Raspberry Pi

Pico

\/ (:((((:((((t((((t(
C -x>§
H nD D
C =
— = Ol

Bz e 3009
O ARAAAAR

. = : '@

p = ® q351008 uowow@ oo_m Id A4Jeqdsey
_I ARAAAARAAAARAAAANRA

Raspberry Pi Pico Tips and Tricks

Malcolm Maclean
This book is for sale at http://leanpub.com/rpitandt

This version was published on 2023-04-09

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

© 2022 - 2023 Malcolm Maclean

http://leanpub.com/rpitandt
https://leanpub.com/
https://leanpub.com/manifesto

Also By Malcolm Maclean

D3 Tips and Tricks v3.x

Leaflet Tips and Tricks

Raspberry Pi: Measure, Record, Explore.

Just Enough Linux

Just Enough Co-Authoring in Leanpub

Just Enough ownCloud on a Raspberry Pi

Just Enough Raspberry Pi

Just Enough Ghost on a Raspberry Pi

Just Enough Nagios on a Raspberry Pi

D3 Tips and Tricks v4.x

Never Enough Ice Cream

Raspberry Pi Computing: Temperature Measurement
Simply Leadership

Raspberry Pi Computing: Ultrasonic Distance Measurement
Raspberry Pi Computing: Analog Measurement
PiMetric: Monitoring using a Raspberry Pi
Raspberry Pi Computing: Gas Sensors

D3 Tips and Tricks v5.x

Raspberry Pi Computing: Monitoring with Prometheus and Grafana
You Gotta Eat

D3 Tips and Tricks v6.x

D3 Tips and Tricks v7.x

Asking for a Friend

https://leanpub.com/u/d3noob
https://leanpub.com/D3-Tips-and-Tricks
https://leanpub.com/leaflet-tips-and-tricks
https://leanpub.com/RPiMRE
https://leanpub.com/jelinux
https://leanpub.com/jeco-authoring
https://leanpub.com/jeocrpi
https://leanpub.com/jerpi
https://leanpub.com/jeghost
https://leanpub.com/jenagios
https://leanpub.com/d3-t-and-t-v4
https://leanpub.com/neverenoughicecream
https://leanpub.com/rpctemp
https://leanpub.com/simplyleadership
https://leanpub.com/rpcultra
https://leanpub.com/rpcanalog
https://leanpub.com/pimetric
https://leanpub.com/rpcgas
https://leanpub.com/d3-t-and-t-v5
https://leanpub.com/rpcmonitor
https://leanpub.com/yougottaeat
https://leanpub.com/d3-t-and-t-v6
https://leanpub.com/d3-t-and-t-v7
https://leanpub.com/askingforafriend

Contents

Introduction 1
Welcome! 1
What are we trying todo? 2
Who is this book for? 2
What will weneed? 2
Why on earth did I write this rambling tome? 3
Where can you get more information? 3

Microcontrollers vs Computers 4
Microcontrollers L 4
Computerso 4
What’s the difference toyou? 5

The Raspberry PiPico 7
The RP2040 Microcontroller Chip 7
The Raspberry Pi Pico W Microcontroller Board

Setup . . . 11
Hardware 11
Software 11
What is Thonny? 11
Install Thonny 12

MicroPython 14
What is MicroPython? 14
ConnectourPico L 14
Automatically Installing the Firmware 14
Manually Installing the Firmware 16
Updating Firmware 17
Usethe Shell 18
Blink theon-board LED 19
Automatically run your program 20

Connectivity 21
Connecting using Dupont Connectors 21
Connectivity via WiFi 23
General Purpose Input / Output (GPIO) 30

Inter-Integrated Circuit (I2C) 36

CONTENTS

Serial Peripheral Interface (SPT) 41
Reed Switches with the Raspberry PiPico 43
What is a Reed Switch? 43
The Magnetic Reed Switch 43
How do weread aswitch? 44
Connecting up the switchtothePico. 45
Code . . . 45
Controlling a Servo from the Raspberry PiPico 47
Whatis a Servo Motor? 47
How does a Servo Motor Work? 47
How is a Servo Motor Controlled? 48
Connecting Everything UptothePico 49
Code . . . e 50
Warning L 51
Controlling a Motor with the Raspberry PiPico 52
What are the principles of motor control? L 52
How will we implement it? 53
Connecting Up the motor controller and battery 56
Code . . .o 57
Using a Stepper Motor with a Raspberry PiPico 59
The Stepper Motor 59
The 28BYJ-48 .« o o o e e e e 61
Connecting the Pico to the controller tothe GY-521 61
Code 62
Connecting an SD Card to the Raspberry PiPico. 64
SD card adapter oradaptor.. 64
My personal SD Card adapter journey 64
Choose your Weapont 64
Install the SDCard Library. 65
Connect the SD Card Adapter 65
Code . . .o 66
Bonus Connection! 68
Connecting MQ Series Gas Detectors tothe Pico 69
The Sensor e 69
Connect Everything Up 70
Code . . . 71
Distance Measurement using Time of Flight Sensor 72
What is a Time Of Flight Sensor? 72
How does a Time Of Flight Sensor Work? 73
How is a Time Of Flight Sensor Controlled? 74

