
Implementing
C#ll

.NET 7.0
and

Implementing
C# 11 and .NET 7.0

Learn how to build cross-platform
apps with .NET Core

Fiodar Sazanavets

www.bpbonline.com

http://www.bpbonline.com

ii

Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor BPB Online or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, BPB Online cannot guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork
119 Marylebone Road
London NW15PU

UK I UAE I INDIA I SINGAPORE

ISBN 978-93-55513-281

wwwbnbnnlinp mm

Hi

iv ■

About the Author

Fiodar Sazanavets is a Microsoft MVP (Most Valuable Professional) and a senior
software engineer with over a decade of professional experience. He primarily
specializes in .NET and Microsoft stack. He is enthusiastic about creating well-
crafted software that fully meets business needs. He enjoys teaching aspiring
developers and sharing his knowledge with the developers' community.

Throughout his career, he has built software of various types and various levels
of complexity in multiple industries. This includes a passenger information
management system for a railway, distributed smart clusters of loT devices,
e-commerce systems, financial transaction processing systems, and more.

About the Reviewers

❖ Vache Chek is currently a senior software engineer with a specialization in
backend and cloud computing.

Science and technology have been a constant source of fascination for him since
his teenage years, when he began programming as a hobby on his Commodore
64 at the age of 13. Over time, his passion for programming grew, and he
eventually pursued it as a career. Despite being self-taught, he has found that
the most effective way to enhance his skills is by sharing his knowledge with
others.

❖ Kratika Jain is an Enthusiastic Senior Software Developer eager to contribute
to team success through hard work, attention to detail, and excellent
organizational skills in leading and managing multiple projects while
ensuring code quality, security, design pattern, and test cases with continuous
integration build processes. She has participated in Agile project management
and developed backend applications using , MVC, .NET CORE, Entity
Framework, SQL server, and knowledge of software patterns and practices.

Asp.NET

Asp.NET

vi

Acknowledgement

I want to thank all the people who have supported and mentored me throughout
my career. This includes Dikaios Papadogkonas, Vache Chek, Ian Turner, Paul
Eccleston, Frank Lawrence, and all the other people I have worked or collaborated
with.

vii

Preface

Welcome to this book about C# 11 and .NET 7! If you are a software developer,
you have probably heard of C# and .NET, and you may have used them to create
desktop, web, or mobile applications. C# is a modern, object-oriented programming
language developed by Microsoft, while .NET is a powerful and flexible software
framework for building applications for Windows, Linux, macOS, and other
platforms.

This book is intended for developers who want to learn the latest features and
enhancements in C# 11 and .NET 7. Whether you are a beginner or an experienced
programmer, this book will provide you with the knowledge and skills you need
to take advantage of the latest developments in C# and .NET.

In this book, you will learn about the new language features in C# 11, such as
raw literal strings, improved date handling, and using generic maths. You will
also discover the new APIs and improvements in .NET 7, such as a more intuitive
command line interface, new functionality in the core libraries, and new project
templates.

Moreover, this book will guide you through the development of practical
applications using C# 11 and .NET 7. You will learn how to create web applications
using ASP.NET Core, mobile applications using .NET MAUI, and compiled in­
browser code by using Blazon Although these technologies are not new, all of
them have been enhanced quite significantly with the latest .NET update and this
book will demonstrate these enhancements.

This book will also teach you how to use some more advanced .NET tools. You
will learn how to build and run artificial intelligence models by using ML.NET.
You will also learn how to build distributed applications by using the latest
containerization capabilities of .NET.

I hope you will enjoy reading this book as much as I enjoyed writing it. Happy
coding!

Chapter 1: Getting Familiar with .NET 7 Application Structure - introduces the
reader to .NET 7 and provides a full set of instructions on how to get started, even
if you have never used .NET before.

ASP.NET
ML.NET

viii

We will first set up our development environment. As you can build .NET apps on
either Windows, Mac, or Linux, you will be shown what integrated development
environments (IDEs) or a code editor you can install on the operating system of
your choice.

We will then create a basic .NET application based on the Console Application
template. Once the application has been created, we will examine the structure of
a .NET project. Then we will write some code, which will enable us to get familiar
with the basic C# syntax along with its inbuilt data types.

Chapter 2: Overview of C# 11 Features - demonstrates many exciting new features
have been added to C# 11 to make the lives of developers easier and make the
process of writing software more efficient. And this chapter will showcase all these
features.

We will first cover struct auto-default, which allows struct-based objects to have
their property values set to default values of their data types. This would prevent
exceptions from being accidentally thrown. Next, we will cover generic attributes.
This feature allows developers to use the generics feature of C# while defining
attributes. This makes it easier to work with annotation in the code.

Afterwards, we will talk about sequence pattern matching. This feature gives
developers more flexibility while comparing collections. Then we will move on
to the new string-related features of the language. These include new raw string
literals and multi-line interpolated strings. We will complete the chapter by looking
at the required object members and static interface members.

Chapter 3: What is New in .NET 7? - focuses on the new features that have been
added to the .NET platform itself, which consists of the SDK, build tools and the
core libraries. We will start by going through the SDK and build tool improvements.
The new features in these areas include the improvement to the command line
interface, compiler optimization and so on.

Then we will cover various improvements to the core libraries, which come from
Microsoft and System namespaces. The new features that have been added to these
libraries include better observability improvements, new JSON features, improved
RegEx, the ability to use TAR compression and several other improvements. Finally,
we will go through the deprecated features of .NET 7 and breaking changes that
have been introduced into the platform.

■ ix

Chapter 4: MAUI and Cross-platform Native Applications - MAUI, which stands
for Multi-platform App UI, is a framework that allows developers to build native
applications that can be compiled to run on Windows, Mac OS, iOS, and Android.
The intention behind this framework was that the same code base can be used to
build an executable for any platform. And this includes both desktop computers
and mobile devices.

In this chapter, you will learn how to use MAUI to build any type of a native
application that the framework supports. You will learn how to set up your code
base in such a way that you would then be able to compile your code into any type
of executable. Some platforms supported by MAUI have some limitations in terms
of what you can and can't do on them. And in this chapter, you will get to know
those limitations.

Chapter 5: Database Access with Entity Framework 7 - the server-side components
of web applications are often required to access a database of some sort. Usually,
this is done via an object-relational mapper (ORM), which abstracts away the
database access and make it possible to manipulate data directly in the code.

 Core comes with its own ORM, which is known as Entity Framework
Core. In this chapter, we will have a look at the latest version of this ORM - Entity
Framework 7.

ASP.NET

In this chapter, we will first examine the fundamentals of relational databases that
Entity Framework 7 was designed to work with. Then you will learn how to use
the ORM itself. There are a few ways you can set up the ORM inside your ASP.
NET Core application. And in this chapter, we will have a look at them all: code-
first and database-first.

Chapter 6: Web Application Types on .NET - introduces the reader to
Core - the main framework on .NET that is designed for building web applications.
We will also have a look at various types of web applications that Core
supports.

ASP.NET

ASP.NET

First, we will start with ASP.NET Core fundamentals that are common to all ASP.
NET Core application types. Following this, we will have a look at Web API, which
is a type of an application that provides REST API for incoming HTTP requests
but doesn't have any web pages. We will then move on to model-view-controller
(MVC) applications, which allow the web pages to be rendered dynamically
depending on the controller actions and the data from models. Finally, we will
cover Razor Pages, which is a type of ASP.NET Core application where each web
page has a server-side object associated with it.

ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET

X ■

Chapter 7: Blazor and Web Assembly on .NET - Blazor is a framework that allows
developers to write .NET code that can be executed in browsers. This can be
achieved in two ways - either by using Blazor Web Assembly or Blazor Server.

Blazor WebAssembly application is compiled into an executable that can run
directly in browsers. It can also be hosted inside a standard ASP.NET Core
application. Blazor Server, on the other hand, runs all its code on the server. In this
case, the component in the browser will be communicating with the code on the
server in real time via SignalR. Each of these hosting models has its pros and cons,
even though the code would be very similar. This chapter provides an overview of
all these hosting models.

Chapter 8: SignalR and Two-way Communication - introduces SignalR - an
inbuilt Core library that allows the client and the server to engage in
two-way real-time communication. The chapter shows how to build server-side
components of SignalR, as well as demonstrating how to set up various types of
its clients.

ASP.NET

We will cover two types of SignalR clients - JavaScript and .NET. Both client
types can be either used in-browser or as stand-alone applications. For example,
JavaScript is a language that is native to in-browser applications. However, with
technologies like Node.js, it can also be used in stand-alone applications. .NET is
primarily used in stand-alone applications. But with a technology like Blazor, it
can be executed in the browser as well.

Chapter 9: gRPC on Core - gRPC is a wrapper protocol that relies on
HTTP/2 and enables efficient exchange of messages. This chapter demonstrates
how to enable gRPC commimication on Core. We will cover all the
fundamental concepts of gRPC. You will learn Protobuf, which is the messaging
protocol that gRPC uses. You will learn how to use Protobuf to set up both server
and client-side gRPC components.

ASP.NET

ASP.NET

You will learn all four call types that gRPC supports, which are unary, server­
streaming, client-streaming, and bi-directional streaming. Finally, you will get
familiar with all the data types that Protobuf supports.

Chapter 10: Machine Learning with - is a library that allows
developers to build machine learning application on .NET with relative ease. For
example, the library makes it possible to select an ML algorithm and generate
model for it in C# code. This model can then be re-used for multiple scenarios.

ML.NET ML.NET

ASP.NET
ASP.NET
ASP.NET
ASP.NET
ML.NET
ML.NET

■ xi

In this chapter, you will learn how to use ML.NET. First, we will go through its
most fundamental features. Then, we will create some sample ML models by
using some of its most popular algorithms. You will then learn the fundamentals
of training and evaluating your ML model. And you will also be shown how to
use a low-code model builder to build an ML model in a graphical user interface.

Chapter 11: Microservices and Containerization on .NET 7 - Large-scale
applications are often deployed as interconnected microservices that can be
scaled out individually. And usually, the best way to deploy microservices is via
containers. This will ensure that each service behaves consistently regardless of
what environment it's deployed on. Because it runs in its own isolated environment,
it won't be affected by any processes that happen on the operating system of the
host machine, unless it has been explicitly exposed to such processes.

This chapter will show you how to apply orchestration to .NET 7 applications.
It will walk your through .NET 7 Docker container images and the process of
integrating Docker functionality with your .NET projects. Then you will learn the
basics of container orchestration. For this purpose, we will have a look at Docker
Swarm and Kubernetes.

ML.NET

xii

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/4xyu6op
The code bundle for the book is also hosted on GitHub at
https://github.eom/bpbpublications/Implementing-C-Sharp-ll-and-.NET-7.0.
In case there's an update to the code, it will be updated on the existing GitHub
repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at:

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications' Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at:

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical

https://rebrand.ly/4xyu6op
https://github.eom/bpbpublications/Implementing-C-Sharp-ll-and-.NET-7.0
https://github.com/bpbpublications
mailto:errata@bpbonline.com
http://www.bpbonline.com
mailto:business@bpbonline.com
http://www.bpbonline.com

articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

■ xiii

f
Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions. We at
BPB can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

mailto:business@bpbonline.com
http://www.bpbonline.com
http://www.bpbonline.com
https://discord.bpbonline.com

xiv

Table of Contents

1. Getting Familiar with .NET 7 Application Structure. 1
Introduction. 1
Structure. 2
Objectives. 2
Setting up your development environment. 2

A suitable development machines. 2
.NET 7 SDK. 3
Setting up a code editor or an IDE. 4

Installing a suitable code editor. 4
Installing a suitable IDE. 6

Microsoft Visual Studio 2022. 7
Microsoft Visual Studio 2022 for Mac. 8

JetBrains Rider. 9
Creating a .NET 7 application. 10

Creating an application via CLI. 10
Creating an application via an IDE GUI. 11

.NET 7 project structure overview. 14
Adding a struct object. 14
Adding an interface and a class. 15
Modifying the entry point of the app. 18

C# 11 basics and inbuilt data types. 21
Inbuilt data types. 21
Control flow. 23
C# custom types. 24
Access modifiers. 25

Conclusion. 25
Points to remember. 26
Multiple choice questions. 26

Answers. 27

■ XV

Key terms. 27

2. Overview of C# 11 Features. 29
Introduction. 29
Structure. 29
Objectives. 30
Prerequisites. 30
Struct auto-defaults. 30
Generic attributes. 32

Generic attribute example. 33
Sequence pattern matching. 35

Sequence pattern matching demonstrated. 36
Sequence pattern matching with char span. 37

New string operations. 39
Conclusion. 44
Points to remember. 44
Multiple choice questions. 45

Answers. 45
Key terms. 46

3. What is New in .NET 7?. 47
Introduction. 47
Structure. 47
Objectives. 48
Prerequisites. 48
SDK and build tool improvements. 48

CL1 tools improvements. 48
NativeAOT and enabling library trimming. 50
Central package manager. 51

System and Microsoft library updates. 52
Microseconds and nanoseconds support. 52
New JSON features. 55

MaxDepth property ofJsonWriterOptions class. 55

xvi

Default JsonSerializerOptions configuration. 57
JSON-specific HTTP PATCH. 57
/SON polymorphism. 58
Testing /SON features... 61

New stream features. 62
RegEx improvements. 63
Cryptography improvements. 65
New TAR API. 67

Observability improvements. 69
New ways to monitor activity. 70

Monitoring stopped activities. 70
Current activity changed event. 71
Enumerating activity properties. 71

UpDownCounter metric. 73
Breaking changes of .NET 7. 74

Microsoft.Extensions millability. 74
Obsolete and non-nullable endpoints. 75
PatternContext constraint. 75
Multi-level lookup is disabled on Windows. 75
MSBuild serialization of custom types. 75

Conclusion. 75
Points to remember. 76
Multiple choice questions. 77

Answers. 77
Key terms. 78

4. MAUI and Cross-platform Native Applications. 79
Introduction. 79
Structure. 80
Objectives . 80
Prerequisites. 80
Introducing MAUI. 80

xvii

Enabling MAUI developmen t environment. 81
Creating a basic MAUI applications. 82

MAUI XAML references. 86
Working with Blazor on .NET MAUI. 89
MAUI architectural patterns. 91

Model-View-ViewModel. 91
Patterns supported by MAUI via third-party frameworks. 94

ReactiveUl. 94
Model-View-Update. 94

Using MAUI to build desktop applications. 95
Preparing desktop development environment. 95
Running a desktop app in a debug mode. 95
Publishing a desktop app. 96

Using MAUI to build mobile apps. 97
Preparing mobile development environment. 98
Running a mobile app on an Emulator. 99
Publishing a mobile app. 99

Limitations of developing for Mac OS and iOS. 100
Extra tools required for publishing apps for iOS. 100
Slightly lighter requirements for Mac OS apps. 101

Conclusion. 101
Points to remember. 102
Multiple choice questions. 102

Answers. 103
Key terms. 103

5. Database Access with Entity Framework 7. 105
Introduction. 105
Structure. 106
Objectives. 106
Prerequisites. 106
Introducing fundamentals of relational databases. 106

xviii

Overview of relational database management systems and SQL. 107
Tables, relationships, and normalization. IOS

Introducing primary keys. 109
Normalization and foreign key relationships. 110

Introducing entity framework 7. 112
Code-first approach in EF7. 113

Adding Entity Framework code. 114
Adding entity objects. 114
Adding database context. 117
Adding database creation script... 120
Creating the database by running the application. 125

Database-first approach in EF7. 126
Creating EF7 models from an existing database. 126
Looking at auto-generated code. 127

The latest features of EF7. 128
Controlling database-first via T4 templates. 128
Guarded key. 129
Table-per-concrete-type (TPC) mapping.. 130
Interceptors. 134

Conclusion. 136
Points to remember. 136
Multiple choice questions. 137

Answers. 138
Key terms. 138

6. Web Application Types on .NET. 139
Introduction. 139
Structure. 140
Objectives. 140
Prerequisites. 140
ASP.NET Core basics. 140

Basic ASP.NET Core application structure... 141

ASP.NET

xix

Web AH on ASP.NET Core. 143
Web API with controllers. 144
Minimal API endpoints. 150

Adding open API metadata. 151
Improvements to minimal API parameters. 151
Minimal API and typed results. 152
Uploading files to minimal API. 154

The new in request processing middleware. 155
MVConASP.NET core. 157
Razor Pages on ASP.NET Core. 174
Conclusion. 176
Points to remember. 176
Multiple choice questions. 177

Answers. 178
Key terms. 178

7. Blazor and Web Assembly on .NET. 179
Introduction. 179
Structure. 180
Objectives. 180
Prerequisites. 180
Introducing Blazor. 181

Razor component example. 181
©page. 182
©onclick. 183
©code. 183

Razor keywords in Razor components. 183
©using. 183
©implements. 183
©inherits. 184
©inject. 184
©layout. 184

XX

©namespace. 184
©preservewhitespace. 184
©attributes. 184
©bind. 185
©ref.. 185
©typeparam. 185

Blazor Web Assembly overview. 186
Using code-behind approach. 187
JavaScript Interop. 190
Passing parameters to Razor components. 192
Ahead-of-time compilation. 193
Empty Blazor WebAssembly template. 194

Hosting Blazor WebAssembly in ASP.NET Core. 195
Adding a hosier Blazor WebAssembly to an existing
ASP.NET core application. 195
Form validation in Blazor. 196
NavigationManager and passing state between pages. 199

Setting up Blazor Server. 200
Custom elements in Blazor. 201
Razor component lifecycle. 202
Empty Blazor server template. 204

Conclusion. 204
Points to remember. 205
Multiple choice questions. 205

Answers. 206
Key terms. 206

8. SignalR and Two-way Communication. 207
Introduction. 207
Structure. 208
Objectives. 208
Prerequisites. 208
SignalR overview. 209

xxi

WebSocket. 209
Server-sent events. 210
Long-polling...210

Creating SignalR Hub on the server. 210
Strongly-typed Hub. 214
Dependency injection in SignalR Hub. 215
JSON versus MessagePack. 216

JavaScript client for SignalR. 216
Adding HTML markup for SignalR client. 217
Applying SignalRfunctionality in JavaScript. 221

.NET client for SignalR. 224
Conclusion. 228
Points to remember. 229
Multiple choice questions. 229

Answers. 230
Key terms. 230

9. gRPConASP.NET Core. 231
Introduction. 231
Structure. 232
Objectives. 232
Prerequisites. 232

gRPC overview. 232
Protobuf as the main message serialization protocol. 233
Setting up gRPC server. 234

ASP.NET Core gRPC project structure. 234
gRPC call types and data types. 237
gRPC JSON transcoding... 240

Setting up gRPC client. 244
Using gRPC client factory and dependency injection. 248

Overview of gRPC data types. 250
Protobuf enums. 252

xxii

Enabling collections with a repeated keyword. 252
Dictionary-like Protobuffunctionality. 253
Using the oneof keyword in Protobuf. 253

Well-known data types. 253
Conclusion. 255
Points to remember. 256
Multiple choice questions. 256

Answers. 257
Key terms. 257

10. Machine Learning with ML.NET. 259
Introduction. 259
Structure. 260
Objectives. 260
Prerequisites. 260
ML.NET fundamentals. 261

Types of machine learning. 262
Supervised learning. 262
Unsupervised learning. 262
Reinforcement learning. 262

Getting started with ML.NET. 263
Using ML.NET to create your first ML model. 265

Choosing a problem for ML. 267
Binary classification. 267
Multiclass classification. 269
Regression. 270
Recommendations. 272
Forecasting. 273
Image classification. 275
Clustering. 276
Anomaly detection. 277
Ranking. 277

■ xxiii

Training and evaluating your model. 277
Binary classification metrics. 278
Multiclass classification metrics. 278

Log-Loss reduction. 279
Image classification. 279
Forecasting. 279
Regression and recommendation. 279
Clustering metrics. 280
Anomaly detection metrics. 280
Ranking metrics. 280

Using a low-code model builder. 281
Conclusion. 285
Points to remember. 285
Multiple choice questions. 286

Answers. 286
Key terms. 287

11. Microservices and Containerization on .NET 7. 289
Introduction. 289
Structure. 290
Objectives. 290
Prerequisites. 290
Docker container fundamentals. 291

Containers and container images. 291
Base images and layers. 292
Network isolation and port mapping. 292
File system isolation and bind mounts. 292
Installing Docker on Linux. 293
Installing Docker on Mac. 293
Installing Docker on Windows. 293

Base Docker image for .NET 7. 294
Creating an application with Docker support. 296

xxiv ■

Adding Docker support to an existing application. 298
Dockerfile structure. 298
Building and running a Docker container. 300

Orchestrating applications with Docker Swarm. 301
Basic orchestration with Docker compose. 302
Starting Docker Swarm. 303

Orchestrating applications with Kubernetes. 305
Installing Kubernetes on Linux. 305
Installing Kubernetes on Mac. 306
Adding services to a Kubernetes cluster. 307

Conclusion. 308
Points to remember. 308
Multiple choice questions. 308

Answers. 309
Key terms. 309

Index. 311-317

Chapter 1

Getting Familiar
with .NET 7

Application Structure

Introduction
From November 2022, .NET 7 is the latest version of a cross-platform software
development framework called .NET, which is being developed and maintained by
Microsoft. Although the framework supports a number of programming languages,
the most popular .NET language is C#, and the new version of this language, C# 11,
is an integral part of .NET 7.

The main benefit of using .NET 7 over some other software development platforms
is that it can run on any of the major operating systems on PCs, which include
Windows, MacOS, and Linux. In this version, that is, .NET 7, in particular, you will
be able to build applications that run on both PCs and mobile devices. Later in this
book, you will find out how.

This book will teach you how to use the latest features of both .NET 7 and C# 11.
Whether you are an experienced .NET developer or you have only started using
C# and .NET recently, this book will provide you with enough knowledge of these
subjects so that you will be able to write your own .NET applications.
If vnii havp iispfl NET and C# hpfnrp fhkhnnk will oivp vnn a <rnnd infrndiirfinn

“ JVX. X.„,X. X-X-VM .X,XXX V.X.V. VXU X-X-X^XX-, X. . . ., VW- fjXXX- J V XX XX ^WX. XX XXX VXX.. V XX„X X
to the latest features of both the platform and the language. If you are a beginner to
C#, you will be able to follow this book, but you should familiarize yourself with the
basic C# syntax first. The primary focus of this book is to showcase the latest features

2 ■ Implementing C# 11 and .NET 7.0

of C# 11 and .NET 7. However, we will still briefly recap all the fundamentals. Also,
carefully selected links to the official language documentation will be provided at
the end of this chapter. So, whether you are only starting to learn .NET or are already
an experienced software engineer that specializes in .NET, you will find this book
valuable.

Structure
In this chapter, we will discuss the following topics:

• Setting up your development environment

• Creating a .NET 7 application

• .NET 7 project structure overview

• C# 11 basics and inbuilt data type

Objectives
In this chapter, we will focus on setting up your development environment and
creating a basic application by using .NET 7 templates. Then, once we have created
our initial project, we will recap some basics of C#.

The following chapters will focus on the new and shiny features of .NET 7 and C#
11. But before we get there, we need to have our fundamental dependencies set up.
So, let us begin.

Setting up your development environment
To start working with .NET 7 and C# 11, you will need the following:

• A suitable machine is running either Windows, MacOS, or Linux operating
system.

• .NET 7 SDK

• A suitable IDE or a code editor

If you do not have any of these prerequisites installed already, let us go through the
steps vou need to take to install them.

A suitable development machines
Since .NET is a cross-platform software development framework, it will work on
either Windows, Linux, or MacOS. Therefore, a machine running either of these

Getting Familiar with .NET 7 Application Structure 3

operating systems will be suitable. .NET is also compatible with a variety of CPU
architectures. It will work with either Intel/ AMD or ARM.

Regarding the processing power, disk space, and memory size, any average
consumer-grade laptop or desktop would do. You do not need an extra-powerful
machine to run your .NET code on. However, I would recommend a machine with
at least 8 GB of RAM.

.NET 7 SDK

.NET software development kit (SDK) contains everything that you need as a .NET
developer, including the platform, the compiler, and all supporting tools. The latest
.NET 7 SDK can be installed via the following steps:

1. To obtain .NET 7 SDK, you will need to visit the following page:

https://dotnetmicrosoft.com/

2. Once on the page, you will need to click on the Download tab, as per figure
1.1:

"Microsoft | .NET Why NET v features v Learn v Docs v Downloads Community | LIVE TV

Free. Cross-platform. Open source.

Build any app
with .NET
Create beautiful apps and scalable cloud

services, faster and easier with the free, open-

source platform that's loved by developers and

trusted by organizations.

Download Get started

Supported on Windows, Linux, and macOS

Figure 1.1: Download tab on Microsoft .NET page

3. You will then be taken to the download page, where you will need to choose
the latest .NET 7 SDK to download and make sure that the ontion that von

https://dotnetmicrosoft.com/

choose is SDK rather than Runtime. The .NET 7 runtime will allow you to run
.NET 7 applications on your machine, but you will not be able to build them.
SDK, on the other hand, contains both the runtime and all the development
tools that you will need, including command line interface (CLI) tools that
we will cover in detail in Chapter 3; What is new in .NET 7.

4 Implementing C# 11 and .NET 7.0

4. Next, we will set up a suitable IDE or a code editor if you have not done so
already.

Setting up a code editor or an IDE
It does not matter whether you will choose a code editor or an IDE for your
application development. You will be able to use either. And you will be able to
perform all exercises in this book regardless of this choice. However, it would be
useful to know the difference between the two, so you can decide which tool would
be more suitable for you.

A code editor allows you to write the code and navigate through it. It comes with a
variety of code formatters and highlighters, so your code will be easy to read. But
this is pretty much what the capabilities of a code editor are limited to. Typically, you
will have to use some external tools or install additional plugins to be able to build
your application from the source code. However, because code editors are limited
in their capabilities, they tend to be substantially lightweight and faster to load than
IDEs.

Integrated Development Environment (IDE) can do absolutely everything a code
editor can do and much more. Things like creating new projects from various
templates, running and debugging your applications, and building your source
code into a deployable application are available out of the box. And all of these
things can be managed via Graphical User Interface (GUI). But all of this comes
at the expense of performance. Typically, an IDE would be slow to install, occupy
a reasonably large chunk of disk space, and noticeably slower to load than a code
editor, especially if you are running it on a slower machine.

So, which one should you choose for application development with .NET 7? Well,
you can choose either of these, depending on your preferences. If you do not mind
building and testing your application via a CLI, which comes with .NET 7 SDK, a
code editor would probably be sufficient. However, if you prefer the comfort of using
a GUI for everything and you do not mind longer loading times and occasional dips
in performance, then you should probably use an IDE. Also, I would recommend
that you use an IDE if you are a beginner.
I pf tic nnw rovipur wtn'rli rnrln nditnrc and TDFc would vvnrV with NTFT 7 and Cif 11

Installing a suitable code editor
If you want to use a simple code editor, then the choice would be Visual Studio
Code. And it does not matter which OS your development machine runs. There is a
version of Visual Studio Code available for all supported operating systems.

Getting Familiar with .NET 7 Application Structure ■ 5

Visual Studio Code can be downloaded from the following Web page:

https://code.visualstudio.com/download

You will then need to choose the download option that is relevant for your OS and
your CPU architecture, as per figure 1.2:

Download Visual Studio Code
Free and built on open source. Integrated Git, debugging and extensions.

I Windows

Windows 8,10,11

User Installer Lil nil

System Installer EE kMW
.zip EEJ m E2D

i Mac

macOS 10.11+

I deb 1 .rpm

Debian, Ubuntu Red Hat, Fedora, SUSE

.deb EEE1EE)

.rpm Lll^lLRiy.l^lUIl!

.tar.gz EE MSI
J23S3

.zip (2^5)

Figure 1.2: Visual Studio Code download page

Once downloaded, you will then just need to follow the installation instructions that
are specific to the OS you are using. Once installed, you will need to download a
C# plugin for the code editor to make sure that all C# code is highlighted correctly.
Either you can do it now, or you will be prompted to do so the first time you use the
editor to open any file with the .cs extension. If you choose to do it now, you will
need to open Visual Studio Code and click on the Extensions bar on the left-hand
side, which is represented by a symbol containing four squares. Then, you will just

https://code.visualstudio.com/download

6 | Implementing C# 11 and .NET 7.0

need to type C# in the search panel and install the first plugin that conies up in the
results, as per figure 1.3:

S’

>0 File Edit Selection View Go Run Terminal Help

EXTENSIONS: MARKETPLACE Y 0 3 -
C#|

c#El C# for Visual Studio Code (powered by OmniSharp).
0 Microsoft

[DEPRECATED] C# Format Revolve <J> 32M ★ 2.5c# [DEPRECATED] Fix format of usings / indents / braces
Przemyslaw Orlowski Install

C# Extensions Q1.4M *4

t C# IDE Extensions for VSCode
jchannon Install

Figure 1.3: C# extension in Visual Studio Code

And this is all you need to start building your apps. However, if you prefer an IDE,
then these are the steps you would need to take.

Installing a suitable IDE
Installing an IDE is not as simple as installing a code editor. Visual Studio Code is the
only recommended code editor for .NET development, regardless of which OS you
are using. But when it comes to an IDE, different operating systems have different
options available. The options can be summarized as follows:

Windows
• Microsoft Visual Studio 2022
• JetBrains Rider

MacUS
• Microsoft Visual Studio 2022 for Mac
• JetBrains Rider

Linux
• JetBrains Rider

So, as you can see, the only common IDE is JetBrains Rider. But it has its own caveats
too, so it might not be the best option for everyone. In fact, every IDE from this list
has its own pros and cons. We will now examine each of the options, so you can
decide which IDE to choose.

Getting Familiar with .NET 7 Application Structure ■ 7

Microsoft Visual Studio 2022
This is the official .NET IDE from Microsoft. Although it was mainly designed to work
with .NET, it supports a range of different platforms, languages, and technologies.
Despite its name, it is not related to Visual Studio Code in any way. It looks different
and feels different. The only common things between the two is that both are made
by Microsoft, and both can be used for writing code.

It comes with all the tools that you need. And you can also get it for free, as it has
tire so-called community edition. There are also premium professional and enterprise
editions that you have to purchase a license for. They come with more tools than
the free community edition. However, even the community edition comes with a
sufficient amount of tools for developing your .NET applications. You will definitely
not need anything more than the community edition to follow the exercises in this
book.

The biggest advantage of using Visual Studio 2022 over any other IDE is that it is
kept up to date with .NET updates. So, whenever .NET SDK gets updated (even if it
is only a preview version of it), an update for Visual Studio will be made available
immediately to make it compatible with it. So, you can be certain that your IDE will
always be able to handle the latest .NET features.

To download Visual Studio 2022, you can visit its official page via the following link:
https://visualstudio.microsoft.com/downloads/

You will be greeted by the following screen, which is illustrated in figure 1.4, where
you can choose the version to download. Choose the Community option if you are
not sure which version you will need. You can always upgrade later if you have to.

Downloads

https://visualstudio.microsoft.com/downloads/

Visual Studio 2022

:■ | Version 17.2

The best comprehensive IDE for .NET
and C++ developers on Windows. Fully

packed with a sweet array of tools and
features to elevate and enhance every
stage of software development

Community
Powerful IDE, free for

students, open-source

contributors, and individuals

Free download

Professional
Professional IDE best suited

to small teams

Enterprise
Scalable, end-to-end

solution for teams of any

size

Free trial Free trial

Preview
Get early access to latest

features not yet in the main

release

Learn more)

Release notes)

Release notes > Compare Editions > How to install offline >

Figure 1.4 : Visual Studio 2022 download page

8 ■ Implementing C# 11 and .NET 7.0

Once the download begins, you will just need to follow the installation instructions.
But you will need to be aware that both the downloading and the installation may
take a while, as Visual Studio 2022 is a fairly sizeable IDE.

Even though Visual Studio 2022 provides you with all the tools that you need, the
main caveat is that it is only available for Windows. There is an IDE called Visual
Studio for Mac, but despite its name, it is not a Mac version of the same IDE. It is a
completely different piece of software. And this is what we will have a look at next.

Microsoft Visual Studio 2022 for Mac
If you use Mac instead of Windows, Visual Studio 2022 for Mac might be a good IDE
option. This IDE comes with sufficient tooling to build your .NET applications, but it
is more basic than the Windows version of Visual Studio 2022. It is also that the GUI
of the IDE looks completely different, so if you have previously been using Visual
Studio on Windows and you have now switched to using Mac, it will take you some
time to get used to it.

Another caveat of using Visual Studio for Mac is that its development lags somewhat
behind the development of Visual Studio for Windows. And it does not keep up with
tire evolution of .NET. Sometimes you even have to wait months before you can start
using any new .NET features. Sometimes the only way to use any new .NET features
in this IDE is to install the preview version of it, which, as a piece of software that has
not yet been signed off for an official release, may have some bugs.

You can download Visual Studio for Mac from its official page, which can be accessed
via the following link:

https://visualstudio.microsoft.com/vs/mac/

Because there is only one version of this IDE, you will be presented with a single
download button, as illustrated in figure 1.5:

https://visualstudio.microsoft.com/vs/mac/

Visual Studio for Mac
Develop apps and games for iOS, Android, and

the web using .NET.

Download Visual Studio for Mac

Read more about activating your license >

Figure 1.5 : Visual Studio 2022for Mac download page

Getting Familiar with .NET 7 Application Structure 9

Then you just need to follow the download and the installation instructions, which
should be self-explanatory. There is also a third IDE option. There is an IDE made by
JetBrains called Rider. And it is worth examining regardless of the OS you are using.

JetBrains Rider
The main advantage of Rider over any other IDEs is that it comes with a lot of inbuilt
tooling by default. It will automatically find potentially problematic code, and it will
provide refactoring suggestions. It will be able to decompile third-party libraries, so
you will be able to see the original code they were written in. And the list goes on.

If you are a Windows user, then you will get a much richer IDE than Visual Studio
at a relatively low price. It will be even more noticeable if you are a Mac user. And if
you happen to be a Linux user, this will be your only option. The IDE will look the
same and have the same functionality regardless of the OS you run it on.

However, it comes with its own caveats. But there are only two I can think of.
There is no free version of it. After the initial 30-day trial, you must purchase tire
license. However, the price of it tends to be cheaper than either the professional or
the enterprise edition of Visual Studio. The second caveat is that, since it is made by a
third party rather than Microsoft, it sometimes lags slightly behind when new .NET
SDK updates get released. However, the Rider development team tends to work
fast, so these delays do not tend to be big. It tends to get updated quicker than Visual
Studio for Mac.

Rider can be obtained from its official Download page, which can be found via the
following link:

https://www.jetbrains.com/rider/

The Web page should automatically detect which OS you are on, so you will be
rvroconl-nJ wihk blno rlrnArnlntaJ linV blnnE ic Tn vnnr OQ*

https://www.jetbrains.com/rider/

1LVV1 VVJLU.L Utt VLV V V 1 Li-VUVl 111 UX LILCIL IO

RD Rider part of dotUltimate

Fast & powerful cross-platform .NET IDE
Download free 30-day trial

Figure 1.6 : Rider downloads page

10 Implementing C# 11 and .NET 7.0

Then all you have to do is just follow the instructions.

By now, you have chosen and installed either an IDE or a code editor that is right for
you. Now, we are ready to start creating our first .NET 7 applications and examining
their structure.

Creating a .NET 7 application
When you write a .NET application, you work with projects and solutions. A project
is a collection of code files that will later be built into a single executable file or a
single reference library. These files form an application. An application can consist
of a single executable file or have the main executable file alongside some other
files that provide additional functionality. The latter types of files are known as
libraries, and they can be shared between different applications. The libraries are
also represented in the source code by projects.

A solution is something that holds multiple projects together. It is represented by a
file with a . sin extension that gets placed alongside the project folders in the source
code. Although you do not strictly require a solution, having one is helpful if you
are using an IDE, as it would make it easier to manage and organize related projects.

Both projects and solutions can be created either via the CLI or via IDE GUI. And
in this section, we will go through both of these methods. Later in the book, we will
be primarily using the CLI commands, as they will be the same on all operating
systems. Plus, .NET CLI comes with the .NET SDK, so if you have the SDK installed,
you have the CLI too.

Creating an application via CLI
The most basic type of a .NET application is known as a console application. It does
not have any GUI. The only way it can interact with the outside world is via a textual
interface, such as the one provided by CMD, PowerShell, Terminal, Shell, and so on.
And because it is so basic, it is a perfect application type to use for our demo.

And now, we will go ahead and create our solution. To do so, you can open any
command line terminal of your choice, create a folder in which you want to place
your solution, navigate to this folder, and execute the following command:
dotnet new sin

This will create a file inside this folder with the same name as the name of the
folder and the . sin extension. So, assuming that your folder is called BasicApp, the
solution file will be called BasicApp.sin.

Now, we will create a project. For demonstration purposes, we will call it
BasicConsoleApp. We will do so by executing the following command:
dotnet new console -o BasicConsoleApp

Getting Familiar with .NET 7 Application Structure 11

The console argument is there to indicate that we are using the Console Application
template. The -o parameter stands for output. This is where we put the name of our
project.

After executing this command, you should have ended up with a folder inside
the solution folder called BasicConsoleApp. Inside it, you will see two files:
BasicConsoleApp.csproj and Program.es. The file with the .csproj extension
is the project file, which provides information about the project to the compiler.
It contains various XML properties, including the .NET version. And, as long as
you have version 7 of the SDK installed, it should be picked up automatically. Your
project file should look like the following:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net7.0</TargetFramework>
<ImplicitUsings>enablec/ImplicitUsings>
<Nullable>enable</Nullable>

</PropertyGroup>

</Project>

The Program.es file is the entry point into your application. It contains the C# code
that will be executed first when the application is launched. By default, it will be
just outputting Hello World! message into the console, as its content would be as
follows:

// See https://aka.ms/new-console-template for more information
Console.WriteLine("HellOj World!");

You can now add this project to the solution. To do so, you need to navigate to your
solution folder and execute the following command:

dotnet sin add BasicConsoleApp/BasicConsoleApp.csproj

Now, we will go through exactly the same process but by using an IDE GUI.

Creating an application via an IDE GUI
In our example, we will use Visual Studio 2022 on Windows. But the process will be
very similar regardless of which IDE you will use. The GUI will look different. Some
of the labels will be different. But the principles will be the same.

Program.es
Program.es
https://aka.ms/new-console-template

12 Implementing C# 11 and .NET 7.0

First, you will need to open an IDE and choose the option from the menu that will
allow you to create a new project, as it is demonstrated in figure 1.7:

- □ X

Visual Studio 2022
Open recent Get started

Search recent (Ait+S) Clone a repository
Get code from an online repository

i> This week GitHub or Azure DevOps

t Older

[§? Open a project or
solution
Open a local Visual Studio project

or sin file

Open a local folder
Navigate and edit code within any
folder

■jjj Create a new project"-
Choose a project template with code
scaffolding to get started

Continue without code 4

Figure 1.7 : Creating a new project from Visual Studio 2022

Then you will need to select Console App as your project template, as per figure 1.8.
But make sure you select the C# version of it, as this project template is also available
in other languages.

□ X

Create a new
project
Recent project templates

fif Console App C#

“S Class Library c#

0* BlazorWebAssemblyApp C#

Bi ASPNET Core Web App „
(Model-View-Controller)

Search for templates (Aft+S)

All languages • All platforms • All project types

(y Azure Functions

A template to create an Azure Function project.

C# Azure Cloud

Console App

A project for creating a command-line application that can run
on .NET on Windows, Linux and macOS

< C# Linux macOS Windows Console

ASP.NETWeTWw---

A project template for creating an ASPNET Core application with
exampleASP.NET Razor Pages content.

C# Linux macOS Windows Cloud Service Web

Blazor Server App

A project template for creating a Blazor sen/er app that runs
server-side inside an ASPNET Core app and handles user

Back [| Next |

Figure 1.8: Console App template in Visual Studio 2022

exampleASP.NET

Getting Familiar with .NET 7 Application Structure ■ 13

Then you will be taken through various screens where you will be asked to provide
names for your project and solution and select the framework version (which should
be .NET 7). The details of how different IDEs do it vary slightly. For example, this is
what the naming screen looks like in Visual Studio 2022:

□ X

Configure your new project

[Back 11 Next |

Figure 1.9: Naming your solution and your project

Then, if you just keep the default values in all remaining settings and follow the
process till the end, both the solution and the project will be created for you, and the
IDE will automatically open the solution. It should look similar to figu re 1.10:

00 File Edit View Git Project Build Debug Test Analyze Tools Extensions Search P | Ba., pp - □ x

Window Help

• eJ B ® - - | Debuc^j | Any CPU ► BasicConsoleApp ’ > d • C5 E3 _ Ad Cfi 1^2 Live Share $

Figure 1.10: Solution opened in Visual Studio 2022

14 Implementing C# 11 and .NET 7.0

Now, since our solution is ready, we can start adding some useful functionality to it.

.NET 7 project structure overview
To demonstrate .NET 7 project structure, we will add some meaningful capabilities
to our application. The complete example can be found via the following URL:

https://github.com/fiodarsazanavets/a-complete-guide-to-implementing-
csharpll-and-dotnet7/tree/main/Chapter-01

Adding a struct object
First, we will create a Customer. cs file inside our BasicConsoleApp project folder.
The content of the file will be as follows:

namespace BasicConsoleApp;

public struct Customer
{

public Customerfstring name)
{

Name = name;
}

public string Name { get; set; }
public short Age { get; set; }
public int Id => randomld;

private int randomld = (new Random/)).Next();
}

Let us use this example to recap a basic C# syntax. We start our file with a namespace
declaration statement. Namespaces in C# are used for modularization. If your object
is said to work together, you assign them to the same namespace, and then you will
be able to reference this namespace to be able to use the custom data types assigned
to it.

In our example, the Customer data type that we have created is a struct. C# supports
other object types, such as class and record. We will recap the differences between
them shortly. But for now, we have chosen to use our object as a struct to demonstrate
one of the latest C# 11 struct-specific features.

https://github.com/fiodarsazanavets/a-complete-guide-to-implementing-csharpll-and-dotnet7/tree/main/Chapter-01

Getting Familiar with .NET 7 Application Structure 15

Our Customer object has a constructor that accepts the name parameter of a type
string. This allows the Name property to be given a value as soon as an instance of
Customer is created. It also has two other properties: Age and Id. Age property is
a short integer. By default, the value of it will be 0. And this demonstrates a new
feature that has been added to C# 11. If any properties are not set in the constructor,
then they will be automatically set to their default value, which, for the data type
short, is 0. However, this only works for struct object types. Prior to C# 11, this
would have thrown a compilation error, as all properties had to be given values
before the code block inside the constructor executes.

The other property, Id, is a read-only property that cannot be changed after an
instance of the object is created. It takes its value from the randomld field, which gets
a random value assigned to it. And, as the field is private, it is not visible to anything
outside this object. The other members of the object are all marked as public. This
keyword at the beginning at an object member definition is known as an access
modifier.

Adding an interface and a class
Next, we will add CustomerRepository.es file to our project folder, and the first
tiring we will insert into this file is the following interface definition:

namespace BasicConsoleApp;

public interface ICustomerRepository
{

int Count { get; }

void AddNewCustomerfCustomer customer);
Customer GetCustomerfint id);
Customer GetCustomerfstring name);
IEnumerable<Customer> GetCustomersf);
IEnumerable<Customer> GetCustomersfstring nameMatch);

}
As before, we have added a namespace definition right at the top. Because we are
using the same namespace as we used in our Customer struct, we do not need to
import any additional namespace into our file. We have implicit access to any other
object that uses the same namespace.

Interfaces are not functional objects, so you cannot use them directly. They act
like contracts for object definitions. An interface provides signatures for all public
members that an object that implements the interface must have. Otherwise, the

CustomerRepository.es

16 Implementing C# 11 and .NET 7.0

code will not compile. This is why there is neither a body nor an access modifier in
the interface members.

However, you can assign an interface as a return data type for fields, properties,
methods, and variables. If you do so, then absolutely any object that implements this
interface can be assigned to it. And we do have an example of this here. Both versions
of our GetCustomers method have lEnumerable as their data type. lEnumerable
is an in-built interface that is meant to be implemented by collections. And in our
case, we will be able to return absolutely any concrete collection type as long as it
implements this interface.

Next, we will add the following class definition to our file:

internal class CustomerRepository : ICustomerRepository
{

private readonly List<Customer> customers;

public CustomerRepository()
{

customers = new List<Customer>();
}

public int Count => customers.Count;

public void AddNewCustomer(Customer customer)
{

customers.Add(customer);
}

public Customer GetCustomerfint id)
{

return customers.SingleOrDefault(c -> c.Id == id);
}

public Customer GetCustomerfstring name)
{

}
return customers.SingleOrDefault(c => c.Name == name);

Getting Familiar with .NET 7 Application Structure ■ 17

public IEnumerable<Customer> GetCustomersf)
{

return customers;
}

public IEnumerable<Customer> GetCustomers(string nameMatch)
{

return customers.Where(c => c.Name.Contains(nameMatch));
}

}

This class implements the interface we have defined earlier, as there is a semicolon
followed by the interface name after the class name. In C#, the semicolon is used in
this context as an implementation or inheritance operator.

You may have also noticed that the class has internal as its access modifier rather
than public. There is a difference between the two. While the public access modifier
makes an object visible to every other object, both inside your project and in any
project that references your project, the internal modifier restricts visibility to only
those objects that exist inside the same project. While implementing interfaces, you
can go from a lower restriction level to the higher one, but not the other way around.
And this is demonstrated in our example by having a public interface getting
implemented by an internal class.

Next, we have a private read-only list of Customer objects. When we use a read-only
modifier, the value of the field can only be instantiated as the field gets declared or
inside the object's constructor. We cannot assign a new value to this field later.

After this, we just provide complementation for all of the members that we have
previously defined in the interface. Please note that we have some duplicate method
names. But this is OK, as they have different signatures. A method signature
is defined by the combination of the name, the return data type, and the input
parameters. Being able to define methods with the same name and the same data
type but different parameters is known as polymorphism.

So, we are implementing the following interface members:

Count: It returns the current count of customers list.

• AddNewCustomer(Customer customer): It accepts a Customer object as an
input parameter and adds it to the customer list.

• GetCustomer(int id): It retrieves a single Customer entry based on the id
input parameter.

18 | Implementing C# 11 and .NET 7.0

• GetCustomer (string name): It retrieves a single Customer object by name.

• GetCustomersQ: It returns all entries from the customer's list.

• GetCustomers(string nameMatch): It returns only those entries from the
customers list that contain a specific pattern in the name.

The latter two methods demonstrate how we can return a concrete implementation
where the return type was defined as an interface. The return type for both of these
methods is lEnumerable. But we are returning List. We can do it because the List
data type happens to implement lEnumerable.

Modifying the entry point of the app
Next, we will replace the content of our Program.es file. We will start by deleting
the existing content from it. And then, we will add the following code:

using BasicConsoleApp;

// Creating a repository
var customerRepository = new CustomerRepository!);

// Creating Customer objects
var customerl = new Customer!"John Smith");
var customer2 = new Customer!"David Smith");
var customers = new Customer!"Gary Rogers");

So, since Program.es class does not have any namespace definition, and we need
to import the namespace of the objects that we have just created. To do so, we are
applying using a statement followed by the namespace name.

Then we create an instance of CustomerRepository object and store it in
customerRepository variable. After this, we create three instances of Customer
object and store them in named variable. A variable is a temporary data storage
in memory. It is normally defined by the var keyword. However, you can also
provide an explicit data type instead of using this keyword. However, using var is
recommended for most situations.

We will then add the following code, where we modify the data in some Customer
objects and then insert them all into the customerRepository:

// Applying additional data

Program.es
Program.es

customerl.Age = 30;
customer2.Age = 21;

Getting Familiar with .NET 7 Application Structure 19

// Adding customers to the repository
customerRepository.AddNewCustomer(customerl);
customerRepository.AddNewCustomer(customer2);
customerRepository.AddNewCustomer(customer3);

Finally, we will add the following code to our file, where we will be trying out different
methods of extracting Customer object instances from the CustomerRepository:

// Extracting data from the repository
Console.WriteLine("The following data has been obtained while iterating
through all customers:");

foreach (var customer in customerRepository.GetCustomersf))
{

Console.WriteLine($. . .
Customer id: {customer.Id},
Customer Name: {customer.Name},
Customer Age: {customer.Age}

IIIIII ,

}

// Extracting filtered data
Console.WriteLine("The following data has been obtained while iterating
through customers while filtering by 'Smith' in name:");

foreach (var customer in customerRepository.GetCustomers("Smith"))
{

Console.WriteLine($. . .
Customer id: {customer.Id},
Customer Name: {customer.Name},
Customer Age: {customer.Age}

// Extracting a single customer by name

20 ■ Implementing C# 11 and .NET 7.0

Console.WriteLine("The following data was returned for David Smith:");
var specificcustomer = customerRepository.GetCustomer("David Smith");

Console.WriteLine($"""
Customer id: {specificcustomer.Id},
Customer Name: {specificcustomer.Name},
Customer Age: {specificcustomer.Age}

And this example showcases another new language feature that has been added
to C# 11, which is multi-line string literals. If you wrap your string value up in
triple double-quote symbols, then anything you write inside of it will be treated as a
literal character rather than a special C# character. But you can still combine it with
interpolated string feature if you place a dollar sign at the beginning of it. This will
allow you to insert data from your code into the string. To do so, you need to wrap
your code in curly braces inside the string.

We can now launch our application, which we can do either by right-clicking on
the IDE and selecting Run option or by executing the following command inside the
project folder:
dotnet run

We should be expecting to see the following result:
rhe following data has been obtained while iterating through all customers:

:ustomer id: 452867481,

Zustomer Name: John Smith,

Zustomer Age: 30

Zustomer id: 31176956,

Zustomer Name: David Smith,

Zustomer Age: 21

Zustomer id: 2062322027,

Zustomer Name: Gary Rogers,

Zustomer Age: 0

rhe following data has been obtained while iterating through customers while filtering by ‘Smith' in name:

Zustomer id: 452867481,

Zustomer Name: John Smith,

Zustomer Age: 30

Zustomer id: 31176956,

Customer Age: 21

rhe following data was returned for David Smith:
lustomer id: 31176956,
lustomer Name: David Smith,

Zustomer Age: 21

Figure 1.11: The output of our application

Getting Familiar with .NET 7 Application Structure 21

As we can see here, the age of Gary Rogers is 0. This is because we have not explicitly
set this age for this specific customer. It was just initialized to the default value of its
data type, which happens to be 0. And this has proven that the mechanism of auto­
initializing struct properties to their default values has worked.

Next, we will briefly recap the fundamentals of C# and its inbuilt data types. If you
are just starting your journey to become a C# programmer, links to various online
documentation sources will also be provided, so you can study the fundamentals of
the C# syntax in more detail.

C# 11 basics and inbuilt data types
Many C# language features have existed since the initial version of the language
and many of these are still relevant. However, over time, C# has evolved, and
some of the old functionality became obsolete because better ways of doing things
were invented. There are also some parts of the language that have changed their
paradigm. For example, the string data type used to be a value type, which means
that if you use it as a parameter, it is only the value of it that gets passed. So, if
the parameter gets modified inside the method that it was passed into, the original
string variable would not get modified. But since C# 10, the string is now a reference
type. This means that when it gets passed as a parameter, modifications made to the
parameter inside the method that it is been passed into will cause these modifications
to be applied to the original variable.

There are still various ways of applying old behavior to the parts of the language
where the behavior has been changed. Also, the old ways of doing things are still
available in the language to make it backward-compatible with the older versions.
But in our examples, we will focus purely on how things work in C# 11. We will start
by listing all inbuilt data types.

Inbuilt data types
Inbuilt data types are the types of data that are supported by the language out of the
box. These are available in the language even without any additional libraries.

Each of the data types has a default value. So, if you are using a variable, field, or
property of a particular type and you do not explicitly set a value to it, the default
value will be used.

The data types in C# can also be categorized as either value or reference types. When
you use a value type and pass a variable of this type into a method, then it will only
be the value of this variable that will be passed to the method and not the variable
itself (unless you explicitly choose to pass the variable by reference by using ref
keyword). When you use a reference type and pass it to the method, it is the reference

22 Implementing C# 11 and .NET 7.0

to the whole variable that gets passed and not just its value. Therefore, if the variable
gets modified inside the method, your original variable will be modified too.

The following table shows all built-in data types that are available in C#:

Name Description Reference or
value type

Default
value

bool A representation of Boolean value that can
either be true or false.

Value type false

byte A representation of a single byte consisting of 8
bits. Can accept values in the range of 0 to 255 if
converted to decimal.

Value type 0

sbyte A representation of a single byte consisting of
8 bits. Differs from byte by the range of the
values it accepts, which is between -128 and
127 if converted to decimal.

Value type 0

char A single character. Value type "\0"
decimal A numeric data type that supports high-

precision decimal fractions.
Value type 0.0M

float A numeric data type that supports decimal
fractions. It is smaller than double but has
much lower precision.

Value type 0.0F

double A numeric data type that is similar to float but
comes with double the precision and double
the size.

Value type 0.0D

int A numeric value that does not support decimal
point and has a size of 16 bits.

Value type 0

uint A numeric value that does not support decimal
point and negative values. Has a size of 16 bits.

Value type 0

nint A pointer to a memory location containing an
integer value.

Value type 0

nuint A pointer to a memory location containing an
unsigned integer value.

Value type 0

long A numeric value that does not simoort decimal Value tvne 0

point and has the size of 64 bits.
ulong A numeric value that does not support decimal

point and negative values. Has the size of 64
bits.

Value type 0

short A numeric value that does not support decimal
point and has the size of 32 bits.

Value type 0

Getting Familiar with .NET 7 Application Structure ■ 23

Name Description Reference or
value type

Default
value

ushort A numeric value that does not support decimal
point and negative values. Has the size of 32
bits.

Value type 0

string Representation of any arbitrary text. Reference
type as of

.NET 6. Used
to be a value
type prior to

this.

////

object The base type for all other data types in C#. Reference
type

null

dynamic A data type that accepts any other data type
and allows it to be changed dynamically. Not
recommended for most situations.

