. Rectangle the following df_col and df_row. They represent the two ways of

encoding a data frame in JSON.

json_col <- parse_json('
  {
    "x": ["a", "x", "z"],
    "y": [10, null, 3]
  }



')
json_row <- parse_json('
  [
    {"x": "a", "y": 10},
    {"x": "x", "y": null},
    {"x": "z", "y": 3}
  ]
') 
 
df_col <- tibble(json = list(json_col))  
df_row <- tibble(json = json_row)

Summary
In this chapter, you learned what lists are, how you can generate them from JSON files, and
how to turn them into rectangular data frames. Surprisingly we need only two new
functions: unnest_longer() to put list elements into rows and unnest_wider() to
put list elements into columns. It doesn’t matter how deeply nested the list column is; all
you need to do is repeatedly call these two functions.

JSON is the most common data format returned by web APIs. What happens if the website
doesn’t have an API but you can see data you want on the website? That’s the topic of the
next chapter: web scraping, extracting data from HTML web pages.

1  This is an RStudio feature.
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Chapter 24. Web Scraping

Introduction
This chapter introduces you to the basics of web scraping with rvest. Web scraping is a
useful tool for extracting data from web pages. Some websites will offer an API, a set of
structured HTTP requests that return data as JSON, which you handle using the techniques
from Chapter 23. Where possible, you should use the API,1 because typically it will give
you more reliable data. Unfortunately, however, programming with web APIs is out of
scope for this book. Instead, we are teaching scraping, a technique that works whether or
not a site provides an API.

In this chapter, we’ll first discuss the ethics and legalities of scraping before we dive into
the basics of HTML. You’ll then learn the basics of CSS selectors to locate specific
elements on the page and how to use rvest functions to get data from text and attributes out
of HTML and into R. We’ll then discuss some techniques to figure out what CSS selector
you need for the page you’re scraping, before finishing up with a couple of case studies and
a brief discussion of dynamic websites.

Prerequisites
In this chapter, we’ll focus on tools provided by rvest. rvest is a member of the tidyverse
but is not a core member, so you’ll need to load it explicitly. We’ll also load the full
tidyverse since we’ll find it generally useful working with the data we’ve scraped.

library(tidyverse)
library(rvest)

Scraping Ethics and Legalities
Before we get started discussing the code you’ll need to perform web scraping, we need to
talk about whether it’s legal and ethical for you to do so. Overall, the situation is
complicated with regard to both of these.

Legalities depend a lot on where you live. However, as a general principle, if the data is
public, nonpersonal, and factual, you’re likely to be OK.2 These three factors are important
because they’re connected to the site’s terms and conditions, personally identifiable
information, and copyright, as we’ll discuss.

https://oreil.ly/lUNa6


If the data isn’t public, nonpersonal, or factual or if you’re scraping the data specifically to
make money with it, you’ll need to talk to a lawyer. In any case, you should be respectful
of the resources of the server hosting the pages you are scraping. Most important, this
means that if you’re scraping many pages, you should make sure to wait a little between
each request. One easy way to do so is to use the polite package by Dmytro Perepolkin. It
will automatically pause between requests and cache the results so you never ask for the
same page twice.

Terms of Service
If you look closely, you’ll find many websites include a “terms and conditions” or “terms
of service” link somewhere on the page, and if you read that page closely, you’ll often
discover that the site specifically prohibits web scraping. These pages tend to be a legal
land grab where companies make very broad claims. It’s polite to respect these terms of
service where possible, but take any claims with a grain of salt.

US courts have generally found that simply putting the terms of service in the footer of the
website isn’t sufficient for you to be bound by them, e.g., HiQ Labs v. LinkedIn. Generally,
to be bound to the terms of service, you must have taken some explicit action such as
creating an account or checking a box. This is why whether or not the data is public is
important; if you don’t need an account to access them, it is unlikely that you are bound to
the terms of service. Note, however, the situation is rather different in Europe where courts
have found that terms of service are enforceable even if you don’t explicitly agree to them.

Personally Identifiable Information
Even if the data is public, you should be extremely careful about scraping personally
identifiable information such as names, email addresses, phone numbers, dates of birth, etc.
Europe has particularly strict laws about the collection of storage of such data (GDPR), and
regardless of where you live, you’re likely to be entering an ethical quagmire. For example,
in 2016, a group of researchers scraped public profile information (e.g., username, age,
gender, location, etc.) about 70,000 people on the dating site OkCupid and publicly
released these data without any attempts for anonymization. While the researchers felt that
there was nothing wrong with this since the data were already public, this work was widely
condemned due to ethics concerns around identifiability of users whose information was
released in the dataset. If your work involves scraping personally identifiable information,
we strongly recommend reading about the OkCupid study3 as well as similar studies with
questionable research ethics involving the acquisition and release of personally identifiable
information.

Copyright
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Finally, you also need to worry about copyright law. Copyright law is complicated, but it’s
worth taking a look at the US law, which describes exactly what’s protected: “[…] original
works of authorship fixed in any tangible medium of expression, […].” It then goes on to
describe specific categories that it applies to such as literary works, musical works, motion
pictures, and more. Notably absent from copyright protection are data. This means that as
long as you limit your scraping to facts, copyright protection does not apply. (But note that
Europe has a separate “sui generis” right that protects databases.)

As a brief example, in the US, lists of ingredients and instructions are not copyrightable, so
copyright cannot be used to protect a recipe. But if that list of recipes is accompanied by
substantial novel literary content, that is copyrightable. This is why when you’re looking
for a recipe on the internet, there’s always so much content beforehand.

If you do need to scrape original content (like text or images), you may still be protected
under the doctrine of fair use. Fair use is not a hard and fast rule but weighs up a number of
factors. It’s more likely to apply if you are collecting the data for research or
noncommercial purposes and if you limit what you scrape to just what you need.

HTML Basics
To scrape web pages, you need to first understand a little bit about HTML, the language
that describes web pages. HTML stands for HyperText Markup Language and looks
something like this:

<html>
<head> 
  <title>Page title</title>
</head>
<body> 
  <h1 id='first'>A heading</h1> 
  <p>Some text &amp; <b>some bold text.</b></p> 
  <img src='myimg.png' width='100' height='100'>
</body>

HTML has a hierarchical structure formed by elements, which consist of a start tag
(e.g., <tag>), optional attributes (id='first'), an end tag4 (like </tag>), and
contents (everything in between the start and end tags).

Since < and > are used for start and end tags, you can’t write them directly. Instead, you
have to use the HTML escapes &gt; (greater than) and &lt; (less than). And since those
escapes use &, if you want a literal ampersand, you have to escape it as &amp;. There are a
wide range of possible HTML escapes, but you don’t need to worry about them too much
because rvest automatically handles them for you.
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Web scraping is possible because most pages that contain data that you want to scrape
generally have a consistent structure.

Elements
There are more than 100 HTML elements. Some of the most important are:

Every HTML page must be in an <html> element, and it must have two children:
<head>, which contains document metadata like the page title, and <body>, which
contains the content you see in the browser.

Block tags like <h1> (heading 1), <section> (section), <p> (paragraph), and
<ol> (ordered list) form the overall structure of the page.

Inline tags like <b> (bold), <i> (italics), and <a> (link) format text inside block tags.

If you encounter a tag that you’ve never seen before, you can find out what it does with a
little googling. Another good place to start is the MDN Web Docs, which describe just
about every aspect of web programming.

Most elements can have content in between their start and end tags. This content can be
either text or more elements. For example, the following HTML contains a paragraph of
text, with one word in bold:

<p> 
  Hi! My <b>name</b> is Hadley. 
</p>

The children are the elements it contains, so the previous <p> element has one child, the
<b> element. The <b> element has no children, but it does have contents (the text
“name”).

Attributes
Tags can have named attributes, which look like name1='value1'
name2='value2'. Two of the most important attributes are id and class, which are
used in conjunction with Cascading Style Sheets (CSS) to control the visual appearance of
the page. These are often useful when scraping data off a page. Attributes are also used to
record the destination of links (the href attribute of <a> elements) and the source of
images (the src attribute of the <img> element).

Extracting Data
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To get started scraping, you’ll need the URL of the page you want to scrape, which you can
usually copy from your web browser. You’ll then need to read the HTML for that page into
R with read_html(). This returns an xml_document5 object, which you’ll then
manipulate using rvest functions:

html <- read_html("http://rvest.tidyverse.org/")
html
#> {html_document}
#> <html lang="en">
#> [1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UT 
...
#> [2] <body>\n    <a href="#container" class="visually-hidden-focusable">Ski 
...

rvest also includes a function that lets you write HTML inline. We’ll use this a bunch in
this chapter as we teach how the various rvest functions work with simple examples.

html <- minimal_html("
  <p>This is a paragraph</p>
  <ul>
    <li>This is a bulleted list</li>
  </ul>
")
html
#> {html_document}
#> <html>
#> [1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UT 
...
#> [2] <body>\n<p>This is a paragraph</p>\n<p>\n  </p>\n<ul>\n<li>This is a b 
...

Now that you have the HTML in R, it’s time to extract the data of interest. You’ll first learn
about the CSS selectors that allow you to identify the elements of interest and the rvest
functions that you can use to extract data from them. Then we’ll briefly cover HTML
tables, which have some special tools.

Find Elements
CSS is a tool for defining the visual styling of HTML documents. CSS includes a miniature
language for selecting elements on a page called CSS selectors. CSS selectors define
patterns for locating HTML elements and are useful for scraping because they provide a
concise way of describing which elements you want to extract.

We’ll come back to CSS selectors in more detail in “Finding the Right Selectors”, but
luckily you can get a long way with just three:

p
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Selects all <p> elements.

.title

Selects all elements with class “title.”

#title

Selects the element with the id attribute that equals “title.” id attributes must be

unique within a document, so this will only ever select a single element.

Let’s try these selectors with a simple example:

html <- minimal_html("
  <h1>This is a heading</h1>
  <p id='first'>This is a paragraph</p>
  <p class='important'>This is an important paragraph</p>
")

Use html_elements() to find all elements that match the selector:

html |> html_elements("p")
#> {xml_nodeset (2)}
#> [1] <p id="first">This is a paragraph</p>
#> [2] <p class="important">This is an important paragraph</p>
html |> html_elements(".important")
#> {xml_nodeset (1)}
#> [1] <p class="important">This is an important paragraph</p>
html |> html_elements("#first")
#> {xml_nodeset (1)}
#> [1] <p id="first">This is a paragraph</p>

Another important function is html_element(), which always returns the same number
of outputs as inputs. If you apply it to a whole document, it’ll give you the first match:

html |> html_element("p")
#> {html_node}
#> <p id="first">

There’s an important difference between html_element() and html_elements()
when you use a selector that doesn’t match any elements. html_elements() returns a
vector of length 0, where html_element() returns a missing value. This will be
important shortly.
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html |> html_elements("b")
#> {xml_nodeset (0)}
html |> html_element("b")
#> {xml_missing}
#> <NA>

Nesting Selections
In most cases, you’ll use html_elements() and html_element() together,
typically using html_elements() to identify elements that will become observations
and then using html_element() to find elements that will become variables. Let’s see
this in action using a simple example. Here we have an unordered list (<ul>) where each
list item (<li>) contains some information about four characters from Star Wars:

html <- minimal_html("
  <ul>
    <li><b>C-3PO</b> is a <i>droid</i> that weighs <span class='weight'>167 
kg</span></li>
    <li><b>R4-P17</b> is a <i>droid</i></li>
    <li><b>R2-D2</b> is a <i>droid</i> that weighs <span class='weight'>96 
kg</span></li>
    <li><b>Yoda</b> weighs <span class='weight'>66 kg</span></li>
  </ul>
  ")

We can use html_elements() to make a vector where each element corresponds to a
different character:

characters <- html |> html_elements("li")
characters
#> {xml_nodeset (4)}
#> [1] <li>\n<b>C-3PO</b> is a <i>droid</i> that weighs <span class="weight"> 
...
#> [2] <li>\n<b>R4-P17</b> is a <i>droid</i>\n</li>
#> [3] <li>\n<b>R2-D2</b> is a <i>droid</i> that weighs <span class="weight"> 
...
#> [4] <li>\n<b>Yoda</b> weighs <span class="weight">66 kg</span>\n</li>

To extract the name of each character, we use html_element(), because when applied
to the output of html_elements(), it’s guaranteed to return one response per element:

characters |> html_element("b")
#> {xml_nodeset (4)}
#> [1] <b>C-3PO</b>
#> [2] <b>R4-P17</b>
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#> [3] <b>R2-D2</b>
#> [4] <b>Yoda</b>

The distinction between html_element() and html_elements() isn’t important
for the name, but it is important for the weight. We want to get one weight for each
character, even if there’s no weight <span>. That’s what html_element() does:

characters |> html_element(".weight")
#> {xml_nodeset (4)}
#> [1] <span class="weight">167 kg</span>
#> [2] <NA>
#> [3] <span class="weight">96 kg</span>
#> [4] <span class="weight">66 kg</span>

html_elements() finds all weight <span>s that are children of characters.
There’s only three of these, so we lose the connection between names and weights:

characters |> html_elements(".weight")
#> {xml_nodeset (3)}
#> [1] <span class="weight">167 kg</span>
#> [2] <span class="weight">96 kg</span>
#> [3] <span class="weight">66 kg</span>

Now that you’ve selected the elements of interest, you’ll need to extract the data, either
from the text contents or from some attributes.

Text and Attributes
html_text2()6 extracts the plain-text contents of an HTML element:

characters |>  
  html_element("b") |>  
  html_text2()
#> [1] "C-3PO"  "R4-P17" "R2-D2"  "Yoda" 
 
characters |>  
  html_element(".weight") |>  
  html_text2()
#> [1] "167 kg" NA       "96 kg"  "66 kg"

Note that any escapes will be automatically handled; you’ll only ever see HTML escapes in
the source HTML, not in the data returned by rvest.

html_attr() extracts data from attributes:
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html <- minimal_html("
  <p><a href='https://en.wikipedia.org/wiki/Cat'>cats</a></p>
  <p><a href='https://en.wikipedia.org/wiki/Dog'>dogs</a></p>
") 
 
html |>  
  html_elements("p") |>  
  html_element("a") |>  
  html_attr("href")
#> [1] "https://en.wikipedia.org/wiki/Cat" "https://en.wikipedia.org/wiki/Dog"

html_attr() always returns a string, so if you’re extracting numbers or dates, you’ll
need to do some post-processing.

Tables
If you’re lucky, your data will be already stored in an HTML table, and it’ll be a matter of
just reading it from that table. It’s usually straightforward to recognize a table in your
browser: it’ll have a rectangular structure of rows and columns, and you can copy and paste
it into a tool like Excel.

HTML tables are built up from four main elements: <table>, <tr> (table row), <th>
(table heading), and <td> (table data). Here’s a simple HTML table with two columns and
three rows:

html <- minimal_html("
  <table class='mytable'>
    <tr><th>x</th>   <th>y</th></tr>
    <tr><td>1.5</td> <td>2.7</td></tr>
    <tr><td>4.9</td> <td>1.3</td></tr>
    <tr><td>7.2</td> <td>8.1</td></tr>
  </table>
  ")

rvest provides a function that knows how to read this sort of data: html_table(). It
returns a list containing one tibble for each table found on the page. Use
html_element() to identify the table you want to extract:

html |>  
  html_element(".mytable") |>  
  html_table()
#> # A tibble: 3 × 2
#>       x     y
#>   <dbl> <dbl>
#> 1   1.5   2.7
#> 2   4.9   1.3
#> 3   7.2   8.1

https://rvest.tidyverse.org/reference/html_attr.html
https://rvest.tidyverse.org/reference/html_table.html
https://rvest.tidyverse.org/reference/html_element.html


Note that x and y have automatically been converted to numbers. This automatic
conversion doesn’t always work, so in more complex scenarios you may want to turn it off
with convert = FALSE and then do your own conversion.

Finding the Right Selectors
Figuring out the selector you need for your data is typically the hardest part of the problem.
You’ll often need to do some experimenting to find a selector that is both specific (i.e., it
doesn’t select things you don’t care about) and sensitive (i.e., it does select everything you
care about). Lots of trial and error is a normal part of the process! Two main tools are
available to help you with this process: SelectorGadget and your browser’s developer tools.

SelectorGadget is a JavaScript bookmarklet that automatically generates CSS selectors
based on the positive and negative examples that you provide. It doesn’t always work, but
when it does, it’s magic! You can learn how to install and use SelectorGadget either by
reading the vignette or by watching Mine’s video.

Every modern browser comes with some toolkit for developers, but we recommend
Chrome, even if it isn’t your regular browser: its web developer tools are some of the best,
and they’re immediately available. Right-click an element on the page and click Inspect.
This will open an expandable view of the complete HTML page, centered on the element
that you just clicked. You can use this to explore the page and get a sense of what selectors
might work. Pay particular attention to the class and id attributes, since these are often
used to form the visual structure of the page and hence make for good tools to extract the
data that you’re looking for.

Inside the Elements view, you can also right-click an element and choose Copy as Selector
to generate a selector that will uniquely identify the element of interest.

If either SelectorGadget or Chrome DevTools has generated a CSS selector that you don’t
understand, try Selectors Explained, which translates CSS selectors into plain English. If
you find yourself doing this a lot, you might want to learn more about CSS selectors
generally. We recommend starting with the fun CSS dinner tutorial and then referring to the
MDN web docs.

Putting It All Together
Let’s put this all together to scrape some websites. There’s some risk that these examples
may no longer work when you run them—that’s the fundamental challenge of web
scraping; if the structure of the site changes, then you’ll have to change your scraping code.

Star Wars
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rvest includes a very simple example in vignette("starwars"). This is a simple
page with minimal HTML, so it’s a good place to start. We encourage you to navigate to
that page now and use Inspect Element to inspect one of the headings that’s the title of a
Star Wars movie. Use the keyboard or mouse to explore the hierarchy of the HTML and
see if you can get a sense of the shared structure used by each movie.

You should be able to see that each movie has a shared structure that looks like this:

<section> 
  <h2 data-id="1">The Phantom Menace</h2> 
  <p>Released: 1999-05-19</p> 
  <p>Director: <span class="director">George Lucas</span></p> 
   
  <div class="crawl"> 
    <p>...</p> 
    <p>...</p> 
    <p>...</p> 
  </div>
</section>

Our goal is to turn this data into a seven-row data frame with the variables title, year,
director, and intro. We’ll start by reading the HTML and extracting all the
<section> elements:

url <- "https://rvest.tidyverse.org/articles/starwars.html"
html <- read_html(url) 
 
section <- html |> html_elements("section")
section
#> {xml_nodeset (7)}
#> [1] <section><h2 data-id="1">\nThe Phantom Menace\n</h2>\n<p>\nReleased: 1 
...
#> [2] <section><h2 data-id="2">\nAttack of the Clones\n</h2>\n<p>\nReleased: 
...
#> [3] <section><h2 data-id="3">\nRevenge of the Sith\n</h2>\n<p>\nReleased:  
...
#> [4] <section><h2 data-id="4">\nA New Hope\n</h2>\n<p>\nReleased: 1977-05-2 
...
#> [5] <section><h2 data-id="5">\nThe Empire Strikes Back\n</h2>\n<p>\nReleas 
...
#> [6] <section><h2 data-id="6">\nReturn of the Jedi\n</h2>\n<p>\nReleased: 1 
...
#> [7] <section><h2 data-id="7">\nThe Force Awakens\n</h2>\n<p>\nReleased: 20 
...

This retrieves seven elements matching the seven movies found on that page, suggesting
that using section as a selector is good. Extracting the individual elements is
straightforward since the data is always found in the text. It’s just a matter of finding the
right selector:

https://rvest.tidyverse.org/articles/starwars.html


section |> html_element("h2") |> html_text2()
#> [1] "The Phantom Menace"      "Attack of the Clones"   
#> [3] "Revenge of the Sith"     "A New Hope"             
#> [5] "The Empire Strikes Back" "Return of the Jedi"     
#> [7] "The Force Awakens" 
 
section |> html_element(".director") |> html_text2()
#> [1] "George Lucas"     "George Lucas"     "George Lucas"    
#> [4] "George Lucas"     "Irvin Kershner"   "Richard Marquand"
#> [7] "J. J. Abrams"

Once we’ve done that for each component, we can wrap up all the results into a tibble:

tibble( 
  title = section |>  
    html_element("h2") |>  
    html_text2(), 
  released = section |>  
    html_element("p") |>  
    html_text2() |>  
    str_remove("Released: ") |>  
    parse_date(), 
  director = section |>  
    html_element(".director") |>  
    html_text2(), 
  intro = section |>  
    html_element(".crawl") |>  
    html_text2()
)
#> # A tibble: 7 × 4
#>   title                   released   director         intro                  
#>   <chr>                   <date>     <chr>            <chr>                  
#> 1 The Phantom Menace      1999-05-19 George Lucas     "Turmoil has engulfed 
…
#> 2 Attack of the Clones    2002-05-16 George Lucas     "There is unrest in 
th…
#> 3 Revenge of the Sith     2005-05-19 George Lucas     "War! The Republic is 
…
#> 4 A New Hope              1977-05-25 George Lucas     "It is a period of 
civ…
#> 5 The Empire Strikes Back 1980-05-17 Irvin Kershner   "It is a dark time 
for…
#> 6 Return of the Jedi      1983-05-25 Richard Marquand "Luke Skywalker has 
re…
#> # … with 1 more row

We did a little more processing of released to get a variable that will be easy to use later
in our analysis.