Connecting a Time Of Flight Sensor Up tothe Pico 74

CONTENTS

Code . . .o 76
Reading the on-board Temperature of a Raspberry PiPico 78
Aboutthe sensor 78
Code . . .o 79
Multiple Temperature Measurements 80
The DS18B20 Sensoro oot 80
Hardware required 81
Connecting everythingup 81
Code . . . 82
AHT10 Temperature and Relative Humidity 84
AHT10 Details 84
How is the AHT10 sensor accessed?, 85
Connecting the AHT10tothe Pico 85
Code . . .o 86
Motion Sensing with the Raspberry PiPico 88
Whatisa PIR Sensor? 88
How does a PIR Sensor Work? 88
HowdowereadaPIR? 92
Connecting UpaPIRtothePico 92
Code . . 93
Sensing vibration with a Raspberry PiPico 94
Vibration sensors 94
Piezoelectric vibration sensor 95
Connecting everythingup 96
Code . .o 96
Using an Inertial Measurement Unit IMU) withaPico 98
The IMU . . . e 98
The GY-521 IMU module using a MPU-6050 101
Connecting the GY-521 to the Raspberry PiPico 102
Code . . .o 102
Using an OLED Display attachedtoaPico. 105
The OLED Displayo 105
Connecting the Display tothe Pico 106
Loading the ssd1306 PyPImodule 106
Code . . o 107
Using a Dot-Matrix Display AttachedtoaPico. 110
The Dot-Matrix Display 110
How is the display accessed? 110
Connecting the Display tothe Pico 111

Code . .. 111

CONTENTS

Controlling addressable LEDs 114
What are addressable LEDs? 114
Connecting the addressable LEDs 118
How do we talk to our addressable LEDs? 119
Code . . .o 119

Using the Raspberry Pi Pico as a PrometheusNode 122
About Prometheus and Grafana 122
Using the Pico asan Exporter 122
Code . . .o 123

Sending an email from a Raspberry PiPicoW 129
The slightly tricky part of email. 129
The Code 130

Integrating a Real Time Clock (RTC) with a Raspberry PiPico. 132
Justwhatisa RTC? e 132
The RTCon a Raspberry PiPico. 132
The Code 133
What gives? My Pico appears to have accurate time already! 135

General Pico Tipsand Tricks 136

Universal LED Blink 136

Introduction

Welcome!

Hi there. Congratulations on getting your hands on this book. I hope that you're excited to
learning about using a Raspberry Pi Pico.

This will be a journey of discovery for both of us. By experimenting with microcontrollers we
will be learning about interfacing from the computing world to the physical world. Others have
written many fine words about doing this sort of thing, but I have an ulterior motive. I write
books to learn and document what I've done. The hope is that by sharing the journey others can
learn something from my efforts :-).

Am I ambitious? Maybe :-). But if you're reading this, I managed to make some headway. I dare
say that like other books I have written (or are currently writing) it will remain a work in progress.
They are living documents, open to feedback, comment, expansion, change and improvement.
Please feel free to provide your thoughts on ways that I can improve things. Your input would
be much appreciated.

You will find that I eschew a simple “Do this approach” for more of a story telling exercise. Some
explanations are longer and more flowery than might be to everyone’s liking, but there you go,
that’s my way :-).

There’s a lot of information in the book. There’s ‘stuff” that people with a reasonable understand-
ing of microcontrollers and programming will find excessive. Sorry about that. I have gathered
a lot of the content from other books I've written to create this guide. As a result, it is as full
of usable information as possible to help people who could be using the Pico and coding for the
first time.

I’'m sure most authors try to be as accessible as possible. I'd like to do the same, but be warned...
There’s a good chance that if you ask me a technical question I may not know the answer. So
please be gentle with your emails :-).