Reference
type

null

Table 1.1: Inbuilt data types that are found in C#

More detailed information on inbuilt C# data type can be found in the official
Microsoft documentation via the following link:
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/
built-in-types

Next, we will have a look at different types of control from the C# 11 supports. These
allow you to execute code conditionally, create branches in the executional flow and
perform repeated actions.

Control flow
Control flow is what allows your code to make decisions. Some control flow elements
allow you to repeatedly execute a given action, whereas others allow you to execute
an action only if a specific condition is met.

The following table lists the main control flow elements that are available in C#:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/

Statement type Description

if .. else if ..
else

Indicates what condition needs to be applied to a block of code for
it to get executed.

switch .. case Another type of conditional logic is where a single distinct
scenario is selected from multiple options.

for A looped execution of a statement that will continue executing
until an arbitrarily defined counter reaches a specific value.

24 | Implementing C# 11 and .NET 7.0

Statement type Description

foreach A piece of logic is executed for each item of a collection.
while A block of code keeps executing while a condition remains true.
do .. while Same as while, but the block of code executes at least ones.

Table 1.2: Control flow elements ofC#

To find out about control flow in C# in more detail, you can visit the appropriate
section from the official language documentation via the link as follows:

https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/tutorials/
branches-and-loops-local

Next, will have a look at different ways of how we can create our own custom types
inC#.

C# custom types
As well as using inbuilt data types, it is very important in programming to be able to
build custom objects. And C# supports a number of structures that allow software
developers to do it. These structures are listed in table 1.3:

Structure type Description
interface Provides only the signatures of public members (methods,

fields, and properties) that implementing object must have
defined.

class A reference type structure that enables the creation of custom
data types with bespoke fields, properties, and methods.

struct A value type structure that enables the creation of custom
data types with bespoke fields, properties, and methods.

record A class or a struct that is specifically designed to represent
rl a-I-oIao co nkior+o onrl c4nra rl oh a Qn hxmirollw miAoic4c? nnlxr

https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/tutorials/

U-CILCLUUDC UUJCVLD CULM. DLU1C VLCLLCL. JU IL LJ jULVUllJ L.U1LD1DLD VILIJ'

of properties.
Table 1.3: Of structures that enable the creation of custom data types

To learn more about the C# type system, you can visit the official documentation via
the link as follows:

https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/types/

Next, we will have a recap of the access modifiers available in C#.

Getting Familiar with .NET 7 Application Structure ■ 25

Access modifiers
Access modifiers are keywords that control the visibility of the objects and object
elements, such as fields, properties, and methods. For example, you can make certain
elements of an object completely inaccessible to other objects. You can make a certain
object visible to other objects inside the same library but completely inaccessible to
any code outside the library.

Table 1.4 provides the full list of access modifiers that are available in C#:

Table 1.4: C# access modifiers

Access modifier Description
public Visible to all objects inside the executable and to all objects

in any other executable that references it.
private Visible only to the members of the same object.
protected Visible only to the members of the same object and the

members of any derived object.
internal Visible to all objects inside the executable.
protected internal Visible to all objects inside the executable or a derived

object created in another executable.
private protected Visible only to the members of the same object and the

members of a derived object, as long as the derived object
belongs to the same project.

A more detailed information on the C# access modifier can be found here:

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-
structs/access-modifiers

Of course, there is much more in C# than we have managed to cover in this chapter.
But these summaries cover the bulk of language fundamentals.

https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/access-modifiers

And this concludes our introduction to C# 11 and .NET 7. Let us summarize what
we have learned.

Conclusion
C# 11 and .NET 7 come with some new features. But the old features will still work.

If you are familiar with the previous iteration of the platform and the language,
then you may have noticed that hardly anything has changed in terms of the project
structure. Once you create a new project, it looks almost identical to what your .NET
6 project would have looked like.

26 Implementing C# 11 and .NET 7.0

And there is a good reason for it. Microsoft keeps up with its tradition of making as
few breaking changes as possible. One of the benefits of this is that migrating your
older applications to the new platform is easy. Typically, all you have to do is just
change the framework version in the project file.

But there is also a disadvantage to it. Because old features do not get marked as
deprecated as the language evolves, the complexity of the language keeps increasing.
Therefore, there is a lot more to learn in C# 11 than there was in C# 1.

But there is an approach that you can use to work around it. While studying the
language, focus only on the latest of its features. And ignore everything else. If you
then happen to come across some old code feature while looking at somebody else's
code, you will always be able to look it up easily, as long as you know the language
fundamentals, which we have briefly recapped in this chapter.

In the upcoming chapter, you will learn about the new features that have been added
to version 11 of the C# language.

Points to remember
• To work with C# 11 and .NET 7, you will need to download the .NET 7 SDK.

• You can either use a code editor or an IDE to work with your code.

• The suitable code editor is Visual Studio Code.

• Depending on your OS, the suitable IDEs are Visual Studio 2022, Visual
Studio 2022 for Mac, or Rider.

• One of the new C# features is the auto-initialization of struct properties to
the default values of their data type.

• Another new C# feature is a new type of string literal, where you do not

have to escape any special characters.

Multiple choice questions
1. What is the minimum set of tools you need to start working with C# 11

and .NET 7?
a. .NET 7 SDK
b. Code Editor

c. IDE
d. All of these

Getting Familiar with .NET 7 Application Structure T1

2. Which data types of support auto-initialization of their properties to their
default values?

a. class
b. struct
c. record
d. All of these
e. None of these

3. Which statement best describes the new string literals from Gt 11?
a. You cannot combine it with interpolated strings because curly brackets

will be treated as literal characters
b. You cannot combine it with interpolated strings because this string

type does not support the dollar sign at the beginning of its value
definition

c. You can combine it with interpolated strings as long as you place the
dollar sign at the beginning of its value definition

d. None of these are true

Answers
1. a
2. b
3. c

Key terms

• IDE: Integrated development environment that provides all tools that you
need to manage your code

• Code editor: This allows you to write code, but you will typically need
external tools to run it.

• SDK: Software development kit that allows you to use specific languages,
platforms, frameworks, and collections of libraries to build your code with.

• CLI: Command line interface that allows you to execute commands inside a
text-based terminal.

• Access modifier: A keyword that controls the visibility of your objects or the
members of these objects.

28 | Implementing C# 11 and .NET 7.0

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com

Chapter 2

Overview of
C# 11

Features

Introduction
This chapter will cover all the latest features that have been added in C# 11. Some
of these language features have already been made available in older versions of the
language, but we had to install some external dependencies to enable them. At the

same time, some otner features are completely oranu new. some ot tnese features
are improvements of other new features that have been added to the language in the
most recent versions of it, whereas other features are completely stand-alone.

Whatever the new features are, this chapter covers them all. For each of these features,
tine chapter also provides implementation examples and showcases its benefits.

Structure
In this chapter, we will discuss the following topics:

• Struct auto-defaults

• Generic attributes

• Sequence pattern matching

• New string operations

30 ■ Implementing C# 11 and .NET 7.0

Objectives
By the end of this chapter, you will have learned how to use each of the C# features
that were added to the language with the version 11 update. This will be achieved
by demonstrating implementation examples that you can try out in your own code.
This will help you to understand the importance and benefits of each of the new
features.

Prerequisites
To follow this chapter, you will need the following:

• A machine running either Windows, MacOS, or Linux operating system

• .NET 7 SDK

• A suitable IDE or a code editor

• Being familiar with C# fundamentals

If you do not have any of the preceding listed dependencies installed already, let
us know the setup instruction provided in Chapter 1: Getting Familiar with .NET 7
Application Structure, which also provides a recap of C# fundamentals.

Struct auto-defaults

We will start by examining auto-default property initialization in struct data types.
We have already touched upon it in Chapter 1: Getting Familiar with .NET 7 Application
Structure. But as we want to keep listing all new C# 11 features in one place, we will
examine it in more detail here.

Before we can make start looking at the new C# language features, we will need to
create a new .NET console application. In my example, I will call the application
project NewFeatures.

If you are using an IDE, you can create a new application project via the GUI by
selecting a Console Application template. But you can also use the command line
interface, which will be available on any system that has .NET SDK installed. And to
do it via the CLI, you can execute the following command in a folder of your choice:
dotnet new console -o NewFeatures

This will create a folder called NewFeature with a console application project inside
it. And now, we will add a struct, which will allow us to demonstrate the auto-default
feature. To do so, create a folder called AutoDefaults inside the NewFeature project
folder. Then create a StructExample.es file inside this folder and populate it with
the following content:

Overview of C# 11 Features ■ 31

namespace NewFeatures.AutoDefaults;

public struct StructExample

{
public int Id { get; set; } // Auto-initialized to 0

public string Name { get; set; } // Auto-initialized to ""

public bool Active { get; set; } // Auto-initialized to false

}

We have already added some comments to the properties of this struct to indicate
what each of these properties will auto-initialize to. So, basically, when we create a
new instance of the StructExample struct, we will be able to read the properties
right away. An attempt to read them will not result in a NullReferenceException
being thrown. And this is despite the fact that we have not explicitly assigned any
values to these properties.

To test this behavior, we can replace the content of the Program.es file with the
following code:

using NewFeatures.AutoDefaults;

StructExample.es
Program.es

Console.WriteLine("Testing auto-defaults.");

var testStruct = new StructExample();

Console.WriteLine($"""

Struct data is as follows:

Id: {testStruct.Id},
Name: {testStruct.Name},
Active: {testStruct.Active}

This is something that would have thrown a NullReferenceException in the
previous versions of C# as soon as we attempted to read any of the properties of the
testStruct variable. But if we run our application on the latest version of .NET, it

32 Implementing C# 11 and .NET 7.0

will produce the following output, which confirms that all of our properties have
been auto-initialized to their default values, as shown in the following figure:

Testing auto-defaults.

Struct data is as follows:

Id: 0,
Name: ,
Active: False

Figure 2.1 : Auto-initialized struct properties

The next C# 11 feature that we will have a look at is generic attribute classes.

Generic attributes
In C#, attribute classes are used for extending the functionality of classes and
class members and adding metadata to them. For example, placing the Authorize
attribute above a method in a Web API controller will ensure that the endpoint that
this method represents will only be accessible by authenticated users. And passing
some additional parameters into this attribute will apply even stricter authorization
requirements to the endpoint.

All attribute classes inherit from System. Attribute class. By convention, the name
of an attribute class should end with Attribute suffix, which can be stripped out
when the attribute is applied in the code. For example, the previously-mentioned
Authorize attribute is actually defined as AuthorizeAttribute at its source.

An attribute is placed above a class or a class member in square brackets. And the
syntax for applying attributes to classes and class members is as follows:

[<attribute class name without Attribute suffixxoptional: attribute
properties in brackets:*]

Just like any other class, attributes have methods, fields, and properties. But prior
to C# version 11, they did not support generics. So, if you need to be able to pass
any arbitrary type into an attribute class, the only way to do it is to pass it into
the attribute constructor and store it in some field or property. But now, generic
attributes have been added. And this has made things a lot simpler.

But why would you even want to pass an arbitrary type definition into an attribute
class? Well, there are many scenarios where such an ability may be useful. For
example, you may want to add some behavior to the attribute that is specific to the
return data type of the class member that the attribute is placed on. And to make
sure that the attribute can be applied anywhere, the type should be injectable at
runtime.

Overview ofC# 11 Features 33

Generic attribute example
To demonstrate how generic attributes work, we will compare them against the old
way of passing arbitrary type definitions into attribute classes. This way, the benefit
of using a generic attribute will be demonstrated more clearly.

To make a start, we will add a GenericAttributes folder to our project and will
place OldTypeAttribute. cs file into it with the following content:

namespace NewFeatures.GenericAttributes;

public class OldTypeAttribute : Attribute

{
public OldTypeAttributefType attributeType) => AttributeType =

attributeType;

public Type AttributeType { get; }

}

As you can see, we have a read-only property in this class that holds a type. It is set
during the class initialization via the class constructor. And to find out what type the

attribute notas, you actually need to nave a iook at mis property once tne attribute
has been initialized.

And we will now add a new generic attribute. To do so, we will create
NewTypeAttribute.es file inside the same folder and will populate it with the
following content:

namespace NewFeatures.GenericAttributes;

public class NewTypeAttribute<T> : Attribute { }

As you can see, there is no longer any need for an additional class member to store
tine attribute in. This also makes it easier to obtain the type at runtime. Also, it makes
for a cleaner syntax when applying the attribute.

To demonstrate how both of these attributes are applied, we will add
ParametrizedClass. cs file to the same folder. It will contain the following code:

namespace NewFeatures.GenericAttributes;

public class ParametrizedClass

{

34 | Implementing C# 11 and .NET 7.0

[OldTypeftypeof(int))]
public int DoOldStyledobf) => default;

[NewType<int>]
public int DoNewStyleJobf) => default;

}

As you can see, the generic attribute syntax is cleaner. There is one less keyword
we have to use. But what is even better is that the type that the attribute stores
can be instantly obtained by reflections without having to look at its members. To
demonstrate this, we will add some code to our Program.es file. First, we will add
the following using statement at the beginning of the code in the file:

using NewFeatures.GenericAttributes;

Then, we will add the following code at the end of the file:

Console.WriteLinef'Testing Generic Attributes.");

NewTypeAttribute.es
Program.es

var methods = typeof(ParametrizedClass).GetMethods();

foreach (var method in methods)

{
var attribute = method?

.GetCustomAttributes(false)

.FirstOrDefault();

if (attribute != null)
Console.WriteLine($. . . .

Method name: {method?.Name},
Method attribute: {attribute.GetType()}

. . .);
}

Overview of C# 11 Features I 35

And the output of this code will look like the following:
Testing Generic Attributes.

Method name: DoOldStyleJob,
Method attribute: NewFeatures.GenericAttributes.OldTypeAttribute

Method name: DoNewStyleJob,
Method attribute: NewFeatures.GenericAttributes.NewTypeAttribute'l[System.Int32]

Method name: GetType,
Method attribute: System.Runtime.Compilerservices.Nu11ableContextAttribute

Figure 2.2 : Generic versus non-generic attribute class

As you can see, with a generic attribute, we can see what data type it represents right
away. The old style attribute, however, does not show this information when we use
reflections to obtain the definition of its instance. So, not only a generic attribute is
easier to set up, but it is also easier to read.

Next, we will have a look at some improvements to a C# feature that has been added
to the language in its fairly recent versions: sequence pattern matching.

Sequence pattern matching
Pattern matching feature in C# allows you to identify whether a specific value adheres
to a specific pattern. And in C# 11, this feature has been applied to collections.

There are various patterns that you can match a collection against. There is an
exact match, where the sequence that you are testing the collection against must be
identical to the sequence inside the collection. But you can also do a loose match,
where certain places in the sequence can match against any value or a range thereof.

Sequence pattern matching completely disregards collection types. It only cares
about the sequences in the collections. It does not matter if you are working with
arrays, lists, or anything else. As long as your collection contains a specific sequence
of values, it will match if this is the sequence that has been specified.

The syntax for sequence pattern matching is as follows:

•(collection variable> is [<sequence>]

To check whether the collection that you are comparing the sequence against contains
exactly the same sequence as specified, you just put the full list of the exact comma-
separated values inside the square brackets in the same order as you expect them to
appear inside the collection. To see if the collection contains specific values in specific
positions, while you do not care about any other values, you can just use the discard
(underscore; _) character in the positions of the values you do not care about. If you

36 ■ Implementing C# 11 and .NET 7.0

are looking for a specific sequence of values, while you do not care where exactly in
the collection this sequence resides, you can use a double-dot character to represent
a range of any values. And, of course, you can combine all of these to perform more
sophisticated pattern matching.

Sequence pattern matching demonstrated
To demonstrate how sequence pattern matching works, we will create a
PatternMatching folder inside our project. Then, we will add a Collection
Operations. cs file to it and populate it with the following content:

namespace NewFeatures.PatternMatching;

public class Collectionoperations

{
private List<int> items = new List<int>

1
2, 3j 6, 7, 8

};

public bool MatchExactSequence => items is [2, 3, 6, 7, 8];

public bool MatchWithDiscard -> items is [2, 6, _> 8];

public bool MatchWithRange -> items is [2, .

}

In this class, we have the following three fields:

1. MatchExactSequence performs an exact match. This means that the
collection the sequence is being compared against must be comprised of
exactly the same sequence as the one specified.

2. MatchWithDiscard method only cares that the collection has a specific
number of items and that items at the index of 0,2, and 4 have specific values.
It does not care what values the items at the indexes of 1 and 3 have.

3. MatchWithRange method only cares that the first item of the collection is 2.
It does not care how many more items there are in the collection and what
they are.

But the good news is that this new pattern matching feature does not only work with
classic collection types but also with fairly recently added char span types. And this
is what we will have a look at next.

Overview of C# 11 Features ■ 37

Sequence pattern matching with char span
Span is a data type that has been added to version 8 of C# language. It is a collection
type that is meant to represent a specific span of another collection. For example,
if you are using an array and you only ever want to modify a specific set of items
inside of it, you can assign this set of items to a Span object. This way, you will be
protected from accidentally modifying the members of the original collection that
you did not want to modify.

In C# 11, you can use sequence pattern matching against a span. To demonstrate how
this works, we will add a CharSpanOperations.es file to our PatternMatching
folder. In this class, we will first create the following class definition:

namespace NewFeatures.PatternMatching;

public class CharSpanOperations

{

CharSpanOperations.es

private char[] charArray = new char[3]

{
'a'j
'b',
'c'

};

private Span<char> GetSpan()

{
Span<char> span = charArray;
return span;

}

private ReadOnlySpan<char> GetReadonlySpan()

{
ReadOnlySpan<char> span = charArray;
return span;

}
}

And then, we will add the following public properties to it:
public bool MatchWholeSpan => GetSpanQ is ['a', 'b', 'c'];

public bool MatchWholeReadOnlySpan => GetReadonlySpan() is ['a'

38 Implementing C# 11 and .NET 7.0

public bool MatchWholeSpanWithDiscard => GetSpan() is ['a', 'c'];

public bool MatchWholeReadOnlySpanWithDiscard => GetReadonlySpan() is
['a', _> 'c'];

public bool MatchWholeSpanByRange => GetSpan() is ['a', ..];

public bool MatchWholeReadOnlySpanBtRange => GetReadonlySpan() is ['a'>

Now, we can test whether all our examples of sequence pattern matching work. To
do so, we will add the following using statement to our Program.es file:

using NewFeatures.PatternMatching;

And then, we will add the following code to the file:

Console.WriteLinef"Testing Pattern Matching.");

van collectionoperations = new CollectionOperationsf);

Console.WriteLine($"""

MatchExactSequence returns {collectionOperations.MatchExactSequence},

MatchWithDiscard returns {collectionoperations.MatchWithDiscard},

MatchWithRange returns {collectionoperations.MatchWithRange}

. . . .);

van charSpanOperations = new CharSpanOperations();

Console.WriteLine($"""

MatchWholeSpan returns {charSpanOperations.MatchWholeSpan},

MatchWholeReadOnlySpan returns {charSpanOperations.
MatchWholeReadOnlySpan},

MatchWholeSpanWithDiscard returns {charSpanOperations.

Program.es

Overview ofC# 11 Features 39

MatchWholeSpanWithDiscard}j

MatchWholeReadOnlySpanWithDiscard returns {charSpanOperations.
MatchWholeReadOnlySpanWithDiscard},

MatchWholeSpanByRange returns {charSpanOperations.
MatchWholeSpanByRange},

MatchWholeReadOnlySpanBtRange returns {charSpanOperations.
MatchWholeReadOnlySpanBtRange}

If the sequence pattern matching works the way we expect it to, we expect every
public property in the newly created classes to return true. And, as the following
console output in figure 2.3 indicates, this is indeed what happens:

Testing Pattern Matching.

MatchExactSequence returns True,
MatchWithDiscard returns True,
MatchWithRange returns True

MatchWholeSpan returns True,
MatchWholeReadOnlySpan returns True,
MatchWholeSpanWithDiscard returns True,
MatchWholeReadOnlySpanWithDiscard returns True,
MatchWholeSpanByRange returns True,
MatchWholeReadOnlySpanBtRange returns True

Figure 2.3 : Sequence pattern matching demonstrated

So, as you can see, C# 11 has substantially expanded the pattern-matching capabilities
of the language. But it has also improved the way programmers can work with
strings. And this is what we will have a look at next.

New string operations
C# 11 has included some new things you can do with strings. These new operations
make your code less verbose and easier to read. One of the new improvements is
being able to use multiple lines in interpolated string. This feature is especially
helpful when you want to insert the results of some complex expression into a string.
Another newly added feature is the new raw string literal, which we briefly touched
upon in Chapter 1: Getting Familiar with .NET 7 Application Structure.

40 Implementing C# 11 and .NET 7.0

We will start by applying multi-line string interpolation. We will use a multi-step
LINQ expression as the code we will insert into the string. And to showcase the
benefits of this feature, we will apply it twice. On the first occasion, we will use
the old-style single-line string interpolation. And then, we will apply the new-style
multi-line string interpolation.

We will create a Stringoperations folder inside our project folder and add an
InterpolatedStrings. cs file to it. The content of the file will be as follows:

namespace NewFeatures.Stringoperations;

public class InterpolatedStrings

{
private Listc(string; int)> names = new List<(string; int)>

{
("John"; 25);
("Mike"; 34);
("Laurence"; 42)

};

public string OldStylelnterpolation => $"The age of Laurence
is: {names.Where(n -> n.Iteml == "Laurence").Select(n => n.Item2).
FirstOrDefault()}.";

public string NewStylelnterpolation => $"The age of Laurence is: {
names

.Where(n => n.Iteml == "Laurence")

.Select(n => n.Item2)

. FirstOrDefaultQ

}

So, we have two string properties: OldStylelnterpolation and NewStylelnterpolation.
Both of these are read-only properties that return identical values. The only difference
between them is how the code is formatted.

By looking at this code, you can immediately see what makes multi-line string
interpolation so useful. When we have a look at the OldStylelnterpolation property,
a long LINQ expression has been placed on a single line, which makes it difficult to
read. In fact, the expression is so long that it does not fit the width of the page.

Overview ofC# 11 Features 41

NewStylelnterpolation, on the other hand, has the same LINQ expression split
across multiple lines. This makes the code much easier to read. And each line of the
expression neatly fits within the width of the page.

Next, we will examine a raw string literal. To do so, we will create another file inside
the StringOperations sub-folder and call it StringLiterals.es. The content of this file
will be as follows:

namespace NewFeatures.Stringoperations;

public class StringLiterals

{

public string RawStringLiteral => """
This text may contain any symbols, including
newlines, "quoted text",

indentations, and so on.

There is no need to escape any characters.
II II II ,

)

public string NewStylelnterpolation => $"""
This is a combination of a new string

literal and interpolated string.

This is a value from inserted code: {5 + 8}.

II II II ,
)

}

So, we have the new raw string literal applied in two varieties: on its own and
combined with string interpolation. The syntax for this new string literal is to
surround the text value in triple double-quote characters on both ends. And both the
start and the end sequence of three double quotes must be placed on their own line.

Anything in between will be interpreted as text, even if a character that you use
happens to have a special meaning in C#. You will not have to perform the escape
of any special characters. In fact, the backslash (\) symbol that you would normally
have used to escape special characters will also be interpreted just as a normal
character in the text. And so will be double quotes until we reach a new line where
double quotes are presented in a sequence of three. This is how we know we have
reached the end of the text.

StringLiterals.es

42 Implementing C# 11 and .NET 7.0

If you place a dollar sign in front of the opening double-quote sequence, you will be
able to insert the code into the string by using curly braces, as you would do with
any other type of string interpolation. And this is the only scenario where you will
need to escape curly braces if you want to include them as part of your text instead
of using them for string interpolation.

And now, we can test all of the string features that we have added. So, we will place
some code into Program, cs file. And the first thing we will do is add the following
statement at the beginning of the file:

using NewFeatures.Stringoperations;

Then, we will test our multi-line string interpolation feature and see if it produces
the same result as a single-line version of it. To do this, we will add the following
block of code to the file:

Console.WriteLine("Testing String Operations.");

var interpolatedStrings = new InterpolatedStrings();

Console.WriteLine($"""

Old style interpolation:

{interpolatedStrings.OldStylelnterpolation}

New style interpolation:

{interpolatedStrings.NewStylelnterpolation}

. . . .);

Figure 2.4 shows the result it produces, which indeed confirms that multi-line string
interpolation works as expected:

Testing String Operations.

Old style interpolation:

The age of Laurence is: 42.

New style interpolation:

The age of Laurence is: 42.

figure l,±. lewing muiri-rinu unrig ini.erpuiui.iuri

Overview of C# 11 Features I 43

Next, we will test our string literals to confirm that they produce the results we
expect. To do so, we will add the following code to the Program.es file:

var stringLiterals = new StringLiterals();

Console.WriteLine($. . . .

Raw string literal:

{stringLiterals.RawStringLiteral}

String literal with interpolation:

{stringLiterals.NewStylelnterpolation}

This code produces the results as shown in figure 2.5, which confirms that the new
string literals work properly both with and without interpolation:

Raw string literal:

This text may contain any symbols, including
newlines, "quoted text",

indentations, and so on.

There is no need to escape any characters.

String literal with interpolation:

This is a combination of a new string
literal and interpolated string.

This is a value from inserted code: 13.

Figure 2.5: Testing string literals

Also, we see the obvious benefits of these new-style string literals when we use them
inside the Console logger. We no longer have to make multiple calls to Console.
WriteLine. We can now make a single call and add multiple lines to the text itself.

This completes the overview of the newly introduced C# 11 features. Let us
ciimmarir7a wlnaf wo Inavo loarnorl

Program.es

□ Ull Lil LUI IZjV VVJLLUL VVL1LUV ItUULVU.

44 | Implementing C# 11 and .NET 7.0

Conclusion
C# 11 has added an array of useful features which make the code easier to read,
write, and execute. One of such feature is auto-default properties on non-nullable
fields in a struct, which allows us to have less verbosity in our code and to prevent
our code from accidentally throwing errors if we have not explicitly set any of the
properties of a struct object.

Another useful feature is generic attribute classes. This feature allows us to easily
determine what exact type is associated with an attribute. We no longer have to store
a type in one of the members of the attribute class. This makes our code less verbose
and easier to use.

As well as this, we have new sequence pattern matching available in C# 11. This is a
powerful feature that provides multiple ways of how various collection types can be
used inside conditional logic. The feature works with any collection type, including
Span and ReadOnlySpan.

C# 11 has also substantially improved how strings are used. First, there is now an
ability to use multiple lines in interpolated strings. This allows us to format the code
in such a way that it becomes much easier to read. Second, there is a new type of
string literal, which does not require programmers to use escape characters. And
this new string literal can work with and without string interpolation.

In the upcoming chapter, we will cover the features that have been newly added to
.NET 7, including its base SDK, its command line interface, and its core libraries.

Points to remember
• Auto-default properties ensure that non-nullable properties inside a struct

data type are always set.

• Generic attribute classes enable the insertion of any arbitrary type into an
attribute.

• Sequence pattern matching enables pattern matching on collections.

• Multi-line interpolated strings enable the programmers to use multi-line
expressions inside interpolated strings.

• New string literal allows for the construction of string literal that do not
require escaping special characters.

Overview of C# 11 Features ■ 45

Multiple choice questions
1. What makes auto-default properties useful?

a. Less verbosity in the code

b. Prevents errors from being accidentally thrown
c. No need to use a constructor
d. All of these

2. What makes generic attributes useful?
a. Easier to determine a type associated with it
b. No need to store the type in a dedicated class member
c. Both of these
d. None of these

3. What characters do you need to escape while using raw string literals
without interpolation?

a. Curly braces

b. Newlines
c. Double quotes
d. None of these

4. What characters do you need to escape while using raw string literals with
interpolation?

a. Curly braces
b. Newlines
c. Double quotes
d. None of these

Answers
1. d

2. c

3. d

4. a

46 Implementing C# 11 and .NET 7.0

Key terms
• Auto-default properties: The non-nullable properties that are set to the

default value of their data type if not set explicitly.

• Generic attribute class: An attribute class that can use generic syntax and be
associated with any arbitrary type.

• Raw string literal: A string literal that is surrounded by sequences of three
double-quote characters. None of the characters inside such a string literally
requires escaping.

Join our book's Discord space
join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com

Chapter 3

What is New in
.NET 7?

Introduction
We have already covered core changes to the C# 11 language. However, .NET 7
platform is more than C#. Some exciting changes were added to the platform itself.

Broadly speaking, .NET consists of a wide range of components. These include build
tools, code generation tools, code analysis tools, compilers, and so on. But it also
includes command line interface (CLI) and various core libraries that can be used
by any .NET-compatible programming language.

As you can see, the .NET platform is a fairly broad topic. And this chapter aims to
cover the main improvements that have been introduced to all parts of it.

Structure
In this chapter, we will discuss the new features of .NET 7, which will include the
following topics:

• SDK and build tool improvements

• System and Microsoft library updates

• Observability improvements

• Breaking changes of .NET 7

48 Implementing C# 11 and .NET 7.0

Objectives
By the end of this chapter, you will be familiar with the new features that have been
added to version 7 of the .NET platform. You will also learn which of the older
features have been either marked as deprecated, removed, or had their behavior
changed. This way, you will be able to migrate your code base to .NET 7 without
breaking any of your existing code.

Prerequisites
To follow this chapter, you will need the following:

• A machine running either Windows, MacOS, or Linux operating system

• .NET 7 SDK

• A suitable IDE or a code editor

• Being familiar with C# fundamentals

If you do not have any of the preceding listed dependencies installed already, let
us know the setup instruction provided in Chapter 1: Getting Familiar with .NET 7
Application Structure, which also provides a recap of C# fundamentals.

SDK and build tool improvements
We will start by covering the most fundamental components of .NET—it is SDK and
the build tools that come with it. That also includes the CLI.

Many improvements have been made to .NET 7 that are purely performance related.
But there are also some functional changes that are easy to demonstrate. And this is
precisely what we will do now, starting with the CLI improvements.

CLI tools improvements
One of the major improvements to the .NET CLI tools is the output of dotnet - - help
command. It has been made much more detailed than before. The output you will

get after executing this command will look similar to the following:

Usage: dotnet [runtime-options] [path-to-application] [arguments]

Execute a .NET application.

runtime-options:

--additionalprobingpath <path> Path containing probing policy and

What is New in.NET 7? I 49

assemblies to probe for.

--additional-deps <path> Path to additional deps.json file.

--depsfile Path to <application>.deps.json file.

--fx-version <version> Version of the installed Shared
Framework to use to run the application.

--roll-forward <setting> Roll forward to framework version
(LatestPatchj Minor, LatestMinor, Major, LatestMajor, Disable).

--runtimeconfig
json file.

Path to <application>.runtimeconfig.

path-to-application:

The path to an application .dll file to execute.

Usage: dotnet [sdk-options] [command] [command-options] [arguments]

Execute a .NET SDK command.

sdk-options:

-d|--diagnostics Enable diagnostic output.

-h|--help

--info

Show command line help.

Display .NET information.

--list-runtimes Display the installed runtimes.

--list-sdks Display the installed SDKs.

--version Display .NET SDK version in use.

SDK commands:

add Add a package or reference to a .NET project.

build Build a .NET project.

build-server Interact with servers started by a build.

clean Clean build outouts of a .NET oroiect.

in.NET

format Apply style preferences to a project or solution.

help

list

Show command line help.

List project references of a .NET project.

msbuild Run Microsoft Build Engine (MSBuild) commands.

new Create a new .NET project or file.

nuget

pack

Provides additional NuGet commands.

Create a NuGet package.

50 ■ Implementing C# 11 and .NET 7.0

publish Publish a .NET project for deployment.

remove Remove a package or reference from a .NET project.

restore Restore dependencies specified in a .NET project.

run Build and run a .NET project output.

sdk Manage .NET SDK installation.

sin Modify Visual Studio solution files.

store Store the specified assemblies in the runtime package
store.

test Run unit tests using the test runner specified in a
.NET project.

tool Install or manage tools that extend the .NET
experience.

vstest Run Microsoft Test Engine (VSTest) commands.

workload Manage optional workloads.

Additional commands from bundled tools:

dev-certs Create and manage development certificates.

fsi Start F# Interactive / execute F# scripts.

user-jwts

user-secrets

Manage ISON Web Tokens in development.

Manage development user secrets.

watch Start a file watcher that runs a command when files
change.

Rundotnet [command] --help for more information on a command.

But this is not the only improvement to .NET CLI. There is also an inclusion of tab
completion. So, pressing the Tab key after partially typing a command attribute will
complete the attribute for you. This makes the CLI consistent with other CLIs.

NativeAOT and enabling librarv trimming

-------- - ---O-------------J --------------------D

Ahead of Time (AOT) is a mechanism used to compile the code into binaries that are
specific to a particular platform. There is no longer any intermediate code running
between the application and the machine it is running on. The application was
already pre-compiled to run on a machine with a specific operating system and CPU
architecture. Because there is no intermediate code that needs to be interpreted as
it runs, such pre-compiled applications perform significantly faster than their .NET
runtime counterparts. And NativeAOT is a .NET 7 feature that enables this type of
compilation on .NET.

Wfiflf is New in .NET 7? 51

Because the application has been pre-compiled to run on a specific type of machine,
it no longer relies on .NET components. But there are also some .NET components
that actually prevent the code to be compilable into a fully native application. To
make your .NET application work with NativeAOT if it needs to be trimmed.

Luckily, there is a feature that has been added to the .NET 7 project templates
that make the process of trimming the libraries easy. All we need to do is add the
following entry to the project file markup:

<IsTrimmable>true</IsTrimmable>
The complete content of the . cspro j file may look as follows:
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net7.0</TargetFramework>
<ImplicitUsings>enable</ImplicitUsings>
<LangVersion>preview</LangVersion>
<Nullable>enable</Nullable>
< I sT rimma ble >t r uec/1sT rimmable>

</PropertyGroup>

</Project>

Central package manager
The central package manager is a new feature that has been added to the NuGet
package management system. This is a feature that allows us to easily manage
common dependencies for multiple projects in complex solutions.

To enable this feature, von will need to create a Directorv.Packapes.nrons file

inside your solution. This file will contain XML with the Project root element. You
will need to then have the following markup inside this element to enable the central
package manager:

<PropertyGroup>
<ManagePackageVersionsCentrally>t:rue</ManagePackageVersionsCentrally>
</PropertyGroup>

Then, you can have ItemGroup element that will contain references to each
individual package you want to use in your projects. This will be represented by
Packageversion element, which will be added in the following format:

52 Implementing C# 11 and .NET 7.0

<PackageVersion Include="{ NuGet package name }" Version="{ NuGet
package version }" />

This will be the only reference to a specific package you will need in your entire
solution. To apply it in your project, you will just need to add the following element
to any arbitrary ItemGroup element inside your .CSPROJ file:

<PackageReference Include=JJ{ NuGet package name }” />

This concludes our overview of the SDK and builds tool improvements. Now, we will
move on to the improvements that have been introduced to the core .NET libraries.

System and Microsoft library updates
We will now have a look at some improvements that have been added to the
core libraries used by .NET, which primarily come from System and Microsoft
namespaces. To showcase these new features, we will create a console application
project. We will call our project CoreLibrarylmprovements. You can either create
it via a GUI of an IDE of your choice, or you can execute the following command
inside any folder on your computer:
dotnet new console -o CoreLibrarylmprovements

This will create a CoreLibrarylmprovements folder with the project structure
inside it. Thereafter, we will start adding classes to the project to showcase the new
core library features. The first feature we will have a look at is the improvement to
the time-related data types in the System library.

Microseconds and nanoseconds support
Prior to .NET 7, millisecond was the smallest unit of time that .NET has supported.
But now, you can work with microseconds and nanoseconds. Both of these units of

measure have been added to Dateline, DateTimeOffset, TimeOnly, and TimeSpan
objects.

To demonstrate how these units can be applied, follow the following steps:

1. We will add file to our CoreLibrary
Improvements project folder. The initial content of this file will be as follows:
namespace CoreLibrarylmprovements;

TimeDatatypeImprovements.es

public class TimeDatatypelmprovements

{
public static void DemoNewTimeFeatures()

{

What is New in .NET 7? 53

}
}

2. Inside the DemoNewTimeFeatures method, we will place some code for
every data type that had microseconds and nanoseconds added. First, we
will insert the following code into the method to demonstrate the new
DateTime API:

van dateTime = new DateTime(2022, 3, 2, 15, 00, 30, 30, 30);

Console. Writel_ine($. . . .
DateTime object is {dateTime} with {dateTime.Microsecond
} microseconds and {dateTime.Nanosecond} nanoseconds.

. . . .);

3. In this code, we are setting microsecond and nanosecond values while
creating a new instance of a DateTime object.

4. Then, we are printing those values in the console.

5. Apply a similar action to the DateTimeOffset object by inserting the
following code into the method:

van dateTimeOffset = new DateTimeOffset(2022,
3, 2, 15, 00, 30, 30, 30,
TimeSpan.FromMicroseconds(60 * 1000 * 1000));

TimeDatatypeImprovements.es

Console.WriteLine($. . . .
DateTimeOffset object is {dateTimeOffset } with

{dateTimeOffset.Microsecond
} microseconds and {dateTimeOffset.Nanosecond} nanoseconds.

IIIIII \ t

6. Next, we will insert the following code that demonstrates the new API on the
TimeOnly object type:

van timeOnly = new Time0nly(15, 00, 30, 30, 30);

Console. Writel_ine($. . . .

54 | Implementing C# 11 and .NET 7.0

TimeOnly object is {timeOnly} with {timeOnly.Microsecond
} microseconds and {timeOnly.Nanosecond} nanoseconds.

. . . .);

7. As you may have noticed, the TimeOnly object is very similar to DateTime,
but it does not have the date part in it.

8. And finally, we will add the following code to demonstrate the new API of
the TimeOffset data type:

var timeSpan = new TimeSpan(19, 3, 40} 20, 30, 30);

Console.WriteLine($. . . .
TimeSpan object is {timeSpan} with {timeSpan.Microseconds
} microseconds and {timeSpan.Nanoseconds} nanoseconds.
Ticks per microsecond: {TimeSpan.TicksPerMicrosecond}.
Nanoseconds per tick: {TimeSpan.NanosecondsPerTick}.

. . . .);

As you may have noticed, this data type has some additional constant static
fields, namely, TicksPerMicrosecond and NanosecondsPerTick.

9. And now, to see our code in action, we can replace the content of the Program.
cs file inside the project folder with the following:
using CoreLibrarylmprovements;

Console.WriteLine("Demonstrating time-related data type
improvements.");

TimeDatatypeImprovements.DemoNewTimeFeatures();

And if we now run the application, the output of it is expected to look similar to
what is displayed in figure 3.1:
Demonstrating time-related data type improvements.
DateTime object is 02/03/2022 15:00:30 with 30 microseconds and 0 nanoseconds.

DateTimeOffset object is 02/03/2022 15:00:30 with 30 microseconds and 0 nanoseconds.

TimeOnly object is 15:00 with 30 microseconds and 0 nanoseconds.

TimeSpan object is 19.03:40:20.0300300 with 30 microseconds and 0 nanoseconds.
Ticks per microsecond: 10.
Nanoseconds per tick: 100.

Figure 3.1: Demonstration of new time-related APIs

What is New in .NET 7? 55

This concludes the overview of the new time-related .NET functionality. Next, we
will examine the new features related to JSON processing.

New JSON features
The improvements to JSON that have been added to .NET 7 include the following:

• MaxDepth property has been added to JsonWriterOptions class from
System.Text.Json library.

• The default JsonSerializerOptions is being made accessible externally, so
developers can see what the options are.

• An implementation of HTTP PATCH calls specific to JSON

• JSON object polymorphism features have been added.

To demonstrate these JSON features, we will add NewJsonFeatures.es file to our
project folder, and we will initially populate it with the following content:

using System.Net.Http.Json;
using System.Text.Json;
using System.Text.Json.Serialization;

namespace CoreLibraryimprovements;

public static class NewJsonFeatures

{
}

Next, we will add a method to this class that will demonstrate how to use the
MaxDepth of the JsonWriterOptions class.

MaxDepth property of JsonWriterOptions class
MaxDepth property enforces the maximum depth of inner objects inside the JSON
output. If this number is exceeded and the structure of an object is deeper, an
exception will be thrown. The method that we will add to demonstrate this will look
as follows:

public static void DemoJsonWriterOptions()

{
var options = new JsonWriterOptions

{

NewJsonFeatures.es
http://Http.Json

56 Implementing C# 11 and .NET 7.0

Indented = true,
MaxDepth = 5

};

using van filestream = File.Create("output.json");
using van writer = new Utf83sonWriter(fileStream, options: options);
using IsonDocument document = DsonDocument.Parse("""

{
"levell": {

"level2": {
"levels": {

"key": "value"

}
}

}
}
. . . .);

var root = document.RootElement;

if (root.ValueKind == IsonValueKind.Object)

{
writer.WriteStartObject();

}
else

(
return;

}

foreach (JsonProperty property in root.EnumerateObject())

{
property.WriteTo(writer);

}

writer.WriteEndObject();
writer.Flush();

}

What is New in .NET 7? 57

In this method, we are setting JSON writer that writes indented JSON and is only
capable of dealing with up to five levels of depth. Then, we use this writer to write
a JSON document into a file.

In the JSON that we are using in our example, we only have three levels of depth, so
it fits within our maximum value of 5. However, if we had more than five levels, this
code would throw an exception.

Default JsonSerializerOptions configuration
Next, we will add the following method that demonstrates the accessibility of the
default values in the JsonSerializerOptions object. The method will look like tire
following:

public static void ShowDefaultJsonSerializerOptions()

{
var options = new JsonSerializerOptions

{
Writelndented = true

};

Console.WriteLinef"Showing default JsonSerializerOptions.");
Console.WriteLine(JsonSerializer.Serialize(JsonSerializerOptions.

Default, options));

}

In this method, we are serializing the Default static property of the
JsonSerializerOptions object to see what the default settings are if you do not
set any explicit values in any of the fields.

JSON-specific HTTP PATCH
Next, we will add the following method to demonstrate how a JSON-specific HTTP
PATCH request can be made from an instance of the HttpClient class. The method
will have the following structure:

public static async Task DemoPatchAsJsonAsyncf)

{
var client = new HttpClient();
client.DefaultRequestHeaders.Add("Accept", "application/json");
var jsonBody - new { Key = "value" };

var response =

58 Implementing C# 11 and .NET 7.0

await client.PatchAsJsonAsync("https://localhost", jsonBody);

}

To see how this method works, we will need to host a server application with an
appropriate endpoint that accepts the PATCH verb and J SON payload. In this example,
the application is expected to be hosted at the https://localhost address. However,
if you want to see how this method works, you may want to host an appropriate
application at any address that suits you.

Finally, we will have a look at the new JSON polymorphism feature.

JSON polymorphism
To demonstrate JSON polymorphism, we will need to add some classes that will
represent JSON objects. We can add them in the same file immediately below the
NewJsonFeatures class definition. And the first pair of classes will look as follows:

[JsonDerivedType(typeof(BasicBaseObject))]
[JsonDerivedType(typeof(BasicDerivedObject))]
public class BasicBaseObject

{
public int BaseData { get; set; } = 1;

}

public class BasicDerivedObject : BasicBaseObject

{
public int ExtraData { get; set; } = 2;

}

Here, we have two classes. As indicated by the JsonDerivedType attributes, both
of these types are meant to represent a JSON object. Both of these can inherit and
be inherited from. This is why, when we derive BasicDerivedObject class from
BasicBaseObject, this will be known by JSON serializer and deserializer.

This is the most basic setup of JSON polymorphism. Now we will add two more
classes that will demonstrate more advanced usage. These classes will look as
follows:

[JsonDerivedType(typeof(BaseStringDiscriminator), typeDiscriminator:
"baseObject")]

[JsonDerivedType(typeof(DerivedStringDiscriminator), typeDiscriminator:
"derivedObject")]

public class BaseStringDiscriminator

https://localhost
https://localhost

What is New in .NET 7? 59

{
public int BaseData { get; set; } = 1;

}

public class DerivedStringDiscriminator : BaseStringDiscriminator

{
public int ExtraData { get; set; } = 2;

}

These classes have typeDiscriminator parameters set inside the J sonDerivedType
attribute. This parameter allows you to derive a JSON string into the correct type
during the deserialization. In C#, when you derive one class from another, the
derived class implicitly matches its type with its base type. So, if your method
expects a parameter of the BaseStringDiscriminator type, you can pass a variable
of DerivedStringDiscriminator into it.

The typeDescriminator parameter allows you to use this feature of the language
while deserializing a JSON string into a class. The value specified in this parameter
corresponds to the value of the $type field inside the JSON string. When you specify
BaseStringDiscriminator type as the target of your deserialization, the JSON
string will be deserialized into this type if you specify baseObject as the value of
the $type field. But it will be deserialized into DerivedStringDiscriminator type
if the value that you have specified is derivedOb ject.

You can also use a numeric type discriminator. And the following pair of classes
demonstrates how you can use it:

[IsonDerivedTypeftypeof(BaselntDiscriminator), 0)]

[3sonDerivedType(typeof(DerivedIntDiscriminator), 1)]

public class BaselntDiscriminator

{
public int BaseData { get; set; } = 1;

}

public class DerivedlntDiscriminator : BaselntDiscriminator

{
public int ExtraData { get; set; } = 2;

}

60 Implementing C# 11 and .NET 7.0

In this case, the same principle applies as with the string type discriminator. But this
time, it will be an integer number inside the $type field.

Now, we will add some code that will help us to see these features in action. We will
do it by adding the following method to our NewJsonFeatures class:

public static void DemolsonPolymorphism()

{
Console.WriteLine("Demonstrating basic ISON polymorphism:");
Console.WriteLine(lsonSerializer.Serialize(new

BasicDerivedObject()));

Console.WriteLine(
"Demonstrating ISON polymorphism with string type discriminator:");

var jsonStringDiscrimnator = DsonSerializer.
Deserialize<BaseStringDiscriminator>("""

{
"$type": "derivedObject",
"ExtraData":2,
"BaseData":1

}
IIIIII \ ,

Console.WriteLine($"lSON is of derived type: {jsonStringDiscrimnator
is DerivedStringDiscriminator}.");

Console.WriteLine(
"Demonstrating ISON polymorphism with integer type discriminator:");

var jsonlntDiscrimnator = DsonSerializer.
Deserialize<BaseIntDiscriminator>('. . .

{
"$type": 1,
"ExtraData":2,
"BaseData":1

}
. . . .)1

Console.WriteLine($"DSON is of derived type: {jsonlntDiscrimnator is
DerivedlntDiscriminator}.");

What is New in.NET 7? I 61

So, we are serializing an object with basic JSON polymorphism into a JSON string.
Then, we are testing the type discriminator features while deserializing a JSON
string into a class. We test both the numeric and the textual type discriminators.

Now, we will add some logic to execute the code that we have added.

Testing JSON features
We will add the following code to our Program.es file:
Console.WriteLine("Demonstrating ISON improvements.");

NewJsonFeatures.DemoJsonWriterOptionsO;

NewlsonFeatures.ShowDefaultlsonSerializerOptionsO;
NewlsonFeatures.DemolsonPolymorphismf);

And this should produce results similar to what is displayed in figure 3.2:
Demonstrating JSON improvements.
Showing default JsonSerializerOptions.
{

"Converters": [],
"PolymorphicTypeConfigurations": [],
"AllowTrailingCommas": false,
"DefaultBufferSize": 16384,
"Encoder": null,
"DictionaryKeyPolicy": null,
"IgnoreNullValues": false,
"DefaultlgnoreCondition": 0,
"NumberHandling": 0,
"IgnoreReadOnlyPnoperties": false,
"IgnoreReadOnlyFields": false,
"IncludeFields": false,
"MaxDepth": 0,
"PropertyNamingPolicy": null,
"PropertyNameCaselnsensitive": false,
"ReadCommentHandling": 0,
"UnknownTypeHandling": 0,
"Writelndented": false,
"ReferenceHandler": null

J
Demonstrating basic JSON polymorphism:
{"ExtraData":2,"BaseData":1}
Demonstrating JSON polymorphism with string type discriminator:
JSON is of derived type: True.
Demonstrating JSON polymorphism with integer type discriminator:
JSON is of derived type: True.

Figure 3.2 : The output of our /SON-related methods

This concludes the demonstration of the new JSON-related features in .NET 7. Next,
we will have a look at the new Stream features.

in.NET
Program.es

62 | Implementing C# 11 and .NET 7.0

New stream features
The main improvement to the Stream class in the core System library of .NET is
that it had two methods added to it: ReadExactly and ReadAtLeast. These methods
allow for greater flexibility while reading data from the stream into the byte array
buffer.

ReadExactly method will read the exact number of bytes that the buffer contains. If
there is insufficient data to fill the buffer, an exception will be thrown.

ReadAtLeast method will read at least as many bytes as specified in a specific
parameter. It does not have to fill the entire buffer. It will throw an exception if there
are fewer bytes to read than are specified in the parameter.

To demonstrate both of these methods in action, we will add NewStreamFeatures.
cs file to our CoreLibrarylmprovements project and populate it with the following
content:

namespace CoreLibrarylmprovements;

public static class NewStreamFeatures

{
public static void DemoReadExactlyf)

{
using var filestream = File.Openf'output.json", FileMode.Open);

van buffer = new byte[10];
filestream. Read Exactly (buffer);

Console.WriteLine($. . . .
Bytes read with ReadExactly:
{BitConverter.ToString(buffer)}

. . . .);
}

public static void DemoReadAtLeastf)

{
using var filestream = File.Openf'output.json'L FileMode.Open);

van buffer = new byte[10];
filestream. ReadAtLeast (buffer j 10);

What is New in .NET 7? 63

Console.WriteLine($"""
Bytes read with ReadAtLeast:
{BitConverter.ToString(buffer)}

. . . .);
}

}

So, we have two methods in here: DemoReadExactly and DemoReadAtLeast.
Both methods read data from the file that was created when we were testing some
new JSON-related features. DemoReadExactly method demonstrates how to use
ReadExactly method on the Stream class, which is accessible to any class that
inherits from Stream, such as FileStream from our example. DemoReadAtLeast
method demonstrates how to use ReadAtLeast. Here, we are setting both the buffer
length and the minimum number of bytes to 10, which will make the behavior of this
method identical to that of ReadExactly.

Now, we will add the following code to the Program.es file to test these newly
added methods:

Console.WriteLine("Demonstrating Stream improvements.");
NewStreamFeatures.DemoReadExactly();
NewStreamFeatures.DemoReadAtLeast();

And if we now run our program, we should expect to see an output similar to that
shown in figure 3.3:

Demonstrating Stream improvements.
Bytes read with ReadExactly:
7B-0D-0A-20-20-22-6C-65-76-65
Bytes read with ReadAtLeast:
7B-0D-0A-20-20-22-6C-65-76-65

Figure 3.3 : The data read by ReadExactly and ReadAileast methods

This concludes the overview of the new streaming features from .NET 7. Now, we
will look at the improvements to the RegEx engine.

RegEx improvements
RegEx is a technology that allows programmers to verify if some arbitrary text
matches a specific pattern. It is very powerful because you can construct any

Program.es

pattern wttn a retattvety tow number or symoots. nut Because ot its aDitity to work
with virtually limitless patterns, rules, and combinations thereof, it is relatively
computationally expensive to use RegEx.

64 | Implementing C# 11 and .NET 7.0

.NET 7, however, has introduced a feature that substantially improves the
performance of the RegEx engine. If you want your code path to only work with a
specific RegEx expression, you can pre-compile it. So, the pattern comparison will
be very quick to execute during tire runtime. And this is what we will have a look
at now.

We will add NewRegexFeatures. cs file to our CoreLibrarylmprovements project.
The content of this file will be as follows:

using System.Text.RegularExpressions;

namespace CoreLibrarylmprovements;

public partial class NewRegexFeatures

{
[RegexGenerator(@"A[a-z]+$"j RegexOptions.IgnoreCase)]
public static partial Regex LettersRegexQ;

public static void DemoPrecompiledRegexfstring input)

{
Console.WriteLinef

$"'{input}' matches 'A[a-z]+$' RegEx: {
LettersRegexf).IsMatch(input)}.");

Console.WriteLinef
$"The number of matches: {LettersRegex().Count(input)}.");

var matchEnumerator = LettersRegexQ.EnumerateMatches(input);

while (matchEnumerator.MoveNext())
Console.WriteLine($"Match of {matchEnumerator.Current.Length
} found at index {matchEnumerator.Current.Index}.");

}
}

Here, we first define a method that returns a RegEx object. The RegexGenerator
attribute above indicates that this object comes with a pre-compiled pattern. To
make this work, it needs to have static and partial access modifiers. In our case,
the pattern determines whether a specific text consists entirely of letters. No other
characters are allowed.

What is New in .NET 7? 65

Then, we have the DemoPrecompiledRegex method that uses the pre-compiled
RegEx pattern. It takes an input text and compares it against the pattern. Then, it
creates outputs in the console as a result of this comparison.

This method also showcases another RegEx improvement that is new to .NET 7—the
EnumerateMatches method. This method allows you to go throw all parts of the
input text that match the pattern.

Another useful feature about this new pre-compiled RegEx that is worth mentioning
is that the Roslyn analyzer will automatically highlight the places in the code where
the existing RegEx logic can be replaced with this. This will allow you to refactor and
optimize your old code with just a few clicks if you are using Roslyn-compatible IDE
like Visual Studio.

Now, we will test this method. We will do so by adding the following lines of code
into the Program.es file of the project:

Console.WriteLinef"Demonstrating RegEx improvements.");

var lettersOnlyText = "letters";
var mixedText = "fwef340";

NewRegexFeatures.DemoPrecompiledRegex(lettersOnlyText);
NewRegexFeatures.DemoPrecompiledRegexfmixedText);

Here, we are running the comparison against two strings. One of them contains only
letters, as expected by our RegEx pattern, while the other contains numbers too.
Figure 3.4 demonstrates the kind of results you are expected to see if you execute
this code:

Demonstrating RegEx improvements.
'letters' matches 'A[a-z]+$' RegEx: True.
The number of matches: 1.
Match of 7 found at intex 0.
'fwef340' matches 'A[a-z]+$' RegEx: False.
The number of matches: 0.

Figure 3.4 : Demonstration of pre-compiled RegEx

This concludes our demonstration of ResEx improvements. Now, we will have a

Program.es

look at the new cryptography-related features.