IMDb Top Films



For our next task we’ll tackle something a little trickier, extracting the top 250 movies from
IMDb. At the time we wrote this chapter, the page looked like Figure 24-1.

Figure 24-1. IMDb top movies web page taken on 2022-12-05.

This data has a clear tabular structure, so it’s worth starting with html_table():

url <- "https://www.imdb.com/chart/top"
html <- read_html(url) 
 
table <- html |>  
  html_element("table") |>  
  html_table()
table
#> # A tibble: 250 × 5
#>   ``    `Rank & Title`                    `IMDb Rating` `Your Rating`   ``   
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#>   <lgl> <chr>                                     <dbl> <chr>           
<lgl>
#> 1 NA    "1.\n      The Shawshank Redempt…           9.2 "12345678910\n… NA   
#> 2 NA    "2.\n      The Godfather\n      …           9.2 "12345678910\n… NA   
#> 3 NA    "3.\n      The Dark Knight\n    …           9   "12345678910\n… NA   
#> 4 NA    "4.\n      The Godfather Part II…           9   "12345678910\n… NA   
#> 5 NA    "5.\n      12 Angry Men\n       …           9   "12345678910\n… NA   
#> 6 NA    "6.\n      Schindler's List\n   …           8.9 "12345678910\n… NA   
#> # … with 244 more rows

This includes a few empty columns but overall does a good job of capturing the
information from the table. However, we need to do some more processing to make it
easier to use. First, we’ll rename the columns to be easier to work with and remove the
extraneous whitespace in rank and title. We will do this with select() (instead of
rename()) to do the renaming and selecting of just these two columns in one step. Then
we’ll remove the new lines and extra spaces and then apply
separate_wider_regex() (from “Extract Variables”) to pull out the title, year, and
rank into their own variables.

ratings <- table |> 
  select( 
    rank_title_year = `Rank & Title`, 
    rating = `IMDb Rating` 
  ) |>  
  mutate( 
    rank_title_year = str_replace_all(rank_title_year, "\n +", " ") 
  ) |>  
  separate_wider_regex( 
    rank_title_year, 
    patterns = c( 
      rank = "\\d+", "\\. ", 
      title = ".+", " +\\(", 
      year = "\\d+", "\\)" 
    ) 
  )
ratings
#> # A tibble: 250 × 4
#>   rank  title                    year  rating
#>   <chr> <chr>                    <chr>  <dbl>
#> 1 1     The Shawshank Redemption 1994     9.2
#> 2 2     The Godfather            1972     9.2
#> 3 3     The Dark Knight          2008     9  
#> 4 4     The Godfather Part II    1974     9  
#> 5 5     12 Angry Men             1957     9  
#> 6 6     Schindler's List         1993     8.9
#> # … with 244 more rows

Even in this case where most of the data comes from table cells, it’s still worth looking at
the raw HTML. If you do so, you’ll discover that we can add a little extra data by using one
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of the attributes. This is one of the reasons it’s worth spending a little time spelunking the
source of the page; you might find extra data or a parsing route that’s slightly easier.

html |>  
  html_elements("td strong") |>  
  head() |>  
  html_attr("title")
#> [1] "9.2 based on 2,712,990 user ratings"
#> [2] "9.2 based on 1,884,423 user ratings"
#> [3] "9.0 based on 2,685,826 user ratings"
#> [4] "9.0 based on 1,286,204 user ratings"
#> [5] "9.0 based on 801,579 user ratings"  
#> [6] "8.9 based on 1,370,458 user ratings"

We can combine this with the tabular data and again apply
separate_wider_regex() to extract the bit of data we care about:

ratings |> 
  mutate( 
    rating_n = html |> html_elements("td strong") |> html_attr("title") 
  ) |>  
  separate_wider_regex( 
    rating_n, 
    patterns = c( 
      "[0-9.]+ based on ", 
      number = "[0-9,]+", 
      " user ratings" 
    ) 
  ) |>  
  mutate( 
    number = parse_number(number) 
  )
#> # A tibble: 250 × 5
#>   rank  title                    year  rating  number
#>   <chr> <chr>                    <chr>  <dbl>   <dbl>
#> 1 1     The Shawshank Redemption 1994     9.2 2712990
#> 2 2     The Godfather            1972     9.2 1884423
#> 3 3     The Dark Knight          2008     9   2685826
#> 4 4     The Godfather Part II    1974     9   1286204
#> 5 5     12 Angry Men             1957     9    801579
#> 6 6     Schindler's List         1993     8.9 1370458
#> # … with 244 more rows

Dynamic Sites
So far we focused on websites where html_elements() returns what you see in the
browser and discussed how to parse what it returns and how to organize that information in
tidy data frames. From time to time, however, you’ll hit a site where html_elements()
and friends don’t return anything like what you see in the browser. In many cases, that’s
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because you’re trying to scrape a website that dynamically generates the content of the
page with JavaScript. This doesn’t currently work with rvest, because rvest downloads the
raw HTML and doesn’t run any JavaScript.

It’s still possible to scrape these types of sites, but rvest needs to use a more expensive
process: fully simulating the web browser including running all JavaScript. This
functionality is not available at the time of writing, but it’s something we’re actively
working on and might be available by the time you read this. It uses the chromote package,
which actually runs the Chrome browser in the background, and gives you additional tools
to interact with the site, like a human typing text and clicking buttons. Check out the rvest
website for more details.

Summary
In this chapter, you learned about the why, the why not, and the how of scraping data from
web pages. First, you learned about the basics of HTML and using CSS selectors to refer to
specific elements, and then you learned about using the rvest package to get data out of
HTML into R. We then demonstrated web scraping with two case studies: a simpler
scenario on scraping data on Star Wars films from the rvest package website and a more
complex scenario on scraping the top 250 films from IMDb.

Technical details of scraping data off the web can be complex, particularly when dealing
with sites; however, legal and ethical considerations can be even more complex. It’s
important for you to educate yourself about both of these before setting out to scrape data.

This brings us to the end of the import part of the book where you’ve learned techniques to
get data from where it lives (spreadsheets, databases, JSON files, and websites) into a tidy
form in R. Now it’s time to turn our sights to a new topic: making the most of R as a
programming language.

1  Many popular APIs already have CRAN packages that wrap them, so start with a little research first!

2  Obviously we’re not lawyers, and this is not legal advice. But this is the best summary we can give having read a
bunch about this topic.

3  One example of an article on the OkCupid study was published by Wired.

4  A number of tags (including <p> and <li>) don’t require end tags, but we think it’s best to include them
because it makes seeing the structure of the HTML a little easier.

5  This class comes from the xml2 package. xml2 is a low-level package that rvest builds on top of.

6  rvest also provides html_text(), but you should almost always use html_text2() since it does a better job
of converting nested HTML to text.
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Part V. Program

In this part of the book, you’ll improve your programming skills.
Programming is a cross-cutting skill needed for all data science work: you
must use a computer to do data science; you cannot do it in your head or
with pencil and paper.

Figure V-1. Programming is the water in which all the other components swim.

Programming produces code, and code is a tool of communication.
Obviously code tells the computer what you want it to do. But it also
communicates meaning to other humans. Thinking about code as a vehicle
for communication is important because every project you do is
fundamentally collaborative. Even if you’re not working with other people,
you’ll definitely be working with future-you! Writing clear code is
important so that others (like future-you) can understand why you tackled
an analysis in the way you did. That means getting better at programming
also involves getting better at communicating. Over time, you want your
code to become not just easier to write but easier for others to read.

In the following three chapters, you’ll learn skills to improve your
programming skills:



Copy and paste is a powerful tool, but you should avoid doing it more
than twice. Repeating yourself in code is dangerous because it can
easily lead to errors and inconsistencies. Instead, in Chapter 25, you’ll
learn how to write functions, which let you extract repeated tidyverse
code so that it can be easily reused.

Functions extract repeated code, but you often need to repeat the same
actions on different inputs. You need tools for iteration that let you do
similar things again and again. These tools include for loops and
functional programming, which you’ll learn about in Chapter 26.

As you read more code written by others, you’ll see more code that
doesn’t use the tidyverse. In Chapter 27, you’ll learn some of the most
important base R functions that you’ll see in the wild.

The goal of these chapters is to teach you the minimum about programming
that you need for data science. Once you have mastered the material here,
we strongly recommend you continue to invest in your programming skills.
We’ve written two books that you might find helpful. Hands on
Programming with R by Garrett Grolemund (O’Reilly) is an introduction to
R as a programming language and is a great place to start if R is your first
programming language. Advanced R by Hadley Wickham (CRC Press)
dives into the details of R the programming language; it’s a great place to
start if you have existing programming experience and a great next step
once you’ve internalized the ideas in these chapters.
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Chapter 25. Functions

Introduction
One of the best ways to improve your reach as a data scientist is to write
functions. Functions allow you to automate common tasks in a more
powerful and general way than copy and pasting. Writing a function has
three big advantages over using copy and paste:

You can give a function an evocative name that makes your code
easier to understand.

As requirements change, you need to update code only in one place,
instead of many.

You eliminate the chance of making incidental mistakes when you
copy and paste (i.e., updating a variable name in one place but not in
another).

It makes it easier to reuse work from project to project, increasing your
productivity over time.

A good rule of thumb is to consider writing a function whenever you’ve
copied and pasted a block of code more than twice (i.e., you now have three
copies of the same code). In this chapter, you’ll learn about three useful
types of functions:

Vector functions take one or more vectors as input and return a vector
as output.

Data frame functions take a data frame as input and return a data frame
as output.

Plot functions take a data frame as input and return a plot as output.



Each of these sections includes many examples to help you generalize the
patterns that you see. These examples wouldn’t be possible without the help
of the folks of Twitter, and we encourage you to follow the links in the
comment to see original inspirations. You might also want to read the
original motivating tweets for general functions and plotting functions to
see even more functions.

Prerequisites
We’ll wrap up a variety of functions from around the tidyverse. We’ll also
use nycflights13 as a source of familiar data to use our functions with:

library(tidyverse)
library(nycflights13)

Vector Functions
We’ll begin with vector functions: functions that take one or more vectors
and return a vector result. For example, take a look at this code. What does
it do?

df <- tibble( 
  a = rnorm(5), 
  b = rnorm(5), 
  c = rnorm(5), 
  d = rnorm(5),
) 
 
df |> mutate( 
  a = (a - min(a, na.rm = TRUE)) /  
    (max(a, na.rm = TRUE) - min(a, na.rm = TRUE)), 
  b = (b - min(b, na.rm = TRUE)) /  
    (max(b, na.rm = TRUE) - min(a, na.rm = TRUE)), 
  c = (c - min(c, na.rm = TRUE)) /  
    (max(c, na.rm = TRUE) - min(c, na.rm = TRUE)), 
  d = (d - min(d, na.rm = TRUE)) /  
    (max(d, na.rm = TRUE) - min(d, na.rm = TRUE)),
)
#> # A tibble: 5 × 4
#>       a     b     c     d
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#>   <dbl> <dbl> <dbl> <dbl>
#> 1 0.339  2.59 0.291 0    
#> 2 0.880  0    0.611 0.557
#> 3 0      1.37 1     0.752
#> 4 0.795  1.37 0     1    
#> 5 1      1.34 0.580 0.394

You might be able to puzzle out that this rescales each column to have a
range from 0 to 1. But did you spot the mistake? When Hadley wrote this
code, he made an error when copying and pasting and forgot to change an a
to a b. Preventing this type of mistake is one good reason to learn how to
write functions.

Writing a Function
To write a function, you need to first analyze your repeated code to figure
what parts are constant and what parts vary. If we take the preceding code
and pull it outside of mutate(), it’s a little easier to see the pattern
because each repetition is now one line:

(a - min(a, na.rm = TRUE)) / (max(a, na.rm = TRUE) - min(a, na.rm 
= TRUE))
(b - min(b, na.rm = TRUE)) / (max(b, na.rm = TRUE) - min(b, na.rm 
= TRUE))
(c - min(c, na.rm = TRUE)) / (max(c, na.rm = TRUE) - min(c, na.rm 
= TRUE))
(d - min(d, na.rm = TRUE)) / (max(d, na.rm = TRUE) - min(d, na.rm 
= TRUE))  

To make this a bit clearer, we can replace the bit that varies with █:

(█ - min(█, na.rm = TRUE)) / (max(█, na.rm = TRUE) - min(█, na.rm 
= TRUE))

To turn this into a function, you need three things:

A name. Here we’ll use rescale01 because this function rescales a
vector to sit between 0 and 1.

https://dplyr.tidyverse.org/reference/mutate.html


The arguments. The arguments are things that vary across calls and our
analysis tells us that we have just one. We’ll call it x because this is the
conventional name for a numeric vector.

The body. The body is the code that’s repeated across all the calls.

Then you create a function by following the template:

name <- function(arguments) { 
  body
}

For this case that leads to:

rescale01 <- function(x) { 
  (x - min(x, na.rm = TRUE)) / (max(x, na.rm = TRUE) - min(x, 
na.rm = TRUE))
}

At this point you might test with a few simple inputs to make sure you’ve
captured the logic correctly:

rescale01(c(-10, 0, 10))
#> [1] 0.0 0.5 1.0
rescale01(c(1, 2, 3, NA, 5))
#> [1] 0.00 0.25 0.50   NA 1.00

Then you can rewrite the call to mutate() as:

df |> mutate( 
  a = rescale01(a), 
  b = rescale01(b), 
  c = rescale01(c), 
  d = rescale01(d),
)
#> # A tibble: 5 × 4
#>       a     b     c     d
#>   <dbl> <dbl> <dbl> <dbl>
#> 1 0.339 1     0.291 0    
#> 2 0.880 0     0.611 0.557
#> 3 0     0.530 1     0.752
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#> 4 0.795 0.531 0     1    
#> 5 1     0.518 0.580 0.394

(In Chapter 26, you’ll learn how to use across() to reduce the
duplication even further so all you need is df |>
mutate(across(a:d, rescale01)).)

Improving Our Function
You might notice that the rescale01() function does some unnecessary
work—instead of computing min() twice and max() once, we could
compute both the minimum and maximum in one step with range():

rescale01 <- function(x) { 
  rng <- range(x, na.rm = TRUE) 
  (x - rng[1]) / (rng[2] - rng[1])
}

Or you might try this function on a vector that includes an infinite value:

x <- c(1:10, Inf)
rescale01(x)
#>  [1]   0   0   0   0   0   0   0   0   0   0 NaN

That result is not particularly useful, so we could ask range() to ignore
infinite values:

rescale01 <- function(x) { 
  rng <- range(x, na.rm = TRUE, finite = TRUE) 
  (x - rng[1]) / (rng[2] - rng[1])
} 
 
rescale01(x)
#>  [1] 0.0000000 0.1111111 0.2222222 0.3333333 0.4444444 
0.5555556 0.6666667
#>  [8] 0.7777778 0.8888889 1.0000000       Inf

These changes illustrate an important benefit of functions: because we’ve
moved the repeated code into a function, we need to make the change in
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only one place.

Mutate Functions
Now that you understand the basic idea of functions, let’s take a look at a
whole bunch of examples. We’ll start by looking at “mutate” functions, i.e.,
functions that work well inside of mutate() and filter() because
they return an output of the same length as the input.

Let’s start with a simple variation of rescale01(). Maybe you want to
compute the Z-score, rescaling a vector to have a mean of 0 and a standard
deviation of 1:

z_score <- function(x) { 
  (x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)
}

Or maybe you want to wrap up a straightforward case_when() and give
it a useful name. For example, this clamp() function ensures all values of
a vector lie in between a minimum or a maximum:

clamp <- function(x, min, max) { 
  case_when( 
    x < min ~ min, 
    x > max ~ max, 
    .default = x 
  )
} 
 
clamp(1:10, min = 3, max = 7)
#>  [1] 3 3 3 4 5 6 7 7 7 7

Of course, functions don’t just need to work with numeric variables. You
might want to do some repeated string manipulation. Maybe you need to
make the first character uppercase:

first_upper <- function(x) { 
  str_sub(x, 1, 1) <- str_to_upper(str_sub(x, 1, 1)) 
  x
} 
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first_upper("hello")
#> [1] "Hello"

Or maybe you want to strip percent signs, commas, and dollar signs from a
string before converting it into a number:

# https://twitter.com/NVlabormarket/status/1571939851922198530
clean_number <- function(x) { 
  is_pct <- str_detect(x, "%") 
  num <- x |>  
    str_remove_all("%") |>  
    str_remove_all(",") |>  
    str_remove_all(fixed("$")) |>  
    as.numeric(x) 
  if_else(is_pct, num / 100, num)
} 
 
clean_number("$12,300")
#> [1] 12300
clean_number("45%")
#> [1] 0.45

Sometimes your functions will be highly specialized for one data analysis
step. For example, if you have a bunch of variables that record missing
values as 997, 998, or 999, you might want to write a function to replace
them with NA:

fix_na <- function(x) { 
  if_else(x %in% c(997, 998, 999), NA, x)
}

We’ve focused on examples that take a single vector because we think
they’re the most common. But there’s no reason that your function can’t
take multiple vector inputs.

Summary Functions
Another important family of vector functions is summary functions,
functions that return a single value for use in summarize(). Sometimes
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this can just be a matter of setting a default argument or two:

commas <- function(x) { 
  str_flatten(x, collapse = ", ", last = " and ")
} 
 
commas(c("cat", "dog", "pigeon"))
#> [1] "cat, dog and pigeon"

Or you might wrap up a simple computation, like for the coefficient of
variation, which divides the standard deviation by the mean:

cv <- function(x, na.rm = FALSE) { 
  sd(x, na.rm = na.rm) / mean(x, na.rm = na.rm)
} 
 
cv(runif(100, min = 0, max = 50))
#> [1] 0.5196276
cv(runif(100, min = 0, max = 500))
#> [1] 0.5652554

Or maybe you just want to make a common pattern easier to remember by
giving it a memorable name:

# https://twitter.com/gbganalyst/status/1571619641390252033
n_missing <- function(x) { 
  sum(is.na(x))
} 

You can also write functions with multiple vector inputs. For example,
maybe you want to compute the mean absolute prediction error to help you
compare model predictions with actual values:

# https://twitter.com/neilgcurrie/status/1571607727255834625
mape <- function(actual, predicted) { 
  sum(abs((actual - predicted) / actual)) / length(actual)
}



RSTUDIO
Once you start writing functions, there are two RStudio shortcuts that are super useful:

To find the definition of a function that you’ve written, place the cursor on the
name of the function and press F2.

To quickly jump to a function, press Ctrl+. to open the fuzzy file and function
finder and type the first few letters of your function name. You can also navigate
to files, Quarto sections, and more, making it a handy navigation tool.

Exercises
1. Practice turning the following code snippets into functions. Think

about what each function does. What would you call it? How many
arguments does it need?

mean(is.na(x))
mean(is.na(y))
mean(is.na(z)) 
 
x / sum(x, na.rm = TRUE)
y / sum(y, na.rm = TRUE)
z / sum(z, na.rm = TRUE) 
 
round(x / sum(x, na.rm = TRUE) * 100, 1)
round(y / sum(y, na.rm = TRUE) * 100, 1)
round(z / sum(z, na.rm = TRUE) * 100, 1)

2. In the second variant of rescale01(), infinite values are left
unchanged. Can you rewrite rescale01() so that -Inf is mapped
to 0, and Inf is mapped to 1?

3. Given a vector of birthdates, write a function to compute the age in
years.

4. Write your own functions to compute the variance and skewness of a
numeric vector. You can look up the definitions on Wikipedia or
elsewhere.



5. Write both_na(), a summary function that takes two vectors of the
same length and returns the number of positions that have an NA in
both vectors.

6. Read the documentation to figure out what the following functions do.
Why are they useful even though they are so short?

is_directory <- function(x) { 
  file.info(x)$isdir
}
is_readable <- function(x) { 
  file.access(x, 4) == 0
}

Data Frame Functions
Vector functions are useful for pulling out code that’s repeated within a
dplyr verb. But you’ll often also repeat the verbs themselves, particularly
within a large pipeline. When you notice yourself copying and pasting
multiple verbs multiple times, you might think about writing a data frame
function. Data frame functions work like dplyr verbs: they take a data frame
as the first argument and some extra arguments that say what to do with it
and return a data frame or vector.

To let you write a function that uses dplyr verbs, we’ll first introduce you to
the challenge of indirection and how you can overcome it with embracing,
{{ }}. We’ll then show you a bunch of examples to illustrate what you
might do with it.

Indirection and Tidy Evaluation
When you start writing functions that use dplyr verbs, you rapidly hit the
problem of indirection. Let’s illustrate the problem with a simple function:
grouped_mean(). The goal of this function is to compute the mean of
mean_var grouped by group_var:



grouped_mean <- function(df, group_var, mean_var) { 
  df |>  
    group_by(group_var) |>  
    summarize(mean(mean_var))
}

If we try and use it, we get an error:

diamonds |> grouped_mean(cut, carat)
#> Error in `group_by()`:
#> ! Must group by variables found in `.data`.
#> ✖ Column `group_var` is not found.