Email: d3noobmail+pico@gmail.com

Introduction 2

What are we trying to do?

Put simply, we are going to examine the wonder that is the Raspberry Pi Pico microcontroller
and use it to accomplish ‘stuff’.

Along the way we’ll;

« Look at the Raspberry Pi Pico and its history.

« We'll examine the difference between computers and microcontrollers and work out when
it might be better to use one over the other.

« Work out how to get software loaded onto the Pico.

« Write / install and configure our applications.

« Write some code to interface with the physical world.

« Explore just what our system can do for us.

Who is this book for?

You!

By getting hold of a copy of this book you have demonstrated a desire to learn, to explore and
to challenge yourself. That’s the most important criteria you will want to have when trying
something new. Your experience level will come second place to a desire to learn.

It will be useful to be comfortable using a standard desktop operating system. You should be
broadly comfortable with the concept of programming, but you needn’t have tried it before.
Before you learn anything new, it pretty much always appears indistinguishable from magic.
but once you start having a play, the mystery falls away.

What will we need?

Well, you could just read the book and learn a bit. By itself that’s not a bad thing, but trust me
when I say that actually experimenting with computers is fun and rewarding.

The list below is flexible in most cases and will depend on how you want to measure the values.

« A Raspberry Pi Pico. The standard Pico is okay, but I'm pretty much always going to be
using the wireless enabled version, the Pico W.

« A power supply for the Pico (almost any micro-USB charger will do the job).

« A remote computer (like your normal desktop PC) that you can use to program the Pico.

« An Internet connection for getting and updating the software.

As we work through the book we will be covering off the different aspects required and you
should get a good overview of what your options are in different circumstances.

Introduction 3

Why on earth did | write this rambling tome?

That’s a really good question. Writing the other books was an enjoyable process, so I thought
that I’d carry on and write more. This is my eighteenth (?, I lose track) book. So I suppose this a
‘thing’ I do now. Will this continue? Who knows, stay tuned...

Where can you get more information?

The Raspberry Pi as a concept has provided an extensible and practical framework for introduc-
ing people to the wonders of computing in the real world. At the same time there has been a
boom of information available for people to use them. The following is a far from exhaustive list
of sources, but from my own experience it represents a useful subset of knowledge.

raspberrypi.org’
Raspberry Pi Stack Exchange?

"https://www.raspberrypi.org/
*https://raspberrypi.stackexchange.com/questions?sort=newest

https://www.raspberrypi.org/
https://raspberrypi.stackexchange.com/questions?sort=newest
https://www.raspberrypi.org/
https://raspberrypi.stackexchange.com/questions?sort=newest

Microcontrollers vs Computers

You might be thinking to yourself, surely all this IT stuff is the same? Well... from the perspective
of it being a bunch of highly integrated electronics designed to automate instructions and actions,
you’re exactly right. But there are differences in complexity and scale that make some methods of
carrying out tasks more complex or more capable than another, and that is where the distinction
between microcontrollers and computers comes in.

Microcontrollers

Microcontrollers are compact integrated circuits designed to operate embedded in a larger system.
Typical microcontrollers include a microprocessor, memory, timers, input/output connections
and converters (Analog-to-digital (ADC) and digital-to-analog (DAC)) on a single chip.

They are often referred to as an embedded controllers and can be found in in a huge number
of different areas. They are basically simple computers designed to control small features of a
larger component, without a great deal of complexity.

They are typically designed with a specific task (or a limited subset of tasks) in mind and as such
they can be simpler to use, but less flexible about their application.

There are a wide range of different options for microcontrollers depending on the users
requirements. Strictly speaking, the microcontroller is the highly integrated chip that provides
the function on a board, but typically people will refer to them by the manufacturer or model
of the board that carries the chip. In that respect the leader of the pack would be the Arduino
series of boards. Praised for their simplicity and small size, they have a range of boards for many
applications. Some microcontrollers are so ubiquitous that the boards that they are part of are
more broadly referred to by their chip name such as those based on the ESP32 or the ESP8266.

One of the more recent entrants to the world of microcontrollers is the Raspberry Pi Foundation.
They have released their RP2040 microcontroller chip which has been distributed on their

Raspberry Pi Pico boards.

Raspberry Pi Pico W

Computers

Computers are complex devices that are typically comprised of separate microprocessors,
memory, bus’s and connectivity for peripheral devices. They are designed to be able to carry
out a wide range of tasks and they can vary in size and complexity from large examples which
can take up a room to everyday laptop and desktop machines or even our phones.