Cryptography improvements
.NET always had many ways to work with SSL/TLS encryption certificates.
Previously, working with the certificate name attributes was not always easy. The

66 Implementing C# 11 and .NET 7.0

primary way of doing so was to pass a string where different attributes were encoded.
But it was not the most convenient thing to work with if any of the names had some
special characters in them. Plus, because you were dealing with raw strings, it was
easy to make a typo somewhere.

.NET 7 fixed this problem by adding the X500DistinguishedNameBuilder class.
This class comes with methods that allow you to add the naming attributes that are
commonly used in encryption certificates. This way, each name will be short enough
to minimize the chance of accidental misspelling. And, as it is treated as a separate
unit, using special characters inside of it will not affect the integrity of the entire
attribute structure.

To demonstrate the X500DistinguishedNameBuilder class, we will add the
CryptographyEnhancements.es file to our project and will populate it with the
following content:

using System.Security.Cryptography.X509Certificates;

namespace CoreLibrarylmprovements;

public static class CryptographyEnhancements

{
public static void DemoCertificateNameBuilder()

{
van builder - new X500DistinguishedNameBuilder();
builder.AddCommonNamef"Certificatesubject");
builder.AddOrganizationalUnitNamef"TestUnit");
builder.AddOrganizationName("Scientific Programmer Ltd.");

Console.WriteLine($"The certificate name is: {
builder.Build().Decode(X500DistinguishedNameFlags.None)}");

CryptographyEnhancements.es

Here, we are adding some arbitrary names to the builder, building the name structure,
and then decoding it to see what it consists of. We will now add the following code
to the Program.es class, which will allow us to run this method:

Console.WriteLine("Demonstrating cryptography improvements.");
CryptographyEnhancements.DemoCertificateNameBuilder();

What is New in.NET 7? I 67

Now, if we run it, we are expected to see tine following output:
Demonstrating cryptography improvements.
The certificate name is: O=Scientific Programmer Ltd., OU=TestDnit, CN=CertificateSubject

Figure 3.5 : Decoded result of using X500DistinguishedNanieBuilder

We will now move on to another extremely useful feature of .NET 7—the TAR API.

New TAR API
TAR is one of the popular file-archiving algorithms. But despite its popularity, .NET
did not have any inbuilt functionality to deal with it. But now it does.

To demonstrate what this new functionality consists of, we will add TarApi.cs file to
our project, which will then be populated with the following content:

using System.Formats.Tar;
using System.10.Compression;

namespace CoreLibrarylmprovements;

public static class TarApi

{
}

Next, we will add the following method to the class. This method demonstrates how
you can use the TAR API to take all the files inside a specified folder and save them
in a TAR archive at a specified location.

public static void CreateTarFile(
string sourceDirectoryName,
string destinationFileName)

{
TarFile.CreateFromDirectoryf

Program.es
in.NET

sourceDirectoryName: sourceDirectoryName,
destinationFileName: destinationFileName,
includeBaseDirectory: true);

}

Next, we will add the following method to demonstrate how to use the API to extract
the content of a TAR file into a specified directory:

68 | Implementing C# 11 and .NET 7.0

public static void ExtractTarFilef
string sourceFileName,
string destinationDirectoryName)

{
TarFile.ExtractToDirectoryf

sourceFileName: sourceFileName,
destinationDirectoryName: destinationDirectoryName,
overwriteFiles: false);

}

The API can also work with streams, including the memory stream. This allows
you to process some complex logic without storing intermediate files on the drive.
For example, this method demonstrates how you can extract a TAR archive into the
memory stream and then write another TAR archive from this stream:

public static void CreateTarFileFromStreamf
string sourceDirectoryName,
string destinationDirectoryName)

{
using van stream = new MemoryStreamf);
TarFile.CreateFromDirectoryf

sourceDirectoryName: sourceDirectoryName,
destination: stream,
includeBaseDirectory: true);

TarFile.ExtractToDirectoryf
source: stream,
destinationDirectoryName: destinationDirectoryName,
overwriteFiles: false);

You can also use the API to transfer the full or partial content of one TAR file to
another. And the following method demonstrates how this can be done:

public static void TransferFilesToDifferentArchive(
string sourceFileName,
string destinationFileName)

{
using var stream = File.OpenRead(sourceFileName);

What is New in .NET 7? 69

using var reader = new TarReader(stream, leaveOpen: false);

TarEntry? entry;
while ((entry = reader.GetNextEntryO) != null)

{
destinationFileName = Path.loin(destinationFileName, entry.

Name);
entry.ExtractToFile(destinationFileName, overwrite: true);

}
}

Also, you can use GZIP compression algorithm together with TAR. This method is
demonstrated as follows:

public static void ExtractFromGzipArchive(
string sourceFileName,
string destinationDirectoryName)

{
using var compressedStream = File.OpenRead(sourceFileName);
using var decompressor = new GZipStream(compressedStream,

CompressionMode.Decompress);
TarFile.ExtractToDirectory(

source: decompressor,
destinationDirectoryName: destinationDirectoryName,
overwriteFiles: false);

}

This concludes the overview of the new TAR API that has been added to version 7
of the .NET platform.

There are also some core library improvements in .NET 7 that deserve a category of
their own. Those are related to observability. We will discuss that next.

Observability improvements
.NET 7 added some new ways that can help you monitor your applications. A whole
new set of improvements was added to the platform because its developers want it
to be in line with the emerging cloud-native OpenTelemetry standards.

The new observability features in .NET 7 can be broadly split into tire following
categories:

70 Implementing C# 11 and .NET 7.0

• New ways to monitor activities

• UpDownCounter metric

And to demonstrate these improvements, we will create a new console application
project and call it Observabilityimprovements. It can either be created from a GUI
of an IDE or by executing the following command:

dotnet new console -o Observabilityimprovements

Now, we will start adding content to it too. First, we will have a look at the new ways
we can monitor activities.

New ways to monitor activity
System.Diagnostics.Activity is a class that represents a running process from
the context of logging. Its main purpose is to obtain the status and some other
supporting information about the running processes and log it.

To have a look at what activity monitoring options are available in .NET 7, we will
add the ActivityMonitoring. cs file to the Observabilityimprovements project
with the following content:

using System.Diagnostics;

namespace Observabilityimprovements;

public static class ActivityMonitoring

Now, we will start adding various methods to it to showcase new activity monitoring
features. We will start by adding the logic that monitors a stopped activity.

Monitoring stopped activities
To monitor stopped activities, an IsStopped property has been added to the
Activity class. And to demonstrate its usage, we can add the following method to
our newly created class:

public static void MonitorStoppedActivity()

{
var activity = new Activity("test");
activity.Start();
activity.Stop();

What is New in .NET 7? 71

Console.WriteLine($"Is activity stopped? {activity.IsStopped}");

}

Here, we start an activity. Then we stop it and check its stopped status.

Next, we will have a look at the ability to trigger an event when the current activity
changes.

Current activity changed event
To demonstrate how a change of the current activity can trigger an event, we will
add the following method:

public static void DemoCurrentChangedEvent()

{
Activity.CurrentChanged += ChangeEvent;

var activity = new Activity("test");
activity.Start();
activity = new Activity("test2");
activity.Start();

void ChangeEvent(object? sender, ActivityChangedEventArgs e)

Console.WriteLine($"Operation changed from {
(e.Previous?.OperationName ?? "[No Activity]")} to {

e.Current?.OoerationName}."}:

Here, we are associating an event handler with the static Currentchange event on
the Activity class. Then, we start a new activity that will create a trigger for this
event. The event gets triggered even if the current activity changes from no activity.
Then, we create another activity, which will trigger the change even once again.

Now, we will have a look at the newly added ability to enumerate activity properties.

Enumerating activity properties
.NET 7 has added the ability to enumerate tags, links, and events of activity. This
ability has been enabled by adding EnumerateTagObjects, EnumerateLinks,

72 Implementing C# 11 and .NET 7.0

and EnumerateEvents methods. To demonstrate how it works, we will add the
following method:
public static void DemoActivityEnumerators()

{
var activity = new Activityf'test");

activity.SetTag("tagl", "valuel");
activity.SetTag("tag2", "value2");
activity.SetTag("tag3", "value2");

Console.WriteLinef"Activity has the following tags:");

foreach (ref readonly KeyValuePair<string, object?> tag
in activity.EnumerateTagObjectsf))

{
Console.WriteLine($"Tag name: {tag.Key}, tag value: {tag.Value}");

}

activity.Add Event(new ActivityEvent("eventl"));
activity.AddEvent(new ActivityEvent("event2"));

Console.WriteLine("Activity has the following events:");

foreach (var ev in activity.EnumerateEvents())

{
Console.WriteLine($"Event name: {ev.Name}");

}
}

In addition to this, these properties themselves have tags that can be enumerated.
This can be demonstrated in the following method:

public static void DemoInnerTagEnumerators()

{
var tagCollection = new List<KeyValuePair<string; object?>>()

{
new KeyValuePaircstringj object?>("tagl"; "valuel"),
new KeyValuePaircstringj object?>("tag2"J "value2'j;

What is New in.NET 7? I 73

};

var activityLink = new ActivityLink(default, new
ActivityTagsCollection(tagCollection));

Console.WriteLine("ActivityLink has the following tags:");

foreach (ref readonly KeyValuePaircstring, object?> tag
in activityLink.EnumerateTagObjects())

{
Console.WriteLine($"Tag name: {tag.Key}, tag value: {tag.Value}");

}

var e = new ActivityEventC'TestEvent", tags: new
ActivityTagsCollection(tagCollection));

Console.WriteLine("ActivityEvent has the following tags:");

foreach (ref readonly KeyValuePair<string, object?> tag
in e.EnumerateTagObjects())

{

}

Console.WriteLine($"Tag name: {tag.Key}; tag value: {tag.Value}");

in.NET

Next, we will examine a new metric type that has been added to the .NET 7
platform—the UpDownCounter.

UpDownCounter metric
UpDownCounter is a class that has been added to System.Diagnostics.Metrics
namespace. It is meant to be used alongside the Meter class from the same namespace.

This is a type of metric that is frequently referred to as a gauge in other telemetry
libraries. A normal counter metric would only go up. However, a gauge (or up-down
counter) is meant to go either up or down. The following example demonstrates
how this metric can be used.

public static Meter MeterObject = new Meter("HTTP.Connections",
"1.0.0");

74 | Implementing C# 11 and .NET 7.0

public static UpDownCounter<int> ActiveConnections = MeterObject.
CreateUpDownCounter<int>("Active-Connections");

Then, to change the values of the metric, we can call the Add method on it with either
positive or negative integer parameters.

ActiveConnections.Add(10);
ActiveConnections.Add(-2);

The normal counter metric is intended for monitoring the things that can only have
their count increased. For example, it can be used for monitoring the number of
requests that the system receives. An up-down counter, on the other hand, is there
to monitor the counts that are meant to be changed in real time. For example, you
can use it to monitor the real-time number of logged-in users. As a user logs in, the
count increases. And as someone logs off, the count decreases.

This concludes the overview of the changes that were introduced into .NET 7. Now,
we will cover the breaking changes that may cause your old code to not be fully
compatible with .NET 7.

Breaking changes of .NET 7
This is a list of the main changes that may make your old code either behave
differently once it has been migrated to .NET 7 or does not work at all. And that is
why it is important to know these.

http://HTTP.Connections

MicrosoftExtensions nullability
.NET 6, the nullability of various types has changed. For example, until .NET 6,
objects were nullable, and so were strings. Now, it has been changed. You now have
to explicitly mark them as nullable to make them nullable.

On the one hand, you can still configure your applications to use the old behavior.
But on the other hand, there are plenty of libraries that just did not keep up with
these nullability changes. And those include various libraries that use Microsoft.
Extensions namespace.

But now this has been fixed, and the libraries fully adhere to the nullability rules
of both the new and the old versions of .NET. This, however, may cause potential
problems if you have been using the libraries against .NET 6 with the new nullability
rules enabled. If you are using any libraries with this namespace and you have
migrated your application to .NET 7, make sure those code paths still work as
intended.

What is New in .NET 7? 75

Obsolete and non-nullable endpoints
There are some other endpoints in various .NET libraries that had their nullability
behavior changed. There are also some endpoints that have been either deprecated
or removed. The first type of endpoint will give you a warning. The endpoints from
the second type will prevent your code from compiling.

The easiest way to identify if your code is affected is to migrate your solution to
.NET 7 and then build it. If there are any new deprecation warnings or errors, you
will know that you need to make some changes to your code to adhere to the new
APIs.

PatternContext constraint
Generic PatternContext<T> allowed any type to be used as T. However, in .NET
7, you can only use struct for this purpose. If you have been using any other type
before, your code will no longer compile.

Multi-level lookup is disabled on Windows
Previously, if you were running the dotnet command, the command was looking for
the framework in multiple install locations. And now, it only looks inside a single
install location that is specified inside the DOTNET_ROOT environment variable. This
will probably not be an issue for most developers, but it is still worth knowing about.

MSBuild serialization of custom types
In .NET 7, MSBuild no longer supports the serialization of the types derived from
BuildEventArgs and ITaskltem via BinaryFormatter serializer. So, you will need
to change your code that was previously using these types.

Conclusion
.NET 7 platform had many useful features added to it. They cover both the core SDK
and the core libraries, which exist under either System or Microsoft namespace.
Some of these improvements are non-functional, such as performance improvements
to the compiler. But there are plenty of functional improvements too, the most
notable of which have been covered in this chapter.

The notable SDK improvements that we have covered in this chapter are the new
CLI features, the NativeAOT functionality, and the central package manager feature
for NuGet. The core library improvements that we had a look at included new time-
related APIS, new JSON features, new stream-related features, pre-compiled RegEx,
cryptography improvements, and the new TAR API.

76 Implementing C# 11 and .NET 7.0

A notable category of the new core library features is the collection of observability
improvements that were added to bring .NET more in line with OpenTelemetry
standards. These include new ways to monitor activities and new metric types.

But there are also some breaking changes that have been introduced into .NET
7. But most of these are fairly easy to identify by migrating your code to .NET 7
and building your application. Deprecated features will then produce warnings,
whereas the features with completely changed functionality will prevent your code
from being built.

In the upcoming chapter, we will talk about MAUI, which is a framework for
building native applications that can be ported to either mobile devices or desktop
computers.

Points to remember
• .NET 7 CLI is now more intuitive and provides more information on the

available commands.

• .NET 7 applications canbe compiled into native executables and automatically
trimmed.

• NuGet central package manager feature allows developers to easily manage

dependencies inside complex solutions.

• Microseconds and nanoseconds have been added to the time-related objects.

• .NET 7 has new JSON functionalities, which include JSON polymorphism,
access to default serialization options, and so on.

• New stream options allow you to specify the exact number of bytes to read
into the stream.

• Pre-compiled RegEx allows you to execute textual pattern matching much
quicker.

• With .NET 7, you can easily construct the name attributes of cryptographic
certificates.

• A new API has been added to .NET 7 to deal with TAR files.

• Observability improvements that have been added to .NET 7 include activity
monitoring and new metric types.

• Some breaking changes have been introduced into .NET 7 too, so developers
need to be aware of those.

What is New in .NET 7? B 77

Multiple choice questions
1. What is NativeAOT?

a. A framework for building mobile applications
b. A framework for building desktop applications
c. A technology that complied code into an application that runs

directly on a specific hardware type
d. None of these

2. What is JSON polymorphism?
a. The ability to inherit from a JSON-specific class and deserialize JSON

string into an appropriate type
b. The ability to replace data types in JSON fields
c. The ability to add or remove JSON fields at will
d. The ability to store either a singular JSON object or a collection

thereof in the same field

3. What can .NET TAR API be used for?

a. Unpacking and packing TAR files
b. Transferring the content between TAR archives
c. Transferring the content between TAR archives and memory
d. All of the above

4. Which of the following properties of System.Diagnostics.Activity
class you can enumerate?

a. Tags
b. Links
c. Events
d. All of the above

Answers
1. c
2. a
3. d
4. d

78 Implementing C# 11 and .NET 7.0

Key terms
• Native AOT: A technology that allows developers to compile their application

into a format that would run close to the hardware on a particular type of a
machine

• Library trimming: The process of removing .NET-specific components from
the libraries to make them compatible with NativeAOT

• NuGet Central Package Manager: The feature that allows NuGet
dependencies to be managed in a single place for the whole solution

• JSON: JavaScript Object Notation—a format for transferring data

• JSON serialization: The process of converting an object from the code into
a JSON string

• JSON deserialization: The process of converting a JSON string into a
specified class

• JSON polymorphism: The ability for the JSON-specific classes to inherit
from one another and set a ISON string to deserialize into an aonrooriate

----------------------------------- o-------J------ --------- o ------------------------------------ rr*~r ----------

derived class when the base class is specified as the target of deserialization

• RegEx: Regular expression, which is a technology for string pattern matching

• TAR: File archiving format

• GZIP: Data compression algorithm that works alongside TAR

• OpenTelemetry: A framework for applying observability features to cloud­
native applications

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Chapter 4

MAUI and
Cross-platform

Native Applications

https://discord.bpbonline.com

Introduction
Multi-platform UI (MAUI) is a framework for developing native applications for
mobile devices and desktop computers using the same codebase. MAUI framework
was initially introduced into .NET 6, but it reached its maturity several months after
the initial .NET 6 releases. Therefore, it is still appropriate to consider this technology
new at the time of the .NET 7 release.

Prior to MAUI, there was a mixture of native application development options on
.NET. WinForms and Windows Presentation Framework enabled us to build desktop
applications for Windows. Xamarin.Forms allowed us to develop cross-platform
mobile applications. It had some limited capacity to build Windows applications
via the Unified Windows Platform. But there was no inbuilt framework in .NET for
developing desktop applications for non-Windows operating systems. And there
was not a unified framework that enabled the development of applications for both
desktop computers and mobile devices equally well.

And now, MAUI has changed all of this. It is one true unified platform for developing
any type of native application from the same codebase. In this chapter, you will learn
how to use it.

80 ■ Implementing C# 11 and .NET 7.0

Structure
In this chapter, we will discuss the new features of .NET 7, which will include the
following topics:

• Introducing MAUI

• Using MAUI to build desktop applications

• Using MAUI to build mobile apps

• Limitations of developing for Mac OS and iOS

Objectives
By the end of this chapter, you will be able to create your own MAUI application.
You will have learned the main designed patterns used by MAUI. You will also learn
how to compile your codebase into a platform-specific application for any operating
system supported by MAUI.

Prerequisites
To follow this chapter, you will need the following:

• A machine running either Windows, MacOS, or Linux operating system

• .NET 7 SDK

• A suitable IDE or a code editor

• Being familiar with C# fundamentals

If you do not have any of the preceding listed dependencies installed already, let
us setup using the instruction provided in Chapter 1: Getting Familiar with .NET 7
Application Structure, which also provides a recap of C# fundamentals.

Introducing MAUI
For those who have previously used Xamarin.Forms to build mobile applications
would find MAUI relatively easy to learn. There is a good reason for it because
MAUI is an evolution of Xamarin.Forms.

But it is not just a new version of Xamarin.Forms that happen to have additional
desktop deployment capabilities. It is different from its predecessor in many
fundamental ways. For example, it uses a much simpler project structure, where all
supported deployment platforms, both desktop and mobile, share the same project.
Of course, you can still use additional projects in your application. There is even a
new type of class library project template that is specific to MAUI. But we no longer
need a separate project for every target operating system.

MAUI and Cross-platform Native Applications ■ 81

There are also some differences in the markup syntax for building user interfaces
between Xamarin.Forms and MAUI. Even though both technologies can use XAML
as their main markup language, they use different libraries of elements. Therefore,
some elements in the application layouts will have different names and attributes.

But perhaps, the most fundamental difference between Xamarin.Forms and MAUI
is that the former was a separate framework, whereas the latter has been fully
integrated in .NET since version 6. Therefore, MAUI has access to all the latest
language features and all other framework features. For example, you can use .NET
CLI commands with MAUI applications. And this is what we will do next.

Enabling MAUI development environment
Before you can start writing MAUI applications, you need to enable MAUI workload
on your development machine. You can do it via .NET CLI by executing the following
command:

1,1 J

uuinei wurKiudu iribLdii nidui

Then, you can install a tool that will check if your environment has any missing
MAUI dependencies:
dotnet tool install -g Redth.Net.Maui.Check

To then use this tool, you can execute the following command:
maui-check

Alternatively, you can set up the MAUI workload via your IDE tools. For example, if
you are using Visual Studio on Windows, you can open Visual Studio Installer and
click Modify button next to the latest version of the IDE, like it is shown in figure 4.1:

Visual Studio Installer
Installed Available

Visual Studio Community 2017 Modify

15.922 Launch

0 Update available wore ▼

15,9.49 View details Update

Visual Studio Community 2019 Modify

16.8.4 Launch

0 Update available yore •

16.11.17 View details ypdate

0(Visual Studio Community 2022

17.2.6 Launch

Powerful IDE, free for students, open-source contributors, and individuals More ’

Release notes

Figure 4.1 : Modifying workloads via Visual Studio Installer

82 Implementing C# 11 and .NET 7.0

Then, you would need to enable the workloads with the title of .NET Multi-platform
App UI development, as demonstrated in figure 4.2:

Workloads Individual components Language packs Installation locations

0 Need help choosing what to install? More info

Web & Cloud (4)

@ ASP.NET and web development

Build web applications using ASP.NET Core, ASP.NET,

HTML/JavaScript, and Containers including Docker supp...
A Azure development

Azure SDKs, tools, and projects for developing cloud apps

and creating resources using .NET and .NET Framework....

^3 Python development

Editing, debugging, interactive development and source

control for Python.

Node.js development

' Build scalable network applications using Node.js, an

asynchronous event-driven JavaScript runtime.

Desktop & Mobile (5)

Q-Q .NET Multi-platform App UI development Ei

CHu Build Android, iOS, Windows, and Mac apps from a single

codebase using C# with .NET MAUI.

.NET desktop development

Build WPF, Windows Forms, and console applications

using C#, Visual Basic, and F# with .NET and .NET Frame...

Figure 4.2 : Enabling MAU workload via Visual Studio Installer

Now, we can start creating MAUI apps to see how they work.

Creating a basic MAUI applications
To create a new MAUI app with the name of SampleMauiApp, you can execute the
following command:
dotnet new maul -o SampleMauiApp

And now, we can have a look at the basic structure of the MAUI app project, which
can be seen in figure 4.3:

S Solution 'SampleMauiApp' (1 of 1 project)
0 SampleMauiApp

> ft? Dependencies
> Properties
> an Platforms
> an Resources
> DApp.xaml
> AppShell.xaml
> D MainPage.xaml
► c# MauiProgram.es

Figure 4.3: The root folder of MAUI project

ASP.NET
ASP.NET
ASP.NET
MauiProgram.es

MAUI and Cross-platform Native Applications 83

By default, we have a couple of files with the code in the root folder. MauiProgram.
cs is the file that contains the entry point into the application that is shared by all
platforms. App.xaml is the base file used by the app. It contains links to all shared
resources, such as specific fonts and styles. It has a code-behind file with the name of
App.xaml. cs. This file tells the application which shell layout to load.

AppShell. xaml file represents the main application layout. Its purpose is to provide
a common structure to all pages of your application. It is not meant to represent
the application UI by itself. For this purpose, we have MainPage.xaml file in our
example. Just like all other XAML files, it has a code-behind C# file with a CS
extension.

MAUI project also has Platforms folder, which has platform-specific entrypoint
code and any other native code that is applicable to platforms. Its structure can be
demonstrated as shown in figure 4.4:

'fiD Platforms
+ a □ Android

> aD Resources
+13 AndroidManifest.xml

► +c« MamActivity.es
> +c# MainApplication.es
an iOS

+c» AppDelegate.es
+ □ Info.plist
+c« Program.es

+ an MacCatalyst
+c« AppDelegate.es
+ □ Info.plist
+c« Program cs

' an Tzen
+c# Maines
+13 tizen-manifest.xml

+ an Windows
+o?a app.manifest

> +13 App.xaml
+hl Package appxmanifest

Figure 4.4: The structure of Platforms folder

MamActivity.es
MainApplication.es
AppDelegate.es
Program.es
AppDelegate.es

84 Implementing C# 11 and .NET 7.0

And finally, another noteworthy folder of an MAUI project is Resources. It is a
folder that contains all images, fonts, locale-specific text, and any other resource that
your application might need. The structure of this folder can be seen in figure 4.5:

jaD Resources
jaD Applcon

appicon.svg
+0 appiconfg.svg

*aD Fonts
* ' OpenSans-Regularttf
+ > OpenSans-Semiboldttf

images
* 0 dotnet_bot.svg

jflQ Raw
* I AboutAssets.txt

jan Splash

* 0 splashsvg
jsO Styles

♦ 0 Colors.xaml
♦ Q Styles.xaml

Figure 4.5: The structure of Resources folder

Now we will apply some modifications to our MainPage.xaml file to demonstrate
how it works. If we open it, we will see various nested elements. The root element
is called ContentPage. It is a container element that represents the whole page.
Immediately inside it, we have Scrollview. This is a container element that has an
inbuilt ability to scroll if the entire content of the page does not fit on a single screen.
Next, we have Image and Label elements, which represent an image and textual
labels, respectively.

We also have a Button element, which represents a clickable button. But other than
that, we do not have any elements that the user can interact with. So, we will add
one. We will insert an Entry element just above the Button. This element represents
a field with editable text. And now, the content of our MainPage.xaml file will look
like the following:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="SampleMauiApp.MainPage">

<ScrollView>
<VerticalStackLayout

Spacing="25"
Padding="30,0"
VerticalOptions="Center">

http://schemas.microsoft.com/dotnet/2021/maui
http://schemas.microsoft.com/winfx/2009/xaml

MAUI and Cross-platform Native Applications 85

<Image
Source="dotnet_bot. png"
SemanticProperties.Description="Cute dot net bot waving hi

to you!"
HeightRequest="200"
HorizontalOptions="Center" />

< Label
Text="Hello? World!"
SemanticProperties.HeadingLevel="Levell"
FontSize="32"
HorizontalOptions="Center" />

cLabel
Text="Welcome to .NET Multi-platform App UI"
SemanticProperties.HeadingLevel-"Level2"
SemanticProperties.Description^"Welcome to dot net Multi

platform App U I"
FontSize="18"
HorizontalOptions="Center" />

<Entry
x:Name="IncrementInput"
Placeholder^"!'
HorizontalOptions="Center" />

<Button
x:Name="CounterBtn"
Text="Click me"
SemanticProperties.Hint-"Counts the number of times you click"
Clicked="OnCounterClicked"
HorizontalOptions-"Center" />

</VerticalStackLayout>
</ScrollView>
</ContentPage>

86 Implementing C# 11 and .NET 7.0

This adds the ability to change the increment by which the counter gets increased
when the button gets clicked. To make it work, we will replace the content of the
MainPage.xaml. cs file with the following:

namespace SampleMauiApp;

public partial class MainPage : ContentPage

{
int count = 0;

public MainPagef)

{
InitializeComponent();

}

private void OnCounterClicked(object sender, EventArgs e)

{
var increment = int.Parseflncrementlnput.Text);

count += increment;

if (count == 1)
CounterBtn.Text = {"Clicked {count} time";
else
CounterBtn.Text = {"Clicked {count} times";

SemanticScreenReader.Announce(CounterBtn.Text);

}
}

As we can see, the Incrementinput property became accessible in our code behind.
This is the same name as we have specified in x. Name attribute of the newly added
Entry element. We parse the content of this element as int. Then, we apply this
number as our increment.

We have just briefly touched upon MAUI XAML syntax. Now, let us have a look at
the elements available in XAML in more detail.

MAUI XAML references
XAML elements used by MAUI can be broadly separated into pages, layouts, and
views, the latter of which are also commonly referred to as controls. We will have
■-» Irtrtlz ^4- a!1 nr r4-r»- tati4-K TirKinK ■m'a 1i-i-rt 4-Kzi frtllrtrAriiArt- 4-<-» 1 •

a 1UUA dL dll LCHCgUllCS/ SLdLLllLg Willi pages, W1LLULL die liSICU. HL LHC IVHUWllLg LdUlC.

MAUI and Cross-platform Native Applications I 87

Page type Description

ContentPage The most basic page type that displays a single page.
FlyoutPage Managed two related pages: flyover that represents items and

details page containing details of an individual item.
NavigationPage A page that represents navigation hierarchy.
TabbedPage A page that contains a series of pages represented by tabs.

Table 4.1: MAUI XAML pages

Next, we will talk about layouts. In the context of MAUI, a layout is a control that is
positioned inside of a page control. Its responsibility is to act as a container for the
views. Table 4.2 shows the layouts that MAUI supports:

Table 4.2: MAUI XAML layouts

Layout Type Description

AbsoluteLayout Positions each child element at a specific location.
BindableLayout Can auto-generate its content by binding it to a collection

of items.
FlexLayout Allows children to be stacked or wrapped with different

styling options.
Grid A table-like layout where child controls are placed in rows

and columns.
HorizontalStackLayout Stacks child elements horizontally.
StackLayout Stacks child elements either horizontally or vertically.
VerticalStackLayout Stacks child elements vertically.

And finally, we will go through the individual views that MAUI supports. Those are
listed in table 4.3:

View type Description

Activityindicator Uses animation to show that the app is busy.
BlazorWebView Hosts a Blazor application inside MAUI.
Border Draws either borders or backgrounds.
BoxView Draws either squares or rectangles.
Button A clickable button.
Carouselview Displays a scrollable collection of items.
CheckBox A box that can be checked.

88 | Implementing C# 11 and .NET 7.0

Table 4.3: Some MAUI XAML views

View type Description

Collectionview Displays a scrollable collection of items based on layout
specifications.

Contentview Enables creation of custom reusable controls.
DatePicker Allows to pick a specific date.
Editor Accepts multi-line text input.
Ellipse Draws either an ellipse or a circle.
Entry Accepts single-line text input.

There are many views available in .NET MAUI, so it would be easier to show them
at multiple tables. Table 4.4 shows the additional views:

Layout type Description

Frame Wraps layout elements within a configurable border.
GraphicsView A canvas for drawing 2D graphics.
Image Displays an image.
ImageButton A clickable image that can perform some action.
Indicatorview Works in conjunction with CarouselView and displays the

number of items on it.
Label Displays read-only text.
Line Displays a line.
Listview Displays a scrollable list of selectable items.
Path Displays complex curve-like shapes.
Picker Displays a list of items where one can be selected.
Polygon Displays an arbitrary 2D polygon.
Polyline Displays a line with multiple vertexes.
ProgressBar Displays the progress of a given long-running action.
RadioButton Allows the user to toggle between multiple values.
Rectangle Displays a rectangle or a square.
RefreshView Enables pull-to-refresh functionality for scrollable content.
RoundRectangle Displays either a rectangle or a square with rounded corners.
Scrollview A container element that allows scrolling through its children.

dtjcHCriDdl' tna Dies searcn runcnonaiiry.
Slider Enables the user to select a fractional numeric value from a range.

MAUI and Cross-platform Native Applications ■ 89

Layout type Description

Stepper Enables the user to select a fractional numeric value from a range
of incremental values.

SwipeView Enables a swipe gesture.
Switch On/off style toggle.
TableView Represents a table.
TimePicker Allows to pick a specific time.
WebView Allows the display of any arbitrary HTML that can be normally

displayed in the browser.

Table 4.4: Additional MAUI XAML views

However, XAML is not the only way the views can be constructed in MAUI. Since
every one of these elements is represented by a class in the code, you can write user
interfaces by using pure C#. This is something that you could do in Xamarin.Forms
too. However, since MAUI is fully integrated in the current version of .NET, there is
also another way of writing a UI that was not available in Xamarin.Forms. You can
do it by using Blazon

Working with Blazor on .NET MAUI
Blazor is a collection of technologies that allows developers to compile .NET code
into WebAssembly, which is binary code that can run in browsers. The benefits of
Blazor are numerous, ranging from the ability to write front-end code in C# to the
performance benefits of running low-level compiled code. Since both MAUI and
Blazor are fully integrated in .NET, you can combine these two technologies together.
Now you will learn how.

Although Blazor dependencies can be added to an MAUI project retroactively, there
is a project template available for MAUI applications with Blazor UI. This makes it
available. You will need to have both MAUI and ASP.NET core Web development
workloads enabled on your development machine. You will need the latter because
Blazor is primarily a Web development technology.

We will now create an MAUI project with Blazor UI by executing the following
command:

dotnet new maui-blazor -o BlazorMauiApp

ASP.NET

90 Implementing C# 11 and .NET 7.0

And now, we can have a look at the project structure, which should look like what
figure 4.6 demonstrates:

t S Solution 'BlazorMaui App' (1 of 1 project)

* *S BlazorMauiApp

> W Dependencies

> Properties

> an Data

t> aD Pages

► an Platforms

> an Resources

> an Shared

t> a n wwwroot

+ H Jmports.razor

i> +Q App.xaml

+ @ Main.razor

* +D MainPage.xaml

> *c» MainPage.xaml.cs

i> *c» MauiProgram.es

Figure 4.6: Blazer MAUI project structure

We have all our standard MAUI components, including App.xaml, MauiProgram.
cs, and MainPage. xaml. But this time, our MainPage. xaml file contains BlazorView
component in its markup. We also have Blazor-specific files with RAZOR extension.
And we have wwwroot folder with JavaScript, HTML, and CSS files that you would
normally see in a Web application.

So, the MAUI components just act as the foundation for our application. Since
BlazorView is the dominant component of the UI, the entire UI is delegated to
Blazor.

We will cover Blazor in more detail in Chapter 7; Blazor and WebAssembhj on .NET.
But for now, we will make some modifications to the existing code to see how it
reflects in the app we are building. To do so, we will locate Counter, razor file
inside Pages folder. This page is similar to the default Blazor UI, as it comes with a
counter and a clickable button to increment it. And, just like before, we will add the
ability to change the increment value by binding it to a variable. So, the content of
the Counter. razor file will now look like the following:

@page "/counter"

<hl>Counter</hl>

<p role-"status">Current count: @currentCount</p>

cinput type-"number" @bind-"increment" />

MauiProgram.es

MAUI and Cross-platform Native Applications 91

<button class="btn btn-primary" @onclick="IncrementCount">Click me</
button>

@code {
private int? increment = 1;

private int currentcount = 0;

private void IncrementCount()

{
currentcount +- increment ?? 0;

}
}

We will run this code on both desktop and mobile platforms later. But for now,
we will have a look at another important feature of MAUI—support for various
architectural patterns.

MAUI architectural patterns
With MAUI, you can just use the default coding pattern that comes with the project
templates. But once your application becomes more complex, you will probably
have to start using well-established architectural patterns. Otherwise, your code will
become hard to maintain.

There are three main architectural patterns supported by MAUI: Model-View-
ViewModel (MVVM), ReactiveUI (RxUI), and Model-View-Update (MVU).
MVVM is a pattern that is available in MAUI out of the box, so we will have a look
at its implementation example. The other two patterns are enabled in MAUI via
third-party libraries. But we will still go through an overview of each.

Model-View-ViewModel
MVVM design pattern consists of three primary components: Model, View, and
ViewModel.

• Model is a component that represents some back-end data, such as a database
record.

• View represents an individual page of the UI.

• ViewModel is an object that holds the data that is directly bound to the
controls in a particular view.

92 Implementing C# 11 and .NET 7.0

To show an example of MVVM implementation, we will create a new MAUI project
by executing the following command:
dotnet new maui -o MvvmMauiApp

We will then place MainPageViewModel. cs file into the project folder and populate
it with the following content:

namespace MvvmMauiApp

{
public class MainPageViewModel

{
public int IncrementBy { get; set; } = 1;

}
}

Basically, we are building an app that has similar logic to what we had before. But
this time, our increment value will be inside the view model, which will bind directly
to the control in the UI. To make it work, we will need to insert the ViewModel
into the constructor of our MainPage class. We will then map this ViewModel to the
Bindingcontext property shown as follows:

namespace MvvmMauiApp;

public partial class MainPage : ContentPage

{
int count = 0;

public MainPagefMainPageViewModel ViewModel)

{
Bindingcontext = ViewModel;
InitializeComponent();

}

private void OnCounterClicked(object sender, EventArgs e)

{
count += ((MainPageViewModel)BindingContext).IncrementBy;

if (count == 1)
CounterBtn.Text = {"Clicked {count} time";
else
CounterBtn.Text = {"Clicked {count} times";

MAUI and Cross-platform Native Applications I 93

SemanticScreenReader.Announce(CounterBtn.Text);

}
}

And now, we will need to modify the markup inside the MainPage.xaml file. First,
we will replace the opening ContentPage element with the following:

<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

xmlns:local="clr-namespace:MvvmMauiApp"
x:Class="MvvmMauiApp.MainPage">

<ContentPage.Bindingcontext>
<local:MainPageViewModel />

</ContentPage.BindingContext>

In here, we have specified the type that will be used as the Bindingcontext. And
how we will add the following element just before the Button element markup:

<Entry
x:Name="IncrementInput"

Text="{Binding IncrementBy}"
HorizontalOptions-"Center" />

The text in this field is now bound directly to the IncrementBy property of the
MainViewModel. But since this class now gets injected into the MainPage via its
constructor, we need to register both these classes in the dependency injection
container. To do so, we will open Maui Prog ram. cs file and add the following lines
just before return builder. Build ():

builder.Services.AddTransient<MainPage>();
builder.Services.AddTransient<MainPageViewModel>();

Now, our application should be identical in its functionality to the first application
that we created. But this time, the interaction between the UI and the back-end is
done via ViewModel binding.

Now, we will briefly have a look at architectural patterns that can be applied in
MAUI applications by using third-party frameworks.

http://schemas.microsoft.com/dotnet/2021/maui
http://schemas.microsoft.com/winfx/2009/xaml

94 | Implementing C# 11 and .NET 7.0

Patterns supported by MAUI via third-party
frameworks
Even though these patterns are not available in MAUI out-of-the-box, they can make
the life of a MAUI developers a lot easier. Therefore, they are still worth going over.

ReactiveUI
ReactiveUI pattern combines MVVM with reactive programming. So, if you, as a
developer, have used MVVM before, you will see many familiar concepts, such as
ViewModels and data binding. However, this pattern also adds many techniques for
quick and efficient updates to the UI, so the UI will feel much more responsive than
it would be otherwise.

On MAUI, the ReactiveUI pattern is available by installing ReactiveUI .Maui NuGet
package. And its API documentation is available via the following URL:

https://www.reactiveui.net/api/reactiveui.maui/

Model-View-Update
MVU pattern became popularized by Web development frameworks and libraries,
such as React. Just like ReactiveUI, it is highly suitable for building responsive user
interfaces. However, its structure is completely different.

As the name suggests, the pattern consists of three main components: View, Model,
and Update.

View represents a user interface and all its data. So, it is analogous to both View and
ViewModel from MVVM. Model represents the current state of the application. And
Update is a function that creates a new copy of the application's state, that is, the
Model.

The easiest way to enable MVU on MAUI is to use Comet library, which is represented
by Clancy. Comet NuGet package. The code repository of the package can be found
via the following link:

https://github.com/dotnet/Comet

Now, we will cover the process of running and publishing MAUI apps on specific
platforms. We will start by covering the process of building desktop applications on
Windows.

https://www.reactiveui.net/api/reactiveui.maui/
https://github.com/dotnet/Comet

MAUI and Cross-platform Native Applications ■ 95

Using MAUI to build desktop applications
MAUI is available on two desktop operating systems, Mac and Windows. You can
build MAUI apps for Linux as well. But this is a purely community-enabled feature
that is not officially supported by Microsoft. Now we will discuss the process of
running and publishing an MAUI app on a Windows PC.

Preparing desktop development environment
Before we can build and run an MAUI application on Windows, we need to switch
the developer mode on. This can be found in your settings. Alternatively, if you try
to run your application from an IDE, you will be prompted to switch the developer
mode on. Figure 4.7 demonstrates what this prompt looks like on Visual Studio:

Enable Developer Mode for Windows X

This device needs to be set up correctly to develop this type of app for Windows.
If you don't, then you can’t install and test your app before you submit it to the
Windows Store.

Go to settings for developers on your device, and select Developer Mode.

This device is not currently in developer mode.

Close |

Figure 4.7: A prompt to enable the developer mode on Windows

Now your environment is ready for running MAUI apps on it. The first thing we
will cover is running an MAUI app in debug mode.

Running a desktop app in a debug mode
As with any other type of app, you should be able to debug the MAUI codebase and
set breakpoints in it. The process of doing so for MAUI apps is identical to what it
would be with any other app type.

If you are running the MAUI app on Windows, the Windows profile should be
enabled by default. Therefore, you will be able to run the application by either
executing an appropriate command from .NET CLI or by clicking on the Run button
from the IDE.

96 Implementing C# 11 and .NET 7.0

If we launch either the SampleMauiApp or the MvvmMauiApp application that we
created earlier, we are expected to see the user interface as shown in figure 4.8:

If we launch our BlazorMauiApp and navigate to the Counter component, we
should expect the UI shown in figure 4.9:

Figure 4.9: BlazorMAUI app UI

This concludes the overview of the process of launching an MAUI application
on a desktop PC. Now, we will have a look at how we can publish it, so it can be
deployable on other devices.

Publishing a desktop app
If you want to deploy any Windows application on any official app store or
otherwise distribute it in professional settings, your application needs to be signed
with a certificate. Otherwise, the operating system will complain that the application

MAUI and Cross-platform Native Applications 97

comes from an unknown publisher. However, it is not strictly necessary if you want
to create a deployment package purely for evaluation and test purposes.

As with any other type of .NET application, the easiest way to publish an MAUI app
is via an IDE. You can do it via the CLI too, but the process will be more involved. To
publish your application from Visual Studio, all you have to do is select your main
application project in Solution Explorer, right-click on it, and click Publish. You will
then be prompted to select the distribution method, as shown m figure 4.10:

Create App Packages

Select distribution method

How will you distribute this application?

0 Microsoft Store under a new app name

® Sideloading What is sideloading?

0 Enable automatic updates

| fjext 11 Cancel |

Figure 4.10 : Selecting distribution mode while publishing a MAUI Windows app

Then, you will be presented with the option of selecting a package signing method,
which you will need to perform to make your package production ready. Following
this, you will be able to specify the CPU architecture for your package. And you can
just follow all the steps to complete the package-generation process.

This covers the process of running and deploying MAUI applications on a Windows
desktop. Next, we will have a look at how to build MAUI mobile apps for Android.

Using MAUI to build mobile apps
You can build MAUI apps for Android by using any machine with any operating

system, as long as it supports eitner me anility to connect a real Android device to
it and run it in developer mode or use emulators. So, let us now learn to set up our
development environment so we can start building mobile applications on it.

98 Implementing C# 11 and .NET 7.0

Preparing mobile development environment
The easiest way to test your mobile application before publishing it is to use an
emulator. Emulator is a virtual machine that closely mimics a real mobile device. The
easiest way to set one up is by using an IDE. For example, in Visual Studio, you can
click on Tools tab, select Android and click on Android SDK Manager, as demonstrated
in figure 4.11:

Tools Extensions Window Help P Search • MvvmMauiApp
Get Tools and Features
Manage Preview Features

• fii M B . Q □! . ■ s
■ . ii । • ii i mi inw i i i > <i

I Android____________________ J Android Device Manager...
iOS ► |gj Android SDK Manager...
Archive Manager... jj Device Log...
Connect to Database... H Android Adb Command Prompt...

9 Connect to Server... Restart Adb Server
0 Code Snippets Manager... Ctrl+K, Ctrl+B

Figure 4.11 : Android SDK Manager menu option in Visual Studio

You will then be able to select any emulator from the list and install it. Choosing to
install it will prompt you to accept the license agreement, as demonstrated in figure
4.12:

Android SDK - License Agreement
Read and accept the Android SDK license below to continue.

android-sdk-arm-dbt-license

Google Play Intel x86 Atom_64 Syste android-sdk-arm-dbt-license

Terms and Conditions

This is the Android Software Development Kit License Agreement

1 Introduction

1.1 The Android Software Development Kit (referred to in the
License Agreement as the "SDK" and specifically including the
Android system files, packaged APIs, and Google APIs add-ons) is
licensed to you subject to the terms of the License Agreement. The
License Agreement forms a legally binding contract between you
and Google in relation to your use of the SDK.

it tuiuiuiu 11 ivui ij uivruiuiuiM juhhuiu ivi uwh.vj. uj

made available under the Android Open Source Project, which is
located at the following URL: http//source android com/, as
updated from time to time.

1 3 A "compatible implementation" means any Android device that
(i) complies with the Android Compatibility Definition document,
which can be found at the Android compatibility website (http://
source.android.com/compatibility) and which may be updated from
time tn time and hit si icressli illy nassns th a Android Cnmnatihilitv

Accept | Cancel

Figure 4.12: Android SDK license agreement

MAUI and Cross-platform Native Applications I 99

It will take a while for emulators to get installed. And then, we will be able to run
our applications on it.

Running a mobile app on an Emulator
You will be able to select the emulator as the execution target from the Run menu of
the IDE, as figure 4.13 demonstrates:

Analyze Tools Extensions Window Help P Search ■ MvvmMauiApp

| ► Android_Accelerated_x86_Oreo (Android 8.1 - API 27) -| t> (J • ® . L> 6 B □! f □ S . 0

1 ► Android Acceleratedj86 Oreo (Android 8.1-API 27)
i

v Android Accelerated x86 0reo (Android 8.1 - API 27)

Windows Machine

pml.cs MainPage.Model.cs

Download New Emulators...
ut

Framework (net6.0-android)
| Android Emulators

iOS Local Devices
iOS Simulators
iOS Remote Devices

A MvvmMauiApp Debug Properties

Android.Acceleraled.x86 Oreo (Android 8.1 - API 27) ~~|

Figure 4.13: Selecting Android emulator from the Run menu of Visual Studio

The rest of the process is the same as running any other application type in Visual
Studio. Once you click Run while an Android emulator is selected, the emulator will
be launched, and your application will be launched on it. While it is running, you
will be able to place breakpoints in the code.

This concludes the subject of running Android MAUI apps on a PC. Next, we will
have a look at the process of publishing your app, so you will be able to distribute
it via app stores.

Publishing a mobile app
The process of publishing MAUI apps for Android is not much different from
publishing them for Windows. While Android is selected as the build target and the
build configuration is selected as Release, all you have to do is right-click on your
project in Solution Explorer and click Publish. It will then take you to the Android-

• r■ ii-i- 1 ■ ,t t ,t

source.android.com/compatibility

specinc puonsnmg screen, as snown m figure 4.14:

MwmMauiApp
C:\Repos\a-complete^uide4>implementing-asharp11-andxiotnet7\Chaptef44\MvvmMauiApp\MwmMauiApp.sln

n MwmMauiApp
H Creation Date: 08/08/2022 14:22

Version: Version Code: Bundle Format:

Cancel
Archiving App Bundle 'MwmMauiApp'...

Figure 4.14: Publishing an MAUI app for Android

100 ■ Implementing C# 11 and .NET 7.0

This will produce an APK file that can install the app on Android devices. The file
will reside inside the following location inside the project:
bin/Release/net7.0-android

Alternatively, the following command can be executed from the project folder via
theCLI:
dotnet build -f net7.0-android -ctRelease

This concludes the process of publishing MAUI apps for Windows and Android.
Now, we will cover the process of running and publishing MAUI apps for Mac and
iOS.

Limitations of developing for Mac OS and
iOS
When we covered the process of building MAUI apps for Windows, you may have
noticed that all the steps of it imply that we do it on a Windows device. There is
no such thing as a Windows emulator. If you try to run a Windows app on a non­
Windows machine, it simply will not work.

A similar limitation exists for Mac and iOS apps. You need an Apple device to run
them. But even though iOS emulators are available, they can only be run on another
Apple device. One reason for this is that you need an Apple account to be able to
deploy your apps into any of Apple's app stores. But this is not the only reason. To
be able to emulate iOS on your development machine, you will need some special
tools. Apple refuses to publish any of these tools for any operating system other than
Apple's own.

Extra tools required for publishing apps for iOS
Normally, if you would want to build standard native iOS apps, you would need
an IDE called XCode. This IDE is only available on Mac. Unfortunately, you cannot

emulate an iOS device without the tools that this IDE provides. And you cannot
build a native iOS deployment package for your application either. So, even if you
intend to develop iOS apps by using MAUI, you will still have to install XCode,
which can be found via the following link:

https://developer.apple.com/xcode/

Once XCode is installed, you will need to either connect your existing development
account to it or create a new one. To do so, you will need to open the Preferences
dialog from the XCode menu. Then you will need to select the Accounts tab. From
the dialog that appears, you can then select a plus (+) button to add a new account.
What you can then do is link your Apple ID and follow the remaining instructions.

MAUI and Cross-platform Native Applications 101

You will then need to add some metadata to your project file and sign the package.
But the publishing tool should notify you if any of it is missing. Likewise, you can
connect Visual Studio for Mac to your Mac build host to be able to use the IDE to
work with MAUI code. You will need this if you still want to use full IDE capabilities,
as XCode has not been designed to work with .NET and C#.

Then, to publish your application for iOS, you will need to execute the following
command from your project folder:
dotnet publish -f net7.0-ios -c Release

Your application package will then be placed into the bin folder of the project.

Slightly lighter requirements for Mac OS apps
If you want to publish an MAUI application for Mac OS, the restrictions will be
somewhat lighter. You will not need XCode or any other additional tools. You will
not even need anything beyond any standard .NET IDE or a code editor. However, if
you then intend to publish your app into any official app repositories, you will still
need a developer account and need to sign your package.

Mac will still allow you to download and install packages that are not signed. But
a security warning will be given. We have now completed the overview of .NET
MAUI.

Conclusion
In this chapter, you have learned that .NET MAUI is an evolution of Xamarin.Forms
that allows developers to write both desktop and mobile applications. Unlike its
predecessor, MAUI is fully integrated with .NET 7 and has access to all the latest
language features of C# 11. Likewise, its project structure is much more convenient
to work with than that of Xamarin.Forms. It also supports a full range of mobile and
desktop operating systems.

https://developer.apple.com/xcode/

Since .MEI MAUI is hilly integrated with .MEI /, it can be combined with any
.NET 7 libraries and frameworks. For example, you can build its UI by using Blazor
Web Assembly.

.NET MAUI supports three main architectural patterns, MVVM, RxUI, and MVU.
The latter pattern allows developers that had no prior experience of using MAUI to
learn it quickly, as the pattern is incredibly easy to understand.

What makes MAUI particularly convenient is that you can write your application
on any type of machine and compile it for any other supported operating system.
However, there is one caveat. If you intend to develop applications for Mac or iOS,
you will need Mac to do so. This is because Apple does not allow developers to

102 ■ Implementing C# 11 and .NET 7.0

publish software that was not developed on Mac, and it does not provide tooling for
any other operating systems.

In the upcoming chapter, you will learn about the latest version of Entity Framework
Core, which is used for accessing structural SQL data by abstracting it in the code.

Points to remember
• .NET MAUI can be used for building mobile and desktop applications.

• MAUI is an evolution of Xamarin.Forms.

• MAUI is fully integrated in .NET 7 and has full access to tlie latest language
features.

• The primary markup language for MAUI user interfaces is XAML.

• MAUI can have its UI built by using other technologies, including Blazor
Web Assembly.

• MAUI can use either of tlie following architectural patterns: MVVM, RxUI,
and MVU.

• The applications built for either Mac or iOS can only be published from a
Mac device due to restrictions imposed by Apple.

Multiple choice questions
1. What operating systems can you run MAUI apps on?

a. Android
b. iOS

c. Windows
d. All of the above

2. What is the key difference between MAUI and Xamarin.Forms?
a. Xamarin.Forms does not have access to the latest C# language

features, whereas MAUI does
b. Xamarin.Forms cannot run Blazor Web Assembly, whereas MAUI can
c. Xamarin.Forms was primarily intended for mobile, whereas MAUI

is intended for both mobile and desktop
d. All of the above

MAUI and Cross-platform Native Applications 103

3. Which architectural pattern is not supported by MAUI?
a. ReactiveUI
b. MVVM
c. MVC
d. MVU

4. What is the main language used by MAUI for defining user interface
layouts?

a. XML
b. XAML
c. JSON
d. HTML

Answers
1. d
2. d
3. c
4. b

Key terms
• MAUI: Multi-platform UI; a framework for developing native mobile and

desktop applications on .NET.

• Xamarin.Forms: A predecessor of MAUI that was specifically designed for

building cross-platform mobile applications.

• MVVM: Model-View-ViewModel; An architectural pattern that consists of
a user interface component (view), back-end data abstraction (model), and
the data that populates the user interface (ViewModel).

• ReativeUI: A framework that adds reactive programming components on
top of MVVM.

• MVU: Model-View-Update, also known as Elm Architecture, is an
architectural pattern that consists of the user interface (view), data abstraction
(model), and a component that updates the model when some action is
triggered in the UI (update).

104 Implementing C# 11 and .NET 7.0

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com

Chapter 5

Database
Access with Entity

Framework 7

Introduction
Entity Framework Core (EF Core) is an object-relational mapper (ORM) that is used
by .NET platform. The purpose of an ORM is to allow application code to interact
with a relational database by abstracting objects from the database as objects in the

code (classes, records, and so on). There are other ORMs also available on .NET, but
those are developed and maintained by third parties. EF Core is developed by the
core Microsoft team alongside the rest of .NET.

In this chapter, we will cover the most fundamental features of EF Core. By the end
of it, you will have learned how to use it inside your application code to manipulate
data in a database. We will also cover the scenarios where we need to create EF Core
code from an existing database and cover the process of creating a new database
from EF Core objects.

Also, because ORMs work with relational databases, you will need to know the
fundamentals of relational databases to fully understand ORMs. Therefore, this
chapter will provide a brief overview of relational database concepts.

Finally, as the scope of this book is to cover the latest feature of C# 11 and .NET 7,
we will have a look at what new features have been added to version 7 of EF Core,
which is properly called EF7 rather than EF Core 7. So, not only will you know the
fundamentals of EF Core, but you will also know how to use its cutting-edge features.

106 ■ Implementing C# 11 and .NET 7.0

Structure
In this chapter, we will discuss the latest features of Entity Framework 7, which will
include the following topics:

• Introducing fundamentals of relational databases

• Introducing Entity Framework 7

• Code-first approach in EF7

• Database-first approach in EF7

• The latest features of EF7

Objectives
By the end of this chapter, you will have learned how to integrate a .NET core
application with a database by using EF7. You will also know how to apply the
latest features of EF7.