To make the problem a bit clearer, we can use a made-up data frame:

df <- tibble( 
  mean_var = 1, 
  group_var = "g", 
  group = 1, 
  x = 10, 
  y = 100
) 
 
df |> grouped_mean(group, x)
#> # A tibble: 1 × 2
#>   group_var `mean(mean_var)`
#>   <chr>                <dbl>
#> 1 g                        1
df |> grouped_mean(group, y)
#> # A tibble: 1 × 2
#>   group_var `mean(mean_var)`
#>   <chr>                <dbl>
#> 1 g                        1

Regardless of how we call grouped_mean() it always does df |>
group_by(group_var) |> summarize(mean(mean_var)),
instead of df |> group_by(group) |> summarize(mean(x))
or df |> group_by(group) |> summarize(mean(y)). This is
a problem of indirection, and it arises because dplyr uses tidy evaluation to
allow you to refer to the names of variables inside your data frame without
any special treatment.



Tidy evaluation is great 95% of the time because it makes your data
analyses very concise as you never have to say which data frame a variable
comes from; it’s obvious from the context. The downside of tidy evaluation
comes when we want to wrap up repeated tidyverse code into a function.
Here we need some way to tell group_mean() and summarize() not
to treat group_var and mean_var as the name of the variables but
instead look inside them for the variable we actually want to use.

Tidy evaluation includes a solution to this problem called embracing.
Embracing a variable means to wrap it in braces, so, for example, var
becomes {{ var }}. Embracing a variable tells dplyr to use the value
stored inside the argument, not the argument as the literal variable name.
One way to remember what’s happening is to think of {{ }} as looking
down a tunnel—{{ var }} will make a dplyr function look inside of
var rather than looking for a variable called var.

So to make grouped_mean() work, we need to surround group_var
and mean_var with {{ }}:

grouped_mean <- function(df, group_var, mean_var) { 
  df |>  
    group_by({{ group_var }}) |>  
    summarize(mean({{ mean_var }}))
} 
 
df |> grouped_mean(group, x)
#> # A tibble: 1 × 2
#>   group `mean(x)`
#>   <dbl>     <dbl>
#> 1     1        10

Success!

When to Embrace?
The key challenge in writing data frame functions is figuring out which
arguments need to be embraced. Fortunately, this is easy because you can
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look it up in the documentation. There are two terms to look for in the docs
that correspond to the two most common subtypes of tidy evaluation:

Data masking

This is used in functions such as arrange(), filter(), and

summarize() that compute with variables.

Tidy selection

This is used for functions such as select(), relocate(), and

rename() that select variables.

Your intuition about which arguments use tidy evaluation should be good
for many common functions—just think about whether you can compute
(e.g., x + 1) or select (e.g., a:x).

In the following sections, we’ll explore the sorts of handy functions you
might write once you understand embracing.

Common Use Cases
If you commonly perform the same set of summaries when doing initial
data exploration, you might consider wrapping them up in a helper
function:

summary6 <- function(data, var) { 
  data |> summarize( 
    min = min({{ var }}, na.rm = TRUE), 
    mean = mean({{ var }}, na.rm = TRUE), 
    median = median({{ var }}, na.rm = TRUE), 
    max = max({{ var }}, na.rm = TRUE), 
    n = n(), 
    n_miss = sum(is.na({{ var }})), 
    .groups = "drop" 
  )
} 
 
diamonds |> summary6(carat)
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#> # A tibble: 1 × 6
#>     min  mean median   max     n n_miss
#>   <dbl> <dbl>  <dbl> <dbl> <int>  <int>
#> 1   0.2 0.798    0.7  5.01 53940      0

(Whenever you wrap summarize() in a helper, we think it’s good
practice to set .groups = "drop" to both avoid the message and leave
the data in an ungrouped state.)

The nice thing about this function is that because it wraps summarize(),
you can use it on grouped data:

diamonds |>  
  group_by(cut) |>  
  summary6(carat)
#> # A tibble: 5 × 7
#>   cut         min  mean median   max     n n_miss
#>   <ord>     <dbl> <dbl>  <dbl> <dbl> <int>  <int>
#> 1 Fair       0.22 1.05    1     5.01  1610      0
#> 2 Good       0.23 0.849   0.82  3.01  4906      0
#> 3 Very Good  0.2  0.806   0.71  4    12082      0
#> 4 Premium    0.2  0.892   0.86  4.01 13791      0
#> 5 Ideal      0.2  0.703   0.54  3.5  21551      0

Furthermore, since the arguments to summarize are data masking, the var
argument to summary6() is also data masking. That means you can also
summarize computed variables:

diamonds |>  
  group_by(cut) |>  
  summary6(log10(carat))
#> # A tibble: 5 × 7
#>   cut          min    mean  median   max     n n_miss
#>   <ord>      <dbl>   <dbl>   <dbl> <dbl> <int>  <int>
#> 1 Fair      -0.658 -0.0273  0      0.700  1610      0
#> 2 Good      -0.638 -0.133  -0.0862 0.479  4906      0
#> 3 Very Good -0.699 -0.164  -0.149  0.602 12082      0
#> 4 Premium   -0.699 -0.125  -0.0655 0.603 13791      0
#> 5 Ideal     -0.699 -0.225  -0.268  0.544 21551      0

To summarize multiple variables, you’ll need to wait until “Modifying
Multiple Columns”, where you’ll learn how to use across().
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Another popular summarize() helper function is a version of count()
that also computes proportions:

# https://twitter.com/Diabb6/status/1571635146658402309
count_prop <- function(df, var, sort = FALSE) { 
  df |> 
    count({{ var }}, sort = sort) |> 
    mutate(prop = n / sum(n))
} 
 
diamonds |> count_prop(clarity)
#> # A tibble: 8 × 3
#>   clarity     n   prop
#>   <ord>   <int>  <dbl>
#> 1 I1        741 0.0137
#> 2 SI2      9194 0.170 
#> 3 SI1     13065 0.242 
#> 4 VS2     12258 0.227 
#> 5 VS1      8171 0.151 
#> 6 VVS2     5066 0.0939
#> # … with 2 more rows

This function has three arguments: df, var, and sort. Only var needs to
be embraced because it’s passed to count(), which uses data masking for
all variables. Note that we use a default value for sort so that if the user
doesn’t supply their own value, it will default to FALSE.

Or maybe you want to find the sorted unique values of a variable for a
subset of the data. Rather than supplying a variable and a value to do the
filtering, we’ll allow the user to supply a condition:

unique_where <- function(df, condition, var) { 
  df |>  
    filter({{ condition }}) |>  
    distinct({{ var }}) |>  
    arrange({{ var }})
} 
 
# Find all the destinations in December
flights |> unique_where(month == 12, dest)
#> # A tibble: 96 × 1
#>   dest 
#>   <chr>
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#> 1 ABQ  
#> 2 ALB  
#> 3 ATL  
#> 4 AUS  
#> 5 AVL  
#> 6 BDL  
#> # … with 90 more rows

Here we embrace condition because it’s passed to filter() and var
because it’s passed to distinct() and arrange().

We’ve made all these examples to take a data frame as the first argument,
but if you’re working repeatedly with the same data, it can make sense to
hardcode it. For example, the following function always works with the
flights dataset and always selects time_hour, carrier, and
flight since they form the compound primary key that allows you to
identify a row:

subset_flights <- function(rows, cols) { 
  flights |>  
    filter({{ rows }}) |>  
    select(time_hour, carrier, flight, {{ cols }})
}

Data Masking Versus Tidy Selection
Sometimes you want to select variables inside a function that uses data
masking. For example, imagine you want to write a count_missing()
method that counts the number of missing observations in rows. You might
try writing something like:

count_missing <- function(df, group_vars, x_var) { 
  df |>  
    group_by({{ group_vars }}) |>  
    summarize( 
      n_miss = sum(is.na({{ x_var }})), 
      .groups = "drop" 
    )
} 
 
flights |>  
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  count_missing(c(year, month, day), dep_time)
#> Error in `group_by()`:
#> ℹ In argument: `c(year, month, day)`.
#> Caused by error:
#> ! `c(year, month, day)` must be size 336776 or 1, not 1010328.

This doesn’t work because group_by() uses data masking, not tidy
selection. We can work around that problem by using the handy pick()
function, which allows you to use tidy selection inside data-masking
functions:

count_missing <- function(df, group_vars, x_var) { 
  df |>  
    group_by(pick({{ group_vars }})) |>  
    summarize( 
      n_miss = sum(is.na({{ x_var }})), 
      .groups = "drop" 
  )
} 
 
flights |>  
  count_missing(c(year, month, day), dep_time)
#> # A tibble: 365 × 4
#>    year month   day n_miss
#>   <int> <int> <int>  <int>
#> 1  2013     1     1      4
#> 2  2013     1     2      8
#> 3  2013     1     3     10
#> 4  2013     1     4      6
#> 5  2013     1     5      3
#> 6  2013     1     6      1
#> # … with 359 more rows

Another convenient use of pick() is to make a 2D table of counts. Here
we count using all the variables in the rows and columns and then use
pivot_wider() to rearrange the counts into a grid:

# https://twitter.com/pollicipes/status/1571606508944719876
count_wide <- function(data, rows, cols) { 
  data |>  
    count(pick(c({{ rows }}, {{ cols }}))) |>  
    pivot_wider( 
      names_from = {{ cols }},  
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      values_from = n, 
      names_sort = TRUE, 
      values_fill = 0 
    )
} 
 
diamonds |> count_wide(c(clarity, color), cut)
#> # A tibble: 56 × 7
#>   clarity color  Fair  Good `Very Good` Premium Ideal
#>   <ord>   <ord> <int> <int>       <int>   <int> <int>
#> 1 I1      D         4     8           5      12    13
#> 2 I1      E         9    23          22      30    18
#> 3 I1      F        35    19          13      34    42
#> 4 I1      G        53    19          16      46    16
#> 5 I1      H        52    14          12      46    38
#> 6 I1      I        34     9           8      24    17
#> # … with 50 more rows

While our examples have mostly focused on dplyr, tidy evaluation also
underpins tidyr, and if you look at the pivot_wider() docs, you can see
that names_from uses tidy selection.

Exercises
1. Using the datasets from nycflights13, write a function that:

a. Finds all flights that were cancelled (i.e., is.na(arr_time))
or delayed by more than an hour:

flights |> filter_severe()

b. Counts the number of cancelled flights and the number of flights
delayed by more than an hour:

flights |> group_by(dest) |> summarize_severe()

c. Finds all flights that were cancelled or delayed by more than a
user-supplied number of hours:

flights |> filter_severe(hours = 2)
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d. Summarizes the weather to compute the minimum, mean, and
maximum of a user-supplied variable:

weather |> summarize_weather(temp)

e. Converts the user-supplied variable that uses clock time (e.g.,
dep_time, arr_time, etc.) into a decimal time (i.e., hours +
[minutes / 60]):

weather |> standardize_time(sched_dep_time)

2. For each of the following functions, list all arguments that use tidy
evaluation and describe whether they use data masking or tidy
selection: distinct(), count(), group_by(),
rename_with(), slice_min(), slice_sample().

3. Generalize the following function so that you can supply any number
of variables to count:

count_prop <- function(df, var, sort = FALSE) { 
  df |> 
    count({{ var }}, sort = sort) |> 
    mutate(prop = n / sum(n))
}

Plot Functions
Instead of returning a data frame, you might want to return a plot.
Fortunately, you can use the same techniques with ggplot2, because aes()
is a data-masking function. For example, imagine that you’re making a lot
of histograms:

diamonds |>  
  ggplot(aes(x = carat)) + 
  geom_histogram(binwidth = 0.1) 
 
diamonds |>  
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  ggplot(aes(x = carat)) + 
  geom_histogram(binwidth = 0.05)

Wouldn’t it be nice if you could wrap this up into a histogram function?
This is easy as pie once you know that aes() is a data-masking function
and you need to embrace:

histogram <- function(df, var, binwidth = NULL) { 
  df |>  
    ggplot(aes(x = {{ var }})) +  
    geom_histogram(binwidth = binwidth)
} 
 
diamonds |> histogram(carat, 0.1)

Note that histogram() returns a ggplot2 plot, meaning you can still add
components if you want. Just remember to switch from |> to +:

diamonds |>  
  histogram(carat, 0.1) + 
  labs(x = "Size (in carats)", y = "Number of diamonds")

https://ggplot2.tidyverse.org/reference/aes.html


More Variables
It’s straightforward to add more variables to the mix. For example, maybe
you want an easy way to eyeball whether a dataset is linear by overlaying a
smooth line and a straight line:

# https://twitter.com/tyler_js_smith/status/1574377116988104704
linearity_check <- function(df, x, y) { 
  df |> 
    ggplot(aes(x = {{ x }}, y = {{ y }})) + 
    geom_point() + 
    geom_smooth(method = "loess", formula = y ~ x, color = "red", 
se = FALSE) + 
    geom_smooth(method = "lm", formula = y ~ x, color = "blue", 
se = FALSE)  
} 
 
starwars |>  
  filter(mass < 1000) |>  
  linearity_check(mass, height)



Or maybe you want an alternative to colored scatterplots for very large
datasets where overplotting is a problem:

# https://twitter.com/ppaxisa/status/1574398423175921665
hex_plot <- function(df, x, y, z, bins = 20, fun = "mean") { 
  df |>  
    ggplot(aes(x = {{ x }}, y = {{ y }}, z = {{ z }})) +  
    stat_summary_hex( 
      aes(color = after_scale(fill)), # make border same color as 
fill 
      bins = bins,  
      fun = fun, 
    )
} 
 
diamonds |> hex_plot(carat, price, depth)

Combining with Other Tidyverse Packages
Some of the most useful helpers combine a dash of data manipulation with
ggplot2. For example, you might want to do a vertical bar chart where you



automatically sort the bars in frequency order using fct_infreq().
Since the bar chart is vertical, we also need to reverse the usual order to get
the highest values at the top:

sorted_bars <- function(df, var) { 
  df |>  
    mutate({{ var }} := fct_rev(fct_infreq({{ var }})))  |> 
    ggplot(aes(y = {{ var }})) + 
    geom_bar()
} 
 
diamonds |> sorted_bars(clarity)

We have to use a new operator here, :=, because we are generating the
variable name based on user-supplied data. Variable names go on the left of
=, but R’s syntax doesn’t allow anything to the left of = except for a single
literal name. To work around this problem, we use the special operator :=,
which tidy evaluation treats in the same way as =.

https://forcats.tidyverse.org/reference/fct_inorder.html


Or maybe you want to make it easy to draw a bar plot just for a subset of
the data:

conditional_bars <- function(df, condition, var) { 
  df |>  
    filter({{ condition }}) |>  
    ggplot(aes(x = {{ var }})) +  
    geom_bar()
} 
 
diamonds |> conditional_bars(cut == "Good", clarity)

You can also get creative and display data summaries in other ways. You
can find a cool application at https://oreil.ly/MV4kQ; it uses the axis labels
to display the highest value. As you learn more about ggplot2, the power of
your functions will continue to increase.

We’ll finish with a more complicated case: labeling the plots you create.

Labeling

https://oreil.ly/MV4kQ


Remember the histogram function we showed you earlier?

histogram <- function(df, var, binwidth = NULL) { 
  df |>  
    ggplot(aes(x = {{ var }})) +  
    geom_histogram(binwidth = binwidth)
}

Wouldn’t it be nice if we could label the output with the variable and the bin
width that was used? To do so, we’re going to have to go under the covers
of tidy evaluation and use a function from the package we haven’t talked
about yet: rlang. rlang is a low-level package that’s used by just about every
other package in the tidyverse because it implements tidy evaluation (as
well as many other useful tools).

To solve the labeling problem, we can use rlang::englue(). This
works similarly to str_glue(), so any value wrapped in { } will be
inserted into the string. But it also understands {{ }}, which automatically
inserts the appropriate variable name:

histogram <- function(df, var, binwidth) { 
  label <- rlang::englue("A histogram of {{var}} with binwidth 
{binwidth}") 
   
  df |>  
    ggplot(aes(x = {{ var }})) +  
    geom_histogram(binwidth = binwidth) +  
    labs(title = label)
} 
 
diamonds |> histogram(carat, 0.1)

https://rlang.r-lib.org/reference/englue.html
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You can use the same approach in any other place where you want to supply
a string in a ggplot2 plot.

Exercises
Build up a rich plotting function by incrementally implementing each of
these steps:

1. Draw a scatterplot given a dataset and x and y variables.

2. Add a line of best fit (i.e., a linear model with no standard errors).

3. Add a title.

Style
R doesn’t care what your function or arguments are called, but the names
make a big difference for humans. Ideally, the name of your function will
be short but clearly evoke what the function does. That’s hard! But it’s



better to be clear than short, as RStudio’s autocomplete makes it easy to
type long names.

Generally, function names should be verbs, and arguments should be nouns.
There are some exceptions: nouns are OK if the function computes a well-
known noun (i.e., mean() is better than compute_mean()) or accesses
some property of an object (i.e., coef() is better than
get_coefficients()). Use your best judgment and don’t be afraid to
rename a function if you figure out a better name later.

# Too short
f() 
 
# Not a verb, or descriptive
my_awesome_function() 
 
# Long, but clear
impute_missing()
collapse_years()

R also doesn’t care about how you use whitespace in your functions, but
future readers will. Continue to follow the rules from Chapter 4.
Additionally, function() should always be followed by squiggly
brackets ({}), and the contents should be indented by an additional two
spaces. This makes it easier to see the hierarchy in your code by skimming
the left margin.

# Missing extra two spaces
density <- function(color, facets, binwidth = 0.1) {
diamonds |>  
  ggplot(aes(x = carat, y = after_stat(density), color = {{ color 
}})) + 
  geom_freqpoly(binwidth = binwidth) + 
  facet_wrap(vars({{ facets }}))
} 
 
# Pipe indented incorrectly
density <- function(color, facets, binwidth = 0.1) { 
  diamonds |>  
  ggplot(aes(x = carat, y = after_stat(density), color = {{ color 
}})) + 
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  geom_freqpoly(binwidth = binwidth) + 
  facet_wrap(vars({{ facets }}))
}

As you can see, we recommend putting extra spaces inside {{ }}. This
makes it obvious that something unusual is happening.

Exercises
1. Read the source code for each of the following two functions, puzzle

out what they do, and then brainstorm better names:

f1 <- function(string, prefix) { 
  str_sub(string, 1, str_length(prefix)) == prefix
} 
 
f3 <- function(x, y) { 
  rep(y, length.out = length(x))
}

2. Take a function that you’ve written recently and spend five minutes
brainstorming a better name for it and its arguments.

3. Make a case for why norm_r(), norm_d(), etc., would be better
than rnorm() and dnorm(). Make a case for the opposite. How
could you make the names even clearer?

Summary
In this chapter, you learned how to write functions for three useful
scenarios: creating a vector, creating a data frame, or creating a plot. Along
the way you saw many examples, which ideally started to get your creative
juices flowing, and gave you some ideas for where functions might help
your analysis code.

We have shown you only the bare minimum to get started with functions
and there’s much more to learn. A few places to learn more are:

https://rdrr.io/r/stats/Normal.html
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To learn more about programming with tidy evaluation, see useful
recipes in programming with dplyr and programming with tidyr and
learn more about the theory in “What is data masking and why do I
need {{?”.

To learn more about reducing duplication in your ggplot2 code, read
the “Programming with ggplot2” chapter of the ggplot2 book.

For more advice on function style, see the tidyverse style guide.

In the next chapter, we’ll dive into iteration which gives you further tools
for reducing code duplication.
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Chapter 26. Iteration

Introduction
In this chapter, you’ll learn tools for iteration, repeatedly performing the
same action on different objects. Iteration in R generally tends to look
rather different from other programming languages because so much of it is
implicit and we get it for free. For example, if you want to double a numeric
vector x in R, you can just write 2 * x. In most other languages, you’d
need to explicitly double each element of x using some sort of for loop.

This book has already given you a small but powerful number of tools that
perform the same action for multiple “things”:

facet_wrap() and facet_grid() draw a plot for each subset.

group_by() plus summarize() computes a summary statistics
for each subset.

unnest_wider() and unnest_longer() create new rows and
columns for each element of a list column.

Now it’s time to learn some more general tools, often called functional
programming tools because they are built around functions that take other
functions as inputs. Learning functional programming can easily veer into
the abstract, but in this chapter we’ll keep things concrete by focusing on
three common tasks: modifying multiple columns, reading multiple files,
and saving multiple objects.

Prerequisites
In this chapter, we’ll focus on tools provided by dplyr and purrr, both core
members of the tidyverse. You’ve seen dplyr before, but purrr is new. We’re
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just going to use a couple of purrr functions in this chapter, but it’s a great
package to explore as you improve your programming skills:

library(tidyverse)

Modifying Multiple Columns
Imagine you have this simple tibble and you want to count the number of
observations and compute the median of every column:

df <- tibble( 
  a = rnorm(10), 
  b = rnorm(10), 
  c = rnorm(10), 
  d = rnorm(10)
)

You could do it with copy and paste:

df |> summarize( 
  n = n(), 
  a = median(a), 
  b = median(b), 
  c = median(c), 
  d = median(d),
)
#> # A tibble: 1 × 5
#>       n      a      b       c     d
#>   <int>  <dbl>  <dbl>   <dbl> <dbl>
#> 1    10 -0.246 -0.287 -0.0567 0.144

That breaks our rule of thumb to never copy and paste more than twice, and
you can imagine that this will get tedious if you have tens or even hundreds
of columns. Instead, you can use across():

df |> summarize( 
  n = n(), 
  across(a:d, median),
)
#> # A tibble: 1 × 5

https://dplyr.tidyverse.org/reference/across.html


#>       n      a      b       c     d
#>   <int>  <dbl>  <dbl>   <dbl> <dbl>
#> 1    10 -0.246 -0.287 -0.0567 0.144

across() has three particularly important arguments, which we’ll discuss
in detail in the following sections. You’ll use the first two every time you
use across(): the first argument, .cols, specifies which columns you
want to iterate over, and the second argument, .fns, specifies what to do
with each column. You can use the .names argument when you need
additional control over the names of output columns, which is particularly
important when you use across() with mutate(). We’ll also discuss
two important variations, if_any() and if_all(), which work with
filter().