Microcontrollers vs Computers 5

The feature that they share is that they are collections of discrete circuits that are combined to
create a functioning unit. This provides them with greater flexibility so that things like more or
less memory can be simply added or a different operating system can be loaded. Like all things,
with that capability comes the burden of greater complexity and ultimately cost.

The Raspberry Pi foundation has been manufacturing small, single board computers since 2012
and as such they have come to be a market leader in the supply of small computer boards for
computer and electronic hobbyists.

Raspberry Pi 4 B

What's the difference to you?

It’s all very well knowing that there are these different things out there that look kind of similar
and act kind of the same, but which have a significant enough difference that people talk about
them in quite different ways. What you really want to know is what impact it has on you and
the application that you have in mind.

To my way of thinking the application is the first thing to consider when looking at a potential
technology direction to go down. Is this a simple application that won’t require a great deal of
complexity or change throughout it’s lifetime? In which case a microcontroller could be a good
direction. Or, is the application complex, demanding a high level of computing power or frequent
updating? In which case a computer could be a better option. There are even cases where either
could be viable.

The short answer is that there will always be so many considerations that need to be taken
into account that there can’t be a simple guide that can be used to make a decision on whether
to use a full blown computer or a microcontroller for a job. The good news is that that piece
of information allows us to understand how to approach the problem. In other words, there is
unlikely to be a bad decision to make, just different decisions.

That’s where we come full circle here. I'm writing this book so that I can understand the practical
use of microcontrollers in a better way. I understand the theory of why they have advantages
and disadvantages, but I haven’t really used them in a serious way. I recognise that I need to
explore their capabilities and learn more about them so that I can make better decisions about
where I could better use a computer over a microcontroller. Hopefully if you're reading this book,
you’re on a similar journey.

The picture below shows a Raspberry Pi Pico W microcontroller board on the left and a Raspberry
Pi 4B computer on the right. They are shown to scale to illustrate their equivalent size, but that’s

Microcontrollers vs Computers

pretty much where the ease of comparison ends.

L

Raspberry Pi Pico W and 4 B to Scale Relative to Each Other

The Raspberry Pi Pico

The raspberry Pi Pico is a microcontroller board initially released by the Raspberry Pi Foundation
as the ‘Raspberry Pi Pico’ in 2021. It is a board based around the in-house designed microcon-
troller chip the RP2040.

The RP2040 Microcontroller Chip

Raspberry Pi Pico Pinout

The RP2040 is the first microcontroller released by the Raspberry Pi Foundation. It was designed
to deliver high performance, low power consumption and a wide variety of input / output
options to provide beginner and hobbyist users with access to a modern and capable option
for microcontroller based circuit boards.

It’s key features are;

« A Dual ARM Cortex-M0+ running at 133MHz

« 264kB on-chip SRAM in six independent banks

« Support for up to 16MB of off-chip Flash memory via dedicated QSPI bus

« A Direct Memory Access (DMA) controller

« Fully-connected AMBA High-performance Bus (AHB) crossbar

« Interpolator and integer divider peripherals

+ On-chip programmable LDO to generate core voltage

« 2 on-chip Phase Locked Loops (PLLs) to generate USB and core clocks

« 30 General Purpose Input Output (GPIO) pins, 4 of which can be used as analogue inputs

It includes peripheral interconnects in the form of;

The Raspberry Pi Pico 8

« 2 Universal Asynchronous Receiver/Transmitters (UARTS)

« 2 Serial Peripheral Interface (SPI) controllers

« 2 Inter-Integrated Circuit (I2C) controllers

« 16 Pulse-width modulation (PWM) channels

« A USB 1.1 controller with host and device support

« 8 Programmable Input/Output (PIO) state machines (PIO allows you to create additional
hardware interfaces, or even new types of interfaces)

The chip can be purchased separately and has been incorporated into a number of different
boards manufactured by organisations such as Arduino, Pimoroni, Adafruit, Sparkfun and Lone
Dynamics. But arguably the most obvious board manufacturer is the Raspberry Pi Foundation
itself.

The Raspberry Pi Pico W Microcontroller Board

At the end of January 2021, the Raspberry Pi Foundation announced the Raspberry Pi Pico as it’s
first foray into the world of microcontrollers. The following year the Pico W was released that
added (amongst other things) wireless functionality. The description below and pretty much any
examples I describe will be using the Pico W.