Prerequisites
To follow this chapter, you will need the following:

• A machine running either Windows, MacOS, or Linux OS

. .NET 7 SDK

• A suitable IDE or a code editor

• Being familiar with C# fundamentals

If you do not have any of the preceding listed dependencies installed already let
us set up using the instruction provided in Chapter 1: Getting Familiar with .NET 7
Application Structure, which also provides a recap of C# fundamentals.

Introducing fundamentals of relational
databases
Since EF7 is an ORM that is primarily designed to interoperate with relational
databases, one needs to understand how relational databases work before attempting
to learn how the ORM works. Fortunately, you do not need to be a database expert
before you can start using EF7. But you will definitely need to understand the
fundamentals.

Database Access with Entity Framework 7 107

Overview of relational database management
systems and SQL
Relational databases are hosted inside Relational Database Management Systems
(RDBMS). There are several different RDBMS technologies manufactured by
different vendors. Although there are some fundamental architectural differences
between them, there are also some shared characteristics. Any RDBMS, regardless of
the vendor, has the following components:

• Databases comprised of tables.

• Each table has a rigid schema, which means that it consists of a fixed number
of columns, and each of these columns only accepts data of a specific type
(integer, textual, binary/Boolean, and so on).

• Tables refer to each other via the so-called foreign keys, which enables
relationships between tables.

• SQL language is used for retrieving data, manipulating data, and modifying
the structure of the database itself.

Structured Query Language (SQL) is a universal language of database management.
Different RDBMS vendors use different flavors (or dialects) of SQL, so a statement
written for a particular type of RDBMS would not necessarily be compatible with
another type of RDBMS manufactured by another vendor. The most fundamental
commands will either be the same regardless of the vendor or verv similar. For

example, let us look at the following SQL expression:

SELECT * FROM USERS

• Oracle Database: the main RDBMS product manufactured by Oracle as a
proprietary product primarily used for commercial projects

Anyone who is familiar with SQL will be able to tell what this expression does. The
SELECT keyword indicates that we are selecting some data. The * symbol means that
we are selecting all fields. Alternatively, we could have written down specific fields
that we wanted to return. FROM is the keyword that is used to specify the object that
we want to return the data from, which would typically be a table. USER is the name
of a specific object.

Typically, a SQL expression to retrieve data is known as a query. A SQL expression to
modify the data, either inserting or updating it, is referred to as a command.

The most popular RDBMS types are the following:

• SQL Server: manufactured by Microsoft as a proprietary product primarily
used for commercial projects

108 Implementing C# 11 and .NET 7.0

• MySQL: lightweight free and open-source RDBMS maintained by Oracle
that is frequently used for non-commercial projects

• PostgreSQL: free and open-source RDBMS with advanced features that are
primarily used for commercial projects

Now, let us have a look at a typical structure of an RDBMS table.

Tables, relationships, and normalization
Since relational databases store data in tables, we will have a look at an example of
such a table. Then, we will make some changes to it to highlight the fundamental
features of an RDBMS.

Let us imagine that we have a system that manages data for a company that owns
multiple factories. The database behind this system will store information on the
factory's employees, their pay, their shifts, their job titles, and so on. Initially, we
would store this information in a single table, which will have the following columns,
as outlined in table 5.1:

Table 5.1: The structure of the initial flat table containing employee information

Column name Data type

First Name Textual
Last Name Textual
Job Title Textual
Annual Salary Decimal
Date of Birth Date
Date of Joining the Company Date
Employment Location Textual
Factory Name Textual
Shift Start Time
Shift End Time

Even though there is nothing that stops us from storing data this way, there are
many problems with this approach.

• First of all, it is just a flat table containing the entire employee data. It is
something we could do easily in an Excel spreadsheet. So, why would we
even need to set up an RDBMS?

• Second, storing all information on a single table makes it harder to apply
any changes. For example, there is probably a very finite number of job titles

Database Access with Entity Framework 7 109

with associated salaries. Also, there is a finite number of factories where
the employee work. But what happens if one of the job titles gets the salary
associated with it increased? Or what if a particular factory gets closed
and its employees need to be transferred to a nearby factory? If you have
the job title, salary, and site data stored on the same table as the employee
information, you will then need to find and update every record that has
outdated information. If you have a large organization with thousands of
employees, then this process might take longer.

• Also, a single flat table makes it difficult to store employee shift information.
We currently have shift start and end time. This is OK if a given employee
is always doing the same shift and if the factory is open only on specific
days. But what if this is not the case? What if the factory is open 24/7, and
each employee may be doing a combination of different shifts? Or what if
the same employee shifts in different factories? This would be very difficult
to store in a flat table. You would either need to store this information in a
free text field, which will be harder to query or you would need multiple
redundant columns for multiple start and end times and days worked.

These are, perhaps, the most obvious disadvantage of storing a large amount of data
inside a flat table. But a relational database will be able to address all these issues.
All we need to do is turn this flat table into multiple tables linked to each other. And
this is what we will do next.

Introducing primary keys
Before splitting our table, we will first add a primary key to it. The primary key is
a column that has a unique value in each row. Or it can be a mixture of multiple
columns, but the combination of the values in each row still must be unique.

Using a primary key has multiple advantages. But the main ones are as follows:

• A primary key acts as both a unique identifier of a record and its index, so a
specific record becomes faster to retrieve.

• A primary key of one table can be used as the so-called/orezgn key in another
table, enabling a relationship between two tables.

So, what could we use as a primary key in our table? Well, theoretically, we could
use a combination of the first and the last name. But then, there is no guarantee that
we will have a unique combination in every row, as unrelated people who share the
same name exist. Perhaps we could add a date of birth to it. Even then, it would not
necessarily guarantee uniqueness. Also, having different data types in our primary
key will make it more complicated and harder to manage.

110 Implementing C# 11 and .NET 7.0

To address this, we will just do what is commonly done in this situation and add
another column that will just store the primary key. It will be an integer column with
auto-generated sequential values, so each record is guaranteed to have a unique
value. This type of column is usually referred to as identity. Its name could either
be id or <table name>_id, such as employee_id. Next, we will apply the technique
known as normalization to split the table into multiple tables.

Normalization and foreign key relationships
Normalization is the process of removing repeated and redundant data from one
table and moving it into separate tables, which the original table will still be able
to refer to. This way, instead of being repeated, each value will be stored in its own
table. Then, if another table needs to refer to this value, it will refer to the index of
the record of the table where this value is stored. So, if you then need to change the
value (such as the name of the factory or a job title), you will only have to change it
in a single place.

Now, we will apply normalization to our own data. Since we have a finite number
of job types, each having its own annual salary, we will move job information into a
separate table, which will have a structure outlined in table 5.2:

Table 5.2: The structure of the Jobs table

Column name Data type Notes

job ID Integer (identity) Primary key
Job Title Textual
Compensation Decimal

Next, we can create a table containing information on factories, as outlined in table
5.3:

Table 5.3: The structure of Factories table

Column name Data type Notes

Factory ID Integer (identity) Primary key
Factory Name Textual
Factory Location Textual

We will take care of the shift table later. For now, we will get back to our tables
containing the remaining employee data, which will now be structured as shown in
table 5.4:

Database Access with Entity Framework 7 ■ 111

Table 5.4: The structure of the employees' table

Column name Data type Notes

Employee ID Integer (identity) Primary key
First Name Textual
Last Name Textual
Date of Birth Date
Date of Joining the Company Date
Job ID Integer Foreign key (matches a

primary key of Jobs table)

Here, we have our first example of a relationship between two tables via a foreign
key. Job ID column in the Employees table refers to the Job ID column in the Jobs
table. Here, we have a one-to-many relationship between a job and employees, as
there can be multiple employees with the same job title. In the preceding example
(and in any other instance of foreign key relationships), the value that you put into
the Job ID column of the Employees table must match a value that exists in the Job
ID column of the Jobs table.

Finally, we will add a Shifts table, which will be structured as shown in table 5.5:

Column name Data type Notes

Shift Id Integer (identity) Primary key
Weekday Integer Must be between 1 and 7
Start Time Time
End Time Time
Employee ID Integer Foreign key (primary key

of Employees table)
Factory ID Integer Foreign key (primary key

of Factories table)

Table 5.5: The structure of the shifts table

Now, we can easily store detailed enough information about the shifts employees
are assigned to do. Now, it is also possible to associate an employee with multiple
factories via the Shifts table. So, there is now a many-to-many relationship between
employees and factories.

This concludes an overview of relational databases. Of course, the subject is much
larger, especially as every type of RDBMS has its own nuances. But we have covered
enough of the basics to be able to understand how EF7 works. So, let us set our

tJiiviiuiuiitiiiL up iui using n.

112 ■ Implementing C# 11 and .NET 7.0

Introducing entity framework 7
So far, we have briefly mentioned that relational databases rely on the language
called SQL for data retrieval and manipulation. But if you are using an ORM, such
as entity framework 7 (EF7), you would not have to use SQL directly in most cases.
Your tables and relationships will be represented by objects in the code, which, in
C#, would normally be either classes or records. The ORM will do all the necessary
mapping for you.

To start working with EF7, you will need two things: EF CLI tools and a NuGet
package representing a specific RDBMS provider.

EF7 supports the following providers:

• Microsoft SQL Server: Represented by Microsoft. EntityFrameworkCore.
SqlServer NuGet package.

• SQLight: Represented by Microsoft.EntityFrameworkCore.Sqlite
NuGet package.

• Azure Cosmos DB: Represented by Microsoft.EntityFrameworkCore.
Cosmos NuGet package.

• PostgreSQL: Represented by Npgsql.EntityFrameworkCore.PostgreSQL
NuGet package.

• MySQL: Represented by Pomelo.EntityFrameworkCore.MySql NuGet
package.

• In-memory database: Represented Microsoft.EntityFrameworkCore.
InMemory NuGet package.

Not all these providers represent true relational databases. For example, Azure
Cosmos DB is a document store, a different type of database. Likewise, In-memory
Database is not a real database. But nevertheless, a relational database is the primary
database type, EF7, designed to work with.

To install EF CLI tools, you can execute the following command in your terminal:
dotnet tool install --global dotnet-ef

If you already have the tools installed, you can execute the following command to
update them to the latest version:
dotnet tool update --global dotnet-ef

You can use EF7 on any OS that can work with .NET. But Visual Studio 2022 for

Windows has the richest user experience. For example, Visual Studio 2022 comes
with an inbuilt version of SQL Server called LocalDB, so you do not have to set up
an instance of SQL Server manually. It just needs to be enabled via Visual Studio

Database Access with Entity Framework 7 ■ 113

Installer. All you need to do is open the Installer, click the Modify button next to the
Visual Studio 2022 instance, and select to install Data storage and processing workload,
as demonstrated by figure 5.1:

Other Toolsets (5)

r-q Data storage and processing Q

til Connect, develop, and test data solutions with SQL Server,

Azure Data Lake, or Hadoop.

li,1 Data science and analytical applications

Languages and tooling for creating data science

applications, including Python and F#,

Visual Studio extension development
i J Create add-ons and extensions for Visual Studio, including

new commands, code analyzers and tool windows.
a Office/SharePoint development

Create Office and SharePoint add-ins, SharePoint

solutions, and VSTO add-ins using C#, VB, and JavaScript.

Linux and embedded development with C++

Create and debug applications running in a Linux

environment or on an embedded device.

Figure 5.1: Installation of Data storage and processing workload

Once installed, we will be able to access SQL Server by selecting SQL Server Object
Explorer option from the View tab, as demonstrated by figure 5.2:

Figure 5.2: Accessing SQL server object explorer

View Git Project Build Debug Test Analyze

c* Open

Open With...

S Solution Explorer Ctrl+Alt+L

Git Changes Ctrl+0, Ctrl+G

Git Repository Ctrl+O, Ctrl+R

Team Explorer Ctrl+i, Ctrl+M
S Server Explorer

® Data Lake Analytics Explorer

Ctrl+Alt+S

l=° SQL Server Object Explorer Ctrl+\, Ctrl+S |

fiU Test Explorer Ctrl+E,T

This is everything you need to get started with EF7. Now, we will have a look at
how to use EF7 in the code. We will start by applying one of its most powerful
capabilities—being able to create a fresh database purely from the code. This is
known as the code-first approach.

Code-first approach in EF7

Code-first approach, as well as giving you the ability to create a complete database
from the code, also allows you to populate the database with the initial data. Now,
we will go through the steps that are needed to set up Entity Framework in your

114 Implementing C# 11 and .NET 7.0

application, get it to automatically generate a database for you, and then populate it
with some data. We will start by going through the EF7 basics.

Adding Entity Framework code
Entity Framework is commonly used inside ASP.NET Core Model-View-Controller
(MVC) apps. We will cover this type of apps in detail in Chapter 6: Web Application
Types on .NET. But, for now, we will create an MVC Web application with database
access by executing the following command:
dotnet new mvc -o MvcDataApp

Next, we will go into the MvcDataApp project folder and run the following command
to install a NuGet package that contains EF7 diagnostics. Alternatively, you can
install this package via the GUI of your IDE.
dotnet add package Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore

Next, we will install the following NuGet package, which contains Entity Framework
provider for SQL Server:
dotnet add package Microsoft.EntityFrameworkCore.SqlServer

Now, we are ready to add objects that will represent our database tables. We will
use the same factory management solution that we have described earlier when we
covered database normalization.

Adding entity objects
The first object we will add will represent an entry in the Jobs table. To add the
object, we will add Job. cs file into the Models folder of the project and populate it
with the following code:

using System.ComponentModel.DataAnnotations.Schema;

namespace MvcDataApp.Models;

public record Job

{
[DatabaseGenerated(DatabaseGeneratedOption.Identity)]

ASP.NET

puoiic int jodio t get; set;]■
public string JobTitle { get; set; }
[ColumnfTypeName = "decimal(8, 2)")]
public decimal Compensation { get; set; }

Database Access with Entity Framework 7 ■ 115

public ICollection<Employee> Employees { get; set; }

}

We have used a record as our base type. This keyword has been added in C# 10. It is
similar to a class but is primarily designed to represent a database record. However,
the code would work with a class too.

This code contains some annotation attributes that we have added to demonstrate
the capabilities of EF7. The first one is DatabaseGeneratedAttribute, which we
have placed above the Jobld property. This attribute is not strictly necessary, as
this property will be recognized as the primary key identity column based on the
naming conventions. But we have put it there to demonstrate how we can mark any
arbitrary column as the primary key identity.

Decimal data type in SQL server requires precision and scale. Precision is the total
number of digits that we are allowed to store. Scale is how many digits we can have
after the decimal point. And to specify this information, we have added a Column
attribute.

Entity Framework objects represent one-to-many relationships as collections. In
our case, because we have a one-to-many relationship between a Job entity and
Employee records, we have a collection of Employee objects inside our Job record.

Next, we will add the definition of an employee record. We will, once again, place
tire Employee. cs file into the Models folder and will populate it with the following
code:
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace MvcDataApp.Models;

public record Employee

{
[DatabaseGenerated(DatabaseGeneratedOption.Identity)]
public int Employeeld { get; set; }
[StringLength(20)]
public string FirstName { get; set; }

[StringLength(20)]
public string LastName { get; set; }
public Dateline DateOfBirth { get; set; }
public DateTime StartDate { get; set; }
public int Jobld { get; set; }

116 ■ Implementing C# 11 and .NET 7.0

public lob { get; set; }
public ICollection<Shift> Shifts { get; set; }

[NotMapped]
public string FullName => FirstName + " " + LastName;

}

Here, we have added some more useful attributes. The stringLength attribute
will add a constraint on the database column to restrict it to a specific number of
characters. NotMapped attribute is added to the properties that may be useful in the
code but should not represent a database column.

Since each Employee entity can only relate to a single Job entity, we have added a
singular Job property. But because an Employee can be associated with multiple
Shift entities, we have a Shifts property representing a collection of Shift entities.

Next, we will add the Factory.cs file into the Models folder with the following
content:

using System.ComponentModel.DataAnnotations.Schema;

namespace MvcDataApp.Models;

public record Factory

{
[DatabaseGeneratedfDatabaseGeneratedOption.Identity)]
public int Factoryld { get; set; }
public string FactoryName { get; set; }
public string Location { get; set; }

public ICollection<Shift> Shifts { get; set; }

}

Finally, we will add the following object representing a Shift entity:
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace MvcDataApp.Models;

Database Access with Entity Framework 7 ■ 117

public record Shift

{
[DatabaseGenerated(DatabaseGeneratedOption.Identity)]
public int Shiftld { get; set; }
[Rangefl, 7)]
public int WeekDay { get; set; }
public TimeSpan StartTime { get; set; }
public TimeSpan EndTime { get; set; }
public int Factoryld { get; set; }
public int Employeeld { get; set; }

public Employee Employee { get; set; }
public Factory Factory { get; set; }

}

We now have entity objects representing all database tables that we have described
earlier. The properties in this class map to SQL data types. We can also apply
additional constraints on these data types like we are doing with the Range attribute
on the WeekDay property. In our example, the only values we are allowing to be
inserted into the corresponding integer column are between 1 and 7.

Now, we need to let the Entity Framework know that these objects represent entities
in database tables. To do so, we will need to add the so-called database context and
register it.

Adding database context
Database context is a custom class that is derived from DbContext base class of
Entity Framework. This class allows us to register all the entity objects that we intend
to map to database tables.

In our case, we will call our database context class FactoryManagerContext. To
create it, we will create a Data folder inside the root folder of our project and add
FactoryManagerContext. cs file to it with the following code:

using Microsoft.EntityFrameworkCore;
using MvcDataApp.Models;

namespace MvcDataApp.Data;

118 | Implementing C# 11 and .NET 7.0

public class FactoryManagerContext : DbContext

{
public FactoryManagerContext(DbContextOptions<FactoryManagerContext>

options) : base(options)

{
}

public DbSet<Employee> Employees { get; set; }
public DbSet<Factory> Factories { get; set; }
public DbSet<lob> lobs { get; set; }
public DbSet<Shift> Shifts { get; set; }

}

We have added a DbSet property for each of the entity types we added earlier.
Now, we need to register this database context object and associate it with a specific
connection string to a SQL Server instance. We will do so in the Program.es file,
which would have the following content at the beginning:

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.
builder.Services.AddControllersWithViewsf);

var app = builder.Build();

CreateDblfNot Exists(app);

// Configure the HTTP request pipeline.
if (!app.Environment.IsDevelopmentf))

{
app.UseExceptionHandler("/Home/Error");
// The default HSTS value is 30 days. You may want to change this

for production scenarios, see https://aka.ms/aspnetcore-hsts.
app.UseHstsf);

}

app.UseHttpsRedirectionf);
app.UseStaticFilesf);

app.UseRouting();

Program.es
https://aka.ms/aspnetcore-hsts

Database Access with Entity Framework 7 ■ 119

app.UseAuthorization();

app.MapControllerRoute(
name: "default",
pattern: "{controller-Home}/{action-Index}/{id?}");

app.Run();

static void CreateDbIfNotExists(IHost app)

{
using van scope = app.Services.CreateScope();

var services = scope.ServiceProvider;
try

{
var context = services.

GetRequiredService<FactoryManagerContext>();
Dblnitializer.Initialize(context);

}
catch (Exception ex)

{
var logger = services.GetRequiredService<ILogger<Program>>();
logger.LogErrorfex, "Failed to create the DB.");

}
}

We will start by adding the following using statements to the Program. cs file:

using Microsoft.EntityFrameworkCore;
using MvcDataApp.Data;

Then, we will add the following lines anywhere before builder. B u i Id ():
builder.Services

.AddDbContext<FactoryManagerContext>(options =>
options

.UseSqlServer(builder

.Configuration

.GetConnectionString("DefaultConnection")));
builder.Services.AddDatabaseDevelooerPaeeExceotionFilterf1:

120 ■ Implementing C# 11 and .NET 7.0

Here, we have registered the database context with the database connection string that
has the key of Defaultconnection. The AddDatabaseDeveloperPageException
Filter method call will help us to debug any errors with the database setup by
outputting them as HTML. However, it would be bad practice to use this line in
production.

To make the database connection work, we need to add this entry to the settings.
To do so, we will add the Connectionstrings section to our appsettings. json
file with the Defaultconnection entry inside it. The following example shows the
content of the appsettings. json file that uses an inbuilt LocalDB connection:

{
"Logging": {

"LogLevel": {
"Default": "Information",
"Microsoft.AspNetCore": "Warning"

}
b
"AllowedHosts":
"Connectionstrings": {

"Defaultconnection": "Server-(localdb)\\
mssqllocaldb;Database=FactoryManager;Trusted_
Connection=True;MultipleActiveResultSets=true"

}
}

Now, we have Entity Framework fully configured inside our application. Next, we
will add some additional code to take full advantage of the code-first approach.

Adding database creation script
If we apply a code-first approach to our Entity Framework, a database will be
generated at the location-specific by the connection string when we launch our
application for the first time. To enable this, we can add Dblnitializer class to our
Data folder and add the following content to it:

using MvcDataApp.Models;

namespace MvcDataApp.Data;

public class Dblnitializer

{

Database Access with Entity Framework 7 ■ 121

public static void Initialize(FactoryManagerContext context)

{
context.Database.EnsureCreated();

if (context.Jobs.Any())

{
return;

}
}

}

The Initialize method will create a database if it does not already exist. This
is done by calling the EnsureCreated method on the Database property of the
database context object. Also, this code will exit if the database already has some
data in the Jobs table. This is needed so we can skip the data insertion steps if we
already went through them.

To add data insertion steps, we will need to add some more code to the Initialize
method. Since it will be a relatively long script, we will add it step-by-step. First, we
will add the following code to add some entries to the Jobs table:
var jobs = new Job[]

{
new Job

{
JobTitle = "Manager",
Compensation = 50000

h
new Job

{
JobTitle = "Laborer",
Compensation = 25000

}
};
foreach (var j in jobs)

{
context.Jobs.Add(j);

}
context.SaveChanges();

122 | Implementing C# 11 and .NET 7.0

Here, we are creating a collection of Job objects. Then, we are adding each of them
to the Jobs dataset in the database context. Then, we are calling the SaveChanges
method.

It is vitally important that we call the SaveChanges method once we are ready to
insert the data. This is the method that performs the actual insertion of the data into
the database. Until it is called, all the data will reside only in the memory.

Next, we will add some data to the Employees table:

var employees = new Employee!]

{
new Employee

{
FirstName="John",

LastName="Smith",
DateOfBirth=DateTime.Parse("1992-10-01"),
StartDate=DateTime.Par’se("2020-09-01"),
Jobld = 1,

h
new Employee

{
FirstName="Alexander",
LastName-"Marshall",
DateOfBirth-DateTime.Parse("1982-09-12"),
StartDate=DateTime.Parsef"2017-09-01"),
Jobld = 2,

h
new Employee

{
FirstName="Michael",

LastName="Davidson",
DateOfBirth=DateTime.Parse("1989-05-11"),
StartDate=DateTime.Parse("2010-09-01"),
Jobld = 2,

h
};
foreach (var e in employees)
r

1

Database Access with Entity Framework 7 ■ 123

context.Employees.Add(e);

}
context.SaveChangesf);
Following this, we will add some Factories entities:
van factories = new Factory!]

{
new Factory

{
FactoryName = "Best Cookies",
Location = "New York"

}
};
foreach (van f in factories)

{
context.Factories.Add(f);

}
context.SaveChangesf);

Then, we can apply the same principle to insert any number of arbitrary Shifts
data, as per the following example:
van shifts = new Shift[]

{
new Shift

{
WeekDay = 1,

StartTime = new TimeSpan(9,0,0),
EndTime = new TimeSpanfl?,©,©),
Factoryld = 1,
Employeeld = 1

},
new Shift

{
WeekDay = 2,
StartTime = new TimeSpan(9,0,0),
EndTime = new TimeSpan(17,0,0),
Factoryld - 1,

124 | Implementing C# 11 and .NET 7.0

Employeeld = 1

b
b
foreach (van s in shifts)

{
context.Shifts.Add(s);

}
context.SaveChanges();

Please note that we are not manually inserting the identity columns. This is because
tire database will do it for us automatically. If we are inserting the data into a newly
created database, then tire identity value of the first record in each table will be 1.
The next one will be 2, and each record will have its identity value auto-incremented
by 1. This is the principle that we have based the values of our foreign key columns
on. For example, since we only have two Job entities, the Jobld column inside the
Employees table can only have values of 1 and 2.

Now, we just need to add some code that will call this script when the application
starts up. To do so, we will first add the following method to the Program, cs file:

static void CreateDblfNotExistsflHost app)

{
using van scope = app.Services.CreateScopef);

var services = scope.ServiceProvider;
try

{
var context = services.

GetRequiredService<FactoryManagerContext>();
Dblnitializer.Initialize(context);

}
catch (Exception ex)

{
var logger = services.GetRequiredService<ILogger<Program>>();
logger.LogErrorfeXj "Failed to create the DB.");

}
}

Thm. wp will call thin method bv nansincr the ann variable to it'

. .V „XXX X.V.XX xxxxx, xxxx.xx.xxvx xxj r^ux.xO XXXV x.rr , VXXXVXXXXV. XXX XX.

CreateDblfNot Exists(app);

Now, we are ready to launch the application and see how the database gets generated.

Database Access with Entity Framework 7 ■ 125

Creating the database by running the application
We can launch our application by either executing the dotnet run command from
the console or by doing it via the IDE. Since we have not yet created a database,
we should expect to see various SQL statements being displayed in the console.
Then, when the application is up and running, we can open our SQL Server Object
Explorer and have a look at the newly created database. Figure 5.3 shows what we
should expect the data in the Jobs table to look following:

Figure 5.3: Data in the fobs table

Jobld Jobditle Compens...
1 Manager 50000.00
2 Laborer 25000.00

Figure 5.4 demonstrates what you should expect to see inside the Factories table:

Figure 5.4: Data in the Factories table

Factoryld FactoryName Location
1 Best Cookies New York

The data that we expect to see in the Employees table is shown in figure 5.5:

Figure 5.5: Data in the Employees table

Employeeld FirstName LastName DateOfBirth StartDate Jobld

1 John Smith 01/10/199... 01/09/202... 1

2 Alexander Marshall 12/09/198... 01/09/201... 2

3 Michael Davidson 11/05/1989... 01/09/201... 2

And finally, depending on what specific records we have added to the Shifts table,
its data would look similar to what is shown in figure 5.6:

Shiffld WeekDay StartTime EndTlme Factoryld Employeeld

0 1 09:00:00 17:00:00 1 1

2 2 09:00:00 17:00:00 1 1

3 3 09:00:00 17:00:00 1 1

4 4 09:00:00 17:00:00 1 1

5 5 09:00:00 17:00:00 1 1

6 1 09:00:00 17:00:00 1 2

7 2 09:00:00 17:00:00 1 2

8 3 09:00:00 17:00:00 1 2

9 4 09:00:00 17:00:00 1 2

10 5 09:00:00 17:00:00 1 2

11 1 09:00:00 17:00:00 1 3

12 2 09:00:00 17:00:00 1 3

13 3 09:00:00 17:00:00 1 3

14 4 09:00:00 17:00:00 1 3

15 5 09:00:00 17:00:00 1 3

Figure 5.6: Data in the Shifts table

126 ■ Implementing C# 11 ami .NET 7.0

This concludes the overview of the code-first approach in EF7. But you can also do
things the other way around. You can auto-create your Entity objects by reverse­
engineering an existing database. This is what we will have a look at next.

Database-first approach in EF7
EF7 CLI tools can create the entirety of Entity Framework code from an existing
database connection. The tool is not perfect, and very frequently, you would need
to refactor the auto-generated classes and remove redundant code from them. But
the resulting entity objects would usually still represent the database table with a
reasonable degree of accuracy.

Creating EF7 models from an existing database
Before we can start reverse-engineering an existing database, we need to add the
following NuGet package to the project that we want to do it in:
Microsoft.EntityFrameworkCore.Design

Then, we need to add a NuGet package representing a specific database provider
that we intend to work with. For example, to use an SQL Server provider, we would
add the following NuGet package:
Microsoft.EntityFrameworkCore.SqlServer

Then, to trigger the reverse-engineering process, you would need to execute the
following command from your project folder:
dotnet ef dbcontext scaffold cdatabase connection string> <the name of
the database provider NuGet package>

This will initiate the scaffolding process, which consists of reading the database
schema and automatically generating code based on this schema. The EF objects
that we created manually in the code-first approach, such as DB context and data
models, are created automatically.

There are some additional parameters you can apply. For example, you can use
--table parameter multiple times if you want to include only specific tables. Or
you can use - - schema parameter to include only the objects from a specific schema.
For example, if we want to reverse-engineer the SQL Server database that we have
created previously and only include the objects from the default dbo schema, we will

execute me luiiuwing Luiuiiidiiu.

dotnet ef dbcontext scaffold "Server=(localdb)\
mssqllocaldb;Database=FactoryManager;Trusted_
Connection=True;MultipleActiveResultSets=true" Microsoft.
EntityFrameworkCore.SqlServer --schema dbo

Database Access with Entity Framework 7 ■ 127

We can also improve the security of this command by retrieving the connection
string from .NET secrets instead of using an open text value. To do so, we will first
need to add a secret entry by executing the following command:
dotnet user-secrets set Connectionstrings:Default
"Server=(localdb)\mssqllocaldb;Database=FactoryManager;Trusted_
Connection=True;MultipleActiveResultSets=true"

And then, we can modify our original command by referencing the key of the secret
rather than the actual value:
dotnet ef dbcontext scaffold Name=ConnectionStrings:Default Microsoft.
EntityFrameworkCore.SqlServer --schema dbo

Now, we can create another Web application project, add the necessary NuGet
packages to it and run either of the preceding commands inside the project folder.

Looking at auto-generated code
Once we run these commands inside a new project folder, we should expect all the
entity objects to be present in it, along with the database context, as demonstrated
by figure 5.7:

* a§3 DatabaseFirstDataApp

i* <$> Connected Services

► ft? Dependencies

► aSp Properties
r> a © wwwroot

► an Pages
> a0 appsettings.json

► ac# Employee.es

> ac# Factory.cs

► ac# FactoryManagerContext.cs
> ac# Job.cs

► ac# Program.es

l> ac# Shift.cs

Figure 5.7: Auto-generated code inside a project folder

Employee.es
Program.es

128 ■ Implementing C# 11 and .NET 7.0

If we open one of the files containing the entity objects, it will look similar to what
is shown in figure 5.8:

1
2
3

U
5
6
7
8

9
10</

11
12

13

m
15
16

17
18
19
28
21

22
23
2U

Busing System;
[using System.Collections.Generic;

Bnamespace DatabaseFirstDataApp

<
0: public partial class Employee

{
h public EmployeeO

{
Shifts = new HashSet<Shift>();

}

public int Employeeld { get; set; }
public string FirstName { get; set; } = null!;

public string LastName { get; set; } = null!;
public DateTime DateOfBirth { get; set; }

public DateTime StartDate { get; set; }

public int Jobld { get; set; }

public virtual Job Job { get; set; } = null!;
public virtual ICollection<Shift> Shifts { get; set; }

}

}

Figure 5.8: Auto-generated employee entity class

As you can see, the code may need some refactoring and removal of the redundant
entries. For example, we can clearly see that we do not need either of the using
statements in the previous example. But it would still save us a lot of time, as we do
not have to write any of the entity classes manually.

This concludes the overview of the most fundamental features of Entity Framework.
Now, we will have a look at the new features that were added to EF7.

The latest features of EF7
Version 7 of Entity Framework, just like every version that was released before it,
comes with its own set of useful features. These go beyond simple bug fixes and
performance improvements.

Controlling database-first via T4 templates
T4 templates were used by various Microsoft technologies for many years. These
templates were used primarily for generating text based on specific rules. The
formatting of T4 templates allowed developers to apply a complex mixture of text
and control logic to generate documents of any complexity. Now, T4 templates can
be used for defining complex configurations for applying database-first reverse
engineering by EF7.

Database Access with Entity Framework 7 ■ 129

Not all databases are as simple as a collection of tables inside a single schema. There
are many enterprise databases that use a large number of tables, multiple schemas,
and complex business rules. Sometimes you do not want to represent them all in
your ORM code. This is when T4 templates may be especially handy.

Guarded key
By default, entity objects used by Entity Framework use int data type to represent a
primary key identity property. The property needs to have both the getter and the
setter, which may cause some problems. Even though the value inside the identity
column is meant to be immutable in the database, it is just a writeable int in the
object that represents a database record. Therefore, there is nothing that stops you
from accidentally modifying key values and getting unexpected results, such as
updating the wrong record in the database.

To protect against these situations, EF7 has added the concept of a guarded key. A
guarded key is a key wrapped in its own class. The value can be initiated via the
constructor, so Entity Framework can still extract the value from the database into
an entity object. But, once created, the value cannot be modified.

To apply a guarded key, we can make the following modification to our auto­
generated Employee entity class:

namespace DatabaseFirstDataApp

{
public partial class Employee

{
public Employee!)

{
Shifts = new HashSetcShift>();

}

public EmployeeKey Employeeld { get; set; }
public string FirstName { get; set; } = null!;

public string LastName { get; set; } = null!;
public DateTime DateOfBirth { get; set; }
public DateTime StartDate { get; set; }
public int lobld { get; set; }

public virtual lob lob { get; set; } = null!;
public virtual ICollection<Shift> Shifts { get; set; }

130 ■ Implementing C# 11 and .NET 7.0

}

public class EmployeeKey

{
public EmployeeKey(Func<int> generator) => Employeeld = generator();

public EmployeeKey(int id) => Employeeld = id;
public int Employeeld { get; private set; }

}
}

As we can see, instead of having the Employeeld property as an int, we have it as
EmployeeKey class that acts as a wrapper for a read-only int property. This class has
two constructors. One accepts int value, whereas the other one accepts a function
that returns an int value. So, it is compatible with any code that Entity Framework
might call.

Table-per-concrete-type (TPC) mapping
The predecessor of EF7, EF Core 6, had two ways of dealing with entity objects that
were inherited from one another:

• Table-per-hierarchy (TPH) mapping, where each complete inheritance
hierarchy was represented by a single table.

• Table-per-type (TPT) mapping, where any types, including abstract types,
were placed into their own individual tables that were referring to each other
by foreign key relationships.

Now, a third type of mapping has been added, table-per-concrete-type (TPC), which
creates a table based on each concrete type in the hierarchy.

To explain how different types of mappings work, let us modify our original code-
first application. Let us add a Person.cs file to the Models folder and populate it
with the following code:

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace MvcDataApp.Models;

public abstract record Person

{
public int Id { get; set; }

Database Access with Entity Framework 7 ■ 131

[StringLength(20)]
public string FirstName { get; set; }
[StringLength(20)]
public string LastName { get; set; }
public Dateline DateOfBirth { get; set; }

[NotMapped]
public string FullName => FirstName + " " + LastName;

}

We will then modify our Employee record so it inherits from this base record:

namespace MvcDataApp.Models;

public record Employee : Person

{
public Dateline StartDate { get; set; }
public int Jobld { get; set; }

public lob lob { get; set; }
public ICollection<Shift> Shifts { get; set; }

}

Then, we will add a Supervisor. cs file, which will contain a record that will inherit
from an Employee record:

namespace MvcDataApp.Models;

public record Supervisor : Employee

{
public int leamSize { get; set; }

}

Here is how different mapping types will work. If we are to use TPH, we will have a
single table in the database because we have only one inheritance hierarchy (Person
to Employee to Supervisor). If we were to use TPT, we would have three tables, one
for Person, one for Employee, and one for Supervisor. Each table will only have
those fields that correspond to the properties of the original entity class, except for
the Id column, which will be present in all tables. The tables will use this column to
link to each other. If we use the newly added TPC mapping, we will have two tables:
Supervisors and Employees. Person entity will not have a table associated with it

132 | Implementing C# 11 and .NET 7.0

because it is an abstract record. But each table will have all the fields present in the
entire inheritance hierarchy.

To demonstrate how TPC works, we will delete our existing database and modify
our FactoryManagerContext definition:

using Microsoft.EntityFrameworkCore;
using MvcDataApp.Models;

namespace MvcDataApp.Data;

public class FactoryManagerContext : DbContext
{

public FactoryManagerContext(DbContextOptions<FactoryManagerContext>
options) : base(options)

{
}

public DbSet<Employee> Employees { get; set; }
public DbSet<Supervisor> Supervisors { get; set; }
public DbSet<Factory> Factories { get; set; }
public DbSet<Job> lobs { get; set; }
public DbSet<Shift> Shifts { get; set; }

protected override void OnModelCreating(ModelBuilder modelBuilder)

{
modelBuilder.Entity<Person>().UseTpcMappingStrategy();
modelBuilder.Entity<Employee>();
modelBuilder.Entity<Supervisor>();
modelBuilder.E ntity< F actory >();
modelBuilder.Entity<Job>();
modelBuilder.Entity<Shift>();

}

}

To apply TPC, we will need to register all our entity objects, including the abstract
classes, inside an override of the OnModelCreating method. We will also need to call
I lr nT«r Mnnrci nrrCT m +nrrw aa 4-k,-. Krtr. m a 4- viifrirt-nyr

Database Access with Entity Framework 7 ■ 133

uoc i pvriappxiigj ii a icgy un me mic lilcil icgi^Lcis me ua&c type ui me iiiciaiciiy,

which in our case is Person. TPT is enabled by default, or it can be enabled explicitly
by calling the UseTptMappingStrategy method. TPH is enabled by calling the
UseTphMappingStrategy method.

Now, after deleting the original database, we can apply TPC while creating a new
database. To do so, will replace the script to insert Employee records inside the
Dblnitializer class with the following:

var employees = new Employeef]

{
new Employee

{
Id = 1,

FirstName="Alexander",
LastName="Marshall",
DateOfBirth-DateTime.Parse("1982-09-12"),
StartDate-DateTime.Parse("2017-09-01"),
lobld = 2,

h
new Employee

{
Id-3,

FirstName="Michael",
LastName-"Davidson",
DateOfBirth-DateTime.Parse("1989-05-11"),
StartDate-DateTime.Parse("2010-09-01"),
lobld = 2,

};
foreach (var e in employees)

{
context.Employees.Add(e);

}
context.SaveChanges();

Then, we will add the following script to insert a Supervisor record:
var supervisors = new Supervisor^

{

new Supervisor

134 | Implementing C# 11 and .NET 7.0

{
Id-1,

FirstName="John",
LastName="Smith",
DateOfBirth-DateTime.Parse("1992-10-01"),
StartDate=DateTime.Parse("2020-09-01"),
Jobld = 1,

b
b
foreach (var s in supervisors)
{
context.Employees.Add(s);
}

context.SaveChanges();

Now, our Employees table should look as shown in figure 5.9:

Figure 5.9: Data in Employees table

Id FirstName LastName DateOfBirth StartDate Jobld
2 Alexander Marshall 12/09/198... 01/09/201... 2
3 Michael Davidson 11/05/1989... 01/09/201... 2

Our Supervisors table should look like as shown in figure 5.10:

Id FirstName LastName DateOfBirth StartDate Jobld TeamSize
1 John Smith 01/10/199 01/09/202 1 0

Figure 5.10: Data in Supervisors table

Now, we will move on to the final notable new feature of EF7: the interceptors.

Interceptors
Interceptors are used by EF7 to apply some additional logic when a query is initiated.
Such an interceptor needs to implement the IMaterializationlnterceptor
interface from Microsoft.EntityFrameworkCore.Diagnostics namespace. We
will now add an example.

Let us create EmployeeCachingInterceptor.es file inside the Data folder of our

EmployeeCachingInterceptor.es

original project and populate it with the following content:

Database Access with Entity Framework 7 ■ 135

using Microsoft.EntityFrameworkCore.Diagnostics;
using MvcDataApp.Models;
using System.Collections.Concurrent;

namespace MvcDataApp.Data;

public class EmployeeCachinglnterceptor : IMaterializationlnterceptor

{
private static readonly ConcurrentDictionary<stringj Employee>

EmployeeCache = new();

public InterceptionResult<object> Creatinglnstancef
MaterializationlnterceptionData materializationData,
InterceptionResult<object> result)

{
if (materializationData.EntityType.ClrType == typeof(Employee))

{
var employeeName = materializationData

.GetPropertyValue<string>(nameof(Employee.FullName));
if (EmployeeCache.TryGetValuefemployeeName, out var

employee))

{
Console.WriteLine($"Got employee '{

employee.FullName}' from the cache.");
return InterceptionResult<object>

.SuppressWithResult(employee);

}
}

return result;

}
}

This interceptor uses a concurrent dictionary for caching Employee data. If a

pax iicuidi Einpiuyee return ib pwbtiu in mt uicuuiidiy, we retrieve it. vmtiwibt, we

retrieve it from the database.

136 ■ Implementing C# 11 ami .NET 7.0

Now, we need to register our interceptor. To do so, we will add the following override
of the OnConfiguring method to our FactoryManagementContext class:

protected override void OnConfiguringfDbContextOptionsBuilder
optionsBuilder)

=> optionsBuilder.Addinterceptors(new
EmployeeCachingInterceptor())j

This concludes the overview of EF7 and all of its new features.

Conclusion
In this chapter, we had an overview of relational databases. We also looked at SQL—
the language used by relational databases to interact with the data. We have also
covered various ways of how EF7 can be used. You should now be familiar with all
tlie ways you can set up your relational database and connect EF7 to it, both code-
first and database-first.

The code-first approach allows you to create a completely new database from
tire code. This approach allows a developer to focus on the code and allows tire
framework to automate the creation of data storage.

Database-first is more suited for scenarios where the ORM needs to be connected to
an existing database. EF7 has tools that can read a database schema and generate the
corresponding code abstractions.

We have also covered the latest features of EF7, such as guarded keys that hide
implementation detail of key-generating logic and prevent developers from
accidentally passing wrong keys to methods.

In the upcoming chapter, you will learn how to use ASP.NET Core, which is the main
framework for building Web applications on .NET.

Points to remember
• Relational databases are defined by tables that are linked with other tables

via the so-called foreign key relationships.

• Structured Query Language (SQL)'s purpose is to interact with relational
databases.

ASP.NET

• EF7 is the main (and the current) .NET ORM and has libraries to make it
compatible with all major relational database types.

• EF7 is both capable of generating databases from the code and generating
code from existing databases.

Database Access with Entity Framework 7 ■ 137

• Code-first approach is when you write the ORM code first and then create a
relational database from it.

• Database-first approach is when you generate ORM code from an existing
database.

Multiple choice questions
1. What is the difference between a query and a command?

a. There is no difference, and these are interchangeable
b. A query is for retrieving data, whereas a command is for manipulating

data
c. A query is for manipulating data, whereas a command is for retrieving

data
d. Queries are logged, whereas commands are not

2. What is the difference between code-first and model-first approaches on
EF7?

a. They are the same
b. There is no code-first in EF7
c. There is no model-first in EF7
d. Code-first generates a new database, whereas model-first relies on an

existing database

3. What approach do you need to apply to generate EF7 models from an
existing database?

a. Code-first
b. Model-first
c. Schema-first
d. Database-first

4. What is database normalization?

a. The process of eliminating redundant entries
b. The process of making each table contain as few columns as possible
c. All of the above
d. None of these

138 ■ Implementing C# 11 and .NET 7.0

Answers
1. b
2. c
3. d
4. c

Key terms
• RDBMS: Relational database management system.

• SQL Server: An RDBMS from Microsoft.

• Oracle Database: A commercial RDBMS from Oracle.

• MySQL: A semi-commercial lightweight RDBMS from Oracle.

• PostgreSQL: An advanced open-source RDBMS.

• SQL: Structured query language that is used for interacting with RDBMS.

• ORM: Object-relational mapper. A framework that mapped objects in the
code (for example, classes) to objects in a database (for example, tables).

• Entity Framework 7: The main .NET ORM, which is developed by Microsoft
alongside .NET itself.

• Code-first: An approach of setting up an ORM where the code is written
first, and the database is generated afterward.

• Database-first: A technique of setting up an ORM by generating code from
an existing database.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Chapter 6

Web Application
Types on

.NET

Introduction
.NET has its own Web application development framework, which is called ASP.
NET Core. Active Server Pages (ASP), and its initial version, which is now referred
as ASP Classic, consisted of semi-static files that had a mixture of HTML markup
and server-side code. Since then, an advanced version has been created and given
the name ASP.NET. In this version, developers no longer had to combine client-side
markup and server-side code in the same files. They could separate front-end and
back-end components into separate files, which allowed them to maintain a clear
separation of concerns and make the code more readable and maintainable. The new
framework also came with its own implementations of commonly used architectural
patterns, such as MVC, so developers no longer had to apply them manually.

One maior disadvantage of ASPNET was that it was onlv available on Windows.

https://discord.bpbonline.com
ASP.NET

--—-—J— — — V^J .—.—.. -/

just like the rest of the .NET Framework at the time. But it all changed in 2016 when a
cross-platform .NET Core was born. A new version of ASP.NET was created that was
deployable on any major operating system and not just Windows. This new variant
of the framework was given the name ASP.NET Core.

ASP.NET Core is a continuously evolving framework for Web application
development. In this chapter, we will cover all application templates that are
available on ASP.NET Core. While doing so, we will have a look at the latest features
that were introduced in its version 7.

140 ■ Implementing C# 11 and .NET 7.0

Structure
In this chapter, we will discuss the latest features of ASP.NET Core 7, which will
include the following topics:

• Core basicsASP.NET

• Web API on CoreASP.NET

• CoreMVConASP.NET

• Razor pages on CoreASP.NET

Objectives
By the end of this chapter, you will have learned how to use all main Web application
types of ASP.NET Core and will be familiar with the latest features that have been
added to version 7 of the framework.

Prerequisites
To follow this chapter, you will need the following:

• A machine running either Windows, MacOS, or Linux operating system

. .NET 7 SDK

• A suitable IDE or a code editor

• Being familiar with C# fundamentals

If you do not have any of these dependencies installed already, you can use the setup
instructions provided in Chapter 1: Getting Familiar with .NET 7 Application Structure,
which also provides a recap of C# fundamentals.

ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
MVConASP.NET
ASP.NET
ASP.NET

Asr.ix r1 core oasics
ASP.NET Core project templates are available in the .NET SDK by default. However,
if you are using Visual Studio 2022 and want to create ASP.NET Core projects from
the GUI, you might have to enable the Web development workload via the Visual
Studio Installer. To do so, you will need to open Visual Studio Installer, click the
Modify button next to the Visual Studio 2022 instance and select ASP.NET and Web
development workload to install, as figure 6.1 demonstrates:

Web Application Types on .NET 141

Web & Cloud (4)

@ ASP.NET and web development

Build web applications using ASP.NET Core, ASP.NET,

HTML/JavaScript, and Containers including Docker supp...
A Azure development

Azure SDKs, tools, and projects for developing cloud apps

and creating resources using .NET and .NET Framework....

Python development

Editing, debugging, Interactive development and source

control for Python.

Node.js development

'-C- Build scalable network applications using Node.js, an

asynchronous event-driven JavaScript runtime.

Desktop & Mobile (5)

©Mobile development with .NET

Build cross-platform applications for iOS, Android or

Windows using Xamarin. This includes a preview of the....

Q .NET desktop development

Build WPF, Windows Forms, and console applications

using C#, Visual Basic, and F# with .NET and .NET Frame...

Figure 6.1 : Enabling Core workload in Visual Studio InstallerASP.NET

Once the installation of all required components is completed, we can create a basic
ASP.NET Core application, and we will get to know its structure.

Basic ASP.NET Core application structure
Let us create a project by using ASP.NET Core Empty project template and call it
BasicAspNetCoreApp. If you are using .NET CLI, you can do so by executing the
following command:
dotnet new web -o BasicAspNetCoreApp

Once created, your project will have the structure as displayed in figure 6.2:
■* ©3 BasicAspNetCoreApp

» Connected Services
► ^Dependencies
a Properties

. Di L rkOzxt+ii

ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET

*iiii iduiiuioeiuiiyb.puii

^0 appsettings.json
+ 0 appsettings Development json

c« Program.es

Figure 6.2 : The fundamental structure of an Core projectASP.NET

The file called appsettings.json is the main file that holds the settings for
the application. There can also be environment-specific varieties of it, such as
appsettings.Development.json. An environment-specific file will override
the main file if the application is running on a machine that has the ASPNETCORE_
ENVIRONMENT variable set to the same value as the suffix in the file name.

142 ■ Implementing C# 11 ami .NET 7.0

There is also a Properties folder with the launchsettings, json file. This file is
primarily used in a development environment and sets the hosting rules for the
application. For example, the settings in figure 6.3 allow the application to be hosted
on IIS Express and an inbuilt Web service called Kestrel:

{
"iisSettinqs": {

"windowsAuthentication": -false,
"anonymousAuthentication": true,
“iisExpress": {

"appUcationUrl": "http://localhost:12139",
"sslPort”: 44317

}
},
"profiles”: {

"BasicAspNetCoreApp": {
"commandName": "Project",
"dotnetRunMessages": true,
"launchBrowser": true,
"appUcationUrl": 11 https://localhost: 7951; http: //localhos t; 5951",
"environmentvariables": {

"ASPNETCORE_ENVIRONMENT": "Development"
}

},
"IIS Express": {

"commandName”: "IISExpress",
"launchBrowser": true,
"environmentvariables": {

"ASPNETCORE.ENVIRONMENT": "Development"
}

}
}

}

Figure 6.3 : An example of a launchSettings.json file

If hosted on IIS Express, the application is accessible on http: //localhost: 12138
if no certificate is used and on https://localhost:44317 if an SSL certificate is
used. For a Kestrel-hosted application, the values are http: //localhost: 5051 and
https: //localhost: 7051, respectively.

Program.es
ASP.NET
http://localhost:12139
https://localhost:_7951
https://localhost:44317

To run an application with an SSL certificate on a development machine, you would
need to set the development certificate as trusted. You can do it via the IDE or via
the .NET CLI by executing the following command on either Mac OS or Windows:
dotnet dev-certs https --trust

The command will be different if you are using Linux and will depend on the specific
distro you are using.

Finally, we have aProgram.es file, which is a standard .NET application entry point.
Its content would look as follows:

var builder = WebApplication.CreateBuilder(args);
var app = builder.Build();

Web Application Types on .NET ■ 143

app.MapGet("/"j () => "Welcome to ASP.NET Core!");

app.Runf);

In this file, we have a builder variable, which allows us to configure various service
dependencies for our application. Once we have configured everything we need, we
then call the Build method on the builder variable and create the app variable from
it. This variable allows us to add various steps to the request processing middleware.
Since .NET6, we can also configure the HTTP endpoints for the application directly
on the app variable in the Program.es file. For example, we are calling MapGet to
return a specific text when the root address of our application is called.

To see how it works, we can change this text, launch the application, open the
browser, and navigate to the application URL, as defined in the launchsettings,
json file. For example, if we replace the text with Welcome to ASP.NET Core!,the
content of the file will be as follows:

var builder = WebApplication.CreateBuilder(args);
var app = builder.Buildf);

app.MapGet() => "Welcome to ASP.NET Core!");

app.Runf);

To launch an application in Kestrel, all we have to do is execute dotnet run
command from inside the application folder. Then, we can navigate to its URL in
tire browser and verify that it displays Welcome to ASP.NET Core!.

Now, we will move on to more advanced Web application templates, starting with
Web API.

aProgram.es
ASP.NET
Program.es
ASP.NET
ASP.NET
ASP.NET

Web API on ASP.NET Core
Web API application template on ASP.NET Core is designed primarily for building
applications without user interfaces. Such applications are also known as Web
services, and their purpose is to provide data to other authorized applications upon
request.

Web API onASP.NET Core primarily relies on REpresentative State Transfer (REST)
as its external interface. It is integrated with tools, such as OpenAPI (also known as
Swagger), which help visualize the application's REST endpoint in the browser.

In version 7 of ASP.NET Core, there are two kinds of Web API applications: Web API
with controllers and Minimal API application. We will have a look at them both.

ASP.NET
ASP.NET
onASP.NET
ASP.NET

144 | Implementing C# 11 and .NET 7.0

Web API with controllers
Web API with controllers relies on the so-called controller classes to define the
endpoints accessible via HTTP. To demonstrate how it works, we will create a
new application from the ASP.NET Core Web API template. If we are creating an
application via an IDE, we need to ensure that the Use Controllers option is enabled.
If you are using .NET CLI, you can create the application by using the following
command:
dotnet new webapi -o WebApiAppWithControllers

Now, we have an application that has some additional options added to the
Program.es file. For example, it has builder.Services.AddControllers() call
to add controller components, builder.Services.AddSwaggerGen() to enable
Swagger support and app.MapControllers() to add the controller classes to the
request processing pipeline and make them usable.

In fact, the template shows how a proper request processing middleware pipeline
can be constructed. Most of the methods on the app variable ensure that certain
steps are added to the pipeline in the order in which these methods are called. For
example, calling UseHttpsRedirection before UseAuthorization and calling
MapControllers afterwards ensure that the redirection to HTTPS happens first if
tire HTTP protocol was used in the original request. Then, we verify that the client
is authorized to proceed any further. Only then the client is directed to a specific
resource based on the path provided in the URL.

Let us now have a look at the WeatherForecastController.es file, which is
located inside the Controllers folder. We know that the class is an API controller
because it has ApiController attribute and inherits from ControllerBase. Since
it has [controller] set as its default route, the base path for any endpoints on this
controller will match the controller class name minus the Controller suffix. It will
be as follows:
{base URL}/WeatherForecast

To demonstrate some useful capabilities of ASP.NET Core, we will refactor this
code. We will create a service that we will then inject into the controller by using
dependency injection. This will allow us to maintain the so-called thin controller
principle, which mandates that a controller should only be processing HTTP
requests and returning responses to the clients. All business logic needs to happen
inside separate services.