Selecting Columns with .cols
The first argument to across(), .cols, selects the columns to
transform. This uses the same specifications as select(), “select()”, so
you can use functions such as starts_with() and ends_with() to
select columns based on their name.

There are two additional selection techniques that are particularly useful for
across(): everything() and where(). everything() is
straightforward: it selects every (nongrouping) column:

df <- tibble( 
  grp = sample(2, 10, replace = TRUE), 
  a = rnorm(10), 
  b = rnorm(10), 
  c = rnorm(10), 
  d = rnorm(10)
) 
 
df |>  
  group_by(grp) |>  
  summarize(across(everything(), median))
#> # A tibble: 2 × 5
#>     grp       a       b     c     d
#>   <int>   <dbl>   <dbl> <dbl> <dbl>
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#> 1     1 -0.0935 -0.0163 0.363 0.364
#> 2     2  0.312  -0.0576 0.208 0.565

Note grouping columns (grp here) are not included in across(),
because they’re automatically preserved by summarize().

where() allows you to select columns based on their type:

where(is.numeric)

Selects all numeric columns.

where(is.character)

Selects all string columns.

where(is.Date)

Selects all date columns.

where(is.POSIXct)

Selects all date-time columns.

where(is.logical)

selects all logical columns.

Just like other selectors, you can combine these with Boolean algebra. For
example, !where(is.numeric) selects all non-numeric columns, and
starts_with("a") & where(is.logical) selects all logical
columns whose name starts with “a.”

Calling a Single Function
The second argument to across() defines how each column will be
transformed. In simple cases, as shown, this will be a single existing
function. This is a pretty special feature of R: we’re passing one function
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(median, mean, str_flatten, …) to another function (across). This
is one of the features that makes R a functional programming language.

It’s important to note that we’re passing this function to across(), so
across() can call it; we’re not calling it ourselves. That means the
function name should never be followed by (). If you forget, you’ll get an
error:

df |>  
  group_by(grp) |>  
  summarize(across(everything(), median()))
#> Error in `summarize()`:
#> ℹ In argument: `across(everything(), median())`.
#> Caused by error in `is.factor()`:
#> ! argument "x" is missing, with no default

This error arises because you’re calling the function with no input, e.g.:

median()
#> Error in is.factor(x): argument "x" is missing, with no 
default

Calling Multiple Functions
In more complex cases, you might want to supply additional arguments or
perform multiple transformations. Let’s motivate this problem with a simple
example: what happens if we have some missing values in our data?
median() propagates those missing values, giving us a suboptimal
output:

rnorm_na <- function(n, n_na, mean = 0, sd = 1) { 
  sample(c(rnorm(n - n_na, mean = mean, sd = sd), rep(NA, n_na)))
} 
 
df_miss <- tibble( 
  a = rnorm_na(5, 1), 
  b = rnorm_na(5, 1), 
  c = rnorm_na(5, 2), 
  d = rnorm(5)
)
df_miss |>  
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  summarize( 
    across(a:d, median), 
    n = n() 
  )
#> # A tibble: 1 × 5
#>       a     b     c     d     n
#>   <dbl> <dbl> <dbl> <dbl> <int>
#> 1    NA    NA    NA  1.15     5

It would be nice if we could pass along na.rm = TRUE to median() to
remove these missing values. To do so, instead of calling median()
directly, we need to create a new function that calls median() with the
desired arguments:

df_miss |>  
  summarize( 
    across(a:d, function(x) median(x, na.rm = TRUE)), 
    n = n() 
  )
#> # A tibble: 1 × 5
#>       a     b      c     d     n
#>   <dbl> <dbl>  <dbl> <dbl> <int>
#> 1 0.139 -1.11 -0.387  1.15     5

This is a little verbose, so R comes with a handy shortcut: for this sort of
throwaway (or anonymous)1 function, you can replace function with \:2

df_miss |>  
  summarize( 
    across(a:d, \(x) median(x, na.rm = TRUE)), 
    n = n() 
  )

In either case, across() effectively expands to the following code:

df_miss |>  
  summarize( 
    a = median(a, na.rm = TRUE), 
    b = median(b, na.rm = TRUE), 
    c = median(c, na.rm = TRUE), 
    d = median(d, na.rm = TRUE), 

https://rdrr.io/r/stats/median.html
https://rdrr.io/r/stats/median.html
https://rdrr.io/r/stats/median.html
https://dplyr.tidyverse.org/reference/across.html


    n = n() 
  )

When we remove the missing values from the median(), it would be nice
to know just how many values were removed. We can find that out by
supplying two functions to across(): one to compute the median and the
other to count the missing values. You supply multiple functions by using a
named list to .fns:

df_miss |>  
  summarize( 
    across(a:d, list( 
      median = \(x) median(x, na.rm = TRUE), 
      n_miss = \(x) sum(is.na(x)) 
    )), 
    n = n() 
  )
#> # A tibble: 1 × 9
#>   a_median a_n_miss b_median b_n_miss c_median c_n_miss 
d_median d_n_miss
#>      <dbl>    <int>    <dbl>    <int>    <dbl>    <int>    
<dbl>    <int>
#> 1    0.139        1    -1.11        1   -0.387        2     
1.15        0
#> # … with 1 more variable: n <int>

If you look carefully, you might intuit that the columns are named using a
glue specification (“str_glue()”) like {.col}_{.fn} where .col is the
name of the original column and .fn is the name of the function. That’s
not a coincidence! As you’ll learn in the next section, you can use the
.names argument to supply your own glue spec.

Column Names
The result of across() is named according to the specification provided
in the .names argument. We could specify our own if we wanted the name
of the function to come first:3

df_miss |>  
  summarize( 
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    across( 
      a:d, 
      list( 
        median = \(x) median(x, na.rm = TRUE), 
        n_miss = \(x) sum(is.na(x)) 
      ), 
      .names = "{.fn}_{.col}" 
    ), 
    n = n(), 
  )
#> # A tibble: 1 × 9
#>   median_a n_miss_a median_b n_miss_b median_c n_miss_c 
median_d n_miss_d
#>      <dbl>    <int>    <dbl>    <int>    <dbl>    <int>    
<dbl>    <int>
#> 1    0.139        1    -1.11        1   -0.387        2     
1.15        0
#> # … with 1 more variable: n <int>

The .names argument is particularly important when you use across()
with mutate(). By default, the output of across() is given the same
names as the inputs. This means that across() in mutate() will
replace existing columns. For example, here we use coalesce() to
replace NAs with 0:

df_miss |>  
  mutate( 
    across(a:d, \(x) coalesce(x, 0)) 
  )
#> # A tibble: 5 × 4
#>        a      b      c     d
#>    <dbl>  <dbl>  <dbl> <dbl>
#> 1  0.434 -1.25   0     1.60 
#> 2  0     -1.43  -0.297 0.776
#> 3 -0.156 -0.980  0     1.15 
#> 4 -2.61  -0.683 -0.785 2.13 
#> 5  1.11   0     -0.387 0.704

If you’d like to instead create new columns, you can use the .names
argument to give the output new names:

df_miss |>  
  mutate( 
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    across(a:d, \(x) abs(x), .names = "{.col}_abs") 
  )
#> # A tibble: 5 × 8
#>        a      b      c     d  a_abs  b_abs  c_abs d_abs
#>    <dbl>  <dbl>  <dbl> <dbl>  <dbl>  <dbl>  <dbl> <dbl>
#> 1  0.434 -1.25  NA     1.60   0.434  1.25  NA     1.60 
#> 2 NA     -1.43  -0.297 0.776 NA      1.43   0.297 0.776
#> 3 -0.156 -0.980 NA     1.15   0.156  0.980 NA     1.15 
#> 4 -2.61  -0.683 -0.785 2.13   2.61   0.683  0.785 2.13 
#> 5  1.11  NA     -0.387 0.704  1.11  NA      0.387 0.704

Filtering
across() is a great match for summarize() and mutate(), but it’s
more awkward to use with filter(), because you usually combine
multiple conditions with either | or &. It’s clear that across() can help to
create multiple logical columns, but then what? So dplyr provides two
variants of across() called if_any() and if_all():

# same as df_miss |> filter(is.na(a) | is.na(b) | is.na(c) | 
is.na(d))
df_miss |> filter(if_any(a:d, is.na))
#> # A tibble: 4 × 4
#>        a      b      c     d
#>    <dbl>  <dbl>  <dbl> <dbl>
#> 1  0.434 -1.25  NA     1.60 
#> 2 NA     -1.43  -0.297 0.776
#> 3 -0.156 -0.980 NA     1.15 
#> 4  1.11  NA     -0.387 0.704 
 
# same as df_miss |> filter(is.na(a) & is.na(b) & is.na(c) & 
is.na(d))
df_miss |> filter(if_all(a:d, is.na))
#> # A tibble: 0 × 4
#> # … with 4 variables: a <dbl>, b <dbl>, c <dbl>, d <dbl>

across() in Functions
across() is particularly useful to program with because it allows you to
operate on multiple columns. For example, Jacob Scott uses this little helper
that wraps a bunch of lubridate functions to expand all date columns into
year, month, and day columns:
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expand_dates <- function(df) { 
  df |>  
    mutate( 
      across(where(is.Date), list(year = year, month = month, day 
= mday)) 
    )
} 
 
df_date <- tibble( 
  name = c("Amy", "Bob"), 
  date = ymd(c("2009-08-03", "2010-01-16"))
) 
 
df_date |>  
  expand_dates()
#> # A tibble: 2 × 5
#>   name  date       date_year date_month date_day
#>   <chr> <date>         <dbl>      <dbl>    <int>
#> 1 Amy   2009-08-03      2009          8        3
#> 2 Bob   2010-01-16      2010          1       16

across() also makes it easy to supply multiple columns in a single
argument because the first argument uses tidy-select; you just need to
remember to embrace that argument, as we discussed in “When to
Embrace?”. For example, this function will compute the means of numeric
columns by default. But by supplying the second argument you can choose
to summarize just selected columns:

summarize_means <- function(df, summary_vars = where(is.numeric)) 
{ 
  df |>  
    summarize( 
      across({{ summary_vars }}, \(x) mean(x, na.rm = TRUE)), 
      n = n() 
    )
}
diamonds |>  
  group_by(cut) |>  
  summarize_means()
#> # A tibble: 5 × 9
#>   cut       carat depth table price     x     y     z     n
#>   <ord>     <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 Fair      1.05   64.0  59.1 4359.  6.25  6.18  3.98  1610
#> 2 Good      0.849  62.4  58.7 3929.  5.84  5.85  3.64  4906
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#> 3 Very Good 0.806  61.8  58.0 3982.  5.74  5.77  3.56 12082
#> 4 Premium   0.892  61.3  58.7 4584.  5.97  5.94  3.65 13791
#> 5 Ideal     0.703  61.7  56.0 3458.  5.51  5.52  3.40 21551 
 
diamonds |>  
  group_by(cut) |>  
  summarize_means(c(carat, x:z))
#> # A tibble: 5 × 6
#>   cut       carat     x     y     z     n
#>   <ord>     <dbl> <dbl> <dbl> <dbl> <int>
#> 1 Fair      1.05   6.25  6.18  3.98  1610
#> 2 Good      0.849  5.84  5.85  3.64  4906
#> 3 Very Good 0.806  5.74  5.77  3.56 12082
#> 4 Premium   0.892  5.97  5.94  3.65 13791
#> 5 Ideal     0.703  5.51  5.52  3.40 21551

Versus pivot_longer()
Before we go on, it’s worth pointing out an interesting connection between
across() and pivot_longer() (“Lengthening Data”). In many
cases, you perform the same calculations by first pivoting the data and then
performing the operations by group rather than by column. For example,
take this multifunction summary:

df |>  
  summarize(across(a:d, list(median = median, mean = mean)))
#> # A tibble: 1 × 8
#>   a_median a_mean b_median b_mean c_median c_mean d_median 
d_mean
#>      <dbl>  <dbl>    <dbl>  <dbl>    <dbl>  <dbl>    <dbl>  
<dbl>
#> 1   0.0380  0.205  -0.0163 0.0910    0.260 0.0716    0.540  
0.508

We could compute the same values by pivoting longer and then
summarizing:

long <- df |>  
  pivot_longer(a:d) |>  
  group_by(name) |>  
  summarize( 
    median = median(value), 
    mean = mean(value) 
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  )
long
#> # A tibble: 4 × 3
#>   name   median   mean
#>   <chr>   <dbl>  <dbl>
#> 1 a      0.0380 0.205 
#> 2 b     -0.0163 0.0910
#> 3 c      0.260  0.0716
#> 4 d      0.540  0.508

And if you wanted the same structure as across(), you could pivot
again:

long |>  
  pivot_wider( 
    names_from = name, 
    values_from = c(median, mean), 
    names_vary = "slowest", 
    names_glue = "{name}_{.value}" 
  )
#> # A tibble: 1 × 8
#>   a_median a_mean b_median b_mean c_median c_mean d_median 
d_mean
#>      <dbl>  <dbl>    <dbl>  <dbl>    <dbl>  <dbl>    <dbl>  
<dbl>
#> 1   0.0380  0.205  -0.0163 0.0910    0.260 0.0716    0.540  
0.508

This is a useful technique to know about because sometimes you’ll hit a
problem that’s not currently possible to solve with across(): when you
have groups of columns that you want to compute with simultaneously. For
example, imagine that our data frame contains both values and weights and
we want to compute a weighted mean:

df_paired <- tibble( 
  a_val = rnorm(10), 
  a_wts = runif(10), 
  b_val = rnorm(10), 
  b_wts = runif(10), 
  c_val = rnorm(10), 
  c_wts = runif(10), 
  d_val = rnorm(10), 
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  d_wts = runif(10)
)

There’s currently no way to do this with across(),4 but it’s relatively
straightforward with pivot_longer():

df_long <- df_paired |>  
  pivot_longer( 
    everything(),  
    names_to = c("group", ".value"),  
    names_sep = "_" 
  )
df_long
#> # A tibble: 40 × 3
#>   group    val   wts
#>   <chr>  <dbl> <dbl>
#> 1 a      0.715 0.518
#> 2 b     -0.709 0.691
#> 3 c      0.718 0.216
#> 4 d     -0.217 0.733
#> 5 a     -1.09  0.979
#> 6 b     -0.209 0.675
#> # … with 34 more rows 
 
df_long |>  
  group_by(group) |>  
  summarize(mean = weighted.mean(val, wts))
#> # A tibble: 4 × 2
#>   group    mean
#>   <chr>   <dbl>
#> 1 a      0.126 
#> 2 b     -0.0704
#> 3 c     -0.360 
#> 4 d     -0.248

If needed, you could pivot_wider() this back to the original form.

Exercises
1. Practice your across() skills by:

a. Computing the number of unique values in each column of
palmerpenguins::penguins.

https://dplyr.tidyverse.org/reference/across.html
https://tidyr.tidyverse.org/reference/pivot_longer.html
https://tidyr.tidyverse.org/reference/pivot_wider.html
https://dplyr.tidyverse.org/reference/across.html
https://allisonhorst.github.io/palmerpenguins/reference/penguins.html


b. Computing the mean of every column in mtcars.

c. Grouping diamonds by cut, clarity, and color and then
counting the number of observations and computing the mean of
each numeric column.

2. What happens if you use a list of functions in across(), but don’t
name them? How is the output named?

3. Adjust expand_dates() to automatically remove the date columns
after they’ve been expanded. Do you need to embrace any arguments?

4. Explain what each step of the pipeline in this function does. What
special feature of where() are we taking advantage of?

show_missing <- function(df, group_vars, summary_vars = 
everything()) { 
  df |>  
    group_by(pick({{ group_vars }})) |>  
    summarize( 
      across({{ summary_vars }}, \(x) sum(is.na(x))), 
      .groups = "drop" 
    ) |> 
    select(where(\(x) any(x > 0)))
}
nycflights13::flights |> show_missing(c(year, month, day))

Reading Multiple Files
In the previous section, you learned how to use dplyr::across() to
repeat a transformation on multiple columns. In this section, you’ll learn
how to use purrr::map() to do something to every file in a directory.
Let’s start with a little motivation: imagine you have a directory full of
Excel spreadsheets5 you want to read. You could do it with copy and paste:

data2019 <- readxl::read_excel("data/y2019.xlsx")
data2020 <- readxl::read_excel("data/y2020.xlsx")
data2021 <- readxl::read_excel("data/y2021.xlsx")
data2022 <- readxl::read_excel("data/y2022.xlsx")
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Then use dplyr::bind_rows() to combine them all together:

data <- bind_rows(data2019, data2020, data2021, data2022)

You can imagine that this would get tedious quickly, especially if you had
hundreds of files, not just four. The following sections show you how to
automate this sort of task. There are three basic steps: use list.files()
to list all the files in a directory, then use purrr::map() to read each of
them into a list, and then use purrr::list_rbind() to combine them
into a single data frame. We’ll then discuss how you can handle situations
of increasing heterogeneity, where you can’t do the same thing to every file.

Listing Files in a Directory
As the name suggests, list.files() lists the files in a directory. You’ll
almost always use three arguments:

The first argument, path, is the directory to look in.

pattern is a regular expression used to filter the filenames. The
most common pattern is something like [.]xlsx$ or [.]csv$ to
find all files with a specified extension.

full.names determines whether the directory name should be
included in the output. You almost always want this to be TRUE.

To make our motivating example concrete, this book contains a folder with
12 Excel spreadsheets containing data from the gapminder package. Each
file contains one year’s worth of data for 142 countries. We can list them all
with the appropriate call to list.files():

paths <- list.files("data/gapminder", pattern = "[.]xlsx$", 
full.names = TRUE)
paths
#>  [1] "data/gapminder/1952.xlsx" "data/gapminder/1957.xlsx"
#>  [3] "data/gapminder/1962.xlsx" "data/gapminder/1967.xlsx"
#>  [5] "data/gapminder/1972.xlsx" "data/gapminder/1977.xlsx"
#>  [7] "data/gapminder/1982.xlsx" "data/gapminder/1987.xlsx"
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#>  [9] "data/gapminder/1992.xlsx" "data/gapminder/1997.xlsx"
#> [11] "data/gapminder/2002.xlsx" "data/gapminder/2007.xlsx"

Lists
Now that we have these 12 paths, we could call read_excel() 12 times
to get 12 data frames:

gapminder_1952 <- readxl::read_excel("data/gapminder/1952.xlsx")
gapminder_1957 <- readxl::read_excel("data/gapminder/1957.xlsx")
gapminder_1962 <- readxl::read_excel("data/gapminder/1962.xlsx") 
 ...,
gapminder_2007 <- readxl::read_excel("data/gapminder/2007.xlsx")

But putting each sheet into its own variable is going to make it hard to work
with them a few steps down the road. Instead, they’ll be easier to work with
if we put them into a single object. A list is the perfect tool for this job:

files <- list( 
  readxl::read_excel("data/gapminder/1952.xlsx"), 
  readxl::read_excel("data/gapminder/1957.xlsx"), 
  readxl::read_excel("data/gapminder/1962.xlsx"), 
  ..., 
  readxl::read_excel("data/gapminder/2007.xlsx")
)

Now that you have these data frames in a list, how do you get one out? You
can use files[[i]] to extract the ith element:

files[[3]]
#> # A tibble: 142 × 5
#>   country     continent lifeExp      pop gdpPercap
#>   <chr>       <chr>       <dbl>    <dbl>     <dbl>
#> 1 Afghanistan Asia         32.0 10267083      853.
#> 2 Albania     Europe       64.8  1728137     2313.
#> 3 Algeria     Africa       48.3 11000948     2551.
#> 4 Angola      Africa       34    4826015     4269.
#> 5 Argentina   Americas     65.1 21283783     7133.
#> 6 Australia   Oceania      70.9 10794968    12217.
#> # … with 136 more rows



We’ll come back to [[ in more detail in “Selecting a Single Element with $
and [[”.

purrr::map() and list_rbind()
The code to collect those data frames in a list “by hand” is basically just as
tedious to type as code that reads the files one by one. Happily, we can use
purrr::map() to make even better use of our paths vector. map() is
similar to across(), but instead of doing something to each column in a
data frame, it does something to each element of a vector. map(x, f) is
shorthand for:

list( 
  f(x[[1]]), 
  f(x[[2]]), 
  ..., 
  f(x[[n]])
)

So we can use map() to get a list of 12 data frames:

files <- map(paths, readxl::read_excel)
length(files)
#> [1] 12 
 
files[[1]]
#> # A tibble: 142 × 5
#>   country     continent lifeExp      pop gdpPercap
#>   <chr>       <chr>       <dbl>    <dbl>     <dbl>
#> 1 Afghanistan Asia         28.8  8425333      779.
#> 2 Albania     Europe       55.2  1282697     1601.
#> 3 Algeria     Africa       43.1  9279525     2449.
#> 4 Angola      Africa       30.0  4232095     3521.
#> 5 Argentina   Americas     62.5 17876956     5911.
#> 6 Australia   Oceania      69.1  8691212    10040.
#> # … with 136 more rows

(This is another data structure that doesn’t display particularly compactly
with str(), so you might want to load it into RStudio and inspect it with
View()).
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Now we can use purrr::list_rbind() to combine that list of data
frames into a single data frame:

list_rbind(files)
#> # A tibble: 1,704 × 5
#>   country     continent lifeExp      pop gdpPercap
#>   <chr>       <chr>       <dbl>    <dbl>     <dbl>
#> 1 Afghanistan Asia         28.8  8425333      779.
#> 2 Albania     Europe       55.2  1282697     1601.
#> 3 Algeria     Africa       43.1  9279525     2449.
#> 4 Angola      Africa       30.0  4232095     3521.
#> 5 Argentina   Americas     62.5 17876956     5911.
#> 6 Australia   Oceania      69.1  8691212    10040.
#> # … with 1,698 more rows

Or we could do both steps at once in a pipeline:

paths |>  
  map(readxl::read_excel) |>  
  list_rbind()

What if we want to pass in extra arguments to read_excel()? We use
the same technique that we used with across(). For example, it’s often
useful to peak at the first few rows of the data with n_max = 1:

paths |>  
  map(\(path) readxl::read_excel(path, n_max = 1)) |>  
  list_rbind()
#> # A tibble: 12 × 5
#>   country     continent lifeExp      pop gdpPercap
#>   <chr>       <chr>       <dbl>    <dbl>     <dbl>
#> 1 Afghanistan Asia         28.8  8425333      779.
#> 2 Afghanistan Asia         30.3  9240934      821.
#> 3 Afghanistan Asia         32.0 10267083      853.
#> 4 Afghanistan Asia         34.0 11537966      836.
#> 5 Afghanistan Asia         36.1 13079460      740.
#> 6 Afghanistan Asia         38.4 14880372      786.
#> # … with 6 more rows

This makes it clear that something is missing: there’s no year column
because that value is recorded in the path, not the individual files. We’ll
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tackle that problem next.