The board includes the following features;

« 21 mm x 51 mm form factor

« RP2040 microcontroller chip designed by Raspberry Pi in the UK

« 2MB on-board QSPI flash

« 2.4GHz 802.11n wireless LAN option

« Micro USB B port for power and data (and for reprogramming the flash)

« 26 multifunction GPIO pins, including 3 analogue inputs

« 2 x UART, 2 x SPI controllers, 2 x I2C controllers, 16 x PWM channels

« 12-bit 500ksps analogue to digital converter (ADC)

« 1 x USB 1.1 controller and PHY, with host and device support

« 8 x Programmable I/O (PIO) state machines for custom peripheral support

« Supported input power 1.8-5.5V DC and several options for powering the unit from micro
USB, external supplies or batteries

« The castellated module allows soldering direct to carrier boards

« Drag-and-drop programming using mass storage over USB

« Low-power sleep and dormant modes

« Accurate on-chip clock

« Temperature sensor

« Accelerated integer and floating-point libraries on-chip

The Pico provides minimum of external circuitry to support the RP2040 chip: flash memory,
a crystal, power supplies and decoupling, and USB connector. Four RP2040 I/O are used for
internal functions: driving an LED, on-board switch mode power supply (SMPS) power control,
and sensing the system voltages. The Pico W has an on-board 2.4GHz wireless interface using

The Raspberry Pi Pico 9

802.11n. The antenna is an onboard antenna formed as a resonant cavity by etching away copper
on each layer of the PCB structure. The wireless interface is connected via SPI to the RP2040.

All in all the Raspberry Pi Pico established itself as an immediate realistic option for users of
microcontrollers around the World. This in itself is a difficult thing in a dynamic market saturated
with options.

Pinout

The Pico W has been designed to make available as much of the RP2040 functionality as possible.

Raspberry Pi Pico W Pinout

Apart from GPIO and ground pins, there are seven other pins on the main 40-pin interface;

PIN40 VBUS is the micro-USB input voltage, connected to micro-USB port pin 1. This is
nominally 5V.

PIN39 VSYS is the main system input voltage, which can vary in the allowed range 1.8V to
5.5V.

PIN37 3V3_EN connects to the on-board SMPS enable pin, and is pulled high (to VSYS) via
a 100k< resistor. To disable the 3.3V (which also powers off the RP2040), short this pin low.
PIN36 3V3 is the main 3.3V supply to RP2040 and its I/O, generated by the on-board SMPS.
This pin can be used to power external circuitry. It is recommended to keep the load on this
pin under 300mA.

PIN35 ADC_VREF is the ADC power supply (and reference) voltage, and is generated on
Pico W by filtering the 3.3V supply. This pin can be used with an external reference if better
ADC performance is required.

PIN33 AGND is the ground reference for GP1026-29. There is a separate analogue ground
plane running under these signals and terminating at this pin. If the ADC is not used or
ADC performance is not critical, this pin can be connected to digital ground.

PIN30 RUN is the RP2040 enable pin, and has an internal (on-chip) pull-up resistor to 3.3V
of about ~50kQ. To reset RP2040, short this pin low.

There is a pdf of the pinout available as an extra when you download the book from Leanpub®.
I recommend at the least printing out page size copy to have on the bench beside you when
working or have it printed to poster size for the wall!

*https://leanpub.com/rpitandt

https://leanpub.com/rpitandt
https://leanpub.com/rpitandt

The Raspberry Pi Pico 10

Powering the Pico

There are three main ways we can apply power to the Raspberry Pi Pico. The method used will
depend on our application. We can power Raspberry Pi Pico from one of the following;

« The micro USB connector on the device
« The VBUS pin (40)
« The VSYS pin (39).

Powering from the USB connector is by far and away the simplest method, but not always
desirable because of limitations of space or supply types.

If we provide a supply to the VBUS pin our Raspberry Pi Pico can take a voltage of between 1.8
and 5.5V, as it has an internal buck-boost regulator (which can regulate the output to a higher or
lower voltage than its input). This will internally power VSYS via a Schottky diode, but we must
be sure not to connect another power supply to Raspberry Pi Pico’s USB connector at the same
time.

The VSYS pin is the main system power supply on Raspberry Pi Pico. From here the Raspberry
Pi Pico generates its own 3.3V supply which is used to power RP2040, and also the 3V3 output
pin (36). A safe way to add a second power source to Pico W is to feed it into VSYS via another
Schottky diode. This will ‘OR’ the two voltages, allowing the higher of either the external voltage
(or VBUS) to power VSYS, with the diodes preventing either supply from back-powering the
other.