We will start by adding the WeatherForecastService.es file to the project and
adding the following interface to it:

ASP.NET
Program.es
WeatherForecastController.es
ASP.NET
WeatherForecastService.es

Web Application Types on .NET ■ 145

namespace WebApiAppWithControllers;

public interface IWeatherForecastService

{
IEnumerable<WeatherForecast> GetFiveDayForecast();

}
Then; we can add the class that implements this interface to the same
file:
public class WeatherForecastService : IWeatherForecastService

{
private static readonly string[] Summaries = new[]

{
"Freezing";
"Bracing";
"Chilly";
"Cool";
"Mild";
"Warm";
"Balmy";
"HOt";
"Sweltering";
"Scorching"

};

public IEnumerable<WeatherForecast> GetFiveDayForecast()

{
return Enumerable.Range(l, 5).Select(index => new

WeatherForecast

{
Date = DateOnly.FromDateTime(DateTime.Now.AddDays(index));
TemperatureC = Random.Shared.Next(-20; 55);
Summary = Summaries[Random.Shared.Next(Summaries.Length)]

})
.ToArrayO;

}
}

146 ■ Implementing C# 11 and .NET 7.0

Essentially, we have created a separate class that performs the same work that the
controller used to do. Now, we can register this class in our dependency injection
container. To do so, we just need to add the following line to the Program.es file
anywhere before the Build method is called on the builder variable:
builder.Services.AddTransient<IWeatherForecastService,
WeatherForecastService>();

This tells the underlying framework that if any file that is not directly referenced from
thecode,suchasacontroller,hasaparameter of the type IWeatherForecastService
passed into its constructor, it will be automatically resolved to a new instance of the
WeatherForecastService class.

Since we have used AddTransient,we will have a new instance of this class per every
request. But, if we wanted to use the same instance of the WeatherForecastService
class throughout the application, we could use AddSingleton instead.

While we are in the Program.es file, we can also configure logging to output into
the console. To do so, we will add the following two lines before the Build method
is called:
builder.Logging.ClearProviders();
builder.Logging.AddConsole();

Now, we will make the changes to our controller, so it will look like the following:

using Microsoft.AspNetCore.Mvc;

namespace WebApiAppWithControllers.Controllers;

[ApiController]
[Route("[controller]")]
public class WeatherForecastController : ControllerBase

{
private readonly IWeatherForecastService -WeatherForecastService;

private readonly ILogger<WeatherForecastController> -logger;

public WeatherForecastControllerf
ILogger<WeatherForecastController> logger,
IWeatherForecastService WeatherForecastService)

{
Jogger = logger;
-WeatherForecastService = WeatherForecastService;

Program.es
Program.es

Web Application Types on .NET ■ 147

We will then add the following method, which will replace the method we had
before:

[HttpGet(Name = "GetWeatherForecast")]
public lActionResult Get()

{
_logger.Loginformation("Obtaining 5-day weather forecast.");

try

{
var forecast = __weatherForecastService.GetFiveDayForecast();
return Ok(forecast);

}
catch (Exception ex)

{
_logger.LogErrorfeX; "Error obtaining weather forecast;");
throw;

}
}

The HttpGet attribute indicates that this method is called when a client submits
a GET HTTP request. As this method does not have the path specified, it will be
triggered when the base path of the controller is used.

This method relies on the IWeatherForecastService implementation that was
injected into the constructor. But you can also apply dependency injection to the
individual methods. Version 7 of ASP.NET Core will do it implicitly. To test it, you
can add the following method:

[HttpGet("injected-service")]
public lActionResult GetFromService(
IWeatherForecastService weatherForecastService)

{
^logger.Loginformation("Obtaining 5-day weather forecast.");

try

{
var forecast = weatherForecastService.GetFiveDayForecast();
return Ok(forecast);

}

ASP.NET

148 ■ Implementing C# 11 and .NET 7.0

catch (Exception ex)

{
_logger.LogError(ex, "Error obtaining weather forecast;");
throw;

}
}

This method specifies injected-service as the path. So, the full path to trigger this
endpoint will be as follows:
{base URL}/WeatherForecast/injected-service

Now, we will have a look at another feature that was newly added to version 7
of the framework—the ability to use TryParse functionality in controller
method parameters. This functionality allows you to gracefully handle cases of
clients sending you parameters of the wrong data type. To demonstrate how this
functionality works, we will add TryParseDemoController. cs controller into the
Controllers folder and will populate it with the following content:

using Microsoft.AspNetCore.Mvc;

namespace WebApiAppWithControllers.Controllers;

[ApiController]
[Route("[controller]")]
public class TryParseDemoController : ControllerBase

{
[HttpGet(Name = "TryParselnt")]
public lActionResult Get([FromQuery] IntParser parser)

{
if (parser?.Value == null)

return NoContent();

return Ok(parser.Value);

}
}

public class IntParser

{
public int? Value { get; set; }

public static bool TryParse(int? input., out IntParser? result)

Web Application Types on .NET ■ 149

{
if (input is null)

{
result = default;
return false;

}

result = new IntParser { Value = input };
return true;

}
}

To make this functionality work, we need a custom class with a static boolean
TryParse method that returns an output parameter. This is the role of the IntParser
class. Now, if we call this endpoint via the following URL, it will return 204 response
code because there is no query string parameter supplied, and the parser will set the
Value property to null.

{base URL}/TryParseDemo

However, if we supply the query string parameter as below, we will get the
200-response code with the supplied integer value returned back to us:

{base URL}/TryParseDemo?Value=2

Now, we can launch our application and see how our newly added controller
endpoints look like in Swagger. We have all the required Swagger middleware set

150 ■ Implementing C# 11 and .NET 7.0

up in the Program. cs file already, so all we need to do is navigate to the base URL of
the application. We will expect to see a page similar to the one displayed infigure 6.4:

(S) Swagger
typtntdty SMARTBEAR

Select a definition WebApiAppWithControllers v1

WebApiAppWithControllers ® ®
https://localhost:7209/swagger/v1/swagger json

Figure 6.4: The Swagger U1

Now, we will cover another way of developing Web API applications on .NET 7—
the minimal API.

Minimal API endpoints
Minimal API is a feature that allows you to add REST API endpoints to your Web
application without controllers. This feature has only been added to ASP.NET Core
version 6 and is very similar to how REST endpoints are configured in a Node.js
application.

We briefly saw the use of minimal API when we have created our initial basic ASP.
NET Core application. It was calling the MapGet method on the app variable in the
Program, cs file. But there is also a more advanced minimal API template that you
can use. All you need to do is create an application from the Web API and then
either uncheck Use Controllers option if you are doing it from an IDE or add -minimal
parameter if you are doing it from .NET CLI. So, our full command may look as
follows:

dotnet new webapi -o WebApiAppWithMinimalApis -minimal

https://localhost:7209/swagger/v1/swagger
ASP.NET

Web Application Types on .NET ■ 151

The application it will create will have all its HTTP endpoints mapped inside the
Program.es class. In version 7 of ASP.NET Core, a whole range of new features has
been added specifically to the minimal API functionality. We will now have a look
at them.

Adding open API metadata
In the Program, cs file of the newly added project, you can locate the call to MapGet
of the app variable and insert the following statement before the semicolon at the
end of the full statement:

.WithDescription("The endpoint for retrieving weather forecasts.")

This will add the description to the Open API document, which can be displayed on
the Swagger page. Alternatively, you can add the same description by inserting the
EndpointSummary attribute into the main call, like the following:

app.MapGet("/weatherforecast"j [EndpointSummary("The endpoint for
retrieving weather forecasts.")]!) => -
Or you can locate the WithOpenApi call and modify it as follows:
.WithOpenApifoperation => {

operation.Summary = "The endpoint for retrieving weather
forecasts.

return operation;

});

Next, we will have a look at the recent improvements to how minimal API endpoints
can accept parameters.

Improvements to minimal API parameters
If you are using multiple parameters of the same data type, you can now pass all
parameters into your endpoint methods as a single array. But this only applies to
arrays of primitive types, string arrays and Stringvalues objects. This is done as
follows:

app.MapGet("/repeated-strings", (stringf] names) =>
$"value 1: {names[0]} , value 2: {names[l]}, value 3: {names[2]}");

Likewise, instead of passing individual parameters into your endpoint methods,
you can just create an object that will represent each parameter as a property and
then pass this object. This can be done as follows. First, we would add this object:

Program.es
ASP.NET

152 | Implementing C# 11 and .NET 7.0

internal struct ParamsRequest

{
public int Id { get; set; }
public int Page { get; set; }

}

Then, we can create an endpoint method that accepts this object as a set of parameters:

app.MapGetf"/parameters-object"j
([AsParameters] ParamsRequest request) =>
$"Id{request.Id}Page: {request.Page}");

It will automatically recognize this object as a set of parameters because it is marked
by AsParameters attribute.

Next, we will have a look at how to get your minimal API to return typed results.

Minimal API and typed results
Typed results allow you to return objects that have a strongly typed data payload
and various metadata fields associated with it. To enable this, your endpoint method
needs to return an implementation of the IResult interface. To demonstrate this, we
will add TypedResultsDemo. cs file with the following content:

namespace WebApiAppWithMinimalApis;

public class Data

{
public int Id { get; set; } = 1;
public string Name { get; set; } = "test";

}

public static class TypedResultsDemo

{
public static void MapTypedDataApi(this lEndpointRouteBuilder

routes)

{
routes.MapGet("/typed-data", ReturnTypedResult);

}

public static Task<IResult> ReturnTypedResultf)

{

Web Application Types on .NET ■ 153

return Task.FromResult(Results.Ok(Task.FromResult(new Data())));

}
}

We can now call the MapTypedDataApi extension method from our Program.es
class to register this endpoint. To do so, we will need to ensure that the namespace
from this newly added file is referenced by the Program.es file, like so:
using WebApiAppWithMinimalApis;

And then all we have to do is add the following line anywhere before app. Run():
app.MapTypedDataApi();

Now, if we launch our application, open its Swagger page, and make a call to the
endpoint we have just added, we can see that it has returned the JSON version of our
Data object along with several metadata fields, as demonstrated in figure 6.5:

Response body

{
"result": {

"id": 1,
"name": "test"

h
"id": 413,
"exception": null,
"status": 5,
"isCanceled": false,
"isConpleted": true,
"isConpletedSuccessfully": true,
"creationOptions": ,
"asyncState": null, CT
"isfaulted": false Download

}

Response headers

content-type: application/json; charset=utf-8
date: Thu,25 Aug 2022 14:09:29 GMT
server: Kestrel

Figure 6.5: The JSON-serialize version of the IResult implementation

We can also configure our endpoints to return multiple types of results. To
demonstrate this, we can add the following method to our TypedResultsDemo class:
public static Results<Ok<Data>, NotFound> ReturnSingeItem(int id)

{
return id == 1

? TypedResults.Ok(new Data())
: TypedResults.NotFound();

Program.es
Program.es

154 | Implementing C# 11 and .NET 7.0

And then, add the following line to the MapTypedDataApi method:

routes.MapGet("/typed-data/{id}", (int id) => ReturnSingeltem(id));

The response object returned from this endpoint will look similar to
this:

{
"result": {

"id": 1,

"name": "test"

h
"id": 686,
"exception": null,

"status": 5,
"isCanceled": false,

"isCompleted": true,

"isCompletedSuccessfully": true,

"creationOptions": 0,
"asyncState": null,
"isFaulted": false

}

Now, we will move to another new capability of minimal API: the ability to upload
files in a secure manner.

Uploading files to minimal API
Uploading a file to a server requires POST HTTP request rather than GET, so we will
need to call MapPost method instead of MapGet to add an appropriate endpoint. Our
endpoint may look like the following:

app.MapPost("/upload", async (IFormFile file) =>

{
using van stream = File.OpenWrite("test.txt");

await file.CopyToAsync(stream);

}).RequireAuthorization();

Here, we are getting the data that represents a file uploaded by the user and save it
inside the test.txt file in the same folder where our application is hosted. In a real-life
scenario, we would probably pass the data into blob storage.

Web Application Types on .NET 155

We also have a RequireAuthorization call at the end of this call. This is something
we can add to our endpoint mappings to ensure that only authorized users can
access it. We can also pass some additional options into this method to specify more
fine-grained access requirements (roles, policies, claims, and so on). But to make it
work, we need to have authentication and authorization middleware configured.

Speaking about middleware, some new features have recently been added to it,
which we will look at next.

The new in request processing middleware
Program.es allows you to configure request-processing middleware via the builder
variable and build a pipeline for it via the app variable. Now, we will examine the
latest features that have been added to the ASP.NET Core middleware.

We will start with configuring the middleware via the builder. One of the newly
added features is the ability to log custom header information in the server logs,
known as W3C logs. This can be any arbitrary data with any arbitrary keys. For
example, to log request information that contains custom keys of custom-header and
another-custom-header headers, you can add the following code:

builder. Services. AddW3CI_ogging(logging =>

{
logging.AdditionalRequestHeaders.Add("custom-header");
logging.AdditionalRequestHeaders.Add("another-custom-header");

});

You can also configure custom problem information that you can record in your
code. To do so, you will need to add the following code before builder. Build():

builder.Services.AddProblemDetails();

This will register an implementation ofthelProblemDetailsService interface. You
can then resolve it from any place inside your application and call its WriteAsync
method to record the details of the problem. This is how you can resolve this service
from IHttpContext:

var problemDetailsService =
context.Requestservices.GetService<IProblemDetailsService>();

Then, we will add the following line that will register the appropriate provider that
will allow us to decompress anv compressed reouest data:

Program.es
ASP.NET

builder.Services.AddRequestDecompression();

156 ■ Implementing C# 11 and .NET 7.0

Next, we will look at the actual middleware pipeline. The first thing we can add to
it is the ability to automatically decompress compressed request data. To do so, we
can add the following line after builder.BuiId():

app.UseRequestDecompression();

Then, we can either get or set the value of the cookie that tracks whether
the user has consented to the use of the cookie policy. This can be done via the
ConsentCookieValue property of the CookiePolicyOptions class. This is how we
can set this value in the request processing pipeline:

app.UseCookiePolicy(new CookiePolicyOptions

{
ConsentCookieValue = "yes"

});

Some request processing steps are added to the endpoint mappings. For example,
tire CacheOutput method can be added to cache the results of the request, so the call
does not have to make many round trips to the data storage or do a computationally
expensive calculation. For example, the following endpoint will only calculate the
date once. And then, if called again by the same client, it will just return the value
that has already been calculated:

app.MapGet("/cached-date", () => DateTime.UtcNow.ToStringO).
CacheOutput();

Next, there is some custom filtering that we can apply via the AddEndpointFilter
method. For example, the following code demonstrates an endpoint that restricts
access to the user with a particular name:
string GetGreetingMessage(string name) => $"User {name} is allowed to
access reource";

app.MapGet("/filter/invocation-context/{name}", GetGreetingMessage)
.AddEndpointFilter(async (routeHandlerlnvocationContext, next) =>

{
van name = (string)routeHandlerInvocationContext.Arguments[0];
if (name == "Chris Davidson")

{
return Results.Problem("Access is not allowed for Chris

Davidson!");

}
return await next(routeHandlerlnvocationContext);

});

Web Application Types on .NET ■ 157

AddEndpointFilter method can also work with the RouteHandlerContext attribute
or an implementation of the IRouteHandlerFilter interface.

This concludes an overview of the Web API and the most recent features that have
been added to it. Next, we will have a look at Web application types that have user
interfaces and start with the MVC template.

MVC on ASP.NET core
Model-View-Controller (MVC) is an architectural pattern that is specifically
designed to enable efficient data manipulation via a user interface. This characteristic
makes the MVC pattern specifically suitable for building enterprise applications.

As the name suggests, an MVC application consists of three types of components:

(1) . Model, which represents the data in the back-end

(2) . View, which represents a specific screen in the user interface

(3) . Controller, which facilitates the connectivity between Views and Models

MVC controllers are conceptually similar to Web API controllers that we looked at
earlier. But instead of merely returning some data, they are serving the views to the
browsers.

We already had a look at examples of MVC models in Chapter 5: Database access with
Entity Framework Core, and entity object, such as Employee, is a model in the MVC
context. To demonstrate the fundamentals of ASP.NET Core MVC applications, we
will just continue building upon the MvcDataApp application that we created in that
chapter.

To make the demonstration simple, we will remove any interceptors that we have
added. The easiest way to do it is to remove the OnConfiguring override from the
FactoryManagerContext class.

Next, we will make some modifications to the _Layout. cshtml file, which is located
in the Shared folder inside the Views folder. This is the file that provides the shared
layout to all views inside the application. So, it enables features such as the common
header, common navigation bar, common footer, and so on. It is written as a Razor
template, which is a combination of raw HTML markup, C#, and various keywords
and operators that glue the markup and the code together. The template executes on
the server and renders an HTML page, which is then delivered to the client.

The first thing we will do is locate the title HTML element and replace it with the
following:

<title>@ViewData["Title"] - Factory Manager</title>

ASP.NET
ASP.NET

158 ■ Implementing C# 11 and .NET 7.0

Then, we will make some changes to our navigation bar. To do so, we will locate the
ul element with the navba r - nav class attribute and will replace it with the following:

<ul class="navbar-nav flex-grow-l">
<li class-"nav-item">

< a class="nav-link text-dark" asp-area="" asp-controller="Home" asp-
action="Index">Home

<li class="nav-item">

< a class="nav-link text-dark" asp-area="" asp-controller="Home" asp-
action="Privacy">Privacy

<li class="nav-item">

< a class="nav-link text-dark" asp-area="" asp-controller="Employees"
asp-action="Index">Employees

Now, we have three items on the navigation bar: Home, Privacy, and Employees.
The asp-controller and asp-action elements indicate which controller and
which action method (that is, view) each item represents. MVC controllers have the
same naming convention as the Web API controllers we had a look at earlier. So, in
this case, the first two items refer to the HomeController class. The first item refers
to the action method called Index, whereas the second item refers to the Privacy
action method. We can examine what these action methods look like by opening
HomeController.es class inside the Controllers folder. The views are located
inside the Home folder of the Views folder. The third item refers to the Index action
method of the EmployeesController class, which we have not added yet. So, we
will now go ahead and add it.

Our EmployeesController class and corresponding views will give us the ability
to view and manage Employees data from the database we have created earlier. If
you are using Visual Studio 2022, the easiest way to add the appropriate controller
and the view is to scaffold them. To do so, you will need to right-click on your project
from the solution explorer, click New and select Scaffolded Item. In the dialog that
appears, you will need to select MVC Controller with views using Entity Framework,
as figure 6.6 demonstrates:

HomeController.es

Web Application Types on .NET ■ 159

Add New Scaffolded Item

J Installed

■< Common

API

► MVC

Razor Component

Razor Pages

Identity

Layout

MVC Controller-Empty

MVC Controller with read/write actions

MVC Controller with views, using Entity Framework

API Controller-Empty

API Controller with read/wrlte actions

API Controller with actions, using Entity Framework

API with read/write endpoints

API with read/write endpoints, using Entity Framework

Razor View-Empty

MVC Controller with views,
using Entity Framework
by Microsoft
V1.0.0.0

An MVC controller with actions
and Razor views to create, read,
update, delete, and list entities
from an Entity Framework data
context.

Id: MvcControlterWithContextScaf
folder

Razor View

Razor Component

| Add [Cancel]

Figure 6.6: Scaffolding views and controller from the EF models

Then, you will need to select the appropriate database context class
(FactoryManagerContext in our case), and the entity model (Employee), select all
options for the views, and ensure that the controller's name is EmployeesCont roller,
as demonstrated in figure 6.7:

X

Add MVC Controller with views, using Entity Framework

Model class | Employee (MvcDataApp.Models) -|

Data context class |Facton/ManaoerConfext(MvcDataAnn Data) |-f +

Views

0 Generate views

0 Reference script libraries

0 Use a layout page

(Leave empty if it is set in a Razor _viewstart file)

Controller name FmnloveesContmller I
| Add | | Cancel

Figure 6.7: Configuring the items to scaffold

160 ■ Implementing C# 11 and .NET 7.0

The scaffolding process may take a while, but once it is finished, you should see
the EmployeesControlelr.es file inside your Controllers folder of the project.
You should also see the Employees folder inside the Views folder with a bunch of
CSHTML files, as figure 6.8 demonstrates:

Controllers
► +c" EmployeesController.es
> ac« Homecontroller cs

> aD Data
> aD Models
* an Views

Employees
+0 Create.cshtml
+0 Delete.cshtml
*0 Details.cshtml
+ 0 Editcshtml
*0 Index.cshtml

Figure 6.8: Newly created controller and views

If you are not using Visual Studio 2022, we can add the controller and the views
manually. We will start by adding EmployeesControler. cs file to our Controllers
folder and populating it with the following content:

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.EntityFrameworkCore;
using MvcDataApp.Data;
using MvcDataApp.Models;

namespace MvcDataApp.Controllers;

public class EmployeesController : Controller

{
private readonly FactoryManagerContext _context;

public EmployeesControllerfFactoryManagerContext context)

{
_context = context;

}

private bool EmployeeExistsfint id)
{

EmployeesControlelr.es
EmployeesController.es

Web Application Types on .NET ■ 161

return (_context.Employees?.Any(e => e.Id == id)).
GetValueOrDefault();

}
}

Then, we will add the Index action method, which will serve us the view that lists
all the Employees entities we have in our database:

public async Task<IActionResult> Index()

{
var factoryManagerContext = _context.Employees.Include(e => e.Job);
return View(await factoryManagerContext.ToListAsync());

}

Then, we will add the Details action method, which will show us the details on any
specific Employee entity based on its Id:

public async Task<IActionResult> Detailsfint? id)

{
if (id == null || _context.Employees == null)

{
return NotFoundQ;

}

var employee = await _context.Employees
.Include(e => e.Dob)
.FirstOrDefaultAsync(m => m.Id == id);

if (employee == null)

{
return NotFound();

}

return View(employee);

}

We will also add two action methods that will give us the ability to create a new
Employee entity. One of them will be accessed by GET request and will give us the
creation form. The other will be accessed by POST request that allows us to submit
the form:

162 | Implementing C# 11 and .NET 7.0

public lActionResult Create()

{
ViewData["Jobld"] = new SelectList(_context.Jobs, "Jobld", "Jobld");

return View();

}

[HttpPost]
[ValidateAntiForgeryToken]

public async Task<IActionResult> Create(
[Bindf'StartDate,Jobld,Id,FirstName,LastName,DateOfBirth")]
Employee employee)

{
if (Modelstate.IsValid)

{
^context.Add(employee);
await ^context.SaveChangesAsync();
return RedirectToAction(nameof(Index));

}
ViewData["JobId"] =
new SelectList(_context.Jobs, "Jobld", "Jobld", employee.Jobld);

return View(employee);

}

Then, we will add GET and POST action methods to give us the ability to edit the
existing Employee entities. Please note that the action endpoints are accessible via a
GET HTTP verb by default. If we need to apply a different verb, we need to add an
attribute to the method, such as HttpPost or HttpDelete.

public async Task<IActionResult> Edit(int? id)

{
if (id == null || _context.Employees == null)

{
return NotFound();

}

van employee = await _context.Employees.FindAsync(id);
if (employee == null)

{

Web Application Types on .NET ■ 163

return NotFound();

}
ViewData["lobId"] =
new SelectList(_context.]obs, "lobld", "Jobld", employee.Jobld);

return View(employee);

}

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Edit(int id;
[Bind("StartDate,JobId,Id,FirstName,LastName,DateOfBirth")]
Employee employee)

{
if (id != employee.Id)

{
return NotFound();

}

if (Modelstate.IsValid)

{
try

{
_context.Update(employee);
await _context.SaveChangesAsync();

}
catch (DbllpdateConcurrencyException)

{
if (!EmployeeExists(employee.Id))

{
return NotFound();

}
else

{
throw;

}
}

164 | Implementing C# 11 and .NET 7.0

return RedirectToAction(nameof(Index));

}
ViewData["JobId"] =
new SelectList(_contextJobs, "lobld", "lobld", employee Jobld);

return View(employee);

}

Finally, we will add GET and POST action methods to delete an Employee entity:

public async Task<IActionResult> Delete(int? id)

{
if (id == null || _context.Employees == null)

{
return NotFound();

}

var employee = await _context.Employees
,Include(e => eJob)
.FirstOrDefaultAsync(m => m.Id == id);

if (employee == null)

{
return NotFound();

}

return View(employee);

}

[HttpPostj ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)

{
if (_context.Employees == null)

{
return Problem("Entity set 'FactoryManagerContext.Employees' is

null.");

}
var employee = await _context.Employees.FindAsync(id);
if (employee !- null)

Web Application Types on .NET ■ 165

{
_context.Employees.Remove(employee);

}

await _context.SaveChangesAsync();
return RedirectToAction(nameof(Index));

}

So now, we will need to create a Razor view for each GET action method we have
added to the controller. For this, we will create the Employees folder inside the
Views folder. The first file we will insert will be Index.cshtml, the first part of
which will look like the following:

@model IEnumerable<MvcDataApp.Models.Employee)

@{
ViewData["Title"] = "Index";

}

<hl>Index</hl>

<P>
<a asp-action="Create")Create New

</p>
<table class="table">

cthead)
<tr>

<th>
@Html.DisplayNameFor(model => model.StartDate)

</th>
<th>

(SHtml.DisplayNameFor(model => model.lob)
</th>
<th>

@Html.DisplayNameFor(model => model.FirstName)
</th>
<th>

@Html.DisplayNameFor(model => model.LastName)

166 ■ Implementing C# 11 and .NET 7.0

</th>
<th>

@Html.DisplayNameFor(model => model.DateOfBirth)
</th>
<thx/th>

</tr>
</thead>
<tbody>

Then, to construct the rows for the table, we can execute the following f oreach loop:
@foreach (var item in Model) {

<t r>
<td>

@Html.DisplayFor(modelItem => item.StartDate)
</td>
<td>

@Html.DisplayFor(modelItem => item.lob.Jobld)
</td>
<td>

@Html.DisplayFor(modelItem => item.FirstName)
</td>
<td>

@Html.DisplayFor(modelItem => item.LastName)
</td>
<td>

@Html.DisplayFor(modelItem => item.DateOfBirth)
</td>
<td>

< a asp-action-"Edit" asp-route-id-"@item.Id">Edit |
< a asp-action="Details" asp-route-id="@item.Id">Details |
< a asp-action="Delete" asp-route-id="@item.Id">Delete

</td>
</tr>

}
</tbody>

</table>

Web Application Types on .NET ■ 167

Then, we will insert Create. cshtml file, which will have the following content:

@mod e1 MvcDataAp p.Models.Employee

@{
ViewData["Title"] = "Create";

}

<hl>Create</hl>

<h4>Employee</h4>
<hr />
<div class-"row">

<div class="col-md-4">
<form asp-action="Create">

<div asp-validation-summary="ModelOnly" class="text-
danger"x/div>

<div class="form-group">
clabel asp-for="StartDate" class-"control-label"x/

labeb
cinput asp-for="StartDate" class="form-control" />
<span asp-validation-for=''StartDate" class="text-

danger"x/span>
</div>
<div class="form-group">

clabel asp-for-"lobld" class="control-label"x/label>
<select asp-for="lobld" class ="form-control" asp-

items="ViewBag.]obId"x/select>
</div>
<div class="form-group">

clabel asp-for="FirstName" class="control-label"x/
labeb

cinput asp-for-"FirstName" class-"form-control" />
<span asp-validation-for="FirstName" class="text-

danger"x/span>
</div>
cdiv class="form-group">

clabel asp-for="LastName" class="control-label"x/labeb

168 | Implementing C# 11 and .NET 7.0

cinput asp--for="LastName" class="form-control" />
<span asp-validation-for="LastName" class="text-

danger"x/span>
</div>
<div class="form-group">

clabel asp-for="DateOfBirth" class="control-label"x/
label>

cinput asp-for="DateOfBirth" class="form-control" />
<span asp-validation-for="DateOfBirth" class="text-

danger"x/span>
</div>
<div class="form-group">

cinput type="submit" value="Create" class="btn btn-
primary" />

</div>
</form>

</div>
</div>

<div>
<a asp-action="Index">Back to Listc/a>

</div>

(©section Scripts {
@{await Html.RenderPartialAsync("_ValidationScriptsPartial");}

}

Please note that the name of each of these files is the same as the name of one of the
GET action methods on the controller, plus the CSHTML extension. So, the file for the
Details action method will look like the following:

@model MvcDataApp.Models.Employee

@{
ViewData["Title"] = "Details";

}

<hl>Details</hl>

Web Application Types on .NET ■ 169

<div>
<h4>Employee</h4>
<hr />
<dl class="row">

<dt class = "col-sm-2">
@Html.DisplayNameFor(model -> model.StartDate)

</dt>
<dd class = "col-sm-10">

@Html.DisplayFor(model => model.StartDate)
</dd>
<dt class = "col-sm-2">

@Html.DisplayNameFor(model => model.Job)
</dt>
<dd class = "col-sm-10">

@Html.DisplayFor(model => model.Job.Jobld)
</dd>
<dt class = "col-sm-2">

@Html.DisplayNameFor(model => model.FirstName)
</dt>
<dd class = "col-sm-10">

@Html.DisplayFor(model => model.FirstName)
</dd>
<dt class = "col-sm-2">

@Html.DisplayNameFor(model => model.LastName)
</dt>
<dd class = "col-sm-10">

@Html.DisplayFor(model => model.LastName)
</dd>
<dt class = "col-sm-2">

@Html.DisplayNameFor(model -> model.DateOfBirth)
</dt>
<dd class = "col-sm-10">

@Html.DisplayFor(model => model.DateOfBirth)
</dd>

</dl>
</div>

170 ■ Implementing C# 11 and .NET 7.0

<div>
<a asp-action="Edit" asp-route-id="@Model?.Id">Edit |
<a asp-action="Index">Back to List

</div>

The Edit view will look like the following:

@model MvcDataApp.Models.Employee

@{
ViewData["Title"] = "Edit";

}

<hl> Edit</hl>

<h4>Employee</h4>
<hr />

Then, we will have the following form:

<div class="row">
<div class-"col-md-4">

<form asp-action-"Edit">
<div asp-validation-summary="ModelOnly" class="text-

danger"x/div>
<div class="form-group">

clabel asp-for="StartDate" class="control-label"></
labeb

cinput asp-for-"StartDate" class-"form-control" />
<span asp-validation-for-"StartDate" class="text-

danger"x/span>
</div>
<div class="form-gr’oup">

<label asp-for="lobld" class="control-label"x/label>
<select asp-for="lobld" class="form-control" asp-

items="ViewBag.JobId"x/select>
<span asp-validation-for-"lobld" class="text-danger"x/

span>
</div>
<input type="hidden" asp-for="Id" />

Web Application Types on .NET ■ 171

<div class="form-group">
clabel asp-for="FirstName" class="control-label"></

labeb
cinput asp-for="FirstName" class-"form-control" />
<span asp-validation-for="FirstName" class="text-

danger"x/span>
</div>
<div class="form-group">

clabel asp-for="LastName" class="control-label"x/labeb
cinput asp-for-"LastName" class="form-control" />
<span asp-validation-for-"LastName" class-"text-

danger"x/span>
</div>
cdiv class="form-group">

clabel asp-for="DateOfBirth" class="control-label"x/
labeb

cinput asp-for="DateOfBirth" class="form-control" />
<span asp-validation-for-"DateOfBirth" class="text-

danger"x/span>
</div>
<div class="form-group">

cinput type="submit" value="Save" class="btn btn-
primary" />

</div>
</form>

</div>
</div>
Thenj we would finish off with the following footer:
<div>

<a asp-action="Index">Back to Listc/a>
</div>

^section Scripts {
@{await Html.RenderPartialAsync("_ValidationScriptsPartial");}

}

172 | Implementing C# 11 and .NET 7.0

The Delete view will look like the following:
@model MvcDataApp.Models.Employee

@{
ViewDataf"Title"] = "Delete";

}

<hl>Delete</hl>

<h3>Are you sure you want to delete this?</h3>
<div>

<h4>Employee</h4>
<hr />
<dl class="row">

<dt class = "col-sm-2">
@Html.DisplayNameFor(model => model.StartDate)

</dt>
<dd class = "col-sm-10">

@Html.DisplayFor(model => model.StartDate)
</dd>
<dt class = "col-sm-2">

@Html.DisplayNameFor(model -> model.lob)
</dt>
<dd class = "col-sm-10">

@Html.DisplayFor(model => model.Job.Jobld)
</dd>
<dt class = "col-sm-2">

@Html.DisplayNameFor(model => model.FirstName)
</dt>
<dd class = "col-sm-10">

@Html.DisplayFor(model => model.FirstName)
</dd>
<dt class = "col-sm-2">

@Html.DisplayNameFor(model => model.LastName)
</dt>
<dd class = "col-sm-10">

Web Application Types on .NET ■ 173

@Html.DisplayFor(model -> model.LastName)
</dd>
< dt class = "col-sm-2">

@Html.DisplayNameFor(model => model.DateOfBirth)
</dt>
< dd class = "col-sm-10">

@Html.DisplayFor(model => model.DateOfBirth)
</dd>

</dl>

<form asp-action="Delete">
<input type="hidden" asp-for="Id" />
cinput type="submit" value="Delete" class="btn btn-danger" /> |
< a asp-action="Index">Back to List

</form>
</div>

A basic MVC application is now complete and is fully capable of manipulating
Employee data. To test it, we can launch the application and navigate to the
Employees tab. We should see the page shown in figure 6.9. If we click on any links,
we should be taken to an appropriate view, whether it is Edit, Details, or Delete.

MvcDataApp Home Privacy Employees

Index
Create New

StartDate Job FirstName LastName DateOfBirth

01/09/2020

00:00:00

1 John Smith 01/10/1992

00:00:00

Edit | Details I

Delete

01/09/2017

00:00:00

2 Alexander Marshall 12/09/1982

00:00:00

Edit | Details I

Delete

01/09/2010

00:00:00

2 Michael Davidson 11/05/1989

00:00:00

Edit | Details |

Delete

Figure 6.9: The Index view of the Employees controller

This concludes the overview of the ASP.NET Core MVC application template. Next,
we will have a look at the final ASP.NET Core application template that has a user

o„„„„ o,

ASP.NET
ASP.NET

HlltlldCe—JXdZUl I dgtb.

174 | Implementing C# 11 and .NET 7.0

Razor Pages on ASP.NET Core
Unlike MVC, Razor Pages applications are not specifically designed for working
with data. While they can work with data, they are more flexible than MVC, as each
page is a semi-autonomous unit that has its own back-end logic. So, while Razor
Pages allow more flexibility, they probably are not as easy to work with as MVC
when an application needs to be specifically designed for facilitating Create, Read,
Update, Delete (CRUD) operations via the user interface.

To create a Razor Pages application, we can either select the ASP.NET Core Razor
Pages template while creating a new project via the GUI or execute the following
command via the CLI:
dotnet new web -o RazorPagesApp

The structure of our project will be similar to what is displayed in figure 6.10:

' RazorPagesApp
o Connected Services
► 5 Dependencies*
> a?] Properties
► a© wwwroot
jaD Pages

► an Shared
+ i _Viewlmports.cshtml
+0 _ViewStartcshtml

► + i Error.cshtml
► + 0 Index cshtml
► + ® Privacy.cshtml

► +0 appsettings.json
► +c» Program.es

Figure 6.10: The structure of a Razor Pages project

In this project type, instead of having Models, Views, and Controllers folders, we
have a folder called Pages. Just like in the MVC template, we have some common
layout components that are located in the Shared folder inside the Pages folder. Just
like with the MVC views, the files representing pages have the CSHTML extension
and use Razor syntax. But this is where the similarities end. In Razor Pages, a
page can have the so-called code-bihind file, which has the same name as the file
representing the page but has an extra CS extension. So, for the Index, cshtml file,
tlie code-behind file is called Index, cshtml. cs.

ASP.NET
ASP.NET
Program.es

Code-behind file is a pure C# file, so you can do anything in it that you can do in
any other C# class, such as pass dependencies to it via the constructor and have any

Web Application Types on .NET 175

kind of business logic. In the context of Razor Pages, such a class that inherits from
PageModel can be fully referenced from the Razor code in the page.

When a client requests a page in a Razor Pages application, certain events get
triggered in code-behind files in a particular order. There are also some methods
that get executed by convention. These methods have the following names:
On<Pascal-case version of a HTTP verb>

So, if a GET request gets submitted to the page, the OnGet method will be triggered.
If a POST request is submitted, the OnPost method is triggered, and so on. We can
apply some additional logic to these methods. For example, if we would replace the
content of the Index.cshtml.es file with this, a session Id will be recorded as a
debug message in the logs:

using Microsoft.AspNetCore.Mvc.RazorPages;

namespace RazorPagesApp.Pages;

public class IndexModel : PageModel

{
private readonly ILogger<IndexModel> Jogger;

public IndexModel(ILogger<IndexModel> logger)

{
Jogger = logger;

}

public void OnGet()

{
Jogger. LogDebug($"Homepage requested. Session id: {HttpContext.

Session.Id}");

}
}

Please note that the implementation of the I Logger constructor parameter is
configured in the dependency injection pipeline. This object allows us to log the
information. We can register our own implementation if we need to.

x Ti-’nn

Index.cshtml.es

1 ms concludes me overview or ail Abr.iNfc 1 core templates. Let us summarize wnat
we have learned in this chapter.

176 ■ Implementing C# 11 ami .NET 7.0

Conclusion
In this chapter, we have learned all the fundamentals of ASP.NET Core. We have
covered all available project templates of ASP.NET Core: empty, MVC, Web API,
and Razor pages. We have covered the fundamental structure of ASP.NET Core
applications, such as its start-up script, which includes dependency registration and
request processing middleware. We have also covered the ASP.NET Core hosting
model and the process of hosting it in a development environment.

We had a look at MVC project templates that allow developers to build display
components separately from the back-end business logic and the database access.
We also had a look at Web API templates, which are used for building Web services
with REST API endpoints. Finally, we had a look at Razor Pages, which allows
developers to have individual back-end logic for every page.

We have also covered the new features that have been added to version 7 of ASP.
NET Core, such as improvements to the caching mechanism.

In the upcoming chapter, we will cover Blazor, which allows developers to build
compiled .NET applications that can run inside browsers.

Points to remember
• Core is the main Web application development framework

available on .NET.
ASP.NET

• Any Core will have dependency registration and chained request
processing middleware in its start-up code.

ASP.NET

• Core comes with four main project templates by default: empty,
MVC, Web API, and Razor Pages.
ASP.NET

• Empty project template provides just the most bare-bone plumbing for
Web application development, allowing the developers to add only those
components that they would strictly need.

• MVC template uses Model-View-Controller architectural pattern.

• Web API template is primarily designed for building REST APIs.

• Razor Pages template comprises of Web page templates, each of which may

ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET

also have the so-called code-behind file associated with it.

W(’l) Application Types on .NET ■ 177

Multiple choice questions
1. What is the difference between controllers in Web API and controllers in

MVC?
a. There is no difference, and they are fully equivalent
b. MVC controllers are designed for serving views, while Web API

controllers will only return data
c. There are no controllers in Web API
d. Web API controllers can return data, whereas MVC controllers cannot

2. What is Razor in the context of razor pages?
a. A language that can be used in the back-end of the application instead

ofC#
b. The name of the dependency injection framework used by Razor

pages
c. A language that is designed for writing front-end templates
d. It is just an arbitrary name of the application template

3. What is the Services property of the builder object is used for in the ASP.
NET Core start-up script?

a. To register required services, that is, objects that other objects depend
on

b. To provide the request processing middleware

c. To connect the application to any external Web services
d. To initiate background tasks

4. What is the request processing middleware of Core is used for?ASP.NET
a. To enforce authentication
b. To enforce authorization
c. To provide a chain of processing steps that the request must go

through before reaching its intended target

ASP.NET

d. All of the above

178 ■ Implementing C# 11 and .NET 7.0

Answers
1. b
2. c
3. a
4. d

Key terms
• Core: The main Web application development framework on .NET.ASP.NET

• Model-View-Controller (MVC): An architectural pattern where Views are
responsible for display logic, Models are responsible for business logic and
back-end data manipulation, and Controllers are responsible for bringing
these types of components together.

• Representational state transfer (REST): A type of Web services interface that
allows the client applications to exchange data with Web services, typically
by using JSON.

• Web API: An Core application template designed for building Web
services with REST API.

ASP.NET

• Minimal APE A type of Web API application development practice that does
not use Controller classes.

• Razor pages: An Core application template that allows developers
to build individual Web page templates with individual back-end logic.

ASP.NET

• Dependency injection: The process of registering required services (such as
classes) when the application starts up.

• Request processing middleware: A configurable chain of processing steps
applied to an incoming request in a specific order before it can reach its
intended target.

Join our book's Discord space

ASP.NET
ASP.NET
ASP.NET

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Chapter 7

Blazor and
Web Assembly on

.NET

Introduction
Not very long ago, the only way to run a compiled high-performance application in
your browser was to install a special plugin. Even then, the plugin would only be
compatible with a specific application type. For instance, you needed a Java plugin
to run Java applications, an Adobe Flash plugin to run Flash applications, and
Microsoft Silverlight to run .NET Framework applications. The only other option
was to run JavaScript code, which is interpreted rather than compiled, so it cannot
reach the level of compiled code in terms of performance.

But it all changed with the introduction of Web Assembly, which became a standard
feature of all browsers. WebAssembly is a binary instruction format for compiled
applications. Essentially, just like with the standard Assembly language, the source
rndp o-pJ-q rnmnilpd intn thic fnrmal- alnoarl n£ timp Rptsiiqp tlnp annliratinn rnneiefe

https://discord.bpbonline.com

LVUV £jVLLJ WlJLLp'JLlWL 11LLV LI LIO AVillLLLL U1LVUVL V71 L111LV. VVLUUJV LI LV U.p'p'llVU. L1U1L VU1LJ1JLJ

of low-level instructions, it is faster to execute than JavaScript, which is stored in its
textual form and gets interpreted into executable instructions as it is being read.

.NET has its own implementation of WebAssembly called Blazor. This allows
developers to write in-browser applications in C#. So, while having the ability to
build high-performance applications for browsers, .NET developers can also do
full-stack development without having to learn JavaScript and its countless modern
frameworks.

180 ■ Implementing C# 11 and .NET 7.0

But Blazor is bigger than just a technology that facilitates the process of turning .NET
code into WebAssembly. It also provides an easy way of hosting your WebAssembly
apps inside the standard ASP.NET Core applications. There is also a variety of
Blazor known as Blazor Server. If you choose to use it, your code will be identical
to Blazor WebAssembly code. But the compiler will do something different with it.
Your compiled code will be running on the server, but the browser and the server
will be communicating with each other in real-time, so the elements on the page will
instantly react to the events happening on the server. And the code on the server can
be instantly triggered by events in the browser.

In this chapter, we will cover all these concepts. We will also highlight the new Blazor
features that were added in .NET 7.

Structure
In this chapter, we will discuss the latest features of Blazor on ASP.NET Core 7 and
cover the following topics:

• Introducing Blazor

• Blazor WebAssembly overview

• Hosting Blazor WebAssembly in CoreASP.NET

• Setting up Blazor Server

Objectives
By the end of this chapter, you will have learned how to use .NET Blazor in all its form.
You will be familiar with building stand-alone Blazor WebAssembly applications.
You will also learn how to host a Blazor WebAssembly application inside a standard
ASP.NET Core application. You will know how and when to use Blazor Server and
will be familiar with the most recent features of Blazor.

ASP.NET
ASP.NET
ASP.NET
ASP.NET

Prerequisites
To follow this chapter, you will need the following:

• A machine running either Windows, MacOS, or Linux OS

• .NET 7 SDK

• A suitable IDE or a code editor

• Being familiar with C# fundamentals

Blazor and WebAssembly on .NET 181

If you do not have any of the preceding listed dependencies installed already, refer
to the setup instruction provided in Chapter 1: Getting Familiar with .NET 7 Application
Structure, which also provides a recap of C# fundamentals.

Introducing Blazor
Blazor comes in two flavors—Blazor WebAssembly and Blazor Server. Each has
its own distinct project template and compiles differently. While Blazor Server is
nothing more than a server-hosted ASP.NET Core Web application with some
additional libraries, Blazor WebAssembly compiles into an executable that is hosted
entirely in a browser.

But, despite the differences in the application structure, both flavors of Blazor share
exactly the same syntax in its modules, which are referred as Razor Components.
These are not to be confused with Razor Pages. Both are used to generate HTML
that gets then rendered in the browser. But while Razor Pages have .cshtml file
extension, the extension of Razor Components is .razor. Also, even though both
types of modules work with Razor syntax, there are some keywords that only work
in Razor Components and do not work in Razor Pages. The reverse is also true for
some other keywords. For example, the @code keyword is only applicable to Razor
Components, whereas the @model keyword is only applicable to Razor Pages.

Razor Components refer to other Razor Components in a similar manner as how
HTML elements are referenced. There are opening and closing tags, and you can put
some further content inside the elements like you can do with HTML and XML. You
can also use properties of elements in a similar manner to HTML attributes. But the
naming conventions are different. If you would normally use lowercase letters to
write HTML elements, Razor Components use PascalCase, that is, every word starting
with a capital letter while all other letters remain the same. For example, if there was
a Razor Component called Counter and it had a property called IncrementBy, then
it would be referenced inside other Razor Components as follows:
<Counter IncrementBy="5" />

ASP.NET

Let us now have a look at some examples of Razor components to see how they are
structured.

Razor component example
When you create a new application project from either Blazor Web Assembly or Blazor
Server template, it will have some Razor components already present as examples.
Both projects will have Counter. razor file inside the Pages folder, which will have
tire following content:

182 | Implementing C# 11 and .NET 7.0

@page "/counter"

<PageTitle>Counter</PageTitle>

<hl>Counter</hl>

<p role-"status">Current count: @currentCount</p>

cbutton class="btn btn-primary" @onclick="IncrementCount">Click me</
button>

@code {
private int currentcount = 0;

private void IncrementCountf)

{
currentCount++;

}
}

Let us break it down.

©page
The first thing that we have is the @page directive. This directive represents the path
that the component is reachable on by default. So, in this case, if you would type the
base application URL followed by the / counter path, your browser will take you to
this component.

Next, we have a reference to the PageTitle Razor component with its inner content
set to Counter. We can tell that it is a Razor component based on the fact that it looks
similar to an HTML/XML element while it has a name in PascalCase.

Next, we have a paragraph element that has part of its text bound to tlie
currentcount field. If we have a look inside the @code directive further down,
there is a private integer field with this name. Please note that the markup in a Razor
Component has full access to private members of its code. So, whenever the value
of the currentcount will be changed in the code, the content inside the paragraph
element will be updated too.

Blazor and WebAssembly on .NET ■ 183

@onclick
Next, we have a button with the @onclick event handler. As before, we can tell that
this is a Razor event handler because it starts with the (3 symbol. This event handler
refers to the Incrementcount method inside the @code directive. When this button
is clicked, the method is triggered.

@code
Finally, we have the @code directive, which represents the C# code that we can
trigger from our markup. If we had any members with public access modifier and
[Parameter] attribute, then we could access those members from other Razor
components. However, we can also access this code from our normal C# code. Each
Razor component is represented as a class that inherits from ComponentBase from
Microsoft.AspNetCore.Components namespace. The class will have the same
name as the file. In this case, since the file is called Counter.razor, the class will
be accessible as Counter. Inside other Razor components, you can reference it as
cCounter />.

A Razor Component does not represent the entire page. Just like Razor Pages and
MVC views, it is wrapped in a shared layout. It is the layout that has all the remaining
page elements, such as HTML headers and navigation menu. However, the format
of the layouts is different depending on whether you are using Blazor Web Assembly
or Blazor Server project template. We will go over both variants later in the chapter.
For now, let us go through all keywords that are used in Razor components.

Razor keywords in Razor components
We already covered (alpage, @onclick, and @code directives. We also had a look at
how a single @ character can reference something inside plain C# code. So let us have
a look at some other keywords you can use inside Razor components.

©using
In the context of Razor components, this keyword is used for inserting namespaces
into the @code block in the same manner as using keyword is used for inserting
namespace references into C# classes. The statements with this directive go just
under the @page directive. Here is an example of such a statement:

fusing HostedBlazorWasmDemo.Client.Models;

©implements
This directive is used if you want your Razor component to implement an interface.
For example, you will use this directive as follows if you want to implement an

184 | Implementing C# 11 and .NET 7.0

IDisposable interface:
^implements IDisposable

©inherits
You can use this directive if you want to inherit your Razor component from a
specific C# class. This is how it can be applied:
(©inherits SomeBaseClass

©inject
This directive is used for adding any dependencies into a Razor component that is
registered in Program. cs file when the application starts up. The following example
injects a NavigationManager instance into the component:
(©inject NavigationManager

©layout
This directive specifies a layout component that can be applied to the Razor
component. Even though there is an application-wide layout typically configured,
this directive allows to apply a specific set of reusable elements to a specific Razor
component. This is how this directive is used on top of a Razor component:
^layout CustomLayout

©namespace
This directive allows us to override the default namespace of a Razor component
(which corresponds to the project folder structure) and set a specific namespace for
it. This is how it can be used:
^namespace SomeNamespace

©preservewhitespace
By default, Blazor trims unnecessary whitespaces from the HTML markup to
increase the performance. However, if whitespaces need to be preserved, this is how
it can be achieved:
(Spreservewhitespace true

©attributes
This directive allows the dynamic insertion of any arbitrary HTML attributes into
an HTML element from a C# dictionary. For example, we may have the following

element:

Blazor and WebAssembly on .NET ■ 185

cinput id="mainText" @attributes-"Attributes" />

We can have a dictionary field that looks similar to the following:

private Dictionarycstring, object> Attributes { get; set; } =
new()

{
{ "maxlength", "10" },
{ "placeholder", "Default value" },
{ "required", "required" },
{ "class", "green-textbox" }

};

©bind
This keyword allows you to bind an HTML element to a variable from C# code. If
you apply it, changing the input value will change the value of the variable and vice
versa. For example, if you have a string variable called name, you can bind it to an
input element as follows:
<input @bind="name" />

@ref
This directive is used when you want to send commands to a specific reference of
another Razor component. To use it, you will need to use the target Razor component
as a variable in your code and then use the name of the variable with the keyword
in your markup.

For example, if you had a Razor Component called Childcomponent, you could
declare it as a private field inside your @code directive as follows:
private Referencechild? child;

Then, declare it in the markup to make sure that you refer to this specific field rather
titan a new instance of this component:
<ReferenceChild @ref="child" />

©typeparam
This directive allows you to use generics inside your Razor components. This is an
example of its usage:
@typeparam TEntity where TEntity : class

186 ■ Implementing C# 11 and .NET 7.0

This concludes the basic overview of features that are applicable to both Blazor
Web Assembly and Blazor Server. Now, we will have a look at the process of setting
up a Blazor Web Assembly project.

Blazor Web Assembly overview
We can create a new Blazor WebAssembly project either from the corresponding
template in the IDE or by running the following command, which will create a
project with the name of BlazorWasmDemo:
dotnet new blazorwasm -o BlazorWasmDemo

WASM is a commonly used abbreviation for WebAssembly. So, this is why we used
it in the proceeding command.

Once the project is created, let us have a look at its structure. The first thing that
we will look at is the topmost layout, which is provided by the index.html file
inside the wwwroot folder. This plain HTML file provides the structure to the Blazor
WebAssembly application; it is used as an outer shell by all Blazor Components.
This is where HTML headers are defined, along with any placeholder elements,
additional scripts, and style references.

A noteworthy script reference is a reference to the _framework/blazor.
webassembly, js file. This file provides all JavaScript that is needed for rendering
client-side Razor Components and providing interop functionality between them
and plain JavaScript. Therefore, if you need to add any JavaScript that is meant to
work alongside Blazor, you will need to add this code (or a reference to a JS file) after
this scrip file reference.

Next, we have _Imports.razor file in the root of the project folder. This file is
needed for listing any namespaces that we want to make available for import into
Razor Components.

Then, there is App.razor file, which acts as the root element of the Blazor
application itself. This is the file which determines what layout file is used and
what to display if the path specified in the browser does not match with any Razor
Component. Additionally, this is the file where you would add custom logic for
other error responses, such as the user not being authorized. This file is registered
inside Program.es file and is inserted into an appropriate HTML element on the
following line:
builder.Rootcomponents.Add<App>("#app");

By default, this will be an element where the id attribute is set to the app inside the
index.html file.

By default, the App. razor file points at the MainLayout as the layout component.
This layout can be found in the MainLayour. razor file inside the Shared folder. This

Program.es

Blazor and WebAssembly on .NET ■ 187

will be the default layout Razor components will use unless it is overwritten with
the ^layout directive. The layout has some top-level HTML and Razor elements.
The content of the Razor component that we navigate to will be replace the @Body
directive in the layout.

Then, we have the individual Razor components. These are placed inside the
Pages folder and have a Razor extension. Other than that, the entrypoint into the
compiled part of a Blazor Web Assembly app is Program, cs, just like in most .NET
application types.

This concludes the overview of the basic Blazor WebAssembly project structure.
So far, we have covered scenarios where both the markup and the code are placed
in the same file. But when you have a complex markup and complex code, this
arrangement does not necessarily ensure the best readability. So, Blazor allows you
to split the markup and the code into separate files. This is known as code-behind
approach. This is what we will have a look at next.

Using code-behind approach
If you want to move the C# code from the Razor file into a separate file, you will need
to create the file with the same name as your Razor file but give it an additional CS
extension. To demonstrate this, we will split the content of the FetchData. razor file
into two separate files. To do so, we will create FetchData.razor.es file alongside
our original FetchData. razor file and will populate it with the following content:

using Microsoft.AspNetCore.Components;
using System.Net.Http.Ison;

namespace BlazorWasmDemo.Pages;

public class FetchDataBase : ComponentBase

{
[Inject] HttpClient Http { get; set; }

protected WeatherForecastf]? forecasts;

protected override async Task OnlnitializedAsync()

{
forecasts =

await Http.GetFromlsonAsync<WeatherForecast[]>
("sample-data/weather.json");

FetchData.razor.es
http://Http.Ison

188 | Implementing C# 11 and .NET 7.0

}

public class WeatherForecast

{
public DateOnly Date { get; set; }

public int TemperatureC { get; set; }

public string? Summary { get; set; }

public int TemperatureF => 32 + (int)(TemperatureC / 0.5556);

}
}

We are inheriting from ComponentBase class because every Razor component
must inherit from ComponentBase. Please note that we have also called our class
FetchDataBase, which is different from our original FetchData component.
This is because Blazor would still treat these two files as two separate classes. The
implementation of code-behind functionality is performed via inheritance. This
is also why we have changed the access modifier on all members from private to
protected.