Data in the Path
Sometimes the name of the file is data itself. In this example, the filename
contains the year, which is not otherwise recorded in the individual files. To
get that column into the final data frame, we need to do two things.

First, we name the vector of paths. The easiest way to do this is with the
set_names() function, which can take a function. Here we use
basename() to extract just the file name from the full path:

paths |> set_names(basename)  
#>                  1952.xlsx                  1957.xlsx 
#> "data/gapminder/1952.xlsx" "data/gapminder/1957.xlsx" 
#>                  1962.xlsx                  1967.xlsx 
#> "data/gapminder/1962.xlsx" "data/gapminder/1967.xlsx" 
#>                  1972.xlsx                  1977.xlsx 
#> "data/gapminder/1972.xlsx" "data/gapminder/1977.xlsx" 
#>                  1982.xlsx                  1987.xlsx 
#> "data/gapminder/1982.xlsx" "data/gapminder/1987.xlsx" 
#>                  1992.xlsx                  1997.xlsx 
#> "data/gapminder/1992.xlsx" "data/gapminder/1997.xlsx" 
#>                  2002.xlsx                  2007.xlsx 
#> "data/gapminder/2002.xlsx" "data/gapminder/2007.xlsx"

Those names are automatically carried along by all the map functions, so
the list of data frames will have those same names:

files <- paths |>  
  set_names(basename) |>  
  map(readxl::read_excel)

That makes this call to map() shorthand for:

files <- list( 
  "1952.xlsx" = readxl::read_excel("data/gapminder/1952.xlsx"), 
  "1957.xlsx" = readxl::read_excel("data/gapminder/1957.xlsx"), 
  "1962.xlsx" = readxl::read_excel("data/gapminder/1962.xlsx"), 
  ..., 
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  "2007.xlsx" = readxl::read_excel("data/gapminder/2007.xlsx")
)

You can also use [[ to extract elements by name:

files[["1962.xlsx"]]
#> # A tibble: 142 × 5
#>   country     continent lifeExp      pop gdpPercap
#>   <chr>       <chr>       <dbl>    <dbl>     <dbl>
#> 1 Afghanistan Asia         32.0 10267083      853.
#> 2 Albania     Europe       64.8  1728137     2313.
#> 3 Algeria     Africa       48.3 11000948     2551.
#> 4 Angola      Africa       34    4826015     4269.
#> 5 Argentina   Americas     65.1 21283783     7133.
#> 6 Australia   Oceania      70.9 10794968    12217.
#> # … with 136 more rows

Then we use the names_to argument to list_rbind() to tell it to save
the names into a new column called year and then use
readr::parse_number() to extract the number from the string:

paths |>  
  set_names(basename) |>  
  map(readxl::read_excel) |>  
  list_rbind(names_to = "year") |>  
  mutate(year = parse_number(year))
#> # A tibble: 1,704 × 6
#>    year country     continent lifeExp      pop gdpPercap
#>   <dbl> <chr>       <chr>       <dbl>    <dbl>     <dbl>
#> 1  1952 Afghanistan Asia         28.8  8425333      779.
#> 2  1952 Albania     Europe       55.2  1282697     1601.
#> 3  1952 Algeria     Africa       43.1  9279525     2449.
#> 4  1952 Angola      Africa       30.0  4232095     3521.
#> 5  1952 Argentina   Americas     62.5 17876956     5911.
#> 6  1952 Australia   Oceania      69.1  8691212    10040.
#> # … with 1,698 more rows

In more complicated cases, there might be other variables stored in the
directory name, or maybe the filename contains multiple bits of data. In that
case, use set_names() (without any arguments) to record the full path
and then use tidyr::separate_wider_delim() and friends to turn
them into useful columns:
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paths |>  
  set_names() |>  
  map(readxl::read_excel) |>  
  list_rbind(names_to = "year") |>  
  separate_wider_delim(year, delim = "/", names = c(NA, "dir", 
"file")) |>  
  separate_wider_delim(file, delim = ".", names = c("file", 
"ext"))
#> # A tibble: 1,704 × 8
#>   dir       file  ext   country     continent lifeExp      pop 
gdpPercap
#>   <chr>     <chr> <chr> <chr>       <chr>       <dbl>    <dbl>  
<dbl>
#> 1 gapminder 1952  xlsx  Afghanistan Asia         28.8  8425333  
779.
#> 2 gapminder 1952  xlsx  Albania     Europe       55.2  1282697  
1601.
#> 3 gapminder 1952  xlsx  Algeria     Africa       43.1  9279525  
2449.
#> 4 gapminder 1952  xlsx  Angola      Africa       30.0  4232095  
3521.
#> 5 gapminder 1952  xlsx  Argentina   Americas     62.5 17876956  
5911.
#> 6 gapminder 1952  xlsx  Australia   Oceania      69.1  8691212  
10040.
#> # … with 1,698 more rows

Save Your Work
Now that you’ve done all this hard work to get to a nice tidy data frame, it’s
a great time to save your work:

gapminder <- paths |>  
  set_names(basename) |>  
  map(readxl::read_excel) |>  
  list_rbind(names_to = "year") |>  
  mutate(year = parse_number(year)) 
 
write_csv(gapminder, "gapminder.csv")

Now when you come back to this problem in the future, you can read in a
single CSV file. For large and richer datasets, using parquet might be a
better choice than .csv, as discussed in “The Parquet Format”.



If you’re working in a project, we suggest calling the file that does this sort
of data prep work, something like 0-cleanup.R. The 0 in the filename
suggests that this should be run before anything else.

If your input data files change over time, you might consider learning a tool
like targets to set up your data cleaning code to automatically rerun
whenever one of the input files is modified.

Many Simple Iterations
Here we loaded the data directly from disk and were lucky enough to get a
tidy dataset. In most cases, you’ll need to do some additional tidying, and
you have two basic options: you can do one round of iteration with a
complex function or do multiple rounds of iteration with simple functions.
In our experience, most folks reach first for one complex iteration, but
you’re often better off doing multiple simple iterations.

For example, imagine that you want to read in a bunch of files, filter out
missing values, pivot, and then combine. One way to approach the problem
is to write a function that takes a file and does all those steps and then call
map() once:

process_file <- function(path) { 
  df <- read_csv(path) 
   
  df |>  
    filter(!is.na(id)) |>  
    mutate(id = tolower(id)) |>  
    pivot_longer(jan:dec, names_to = "month")
} 
 
paths |>  
  map(process_file) |>  
  list_rbind()

Alternatively, you could perform each step of process_file() for
every file:
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paths |>  
  map(read_csv) |>  
  map(\(df) df |> filter(!is.na(id))) |>  
  map(\(df) df |> mutate(id = tolower(id))) |>  
  map(\(df) df |> pivot_longer(jan:dec, names_to = "month")) |>  
  list_rbind()

We recommend this approach because it stops you from getting fixated on
getting the first file right before moving on to the rest. By considering all of
the data when doing tidying and cleaning, you’re more likely to think
holistically and end up with a higher-quality result.

In this particular example, there’s another optimization you could make, by
binding all the data frames together earlier. Then you can rely on regular
dplyr behavior:

paths |>  
  map(read_csv) |>  
  list_rbind() |>  
  filter(!is.na(id)) |>  
  mutate(id = tolower(id)) |>  
  pivot_longer(jan:dec, names_to = "month")

Heterogeneous Data
Unfortunately, sometimes it’s not possible to go from map() straight to
list_rbind() because the data frames are so heterogeneous that
list_rbind() either fails or yields a data frame that’s not useful. In that
case, it’s still useful to start by loading all of the files:

files <- paths |>  
  map(readxl::read_excel) 

Then a useful strategy is to capture the structure of the data frames so that
you can explore it using your data science skills. One way to do so is with
this handy df_types function6 that returns a tibble with one row for each
column:
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df_types <- function(df) { 
  tibble( 
    col_name = names(df),  
    col_type = map_chr(df, vctrs::vec_ptype_full), 
    n_miss = map_int(df, \(x) sum(is.na(x))) 
  )
} 
 
df_types(gapminder)
#> # A tibble: 6 × 3
#>   col_name  col_type  n_miss
#>   <chr>     <chr>      <int>
#> 1 year      double         0
#> 2 country   character      0
#> 3 continent character      0
#> 4 lifeExp   double         0
#> 5 pop       double         0
#> 6 gdpPercap double         0

You can then apply this function to all of the files and maybe do some
pivoting to make it easier to see where the differences are. For example, this
makes it easy to verify that the gapminder spreadsheets that we’ve been
working with are all quite homogeneous:

files |>  
  map(df_types) |>  
  list_rbind(names_to = "file_name") |>  
  select(-n_miss) |>  
  pivot_wider(names_from = col_name, values_from = col_type)
#> # A tibble: 12 × 6
#>   file_name country   continent lifeExp pop    gdpPercap
#>   <chr>     <chr>     <chr>     <chr>   <chr>  <chr>    
#> 1 1952.xlsx character character double  double double   
#> 2 1957.xlsx character character double  double double   
#> 3 1962.xlsx character character double  double double   
#> 4 1967.xlsx character character double  double double   
#> 5 1972.xlsx character character double  double double   
#> 6 1977.xlsx character character double  double double   
#> # … with 6 more rows

If the files have heterogeneous formats, you might need to do more
processing before you can successfully merge them. Unfortunately, we’re
now going to leave you to figure that out on your own, but you might want



to read about map_if() and map_at(). map_if() allows you to
selectively modify elements of a list based on their values; map_at()
allows you to selectively modify elements based on their names.

Handling Failures
Sometimes the structure of your data might be sufficiently wild that you
can’t even read all the files with a single command. And then you’ll
encounter one of the downsides of map(): it succeeds or fails as a whole.
map() will either successfully read all of the files in a directory or fail with
an error, reading zero files. This is annoying: why does one failure prevent
you from accessing all the other successes?

Luckily, purrr comes with a helper to tackle this problem: possibly().
possibly() is what’s known as a function operator: it takes a function
and returns a function with modified behavior. In particular, possibly()
changes a function from erroring to returning a value that you specify:

files <- paths |>  
  map(possibly(\(path) readxl::read_excel(path), NULL)) 
 
data <- files |> list_rbind()

This works particularly well here because list_rbind(), like many
tidyverse functions, automatically ignores NULLs.

Now you have all the data that can be read easily, and it’s time to tackle the
hard part of figuring out why some files failed to load and what to do about
it. Start by getting the paths that failed:

failed <- map_vec(files, is.null)
paths[failed]
#> character(0)

Then call the import function again for each failure and figure out what
went wrong.
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Saving Multiple Outputs
In the previous section, you learned about map(), which is useful for
reading multiple files into a single object. In this section, we’ll now explore
sort of the opposite problem: how can you take one or more R objects and
save it to one or more files? We’ll explore this challenge using three
examples:

Saving multiple data frames into one database

Saving multiple data frames into multiple .csv files

Saving multiple plots to multiple .png files

Writing to a Database
Sometimes when working with many files at once, it’s not possible to fit all
your data into memory at once, and you can’t do map(files,
read_csv). One approach to deal with this problem is to load your data
into a database so you can access just the bits you need with dbplyr.

If you’re lucky, the database package you’re using will provide a handy
function that takes a vector of paths and loads them all into the database.
This is the case with duckdb’s duckdb_read_csv():

con <- DBI::dbConnect(duckdb::duckdb())
duckdb::duckdb_read_csv(con, "gapminder", paths)

This would work well here, but we don’t have CSV files; instead, we have
Excel spreadsheets. So we’re going to have to do it “by hand.” Learning to
do it by hand will also help you when you have a bunch of CSV files and
the database that you’re working with doesn’t have one function that will
load them all in.

We need to start by creating a table that will fill in with data. The easiest
way to do this is by creating a template, a dummy data frame that contains
all the columns we want, but only a sampling of the data. For the gapminder
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data, we can make that template by reading a single file and adding the year
to it:

template <- readxl::read_excel(paths[[1]])
template$year <- 1952
template
#> # A tibble: 142 × 6
#>   country     continent lifeExp      pop gdpPercap  year
#>   <chr>       <chr>       <dbl>    <dbl>     <dbl> <dbl>
#> 1 Afghanistan Asia         28.8  8425333      779.  1952
#> 2 Albania     Europe       55.2  1282697     1601.  1952
#> 3 Algeria     Africa       43.1  9279525     2449.  1952
#> 4 Angola      Africa       30.0  4232095     3521.  1952
#> 5 Argentina   Americas     62.5 17876956     5911.  1952
#> 6 Australia   Oceania      69.1  8691212    10040.  1952
#> # … with 136 more rows

Now we can connect to the database and use DBI::dbCreateTable()
to turn our template into a database table:

con <- DBI::dbConnect(duckdb::duckdb())
DBI::dbCreateTable(con, "gapminder", template)

dbCreateTable() doesn’t use the data in template, just the variable
names and types. So if we inspect the gapminder table now, you’ll see
that it’s empty, but it has the variables we need with the types we expect:

con |> tbl("gapminder")
#> # Source:   table<gapminder> [0 x 6]
#> # Database: DuckDB 0.6.1 [root@Darwin 22.3.0:R 4.2.1/:memory:]
#> # … with 6 variables: country <chr>, continent <chr>, lifeExp 
<dbl>,
#> #   pop <dbl>, gdpPercap <dbl>, year <dbl>

Next, we need a function that takes a single file path, reads it into R, and
adds the result to the gapminder table. We can do that by combining
read_excel() with DBI::dbAppendTable():

append_file <- function(path) { 
  df <- readxl::read_excel(path) 
  df$year <- parse_number(basename(path)) 
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  DBI::dbAppendTable(con, "gapminder", df)
}

Now we need to call append_file() once for each element of paths.
That’s certainly possible with map():

paths |> map(append_file)

But we don’t care about the output of append_file(), so instead of
map(), it’s slightly nicer to use walk(). walk() does exactly the same
thing as map() but throws the output away:

paths |> walk(append_file)

Now we can see if we have all the data in our table:

con |>  
  tbl("gapminder") |>  
  count(year)
#> # Source:   SQL [?? x 2]
#> # Database: DuckDB 0.6.1 [root@Darwin 22.3.0:R 4.2.1/:memory:]
#>    year     n
#>   <dbl> <dbl>
#> 1  1952   142
#> 2  1957   142
#> 3  1962   142
#> 4  1967   142
#> 5  1972   142
#> 6  1977   142
#> # … with more rows

Writing CSV Files
The same basic principle applies if we want to write multiple CSV files,
one for each group. Let’s imagine that we want to take the
ggplot2::diamonds data and save one CSV file for each clarity.
First we need to make those individual datasets. There are many ways you
could do that, but there’s one way we particularly like: group_nest().
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by_clarity <- diamonds |>  
  group_nest(clarity) 
 
by_clarity
#> # A tibble: 8 × 2
#>   clarity               data
#>   <ord>   <list<tibble[,9]>>
#> 1 I1               [741 × 9]
#> 2 SI2            [9,194 × 9]
#> 3 SI1           [13,065 × 9]
#> 4 VS2           [12,258 × 9]
#> 5 VS1            [8,171 × 9]
#> 6 VVS2           [5,066 × 9]
#> # … with 2 more rows

This gives us a new tibble with eight rows and two columns. clarity is
our grouping variable, and data is a list column containing one tibble for
each unique value of clarity:

by_clarity$data[[1]]
#> # A tibble: 741 × 9
#>   carat cut       color depth table price     x     y     z
#>   <dbl> <ord>     <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
#> 1  0.32 Premium   E      60.9    58   345  4.38  4.42  2.68
#> 2  1.17 Very Good J      60.2    61  2774  6.83  6.9   4.13
#> 3  1.01 Premium   F      61.8    60  2781  6.39  6.36  3.94
#> 4  1.01 Fair      E      64.5    58  2788  6.29  6.21  4.03
#> 5  0.96 Ideal     F      60.7    55  2801  6.37  6.41  3.88
#> 6  1.04 Premium   G      62.2    58  2801  6.46  6.41  4   
#> # … with 735 more rows

While we’re here, let’s create a column that gives the name of the output
file, using mutate() and str_glue():

by_clarity <- by_clarity |>  
  mutate(path = str_glue("diamonds-{clarity}.csv")) 
 
by_clarity
#> # A tibble: 8 × 3
#>   clarity               data path             
#>   <ord>   <list<tibble[,9]>> <glue>           
#> 1 I1               [741 × 9] diamonds-I1.csv  
#> 2 SI2            [9,194 × 9] diamonds-SI2.csv 
#> 3 SI1           [13,065 × 9] diamonds-SI1.csv 

https://dplyr.tidyverse.org/reference/mutate.html
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#> 4 VS2           [12,258 × 9] diamonds-VS2.csv 
#> 5 VS1            [8,171 × 9] diamonds-VS1.csv 
#> 6 VVS2           [5,066 × 9] diamonds-VVS2.csv
#> # … with 2 more rows

So if we were going to save these data frames by hand, we might write
something like:

write_csv(by_clarity$data[[1]], by_clarity$path[[1]])
write_csv(by_clarity$data[[2]], by_clarity$path[[2]])
write_csv(by_clarity$data[[3]], by_clarity$path[[3]])
...
write_csv(by_clarity$by_clarity[[8]], by_clarity$path[[8]])

This is a little different from our previous uses of map() because there are
two arguments that are changing, not just one. That means we need a new
function: map2(), which varies both the first and second arguments. And
because we again don’t care about the output, we want walk2() rather
than map2(). That gives us:

walk2(by_clarity$data, by_clarity$path, write_csv)

Saving Plots
We can take the same basic approach to create many plots. Let’s first make
a function that draws the plot we want:

carat_histogram <- function(df) { 
  ggplot(df, aes(x = carat)) + geom_histogram(binwidth = 0.1)   
} 
 
carat_histogram(by_clarity$data[[1]])
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Now we can use map() to create a list of many plots7 and their eventual
file paths:

by_clarity <- by_clarity |>  
  mutate( 
    plot = map(data, carat_histogram), 
    path = str_glue("clarity-{clarity}.png") 
  )

Then use walk2() with ggsave() to save each plot:

walk2( 
  by_clarity$path, 
  by_clarity$plot, 
  \(path, plot) ggsave(path, plot, width = 6, height = 6)
)

This is shorthand for:

ggsave(by_clarity$path[[1]], by_clarity$plot[[1]], width = 6, 
height = 6)

https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/map2.html
https://ggplot2.tidyverse.org/reference/ggsave.html


ggsave(by_clarity$path[[2]], by_clarity$plot[[2]], width = 6, 
height = 6)
ggsave(by_clarity$path[[3]], by_clarity$plot[[3]], width = 6, 
height = 6)
...
ggsave(by_clarity$path[[8]], by_clarity$plot[[8]], width = 6, 
height = 6)

Summary
In this chapter, you saw how to use explicit iteration to solve three problems
that come up frequently when doing data science: manipulating multiple
columns, reading multiple files, and saving multiple outputs. But in general,
iteration is a superpower: if you know the right iteration technique, you can
easily go from fixing one problem to fixing all the problems. Once you’ve
mastered the techniques in this chapter, we highly recommend learning
more by reading the “Functionals” chapter of Advanced R and consulting
the purrr website.