Set up

Setting up our Raspberry Pi Pico for first use is a fairly simple task and I suggest that we should
approach it as an exercise in just getting going without too much of an eye to the future.

By that [mean that we should aim to get up and operating with a running program on the
Pico. We'll ignore any plans for connecting peripherals or preparing for installing the device
somewhere separate. Our only aim is to get it working and along the way establish how easy it
is. We do this so that we can break down any mystique about the process being difficult. This
way, if we have a problem, we can work through it with a minimum of complexity.

Our aim therefore is to connect our Raspberry Pi Pico install “Thonny’ (which is the programming
environment we will use to interact with the Pico) and write a MicroPython program to blink
the onboard LED. This is a pretty common example program and should serve to demonstrate
that we can get things up and running and from there we can think about more complicated
adventures.

Hardware

The hardware requirements are pretty minimal. We will want the following;

« A Raspberry Pi Pico (I will strongly recommend a Pico W and there’s no need to solder any
headers onto the board just yet)

« A computer that can run the Thonny Integrated Development Environment (IDE). Pretty
much all will be able to.

« A micro USB cable to connect between the Pico and the computer

« A 5V micro USB power source (optional, but cool if we want to demonstrate the Pico
running independently from the computer)

Software

The project will guide you through the installation of:

+ The Thonny Python IDE
 MicroPython firmware for Raspberry Pi Pico

What is Thonny?

Thonny* is a simple Integrated Development Environment (IDE) that is designed to be the logical
interface between you (the programmer) and the Pico. This is the application where your can

“https://thonny.org/

https://thonny.org/
https://thonny.org/

Set up 12

write you code, run it and see the output (and any errors!). IDE’s can be incredibly complex
systems that support advanced software development. Thonny is designed for beginners who
want to use Python and as such it will more than adequately serve to get us started. It’s also
Open Source and as such there are few limitations on getting hold of a copy for use.

Install Thonny

To get hold of the software, go to the official Thonny web site and click on the ‘Download’
button. That will list out the different options that you can choose from depending on the type of
computer you are going to be using. Follow the instructions and you will have Thonny installed
in a couple of minutes. Open it up.

T Thonny - <untitied> @ 1:1 = B %
File Edit View Run Tools Help

JZHd O% S -

<untitled>

Shell

>>>

Local Python 3 « Thonny's Python

Thonny Start

The basic Thonny interface as shown provides us with a code editor in the top section, where
we will write all of your code. The bottom half is our ‘Shell’, where we will see any output when
we run our code.

In the classic manner of programmers everywhere we can test that things are working correctly
by writing a ‘Hello World” program.

Type the following into the code editor;
print("Hello World")

Then press the ‘Run Script’ button (or press F5).

Set up 13

T Thonny - <untitied> @ 1:21 SNACEl X
File Edit View Run Tools Help

1 d O% S -

<untitled> *

print("Hello World ")|

Shell

>>>

Hello World

23>

Local Python 3 + Thonny's Python

Hello World

In the shell section of Thonny we should see that the program has run and it has printed out the
phrase ‘Hello World’! Congratulations! You're a programmer! Although perhaps we shouldn’t
get ahead of ourselves ;-).

To get a feel for how Thonny can help us out, deliberately break your Hello World program by
deleting one of the parenthesis. When we press run again, we should be presented with feedback
in the shell that there in an error in the code and it should even provide some indication of where
in the code it has occurred. Have a bit of a play and see what changes you can make to both break
and expand the code.

What we have been doing above is writing Python code and having it run on our desktop. Now
we’re now ready to move on to the next step and connect our Raspberry Pi Pico to Thonny and
have the code run on the Pico.

MicroPython

What is MicroPython?

MicroPython is a programming language that is an implementation of the core of Python 3 and
includes a small subset of the Python standard library. The simplicity of the Python programming
language makes it an excellent choice for beginners who are new to programming and hardware.
However, in spite of its name, MicroPython is reasonably full-featured and supports most of
Python’s syntax so if you’re comfortable with Python you will be in familiar territory.

MicroPython is optimised for microcontrollers and microcomputers. It is a firmware solution
designed to run in constrained environments while allowing a small subset of standard libraries
into embedded programming.

MicroPython firmware can run in a footprint of 256 Kilobytes and 16 Kilobytes of RAM. The
means we can write clean and simple Python code to control hardware instead of having to use
complex low-level languages like C.

So let’s get started!