Please note the field with the [Inject] attribute. This attribute is used for injecting
services into code-behind files of Razor components instead of using the constructor
injection. This attribute is equivalent to using ^inject in Razor components.

In this class, we are loading some data from the weather. j son file that can be found
in the sample-data folder when the component is initiated. The content of the file
is as follows:

{
"date": "2022-01-06",
"temperatureC": 1,
"summary": "Freezing"

},
{

"date": "2022-01-07",
"temperatureC": 14,
"summary": "Bracing"

Blazor and WebAssembly on .NET ■ 189

h
{

"date": "2022-01-08",
"temperatureC": -13,
"summary": "Freezing"

L
{

"date": "2022-01-09",
"temperatureC": -16,
"summary": "Balmy"

h
{

"date": "2022-01-10",
"temperatureC": -2,
"summary": "Chilly"

}

Now, we will replace the content of the FetchData. razor file with the following:

@page "/fetchdata"
@inherits FetchDataBase

<PageTitle>Weather forecast</PageTitle>

<hl>Weather forecast</hl>

<p>This component demonstrates fetching data from the server.</p>

@if (forecasts == null)

{
<pxem>Loading.. .</emx/p>

}
else

{
<table class="table">

<thead>

190 ■ Implementing C# 11 and .NET 7.0

<tr>
<th>Date</th>
<th>Temp. (C)</th>
<th>Temp. (F)</th>
<th>Summary</th>

</tr>
</thead>
<tbody>

(Sforeach (var forecast in forecasts)

<tr>
<td>@forecast.Date.ToShortDateString()</td>
<td>@forecast.TemperatureC</td>
<td>@forecast.TemperatureF</td>
<td>@forecast.Summary</td>

</tr>

}
</tbody>

</table>

As we can see, the entire (alcode section has been removed. And the file now inherits
from the FetchDataBase class. Otherwise, it is functionally identical to what it was
before.

Another interesting feature of Blazor is its ability to interoperate with JavaScript on
your Web page, which we will have a look at next.

JavaScript Interop
JavaScript interop functionality in Blazor allows both the C# code to call JavaScript
methods and the JavaScript code to call C# methods. Let us demonstrate how it
works. First, we will add the following script element to the index.html file from
the wwwroot folder anywhere below the reference to the Blazor JavaScript library:
cscript>
window.displayAlert =()=>{

aiert(counter successfully increasedj;

}
</script>

Blazor and WebAssembh/ on .NET ■ 191

Please note that the displayAlert method is added to the scope of the window.
This is the scope Blazor works with. Otherwise, the method would be unreachable
to Blazor code.

Then, we will open the Counter.razor file in the Pages folder and will replace its
content with the following:

@page "/counter"
^inject IJSRuntime IS

<PageTitle>Counter</PageTitle>

<hl>Counter</hl>

<p role="status">Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</
button>

(Scode {
private int currentcount = 0;

private async Task IncrementCount()

{
currentCount++;

await IS.InvokeVoidAsync("displayAlert");

}
}

To make the JavaScript interop work, we have injected an USRuntime object, which
is registered automatically alongside all other Blazor dependencies. This service
allows us to call any suitable JavaScript method. In our case, we are calling the
displayAlert method via InvokeVoidAsync because it does not return any value.
However, if we wanted to extract a value from a JavaScript method, we would use
InvokeAsync instead. Also, if the JavaScript method accepts any parameters, we
would pass them after the method name. For example, if we had a method called

getFullName that accepted two string parameters and returned a string, we would
call it in the following manner:

192 ■ Implementing C# 11 ami .NET 7.0

var FullName = await JS.InvokeAsync<string>("getFullName", "John",
"Smith");

To call a C# method from JavaScript, the method must be a public static task with
[JSInvokable] attribute. Then, to invoke this method from JavaScript, you will
need to use DotNet object, which is available in the Blazor JavaScript library. The call
needs to be constructed as follows:
DotNet.invokeMethodAsyncf{Namespace Name}', '{.NET Method Name}',
{parameters});

Next, we will have a look at how to pass parameters from a Razor component to its
child components.

Passing parameters to Razor components
To pass parameters from one Razor Component to its child component, the
type representing the child component needs to be public and marked with the
[Parameter] attribute. For example, we can change the increment logic in our
Counter component. Instead of getting it to increment by one, we can make it
increase by a custom number when the button is clicked. To do so, we have modified
the content of the component by adding the IncrementBy property to it, which is
marked with the [Parameter] attribute:

<PageTitle>Counter</PageTitle>

<hl>Counter</hl>

<p role="status">Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</
button>

@code {
private int currentcount = 0;

private async Task IncrementCountf)
r

currentcount += IncrementBy;

await DS.InvokeVoidAsync("displayAlert");

}

Blazor and WebAssembly on .NET ■ 193

[Parameter]
public int IncrementBy { get; set; } = 1;

}

Now, all we need to do is just set the value of this property the same way we set
attribute values in HTML. To demonstrate this, we will change the content of our
Index, razor file to the following:

@page

<Counter IncrementBy="5" />

Now, if we launch our application, the Counter component will be displayed on the
homepage. And if we click the button, the number will increase by one.

So far, we have only looked at the examples that used the default compilation
mechanism for Blazor Web Assembly: compilation into .NET Intermediate Language
(IL), which uses just-in-time (JIT) compilation into the machine instructions when
the code is run. So, when the application runs, every piece of its logic is interpreted
into low-level machine instruction as it is being read.

But there is also another compilation mechanism that can be used in Blazor
Web Assembly: Ahead-of-Time (AoT) compilation, which we will look at next.

Ahead-of-time compilation
Ahead-of-time compilation ensures that the application is pre-compiled into a set
of hardware-specific instructions. So, there is no intermediate language and no per-
instruction interpretation. The hardware already understands how to run everything
inside the executable directly.

Because there is no intermediate interpretation step, the execution of such an
application is quicker. However, there is also a downside. The process of preparing
the executable for specific hardware will make the file larger. Hence, the initial
download of the file will be longer.

To prepare your development environment, you will need to install wasm-tools
workload, which can be done by executing the following command in the terminal:

dotnet workload install wasm-tools

Next, we will need to add the following section to the . cspro j file:
<PropertyGroup>

<RunAOTCompilation>true</RunAOTCompilation>
</PropertyGroup>

194 | Implementing C# 11 and .NET 7.0

Since AoT compilation creates a self-contained executable that no longer relies on
any external .NET dependencies, you cannot run it in Debug mode. Therefore, to
compile your project into an executable, you will need to publish it in Release mode.
This can be done by executing the following command from the project folder:
dotnet publish -c Release

Next, we will briefly cover an alternative Blazor Web Assembly project template that
you can use.

Empty Blazor Web Assembly template
If you use the default Blazor WebAssembly project template, it will give you all
the dependencies and examples that you need. But then you will have to remove
all the default Razor Components because they have been intended purely for
demonstration purposes and do not provide any useful functionality.

But, if you are already familiar with Blazor, you can just initiate an empty Blazor
project that does not have any of these demo components. The template is called
blazorwasm-empty and can be applied to a new project by executing the following
command:
dotnet new blazorwasm-empty -o EmptyBlazorWasm

Once created, the project will have fewer files than the original Blazor WebAssembly
project. The difference is demonstrated in figure 7.1:

' *5 BlazorWasmDemo
> <?> Connected Services
> ^Dependencies
► a^i Properties
H@wwwroot
'an Pages

* 0 Counter.razor
* 0 FetchDatarazor
* 0 Indeirazor

^an Shared
> 0 MainLayoutrazor*
> 0 NavMenu.razor*

* 0 SurveyPromptrazor
* 0 Jmports.razor

' EmptyBlazorWasm
► <?> Connected Services
> Dependencies
' a$ Properties

* 0 launchSettings.json
► a® wwwroot
'an Pages

* 0 Indeirazor
+ 0 Jmports.razor
+ 0 App.razor
+ 0 MainLayoutrazor

► *c# Program.es

Program.es

+ H App.razor
> *c “ Program.es

Figure 7.1: The difference between the default Blazor Web Assembly project and an empty project

So far, we have covered Blazor WebAssembly as a stand-alone, self-contained
application. But we can also host it inside an ASP.NET Core application and make it
load automatically as one of its views.

Blazor and WebAssembly on .NET ■ 195

Hosting Blazor WebAssembly in ASP.NET
Core
It is possible to create a Blazor WebAssembly project that will be hosted in an
ASP.NET Core application. All you have to do is select such an option while
creating a project from this template. Or you can specify - -hosted flag to the CLI
command. For example, to create a hosted Blazor WebAssembly application called
HostedBlazorWasmDemo, we can execute the following command:

dotnet new blazorwasm -o HostedBlazorWasmDemo --hosted

This command will create a solution called HostedBlazorWasmDemo. There will be
three project folders placed inside these folders: Client, Server, and Shared:

• Client is our Blazor WebAssembly application.

• Sever is the Core application that hosts WebAssembly.ASP.NET

• Shared is a class library that contains components used by both applications.

When a Blazor WebAssembly is hosted by ASP.NET Core, it is the ASP.NET Core
project that you will need to bring up to see the entire setup in action. You will no
longer need to run the Blazor application on its own. So, in our specific case, it is the
project inside the Server folder that needs to be run to bring up both tire server and
the WebAssembly.

We can also add a hosted Blazor WebAssembly application to an existing ASP.NET
Core application. We can have a look at our project structure to find out how to do it.

Adding a hosier Blazor WebAssembly to an
existing ASP.NET core application
To host a Blazor WebAssembly application, you need to have the following NuGet
package installed in your ASP.NET Core application:

Microsoft.AspNetCore.Components.WebAssembly.Server

Program.es
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET

Then, you will need to reference the Blazor WebAssembly project from tire ASP.
NET Core application to ensure that the WebAssembly is available before the server
application is ready. For example, our HostedBlazorWasmDemo.Server.csproj
file has a reference to HostedBlazorWasmDemo.Client project.

Then, you will need to enable WebAssembly hosting by adding the following line to
the Program.es file of the ASP.NET Core project:

app.UseBlazorFrameworkFiles();

196 ■ Implementing C# 11 and .NET 7.0

Then, if you do not have any default index page configured in your server application,
Blazor WeBAssembly will take over and will be your index page. Otherwise, if the
Blazor application is not meant to be on the homepage, you will need to add a
. eshtml file for the Razor Page or the MVC view that you want to host your Blazor
application in and add the following content to it:

fusing { name of the Blazor application namespace that hosts the
component that you need };

•(component type="typeof({ name of the Razor Component you want to host
})"

render-mode-"WebAssemblyPrerendered" />
(script src="_framework/blazor.webassembly.js"x/script>

This concludes the basic overview of hosting a Blazor application inside an ASP.
NET Core project. Since such a setup uses both the client-side and the server­
side components, now is an appropriate time to talk about Blazor forms and their
validation.

Form validation in Blazor
In Blazor, you can use forms to post editable data to the server, just like you can
do so in standard HTML pages. The data can also be validated with validation
attributes, which are custom classes that can perform any validation logic. These
classes inherit from ValidationAttribute class of the System.ComponentModel.
DataAnnotations namespace. Since .NET 7, you can also pass services into these
classes from dependency injection.

Let us create a MaxIncrementValidator.es file inside our Client project folder
and populate it with the following content:

using System.ComponentModel.DataAnnotations;

namespace HostedBlazorWasmDemo.Client;

Program.es
ASP.NET
MaxIncrementValidator.es

public class MaxIncrementValidator : ValidationAttribute
{

protected override ValidationResult? IsValid(object? value;
Validationcontext validationcontext)

{
var paramValuesConfig = validationcontext.

GetRequiredService<ParamValuesConfig>();

if ((int)value > paramValuesConfig.MaxIncrementValue)
return new ValidationResult($"Values greater than

Blazor and WebAssembly on .NET 197

{paramValuesConfig.MaxIncrementValue
} are not allowed!"; new[] { validationcontext.

MemberName });

return ValidationResult.Success;

}
}

public class ParamValuesConfig

{
public int MaxIncrementValue { get; set; } = 5;

}

In this class, we are checking that an integer value is not greater than a specific
amount. The amount we compare it against is extracted from an instance of the
ParamValuesConfig service and is 5 by default. We resolve this service via the
Validationcontext parameter. To register this service, we just need to add the
following line to the Program.es file:

builder.Services.AddScoped<ParamValuesConfig>();

Next, we will need to add a model to our form so we can then apply this attribute
to. In our example, we will create a Models folder inside the project and add
CounterModel. cs file to it with the following content:

namespace HostedBlazorWasmDemo.Client.Models;

public class CounterModel

{
[MaxIncrementValidator]
public int IncrementBy { get; set; } = 1;

Program.es

As you can see, we have an integer field called IncrementBy. This is the field to
which we are applying the attribute.

Next, we will replace the content of the Counter. razor file with the following:

(alpage "/counter"
fusing HostedBlazorWasmDemo.Client.Models;

<PageTitle>Counter</PageTitle>

198 ■ Implementing C# 11 ami .NET 7.0

<hl>Counter</hl>

<p role="status">Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</
button>

<EditForm Model-"@counterModel" >
<DataAnnotationsValidator />
<ValidationSummary />
clabel for="incrementBy">Increment by:</label>
<InputNumber id="incrementBy" @bind-Value="counterModel.IncrementBy"

/>
</EditForm>

In here, we have Edit Form Razor component, which represents a Blazor form. Inside
of it, we have DataAnnotationsValidator and Validationsummary components,
which provide the ability to validate the form and display the validation error. There
is an InputNumber Razor component, which we are binding to the IncrementBy
field of the CounterModel instance.

Now, we will need to make some changes to our @code block. It will need to look as
follows:

@code {

private CounterModel counterModel = new();

private int currentcount = 0;

private async Task IncrementCountf)
{

currentcount += counterModel.IncrementBy;
}

}

Now, if we build and launch our Server project and navigate to the Counter page,
we can test our validation logic. If we enter any number into the IncrementBy field
higher than 5, we should see a validation error, as shown m figure 7.2:

Blazor and WebAssembly on .NET ■ 199

Counter
Current count 18

Click me

• Values greeted than 5 are not allowed!

Increment by: 6

Figure 7.2: Validation error on Blazor form

This concludes the overview of form validation in Blazor. Now, we will have a look
at its navigation functionality and the ability to pass state from one Razor component
to the next.

NavigationManager and passing state between
pages
Blazor comes with NavigationManager class, which allows to navigate from one
page to another. As of .NET version 7, you can also use it to pass information between
the pages.

To demonstrate it, we have replaced the content of the Index, razor component
with the following:

(alpage "/

@inject NavigationManager NavigationManager

<button class="btn bin-primary" @onclick="NavigateToCounterComponent">
Go to Counter

</button>

@code {

private void NavigateToCounterComponent()

{
NavigationManager.NavigateTof"counter",

new Navigationoptions

200 ■ Implementing C# 11 and .NET 7.0

{
HistoryEntryState = "Navigated here from Index page"
});

}

}

So, our index page now has a button that will redirect to the Counter page. The
Counter page is expected to receive the message that says Navigated here from the
Index page.

Now, we would make some changes to the Counter.razor file to see if it worked.
First, we will inject the NavgiationManager instance into it by placing the following
statement immediately underneath the fusing directive:

^inject NavigationManager NavigationManager

Then, we will add the following element anywhere in the markup area:

<p>History entry state: @NavigationManager.HistoryEntryState</p>

Now, if we launch the Server application and click on the newly added navigation
button on the homepage, we should see the Counter element with the message
passed from the Index page, as demonstrated infigure 7.3:

Counter
History entry state: Navigated here from Index page

Current count: 0

Click me

Increment by: 1

Figure 7.3: Navigation state passed from another Razor component

This concludes the overview of a hosted Blazor WebAssembly. Now, we will go
through the basics of Blazor Server and will demonstrate some additional Blazor
features.

Setting up Blazor Server
We will now create a Blazor Server project called BlazorServerDemo. We can either
do so via the Blazor Server project template in the IDE or by executing the following
CLI command:
dotnet new blazorserver -o BlazorServerDemo

Blazor and WebAssembly on .NET ■ 201

Once created, we can have a look at how this project is different from our Blazor
WebAssembly in its structure. The first thing we should note is that this project
is nothing more than a standard ASP.NET Core application with some additional
Blazor dependencies added to it. It runs from the server. You can add any standard
ASP.NET Core components to it, such as MVC components, Razor Pages, API
controllers, and so on.

The Blazor Server components are configured by adding the following line to the
Program.es file:
builder.Services.AddServerSideBlazor();

And adding the following steps to the middleware pipeline:
app.MapBlazorHub();
app.MapFallbackToPagef"/_Host");

There are some other differences in the project structure too. As you may have
noticed, there is no index.html file inside the wwwroot folder. Instead, the base­
level HTML is located inside the _Host.cshtml file, which is located inside the
Pages folder. As you may have noticed, the name of this file is the default parameter
inside the app.MapFallbackToPage call from the Program.es file.

The rest of the structure is similar to that in a Blazor WebAssembly project. App.
razor is the root element of the Blazor application. MainLayout.razor in the
Shared folder is the default layout, and so on.

The Razor Components themselves use the same syntax as they do in a Blazor
WebAssembly project. This is why you can reference Blazor class libraries from
both Blazor application types. But these components are no longer compiled into
1________________ . .1.1 _ _______1.1: .. nrl________ ______:1 . J .1. . _______ J _ .1_________ ... J

ASP.NET
ASP.NET
Program.es
Program.es

orowser-execurame assemones. iney are compiled into me server-siae ciasses, ana
additional work is done by the compiler to generate the HTML and JavaScript that
will interact with these classes. SignalR is used as the communication mechanism
between the browser and the server. We will cover it in more detail in Chapter 8:
SignalR and Two-way Communication.

Since you are familiar with the project structure of both Blazor Web Assembly and
Blazor Server, we will have a look at Blazer's ability to generate custom HTML
elements, which is slightly different depending on what type of Blazor application
you are using.

Custom elements in Blazor
HTML specification allows you to add custom elements to the document. You can
convert Blazor Components into pure custom HTML elements. To do so, you will
need to install the following NuGet package:
Microsoft.AspNetCore.Components.CustomElements

202 | Implementing C# 11 and .NET 7.0

Then, you will need to add the following script reference to either index.html file if
you are using Blazor WeB Assembly or _Host. eshtml if you are using Blazor Server:
<script src="/_content/Microsoft.AspNetCore.Components.CustomElements/
BlazorCustomElements.js"x/script>

Please note that, just like any other script that interoperates with Blazor, this reference
needs to be inserted after the reference to the main Blazor JavaScript library.

Then, what you do will differ depending on which type of Blazor project you use.
If we want to turn our Counter Razor component into an HTML element called
custom-counter, this is how we would do it in the Program.es file of a Blazor
Server application:

builder.Services.AddServerSideBlazorfoptions =>

{
options.Rootcomponents.RegisterCustomElement<Counter>("custom-counter");

});

Also, this is what we would do instead in the Program.es file of a Blazor
Web Assembly application:

builder.Rootcomponents.RegisterCustomElement<Counter>("custom-counter");

Then, to apply this custom HTML element, we just need to insert it into the markup
of any of our pages, just like we would insert any standard HTML element:

Program.es
Program.es

lum-LUUiiiei v\ / lumuiii-luuii icrz

Next, we will cover the Razor component lifecycle and the methods that represent
lifecycle events that you can override.

Razor component lifecycle
The ComponentBase class has overridable methods that get triggered during specific
lifecycle events. By overriding them, you can add some custom logic to various
loading stages. These methods have synchronous and asynchronous variants.

The first of such methods is SetParameters. In there, you have access to the
ParemeterView input parameter, which allows you to intercept and modify the
parameters that are being set on the Razor component.

The next method is Onlnitialized. It gets triggered when the code inside the
component has been initialized, but the component has not been rendered yet.

The next method is OnParametersSet. It allows you to apply any custom logic
once the members of your component class have been populated with the values
delivered to them as parameters.

Blazor and WebAssembh/ on .NET ■ 203

And finally, there is a method called OnAfterRender. At this stage, the component
is fully ready and has been rendered, and you can apply any further custom logic to
it before the user can start interacting with it.

To demonstrate it, we can pass the following @code block to the Index, razor file
of the Blazor Server application. We are doing it on Blazor Server because this will
allow us to easily read console output on the machine that the application runs on,
and we will be able to see what order the events are triggered in:

@code {

public override async Task SetParametersAsync(ParameterView
parameters)

{
Console.WriteLine($"Started setting parameters at {DateTime.

Now}.");
await base.SetParametersAsyncfparameters);

}

protected override void Onlnitialized()

{
Console.WriteLine($"Initialized at {DateTime.Now}.");
base.OnInitialized();

J

protected override void OnParametersSet()

{
Console.WriteLine($"Parameters set at {DateTime.Now}.");
base.OnParametersSet();

}

protected override void OnAfterRender(bool firstRender)

{
Console.WriteLine($"Completed rendering at {DateTime.Now}.");
base. OnAfterRender (firstRender);

}
}

This concludes the overview of Blazor Server fundamentals. Now we will have a
look at the empty Blazor Server template.

204 ■ Implementing C# 11 ami .NET 7.0

Empty Blazor server template
Just like with Blazor Web Assembly, you can create an empty Blazor Server template.
To create a project from such a template via the CLI, we could execute the following
command:
dotnet new blazorserver-empty -o EmptyBlazorServer

Now, we can have a look at the differences between the standard Blazor Server
template and an empty one. The key difference is that in the empty template, there
are no sample Razor components. There is just a barebone collection of the most basic
components needed for building a Blazor application, as demonstrated in figure 7.4:

‘ BlazorServerDemo
> <?> Connected Services
> w Dependencies
> a <3 Properties
Mgwwwroot

Data
► +c« WeatherForecast.cs
> ♦£« WeatherForecastService.es

'an Pages
♦ 0 _Host.cshtml
* 0 Counter razor

► * 0 Error.cshtml
* 0 FetchData.razor
* 0 Indetrazor

' +£ EmptyBlazorServer
t> <?> Connected Services
> ^Dependencies
► asp Properties
t>a@wwwroot
'»□ Pages

♦ 0 _Host.cshtml
♦ 0 Indexrazor

* 0 Jmports.razor
+ 0 Apprazor

► +0 appsettings.json
*0 MainLayoutrazor

> *c« Program.es

WeatherForecastService.es
Program.es

J a □ Shared
> + @ MainLayoutrazor
► ♦ i NavMenu.razor

* @ SurveyPrompt.razor
* @ Jmports.razor
♦ i App.razor

> ♦ 0 appsettings.json
> <» * Program.es

Figure 7.4: The difference between the default and empty Blazor Server templates

This concludes the overview of Blazor, its main variants, and its capabilities.

Conclusion
In this chapter, you have learned the fundamental features of Blazor. We began
by covering WebAssembly and its benefits. We have also covered the benefits and
disadvantages of using AoT compilation in Blazor.

You are now familiar with the process of hosting Blazor WebAssembly applications
inside standard ASP.NET Core applications and setting up the standard project
templates for hosted Blazor applications. You must also be familiar with the process
of retroactively adding Blazor applications to ASP.NET Core.

Blazor and WebAssembly on .NET ■ 205

Finally, we have examined the pros and cons of Blazor Server applications, which
make Blazor code work without using WebAssembly.

In the upcoming chapter, we will cover the use of gRPC on .NET—an efficient
communication mechanism based on HTTP / 2 and HTTP / 3.

Points to remember
• WebAssembly is a binary instruction format that allows to run compiled

applications inside browsers.

• Blazor is a technology that allows you to either compile .NET code into
WebAssembly or build highly interactive Web pages.

• Blazor can be compiled into WebAssembly ahead of time, which makes the
application faster and reduces the download file size.

• Blazor WebAssembly can be hosted inside a standard Core app.ASP.NET

• Blazor Server gets compiled into separate browser and server components
that are tightly coupled with each other.

Multiple choice questions

Program.es
ASP.NET
ASP.NET
ASP.NET

1. What is a Razor Component?
a. A keyword from Razor Pages
b. An HTML helper from Razor Pages
c. An individual module inside a Razor application
d. All of the above

2. What are the main benefits of AoT in Blazor?
a. Making download size smaller
b. Making the application faster to run
c. Making the application quicker to launch
d. All of the above

3. What are the disadvantages of using Blazor Server?
a. Cannot run the application when the client is offline
b. Performance depends on network speed
c. No serverless deployment possible
d. All of the above

206 ■ Implementing C# 11 and .NET 7.0

4. What are the benefits of using Blazor Server?
a. Small download size
b. Client and server can be developed independently
c. Can work without a browser
d. All of the above

Answers
1. c
2. b
3. d
4. a

Key terms
• Web Assembly: A set of binary instructions that allows execution of compiled

code in the browser.

• Blazor: A technology that allows one to either compile .NET code into
Web Assembly or create an interactive Web application.

• Razor component: An individual module in a Blazor application that inherits
from ComponentBase class.

• Blazor Web Assembly: A Blazor project that compiles into Web Assembly.

• Blazor Server: A Blazor project that enables real-time interactivity between
the browser and the server.

• Ahead-of-time Compilation (AoT): Pre-compiling Blazor project into pure
Web Assembly that does not rely on intermediate .NET code.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Chapter 8

SignalR and
Two-way

Communication

https://discord.bpbonline.com

Introduction
Real-time interactivity is a must in modern-day Web applications. When you visit
a social media website, you expect to receive a notification as soon as you get a
message or a post response. You are not expected to keep refreshing the page. The
same applies to delivery tracking applications or any other application where the
client (either the browser or a mobile app) is expected to receive updates from the
server as soon as certain events take place.

Traditionally, building fully interactive applications where the client and the server
can communicate with each other in real-time has been difficult as there were multiple
options available. But none of them was easy to implement. As this functionality is
expected to behave differently from how the standard request-response model of the
internet has been designed to behave.

Normally, the client would send a request to the server, and the server would send
a response back. But in an interactive app, you need to be able to send information
either way on an ad-hoc basis. When you look at your delivery tracking app and
watch the driver moving in real-time, it is the server that sends the information to
the client and not the other way around.

Several techniques existed, but they were not necessarily easy to implement. One
of such technique, long-polling, would work by submitting a request to the server

208 ■ Implementing C# 11 and .NET 7.0

and keeping the connection open until the response arrives. It was relatively easy to
implement but was not efficient. There is also a WebSocket protocol that allows the
client and the server to establish a persistent connection between themselves, which
allows them to communicate both ways. But the implementation was not easy to
write, as the protocol worked with raw bytes, so the code was not easy to follow.

But on ASP.NET Core, there is a library called SignalR that makes the process of
building real-time applications easy. It still uses some complex communication
mechanisms under the hood. But subtracts away the complexity, so it is easier to
implement it in the code than using those communication mechanisms directly.

SignalR does not require any NuGet packages, as it is already included in ASP.NET
Core, and the library has already received some noteworthy updates in the .NET 7
release. This is what we will talk about in this chapter.

Structure

ASP.NET
ASP.NET

In this chapter, we wilt discuss the latest features ot SignalR on ASP.NE1 Core 7. We
will cover the following topics:

• SignalR overview

• Creating SignalR hub on the server

• JavaScript client for SignalR

• .NET client for SignalR

Objectives
By the end of this chapter, you will have learned how to build interactive real-time
Web applications by using SignalR. You will have learned how to use SignalR from
both within the browser and inside any arbitrary client application.

Prerequisites
To follow this chapter, you will need the following:

• A machine running either Windows, MacOS, or Linux operating system

• .NET 7 SDK

• A suitable IDE or a code editor

• Being familiar with C# fundamentals

SignalR and Two-way Communication 209

If you do not have any of the preceding listed dependencies installed already, you
can use the setup instruction provided in Chapter 1: Getting Familiar with .NET 7
Application Structure, which also provides a recap of C# fundamentals.

SignalR overview
Since SignalR is a library that is inbuilt in ASP.NET Core, you do not need to install
any NuGet packages to enable it. You can enable it by adding a few lines of code
to the entry point of your program. But the functionality from the library will be
available if you use any type of ASP.NET Core project template.

Although SignalR uses very intuitive language to get the client and server to
communicate with each other, it does rely on some standard communication
mechanisms internally. There are three mechanisms supported: WebSocket, server-
sent events, and long-polling. But regardless of which of them is chosen, the client
and the server code will remain the same. This code will be simpler compared to
tatKoI- if- TA7A11 1/4 K ni7ZV In non if- zniplnzai" l-liaoa monlmnicmc iatovo mini am a-nf-a/4 ^ira/nf-lv/

ASP.NET
ASP.NET

VVliai IL VVUU1U nave UCCIL ll UlllLCl Ul L1LUDU llLCLliaiUOllLO VVCIC 111LUJLU11LC1 Lieu UliUL

These mechanisms can be configured either on the client or the server. But the default
fallback order is as follows:

• Use WebSocket if possible.

• If not possible to use WebSocket, use server-sent events.

• If neither WebSocket nor server-sent events are available, use long-polling.

In most cases, SignalR will just use WebSocket internally, as this is its default
mechanism. But there are scenarios where the usage of WebSocket might not be
possible due to network configuration. The same applies to server-sent events.
Long-polling, however, is nothing more than a standard HTTP request. Therefore,
anything that supports HTTP will support long-polling.

Let us now summarize what each of these transport mechanisms is.

WebSocket
WebSocket is a protocol that works alongside HTTP. But unlike pure HTTP, it opens
a persistent duplex connection between the client and the server. Once established,
the messages can flow each way.

This protocol is very efficient for two-way communication. The client-server
handshake is only done once when the connection is being established. After this,
there is only an occasional heartbeat message that flows through the network to
check the connectivity status, which is only a couple of bytes in size.

210 ■ Implementing C# 11 and .NET 7.0

Although the WebSocket protocol is efficient, there are some potential issues with
it too. For example, there is a limit on concurrent connections. Plus, not every client
type supports it. This is why it is not the only protocol supported by SignalR.

Server-sent events
Server-sent events allow the client to subscribe to the server and receive events from
it. First, the client would make a normal HTTP request to the server with Content-
Type set to text/event-stream. The request does not just expect a single response.
It keeps a response channel open, so it can keep receiving messages from the server.

The main reason why server-sent events are not as efficient as WebSocket is that it
only works one way. If the client needs to send a message to the server, it will need
to re-submit an HTTP request. While doing so, it will need to go through the full
handshake, so there is more overhead involved.

But not all types of clients may be able to subscribe to server-sent events. This is why
SignalR has one more transport mechanism available.

Long-polling
Long-polling is the least efficient transport mechanism of those available in SignalR.
But, it will work with any type of client that supports HTTP, as it is nothing more
than a standard HTTP request that waits for the server to respond.

It is inefficient precisely because the client has to submit a new full HTTP request for
every single message that it sends. On top of this, it will need to keep re-submitting
a new request to listen to the next message from the server.

This completes the basic overview of SignalR. Now, we will create an ASP.NET Core
application and will set up a server-side SignalR hub inside it.

Creating SignalR Hub on the server
In our example, we will use a Razor Pages ASP.NET Core application. However,
SignalR can work with any other ASP.NET Core application type.

We will create an application project called SignalRServer. To do so from the CLI,
we could execute the following command:

dotnet new webapp -o SignalRServer

Once the project has been created, we can create a SignalR hub. SignalR hub is a class
that inherits from the Hub class of Microsoft.AspNetCore.SignalR namespace.
This is where you define the endpoints that clients can call.

ASP.NET
ASP.NET
ASP.NET

SignalR and Two-way Communication ■ 211

To create our own Hub implementation, we will create the Hubs folder inside our
project and add the MessageHub. cs file to it with the following content:

using Microsoft.AspNetCore.SignalR;
using System.Runtime.Compilerservices;

namespace SignalRServer.Hubs;

public class MessageHub : Hub

{
}

This provides the basic structure of our SignalR hub. Now, we will populate it with
various endpoint methods to demonstrate its capabilities. Each endpoint method
must be public. It can also take an arbitrary number of parameters or any JSON-
serializable types, such as primitive C# data types and data classes.

The first endpoint method will be called BroadcastMessage. It will take a single
string parameter. When triggered by a client, it will broadcast this message to all
other connected clients by calling the SendAsync method on all properties of the
Clients property of the Hub base class:

public async Task BroadcastMessagefstring message)

{
await Clients.All.SendAsyncf'ReceiveMessage", message);

}

What this will do is trigger the ReceiveMessage event on the connected clients,
which is the first parameter of the SendAsync call. The other parameters are the
parameters that go into that event on the client side.

Then, we can add an endpoint that will re-route the message to the connected clients
other than the original client that has triggered the endpoint. This is done by using
the Others property of the Clients:

public async Task SendToOthersfstring message)

{
await Clients.Others.SendAsyncf"ReceiveMessage", message);

}

If you want to use the SignalR hub in a request-response manner and get it to only
send a message back to yourself, this can be achieved via the Caller property, as the
following code demonstrates:

212 | Implementing C# 11 and .NET 7.0

public async Task SendToSelf(string message)

{
await Clients.Caller.SendAsync("ReceiveMessage", message);

}

You can also send a message to a specific connected client. But to do so, you need
to know its unique connection id, which is a GUID that gets auto-generated when
a client connects. To obtain tire connection id of the current client, you can access
Context. Connectionld property of the Hub base class. This is how it can be used
to send a message to a specific client:

public async Task SendToSpecificClientfstring message, string clientld)

{
await Clients.Client(clientId).SendAsync("ReceiveMessage", message);

}

It is also possible to send a message to multiple clients. To do so, you can use
Clients.Clients method and pass a collection of client ids as the parameter. But
an easier way to do so is to add clients to a group and just send a message to the
group. The following method demonstrates how it can be done:

public async Task SendToGroup(string message, string groupName)

{
await Clients.Group(groupName).SendAsync("ReceiveMessage", message);

}

If the client that has triggered the endpoint happens to be in the group, we can
use the OthersInGroup method to send the message to all other group members,
excluding the calling client. The following method demonstrates how it can be done:

public async Task SendToOthersInGroup(string message, string groupName)

{
await Clients.OthersInGroup(groupName).SendAsync("ReceiveMessage",

message);

}

So far, we have only covered singular messages. But, SignalR also supports streaming,
both from the client to the server and vice versa. The following method, for example,
demonstrates how we can read from a client stream. We just need to pass a collection
of JSON-serializable objects that implements the lAsyncEnumerable interface. The
code will be able to read from the stream until the stream gets closed by the client:

SignalR and Two-way Communication ■ 213

public async Task BroadcastStream(IAsyncEnumerable<string> stream)

{
await foreach (var item in stream)

{
await Clients.Caller.SendAsync($"Server received {item}");

}
}

With server-streaming, a client still needs to initiate the steam by sending a
parametrized call to an appropriate endpoint. Then, we can just keep adding objects
into the stream, as the following method demonstrates. These will be read from the
stream by the client that triggered the endpoint.

public async IAsyncEnumerable<string> TriggerStreamf
int jobsToProcesSj
[Enumeratorcancellation]

CancellationToken cancellationToken)

{
for (var i = 0; i < jobsToProcess; i++)

{
cancellationToken.ThrowIfCancellationRequested();
yield return $"Job {i} processed successfully.";
await Task.Delay(1000j cancellationToken);

}
}

SignalR hub also has some overridable methods that get triggered by events.
For example, the OnConnectedAsync method gets triggered when a client
connects. The following override example shows how the client can be added to a
ConnectedClients group immediately after the connection:

public override async Task OnConnectedAsyncf)

{
await Groups.AddToGroupAsync(Context.Connectionld,

"ConnectedClients");
await base.OnConnectedAsyncf);

}

Likewise, you can override the OnDisconnectedAsync method, which gets
triggered when a client disconnects. In the following example, we are removing the

client trom the ConnectedCiients group when this happens:

214 | Implementing C# 11 and .NET 7.0

public override async Task OnDisconnectedAsync(Exception? exception)

{
await Groups.RemoveFromGroupAsync(Context.Connections,

"ConnectedCiients");
await base.OnDisconnectedAsync(exception);

}

Our initial implementation of a SignalR hub is complete. What we need to do now
is register it and assign it to a URL path. To do so, we will first register all SignalR
dependencies by placing this line of code into the Program.es file before the app
variable gets generated:

builder.Services.AddSignalRf);

Then, you will need to register your hub class to a specific path by calling the MapHub
method on the app variable. Before you do it, make sure you add the namespace
of your hub class in a using statement at the beginning of the file content. In the
following example, we are mapping our MessageHub class to the /messageHub URL
path:

app.MapHub<MessageHub>("/messageHub");

Our hub is now ready. But we can make an improvement to it. As you may have
noticed, the majority of our endpoint methods send messages to the ReceiveMessage
event on the connected clients. We are using a string literal to specify the name of the
event, but we do not have to. We can make our hub strongly typed, so client events
will be accessible as methods.

Strongly-typed Hub
To implement a strongly-typed SignalR hub, we need to add an interface that represents
the shape of our clients. In our example, we will add the IMessageHubClient.es
file into the Hubs folder and populate it with the following content:

namespace SignalRServer.Hubs;

public interface IMessageHubClient

{
Task ReceiveMessagefstring message);

}

Program.es
IMessageHubClient.es

Next, it we want to turn the MessageHub class into a strongly-typed SignalR hub, we
will need to change its signature to the following:
MessageHub : Hub<IMessageHubClient>

SignalR and Two-way Communication ■ 215

Now, all the lines of code that called tine SendAsync method will throw an error. You
will just need to replace them with a call to the ReceiveMessage and remove the
event name from its parameters, so your calls will be similar to the following:

await Clients.All.ReceiveMessage(message);

Next, we will have a look at how to inject dependencies into your SignalR hub.

Dependency injection in SignalR Hub
Just like MVC and Web API controllers, SignaLR hubs can have services injected
into them. Those can be injected either into the constructor or individual endpoint
methods.

For example, let us assume we have a class called SomeService. We can register a
scoped instance inside the Program.es file, as this line demonstrates:

builder.Services.AddScoped<SomeService>();

Then, we can define a private field inside the MessageHub class as follows:

private readonly SomeService _someService;

Furthermore, we can add the following constructor to this class, which will assign
the value of this field to the instance it receives from dependency injection:

public MessageHubfSomeService SomeService)

{
_someService = SomeService;

}

But, if all you need to do is use the service inside a single method, maybe injecting
it into the constructor and setting a class-wide variable would be an overkill. So,
you can also inject the service into individual endpoint methods by making it the
last parameter of the method:

public async Task BroadcastMessage(string message, SomeService
SomeService)
You can also make it more explicit by adding the [F romSe rvi c e] attribute to it:
public async Task BroadcastMessagefstring message,

[FromServices] SomeService SomeService)

T (■ TT/A11 TAT *ATA 4" 4-zA IazA *A Fa I /A 4- /A /AtaItt HH/A |1a rx zAA/VaIi zA-g 4- T TZAT4(~’T ZATA TTZAll zAATA O /A 4- 4-Ia ZA

Program.es

li yuu wcull lu uc auic lu umy U5C me cajjuvil vciaiun, yuu can &cl me

DisablelmplicitFromServicesParameters to false while registering SignalR
dependencies, as the following example demonstrates:

216 ■ Implementing C# 11 and .NET 7.0

services.AddSignalRfoptions =>

{
options.DisablelmplicitFromServicesParameters = true;

});

Now, we will overview the message serialization formats that SignalR supports.

JSON versus MessagePack
By default, SignalR uses JSON to serialize messages when they get transferred
between the client and the server. It also supports the MessagePack protocol. This
protocol is similar to JSON, but it is binary. This means that the messages are not
human-readable when they are serialized. But, at the same time, they are significantly
smaller in size.

To enable MessagePack protocol on a SignalR server, you just need to download an
additional NuGet package and apply some additional configuration. The name of
the NuGet package you need to install is as follows:

Microsoft.AspNetCore.SignalR.Protocols.MessagePack

To enable MessagePack, you just need to call AddMessagePackProtocol method
while registering SignalR dependencies in the Program.es file:

services.AddSignalR().AddMessagePackProtocol();

This concludes the overview of SignalR server configuration. Next, we will have a
look at SignalR clients. We will start with an in-browser JavaScript client.

JavaScript client for SignalR
To make a JavaScript client for SignalR work, we need to install a library for it. There
are the following two primary ways of installing it:

1. Getting it from a content delivery network (CDN) or

2. Building one from the source.

Using CDN is the simplest way. There is already a JavaScript file available online. All
you have to do is point at it. To do so, open the _Layout. eshtml file that is located
in the Shared folder of the Pages folder. You will need to locate the script HTML
element that references the site.js file and insert the following element before it:

cscript src-"https://cdnjs.cloudflare.com/ajax/libs/microsoft-
signalr/6.0.1/signalr.min.js"x/script>

Program.es
https://cdnjs.cloudflare.com/ajax/libs/microsoft-signalr/6.0.1/signalr.min.js%2522x/script

SignalR and Two-way Communication ■ 217

Even though a CDN link is very easy to set up, you are relying on a script that is
hosted externally. This is why you have the option of building the library from the
source and then just copying it directly into your project folder. Here are the steps
you can follow to build the library by using Node.js Package Manager (NPM):

1. Install Node.js on your machine.

2. Execute npm init -y command in any folder.

3. Execute the following command to install the latest version of the SignalR
library:

npm install (Smicrosoft/signalr

4. Now you should have a nodejnodules folder inside the folder where you
have initiated the NPM project from. Inside this folder, you can navigate to
the following path:
@microsoft/signalr/dist/browser

This folder will contain signair. js and signair .min. js files. You can copy either
of these files into an appropriate place inside the wwwroot folder of your ASP.NET
Core project. These files are equivalent. The only difference between them is that
signalr.js contains all the scripts in human-readable form, whereas signair. min. j s
is minified, which means that all unnecessary characters (such as whitespaces) have
been removed and all variable names have been shortened. This script is no longer
human-readable but will occupy significantly less space.

Then, you just need to insert a reference to this file into the _Layout. cshtml file in
the same place that you would insert the script element with the CDN link (assuming
you have placed the signalr.js file into the signair folder inside the lib folder):
<script src="~/lib/signalr/signalr.js"x/script>

Our library is now ready. Now, we will need to build our client by adding appropriate
HTML markup and JavaScript.

Adding HTML markup for SignalR client
To add the markup for our SignalR client, we will open the Index. cshtml file inside
the Pages folder and replace the HTML markup inside the file with the following:

<div class="row" style="padding-top: 50px;">
<div class-"col-md-4">

</div>

<div class="col-md-7">
<p>SignalR Messages:</p>

ASP.NET

218 ■ Implementing C# 11 and .NET 7.0

<pre id="signalr-message-panel"x/pre>
</div>

</div>

This markup provides an area where the messages received from the SignalR hub
will be written into. It also has an empty section that we will populate with various
text boxes and buttons to allow us to send SignalR messages. In our example, this
section is represented by the "div" element with the col-md-4 class. We will insert
the following element into this section to allow us to broadcast a message to all
connected clients:

<div class="control-group">
<div>

<label for="broadcast">Message</label>
cinput type-"text" id-"broadcast" name-"broadcast" />

</div>
<button id="btn-broadcast">Broadcast</button>

</div>

Next, we will insert the following element to allow us to send a message to all clients
other than the originator of the message:

<div class-"control-group">
<div>

clabel for="others">Message</label>
cinput type="text" id-"others" name-"others" />

</div>
<button id="btn-others">Send to Others</button>

</div>
Then, we will add this HTML to allow us to send a message back to
ourselves:
cdiv class="control-group">

<div>
clabel for="self">Message</label>
cinput type="text" id="self" name="self" />

</div>
cbutton id="btn-self">Send to Self</button>

</div>

Then, the following control will allow us to send a message to a specific SignalR

client it we Know its unique connection ID:

SignalR and Two-way Communication ■ 219

<div class-"control-group">
<div>

clabel for-"individual">Messagec/label>
cinput type="text" id="individual" name="individual" />

</div>
<div>

clabel for="connection-id">User connection id:c/label>
cinput type="text" id="connection-id" name="connection-id" />

</div>
cbutton id="btn-individual">Send to Specific User</button>

</div>

Next, we can add the following control to send a message to a specific group:

cdiv class="control-group">
<div>

clabel for="group">Message</label>
cinput type="text" id="group" name="group" />

</div>
<div>

clabel for="gr’oupl">Gr’oup Namec/labeb
cinput type="text" id="groupl" name="gr’oupl" />

</div>
cbutton id="btn-group">Send to Group</button>

</div>

This markup will allow us to send a message to all clients in the group, but it will
exclude us if we happen to be a member of this group:

cdiv class="control-group">
cdiv>

clabel for="others-in-group">Messagec/label>
cinput type="text" id="others-in-group" name="others-in-group"

/>
c/div>
cdiv>

clabel for="groupl">Gr’oup Namec/labeb
cinput type-"text" id-"group2" name-"group2" />

c/div>

220 ■ Implementing C# 11 and .NET 7.0

cbutton id="btn-others-in-group">Send to Others in Group</button>
</div>

Then, we will add the following control that will allow us to send a stream of
messages to the SignalR server:

<div class-"control-group">
<div>

clabel for-"broadcast">Messages</label>
cinput type="text" id="broadcast-stream" name="broadcast-stream"

/>
</div>
<button id="btn-broadcast-stream">Broadcast Stream</button>

</div>

Finally, the following control will be inserted to trigger a stream from the server:

<div class="control-group">
<div>

clabel for="number-of-jobs">Number of 3obs</label>
cinput type-"text" id-"number-of-jobs" name-"number-of-jobs" />

</div>
<button id="btn-trigger-stream">Trigger Server Stream</button>

</div>

Our HTML is completed. Now, we just need to apply some styling to it. To do so, we
will insert the following CSS into the site, css file that is located in the css folder
of wwwroot:

.body-content {
padding-left: 15px;
padding-right: 15px;

}

.control-group {
padding-top: 50px;

}

label {
width: 100px;

}

SignalR and Two-way Communication ■ 221

#signalr-message-panel {
height: calc(100vh - 200px);

}

Now, we will start adding JavaScript to implement the JavaScript client.

Applying SignalR functionality in JavaScript
To apply JavaScript functionality, we will need to open the site.js file, which is located
in the js folder of the wwwroot. We will start by adding the following script to it:

const connection = new signalR.HubConnectionBuilder()
.withUrl("/messageHub")
.configureLogging(signalR.LogLevel.Information)
.build();

async function start() {
try {

await connection.start();
console.log('connected');

} catch (err) {
console.log(err);
setTimeout(() -> start(), 5000);

}
};

connection.onclosefasync () => {
await start();

});

What we are doing here is building a SignalR connection. We are making the
connection to the /messageHub path of our application. This is the path that we
have previously mapped our SignalR hub onto the server. We do not need to specify
the base URL because we are running the client from the same Web application that
hosts the hub. If we were running it from a stand-alone JavaScript application, we
would have needed to specify the full URL.

Then, we have the start function, which starts the connection and automatically
repairs it when a disconnection has been detected. This is also the function we call

222 | Implementing C# 11 and .NET 7.0

inside the ondose event, so we restart the connection if a connectivity error occurs
and this event gets triggered.

Next, we will add an event to our connection that can get triggered from the SignalR
server. If you recall, from our server-side hub setup, we expected the connected
clients to have a ReceiveMessage event. This is what this event will look like in our
JavaScript client:

connection.on("ReceiveMessage", (message) -> {
$('#signalr-message-panel').prepend($('<div />').text(message));

});

When the hub sends the message parameter to this event, the parameter gets
prepended to the HTML element with the id of signalr-message-panel:

Next, we will add some onclick events to the HTML buttons we have added
previously. Each of these will invoke an endpoint on the SignalR hub. The event
handler for broadcasting the message will look like the following:

$('#btn-broadcast').click(function () {
var message = $('#broadcast').val();
connection.invoke("BroadcastMessage", message).catch(err -> console.

error(err.toString()));

});

So, on a JavaScript client, triggering a SignalR hub endpoint is done via the invoke
method. The first parameter of this method is the name of the SignalR hub method
that you want to invoke. The rest are the input parameters for this method. It is very
similar to how client-side events are called from the server-side hub, but the other
way around.

We can now add event handlers to all other buttons that send singular messages to
the hub:

$('#btn-others').click(function () {
var message = $('#others').val();
connection.invokef'SendToOthers", message).catch(err => console.

error(err.toString()));

});

$('#btn-self').click(function () {
var message = $('#self').val();
connection.invoke("SendToSelf", message).catch(err => console.

errorferr.toStringf)));

SignalR and Two-way Communication ■ 223

});

$('#btn-individual').click(function () {
van message = $('#individual').val();
var connectionld = $('#connection-id').val();
connection. invoke("SendToSpecificClient", messagej connectionld).

catch(err => console.error(err.toString()));

});

$('#btn-group').click(function () {
var message = $('#group').val();
var group = $('#groupl').val();
connection.invokef'SendToGroup", messagej group).catch(err =>

console.error(err.toString()));

});

$('#btn-others-in-group-group').click(function () {
var message = $('#others-in-group').val();
var group = $('#group2').val();
connection.invoke("SendToOthers!nGroup"j message, group).catch(err

=> console.error(err.toString()));

});

Next, we will add some functionality to deal with message streams. We will first add
the following code that will send a stream of messages to the server:
$('#btn-broadcast-stream').click(function () {

var message = $('#broadcast-stream').val();
var messages = message.split(';');
var subject = new signalR.Subject();

connection.sendC'BroadcastStream", subject).catch(err -> console.
error(err.toString()));

for (var i = 0; i < messages.length; i++) {
subject.next(messages[i]);

}

subject.complete();

224 | Implementing C# 11 and .NET 7.0

This code will split a string into multiple messages by semicolon. Then, it will create
a SignalR subject, which will represent our client-side stream. Then, by calling
the send method on the connection object, we are getting a specific endpoint in
the SignalR server hub to listen to the stream from the client. Thereafter, we put
individual messages into the stream by calling the next method on the subject. And
finally, once we are finished sending messages, we call the complete method on the
subject to close the stream.

Next, we will insert the following code to trigger a stream from the server:
$('#btn-trigger-stream').clickffunction () {

var numberOflobs = parseint($('#number-of-jobs').val(), 10);

connection.streamf"Triggerstream"j numberOflobs)
.subscribe!{

next: (message) => $('#signalr-message-panel').
prepend($('<div />').text(message))

});
});

In this code, we are triggering a server-streaming endpoint on the SignalR hub
by calling the stream method on the connection object. Then, we are calling the
subscribe method to subscribe to the stream.

Once we have configured our SignalR connection and have added all appropriate
event handlers, we can start our connection. In our case, we can just call the start
function that we have created earlier:
start();

So, we have completed the overview of a JavaScript SignalR client. Next, we will
build a .NET-based client.

.NET client for SignalR
To demonstrate .NET SignalR client functionality, we will build a .NET console
application. But the same principles can be applied to any other application type,
even including Blazor Web Assembly.

We will create a console application project, which can be done by executing the
following command in the CLI:
dotnet new console -o SignalRClient

Next, we will need to add a NuGet package to the project to enable the SignalR client
functionality. This is the name of the package we need to install:

Microsoft.AspNetCore.SignalR.Client

SignalR ami Two-way Communication ■ 225

It will be the same package regardless of what type of .NET application you want to
add SignalR client functionality to.

Next, we will add the following code to the Program.es Hie:

using Microsoft.AspNetCore.SignalR.Client;
using System.Threading.Channels;

van url = args[0];

van hubConnection = new HubConnectionBuilderf)
. Withllrl(url)
.Buildf);

hubConnection.On<string>("ReceiveMessage",
message => Console.WriteLine($"Message received from the server:

{message}"));

await hubConnection.StartAsyncf);

In the preceding code, we are building a SignalR connection from the URL we have
provided as the application parameter. It needs to be the full URL to the Web
application that hosts the SignalR hub, including the path that is mapped to the hub.

Next, we will insert the following code that will allow us to interact with the console
app and trigger various actions on the SignalR server:

van running = true;

while (running)

{
var message = string.Empty;
var groupName = string.Empty;

Console.WriteLinef"Please specify the action:");
Console.WriteLine("0 - Broadcast a message to all");
Console.WriteLine("l - Send a message to others");
Console.WriteLine("2 - Send a message to self");
Console.WriteLinef"3 - Send a message to a specific client");
Console.WriteLine("4 - Send a to a group");
Console.WriteLinef"5 - Send a message to others in the group");

Program.es

226 ■ Implementing C# 11 and .NET 7.0

Console.WriteLine("6 - Broadcast messages from client");
Console.WriteLine("7 - Trigger a stream from the server");
Console.WriteLine("exit - Terminate the program");

var action = Console.ReadLine();

if (action != "7")
{

Console.WriteLine("Please specify the message:");
message = Console.ReadLine();

}

if (action == "4")
{

Console.WriteLine("Please specify the group name:");
groupName = Console.ReadLine();

}

switch (action)
{

}

}

Now, we will just need to insert the cases into the switch block. First, we will insert
the cases that will handle singular messages:
case "0":

await hubConnection.SendAsync("BroadcastMessage"j message);
break;

case "1":
await hubConnection.SendAsync("SendToOthers", message);
break;

case "2":
await hubConnection.SendAsync("SendToCaller", message);
break;

case "3":
Console.WriteLine("Please specify the connection id:");
var connectionld = Console.ReadLine();

await hubConnection

.^enuAbynn aenu icopeciTicciieriL > niebbdge, curinecLiuniu; j

SignalR and Two-way Communication ■ 227

break;
case "4":

await hubConnection.SendAsync("SendToGroup", message, groupName);
break;

case "5":
await hubConnection.SendAsync("SendToOthersInGroup"j message,

groupName);
break;

The principle is the same and is similar to what we have used in the JavaScript
client. We are calling the SendAsync method on the SignalR connection object. The
first parameter is the name on the server-side SignalR hub. And the remaining
parameters are the parameters that this method accepts.

Then, we will insert the following case to handle client streaming:

case "6":
var channel = Channel.CreateBounded<string>(10);
await hubConnection.SendAsync("Broadcaststream"j channel.Reader);

foreach (var item in message.Split(';'))
{

await channel.Writer.WriteAsync(item);

}

channel.Writer.Complete!);
break;

Here, we create a channel. Then, we call the SendAsync method, and we pass the
reader from the channel as one of its parameters. Then, we write messages into the
channel by using its writer. Once we are done with it, we close the channel writer.