If you know much about iteration in other languages, you might be
surprised that we didn’t discuss the for loop. That’s because R’s
orientation toward data analysis changes how we iterate: in most cases you
can rely on an existing idiom to do something to each column or each
group. And when you can’t, you can often use a functional programming
tool like map() that does something to each element of a list. However,
you will see for loops in wild-caught code, so you’ll learn about them in
the next chapter where we’ll discuss some important base R tools.

1  Anonymous, because we never explicitly gave it a name with <-. Another term programmers
use for this is lambda function.

2  In older code you might see syntax that looks like ~ .x + 1. This is another way to write
anonymous functions, but it works only inside tidyverse functions and always uses the variable
name .x. We now recommend the base syntax, \(x) x + 1.

3  You can’t currently change the order of the columns, but you could reorder them after the fact
using relocate() or similar.

https://oreil.ly/VmXg4
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4  Maybe there will be one day, but currently we don’t see how.

5  If you instead had a directory of CSV files with the same format, you can use the technique
from “Reading Data from Multiple Files”.

6  We’re not going to explain how it works, but if you look at the docs for the functions used,
you should be able to puzzle it out.

7  You can print by_clarity$plot to get a crude animation—you’ll get one plot for each
element of plots.



Chapter 27. A Field Guide to
Base R

Introduction
To finish off the programming section, we’re going to give you a quick tour
of the most important base R functions that we don’t otherwise discuss in
the book. These tools are particularly useful as you do more programming
and will help you read code you encounter in the wild.

This is a good place to remind you that the tidyverse is not the only way to
solve data science problems. We teach the tidyverse in this book because
tidyverse packages share a common design philosophy, increasing the
consistency across functions, and making each new function or package a
little easier to learn and use. It’s not possible to use the tidyverse without
using base R, so we’ve actually already taught you a lot of base R
functions, including library() to load packages; sum() and mean()
for numeric summaries; the factor, date, and POSIXct data types; and of
course all the basic operators such as +, -, /, *, |, &, and !. What we
haven’t focused on so far is base R workflows, so we will highlight a few of
those in this chapter.

After you read this book, you’ll learn other approaches to the same
problems using base R, data.table, and other packages. You’ll undoubtedly
encounter these other approaches when you start reading R code written by
others, particularly if you’re using StackOverflow. It’s 100% OK to write
code that uses a mix of approaches, and don’t let anyone tell you otherwise!

In this chapter, we’ll focus on four big topics: subsetting with [, subsetting
with [[ and $, using the apply family of functions, and using for loops.
To finish off, we’ll briefly discuss two essential plotting functions.

https://rdrr.io/r/base/library.html
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Prerequisites
This package focuses on base R so it doesn’t have any real prerequisites,
but we’ll load the tidyverse to explain some of the differences:

library(tidyverse)

Selecting Multiple Elements with [
[ is used to extract subcomponents from vectors and data frames and is
called like x[i] or x[i, j]. In this section, we’ll introduce you to the
power of [, first showing you how you can use it with vectors, and then
showing how the same principles extend in a straightforward way to 2D
structures like data frames. We’ll then help you cement that knowledge by
showing how various dplyr verbs are special cases of [.

Subsetting Vectors
There are five main types of things that you can subset a vector with, i.e.,
that can be the i in x[i]:

A vector of positive integers. Subsetting with positive integers keeps
the elements at those positions:

x <- c("one", "two", "three", "four", "five")
x[c(3, 2, 5)]
#> [1] "three" "two"   "five"

By repeating a position, you can actually make a longer output than
input, making the term “subsetting” a bit of a misnomer:

x[c(1, 1, 5, 5, 5, 2)]
#> [1] "one"  "one"  "five" "five" "five" "two"

A vector of negative integers. Negative values drop the elements at the
specified positions:



x[c(-1, -3, -5)]
#> [1] "two"  "four"

A logical vector. Subsetting with a logical vector keeps all values
corresponding to a TRUE value. This is most often useful in
conjunction with the comparison functions:

x <- c(10, 3, NA, 5, 8, 1, NA) 
 
# All non-missing values of x
x[!is.na(x)]
#> [1] 10  3  5  8  1 
 
# All even (or missing!) values of x
x[x %% 2 == 0]
#> [1] 10 NA  8 NA

Unlike filter(), NA indices will be included in the output as NAs.

A character vector. If you have a named vector, you can subset it with
a character vector:

x <- c(abc = 1, def = 2, xyz = 5)
x[c("xyz", "def")]
#> xyz def 
#>   5   2

As with subsetting with positive integers, you can use a character
vector to duplicate individual entries.

Nothing. The final type of subsetting is nothing, x[], which returns
the complete x. This is not useful for subsetting vectors, but as we’ll
see shortly, it is useful when subsetting 2D structures like tibbles.

Subsetting Data Frames
There are quite a few different ways1 that you can use [ with a data frame,
but the most important way is to select rows and columns independently
with df[rows, cols]. Here rows and cols are vectors as described

https://dplyr.tidyverse.org/reference/filter.html


earlier. For example, df[rows, ] and df[, cols] select just rows or
just columns, using the empty subset to preserve the other dimension.

Here are a couple of examples:

df <- tibble( 
  x = 1:3,  
  y = c("a", "e", "f"),  
  z = runif(3)
) 
 
# Select first row and second column
df[1, 2]
#> # A tibble: 1 × 1
#>   y    
#>   <chr>
#> 1 a 
 
# Select all rows and columns x and y
df[, c("x" , "y")]
#> # A tibble: 3 × 2
#>       x y    
#>   <int> <chr>
#> 1     1 a    
#> 2     2 e    
#> 3     3 f 
 
# Select rows where `x` is greater than 1 and all columns
df[df$x > 1, ]
#> # A tibble: 2 × 3
#>       x y         z
#>   <int> <chr> <dbl>
#> 1     2 e     0.834
#> 2     3 f     0.601

We’ll come back to $ shortly, but you should be able to guess what df$x
does from the context: it extracts the x variable from df. We need to use it
here because [ doesn’t use tidy evaluation, so you need to be explicit about
the source of the x variable.

There’s an important difference between tibbles and data frames when it
comes to [. In this book, we’ve mainly used tibbles, which are data frames,
but they tweak some behaviors to make your life a little easier. In most



places, you can use “tibble” and “data frame” interchangeably, so when we
want to draw particular attention to R’s built-in data frame, we’ll write
data.frame. If df is a data.frame, then df[, cols] will return a
vector if col selects a single column and will return a data frame if it
selects more than one column. If df is a tibble, then [ will always return a
tibble.

df1 <- data.frame(x = 1:3)
df1[, "x"]
#> [1] 1 2 3 
 
df2 <- tibble(x = 1:3)
df2[, "x"]
#> # A tibble: 3 × 1
#>       x
#>   <int>
#> 1     1
#> 2     2
#> 3     3

One way to avoid this ambiguity with data.frames is to explicitly
specify drop = FALSE:

df1[, "x" , drop = FALSE]
#>   x
#> 1 1
#> 2 2
#> 3 3

dplyr Equivalents
Several dplyr verbs are special cases of [:

filter() is equivalent to subsetting the rows with a logical vector,
taking care to exclude missing values:

df <- tibble( 
  x = c(2, 3, 1, 1, NA),  
  y = letters[1:5],  
  z = runif(5)
)

https://dplyr.tidyverse.org/reference/filter.html


df |> filter(x > 1) 
 
# same as
df[!is.na(df$x) & df$x > 1, ]

Another common technique in the wild is to use which() for its side
effect of dropping missing values: df[which(df$x > 1), ].

arrange() is equivalent to subsetting the rows with an integer
vector, usually created with order():

df |> arrange(x, y) 
 
# same as
df[order(df$x, df$y), ]

You can use order(decreasing = TRUE) to sort all columns in
descending order or -rank(col) to sort columns in decreasing order
individually.

Both select() and relocate() are similar to subsetting the
columns with a character vector:

df |> select(x, z) 
 
# same as
df[, c("x", "z")]

Base R also provides a function that combines the features of filter()
and select()2 called subset():

df |>  
  filter(x > 1) |>  
  select(y, z)
#> # A tibble: 2 × 2
#>   y           z
#>   <chr>   <dbl>
#> 1 a     0.157  
#> 2 b     0.00740

https://rdrr.io/r/base/which.html
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# same as
df |> subset(x > 1, c(y, z))

This function was the inspiration for much of dplyr’s syntax.

Exercises
1. Create functions that take a vector as input and return:

a. The elements at even-numbered positions

b. Every element except the last value

c. Only even values (and no missing values)

2. Why is x[-which(x > 0)] not the same as x[x <= 0]? Read
the documentation for which() and do some experiments to figure it
out.

Selecting a Single Element with $ and [[
[, which selects many elements, is paired with [[ and $, which extract a
single element. In this section, we’ll show you how to use [[ and $ to pull
columns out of data frames, discuss a couple more differences between
data.frames and tibbles, and emphasize some important differences
between [ and [[ when used with lists.

Data Frames
[[ and $ can be used to extract columns out of a data frame. [[ can access
by position or by name, and $ is specialized for access by name:

tb <- tibble( 
  x = 1:4, 
  y = c(10, 4, 1, 21)
) 
 
# by position
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tb[[1]]
#> [1] 1 2 3 4 
 
# by name
tb[["x"]]
#> [1] 1 2 3 4
tb$x
#> [1] 1 2 3 4

They can also be used to create new columns, the base R equivalent of
mutate():

tb$z <- tb$x + tb$y
tb
#> # A tibble: 4 × 3
#>       x     y     z
#>   <int> <dbl> <dbl>
#> 1     1    10    11
#> 2     2     4     6
#> 3     3     1     4
#> 4     4    21    25

There are several other base R approaches to creating new columns
including with transform(), with(), and within(). Hadley
collected a few examples.

Using $ directly is convenient when performing quick summaries. For
example, if you just want to find the size of the biggest diamond or the
possible values of cut, there’s no need to use summarize():

max(diamonds$carat)
#> [1] 5.01 
 
levels(diamonds$cut)
#> [1] "Fair"      "Good"      "Very Good" "Premium"   "Ideal"

dplyr also provides an equivalent to [[/$ that we didn’t mention in
Chapter 3: pull(). pull() takes either a variable name or a variable
position and returns just that column. That means we could rewrite the
previous code to use the pipe:

https://dplyr.tidyverse.org/reference/mutate.html
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diamonds |> pull(carat) |> mean()
#> [1] 0.7979397 
 
diamonds |> pull(cut) |> levels()
#> [1] "Fair"      "Good"      "Very Good" "Premium"   "Ideal"

Tibbles
There are a couple of important differences between tibbles and base
data.frames when it comes to $. Data frames match the prefix of any
variable names (so-called partial matching) and don’t complain if a column
doesn’t exist:

df <- data.frame(x1 = 1)
df$x
#> Warning in df$x: partial match of 'x' to 'x1'
#> [1] 1
df$z
#> NULL

Tibbles are more strict: they only ever match variable names exactly and
they will generate a warning if the column you are trying to access doesn’t
exist:

tb <- tibble(x1 = 1) 
 
tb$x
#> Warning: Unknown or uninitialised column: `x`.
#> NULL
tb$z
#> Warning: Unknown or uninitialised column: `z`.
#> NULL

For this reason we sometimes joke that tibbles are lazy and surly: they do
less and complain more.

Lists
[[ and $ are also really important for working with lists, and it’s important
to understand how they differ from [. Let’s illustrate the differences with a



list named l:

l <- list( 
  a = 1:3,  
  b = "a string",  
  c = pi,  
  d = list(-1, -5)
)

[ extracts a sublist. It doesn’t matter how many elements you extract,
the result will always be a list.

str(l[1:2])
#> List of 2
#>  $ a: int [1:3] 1 2 3
#>  $ b: chr "a string" 
 
str(l[1])
#> List of 1
#>  $ a: int [1:3] 1 2 3 
 
str(l[4])
#> List of 1
#>  $ d:List of 2
#>   ..$ : num -1
#>   ..$ : num -5

Like with vectors, you can subset with a logical, integer, or character
vector.

[[ and $ extract a single component from a list. They remove a level
of hierarchy from the list.

str(l[[1]])
#>  int [1:3] 1 2 3 
 
str(l[[4]])
#> List of 2
#>  $ : num -1
#>  $ : num -5 
 
str(l$a)
#>  int [1:3] 1 2 3



The difference between [ and [[ is particularly important for lists because
[[ drills down into the list, while [ returns a new, smaller list. To help you
remember the difference, take a look at the unusual pepper shaker shown in
Figure 27-1. If this pepper shaker is your list pepper, then pepper[1] is
a pepper shaker containing a single pepper packet. pepper[2] would
look the same but would contain the second packet. pepper[1:2] would
be a pepper shaker containing two pepper packets. pepper[[1]] would
extract the pepper packet itself.

Figure 27-1. (Left) A pepper shaker that Hadley once found in his hotel room. (Middle)
pepper[1]. (Right) pepper[[1]].

This same principle applies when you use 1D [ with a data frame:
df["x"] returns a one-column data frame, and df[["x"]] returns a
vector.

Exercises
1. What happens when you use [[ with a positive integer that’s bigger

than the length of the vector? What happens when you subset with a
name that doesn’t exist?

2. What would pepper[[1]][1] be? What about pepper[[1]]
[[1]]?



Apply Family
In Chapter 26, you learned tidyverse techniques for iteration like
dplyr::across() and the map family of functions. In this section,
you’ll learn about their base equivalents, the apply family. In this context,
apply and map are synonyms because another way of saying “map a
function over each element of a vector” is “apply a function over each
element of a vector.” Here we’ll give you a quick overview of this family so
you can recognize them in the wild.

The most important member of this family is lapply(), which is similar
to purrr::map().3 In fact, because we haven’t used any of map()’s
more advanced features, you can replace every map() call in Chapter 26
with lapply().

There’s no exact base R equivalent to across(), but you can get close by
using [ with lapply(). This works because under the hood, data frames
are lists of columns, so calling lapply() on a data frame applies the
function to each column.

df <- tibble(a = 1, b = 2, c = "a", d = "b", e = 4) 
 
# First find numeric columns
num_cols <- sapply(df, is.numeric)
num_cols
#>     a     b     c     d     e 
#>  TRUE  TRUE FALSE FALSE  TRUE 
 
# Then transform each column with lapply() then replace the 
original values
df[, num_cols] <- lapply(df[, num_cols, drop = FALSE], \(x) x * 
2)
df
#> # A tibble: 1 × 5
#>       a     b c     d         e
#>   <dbl> <dbl> <chr> <chr> <dbl>
#> 1     2     4 a     b         8

The previous code uses a new function, sapply(). It’s similar to
lapply(), but it always tries to simplify the result, which is the reason
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for the s in its name, here producing a logical vector instead of a list. We
don’t recommend using it for programming, because the simplification can
fail and give you an unexpected type, but it’s usually fine for interactive
use. purrr has a similar function called map_vec() that we didn’t mention
in Chapter 26.

Base R provides a stricter version of sapply() called vapply(), short
for vector apply. It takes an additional argument that specifies the expected
type, ensuring that simplification occurs the same way regardless of the
input. For example, we could replace the previous sapply() call with this
vapply() where we specify that we expect is.numeric() to return a
logical vector of length 1:

vapply(df, is.numeric, logical(1))
#>     a     b     c     d     e 
#>  TRUE  TRUE FALSE FALSE  TRUE

The distinction between sapply() and vapply() is really important
when they’re inside a function (because it makes a big difference to the
function’s robustness to unusual inputs), but it doesn’t usually matter in data
analysis.

Another important member of the apply family is tapply(), which
computes a single grouped summary:

diamonds |>  
  group_by(cut) |>  
  summarize(price = mean(price))
#> # A tibble: 5 × 2
#>   cut       price
#>   <ord>     <dbl>
#> 1 Fair      4359.
#> 2 Good      3929.
#> 3 Very Good 3982.
#> 4 Premium   4584.
#> 5 Ideal     3458. 
 
tapply(diamonds$price, diamonds$cut, mean)
#>      Fair      Good Very Good   Premium     Ideal 
#>  4358.758  3928.864  3981.760  4584.258  3457.542
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Unfortunately, tapply() returns its results in a named vector, which
requires some gymnastics if you want to collect multiple summaries and
grouping variables into a data frame (it’s certainly possible to not do this
and just work with free-floating vectors, but in our experience that just
delays the work). If you want to see how you might use tapply() or
other base techniques to perform other grouped summaries, Hadley has
collected a few techniques in a gist.

The final member of the apply family is the titular apply(), which works
with matrices and arrays. In particular, watch out for apply(df, 2,
something), which is a slow and potentially dangerous way of doing
lapply(df, something). This rarely comes up in data science
because we usually work with data frames and not matrices.

for Loops
for loops are the fundamental building block of iteration that both the
apply and map families use under the hood. for loops are powerful and
general tools that are important to learn as you become a more experienced
R programmer. The basic structure of a for loop looks like this:

for (element in vector) { 
  # do something with element
}

The most straightforward use of for loops is to achieve the same effect as
walk(): call some function with a side effect on each element of a list. For
example, in “Writing to a Database”, instead of using walk():

paths |> walk(append_file)

we could have used a for loop:

for (path in paths) { 
  append_file(path)
}

https://rdrr.io/r/base/tapply.html
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Things get a little trickier if you want to save the output of the for loop,
for example reading all of the Excel files in a directory like we did in
Chapter 26:

paths <- dir("data/gapminder", pattern = "\\.xlsx$", full.names = 
TRUE)
files <- map(paths, readxl::read_excel)

There are a few different techniques that you can use, but we recommend
being explicit about what the output is going to look like up front. In this
case, we’re going to want a list the same length as paths, which we can
create with vector():

files <- vector("list", length(paths))

Then instead of iterating over the elements of paths, we’ll iterate over
their indices, using seq_along() to generate one index for each element
of paths:

seq_along(paths)
#>  [1]  1  2  3  4  5  6  7  8  9 10 11 12

Using the indices is important because it allows us to link to each position
in the input with the corresponding position in the output:

for (i in seq_along(paths)) { 
  files[[i]] <- readxl::read_excel(paths[[i]])
}

To combine the list of tibbles into a single tibble, you can use do.call()
+ rbind():

do.call(rbind, files)
#> # A tibble: 1,704 × 5
#>   country     continent lifeExp      pop gdpPercap
#>   <chr>       <chr>       <dbl>    <dbl>     <dbl>
#> 1 Afghanistan Asia         28.8  8425333      779.
#> 2 Albania     Europe       55.2  1282697     1601.

https://rdrr.io/r/base/vector.html
https://rdrr.io/r/base/seq.html
https://rdrr.io/r/base/do.call.html
https://rdrr.io/r/base/cbind.html


#> 3 Algeria     Africa       43.1  9279525     2449.
#> 4 Angola      Africa       30.0  4232095     3521.
#> 5 Argentina   Americas     62.5 17876956     5911.
#> 6 Australia   Oceania      69.1  8691212    10040.
#> # … with 1,698 more rows

Rather than making a list and saving the results as we go, a simpler
approach is to build up the data frame piece by piece:

out <- NULL
for (path in paths) { 
  out <- rbind(out, readxl::read_excel(path))
}

We recommend avoiding this pattern because it can become slow when the
vector is long. This is the source of the persistent canard that for loops are
slow: they’re not, but iteratively growing a vector is.

Plots
Many R users who don’t otherwise use the tidyverse prefer ggplot2 for
plotting due to helpful features such as sensible defaults, automatic legends,
and a modern look. However, base R plotting functions can still be useful
because they’re so concise—it takes very little typing to do a basic
exploratory plot.

There are two main types of base plot you’ll see in the wild: scatterplots
and histograms, produced with plot() and hist(), respectively. Here’s
a quick example from the diamonds dataset:

# Left
hist(diamonds$carat) 
 
# Right
plot(diamonds$carat, diamonds$price)

https://rdrr.io/r/graphics/plot.default.html
https://rdrr.io/r/graphics/hist.html


Note that base plotting functions work with vectors, so you need to pull
columns out of the data frame using $ or some other technique.

Summary
In this chapter, we showed you a selection of base R functions useful for
subsetting and iteration. Compared to approaches discussed elsewhere in
the book, these functions tend to have more of a “vector” flavor than a “data
frame” flavor because base R functions tend to take individual vectors,
rather than a data frame and some column specification. This often makes
life easier for programming and so becomes more important as you write
more functions and begin to write your own packages.

This chapter concludes the programming section of the book. You made a
solid start on your journey to becoming not just a data scientist who uses R,
but a data scientist who can program in R. We hope these chapters have
sparked your interest in programming and that you’re looking forward to
learning more outside of this book.

1  Read the Selecting multiple elements section in Advanced R to see how you can also subset a
data frame like it is a 1D object and how you can subset it with a matrix.

https://oreil.ly/VF0sY


2  But it doesn’t handle grouped data frames differently, and it doesn’t support selection helper
functions like starts_with().

3  It just lacks convenient features such as progress bars and reporting which element caused the
problem if there’s an error.

https://tidyselect.r-lib.org/reference/starts_with.html


Part VI. Communicate

So far, you’ve learned the tools to get your data into R, tidy it into a form
convenient for analysis, and then understand your data through
transformation and visualization. However, it doesn’t matter how great your
analysis is unless you can explain it to others: you need to communicate
your results.