Connect our Pico

(2022-09-23) the Raspberry Pi Pico W is so new that the firmware (which includes
MicroPython) for it needs to be applied manually (instructions below), but for the
standard Pico, they are nice and automatic (also described below). This means that
these instructions will change as firmware options change. Wherever practical, using
the default firmware would be the preference, but where necessary, don’t be concerned
about applying the firmware manually. It’s really easy to do.

o This portion of the exercise in getting our Pico working will change over time. Currently

Automatically Installing the Firmware

With Thonny running, connect the Pico to the computer via the cable with the micro USB
connector.

In Thonny go to Tools > Options and click on the Interpreter tab. From the interpreter dropdown
list select MicroPython (Raspberry Pi Pico).

MicroPython 15

Thonny options v oA X

General Interpreter | Editor | Theme & Font | Run & Debug | Terminal | Shell | Assistant |

Which interpreter or device should Thonny use for running your code?

The same interpreter which runs Thonny (default) v

'The same interpreter which runs Thonny (default)
Alternative Python 3 interpreter or virtual environment
Remote Python 3 (SSH)

MicroPython (local)

MicroPython (SSH)

MicroPython (BBC microbit)

MicroPython (Raspberry Pi Pico) S
MicroPython (ESP32)

MicroPython (ESP8266)

MicroPython (generic)

CircuitPython (generic)

A special virtual environment (deprecated)

‘ oK H Cancel ‘

Selecting MicroPython for the Pico

The firmware update dialogue box will open.

Install MicroPython firmware for Raspberry Pi Pico

Here you can install or update MicroPython firmware on Raspberry Pi Pico.
1. Flug in your Pico while holding the BOOTSEL button.
2. Wait until device information appears.

3. Click 'Install’.

When the process finishes, your Pico will be running the latest version of
MicroPython. Close the dialog and start programming!

Version to be installed: v1.19.1 (2022-06-18)
Target device location: /media/pi/RPI-RP2
Target device model: Raspberry Pi RP2

Install Cancel

Pico Firmware Update

Click on ‘Install’ and once complete we should see the notification in the lower right hand side
of the Thonny application indicating that we are running MicroPython on the Raspberry Pi Pico.

MicroPython 16

Thonny - /home/pi/Documents/hello.py @ 1:22

File Edit View Run Tools Help
g O o
hello.py

1 print('Hello World!') I

Shell x

-
> ‘
R

>>>

MicroPython (Raspberry Pi Pico)

MicroPython on the Pico

Manually Installing the Firmware

Because the Pico W is quite new at time of writing (2022-09-03), we need to be using the latest
unstable version of the firmware for it to operate to it’s full potential (at least for the moment).

To load that firmware, download the latest firmware from here®.

Then, with the Pico W disconnected from the Pi, press the BOOTSEL button (on the Pico) and
plug in the Pico while holding the button down.

! ; P A NS
RaspberryPi Picol (©202° BOOTSEL a §
vy 05

g ! B lLAl

Pico BOOTSEL Button

Then release the BOOTSEL button. This will make the Pico act like a mass storage device.

*https://micropython.org/download/rp2- pico- w/rp2-pico-w-latest.uf2

https://micropython.org/download/rp2-pico-w/rp2-pico-w-latest.uf2
https://micropython.org/download/rp2-pico-w/rp2-pico-w-latest.uf2

MicroPython 17

Removable medium is inserted

— Removable medium is inserted

Type of medium: removable disk

Please select the action you want to perform:

& Open in File Manager

Cancel OK

Pico Connected to the Raspberry Pi

Copy the unstable firmware onto the Pico (just drag it and drop it). Wait for a moment and it
will install itself. Once completed, we should see a very modern version of the firmware noted
in the Thonny Shell.

Updating Firmware

Because the firmware for the Pico will improve over time, it’s generally a good thing to have it’s
firmware updated to the most recent version.

To do this, on the Thonny menu go to Tools >> Options and then select the ‘Interpreter’ tab

Thonny options v oA X

General Interpreter ‘ Editor ‘ Theme & Font | Run & Debug |Termina| ‘ Shell |Assistant |

Which interpreter or device should Thonny use for running your code?
| MicroPython (Raspberry Pi Pico) H

Details

Connect your device to the computer and select corresponding port below

(look for your device name, "USB Serial” or "UART").

If you can't find it, you may need to install proper USB driver first.

Port

|< Try to detect port automatically > H

Install or update firmware

‘ 0K H Cancel ‘

Pico Connected to the Raspberry Pi

MicroPython 18

Assuming that we have the correct device selected, select the ‘Install or update firmware’ link.