After this, we will add the following case to handle server-streaming functionality:
case "7":

Console.WriteLine("How many jobs to run?");
var numberOflobs = int.Parse(Console.ReadLine() ?? "0");
var cancellationTokenSource = new CancellationTokenSource!);
var stream = hubConnection.StreamAsync<string>(

"Triggerstream", numberOflobs, cancellationTokenSource.Token);

await foreach (var reply in stream)

228 ■ Implementing C# 11 and .NET 7.0

Console.WriteLine(reply);

}
break;

Inhere, we create a stream by calling the St reamAsync method on the hubConnection
object. And then, we read from this stream.

We can complete our switch block by adding the following cases to it:

case "exit":
running = false;
break;

default:
Console.WriteLinef"Unknown action. Please try again.");
break;

Now, we can test our SignalR client functionality by first launching our ASP.NET
Core application that hosts the SignalR hub and then executing the following
command to launch the newly added console application, replacing the base URL
placeholder with the actual base URL of the Web application:

dotnet run -- {base URL}/messageHub

This concludes the overview of SignalR on .NET 7. Let us summarize what we have
learned.

Conclusion
In this chapter, we had a look at how to build interactive Web applications by using
SignalR on ASP.NET Core. We have learned how to enable it on the server-side in
an ASP.NET Core app and what dependencies we need to install to enable it on the
clients.

We have also learned that SignalR uses either of three mechanisms for communication,
which can be configured. But regardless of the mechanism selected, the application
code that uses SignalR will remain the same as the library abstracts away the specific
implementations of its transport mechanisms.

We have also learned that any type of SignalR client is supported. There are some
JavaScript libraries that will help you to build a SignalR client inside either a Web
page or in a stand-alone Node.js application. But there are also .NET NuGet packages
that can turn any .NET app into a SignalR client, including an in-browser Blazor

ASP.NET
ASP.NET
ASP.NET

Web Assembly app.

SignalR and Two-way Communication 229

In the upcoming chapter, we will have a look at gRPC implementation on .NET,
which is a framework for very efficient communication between services over the
network.

Points to remember
• SignalR is designed for enabling a persistent connection between the client

and the server that allows both of them to exchange ad-hoc messages with
each other in real-time.

• The server components of SignalR are included in Core, but client
components need to be installed.

ASP.NET

• SignalR uses either of the three communication mechanisms internally:
WebSocket, Server-sent Events, and long-polling.

• SignalR works with any type of client, both in-browser and stand-alone.

• SignalR uses JSON payload, but it can also use MessagePack, which is a
binary version of JSON and, as such, takes up less space.

Multiple choice questions
1. What communication mechanism is not supported by SignalR on ASP.

NET Core?
a. Long-polling
b. Server-sent events
c. ForeverFrame
d. WebSocket

2. What is the fallback order on communication mechanisms in SignalR?
a. WebSocket, long-polling, server-sent events
b. WebSocket, server-sent events, long-polling
c. ForeverFrame, WebSocket, long-polling
d. Server-sent events, long-polling, WebSocket

3. What SignalR client types are officially supported by Microsoft?
a. JavaScript

ASP.NET

b. Blazor Web Assembly
c. Generic .NET client
d. All of the above

230 H Implementing C# 11 and .NET 7.0

4. What NuGet package do you need to install to enable SignalR client
functionality in a .NET app?

a. Microsoft.AspNetCore.SignalR.Client
b. Microsoft.AspNet.SignalR.JS
c. Microsoft.AspNet.SignalR
d. Any of the above

Answers
1. c
2. b
3. d
4. a

Key terms
• SignalR: A library inbuilt in Core that enables two-way real-time

communication between the client and the server.
ASP.NET

• WebSocket: An internet communication protocol that allows the client
to establish a persistent connection to the server to enable two-way
communication between the two machines.

• Server-sent events: A server push technology that allows sending messages
to the subscribed clients.

• Long-polling: HTTP requests that keep the connection open for potentially
a long time until the server responds.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

ASP.NET

https://discord.bpbonline.com

Chapter 9

gRPC on
ASP.NET Core

Introduction
There are many ways for your services to communicate over the network. There is a
REST protocol that allows you to submit HTTP requests against a Web API endpoint,
as we have covered in Chapter 6: Web Application Types on .NET. You can also define
a more strongly typed message schema by using SOAP. You can use GraphQL and
add some advanced querying capabilities.

Although all these communication mechanisms are good for the purposes they have
been designed for, they have a major disadvantage. They operate over HTTP/1.1.
This means that the new capabilities of HTTP/2 and HTTP/3 are not available to
them. For example, none of these mechanisms can have the same level or performance
as a mechanism that relies on a more recent version of the HTTP protocol.

But there is a communication framework that takes advantage of the latest HTTP/2
and HTTP/3 features while abstracting away their implementation complexity,
called gRPC. It is widely used by software developers across most languages and

https://discord.bpbonline.com
ASP.NET

platforms. Since 2019, it has been a first-class citizen of ASP.NET Core, meaning that
it is available as an official extension to ASP.NET Core.

The RPC part of gRPC stands for remote procedure calls. And this sufficiently explains
what the technology does. Even though different pieces of software (the client and

232 | Implementing C# 11 and .NET 7.0

the server) exchange messages across the network, the code that you write looks like
you are simply calling some procedure inside a single application. And as we will go
through the examples in this chapter, you will see how this works.

Structure
In this chapter, we will go through the usage of gRPC on ASP.NET Core 7. We will
cover the following topics:

• gRPC overview
• Setting up gRPC server
• Setting up gRPC client
• Overview of gRPC data types

Objectives
By the end of this chapter, you will have learned how to enable the gRPC
communication framework on both the client and the server. You will have also
learned the fundamentals of Protobuf, which is the message serialization protocol
that gRPC uses.

Prerequisites
To follow this chapter, you will need the following:

• A machine running either Windows, MacOS, or Linux OS

• .NET 7 SDK

• A suitable IDE or a code editor

• Being familiar with C# fundamentals

If you do not have any of the preceding listed dependencies installed already, you
can use the setup instruction provided in Chapter 1: Getting Familiar with .NET 7
Application Structure, which also provides a recap of C# fundamentals.

ASP.NET
ASP.NET
ASP.NET

gRPC overview
gRPC was initially created by Google and used as one of its internal transport
mechanisms. But, in 2016, it was released as an open-source communication
framework. Since then, it has been adopted by a variety of programming languages
and software platforms making it highly standardized. Therefore, almost any
popular programming language has its implementation.

gRPC on ASP.NET Core ■ 233

Behind the scenes, gRPC relies on the latest features of the HTTP/2 protocol. This
is what makes it very efficient in comparison to other communication mechanisms.
For example, the HTTP/2 feature, also known as multiplexing, allows gRPC to
perform multiple concurrent communications on the same connection. This makes
gRPC efficient in terms of using the network bandwidth and in terms of not having
to open many separate connections.

The new HTTP/2 features are not necessarily easy to write code against. But gRPC
hides all this implementation complexity from developers. This is why it is often
referred to as a wrapper protocol. The core gRPC functionality performs some
complex connection management logic. But all that developers are exposed to are
very user-friendly APIs. From the developer's perspective, making gRPC calls over
the network is in no way different from calling a method inside the same application.
This is made easy by the structure of gRPC's message serialization protocol, which is
known as Protocol buffers or simply Protobuf.

Protobuf as the main message serialization
protocol
Protobuf has two purposes:

1. Making it easy to generate abstractions in the code.

2. Making it easy to generate messages that can be efficiently transferred over
the network.

The former is the reason why gRPC is so easy to implement in the code. Protobuf
relies on service definition files. These files, which come with a proto extension,
define the structure of the gRPC services, the callable procedures, and the request
and response messages. But all of this has been structured in such a way that it
can easily translate into structures that are commonly supported by programming
languages, such as classes, objects, and so on.

The latter is achieved by serializing messages into a binary form and only keeping
as much information as needed. For example, here, Protobuf data types have default
values, and if a value of a particular field is the same as its default value, it is not

ASP.NET

necessary to transmit this field over the network. Likewise, even though field names
are used by Protobuf for readability, these are not transferred over the network.
Each field has an integer sequence number, which occupies much less space than an
arbitrary name. This is what the receiver of the message can accurately identify the
fields from.

We will have a look at the structure of Protobuf messages. To do so, will now set up
a basic gRPC Service application that will act as a server for our incoming messages.

234 | Implementing C# 11 and .NET 7.0

Setting up gRPC server
.NET SDK already has an ASP.NET Core project template with all the required
gRPC service dependencies along with some basic code samples. Let us now use
this template to create a project and call it GrpcServiceApp. If you are using an
IDE, you can use the ASP.NET Core gRPC Service template to create the project
from. Otherwise, you can create the project by executing the following command in
a terminal:
dotnet new grpc -o GrpcServiceApp

Once the project is created, we can have a look at its structure.

ASP.NET Core gRPC project structure
The project that gets created resembles a basic ASP.NET Core application. However,
it has some additional components. One of them is the Protos folder, which contains
files with the. proto extension. The other one is the Services folder, which contains
the classes that implement the service definitions from the proto files. The structure
of the project is demonstrated in figure 9.1:

' ©j GrpcServiceApp
f $> Connected Services
> Dependencies
' <3 Properties

B launchsettings json
B Protos

*- greet proto
' IB Services

> c» GreeterService cs
> 0 appsettings.json

c“ Program.es
Figure 9.1: gRPC Service project structure

ASP.NET
ASP.NET
ASP.NET
ASP.NET
Program.es

Here is our opportunity to have a closer look at the structure of a typical proto file.
If we open the greet. proto file in the Protos folder, we can see that it starts with
the following statement:

syntax = "proto3";

This indicates that we are using version 3 of Protobuf, which, at the time of writing,
is the most recent protocol version. Then, there is the following statement:

option csharp_namespace = "GrpcServiceApp";

gRPConASP.NET Core 235

The option keyword indicates that we are dealing with a custom configurable
option. In this specific case, we have the csharp_namespace option. This option is
only applicable for C# applications and will override the namespace for the auto­
generated code files.

The next statement is as follows:

package greet;

This is the gRPC package name. It is analogous to a C# namespace. If we did not have
the csharp_namespace option mentioned previously, the C# namespace would be
the Pascal-case version of this package name.

Next, we have the following service definition:

service Greeter {
rpc SayHello(HelloRequest) returns (HelloReply);

}

This is the signature of a gRPC service. In our example, the service is called Greeter.
It has one RPC called SayHello. This RPC accepts a HelloRequest message as its
request and a HelloRequest as its response. Each RPC definition must have both
the request and the response type. However, it is permitted for either of these types
to have no fields.

The definition of the HelloRequest message is as follows:

message HelloRequest {
string name = 1;

}
Here, we have a single field of the type string. The number 1 next to it is its sequence
number. Each field in a message definition must have a sequence number associated
with it. And each sequence number must be unique.
ml /• • e ii

gRPConASP.NET

me definition or our HeuoKepiy message is as follows:

message HelloReply {
string message = 1;

}

When we translate this Protobuf definition into code, each message and service will
be represented by a class. The class representing service will be abstract, as we will
want to apply custom logic to its methods by overriding them. Each RPC definition
within tine service will be represented by a method. We can see how this gets
translated into the C# code by opening the GreeterService class that can be found

236 ■ Implementing C# 11 and .NET 7.0

inside the Services folder. The signature of the class will look like the following, as
we are overriding a class that has been automatically generated from the proto file:

public class GreeterService : Greeter.GreeterBase

Here is the implementation of the SayHello RPC. The additional ServerCall
Context parameter is used for storing session-specific metadata:

public override Task<HelloReply> SayHellof
HelloRequest request, ServerCallContext context)

To enable the gRPC functionality in our ASP.NET Core application, we need to have
the following NuGet package installed:

Grpc.AspNetCore

Also, our CSPROJ file must have a Protobuf XML pointing at each proto file we
want to use. We have it defined as follows inside the GrpcServiceApp file:

<ItemGroup>
<Protobuf Include-"Protos\greet.proto" GrpcServices="Server" />

</ItemGroup>

Please note that the GrpcServices parameter is set to Server. This will limit the
code generator to only produce server-related gRPC components for the proto file
specified. We can also set the value of this attribute to the Client. If we do not set
it at all, the code generator will produce both the client and the server components.

There are a few more things we need to do before we can start using gRPC inside our
application. If we open the Program.es file, we can locate the following line:

builder.Services.AddGrpc();

This statement will add all the required gRPC dependencies to our application. Then
we also need to register every gRPC service implementation that we intend to use.
This is done by calling the MapGrpcService method on the app variable with the
service implementation specified as its type. We have the following example in our
code:

app.MapGrpcService<GreeterService>();

This concludes the overview of the basic gRPC service setup. Next, we will have a
look at call types and data types supported by gRPC.

ASP.NET
Program.es

gRPC on ASP.NET Core ■ 237

gRPC call types and data types
So far, we have only had a look at a single type of RPC, known as a unary call. This
call type accepts a single request and returns a single response. However, gRPC also
supports the following call types:

• Server-streaming

• Client-streaming

• Bi-directional streaming

To demonstrate them all, we will modify the definition of the Greeter service in the
greet. proto file as follows:

service Greeter {
rpc SayHello (HelloRequest) returns (HelioReply);
rpc RequestManyReplies (HelloRequest) returns (stream HelioReply);
rpc SendManyRequests (stream HelloRequest) returns (HelloReply);
rpc InitiateBidirectionalStreaming (stream HelloRequest) returns

(stream HelloReply);

}

So, to define any streaming calls, you just need to place the stream keyword
either before the input type, the output type, or both. In this example, The
RequestManyReplies RPC is a server-streaming call, the SendManyRequests RPC
is a client-streaming call, and the InitiateBidirectionalStreaming RPC is a bi­
directional streaming call.

We will also have a look at some inbuilt data types. For this, we will modify the
definition of the HelloReply message, so it will become the following:

message HelloReply {
string message = 1;
int32 message_id = 2;
bytes content_in_bytes = 3;
float message_size_in_kilobytes = 4;
bool reply^processed = 5;

}

We will have a more detailed look at the inbuilt Protobuf data types later. But in this
example, we have the following:

• int32, which is a 32-bit integer that gets translated into the standard int type
inC#

ASP.NET

238 ■ Implementing C# 11 and .NET 7.0

• bytes, which acts like a byte array and is represented by the ByteString
data type from Google. Protobuf namespace in C#

• float, which is a direct equivalent to the float type in C#

• bool, which is a direct equivalent to the bool type in C#

Now, we will make some modifications to the GreeterService class to see how
these data types work. The first thing we will need to do is add the following using
statement to it:
using Google.Protobuf;

Then, we will add the following private method that all our RPC implementations
will use to generate the response:

private HelloReply GenerateReplyMessagefHelloRequest request)

{
var message = "Hello " + request.Name;

return new HelloReply

{
Message = message,
Messageld = 1,
ContentlnBytes = ByteString

.CopyFromfEncoding.ASCII.GetBytes(message)),
MessageSizelnKilobytes = (float)ByteString.CopyFrom(Encoding.

ASCII.GetBytes(message)).Length I 1024,
ReplyProcessed = false

};
}

As we can see, there are some data types that we can apply directly. There is also the
ByteString type that we can populate from a standard byte string by calling the
CopyFrom method. Then our original SayHello method will become this:

public override Task<HelloReply> SayHellofHelloRequest request,
ServerCallContext context)

{
return Task.FromResult(GenerateReplyMessage(request));

}

The implementation of the server-streaming RequestManyReplies method will be
this:

gRPConASP.NET Core ■ 239

public override async Task RequestManyReplies(
HelloRequest request,
IServerStreamWriter<HelloReply> responsestream,
ServerCallContext context)

{
var i = 3;

while (i > 0)

{
await responsestream.WriteAsync(GenerateReplyMessage(request));

i-A
}

}

Here, we put three messages onto the response stream. The method does not have
a return type, as the stream gets populated before we return from the method. The
client will be able to read the data from the stream as it is populated.

We will add the following implementation for our SendManyRequests method:

public override async Task<HelloReply> SendManyRequestsf
IAsyncStreamReader<HelloRequest> requeststream,
ServerCallContext context)

{
var reply = new HelloReplyf);

await foreach (var request in requeststream.ReadAHAsync())

{
reply = GenerateReplyMessage(request);

}

return reply;

}

In this method, we read from the client stream. We will keep doing it until the client
closes its stream.

Finally, the bi-directional streaming method will look as follows:

public override async Task InitiateBidirectionalStreamingf

gRPConASP.NET

iAsyncbtreamKeaaer<HeiiOKequest> requesterream,

240 Implementing C# 11 and .NET 7.0

IServerStreamWriter<HelloReply> responsestream,
ServerCallContext context)

{
await foreach(var request in requestStream.ReadAllAsync())

{
await responsestream.WriteAsync(GenerateReplyMessage(request));

}
}

In this type of call, we do not return a response. Instead, we have two streams as
the input parameters: client stream and server stream. We can read from the client
stream and write into the server stream.

We will shortly have a look at how to set up a gRPC client in .NET. But before we do
so, we will have a look at the feature that has been added to gRPC in ASP.NET Core
7 called JSON transcoding.

gRPC JSON transcoding
JSON transcoding allows developers to connect to gRPC servers via the standard
REST protocol. It works by converting Protobuf messages into JSON objects.

There are limits to JSON transcoding. First, it still operates under the standard
HTTP/1.1 protocol, so the advantages of HTTP/2 are lost. Second, it does not
support client streaming. However, it is still useful because the developers will no
longer have to write separate gRPC and REST implementations.

We can even use Swagger with it. To do so, we will need to install the following
NuGet package:
Microsoft.AspNetCore.Grpc.Swagger

Then, we will need to open the Program.es file and amend the AddGrpc call to look
as follows:
builder.Services.AddGrpcf).AddJsonTranscoding();

Then, we can add the standard Swagger dependencies:
builder.Services.AddGrpcSwagger();
builder.Services.AddSwaggerGenfc =>

{
c.SwaggerDoc("vl",

new OpenApilnfo { Title = "REST API to gRPC", Version = "vl" });

});

ASP.NET
Program.es

gRPC on ASP.NET Core 241

Once we have all dependencies added, we can register the Swagger middleware by
adding the following code:

app.UseSwaggerf);
app. UseSwaggerlll (c =>

{
c.SwaggerEndpoint("/swagger/vl/swagger.json", "My API VI");

});

Now, to make the JSON transcoding work, we will need to copy some Protobuf files
into our project folder. First, we will have to create a folder called google in the root
of our project. Then, we will create api folder inside this folder. Thereafter, we will
add an http. proto file to this folder with the following content:

syntax = "proto3";

package google.api;

option cc_enable_arenas = true;
option go_package = "google.golang.org/genproto/googleapis/api/
annotations;annotations";
option java_multiple_files = true;
option java_outer_classname = "HttpProto";
option java_package = "com.google.api";
option objc_class_prefix = "GAPI";

message Http {
repeated HttpRule rules = 1;
bool fully_decode_reserved_expansion = 2;

}

message HttpRule {
string selector = 1;

oneof pattern {
string get = 2;
string put = 3;
string post = 4;
string delete = 5;

ASP.NET
google.golang.org/genproto/googleapis/api/

242 Implementing C# 11 and .NET 7.0

string patch = 6;
CustomHttpPattern custom = 8;

}
string body = 7;
string response_body = 12;
repeated HttpRule additional_bindings = 11;

}

message CustomHttpPattern {
string kind = 1;
string path = 2;

}

Then, we will create an annotations. proto file in the same folder and populate it
with the following content:

syntax = "proto3";

package google.api;

import "google/api/http.proto";
import "google/protobuf/descriptor.proto";

option go_package = "google.golang.org/genproto/googleapis/api/
annotations;annotations";
option java_multiple_files = true;
option java_outer_classname = "AnnotationsProto";
option java_package = "com.google.api";
option objc_class_prefix = "GAPI";

extend google.protobuf.MethodOptions {
HttpRule http = 72295728;

}

Now, we will open our original greet. proto file and add the following statement
to it just before the package definition:

import "google/api/annotations.proto";

http://http.proto
google.golang.org/genproto/googleapis/api/

gRPConASP.NET Core ■ 243

Next, we will modify our SayHello and RequestManyReplies RPCs by making
them look like the following:

rpc SayHello (HelloRequest) returns (HelloReply) {
option (google.api.http) = {

get: "/vl/greeter/{name}"

rpc RequestManyReplies (HelioRequest) returns (stream HelloReply) {
option (google.api.http) = {

get: "/vl/greeter/{name}/stream"

This will now link these RPCs with RESP API paths. We can test these paths by
launching our application and navigating to its Swagger page, which is available
on the /swagger path by default. As we can see in figure 9.2, we can now have these
paths available:

©Swagger
definition

My API VI

RESTAPItogRPC®®

Schemas

HelloReply >

Figure 9.2: Swagger page with REST endpoints that map to gRPC methods

gRPConASP.NET

244 Implementing C# 11 and .NET 7.0

When we use JSON transcoding, unary gRPC calls are translated into standard
request-response endpoints, and server-streaming calls return JSON collections.

This concludes our gRPC server setup. Let us now set up our client.

Setting up gRPC client
gRPC client functionality can be added to any .NET application type, including the
most basic console application. Therefore, to demonstrate the client functionality, we
will create a console application called BasicGrpcClient. We can do so via the CLI
by executing the following command:
dotnet new console -o BasicGrpcClient

We need to install the following three NuGet packages to enable the client
functionality:
Google.Protobuf

• Grpc.Net.Client

• Grpc.Tools

Next, since we will be using the same Protobuf definition as our server uses, we
will need to copy the Protos folder from the GrpcServiceApp project into the
BasicGrpcClient project. This time, however, we do not need the JSON transcoding
functionality. Therefore, our greet.proto file in the BasicGrpcClient project
should look like the following after we remove all the redundant references from it:

syntax = "proto3";

option csharpjiamespace = "GrpcServiceApp";

package greet;

service Greeter {
rpc SayHello (HelioRequest) returns (HelloReply);
rpc RequestManyReplies (HelloRequest) returns (stream HelloReply);
rpc SendManyRequests (stream HelloRequest) returns (HelloReply);
rpc InitiateBidirectionalStreaming (stream HelloRequest) returns

(stream HelloReply);

}

message HelloRequest {
string name = 1;

gRPC on ASP.NET Core 245

}

message HelloReply {
string message = 1;
int32 message_id = 2;
bytes content_in_bytes = 3;
float message_size_in_kilobytes - 4;
bool reply_processed = 5;

}

Next, we will need to register this proto file in the BasicGrpcClient. csproj file by
adding the following markup to it:

<ItemGroup>
<Protobuf Include-"Protos\greet.proto" GrpcServices="Client" />

</ItemGroup>

This time, the GrpcServices attribute is set to Client, as we are only interested in
importing the client functionality.

Next, we will replace the content of the Program.es file with the following:

using Grpc.Core;
using Grpc.Net.Client;
using GrpcServiceApp;

using van channel = GrpcChannel.ForAddress("https://localhost:7222");

We are adding the required namespaces. Then, we are creating a disposable instance
of a GrpcChannel type. Inside the ForAddress call, we are specifying the address of
our gRPC server application, which can be found in the launchsetting, json file
in the Properties folder. In this example, the address is https://localhost:7222. But
it will probably be different in your instance.

It is important to note that gRPC uses the secure HTTPS protocol by default. This
is because the unsecure HTTP URL is mapped to HTTP/1.1 protocol by default,
which does not support gRPC. But we can make some changes to our server code
to enable unsecure access to HTTP / 2, which may be done if you do not want to use
a development TLS certificate. If you are using Mac, we must do it because macOS
does not support TLS mapping to HTTP/2 on the OS level. To do so, we will need
to insert the following code into the Program. cs file of our gRPC server application,
where we replace the {port number} with the actual port number we want to map:

ASP.NET
Program.es
https://localhost:7222
https://localhost:7222

246 ■ Implementing C# 11 and .NET 7.0

builder. WebHost.ConfigureKestrel(options =>

{
options.ListenLocalhost({port number}, o => o.Protocols =

HttpProtocols.Http2);

});

Let us now continue setting up our client functionality. We already have our gRPC
channel opened. Now, we need to add some console prompt and create an instance
of a HelloRequest class based on the user's console input. Then, we can create an
instance of a client:

Console.WriteLine("What is your name?");
var name = Console.ReadLinef);

var request = new HelloRequestf)

{
Name = name

};

var client = new Greeter.GreeterClient(channel);

Now, we can use the instance of a client to make a unary call:

var reply = await client.SayHelloAsync(request);
Console.WriteLine("Message received from a unary call: " + reply.
Message);

Please note that the name of the client-side method that represents a unary gRPC
call has the Async suffix. This is because we are using an asynchronous version of it.
But there is also a synchronous version of the method that does not have this suffix.

Then, we can make a server-streaming call. This is done by opening a disposable
stream and reading from it:

using var serverStreamingCall = client.RequestManyReplies(request);
while (await serverStreamingCall

.Responsestream.MoveNext(CancellationToken.None))

{
Console.WriteLine("Message received from a server streaming call: "

+
serverStreamingCall.ResponseStream.Current.Message);

}

gRPConASP.NET Core ■ 247

Next, we will create a client-streaming call. Here, we will open a stream, write some
messages into it, close the stream, and wait for the response:

using van clientStreamingCall = client.SendManyRequestsf);

for (van i = 0; i < 3; i++)

{
await clientStreamingCall.Requeststream.WriteAsync(request);

}
await clientStreamingCall.Requeststream.CompleteAsyncf);
var response = await clientStreamingCall;
Console.WriteLine("Message received from a client streaming call: " +

response.Message);

After this, we will add a bi-directional streaming call. Here, we will create a disposable
object that represents both the client and the server streams. We write into the client
stream and read from the server stream by creating via an asynchronous task. Then,
we close the client stream and wait for this task to complete:

using var bidirectionalCall = client.InitiateBidirectionalStreaming();
var readTask = Task.Runfasync () =>

{
await foreach (var response in bidirectionalCall.Responsestream.

ReadAllAsyncQ)

{
Console.WriteLine("Message received from a bidirectional call: "

+ response.Message);

}
});
await bidirectionalCall.Requeststream.WriteAsyncfrequest);
await bidirectionalCall.Requeststream.CompleteAsyncf);
await readTask;

Finally, we might want to add the following lines to make sure the terminal does not
get closed once the application executes its logic:

Console.WriteLinef"Press any key to exit...");
Console.ReadKey();

This completes the overview of basic gRPC client functionality. In real life, however, a
gRPC client is often another Web application or a hosted Web service. The good news

gRPConASP.NET

248 | Implementing C# 11 ami .NET 7.0

is that ASP.NET core supports dependency injection of gRPC client components.
This is what we will have a look at next.

Using gRPC client factory and dependency
injection
We will now create anASP.NET Core MVC application called GrpcMvcClient. This
can be done by executing the following command from the CLI:
dotnet new mvc -o GrpcMvcClient

All the client functionality, including dependency injection, can then be added by
installing the following NuGet package:
Grpc.AspNetCore.Server.ClientFactory

If you want to potentially use your application as both a gRPC client and a gRPC
server, you can just install the Grpc. AspNetCore package instead. It will contain all
the necessary client packages, including the preceding one.

We then need to copy the Protos folder from the BasicGrpcClient project folder we
have created earlier into the GrpcMvcClient one. Then, we need to register the proto
file inside the GrpcMvcClient. cspro j file. We can either use the same markup that
we have used inside the BasicGrpcClient. cspro j or we can apply this alternative
markup instead:

<ItemGroup>
<None Update-"Protos\greet.proto">

<GrpcServices>Client</GrpcServices>
</None>

</ItemGroup>

Next, we will register our gRPC client for dependency injection. To do this, we will
first add the following statement to the top of the Program.es file:
using GrpcServiceApp;

Then, we will add the following anywhere before the app variable is created:

builder.Services.AddGrpcClient<Greeter.GreeterClient>(o =>

{
o.Address = new Uri("https://localhost:7222");

});

ASP.NET
anASP.NET
Program.es
https://localhost:7222

Please note that the input into the constructor of the Uri class is the URL of the gRPC
server application. The port number in your instance will probably be different.

gRPC on ASP.NET Core ■ 249

Now, we will put the ResponseModel.es file into the Models folder and will
populate it with the following content:

namespace GrpcMvcClient.Models;

public class ResponseModel

{
public string Message { get; set; }

}

Next, we will add the following statement to the HomeController.es file, which
can be found inside the Controllers folder:

using GrpcServiceApp;

Then, we will add the following private field into the HomeController class:

private readonly Greeter.GreeterClient _client;

After this, we will replace the class constructor with the following:

public HomeControllerf
ILogger<HomeController> logger,
Greeter.GreeterClient client)

{
Jogger = logger;
_client = client;

}

Here, we are injecting an instance of a gRPC client that we have previously registered
inside the Program.es file. Now, we can use this client instance. To do so, we will
replace the Index method with the following:

public async Task<IActionResult> Index()

{
var reply = await _client.SayHelloAsync(

new HelloRequest

{
Name = "User"

H:

ASP.NET
ResponseModel.es
HomeController.es
Program.es

var response = new ResponseModel

250 ■ Implementing C# 11 and .NET 7.0

{
Message = reply.Message

};

return View(response);

}

Here, we are making a unary gRPC call. Then we extract the message received from
the gRPC server and put it into the view model. To display its value, we will need to
locate Index, cshtml file that is located in the Home folder under the Views folder.
We will replace its content with the following:

@model ResponseModel

ViewData["Title"] = "Home Page";

}

<div class="text-center">
<hl class="display-4">@Model.Message</hl>

</div>

When we launch this application and open its homepage in the browser, we will see
the message that we have retrieved from the gRPC server application, as long as it is
also running and we have configured our connection correctly.

This concludes the overview of setting up a gRPC server on .NET. Let us now go
through the data types supported by gRPC.

Overview of gRPC data types
The primitive data types in gRPC, which are also known as scalar value types, are
not nullable. Instead, each of these types has a default value. For example, the default
value for any numeric data type is 0, whereas it is false for the bool type. This is
very similar to how the equivalent data types work in C#.

Unlike C#, however, Protobuf has different tvoes of integers. This allows for more

flexibility and efficiency while transferring messages via the network. All inbuilt
data types supported by Protobuf are listed in table 9.1:

gRPConASP.NET Core I 251

Type Description Default value Ct Equivalent

int32 An integer that occupies up to 32 bits
but can occupy less if the value is small.
Supports both the positive and the
negative values.

0 int

int64 An integer that occupies up to 64 bits
but can occupy less if the value is small.
Supports both the positive and the
negative values.

0 long

uint32 An integer that occupies up to 32 bits
but can occupy less if the value is small.
Supports only the positive values.

0 uint

uint64 An integer that occupies up to 64 bits
but can occupy less if the value is small.
Supports only the positive values.

ulong

sint32 An integer that occupies up to 32 bits
but can occupy less if the value is
small. Supports both the positive and
the negative values, but it is especially
efficient for encoding negative values.

0 int

sint64 An integer that occupies up to 64 bits
but can occupy less if the value is
small. Supports both the positive and
the negative values, but it is especially
efficient for encoding negative values.

0 int

fixed32 An integer that always occupies exactly
32 bits and is especially efficient for
encoding large numbers. Supports only
the positive values.

0 uint

fixed64 An integer that always occupies exactly
64 bits and is especially efficient for
encoding large numbers. Supports only
the positive values.

0 ulong

sfixed32 An integer that always occupies exactly
32 bits and is especially efficient for
encoding large numbers. Supports both
the positive and the negative values.

0 int

gRPConASP.NET

sfixed64 An integer that always occupies exactly
64 bits and is especially efficient for
encoding large numbers. Supports both
the positive and the negative values.

0 long

252 Implementing C# 11 and .NET 7.0

Type Description Default value C# Equivalent

float A numeric data type that supports a
decimal point.

0 float

double A numeric data type that supports
a decimal point and has a double
precision.

0 double

string Free text string
bytes A collection of bytes Empty byte

array
Google.

Protobuf.
ByteString

bool Either true or false false bool

Table 9.1: Protobuf data types

In addition to these, Protobuf supports enums, repeated fields, map fields and one
of the keyword. Let us have a brief overview of these.

Protobuf enums
Enums in Protobuf are similar to enums in C#. Even the syntax is similar. But there
are a few points to remember. For example, since each inbuilt data type in Protobuf
has a default value, enums do too. For any enum type, the value is 0. Therefore, each
enum type must have a value that maps to 0. Also, Enums in Protobuf must have a
numeric value specified next to each key. This is what an enum definition may look
the following:

enum DemoEnum {
VALUE_ONE = 0;
VALUEJWO = 1;
VALUEJHREE = 2;

}

Next, we will have a look at the repeated keyword, which is used for representing
Protobuf collections.

Enabling collections with a repeated keyword
If we want to have any of the message fields as a collection, all we need to do is
place the repeated keyword before the field definition. This way, instead of having
a single value of a specific data type, we will have a collection of values of this data
type.

gRPC on ASP.NET Core ■ 253

You can also have dictionary-like functionality in Protobuf. This is enabled by the
map keyword that we will have a look at next.

Dictionary-like Protobuf functionality
In Protobuf, the map keyword allows us to have a dictionary-like functionality. When
applied, the field becomes a storage for key-value pairs where each key must be
unique. The following is an example of this keyword. In this example, we have a 32-
bit integer as the key and a string as the value:
map<int32j string> map_example = 1;

Next, we will have a look at the oneof keyword that does not have a C# equivalent.

Using the oneof keyword in Protobuf
When you use the oneof keyword in a Protobuf message, we can have a collection
of fields where only one field can be populated at a time. When we set the value for
any of the fields, any field that was set previously is automatically unset.

We have an example of the oneof keyword in the http.proto file that we have
inside the google/api folder of the GrpcServiceApp project. We have the following
block in the HttpRule message definition:

oneof pattern {
string get = 2;

string put = 3;
string post = 4;
string delete = 5;
string patch = 6;

CustomHttpPattern custom = 8;

}

This concludes the overview of the inbuilt data types and keywords that Protobuf
supports. The good news is that we are not stuck with these types. We can create our

ASP.NET
http://http.proto

uwii cusiuiiL iiicbbdgv lyptb dim duu diiy luncLiuiidiiLy nidi we uccu. LjULJMIJ, duiiic ui

these types are already provided to us by the core Google library. They are referred
to as the so-called well-known types.

Well-known data types
To demonstrate how well-known types work, we will add a nullable_greet .proto
file to the Protos folder of the GrpcServiceApp project. We will then populate this
file with the following content:

254 | Implementing C# 11 and .NET 7.0

syntax = "proto3";

option csharp_namespace = "GrpcServiceApp";

import "google/protobuf/wrappers.proto";

package greet;

service NullableGreeter {
rpc SayHello (NullableHelloRequest) returns (NullableHelloReply);
rpc RequestManyReplies (NullableHelloRequest) returns (stream

NullableHelloReply);
rpc SendManyRequests (stream NullableHelloRequest) returns

(NullableHelloReply);
rpc InitiateBidirectionalStreaming (stream NullableHelloRequest)

returns (stream NullableHelloReply);

}

message NullableHelloRequest {
google.protobuf.StringValue name = 1;

}

message NullableHelloReply {
google.protobuf.StringValue message = 1;
google.protobuf.Int32Value message_id = 2;
google.protobuf.BytesValue content_in_bytes = 3;
google.protobuf.Floatvalue message_size_in_kilobytes = 4;
google.protobuf.BoolValue reply processed = 5;

This file is equivalent to the greet.proto we worked with previously. But
this time, all fields are nullable. This is because we have imported the google/
protobuf/wrappers. proto package, which contains all the nullable types, such as
StringValue, Int32Value, and so on. But this is not the only inbuilt package we
can import, and well-known types are not only limited to nullable types. Table 9.2
lists the main well-known types:

gRPC on ASP.NET Core 255

Data type Package name Description

Any google/protobuf/any.proto A type that can store any data
type. Equivalent to dynamic
inC#.

BoolValue google/protobuf/wrappers.proto Nullable bool

StringValue google/protobuf/wrappers.proto Nullable string

BytesValue google/protobuf/wrappers.proto Nullable bytes

FloatValue google/protobuf/wrappers.proto Nullable float

DoubleValue google/protobuf/wrappers.proto Nullable double

Int32Value google/protobuf/wrappers.proto Nullable int32

Int64Value google/protobuf/wrappers.proto Nullable int64

UInt32Value google/protobuf/wrappers.proto Nullable uint32

UInt64Value google/protobuf/wrappers.proto Nullable uint64

Duration google/protobuf/duration.proto Equivalent to TimeSpan in C#

Timestamp google/protobuf/timestamp.proto Equivalent to DateTime in C#

Empty google/protobuf/empty.proto A filler for empty requests
and responses

Table 9.2: Well-known types from the Protobuf Google library

There are some more data types that can be imported from the Google libraries. But
these are the main ones that will be more than sufficient for many use cases.

Now, we have concluded the overview of gRPC on ASP.NET Core. Let us summarize
what we have learned.

Conclusion
In this chapter, we have covered gRPC and the .NET implementation. We should
_____ 1-- c.____ 1_________________ l-_____.niv' c_______ :__________ i__________ i-i._____ id. .11 i1.____

ASP.NET
ASP.NET

now oe laminar wim now io use giw service project templates witn an me pre­
installed dependencies and how to retrofit gRPC dependencies in existing ASP.NET
Core applications. We have covered its setup on both the client and the server.

We saw how easy gRPC is to implement and how writing calls between the client
and the server is almost as easy as calling a method inside a single application.
Although gRPC uses some advanced HTTP/2 and HTTP/3 features internally, we
never see it as the consumer of gRPC libraries. It has all been abstracted away. And
that significantly simplifies the process of writing code.

We have also gone through Protobuf, which is the primary message serialization
protocol used by gRPC. We have learned its syntax, its fundamental structure,

256 ■ Implementing C# 11 and .NET 7.0

and its data types. We have also learned how to extend it by referencing external
packages. For example, this is how we could add the so-called well-known types to
our message definitions.

In the upcoming chapter, we will have a look at ML.NET, which is a .NET-based
framework for building machine learning models.

Points to remember
• gRPC is a strongly-typed communication framework that was specifically

designed for utilizing the latest features of the HTTP/2 protocol.

• gRPC uses Protobuf as its primary message serialization protocol

• There are four types of calls in gRPC: unary client-streaming, server­
streaming, and bi-directional streaming

• The unary call expects a single request and returns a single response

• Client-streaming call expects a stream of messages from the server and
returns a single response

• Server-streaming call expects a single request and returns a stream of
messages

• The bi-directional streaming call uses stream both from the client to the
server and vice versa

• The default data types in Protobuf are not nullable

• Each RPC in gRPC needs to have both a request message type and a response
message type, although either of them can be placed in a stream

ASP.NET
ML.NET

Multiple choice questions
1. What is fixed 32 data type in Protobuf?

a. Fixed-size 32-bit integer that can store negative values
b. Fixed-size 32-bit integer that can store only negative values
c. Fixed-side 32 floating point number
d. Fixed-size 32-bit integer that can only store positive numbers

2. What is a unary call in gRPC?
a. A call that accepts a single request message and returns a single

response message

gRPC on ASP.NET Core ■ 257

b. A call that accepts a single request message and can return either a
single response message or a stream

c. A call that accepts either a single request message or a request stream
but always returns a single response

d. A call where streaming can be done both ways

3. Which of the following is an example of a well-known type?
a. Int32
b. double
c. StringValue
d. All of the above

4. Which NuGet packages do you need to install to enable gRPC client
functionality?

a. Grpc.Net.Client
b. Google.Protobuf

c. Grpc.Tools
d. All of the above

Answers
1. d
2. a
3. c
4. d

ASP.NET

Key terms
• gRPC: A communication framework originally developed by Google that

was designed for efficient communication between services.

• Protobuf: The primary message serialization protocol used by gRPC.

• gRPC service: A Protobuf structure that provides the signatures of the
endpoints that clients can call and servers can implement.

• gRPC message: A Protobuf structure that holds data that gets exchanged
between the server and the client.

258 Implementing C# 11 and .NET 7.0

• Unary gRPC call: An RPC call that accepts a single request and returns a
single response.

• Client-streaming gRPC call: An RPC call that accepts a stream of messages
from the client and returns a single response message.

• Server-streaming gRPC call: An RPC call that accepts a single request
message from the client and returns a stream of response messages.

• Bi-directional streaming gRPC call: An RPC call that accepts a message
stream from the client and returns a message stream from the server.

• Well-known types: Protobuf data types that exist in all popular programming
languages but have to be added to Protobuf via external package references.

• have to be added to Protobuf via external package references.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com

Chapter 10

Machine
Learning with

ML.NET

Introduction
Historically, artificial intelligence (Al) and machine learning (ML) were the domains
of those who were experts in statistics and advanced Math, such as calculus. Also,
Python and R were de facto the only programming languages used by data scientists

ML.NET

to write ML models. However, ML.Mtl has changed all ot this. With this tool, any
.NET developer can take the role of a data scientist. They no longer need to learn
R and Python. Although knowing the actual mathematical formulae for various
specific algorithms is still useful, it is no longer necessary.

ML.NET is a tool that helps developers build ML models by just supplying a
combination of simple and intuitive parameters. All we need to do is execute a
simple command, telling the tool which task we want to perform. The tool will then
take the input data, try to figure out how to work with this data based on some
parameters we have supplied, and generate the code that we can then re-use in our
applications whenever we need to perform a task of a similar nature. For example,
we can determine whether a record with specific properties represents a person
who is younger than 24, predict a house price based on some information about the
house, and so on.

The ML models require some complex code if we were to build them from scratch.
And they cannot be built unless you know what algorithm works best with which

260 ■ Implementing C# 11 and .NET 7.0

type of task and what formula the algorithm uses. But with ML.NET, neither of
these is necessary. It will not only generate the code but also attempt to use different
algorithms to accomplish a certain task, so the most suitable one can be determined.
Of course, the auto-generated code can be optimized further by someone who has
knowledge about ML. But it is still a lot easier to optimize the existing model than
write one from scratch.

To make it even more user-friendly, ML.NET can use a visual low-code editor to
build models with. Instead of writing a command to build a model with, all the
required parameters can be defined on an input form. Then, various components
can just be added to the model by dragging and dropping them.

Structure
In this chapter, we will go through the steps of installing and running ML.NET on all
supported operating systems. We will cover the following topics:

• fundamentalsML.NET

• Choosing a problem for ML

• Training and evaluating your model

• Using a low-code model builder

Objectives

ML.NET
ML.NET
ML.NET
ML.NET
ML.NET

J

By the end of this chapter, you will have known the fundamentals of ML. You will
also know how to use ML.NET and build models with it, both from the command
line and a low-code visual editor.

Prerequisites
To follow this chapter, you will need the following:

• A 64-bit machine running either Windows, MacOS, or Linux OS

• .NET 7 SDK

• A suitable IDE or a code editor

• Being familiar with C# fundamentals

If you do not have any of the preceding listed dependencies installed already, you
can use the setup instruction provided in Chapter 1: Getting Familiar with .NET 7
Application Structure, which also provides a recap of C# fundamentals.

Machine Learning with ML.NET 261

ML.NET fundamentals
Before we can start talking about the fundamentals of ML.NET, we need to cover the
fundamentals of ML. Even though you do not necessarily need to be a data science
expert or have a good knowledge of Math in order to be able to use ML.NET, you
will still need to understand some basic ML concepts.

At its most basic level, ML is when software is written to automatically adjust its
decision-making logic based on the data provided. It is the opposite of the traditional
way of enabling software to make decisions, where such functionality is simply
hard-coded as conditions by using if and switch keywords. ML is especially useful
for dealing with complex real-world problems where the decision-making logic may
need to be adjusted based on ever-evolving sets of data or where such logic is simply
too complex to be hard-coded as a bunch of if statements.

There are different ML algorithms that have different formulae and internal logic.
But all of them share some common characteristics. At the most basic level, the ML
model gets initialized with some random numeric parameters internally. These are
the parameters that enable the model to produce specific results. Then the process
of learning happens by running a specific set of input data against the model in
multiple iterations. In each iteration, the formula inside the model is used to adjust
the values of those internal parameters based on how different the output results
were from the expected result. In the case of unsupervised learning, these parameters
are readjusted to improve the way the data items are classified.
T A Tl

ML.NET
ML.NET
ML.NET
ML.NET
ML.NET

vvnat nappens msiae me moaei wnen it adjusts itseit to produce Better results is
known as learning. The process of configuring the learning process is known as
training. The accuracy of the final model will then depend on the following factors:

• The volume of the data used for training

• The diversity of the data points provided

• The number of learning iterations

• The choice of the learning algorithm

• The choice of configuration specific to the algorithm

There are also some trade-offs that need to be made. We cannot apply an infinite set
of iterations and use billions of data points to train our model with. There is a limit
to how much storage space, CPU, and memory we have. Therefore, our goal should
be to make our model accurate enough for the purpose we are building it and not to
make it completely flawless.

The accuracy of the model can always be determined during the learning process
based on how many of the model's outputs were either correct or close to the

262 Implementing C# 11 and .NET 7.0

expected value. Then, we keep training the model until either the accuracy becomes
acceptable or until the training algorithm has reached its limits by not being able to
improve the accuracy in further iterations.

Once the model has been trained, we can run it against records that it has never seen
before. Then, depending on the task that we have built the model for, our model
should assign a specific category to this record, make some predictions, and so on.

Types of machine learning
Overall, there are three types of machine learning: supervised learning, unsupervised
learning, and reinforcement learning. Let us have a look at each category.

Supervised learning
This type of learning uses input data together with expected values. For example,
if we have a record with various fields, such as job title, income level, and the type
of property the person owns (if any), we can place the person's age as the expected
output value. Then, as the model goes through many of such records, it will keep
adjusting its internal parameters until it comes as close to the expected results for as
many of the training values as possible.

Supervised learning is used for tasks that involve classification and prediction. A
good example of it is image classification. This is where an ML model is given image
data and is told which category the image should be placed under. Then the model
keeps adjusting itself until it can associate a particular pattern of pixels and color as
a particular category.

Unsupervised learning
Unsupervised learning does not come with expected values. Instead, it looks at the
data and performance in its own classification of it. This might be done to either
cluster data points with common characteristics together or to detect anomalies in
the data.

Reinforcement learning
Reinforcement learning is the most complex of all learning types. This is when the
ML model is given a score for performing a particular type of action. The more
desirable the action is—the higher the score. Therefore, this learning method uses
a combination of rewards and punishments. The real-life usages of reinforcement
learning include natural language processing, self-driving cars, training Al to play a
video game, and so on.

Machine Learning with ML.NET 263

Reinforcement learning is not supported by ML.NET out of the box. However, such
functionality can be added to ML.NET by either adding your own algorithms to it,
applying new extension methods to the existing classes, or modifying the code of the
model that has been generated for one other type of tasks.

Now, we will go through the process of setting up the ML.NET tools on our
environment and using the tools to build our first ML model. This process will
slightly differ depending on which OS you are using.

Getting started with ML.NET
Before we can start building our ML models by using ML.NET, we need to install the
right set of tools for our environment.

Installing ML.NET tools
The command to install ML.NET CLI tools will be slightly different depending on
what operating system and CPU architecture you are using on your development
machine. We will have a look at all supported scenarios as follows.

Installing ML.NET on Windows

On a Windows machine that uses Intel/AMD CPU, we can execute the following
command to install the ML.NET tools:
dotnet tool install -g mlnet-win-x64

If our machine uses ARM CPU architecture, then the command will be as follows:

dotnet tool install -g mlnet-win-arm64

In addition to this, Visual Studio IDE on Windows allows us to install the tools via
GUI. To do so, we will need to open the Visual Studio Installer, select the .NET desktop

ML.NET
ML.NET
ML.NET
ML.NET
ML.NET
ML.NET
ML.NET
ML.NET
ML.NET
ML.NET

264 Implementing C# 11 and .NET 7.0

development, check the ML.NET Model Builder option, and click the Install button, as
shown in figure 10.1:
Workloads Individual components Language packs Installation locations

0 Need help choosing what to install? More info

Web & Cloud (4)

/Ok ASPNET and web development
'12' Build web applications using ASP.NET Core, ASP,NET,

HTMLZIavaScript. and Containers including Docker supp...
A Azure development

Azure SDKs, tools, and projects for developing cloud apps
and creating resources using .NET and .NET Framework....

^3 Python development
Editing, debugging, interactive development and source
control for Python.

Node.js development
Build scalable network applications using Node.js, an
asynchronous event-drrven JavaScript runtime

Desktop & Mobile (5)

0 Mobile development with NET
Build crass-platform applications for iOS. Android or
Windows using Xamarin,

t+“1 Desktop development with C++
bx-* Build modern C++ apps for Windows using tools of your

choice, including MSVC, Clang, CMake. or MSBuild.

Uq NET desktop development Q
LacJ Build WPF, Windows Forms, and console applications

using Ctt, Visual Basic, and F4 with .NET and .NET Frame.,.

■ fl Universal Windows Platform development
® fl Create applications for the Universal Windows Platform

with C*. VB, or optionally C * •.

Installation details

* Visual Studio core editor

’ .NET desktop development
• Included

'i .NET desktop development tools
V .NET Framework 4,7.2 development tools
v' C* and Visual Basic

• Optional

Q Development tools for,NET
B .NET Framework 4.8 development tools
Q Blend (or Visual Studio
□ Entity Framework 6 tools

B .NET profiling tools
□ IntelliCode
Q Just-In-Time debugger

B live Sharp
| B MLNET Model Builder |

FV desktop language support
PreEmptive Protection - Dotfuscator
.NET Framework 4.62-4.7.1 development t.„
NET Portable library targeting pack

Windows Communication Foundation
SQL Server Express 2019 localDB
MSIX Packaging Tools

JavaScript diagnostics

*+"l Mobile development with C++
LJ Build cross-platform applications lor iOS, Android or

Windows using C++.

Figure 10.1: Selecting the ML.NET Model Builder option in Visual Studio Installer

Visual Studio does not only allow us to install ML.NET tools in a low-code manner
but also allows us to setup ML models by using GUI. We will cover this process later
in the chapter.

Installing ML.NET on Linux

Linux machines running on Intel/AMD (x64) CPU will have the following
installation command:
dotnet tool install -g mlnet-linux-x64

For ARM-based machines, the installation command will be as follows:
dotnet tool install -g mlnet-linux-arm64

Installing ML.NET on MacOS

On a Mac running on x64 CPU architecture, the installation command will be as
follows:
dotnet tool install -g mlnet-osx-x64

If the Mac device has ARM64 CPU architecture, then the following command should
be used:
dotnet tool install -g mlnet-osx-arm64

ML.NET
ASP.NET
ML.NET
ML.NET
ML.NET
ML.NET

Machine Learning zuith ML.NET ■ 265

Now, once the ML.NET tools are installed, we can start using them to build an ML
model.

Using ML.NET to create your first ML model
We will start by creating a folder for our ML model. Then, we will download a training
dataset from which we can build our model off. We will use a well-known dataset
that is frequently used for such purposes. It can be obtained via the following URL:

https://archive.ics.uci.edu/ml/machine-learning-databases/00331/sentiment%20
lab elle d% 20sentences.zip

Then, once the zip file is downloaded, we can copy the yelp_labelled.txt file
from the archive into the folder that we have just created. This text file contains
tab-separated data where the first column contains input, and the second column
contains the so-called label. In machine learning, the label is the value that the
model produces based on the input data. In this case, we have two integer values
representing the sentiment of the sentence. Here, 1 represents positive sentiment,
whereas 0 represents negative sentiment.

Once we have copied the file into the folder, we can run the following command
from inside the folder:

mlnet classification --dataset "yelp_labelled.txt" --label-col 1 --has-
header false --train-time 60

We are choosing classification as our task, and the file that we have just copied as the
training dataset. We are saying that the second column (the column with an index of
1) is our label column. We are telling the model that the data has no header and that
the first row should be treated as data. We are setting the training time to 60 seconds.
The more time we give it—the more accurate our model will be.

While the training process is running, the console will show us what training
algorithms are evaluated, how long it has spent evaluating each algorithm and what
tine accuracy of each algorithm is. The accuracy is based on how many sentences

ML.NET
ML.NET
ML.NET
https://archive.ics.uci.edu/ml/machine-learning-databases/00331/sentiment%2520

266 ■ Implementing C# 11 and .NET 7.0

the model has correctly categorized as either 1 or 0 after seeing the initial data. The
output of the training will look similar to what is figure 10.2:

Trainer MicroAccuracy MacroAccuracy Duration iteration 1

0 SdcaMaximumEntropyMulti 0.4838 0.5000 2.7 0
1 SdcaMaximumEntropyMulti 0.4838 0.5000 1.4 1
2 FastForestOva 0.7184 0.7185 6.7 2
3 FastTreeOva 0.6488 0.6473 3.3 3
4 SdcaLogisticRegressionOva 0.4838 0.5000 2.4 4

5 LightGbmMulti 0.6889 0.6855 2.9 5
6 LbfgsMaximumEntropyMulti 0.8060 0.8071 2.4 6

7 LbfgsLogisticRegressionOva 0.8047 0.8057 2.8 7
8 FastForestOva 0.7545 0.7548 14.0 8
9 SdcaMaximumEntropyMulti 0.6915 0.6937 1.4 9
10 LightGbmMulti 0.7142 0.7149 2.7 10
11 LbfgsMaximumEntropyMulti 0.7905 0.7914 4.6 11
12 FastTreeOva 0.7485 0.7489 6.3 12
13 SdcaLogisticRegressionOva 0.7292 0.7294 2.4 13

Figure 10.2: Output of the ML training process

Once the training process is completed, a new folder is generated inside the
folder in which we have executed our training. By default, this folder is called
Sampleclassification, which is the same as our model's name. But we can
change its name to anything we want by adding the - - name parameter to the mlnel
classification command mentioned previously. The content of the folder is a
console application that has an auto-generated code for our model.

Program.es file inside the folder is the entrypoint into the application. It can be
executed to run the model. The {modle name}.consumption.cs file contains the
inputs and outputs of the model. It also contains the Predict method that is used
for model consumption. The {model name}.mbconfig file contains detailed model
configuration and results from the training. The {model name}.training.es file
contains the code for the data transformation pipeline that is used during training.
Finally, {model name}. zip folder contains the actual ML model that is used by this
code.