Figure VI-1. Communication is the final part of the data science process; if you can’t communicate
your results to other humans, it doesn’t matter how great your analysis is.

Communication is the theme of the following two chapters:

In Chapter 28, you will learn about Quarto, a tool for integrating prose,
code, and results. You can use Quarto for analyst-to-analyst
communication as well as analyst-to-decision-maker communication.
Thanks to the power of Quarto formats, you can even use the same
document for both purposes.

In Chapter 29, you’ll learn a little about the many other varieties of
outputs you can produce using Quarto, including dashboards, websites,
and books.



These chapters focus mostly on the technical mechanics of communication,
not the really hard problems of communicating your thoughts to other
humans. However, there are lot of other great books about communication,
which we’ll point you to at the end of each chapter.



Chapter 28. Quarto

Introduction
Quarto provides a unified authoring framework for data science, combining your code, its results, and your prose.
Quarto documents are fully reproducible and support dozens of output formats, such as PDFs, Word files,
presentations, and more.

Quarto files are designed to be used in three ways:

For communicating to decision-makers, who want to focus on the conclusions, not the code behind the
analysis

For collaborating with other data scientists (including future you!), who are interested in both your
conclusions and how you reached them (i.e., the code)

As an environment in which to do data science, as a modern-day lab notebook where you can capture not only
what you did but also what you were thinking

Quarto is a command-line interface tool, not an R package. This means that help is, by and large, not available
through ?. Instead, as you work through this chapter and use Quarto in the future, you should refer to the Quarto
documentation.

If you’re an R Markdown user, you might be thinking, “Quarto sounds a lot like R Markdown.” You’re not wrong!
Quarto unifies the functionality of many packages from the R Markdown ecosystem (rmarkdown, bookdown,
distill, xaringan, etc.) into a single consistent system as well as extends it with native support for multiple
programming languages such as Python and Julia in addition to R. In a way, Quarto reflects everything that was
learned from expanding and supporting the R Markdown ecosystem for a decade.

Prerequisites
You need the Quarto command-line interface (Quarto CLI), but you don’t need to explicitly install it or load it, as
RStudio automatically does both when needed.

Quarto Basics
This is a Quarto file—a plain-text file that has the extension .qmd:

--- 
title: "Diamond sizes" 
date: 2022-09-12 
format: html 
--- 
 
```{r} 
#| label: setup 
#| include: false 
 
library(tidyverse) 
 
smaller <- diamonds |>  
  filter(carat <= 2.5) 
``` 
 
We have data about `r nrow(diamonds)` diamonds. 
Only `r nrow(diamonds) - nrow(smaller)` are larger than 2.5 carats. 
The distribution of the remainder is shown below: 

https://oreil.ly/_6LNH


 
```{r} 
#| label: plot-smaller-diamonds 
#| echo: false 
 
smaller |>  
  ggplot(aes(x = carat)) +  
  geom_freqpoly(binwidth = 0.01) 
```

It contains three important types of content:

An (optional) YAML header surrounded by ---

Chunks of R code surrounded by ```

Text mixed with simple text formatting like # heading and _italics_

Figure 28-1 shows a .qmd document in RStudio with a notebook interface where code and output are interleaved.
You can run each code chunk by clicking the Run icon (it looks like a play button at the top of the chunk) or by
pressing Cmd/Ctrl+Shift+Enter. RStudio executes the code and displays the results inline with the code.

Figure 28-1. A Quarto document in RStudio. Code and output are interleaved in the document, with the plot output appearing right underneath the code.

If you don’t like seeing your plots and output in your document and would rather make use of RStudio’s Console
and Plots panes, you can click the gear icon next to Render and switch to Chunk Output in Console, as shown in
Figure 28-2.



Figure 28-2. A Quarto document in RStudio with the plot output in the Plots pane.

To produce a complete report containing all text, code, and results, click Render or press Cmd/Ctrl+Shift+K. You
can also do this programmatically with quarto::quarto_render("diamond-sizes.qmd"). This will
display the report in the viewer pane as shown in Figure 28-3 and create an HTML file.

Figure 28-3. A Quarto document in RStudio with the rendered document in the Viewer pane.

When you render the document, Quarto sends the .qmd file to knitr, which executes all of the code chunks and
creates a new Markdown (.md) document that includes the code and its output. The Markdown file generated by
knitr is then processed by pandoc, which is responsible for creating the finished file. Figure 28-4 shows this

https://oreil.ly/HvFDz
https://oreil.ly/QxUsn


process. The advantage of this two-step workflow is that you can create a very wide range of output formats, as
you’ll learn about in Chapter 29.

Figure 28-4. Diagram of Quarto workflow from qmd, to knitr, to md, to pandoc, to output in PDF, MS Word, or HTML formats.

To get started with your own .qmd file, select File > New File > Quarto Document… in the menu bar. RStudio
will launch a wizard that you can use to prepopulate your file with useful content that reminds you how the key
features of Quarto work.

The following sections dive into the three components of a Quarto document in more details: the Markdown text,
the code chunks, and the YAML header.

Exercises
1. Create a new Quarto document by selecting File > New File > Quarto Document. Read the instructions.

Practice running the chunks individually. Then render the document by clicking the appropriate button and
then by using the appropriate keyboard shortcut. Verify that you can modify the code, rerun it, and see
modified output.

2. Create one new Quarto document for each of the three built-in formats: HTML, PDF, and Word. Render each
of the three documents. How do the outputs differ? How do the inputs differ? (You may need to install LaTeX
to build the PDF output—RStudio will prompt you if this is necessary.)

Visual Editor
The visual editor in RStudio provides a WYSIWYM interface for authoring Quarto documents. Under the hood,
prose in Quarto documents (.qmd files) is written in Markdown, a lightweight set of conventions for formatting
plain-text files. In fact, Quarto uses Pandoc markdown (a slightly extended version of Markdown that Quarto
understands), including tables, citations, cross-references, footnotes, divs/spans, definition lists, attributes, raw
HTML/TeX, and more, as well as support for executing code cells and viewing their output inline. While
Markdown is designed to be easy to read and write, as you will see in “Source Editor”, it still requires learning
new syntax. Therefore, if you’re new to computational documents like .qmd files but have experience using tools
like Google Docs or MS Word, the easiest way to get started with Quarto in RStudio is the visual editor.

In the visual editor either you can use the buttons on the menu bar to insert images, tables, cross-references, etc., or
you can use the catch-all Cmd/Ctrl+/ shortcut to insert just about anything. If you are at the beginning of a line (as
shown in Figure 28-5), you can also enter just / to invoke the shortcut.

https://oreil.ly/nEiGf


Figure 28-5. Quarto visual editor.

Inserting images and customizing how they are displayed is also facilitated with the visual editor. Either you can
paste an image from your clipboard directly into the visual editor (and RStudio will place a copy of that image in
the project directory and link to it) or you can use the visual editor’s Insert > Figure/Image menu to browse to the
image you want to insert or paste its URL. In addition, using the same menu you can resize the image as well as
add a caption, alternative text, and a link.

The visual editor has many more features that we haven’t enumerated here that you might find useful as you gain
experience authoring with it.

Most importantly, while the visual editor displays your content with formatting, under the hood, it saves your
content in plain Markdown, and you can switch back and forth between the visual and source editors to view and
edit your content using either tool.

Exercises
1. Re-create the document in Figure 28-5 using the visual editor.

2. Using the visual editor, insert a code chunk using the Insert menu and then the insert anything tool.

3. Using the visual editor, figure out how to:



a. Add a footnote.

b. Add a horizontal rule.

c. Add a block quote.

4. In the visual editor, select Insert > Citation and insert a citation to the paper titled “Welcome to the Tidyverse”
using its digital object identifier (DOI), which is 10.21105/joss.01686. Render the document and observe how
the reference shows up in the document. What change do you observe in the YAML of your document?

Source Editor
You can also edit Quarto documents using the source editor in RStudio, without the assist of the visual editor.
While the visual editor will feel familiar to those with experience writing in tools like Google Docs, the source
editor will feel familiar to those with experience writing R scripts or R Markdown documents. The source editor
can also be useful for debugging any Quarto syntax errors since it’s often easier to catch these in plain text.

The following guide shows how to use Pandoc’s Markdown for authoring Quarto documents in the source editor:

## Text formatting 
 
*italic* **bold** ~~strikeout~~ `code` 
 
superscript^2^ subscript~2~ 
 
[underline]{.underline} [small caps]{.smallcaps} 
 
## Headings 
 
# 1st Level Header 
 
## 2nd Level Header 
 
### 3rd Level Header 
 
## Lists 
 
-   Bulleted list item 1 
 
-   Item 2 
 
    -   Item 2a 
 
    -   Item 2b 
 
1.  Numbered list item 1 
 
2.  Item 2. 
    The numbers are incremented automatically in the output. 
 
## Links and images 
 
<http://example.com> 
 
[linked phrase](http://example.com) 
 
![optional caption text](quarto.png){ 
  fig-alt="Quarto logo and the word quarto spelled in small case letters"} 
 
## Tables 
 
| First Header | Second Header | 
|--------------|---------------| 
| Content Cell | Content Cell  | 
| Content Cell | Content Cell  |

https://oreil.ly/I9_I7
https://oreil.ly/H_Xn-


The best way to learn these is simply to try them. It will take a few days, but soon they will become second nature,
and you won’t need to think about them. If you forget, you can get to a handy reference sheet with Help >
Markdown Quick Reference.

Exercises
1. Practice what you’ve learned by creating a brief résumé. The title should be your name, and you should

include headings for (at least) education or employment. Each of the sections should include a bulleted list of
jobs/degrees. Highlight the year in bold.

2. Using the source editor and the Markdown quick reference, figure out how to:

a. Add a footnote.

b. Add a horizontal rule.

c. Add a block quote.

3. Copy and paste the contents of diamond-sizes.qmd into a local R Quarto document. Check that you can
run it, and then add text after the frequency polygon that describes its most striking features.

4. Create a document in Google Docs or MS Word (or locate a document you have created previously) with
some content in it such as headings, hyperlinks, formatted text, etc. Copy the contents of this document and
paste it into a Quarto document in the visual editor. Then, switch to the source editor and inspect the source
code.

Code Chunks
To run code inside a Quarto document, you need to insert a chunk. There are three ways to do so:

Pressing the keyboard shortcut Cmd+Option+I/Ctrl+Alt+I

Clicking the insert button icon in the editor toolbar

Manually typing the chunk delimiters ```{r} and ```

We’d recommend you learn the keyboard shortcut. It will save you a lot of time in the long run!

You can continue to run the code using the keyboard shortcut that by now (we hope!) you know and love:
Cmd/Ctrl+Enter. However, chunks get a new keyboard shortcut, Cmd/Ctrl+Shift+Enter, which runs all the code in
the chunk. Think of a chunk like a function. A chunk should be relatively self-contained and focused around a
single task.

The following sections describe the chunk header that consists of ```{r}, followed by an optional chunk label
and various other chunk options, each on their own line, marked by #|.

Chunk Label
Chunks can be given an optional label:

 
```{r}
#| label: simple-addition 
 
1 + 1 
```

#> [1] 2

https://oreil.ly/Auuh2


This has three advantages:

You can more easily navigate to specific chunks using the drop-down code navigator in the bottom left of the
script editor:

Graphics produced by the chunks will have useful names that make them easier to use elsewhere. More on
that in “Figures”.

You can set up networks of cached chunks to avoid re-performing expensive computations on every run.
More on that in “Caching”.

Your chunk labels should be short but evocative and should not contain spaces. We recommend using dashes (-) to
separate words (instead of underscores, _) and avoiding other special characters in chunk labels.

You are generally free to label your chunk however you like, but there is one chunk name that imbues special
behavior: setup. When you’re in a notebook mode, the chunk named setup will be run automatically once,
before any other code is run.

Additionally, chunk labels cannot be duplicated. Each chunk label must be unique.

Chunk Options
Chunk output can be customized with options, fields supplied to the chunk header. Knitr provides almost 60
options that you can use to customize your code chunks. Here we’ll cover the most important chunk options that
you’ll use frequently. You can see the full list here.

The most important set of options controls if your code block is executed and what results are inserted in the
finished report:

eval: false

Prevents code from being evaluated. (And obviously if the code is not run, no results will be generated.) This is
useful for displaying example code, or for disabling a large block of code without commenting each line.

include: false

Runs the code but doesn’t show the code or results in the final document. Use this for setup code that you don’t
want cluttering your report.

echo: false

Prevents code, but not the results, from appearing in the finished file. Use this when writing reports aimed at
people who don’t want to see the underlying R code.

message: false or warning: false

Prevents messages or warnings from appearing in the finished file.

https://oreil.ly/38bld


results: hide

Hides printed output.

fig-show: hide

Hides plots.

error: true

Causes the render to continue even if code returns an error. This is rarely something you’ll want to include in
the final version of your report, but can be useful if you need to debug exactly what is going on inside your
.qmd. It’s also useful if you’re teaching R and want to deliberately include an error. The default, error:

false, causes rendering to fail if there is a single error in the document.

Each of these chunk options gets added to the header of the chunk, following #|. For example, in the following
chunk, the result is not printed since eval is set to false:

 
```{r}
#| label: simple-multiplication
#| eval: false 
 
2 * 2 
```

The following table summarizes which types of output each option suppresses:

 
 
 
 

Option Run Code Show Code Output Plots Messages Warnin
 
 

eval: false X  X X X X

include: fals

e

 X X X X X

echo: false  X     

results: hide   X    

fig-show: hid

e

   X   

message: fals

e

    X  

warning: fals

e

     X



Global Options
As you work more with knitr, you will discover that some of the default chunk options don’t fit your needs and
you want to change them.

You can do this by adding the preferred options in the document YAML, under execute. For example, if you are
preparing a report for an audience who does not need to see your code but only your results and narrative, you
might set echo: false at the document level. That will hide the code by default and show only the chunks you
deliberately choose to show (with echo: true). You might consider setting message: false and
warning: false, but that would make it harder to debug problems because you wouldn’t see any messages in
the final document.

title: "My report"
execute:
  echo: false

Since Quarto is designed to be multilingual (it works with R as well as other languages like Python, Julia, etc.), all
of the knitr options are not available at the document execution level since some of them work only with knitr and
not other engines Quarto uses for running code in other languages (e.g., Jupyter). You can, however, still set these
as global options for your document under the knitr field, under opts_chunk. For example, when writing
books and tutorials we set:

title: "Tutorial"
knitr:
  opts_chunk:
    comment: "#>"
    collapse: true

This uses our preferred comment formatting and ensures that the code and output are kept closely entwined.

Inline Code
There is one other way to embed R code into a Quarto document: directly into the text, with `r `. This can be
useful if you mention properties of your data in the text. For example, the example document used at the start of
the chapter had:

We have data about `r nrow(diamonds)` diamonds. Only `r nrow(diamonds) -
nrow(smaller)` are larger than 2.5 carats. The distribution of the remainder is shown below:

When the report is rendered, the results of these computations are inserted into the text:

We have data about 53940 diamonds. Only 126 are larger than 2.5 carats. The distribution of the remainder is
shown below:

When inserting numbers into text, format() is your friend. It allows you to set the number of digits so you
don’t print to a ridiculous degree of accuracy, and you can use big.mark to make numbers easier to read. You
might combine these into a helper function:

comma <- function(x) format(x, digits = 2, big.mark = ",")
comma(3452345)
#> [1] "3,452,345"
comma(.12358124331)
#> [1] "0.12"

Exercises

https://rdrr.io/r/base/format.html


1. Add a section that explores how diamond sizes vary by cut, color, and clarity. Assume you’re writing a report
for someone who doesn’t know R, and instead of setting echo: false on each chunk, set a global option.

2. Download diamond-sizes.qmd. Add a section that describes the largest 20 diamonds, including a table
that displays their most important attributes.

3. Modify diamonds-sizes.qmd to use label_comma() to produce nicely formatted output. Also
include the percentage of diamonds that are larger than 2.5 carats.

Figures
The figures in a Quarto document can be embedded (e.g., a PNG or JPEG file) or generated as a result of a code
chunk.

To embed an image from an external file, you can use the Insert menu in the Visual Editor RStudio and select
Figure/Image. This will pop open a menu where you can browse to the image you want to insert as well as add
alternative text or a caption to it and adjust its size. In the visual editor you can also simply paste an image from
your clipboard into your document and RStudio will place a copy of that image in your project folder.

If you include a code chunk that generates a figure (e.g., includes a ggplot() call), the resulting figure will be
automatically included in your Quarto document.

Figure Sizing
The biggest challenge of graphics in Quarto is getting your figures the right size and shape. There are five main
options that control figure sizing: fig-width, fig-height, fig-asp, out-width, and out-height.
Image sizing is challenging because there are two sizes (the size of the figure created by R and the size at which it
is inserted in the output document) and multiple ways of specifying the size (i.e., height, width, and aspect ratio:
pick two of three).

We recommend three of the five options:

Plots tend to be more aesthetically pleasing if they have consistent width. To enforce this, set fig-width:
6 (6”) and fig-asp: 0.618 (the golden ratio) in the defaults. Then in individual chunks, adjust only
fig-asp.

Control the output size with out-width and set it to a percentage of the body width of the output document.
We suggest out-width: "70%" and fig-align: center. That gives plots room to breathe, without
taking up too much space.

To put multiple plots in a single row, set layout-ncol to 2 for two plots, 3 for three plots, etc. Depending
on what you’re trying to illustrate (e.g., show data or show plot variations), you might also tweak fig-
width, as discussed next.

If you find that you’re having to squint to read the text in your plot, you need to tweak fig-width. If fig-
width is larger than the size the figure is rendered in the final doc, the text will be too small; if fig-width is
smaller, the text will be too big. You’ll often need to do a little experimentation to figure out the right ratio
between the fig-width and the eventual width in your document. To illustrate the principle, the following three
plots have fig-width of 4, 6, and 8, respectively:

https://oreil.ly/Auuh2


If you want to make sure the font size is consistent across all your figures, whenever you set out-width, you’ll
also need to adjust fig-width to maintain the same ratio with your default out-width. For example, if your
default fig-width is 6 and out-width is “70%” when you set out-width: "50%", you’ll need to set
fig-width to 4.3 (6 * 0.5 / 0.7).

Figure sizing and scaling is an art and science, and getting things right can require an iterative trial-and-error
approach. You can learn more about figure sizing in the “Taking Control of Plot Scaling” blog post.

Other Important Options
When mingling code and text, like in this book, you can set fig-show: hold so that plots are shown after the
code. This has the pleasant side effect of forcing you to break up large blocks of code with their explanations.

To add a caption to the plot, use fig-cap. In Quarto this will change the figure from inline to “floating.”

https://oreil.ly/EfKFq


If you’re producing PDF output, the default graphics type is PDF. This is a good default because PDFs are high-
quality vector graphics. However, they can produce large and slow plots if you are displaying thousands of points.
In that case, set fig-format: "png" to force the use of PNGs. They are slightly lower quality but will be
much more compact.

It’s a good idea to name code chunks that produce figures, even if you don’t routinely label other chunks. The
chunk label is used to generate the filename of the graphic on disk, so naming your chunks makes it much easier to
pick out plots and reuse them in other circumstances (e.g., if you want to quickly drop a single plot into an email).

Exercises
1. Open diamond-sizes.qmd in the visual editor, find an image of a diamond, copy it, and paste it into the

document. Double-click the image and add a caption. Resize the image and render your document. Observe
how the image is saved in your current working directory.

2. Edit the label of the code chunk in diamond-sizes.qmd that generates a plot to start with the prefix
fig- and add a caption to the figure with the chunk option fig-cap. Then, edit the text above the code
chunk to add a cross-reference to the figure with Insert > Cross Reference.

3. Change the size of the figure with the following chunk options, one at a time; render your document; and
describe how the figure changes.

a. fig-width: 10

b. fig-height: 3

c. out-width: "100%"

d. out-width: "20%"

Tables
Similar to figures, you can include two types of tables in a Quarto document. They can be Markdown tables that
you create in directly in your Quarto document (using the Insert Table menu), or they can be tables generated as a
result of a code chunk. In this section we will focus on the latter, tables generated via computation.

By default, Quarto prints data frames and matrices as you’d see them in the console:

mtcars[1:5, ]
#>                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2

If you prefer that data be displayed with additional formatting, you can use the knitr::kable() function. The
following code generates Table 28-1:

knitr::kable(mtcars[1:5, ], )

https://rdrr.io/pkg/knitr/man/kable.html


 
 

T
a
b
l
e 
2
8
-
1
. 
A
 
k
n
it
r 
k
a
b
l
e

 
 
 
 

 mpg cyl disp hp drat
 
 

Mazda RX4 21.0 6 160 110 3.90 2

Mazda RX4 
Wag

21.0 6 160 110 3.90 2

Datsun 710 22.8 4 108 93 3.85 2

Hornet 4 
Drive

21.4 6 258 110 3.08 3

Hornet 
Sportabout

18.7 8 360 175 3.15 3

Read the documentation for ?knitr::kable to see the other ways in which you can customize the table. For
even deeper customization, consider the gt, huxtable, reactable, kableExtra, xtable, stargazer, pander, tables, and
ascii packages. Each provides a set of tools for returning formatted tables from R code.