The firmware update dialogue box will open.

Install MicroPython firmware for Raspberry Pi Pico v oA X

Here you can install or update MicroPython firmware on Raspberry Pi Pico.

1. Plug in your Pico while holding the BOOTSEL button.
2. Wait until device information appears.
3. Click 'Install’.

When the process finishes, your Pico will be running the latest version of
MicroPython. Close the dialog and start programming!

Version to be installed: v1.19.1 (2022-06-18)
Target device location: /media/pi/RPI-RP2
Target device model: Rasphberry Pi RP2

Install Cancel

Pico Firmware Update

Follow the instructions to plug in the Pico while holding the BOOTSEL button. Once the device
information appears (or at the least, the ‘Install’ button isn’t greyed out), click on ‘Install’.

The firmware should be automatically copied from MicroPython.org and installed. I have had
an error occur (‘socket.timeout’) in the past, but I just simply clicked on ‘Install’ again and it
proceeded without problem.

Close the Options dialog box and press the ‘Stop / Reset’ button on Thonny and we should see
our new version of MicroPython displayed at the bottom of the Shell.

Use the Shell

Now we have our Pico connected to our computer and the MicroPython (Raspberry Pi Pico)
interpreter in use on Thonny.

This means we can type commands directly into the Shell and have them run on our Pico.
Now we are going to get a little more practical :-).

MicroPython uses hardware-specific modules, such as one called machine, that we can use to
program our Pico.

In MicroPython (and Python), modules are just files with the ‘.py’ extension containing
other MicroPython code that can be imported inside another MicroPython Program.

We can consider a module to be the same as a code library or a file that contains a set
of functions that we want to include in our application. They act as a mechanism to
simplify code and to make common functions modular (hence ‘module’).

MicroPython 19

We can create a machine.Pin object to correspond with the on-board LED, which, on the Pico W
can be accessed using the reference LED in code.

The LED on the original Pico corresponds with GPIO pin 25, but this was changed to be
connected to one of the GPIO pins from the wireless chip (CYW43439) on the Pico W.
You will see tutorials mention GPIO 25 for the Pico, but LED as the designator in code on
the Pico W. All of our examples will be using the Pico W, but if you want to adapt any
of the code samples for the Pico, just change ‘LED’ for 25.

If you set the value of the LED to 1, it turns on.

Enter the following code in the Thonny editor pane, making sure that we press ‘Enter’ after each
line.

from machine import Pin
led = Pin('LED', Pin.OUT)
led.value(1)

If we then press the Run’ icon, a dialog box will come up asking where we want to save our
code. This time we’re going to save it to the Pico.

This computer

Raspberry Pi Pico

Pico Firmware Update

Give the code an appropriate name like led.py and save it. It’s important that we use the file
extension ‘py’ as this is what will help the Pico determine how to operate the file.

We should now see the on-board LED light up! Our code has had an effect on the physical world!!!
Edit the code to set led.value to 0 and press the run icon again’ This should turn the LED off.
Turn the LED on and off as many times as you like. Go on. You deserve it :-).

But really... That’s a pretty manual process right? Time to automate!

Blink the on-board LED

It’s time to write a MicroPython program to blink the on-board LED on and off.
Click in the main editor pane of Thonny.

Enter the following code to toggle the LED.

MicroPython 20

from machine import Pin

import time
led = Pin('LED', Pin.OUT)

while (True):
led.toggle()
time.sleep(.2)

Click the Run button to run/save your code. Again, save onto the Pico and a file name like
blink.py seems appropriate

We should see the on-board LED turn on and off until we click the Stop button.

Now we're really starting to cook. But we can do better! Let’s make the led start blinking
automatically whenever the Pico is powered on.

Automatically run your program

If you want to run your Raspberry Pi Pico without it being attached to a computer, you need to
use a power supply that will conform to the details we laid out earlier for connecting to power.
By far and away the easiest method is to simply use a USB power plug.

To automatically run a MicroPython program, all we need to do is save it to the device with
the name main.py. Whenever the Pico is powered up, if it sees a file named ‘main.py’ it will
automatically start it up.

With our blink.py program in Thonny, go to File >> Save as... Select the Raspberry Pi Pico as the
location to save to and name our file main.py.

You can now disconnect our Raspberry Pi Pico from your computer and use a micro USB cable
to connect it to a mobile power source, such as a battery pack or a wall-wart.

Once connected, the main.py file should run automatically and our LED will blink!

This is a pretty cool moment because it puts together a bunch of different capabilities that open
up a