Exercises

https://rdrr.io/pkg/knitr/man/kable.html


1. Open diamond-sizes.qmd in the visual editor, insert a code chunk, and add a table with
knitr::kable() that shows the first five rows of the diamonds data frame.

2. Display the same table with gt::gt() instead.

3. Add a chunk label that starts with the prefix tbl- and add a caption to the table with the chunk option tbl-
cap. Then, edit the text above the code chunk to add a cross-reference to the table with Insert > Cross
Reference.

Caching
Normally, each render of a document starts from a completely clean slate. This is great for reproducibility, because
it ensures that you’ve captured every important computation in code. However, it can be painful if you have some
computations that take a long time. The solution is cache: true.

You can enable the knitr cache at the document level for caching the results of all computations in a document
using standard YAML options:

---
title: "My Document"
execute: 
  cache: true
---

You can also enable caching at the chunk level for caching the results of computation in a specific chunk:

 
```{r}
#| cache: true 
 
# code for lengthy computation... 
```

When set, this will save the output of the chunk to a specially named file on disk. On subsequent runs, knitr will
check to see if the code has changed, and if it hasn’t, it will reuse the cached results.

The caching system must be used with care, because by default it is based on the code only, not its dependencies.
For example, here the processed_data chunk depends on the raw-data chunk:

```{r} 
#| label: raw-data 
#| cache: true 
 
rawdata <- readr::read_csv("a_very_large_file.csv") 
``` 
 
```{r} 
#| label: processed_data 
#| cache: true 
 
processed_data <- rawdata |>  
  filter(!is.na(import_var)) |>  
  mutate(new_variable = complicated_transformation(x, y, z)) 
```

Caching the processed_data chunk means that it will get rerun if the dplyr pipeline is changed, but it won’t
get rerun if the read_csv() call changes. You can avoid that problem with the dependson chunk option:

https://rdrr.io/pkg/knitr/man/kable.html
https://gt.rstudio.com/reference/gt.html


```{r} 
#| label: processed-data 
#| cache: true 
#| dependson: "raw-data" 
 
processed_data <- rawdata |>  
  filter(!is.na(import_var)) |>  
  mutate(new_variable = complicated_transformation(x, y, z)) 
```

dependson should contain a character vector of every chunk that the cached chunk depends on. Knitr will update
the results for the cached chunk whenever it detects that one of its dependencies has changed.

Note that the chunks won’t update if a_very_large_file.csv changes, because knitr caching tracks
changes only within the .qmd file. If you want to also track changes to that file, you can use the cache.extra
option. This is an arbitrary R expression that will invalidate the cache whenever it changes. A good function to use
is file.mtime(): it returns when it was last modified. Then you can write:

```{r} 
#| label: raw-data 
#| cache: true 
#| cache.extra: !expr file.mtime("a_very_large_file.csv") 
 
rawdata <- readr::read_csv("a_very_large_file.csv") 
```

We’ve followed the advice of David Robinson to name these chunks: each chunk is named after the primary object
that it creates. This makes it easier to understand the dependson specification.

As your caching strategies get progressively more complicated, it’s a good idea to regularly clear out all your
caches with knitr::clean_cache().

Exercises
1. Set up a network of chunks where d depends on c and b, and both b and c depend on a. Have each chunk

print lubridate::now(), set cache: true, and then verify your understanding of caching.

Troubleshooting
Troubleshooting Quarto documents can be challenging because you are no longer in an interactive R environment,
and you will need to learn some new tricks. Additionally, the error could be due to issues with the Quarto
document itself or due to the R code in the Quarto document.

One common error in documents with code chunks is duplicated chunk labels, which are especially pervasive if
your workflow involves copying and pasting code chunks. To address this issue, all you need to do is to change
one of your duplicated labels.

If the errors are due to the R code in the document, the first thing you should always try is to re-create the problem
in an interactive session. Restart R, and then select “Run all chunks,” either from the Code menu, under the Run
region, or by pressing the keyboard shortcut Ctrl+Alt+R. If you’re lucky, that will re-create the problem, and you
can figure out what’s going on interactively.

If that doesn’t help, there must be something different between your interactive environment and the Quarto
environment. You’re going to need to systematically explore the options. The most common difference is the
working directory: the working directory of a Quarto is the directory in which it lives. Check the working directory
is what you expect by including getwd() in a chunk.

https://rdrr.io/r/base/file.info.html
https://oreil.ly/yvPFt
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Next, brainstorm all the things that might cause the bug. You’ll need to systematically check that they’re the same
in your R session and your Quarto session. The easiest way to do that is to set error: true on the chunk
causing the problem and then use print() and str() to check that settings are as you expect.

YAML Header
You can control many other “whole document” settings by tweaking the parameters of the YAML header. You
might wonder what YAML stands for: it’s “YAML Ain’t Markup Language,” which is designed for representing
hierarchical data in a way that’s easy for humans to read and write. Quarto uses it to control many details of the
output. Here we’ll discuss three: self-contained documents, document parameters, and bibliographies.

Self-Contained
HTML documents typically have a number of external dependencies (e.g., images, CSS style sheets, JavaScript,
etc.) and, by default, Quarto places these dependencies in a _files folder in the same directory as your .qmd
file. If you publish the HTML file on a hosting platform (e.g., QuartoPub), the dependencies in this directory are
published with your document and hence are available in the published report. However, if you want to email the
report to a colleague, you might prefer to have a single, self-contained, HTML document that embeds all of its
dependencies. You can do this by specifying the embed-resources option.

format:
  html:
    embed-resources: true

the resulting file will be self-contained, such that it will need no external files and no internet access to be
displayed properly by a browser.

Parameters
Quarto documents can include one or more parameters whose values can be set when you render the report.
Parameters are useful when you want to re-render the same report with distinct values for various key inputs. For
example, you might be producing sales reports per branch, exam results by student, or demographic summaries by
country. To declare one or more parameters, use the params field.

This example uses a my_class parameter to determine which class of cars to display:

--- 
format: html 
params: 
  my_class: "suv" 
--- 
 
```{r} 
#| label: setup 
#| include: false 
 
library(tidyverse) 
 
class <- mpg |> filter(class == params$my_class) 
``` 
 
# Fuel economy for `r params$my_class`s 
 
```{r} 
#| message: false 
 
ggplot(class, aes(x = displ, y = hwy)) +  
  geom_point() +  

https://rdrr.io/r/base/print.html
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  geom_smooth(se = FALSE) 
```

As you can see, parameters are available within the code chunks as a read-only list named params.

You can write atomic vectors directly into the YAML header. You can also run arbitrary R expressions by
prefacing the parameter value with !expr. This is a good way to specify date/time parameters.

params:
  start: !expr lubridate::ymd("2015-01-01")
  snapshot: !expr lubridate::ymd_hms("2015-01-01 12:30:00")

Bibliographies and Citations
Quarto can automatically generate citations and a bibliography in a number of styles. The most straightforward
way of adding citations and bibliographies to a Quarto document is using the visual editor in RStudio.

To add a citation using the visual editor, select Insert > Citation. Citations can be inserted from a variety of
sources:

DOI references

Zotero personal or group libraries.

Searches of Crossref, DataCite, or PubMed.

Your document bibliography (a .bib file in the directory of your document)

Under the hood, the visual mode uses the standard Pandoc Markdown representation for citations (e.g.,
[@citation]).

If you add a citation using one of the first three methods, the visual editor will automatically create a
bibliography.bib file for you and add the reference to it. It will also add a bibliography field to the
document YAML. As you add more references, this file will get populated with their citations. You can also
directly edit this file using many common bibliography formats including BibLaTeX, BibTeX, EndNote, and
Medline.

To create a citation within your .qmd file in the source editor, use a key composed of @ plus the citation identifier
from the bibliography file. Then place the citation in square brackets. Here are some examples:

 
Separate multiple citations with a `;`: Blah blah [@smith04; @doe99]. 
 
You can add arbitrary comments inside the square brackets:  
Blah blah [see @doe99, pp. 33-35; also @smith04, ch. 1]. 
 
Remove the square brackets to create an in-text citation: @smith04  
says blah, or @smith04 [p. 33] says blah. 
 
Add a `-` before the citation to suppress the author's name:  
Smith says blah [-@smith04].

When Quarto renders your file, it will build and append a bibliography to the end of your document. The
bibliography will contain each of the cited references from your bibliography file, but it will not contain a section
heading. As a result it is common practice to end your file with a section header for the bibliography, such as #
References or # Bibliography.

You can change the style of your citations and bibliography by referencing a citation style language (CSL) file in
the csl field:

https://oreil.ly/sxxlC
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bibliography: rmarkdown.bib
csl: apa.csl

As with the bibliography field, your CSL file should contain a path to the file. Here we assume that the CSL file is
in the same directory as the .qmd file. A good place to find CSL style files for common bibliography styles is the
official repository for citation styles.

Workflow
Earlier, we discussed a basic workflow for capturing your R code where you work interactively in the console and
then capture what works in the script editor. Quarto brings together the console and the script editor, blurring the
lines between interactive exploration and long-term code capture. You can rapidly iterate within a chunk, editing
and re-executing with Cmd/Ctrl+Shift+Enter. When you’re happy, you move on and start a new chunk.

Quarto is also important because it so tightly integrates prose and code. This makes it a great analysis notebook
because it lets you develop code and record your thoughts. An analysis notebook shares many of the same goals as
a classic lab notebook in the physical sciences. It:

Records what you did and why you did it. Regardless of how great your memory is, if you don’t record what
you do, there will come a time when you have forgotten important details. Write them down so you don’t
forget!

Supports rigorous thinking. You are more likely to come up with a strong analysis if you record your thoughts
as you go and continue to reflect on them. This also saves you time when you eventually write up your
analysis to share with others.

Helps others understand your work. It is rare to do data analysis by yourself, and you’ll often be working as
part of a team. A lab notebook helps you share not only what you’ve done but why you did it with your
colleagues or lab mates.

Much of the good advice about using lab notebooks effectively can also be translated to analysis notebooks. We’ve
drawn on our own experiences and Colin Purrington’s advice on lab notebooks to come up with the following tips:

Ensure each notebook has a descriptive title, an evocative filename, and a first paragraph that briefly
describes the aims of the analysis.

Use the YAML header date field to record the date you started working on the notebook:

date: 2016-08-23

Use ISO8601 YYYY-MM-DD format so that’s there no ambiguity. Use it even if you don’t normally write
dates that way!

If you spend a lot of time on an analysis idea and it turns out to be a dead end, don’t delete it! Write up a brief
note about why it failed and leave it in the notebook. That will help you avoid going down the same dead end
when you come back to the analysis in the future.

Generally, you’re better off doing data entry outside of R. But if you do need to record a small snippet of data,
clearly lay it out using tibble::tribble().

If you discover an error in a data file, never modify it directly, but instead write code to correct the value.
Explain why you made the fix.

Before you finish for the day, make sure you can render the notebook. If you’re using caching, make sure to
clear the caches. That will let you fix any problems while the code is still fresh in your mind.

https://oreil.ly/bYJez
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If you want your code to be reproducible in the long run (i.e., so you can come back to run it next month or
next year), you’ll need to track the versions of the packages that your code uses. A rigorous approach is to use
renv, which stores packages in your project directory. A quick and dirty hack is to include a chunk that runs
sessionInfo()—that won’t let you easily re-create your packages as they are today, but at least you’ll
know what they were.

You are going to create many, many, many analysis notebooks over the course of your career. How are you
going to organize them so you can find them again in the future? We recommend storing them in individual
projects and coming up with a good naming scheme.

Summary
This chapter introduced you to Quarto for authoring and publishing reproducible computational documents that
include your code and your prose in one place. You learned about writing Quarto documents in RStudio with the
visual or source editor, how code chunks work and how to customize options for them, how to include figures and
tables in your Quarto documents, and options for caching for computations. Additionally, you learned about
adjusting YAML header options for creating self-contained or parameterized documents as well as including
citations and a bibliography. We also gave you some troubleshooting and workflow tips.

While this introduction should be sufficient to get you started with Quarto, there is still a lot more to learn. Quarto
is still relatively young and is still growing rapidly. The best place to stay on top of innovations is the official
Quarto website.

There are two important topics that we haven’t covered here: collaboration and the details of accurately
communicating your ideas to other humans. Collaboration is a vital part of modern data science, and you can make
your life much easier by using version control tools, like Git and GitHub. We recommend Happy Git with R, a
user-friendly introduction to Git and GitHub from R users, by Jenny Bryan. The book is freely available online.

We have also not touched on what you should actually write to clearly communicate the results of your analysis.
To improve your writing, we highly recommend reading either Style: Lessons in Clarity and Grace by Joseph M.
Williams & Joseph Bizup (Pearson) or The Sense of Structure: Writing from the Reader’s Perspective by George
Gopen (Pearson). Both books will help you understand the structure of sentences and paragraphs and give you the
tools to make your writing clearer. (These books are rather expensive if purchased new, but they’re used by many
English classes, so there are plenty of cheap second-hand copies.) George Gopen also has a number of short
articles on writing. They are aimed at lawyers, but almost everything applies to data scientists too.

https://oreil.ly/_I4xb
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Chapter 29. Quarto Formats

Introduction
So far, you’ve seen Quarto used to produce HTML documents. This chapter
gives a brief overview of some of the many other types of output you can
produce with Quarto.

There are two ways to set the output of a document:

Permanently, by modifying the YAML header:

title: "Diamond sizes"

format: html

Transiently, by calling quarto::quarto_render() by hand:

quarto::quarto_render("diamond-sizes.qmd", output_format = 
"docx")

This is useful if you want to programmatically produce multiple types
of output since the output_format argument can also take a list of
values:

quarto::quarto_render( 
  "diamond-sizes.qmd", output_format = c("docx", "pdf")
)

Output Options
Quarto offers a wide range of output formats. You can find the complete list
on the Quarto documentation on all formats. Many formats share some
output options (e.g., toc: true for including a table of contents), but
others have options that are format specific (e.g., code-fold: true

https://oreil.ly/mhYNQ


collapses code chunks into a <details> tag for HTML output so the user
can display it on demand; it’s not applicable in a PDF or Word document).

To override the default options, you need to use an expanded format field.
For example, if you wanted to render an HTML document, with a floating
table of contents, you’d use:

format:
  html:
    toc: true
    toc_float: true

You can even render to multiple outputs by supplying a list of formats:

format:
  html:
    toc: true
    toc_float: true
  pdf: default
  docx: default

Note the special syntax (pdf: default) if you don’t want to override
any default options.

To render to all formats specified in the YAML of a document, you can use
output_format = "all":

quarto::quarto_render("diamond-sizes.qmd", output_format = "all")

Documents
The previous chapter focused on the default html output. There are several
basic variations on that theme, generating different types of documents. For
example:

pdf makes a PDF with LaTeX (an open-source document layout
system), which you’ll need to install. RStudio will prompt you if you
don’t already have it.



docx for Microsoft Word (.docx) documents.

odt for OpenDocument Text (.odt) documents.

rtf for Rich Text Format (.rtf) documents.

gfm for a GitHub Flavored Markdown (.md) document.

ipynb for Jupyter Notebooks (.ipynb).

Remember, when generating a document to share with decision-makers,
you can turn off the default display of code by setting global options in the
document YAML:

execute:
  echo: false

For HTML documents, another option is to make the code chunks hidden
by default but visible with a click:

format:
  html:
    code: true

Presentations
You can also use Quarto to produce presentations. You get less visual
control than with a tool like Keynote or PowerPoint, but automatically
inserting the results of your R code into a presentation can save a huge
amount of time. Presentations work by dividing your content into slides,
with a new slide beginning at each second (##) level header. Additionally,
first (#) level headers indicate the beginning of a new section with a section
title slide that is, by default, centered in the middle.

Quarto supports a variety of presentation formats, including:

revealjs

HTML presentation with revealjs



pptx

PowerPoint presentation

beamer

PDF presentation with LaTeX Beamer

You can read more about creating presentations with Quarto.

Interactivity
Just like any HTML document, HTML documents created with Quarto can
contain interactive components as well. Here we introduce two options for
including interactivity in your Quarto documents: htmlwidgets and Shiny.

htmlwidgets
HTML is an interactive format, and you can take advantage of that
interactivity with htmlwidgets, R functions that produce interactive HTML
visualizations. For example, take the leaflet map shown next. If you’re
viewing this page on the web, you can drag the map around, zoom in and
out, etc. You obviously can’t do that in a book, so Quarto automatically
inserts a static screenshot for you.

library(leaflet)
leaflet() |> 
  setView(174.764, -36.877, zoom = 16) |>  
  addTiles() |> 
  addMarkers(174.764, -36.877, popup = "Maungawhau") 

https://oreil.ly/Jg7T9


The great thing about htmlwidgets is that you don’t need to know anything
about HTML or JavaScript to use them. All the details are wrapped inside
the package, so you don’t need to worry about it.

There are many packages that provide htmlwidgets, including:

dygraphs for interactive time series visualizations

DT for interactive tables

threejs for interactive 3D plots

DiagrammeR for diagrams (like flow charts and simple node-link
diagrams)

To learn more about htmlwidgets and see a complete list of packages that
provide them, visit https://oreil.ly/lmdha.

Shiny
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https://oreil.ly/l3tFl
https://oreil.ly/LQZud
https://oreil.ly/gQork
https://oreil.ly/lmdha


htmlwidgets provide client-side interactivity—all the interactivity happens
in the browser, independently of R. That’s great because you can distribute
the HTML file without any connection to R. However, that fundamentally
limits what you can do to things that have been implemented in HTML and
JavaScript. An alternative approach is to use shiny, a package that allows
you to create interactivity using R code, not JavaScript.

To call Shiny code from a Quarto document, add server: shiny to the
YAML header:

title: "Shiny Web App"
format: html
server: shiny

Then you can use the “input” functions to add interactive components to the
document:

library(shiny) 
 
textInput("name", "What is your name?")
numericInput("age", "How old are you?", NA, min = 0, max = 150)

And you also need a code chunk with the chunk option context:
server, which contains the code that needs to run in a Shiny server.



You can then refer to the values with input$name and input$age, and
the code that uses them will be automatically rerun whenever they change.

We can’t show you a live Shiny app here because Shiny interactions occur
on the server side. This means you can write interactive apps without
knowing JavaScript, but you need a server to run them on. This introduces a
logistical issue: Shiny apps need a Shiny server to be run online. When you
run Shiny apps on your own computer, Shiny automatically sets up a Shiny
server for you, but you need a public-facing Shiny server if you want to
publish this sort of interactivity online. That’s the fundamental trade-off of
Shiny: you can do anything in a Shiny document that you can do in R, but it
requires someone to be running R.

To learn more about Shiny, we recommend reading Mastering Shiny by
Hadley Wickham.

Websites and Books
With a bit of additional infrastructure, you can use Quarto to generate a
complete website or book:

Put your .qmd files in a single directory. index.qmd will become
the home page.

Add a YAML file named _quarto.yml that provides the navigation
for the site. In this file, set the project type to either book or
website, e.g.:

project:

  type: book

For example, the following _quarto.yml file creates a website from
three source files: index.qmd (the home page), viridis-
colors.qmd, and terrain-colors.qmd.

https://oreil.ly/4Id6V


project: 
  type: website 
 
website: 
  title: "A website on color scales" 
  navbar: 
    left: 
      - href: index.qmd 
        text: Home 
      - href: viridis-colors.qmd 
        text: Viridis colors 
      - href: terrain-colors.qmd 
        text: Terrain colors

The _quarto.yml file you need for a book is similarly structured. The
following example shows how you can create a book with four chapters that
renders to three different outputs (html, pdf, and epub). Once again, the
source files are .qmd files.

project: 
  type: book 
 
book: 
  title: "A book on color scales" 
  author: "Jane Coloriste" 
  chapters: 
    - index.qmd 
    - intro.qmd 
    - viridis-colors.qmd 
    - terrain-colors.qmd 
 
format: 
  html: 
    theme: cosmo 
  pdf: default 
  epub: default

We recommend that you use an RStudio project for your websites and
books. Based on the _quarto.yml file, RStudio will recognize the type
of project you’re working on and add a Build tab to the IDE that you can
use to render and preview your websites and books. Both websites and
books can also be rendered using quarto::render().



Read more about Quarto websites and books.

Other Formats
Quarto offers even more output formats:

You can write journal articles using Quarto Journal Templates.

You can output Quarto documents to Jupyter Notebooks with
format: ipynb.

See the Quarto formats documentation for a list of even more formats.

Summary
In this chapter we presented you with a variety of options for
communicating your results with Quarto, from static and interactive
documents to presentations to websites and books.

To learn more about effective communication in these different formats, we
recommend the following resources:

To improve your presentation skills, try Presentation Patterns by Neal
Ford, Matthew McCollough, and Nathaniel Schutta. It provides a set of
effective patterns (both low- and high-level) that you can apply to
improve your presentations.

If you give academic talks, you might like “The Leek group guide to
giving talks”.

We haven’t taken it ourselves, but we’ve heard good things about Matt
McGarrity’s online course on public speaking.

If you are creating many dashboards, make sure to read Stephen Few’s
Information Dashboard Design: The Effective Visual Communication
of Data (O’Reilly). It will help you create dashboards that are truly
useful, not just pretty to look at.
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Effectively communicating your ideas often benefits from some
knowledge of graphic design. Robin Williams’s The Non-Designer’s
Design Book (Peachpit Press) is a great place to start.
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