Internally, the code in the C files has been structured in such a way that it can be as
intuitive as possible to experienced .NET developers, even when they do not have
any prior machine learning experience. For example, the class that represents the
model input will look similar to the following, which is also similar to a typical
database model abstraction in frameworks like MVC and Entity Framework:

public class Modelinput

{
[ColumnName(@"col0")]

Program.es
training.es

Machine Learning with ML.NET 267

public string Col0 { get; set; }

[ColumnName(@"coH")]

public float Coll { get; set; }

}

The bulk of ML-related functionality is accessed by the MLContext class, which
is conceptually similar to a DbContext class used by Entity Framework. The
transformation pipeline used during training is conceptually similar to the request
processing pipeline of ASP.NET Core.

Our training data is represented by an implementation of the IDataView interface,
which is passed into the RetrainPipeline method. The training pipeline, with
its multiple transformation steps, implements the IEstimator<ITransformer>
interface. We need multiple transformation steps on the input data because each
training algorithm can only work with data in a specific shape, so we cannot just
use the raw data. Once we have built our pipeline, we can build our model from
it by calling the Fit method on the pipeline object by passing our IDataView
implementation into it. So, our RetrainPipeline method will look similar to the
following:

public static ITransformer RetrainPipelinefMLContext mlContext,
IDataView trainData)

{
var pipeline = BuildPipeline(mlContext);
var model = pipeline.Fit(trainData);

return model;

}

We have now built our first simple ML model. Let us have a look at what else we can
do with ML.NET.

Choosing a problem for ML
Here is the complete list of the tasks that ML.NET is capable of dealing with. For
each of these, we will go through its basic overview, have a look at how we can
construct a command for it, and look at internal trainer algorithms that this type of
task can use.

Binary classification

ML.NET
ASP.NET
ML.NET
ML.NET

Binary classification is the process of determining whether a particular record in the
data set belongs in either of two categories. This is the simplest type of classification

268 ■ Implementing C# 11 and .NET 7.0

that ML can do, as the categories can either be defined by binary values (1 and 0) or
as a Boolean (true or false).

This algorithm can be used to determine whether a person is employed or
unemployed, whether the person is a homeowner or not, and for many other
situations where either-or decision or prediction is required. Binary classification is
a type of supervised learning.

The classification task that we performed previously when we ran the mlnet
classification command is a binary classification problem because we only have
two sentiment categories: 1 and 0.

A binary classification model can be generated by running the following command
with appropriate parameters:

mlnet classification

Here is the list of the parameters supported by the following command:

--dataset <dataset> (REQUIRED)
File path to single dataset or training dataset for train/test
approaches.

--label-col <label-col> (REQUIRED)
Name or zero-based index of label (target) column to predict.

--cache <Auto|Off|0n>
Specify [On|Off|Auto] for cache to be turned on, off, or auto-determined
(default), [default: Auto]

--has-header
Specify [true|false] depending on if dataset file(s) have header row. Use
auto-detect if this flag is not set.

--ignore-cols <ignore-cols>
pecify columns to be ignored in given dataset. Use space-seperated
column names or zero-based indexes.

--log-file-path <log-file-path>
Path to log file.

--name <name>

Machine Learning with ML.NET 269

Name for output project or solution to create. Default is
Sampleclassification, [default: Sampleclassification]

-Oj --output <output>
Location folder for generated output. Default is current directory.

--test-dataset <test-dataset>
File path for test dataset in train/test approaches.

--train-time <train-time>
Maximum time in seconds for exploring models with best configuration.
Default time is 100 sec. [default: 100]

-Vj --verbosity <verbosity>
Output verbosity choices: q[uiet]j m[inimal] (default) and diagnostic].
[default: m]

The list of algorithms suitable for binary classification is as follows:

AveragedPerceptronT rainer
SdcaLogisticRegressionBinaryTrainer
SdcaNonCalibratedBinaryTrainer
SymbolicSgdLogisticRegressionBinaryTrainer
LbfgsLogisticRegressionBinaryTrainer
LightGbmBinaryTrainer
FastTreeBinaryTrainer
FastForestBinaryTrainer
GamBinaryTrainer
FieldAwareFactorizationMachineTrainer
PriorTrainer
LinearSvmTrainer

Multiclass classification

ML.NET

Multiclass classification is conceptually similar to binary classification. However, it
typically deals with situations where there are more than two categories. It makes
this type of problem significantly more complicated than a binary classification
problem, as our categories can no longer be represented by either binary or Boolean
values.

270 Implementing C# 11 and .NET 7.0

The usages of this algorithm include anything that requires to determine if a given
record belongs in a given category. For example, we may use it to determine which
age group a particular person belongs to based on their interests, income, job title,
and home ownership status. As multiclass classification is conceptually similar to
binary classification, it belongs in the supervised learning category.

A multiclass classification model can also be created by executing the mlnet
classification command.

The algorithms supported by this task are as follows:

LightGbmMulticlassTrainer
SdcaMaximumEntropyMulticlassTrainer
SdcaNonCalibratedMulticlassTrainer
LbfgsMaximumEntropyMulticlassTrainer
NaiveBayesMulticlassTrainer
OneVersusAllTrainer
PairwiseCouplingTrainer

Regression
Regression is an attempt to predict how a particular feature will change based on
the changes in related features. When we use a regression algorithm to train our
model, we try to make it come up with a mathematical function that will produce a
reasonably accurate result when the values of the features change.

Regression can be used to predict how house prices will change in the future based
on house attributes and historic market data. It can also be used to predict changes
in stock prices. Regression is a type of supervised learning.

A regression model can be created by executing the following command:
mlnet regression

The supported arguments are as follows:

--dataset <dataset> (REQUIRED)
rl 1 a kn “»+■ In -t-cv r i nnl n /-I -I +■ -» r- zn +■ S'. kn 4-nm* m' nn i-lni-'kr zn4- £r\>n Tk-'ni'n/t-nfT

me pdLii lu single udLdsei ur li dining udLdseL iui Li diii/iesL

approaches.
--label-col <label-col> (REQUIRED) Name or zero-based index of label

(target) column to predict.

--cache <Auto|0ff|0n>
Specify [On|Off|Auto] for cache to be turned on, off, or auto-determined
(default), [default: Auto]

MachineLearningwithML.NET ■ 271

--has-header
Specify [true|false] depending on if dataset file(s) have header row. Use
auto-detect if this flag is not set.

--ignore-cols <ignore-cols>
Specify columns to be ignored in given dataset. Use space-seperated
column names or zero-based indexes.

--log-file-path <log-file-path>
Path to log file.

--name <name>
Name for output project or solution to create. Default is
SampleRegression.

-o, --output <output>
Location folder for generated output. Default is current directory.

--test-dataset <test-dataset>
File path for test dataset in train/test approaches.

--train-time <train-time>
Maximum time in seconds for exploring models with best configuration.
Default time is 100 sec. [default: 100]

-v, --verbosity <verbosity>
Output verbosity choices: q[uiet], m[inimal] (default) and diagnostic],
[default: m]

The repression task snnnorts the following algorithms-

MachineLearningwithML.NET

LbfgsPoissonRegressionTrainer
LightGbmRegressionT rainer
SdcaRegressionTrainer
OlsTrainer
OnlineGradientDescentTrainer
FastTreeRegressionTrainer

272 | Implementing C# 11 and .NET 7.0

FastTreeTweedieTrainer
FastForestRegressionTrainer
GamRegressionTrainer

Recommendations
The goal of this task is to come up with a list of recommended items based on historic
data. For example, we can use it to offer product recommendations to a user based
on which products the user bought in the past.

This type of task belongs under the unsupervised learning category, as we cannot
have a definite answer to train the model against. Instead, it is up to the algorithm to
establish the relationships in the data.

The recommendation ML model can be created by executing the following command:

mlnet recommendation

The following parameters are supported:

--dataset <dataset> (REQUIRED)
File path to single dataset or training dataset for train/test
approaches.

--item-col <item-col> (REQUIRED)
Name or zero-based index of item column. Items are recommended to users.

--rating-col <rating-col> (REQUIRED)
Name or zero-based index of ratings (target) column to predict.

--user-col <user-col> (REQUIRED)
Name or zero-based index of user column. Users receive recommended

items.

--cache <Auto|Off|On>
Specify [On|Off|Auto] for cache to be turned on, off, or auto-determined
(default), [default: Auto]

--has-header
Specify [true|false] depending if dataset file(s) have header row. Use
auto-detect if this flag is not set.

Machine Learning with ML.NET 273

--log-file-path <log-file-path>
Path to log file.

--name <name>
Name for output project or solution to create. Default is
SampleRecommendation.

-o, --output <output>
Location folder for generated output. Default is current directory.

--test-dataset <test-dataset>
File path for test dataset in train/test approaches.

--train-time <train-time>
Maximum time in seconds for exploring models with best configuration.
Default time is 100 sec. [default: 100]

-v, --verbosity <verbosity>
Output verbosity choices: q[uiet], mfinimal] (default) and diagnostic].
[default: m]

The task supports the following algorithm:

MatrixFactorizationTrainer

Forecasting
Forecasting can be used to predict future events based on some past data, such as
weather and stock market prices, or determine when a particular action would be
reouired, such as a car maintenance task.

ML.NET

Supervised learning tasks, such as classification and regression, can be used for
forecasting. However, it also comes with algorithms that are specific to forecasting.
Also, depending on the type of forecasting that is done, it can fall under the
unsupervised learning category. In this case, forecasting will be done by the pattern
found in the historic data.

The following command can be used to train a forecasting model:

mlnet forecasting

274 H Implementing C# 11 and .NET 7.0

The command supports the following parameters:

--dataset <dataset> (REQUIRED)
File path to single dataset or training dataset for train/test
approaches.

--horizon <horizon> (REQUIRED)
Defines how many periods forward you would like to forecast. The horizon
is in units of the time series frequency. Units are based on the time
interval of your training data, for example, monthly, weekly that the
forecaster should predict out.

--label-col <label-col> (REQUIRED)
Name or zero-based index of label (target) column to predict.

--time-col <time-col> (REQUIRED)
Used to specify the datetime column in the input data used for building
the time series and inferring its frequency.

--cache <Auto|Off|0n>
Specify [On|Off|Auto] for cache to be turned on, off, or auto-determined
(default), [default: Auto]

--has-header
Specify [true(false] depending on if dataset file(s) have header row. Use
auto-detect if this flag is not set.

--log-file-path <log-file-path>
Path to log file.

--name <name>
Name for output project or solution to create. Default is
Sampleclassification, [default: Sampleclassification]

-Oj --output <output>
Location folder for generated output. Default is current directory.

--test-dataset <test-dataset>
File path for test dataset in train/test approaches.

Machine Learning with ML.NET 275

--train-time <train-time>
Maximum time in seconds for exploring models with best configuration.
Default time is 100 sec. [default: 100]

-Vj --verbosity <verbosity>
Output verbosity choices: q[uiet], mfinimal] (default) and diagnostic].
[default: m]

Forecasting can use tire following algorithm:
ForecastBySsa

Image classification
Image classification is a type of multiclass classification but is specific to images. A
complex algorithm that usually involves multi-level processing, such as a neural
network, is used to determine what patterns of colors and pixels are common to a
specific category. Then, it will attempt to place a newly seen image into one of the
known categories. Since image classification is a type of multiclass classification, it is
an example of supervised learning.

An image classification model can be trained by using the following command:
mlnet image-classification

This command uses the following parameters:

--dataset <dataset> (REQUIRED)
Path to local folder which contains labelled sub-folders of all images.

ML.NET

--cdtrie ^.aulu|utt|un?

Specify [On|Off|Auto] for cache to be turned on, off, or auto-determined
(default), [default: Auto]

--log-file-path <log-file-path>
Path to log file.

--name <name>
Name for output project or solution to create. Default is
SamplelmageClassification.

-o, --output <output>

276 Implementing C# 11 and .NET 7.0

Location folder for generated output. Default is current directory.

--test-dataset <test-dataset>
File path to parent folder that contains test dataset in train/test
approaches.

-v, --verbosity <verbosity>
Output verbosity choices: q[uiet], m[inimal] (default) and diagnostic],
[default: m]

Image classification can use the following training algorithm:
ImageClassificationTrainer

Clustering
Clustering is the process of grouping records together in clusters based on some
shared features. It can be used to establish relationships between different records
based on their similarities. Clustering is especially useful in marketing for the
purpose of understanding the target audience. It is an example of unsupervised
learning.

Clustering does not use its own dedicated command. An ML model dedicated to a
clustering task can be created by creating the following generic command:

mlnet train

The parameters of the command are as follows:
--tnaiirino-rnnlio Zfnaim’no-rnnlioS (P F Al IT P RD

LI UJ.IIJ.llg L.VIIII& Ml UXII-Lllg WllllgZ I \ L X I \ I- \J j

path to training config file

--log-file-path <log-file-path>
Path to log file.

-v, --verbosity <verbosity>
Output verbosity choices: q[uiet], m[inimal] (default) and diagnostic],
[default: m]

The task selection and other configurations are performed inside a file with the
mbconbfig extension, such as the one that we have generated earlier. The path to this
file is added to the --training-config parameter.

The clustering ML model can use the following training algorithm:
KMeansTrainer

MachineLearningwithML.NET ■ 277

Anomaly detection
Anomaly detection is the process of identifying data points that look out of place in
the set of data. For example, it can be used to determine if the Web traffic is behaving
abnormally to detect potential attacks on the server.

Anomaly detection is a task that can fall either under the supervised or unsupervised
learning category. With supervised learning, each item in training data can be given
a binary label to identify it either as an anomaly or not, which makes it similar to
binary classification. On the other hand, an activity similar to clustering can be used
to separate abnormal data from the rest of the data, as anomalies will have distinctive
characteristics.

Anomaly detection does not have its own dedicated command. Instead, the generic
mlnet train command is used, and the configuration is added to the mbconfig file.
The training algorithm that an anomaly detection task can use is as follows:

RandomizedPcaTrainer

Ranking
This type of ML task has a numeric rank next to each record. Then the job of the
model is to figure out how the combination of features in the data determines the
rank.

This is a type of supervised learning that is conceptually similar to multiclass
classification. However, there is also a major difference. While categories in multiclass
classification are distinct, each rank value represents whether a particular record is
"better" or "worse" than other records. This is why a model built for this specific

MachineLearningwithML.NET

problem can be used as a base for a reinforcement learning task.

The ranking does not have its own dedicated command. Instead, the generic mlnet
train command is used, and the configuration is added to the mbconfig file. The
training algorithms that a ranking task can use are as follows:

LightGbmRa n ki ngTrainer
FastTreeRankingTrainer

Training and evaluating your model
When we are training an ML model, the algorithms that are involved in the process
will try to figure out the relationship between the input data (features) and output
data (labels). Then a subset of the training data will be used to evaluate the accuracy
of the model by passing input values into it and checking what output value is
produced. The learning process will then adjust some internal variables of the model
to improve the accuracy on the next run.

278 ■ Implementing C# 11 and .NET 7.0

Training models for longer usually improve their accuracy. But it is rare for a model
git to be 100% accuracy against complex real-world data. Therefore, there is a risk
that if we run the model for too long, we will just be wasting time and resources.
There is also a risk of overfitting the model to the sample data. This is where the
model fits the data from the particular dataset reasonably well, but its configuration
is not generic enough. When this happens, the model will make accurate predictions
against the input data from the training dataset but will perform poorly against data
that it has never seen before. This is why we need to strive for a tolerable degree of
accuracy rather than 100% accuracy. This is also why we need to check other metrics
and not just accuracy.

The metrics that we can evaluate are displayed while the model is being trained and
when the training is completed. The exact metrics available to us will depend on the
task that we are training our model to perform. Let us go through them.

Binary classification metrics
The following metrics are displayed when binary classification training is performed:

• Accuracy: Indicates how often the model comes up with the right answer.
The number can range from 0 to 1. The closer the number to 1—the better
the accuracy. But if the number is exactly 1, it indicates a potential issue with
overfitting.

• Area Under Curve (AUC): A curve is generated by sweeping the true
positive rate versus the false nositive rate. The value should be as close to

1 as possible but should be greater than 0.5. If the value is less than 0.5, the
model is not useful.

• Area Under curve for Precision-Recall (AUCPR): The value closer to 1
indicates that the model returns accurate results and returns the majority of
positive results. This measure is especially useful in highly imbalanced data
sets.

• Fl-score: The score ranges from 0 to 1 and tells us how precise our classifier
is. The closer to 1 the score is—the better our classifier is.

Multiclass classification metrics
Multiclass classification has its own metrics that are different from those used by
binary classification.

• Micro-accuracy: The value ranges from 0 to 1. The closer the value to 1—the
better. This metric is preferable over macro-accuracy

Machine Learning with ML.NET 279

• Macro-accuracy: The value ranges from 0 to 1. The closer the value to 1—the
better.

• Log-Loss: The value ranges from 1 to 0. The closer the value is to 0—the
better.

Log-Loss reduction
The value can range from negative infinity to 1. A value of less than 0 indicates
that the model performs worse than a random guess. The closer the value to 1—the
better.

Image classification
Image classification has the following metrics:

• Log-Loss: The value ranges from 1 to 0. The closer the value is to 0 - the
better.

• Per-class Log Loss: A range of log-loss values is calculated per each image
category. This helps us to determine how good tire model is at identifying
specific image types.

Forecasting
THrrt*nn>5c4ir*rr koc f-rdl cr mol-rirc'

ML.NET

1 UICLOLOLUL^ 1LCLO 11 LC JLUJULU VV 11 Lg 11LCL11LD.

• Mean Absolute Error: The number represents the average difference between
the actual and the forecasted value. The lower the number—the better.

• Root Mean Squared Error: It is similar to Mean Absolute Error but is based
on a square root of the squared difference between the predicted and the
actual values. This metric helps to identify large individual errors, as having
a large number squared will produce a large average number.

Regression and recommendation
These tasks have the same set of metrics, which we will have a look at now:

• R-Squared: The value ranges from 0 to 1. The closer the value to 1—the better.
However, the value of 1 may indicate an overfitted model. And a value of 0.5
is usually acceptable.

• Absolute-loss: The values are positive. The closer the value to 0—the better.

• Squared-loss: The values are positive. The closer the value to 0—the better.
However, a relatively large value does not necessarily indicate a problem.

280 Implementing C# 11 and .NET 7.0

• RMB-loss: The values are positive. As with any type of loss, the closer the
value to 0—the better.

Clustering metrics
The accuracy of a clustering model can be assessed by looking at the following
metrics:

• Average distance: The closer the value is to 0—the better the model. A value
closer to 0 correlates with more clustered data.

• Davies Bouldin index: The closer the value is to 0—the better. More dispersed
data will result in a better score.

• Normalized mutual information: The value is between 0 and 1. The closer
the value is to 1—the better.

Anomaly detection metrics
When we are interested in evaluating the performance of our anomaly detection
algorithm, here are the metrics we should be looking at:

• Area Under ROC Curve: The value ranges from 0 to 1. The closer the value
is to 1—the better. However, values lower than 0.5 means that the model is
useless.

• Detection Rate at false positive count: The value ranges from 0 to 1. The
closer the value is to 1—the better. This means that there are fewer false
positives being detected.

Ranking metrics
Ranking ML models can be evaluated by looking at the following metrics:

• Discounted Cumulative gains: The numeric value is unbounded. The higher
the value - the better.

• Normalized Discounted cumulative gains: The numeric value can range
from 0 to 1. The closer the value is to 1—the better.

This summarizes the main metrics for each model type. So far, we have used a
combination of CLI and code to build our model. But if you are a Windows user, you
can build your ML.NET models in a low-code fashion by using GUI. This is what we
will have a look at next.

ML.NET

Machine Learning with ML.NET 281

Using a low-code model builder
To see how we can build a machine-learning model entirely by using GUI, we need to
first enable the ML.NET workload via Visual Studio Installer as have been described
previously. We can then create a console application project in Visual Studio. Then,
we can right-click on this project, click on Add option and then click on Machine
Learning Model, as figure 10.3 demonstrates:

Figure 10.3: Adding a machine learning model to a console application

ML.NET
ML.NET

282 Implementing C# 11 and .NET 7.0

In the dialog that appears, we will then select the Machine Learning Model (ML.NET)
template, as shown in figure 10.4:

Figure 10.4: Selecting ML.NET template

This will then take us to the screen where we will be able to select our ML Scenario,
as figure 10.5 demonstrates:

ML.NET
ML.NET

Machine Learning zuith ML.NET ■ 283

sf™ri<> Select a scenario
Environment

Train with your data

The following scenarios use Automated ML to train and pick the best model for your data.
_ . Learn more about training with your own data in Model Builder.

Evaluate

Consume

Next steps

Data classif ication

Classify text data into 2+ categories,
e.g. predict if comments are
positive or negative sentiments.

Value prediction

Predict a numeric value from your
data (regression), e.g. predict the
price of a house based on features
like size, location, etc.

Image classification

Classify images into 2+ categories,
e.g. predict whether an image is of a
dog or a cat.

Local Local Azure Local

Recommendation

Produce a list of suggested items
for a particular user, e.g.
recommend products.

Object detection

Detect and identify objects in
images, e.g. detect cars in an image
and draw bounding boxes around
each car.R Feedback

Figure 10.5: ML scenario selection

We can then select whether to run the ML training locally or in Azure. Some tasks
only support one option, whereas others support both. When we select the right
option and click Next, we are taken to the next screen, where we can select the

ML.NET

284 | Implementing C# 11 and .NET 7.0

dataset either from an SQL database or from a file. Once the dataset is loaded, we
can preview it and select the label column, as figure 10.6 demonstrates:

Add data
In order to build a model, you must add data and choose your column to predict.

How do I get sample datasets and learn more?

Input
Data source type

® File (.csv, .tsv, .txt)

0 SQL Server

C:\Repos\a-complete-guide-to-implementing-csharp11-and-dotnet7\Chapter-10\MachineLe3rningDemo\yelpJabelled.txt Browse,,.

Column to predict (Label): ©

coll

Advanced data options,,,

Data Preview
10 of 1,000 rows, and all I columns (including 0 columns that are ignored).

jcoib"..... " ~ " Icon

Wow... Loved this place, 1

Crust is not good. 0

Not tasty and the texture was just nasty. 0

Stopped by during the late May bank holiday off Rick Steve recommendation and loved it 1

The selection on the menu was great and so were the prices. __ |1

Now I am getting angry and I want my damn pho, 0

Honeslty it didn't taste THAT fresh.) 0

The potatoes were like rubber and you could tell they had been made up ahead of time being kept under a warmer. 0

The fries were great too, 1

A great touch. 1

Next step

figure 10.6: previewing the dataset and selecting the label column

On the next screen, we can configure the training parameters and start training our
model. Once the training is completed, we can see how accurate our model is. We can
also evaluate it by passing arbitrary input data to it and checking whether it returns
the right answers. Then, once we are happy with our model, we can consume or
deploy it. We can also either retrain or improve our model if we are not fully happy
with it.

Behind the scene, this process would have created the same kind of code as we had
looked at when we used the command line. Also, while the training is running, the
terminal in Visual Studio would have produced the same kind of output as would
have been produced in the command terminal by the CLI tool. Both tools would

Machine Learning with ML.NET 285

produce similar code that can then be modified directly.

Conclusion
In this chapter, we have covered the fundamentals of ML that should be known by
anyone who wants to apply ML in practice or analyze the accuracy of an ML model.
We went through the types of learning that ML can do and the types of tasks that
each type of learning can address.

We have also covered the usage of ML.NET, which is a tool that allows the generation
of ML model code just by running an intuitive command with a simple set of
parameters. We have learned how to use this tool both from the CLI and a visual
editor perspective.

We went through all the tasks that ML.NET supports, and we looked at all algorithms
that can be used in each of these tasks. We now know how ML.NET supports a
variety of supervised and unsupervised learning tasks out of the box. Although
reinforcement learning is not supported by ML.NET by default, we briefly had a look
at how such tasks can be addressed by ML.NET by either writing some additional
extension methods or by inserting additional functionality into the generated code.

In the upcoming chapter, we will have a look at the process of running .NET apps
inside containers, so they can be deployed anywhere together with their execution
environment.

Points to remember
• is a .NET-based tool that can build ML models from either the CLI

or a graphical user interface.
ML.NET

• There are three types of ML learning activities: supervised learning,
unsupervised learning, and reinforcement learning. supports the
former two out of the box.

ML.NET

• will generate the code for the model that it builds to address the
task specified for the specified set of data.
ML.NET

• The accuracy of the model will depend on the algorithm used and the input
parameters specified, such as the number of learning iterations and the depth
of the neural network used if the selected algorithms use one.

• can evaluate multiple algorithms and select the one that produces
the best results.
ML.NET

ML.NET
ML.NET
ML.NET
ML.NET
ML.NET
ML.NET
ML.NET
ML.NET
ML.NET
ML.NET

286 ■ Implementing C# 11 and .NET 7.0

Multiple choice questions
1. What types of learning can be used in ML?

a. Supervised learning
b. Unsupervised learning
c. Reinforcement learning
d. All of the above

2. What is the role of MLContext class in ?ML.NET
a. It provides access to most of the ML functionality
b. It stores the data that has been loaded into the model
c. It stores transformed data
d. It stores the evaluation results of the model

3. What is multiclass classification?
a. The process of predicting whether an input object has a particular

property
b. Assigning input data to one of two categories
c. Assigning input data to one of any arbitrary number of categories
d. Determining whether a particular image belongs within a specific

category

4. Which of the following tasks does not support us out of the box?ML.NET
a. Regression
b. Ranking
c. Natural language processing
d. All of the above are supported

Answers
i. d
2. a

ML.NET
ML.NET

3. c
4. c

Machine Learning with ML.NET 287

Key terms
• : .NET-based tool that allows to build an ML model represented by

C# code.
ML.NET

• Supervised learning: A type of ML where raw input data is given alongside
the expected outputs.

• Unsupervised learning: A type of ML that looks for common patterns in the
data without any expected input provided.

• Reinforcement learning: A type of ML where the model is encouraged to
perform specific activities via a reward/punishment mechanism.

• Binary classification: An ML task that determines whether a particular
record belongs in one of two categories.

• Multiclass classification: An ML task that determines whether a record
belongs in one of several categories.

• Regression: An attempt to predict a value from a set of related values.

• Clustering: An unsupervised learning task that palaces various records into
different groups based on similar features.

• Anomaly detection: An unsupervised learning task that detects values that
do not fit an established pattern.

• Ranking: A task that assigns ranks to various data points based on some
examples.

• Recommendations: An ML task that attempts to make a recommendation to
users based on their historic behavior.

• Forecasting: An ML task that attempts to come up with a feature value based
on the historic set of values.

• Image classification: An attempt to determine what category an image
belongs to, which is often the same as attempting to determine what is
shown on an image.

ML.NET
ML.NET

288 ■ Implementing C# 11 and .NET 7.0

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com

Chapter 11

Microservices and
Containerization on

.NET 7

Introduction
Many popular Web applications have to deal with a large amount of data; for
example, an application such as Facebook and Twitter deals with huge volumes of
traffic at the time. They have to support millions of users simultaneously engaging
in live interactions while keeping the performance high.

The Web applications that have to deal with large-scale usage are typically built as
a collection of distributed microservices rather than a single monolithic application.
Each microservice is responsible only for a specific functionality or a collection of
related functionalities. This way, each part of the system can be scaled independently,
and the load can be distributed among as many separate components as needed.

Normally, high-performance applications use two different types of scaling: vertical

scaling (scaling up) and horizontal scaling (scaling out). The process of vertical
scaling involves adding more hardware resources, such as RAM and CPU, to make
the machine faster. This works, but it has its limits. Horizontal scaling, on the other
hand, is about distributing the load among many instances of an application. With
a well-implemented architecture, this process has virtually no limits. This is where
microservices show their usefulness.

To make microservices even more effective, containerization was invented.
This process allows each application to be deployed together with its runtime

290 ■ Implementing C# 11 and .NET 7.0

environment. The application would be completely isolated from the outside world,
except for some of its parts, which can be intentionally configured. This would
ensure that the application behaves consistently in any environment, as none of the
processing happening on the host machine can cause any unintentional side effects
to the application. This also ensures that the application can run on absolutely any
machine that supports a specific containerization technology, regardless of what
operating system runs on that machine and what system-level dependencies are
installed on it.

The main containerization technology used in the IT industry is Docker. Although
alternatives exist, Docker is the de facto standard containerization technology. It is
also well-integrated with the .NET SDK. This is what we will cover in this chapter.

Structure
In this chapter, we will go through the fundamentals of Docker containers and their
usage in the context of .NET. We will cover the following topics:

• Docker container fundamentals

• Base Docker image for .NET 7

• Orchestrating applications with Docker Swarm

• Orchestrating applications with Kubernetes

Objectives
By the end of this chapter, you will have learned how to publish a .NET application
inside a container and how to orchestrate a distributed containerized application via
Docker Swarm and Kubernetes.

Prerequisites

To follow this chapter, you will need the following:

• A machine running either Windows, MacOS, or Linux operating system

• .NET 7 SDK

• A suitable IDE or a code editor

• Being familiar with C# fundamentals

If you do not have any of the preceding listed dependencies installed already, you
can use the setup instruction provided in Chapter 1: Getting Familiar with .NET 7
Application Structure, which also provides a recap of C# fundamentals.

Microservices and Containerization on .NET 7 291

Docker container fundamentals
A Docker container can be thought of as a lightweight virtual machine (VM). An
ordinary VM would be a virtual version of a computer that runs inside an operating
system or a physical computer and shares its resources. It would normally be a
fully functioning computer that happens to be isolated from its host environment. It
would have a fully functioning operating system, be accessible via a user interface,
and otherwise be usable as a normal computer.

These characteristics of a VM make it heavyweight. Even though it is possible to limit
the amount of hardware it can access, it would still require a reasonable amount of
resources just to perform the most basic operations. It would also occupy a significant
amount of storage on the disk due to its need to have a complete operating system
of its own. This also makes the process of moving a VM to a different hardware
somewhat difficult and time-consuming.

Docker has changed all of this. A Docker container is still an isolated environment
that can run applications inside of it, just like a VM. But it does not have the full OS.
Typically, a container would have a very lightweight version of the OS that only has
the core components necessary for it to function. If the application that needs to be
deployed into the container needs any specific tools, drivers, or utilities, these can be
added to the container before the application is placed in it. This way, the size of the
container might not be much bigger than the size of the application that runs inside
it. This is what makes the containers easy to replicate, deploy, and move between
physical machines.

Containers and container images
A Docker container refers to an active unit that is running in the system. Before a
container can be built and launched, a container image must be created. The container
image represents all the data container has. But it is not in an active state. In fact,
it can be thought of as a file that can be downloaded and uploaded; even though it
is not exactly a file, but it is concentuallv similar. When an imaee is built, it can be

- - - - - - - - - - - ; - - - -- - - - - - - - - - - - - - r- - - - J - - - - - - - -- - - - - —- - - - - o- - - - - - - - , ~- - - _
pushed into an image registry, which is equivalent to uploading a file to storage. The
image can then be pulled from the registry, which is analogous to downloading a file.
Once an image has been pulled, a container can be launched from it.

Private Docker image registries can be created to host container images specific to a
concrete system and/or a concrete organization. By default, Docker is connected to
the Docker Hub registry, which is available publicly. Any image on it can normally be
pulled onto any machine running Docker. Docker Hub is available via the following
URL:

https://hub.docker.com/

292 ■ Implementing C# 11 and .NET 7.0

Base images and layers
Every Docker container image is built on top of base images. Each base image will
probably be based on base images of its own. The only exception is the so-called
scratch image, which is empty.

A base image provides a reusable set of dependencies. For example, if we want to
run a .NET application inside a container, we could create our image based on the
standard .NET base image. This image will have all the necessary SDK components
and tools that allow us to build and run our application.

To build an image, Docker uses the so-called Dockerfile script. Dockerfile is a
standard name of a file that contains all commands necessary to add all the required
components to the image. We can copy files, build applications, expose certain ports,
download, install any missing OS components, and so on.

Typically, every time a command gets executed inside Dockerfile, an image layer
gets created and cached in the local Docker instance. This makes subsequent builds
a lot faster. If a sequence of the commands has not changed and the results of these
commands are deterministic, Docker will not necessarily execute all these commands
again when an image needs to be rebuilt. Instead, it will just pull an image layer that
was created by executing these commands previously. Only subsequent commands
will be executed if any new commands are added or if the target of any given
command has changed (for example, there were code changes in the application
that is being built).

Network isolation and port mapping
By default, a Docker container is completely isolated from any other applications
running in the same environment. It can be accessed from within the inner Docker
network, but nothing else can communicate with it. However, the applications inside

https://hub.docker.com/

a LUlliaiLLCi toil LUilLllLUlLLLClLC CllLU. DC1LU. iCl^U.CDLD LU 11 LU ULLL01U.U VVU11U.. JU, UJ U-CiaUlL,

an application inside a Docker container can act as a client but not as a server.

To make an application inside a Docker container act as a server, a port mapping
can be used. To make it work, a specific port is marked as exposed by a command
inside the Dockerfile while the image is built. Then, a port mapping is added to the
command that launches the container. The exposed container port is mapped to a
specific port on the host machine. This makes the application accessible to anything
on the network that the host machine is connected to, including the Internet.

File system isolation and bind mounts
By default, the file system inside a Docker container is fully isolated. It can be
accessed by Docker and by executing specific Docker commands. But nothing else
on the host machine can access the files inside the container.

Microservices and Containerization on .NET 7 293

Sometimes, however, there is a need to enable easy file sharing between a Docker
container and its host machine. It might be convenient to expose log files this way.
If it happens in a development environment, it would be convenient to see what is
happening inside the container in real-time. Docker has the ability to map portions
of the internal file systems of the containers to specific folders on the host OS. There
are multiple ways of achieving it, but bind mount is perhaps the most popular
technique.

A bind mount is a process of establishing a two-way mapping between a specific
file or folder inside a Docker container and an equivalent file or folder on the host
machine. Making changes to the mapped content on the host machine makes the
same changes happen inside the container. The same is true the other way around.

Now, we will move on to the installation of Docker. The process will vary depending
on what operating system you use.

Installing Docker on Linux
Docker was originally developed for Linux only before it became available on
Windows and Mac OS. There are multiple ways of installing it. It can be done purely
via a command line interface or via a fully managed Docker Desktop. There are also
some differences in installing it depending on the exact Linux distro that is being
used.

Because the ways of installing Docker on Linux vary depending on your personal
preferences and the distro that you use, the best course of action is to follow the
official installation instruction for Linux. This can be found via the following link:

https://docs.docker.com/desktop/install/linux-install/

Installing Dock pt nn Mar

https://docs.docker.com/desktop/install/linux-install/

- - - - - - „- - - - - -o- - - - —

Mac will also have some variations of installing Docker depending on whether
a specific machine uses Intel or Apple Silicon. The most up-to-date installation
instruction can be found here:

https://docs.docker.com/desktop/install/mac-install/

Installing Docker on Windows
Windows installation of Docker Desktop requires Hyper-V, which is only available
on 64-bit versions of Windows 10 or 11 Pro, Enterprise, and Education. Therefore,
the only way to install Docker on the Home edition of Windows is to do it in a VM.

294 Implementing C# 11 and .NET 7.0

The detailed installation instruction for Windows is available via the following link:

https://docs.docker.com/desktop/install/windows-install/

Once we have Docker installed on our development machine, we can start looking at
its integration with .NET 7 SDK. We will also look at some basic Docker commands,
both the ones that are used inside a Dockerfile to build an image and the ones used
by the CLI.

Base Docker image for .NET 7
Since .NET 7, Docker functionality is fully integrated with the SDK, the simplest
way of creating a Docker image with your application inside of it is to publish it as
a Docker image. This is what we will do next.

We can use any .NET application type but will use an ASP.NET Core Razor Pages
application as an example. We can create such an application by executing the
following command:

dotnet new web -o BasicContainerApp

Then, we can open the terminal inside the folder of the newly created project and
execute the following command to add a temporary NuGet package to the project
that is required for the seamless creation of a Docker image:

dotnet add package Microsoft.NET.Build.Containers

Next, we will execute the following command to create a Docker image:

dotnet publish --os linux --arch x64 -c Release

https://docs.docker.com/desktop/install/mac-install/
https://docs.docker.com/desktop/install/windows-install/
ASP.NET

-p:PublishProfile=DefaultContainer

The - -os parameter indicates what operating system Docker is configured to run. It
is not the same as the operating system of the host machine, as Docker Desktop for
Windows can still be configured to rung Linux containers. The - -arch parameter
indicates the CPU architecture that is being used, which can either be x64 or arm64.
This refers to the CPU architecture of the host machine. The -c parameter indicates
that the configuration of the published application is Release. The - p parameter can
be used to supply any other custom parameters to the .NET compiler. In our case,
we are setting up a publish profile that allows us to automatically build an image.

Microservices and Containerization on .NET 7 ■ 295

By default, the Docker image that gets created by this process has the lower-case
version of the project name and the semantic software version of 1.0.0. Therefore,
assuming that our original project was called BasicContainerApp, the full name of
the resulting image would be basiccontainerapp:1.0.0.

To start a container based on this image, we can execute the following command:

docker run -it --rm -p 5010:80 basiccontainerapp:1.0.0

docker run is the command that is used for launching a Docker container based
on a specific image. The -it flag indicates that we are running it in the interactive
mode, so the console will display the output from inside the container while it is
running. We can also use -d if we want to run it in a detached mode. The - - rm flag
indicates that we remove the container and all the data associated with it once it
stops. The -p attribute is the port mapping. The first number is the port on the host
machine. The second number is the port in the container that it maps to. The latter
needs to be exposed by the container for the mapping to work. Port 80 is exposed
by default if we use this particular way of building a container. Finally, we have the
image name at the end of this command, which is basiccontainerapp: 1.0.0,

When we launch the container, the console will start displaying the output of the
application. Because the Web application inside the container is listening on port 80,
which is mapped to port 5010 of the host machine, we can navigate to the application
in the browser by typing the following URL:

http://localhost:5010/

But this is not the only way to add Docker support to a .NET application. A traditional
way would be to add a Dockerfile to the application and get Docker CLI rather than
ntt?t ri r re ™

http://localhost:5010/

.1NJL1 VL/1 LU UU11U L1LC IHLClgC. 11 VVC C11C LAOlllg WlliaUVVO VV1L1L V 10 Util ULUUJLU CIO UU1

IDE, we do not have to add the Dockerfile manually. We can add Docker support
while creating the application project from the GUI.

296 ■ Implementing C# 11 and .NET 7.0

Creating an application with Docker support
While creating a new .NET application from Visual Studio, we can select the Enable
Docker option. This will also prompt us to select the Docker OS, which can be either
Windows or Linux, as figure 11.1 demonstrates:

□ X

Additional information

ASP.NET Core Web App C# Linux macOS Windows Cloud Service Web

Framework ©

.NET 7.0 (Preview)

Authentication type ©

| None -|

0 Configure for HTTPS ©

0 Enable Docker ©

DockerOS©

Windows |-

□ Do not use top-level statements ©

ASP.NET

bacK 11 (.reate

Figure 11.1: Creating an application with Docker support

Once the application project is created, a file with the name of Dockerfile will be
placed inside the project folder. Its content will be similar to the following:

FROM mcr.microso-ft.com/dotnet/aspnet:7.0 AS base
WORKDIR /app
EXPOSE 80
EXPOSE 443

FROM mcr.microsoft.com/dotnet/sdk:7.0 AS build
WORKDIR /sre
COPY ["WindowsContainerExample/WindowsContainerExample.csproj",
"WindowsContainerExample/"]
RUN dotnet restore "WindowsContainerExample/WindowsContainerExample.
csproj"

Microservices and Containerization on .NET 7 297

COPY . .
WORKDIR "/src/WindowsContainerExample"
RUN dotnet build "WindowsContainerExample.csproj" -c Release -o /app/
build

FROM build AS publish
RUN dotnet publish "WindowsContainerExample.csproj" -c Release -o /app/
publish /p:UseAppHost=false

FROM base AS final
WORKDIR /app
COPY --from=publish /app/publish .
ENTRYPOINT ["dotnet", "WindowsContainerExample.dll"]

The content of this file will be the same regardless of which Docker OS we have
chosen. The only differences will be the project and solution names. In the preceding
example, we assume that the project is called WindowsContainerExample.

In addition to this, the following element will be added to the . csproj file:

<DockerDefaultTargetOS>Windows</DockerDefaultTargetOS>

This element is not strictly necessary. A Docker image can be built without it. But if
we choose to use this element, we need to set our Docker instance to run the OS that

is specified here. Otherwise, Docker will just build the image for whichever OS is set
as the OS of the local Docker instance.

Visual Studio users can also add Docker support to an existing application. This is
what we will have a look at next.

298 ■ Implementing C# 11 and .NET 7.0

Adding Docker support to an existing
application
If we have a .NET project open in Visual Studio that does not already have Docker
support, we can right-click on the project and click on Docker Support, as figure 11.2
demonstrates:

□ New Item... Ctrl+Shift+A
□ Existing Item... Shift+Alt+A

New Scaffolded Item...
h New Folder

® Container Orchestrator Support...
0 Docker Support..

*? Application Insights Telemetry...

$ Client-Side Library...

New Azure WebJob Project
Existing Project as Azure WebJob

Project Reference...
Shared Project Reference...
COM Reference

Add >|
> Manage NuGet Packages.
& Manage Client-Side Libraries...

Manage User Secrets
Remove Unused References...
Sync Namespaces

® Set as Startup Project

Debug *

X Cut Ctrl+X
X Remove Del
EI Rename F2

Unload Project
Load Direct Dependencies
Load Entire Dependency Tree

Service Reference...
<?■> Connected Service

[3 Copy Full Path
c* Open Folder in File Explorer

Class...
Ph m-...

S Open in Terminal

li new cuiiuiuuiiiiy z Hroperties Ait+tnter |

Figure 11.2: Adding Docker support to an existing application

If you do not use Visual Studio, then you would have to create a Dockerfile manually.
Now, we will examine its structure more closely.

Dockerfile structure
Let us assume that we have an ASP.NET Core application project called
LinuxContainerExample. It has the following content, which is based on what
Visual Studio produces:

FROM mcr.Microsoft.com/dotnet/aspnet:7.0 AS base
WORKDIR /app
EXPOSE 80
EXPOSE 443

FROM mcr.Microsoft.com/dotnet/sdk:7.0 AS build
WORKDIR /src
COPY ["LinuxContainerExaMple/LinuxContainerExaMple.csproj",

Microservices and Containerization on .NET 7 299

"LinuxContainerExaMple/"]
RUN dotnet restore "LinuxContainerExaMple/LinuxContainerExaMple.csproj"
COPY . .
WORKDIR "/src/LinuxContainerExaMple"
RUN dotnet build "LinuxContainerExaMple.csproj" -c Release -o /app/build

FROM build AS publish
RUN dotnet publish "LinuxContainerExaMple.csproj" -c Release -o /app/
publish /p:UseAppHost=false

FROM base AS final
WORKDIR /app
COPY --froM=publish /app/publish .
ENTRYPOINT ["dotnet", "LinuxContainerExaMple.dll"]
Let us exaMine it line-by-line. The first line is the following:
FROM Mcr.Microsoft.coM/dotnet/aspnet:7.0 AS base

This is where we are telling Dockertousemcr.microsoft.com/dotnet/aspnet: 7.0
as the base image of our container. This is the standard runtime image for ASP.NET

ASP.NET
Dockertousemcr.microsoft.com/dotnet/aspnet
ASP.NET

Core 7. Runtime image only has runtime components and no SDK, so it can be used
to run an application but cannot be used to build it. We will use an intermediate
image shortly. The next lines are as follows:

WORKDIR /app
EXPOSE 80
EXPOSE 443

This is where we set the app directory in the root of the container folder structure as
our working directory and expose ports 80 and 443 to the outside world. Port 80 is
the default HTTP port, whereas port 443 is the default HTTPS port.

In the next two lines, we are setting the official .NET SDK image as the base image
of an intermediate image and are setting the src folder in the root of this image as
the working directory:

FROM mcr.microsoft.com/dotnet/sdk:7.0 AS build
WORKDIR /src

Then, we copy the project file into the LinuxContainerExample folder inside the
working directory:
COPY ["LinuxContainerExample/LinuxContainerExample.csproj",
"LinuxContainerExample/"]

300 Implementing C# 11 and .NET 7.0

The original path for the COPY command is either an absolute path on the host
machine or the path relative to where the docker build command is being executed
from. In our case, we assume that the docker build command is being executed
from a folder immediately above the project folder.

The following two commands restore NuGet dependencies from the project inside
the image and copy content from the current folder on the host machine to the
working directory:

RUN dotnet restore "LinuxContainerExample/LinuxContainerExample.csproj"
COPY . .

This copies the remaining project files into the image. In the next two commands, we
set the project directory inside the image as the working directory and compile the
application from the project:

WORKDIR "/src/LinuxContainerExample"
RUN dotnet build "LinuxContainerExample.csproj" -c Release -o /app/build

The next lines would create another intermediate image from the build image and
create a publishable executable application:

FROM build AS publish
RUN dotnet publish "LinuxContainerExample.csproj" -c Release -o /app/
publish /p:UseAppHost=false

Finally, we copy the published application from the publish image into the final
image and launch the application via the dotnet CLI:
FROM base AS final
WORKDIR /app
COPY --from=publish /app/publish .
ENTRYPOINT ["dotnet", "LinuxContainerExample.dll"]

In the final image, only the published application exists. We only have the .NET
runtime and the application running inside of it. The intermediate images with .NET
SDK and various build artefacts have been discarded.

This is the basic structure of a Dockerfile. Now, we will have a look at how we can
build an image from it and launch a container from the image.

Building and running a Docker container
To build a Docker container image, we can execute a command similar to the
following:

docker build -t basicapp:1.0.0 .

Microservices and Containerization on .NET 7 ■ 301

docker build is the base command that is used for building images. The -t
parameter represents an image tag. We could choose any name, as long as it is not
already taken by an existing image made by someone else. The part after the colon
can be anything, but it is typically used for the version number. The last part of the
command indicates the working directory on the host machine. If we use a dot at
tlie end of the command statement, as in the preceding example, the directory we
are running the command from is the working directory. This means that the current
directory is the place where the command will look for all the necessary files.

The preceding example assumes that we have the Dockerfile in the directory from
which we are executing the command. However, we could have the Dockerfile
anywhere and point to it via either an absolute or a relative path by adding an -f or
- -file parameter followed by the file path.

In the preceding example, we have created an image with the full tag name of
basicapp: 1.0.0, We can launch a container from this image by executing a
command similar to the following:

docker run -it --rm -p 5010:80 basicapp:!.0.0

Thic mnrliirloc an Auaruiow nT Innur En Tmilrl onrl inn □ cincrlo DnrVor rnnTainor Tn

AALAO W A IV A LAVA VO UAL W VA V AV VV VA AAVVV LU L7 LA A A VI LI A L VA A LA A L Cl OAA l^jAV A-/WAXVA WAALUAAAVA. AA I

a real-life scenario, we often have to run multiple containers as parts of a single
distributed application. We also want to make sure that the containers can be
restarted when they encounter problems and that they can be scaled as needed. This
is where orchestration comes from.

Orchestrating applications with Docker
Swarm
As the name suggests, the process of orchestration is analogous to getting an
orchestra to work as a single unit. In an orchestra, there are many people playing
a diverse range of musical instruments. But they work together in a coordinated
manner to create a pre-defined piece of music.

The process of orchestrating a distributed application is the same. The application
consists of individual microservices. But these microservices work as a single
distributed application. The orchestration ensures that everything inside the
application works seamlessly. The microservices that were forced to stop are
restarted. If there is a specific microservice that experiences an increased load, it is
scaled out. If the hardware on a specific machine fails, the services deployed on this
machine are removed and re-created on a different machine in the cluster.

There are multiple ways of orchestrating Docker containers. A production-grade
orchestration system available with Docker is called Docker Swarm. We will have a

302 | Implementing C# 11 and .NET 7.0

look at it shortly. But first, we will look at a more basic orchestration-like functionality
that can be achieved by using Docker Compose.

Basic orchestration with Docker compose
Docker Compose is a tool that is included with Docker. It uses YAML files to launch
multiple Docker containers together. There are some other orchestration capabilities,
such as the ability to launch the containers in a specific order and pre-configure
individual containers to restart if they are stopped due to an error. But these are the
limits of Docker Compose.

To use Docker Compose, we will need to create a YAML file. By convention, the file
is called docker-compose.yml. But we can give it any name. If we do that, we will
have to explicitly specify it in the Docker Compose commands.

If you are working on a Windows machine and using Visual Studio as your IDE,
you can add the Docker Compose orchestration support to your application simply
by right-clicking on your project, clicking Add I Container Orchestration Support, as

shown in figure 11.3:

Figure 11.3: Adding Docker Swarm orchestration to a .NET app

New Item... Ctrl+Shift+A
p Existing Item... Shift+Alt+A

New Scaffolded Item...
'b New Folder

Add ►
'e Manage NuGet Packages...
$ Manage Client-Side Libraries...

Manage User Secrets
Remove Unused References...
Sync Namespaces

। ® Container Orchestrator Support...
0 Docker Support...

Application Insights Telemetry...
® Set as Startup Project

Debug >

X Cut Ctrl+X
X Remove Del
eI' Rename F2

Client-Side Library...

New Azure WebJob Project
Existing Project as Azure WebJob

Project Reference...
Shared Project Reference...
COM Reference...

Unload Project
Load Direct Dependencies
Load Entire Dependency Tree

Service Reference...
<?> Connected Service

A Class...

[J Copy Full Path

c* Open Folder in File Explorer
S Open in Terminal

Q New EditorConfig Properties Alt+Enter

This will create some files in the root of the solution. The main file used by Docker
Compose is the docker-compose.yml, which will have content similar to the
following:

version: '3.4'

services:
linuxcontainerexample:

Microservices and Containerization on .NET 7 303

image: ${DOCKER_REGISTRY-}linuxcontainerexample
build:

context: .
dockerfile: LinuxContainerExample/Dockerfile

This file may contain multiple services, but in the preceding example, it contains
only one service. Each service in the services section has its name. In the preceding
example, our service is called linuxcontainerexample.

Then, we provide some instructions to either build an image for the container or
pull an existing one. In our example, we are building a new image from a Dockerfile
located under a specific relative path. The image field allows us to set the name of
the image. We can also use environment variables, like the ${DOCKER_REGISTRY-}
value in the image name, as shown in the preceding example.

Now, to launch a distributed application and create all the required containers, we
can run the following command in the directory of our YAML file:

docker-compose up -d

In this example, we are running all the containers in the detached mode by specifying
the -d flag. But we could also run them in an interactive mode by omitting this flag.
To bring down the containers, we could execute the following command:

docker-compose down

This concludes the overview of the basic Docker Compose orchestration. This
orchestration mechanism is very limited and is only suitable for either very basic
applications or a temporary development setup. Now, we will have a look at a more
advanced Docker Swarm orchestration mechanism.

Starting Docker Swarm
Just like Docker Compose, Docker Swarm comes with Docker. But it is way more
advanced as an orchestration mechanism than Docker Compose. It is suitable for
production-grade deployment of scalable distributed applications, as it is capable
of running across multiple machines, automatically distributing containers between
machines, detecting and reacting to hardware failures, and scaling individual
microservices by replicating them.

Docker Swarm is a cluster of coordinated nodes, which can be represented as either
physical or virtual machines. To start a Docker Swarm, we will need to execute the
following command, which will create a master VM that will serve the role of an
orchestrator:
docker swarm init

304 ■ Implementing C# 11 and .NET 7.0

The output of this command will show the command that needs to be executed to
join the Swarm. It will be unique to a specific Swarm instance, as a unique join token
needs to be generated. It will look similar to the following:
docker swarm join --token SWMTKN-l-lbj21tc44eb9c45zq7482vt6flryx3ghrwe2z
xqlcakht7ui5x-csqtvblydg7h9ge5mw0qixuz0 192.168.65.3:2377

If we ever need to remind ourselves what the command is, we can execute the
following command on the machine hosting the Swarm:
docker swarm join-token worker

Once we execute the docker swarm join command, we can start adding services
to the Swarm. We can also dictate how many replicas of each service we want to
add. For example, the following command adds three replicas of a container based
on the basiccontainerapp: 1.0. image and gives this service the name of basic-

docker service create --replicas 3 --name basic-service
basiccontainerapp:1.0.0

If we want to see what services are present in our Swarm instance, we can execute
the following command:
docker service Is

The output of this command should be similar to the following:
ID NAME MODE REPLICAS IMAGE PORTS

kgd33x72ae31 basic-servicereplicated 3/3 basiccontainerapp:1.0.0

We can also remove all instances of a specific service by executing the following
command:
docker service rm basic-service

If the specified service was the only service present in the Swarm, the output of the
docker service Is command should be as follows:

ID NAME MODE REPLICAS IMAGE PORTS

If we want a specific node to be removed from the Swarm, we can execute the
following command:

docker swarm leave

If we want to dissolve the Swarm, we can execute this command on the main node
and add the - -force flag to it.

Docker Swarm is not the only way of orchestrating Docker containers in production.
Another popular platform is Kubernetes, which we will have a look at next.

Microservices and Containerization on .NET 7 305

Orchestrating applications with
Kubernetes
Kubernetes is a popular container orchestration platform that was originally created
by Google. It is more suited for large-scale distributed applications than Docker
Swarm. This is because it has many additional features that make such a process
easy. For example, groups of related containers can be organized into the so-called
"pods". Also, Helm charts allows us to quickly build a distributed application based
on a pre-defined pattern.

We can install Kubernetes on our development machine. The process will vary
depending on what OS and CPU architecture we use. In both cases, we will need to
install the server component and the command line client to manage it. The latter

can be represented by a tool called kubectl.

Installing Kubernetes on Linux
On a Linux machine, we can install the minikube tool that will represent a
development version of the Kubernetes server. If we have a machine with x64 CPU
architecture, the commands will be as follows:

curl -L0 https://storage.googleapis.com/minikube/releases/latest/
minikube-linux-amd64

sudo install minikube-linux-amd64 /usr/local/bin/minikube

For an ARM64 machine, the commands will be as follows:

curl -L0 https://storage.googleapis.com/minikube/releases/latest/
minikube-linux-arm64

sudo install minikube-linux-arm64 /usr/local/bin/minikube

Then, we will need to install the kubectl tool that will allow us to interact with the
cluster. The download command will be as follows on an x64 machine. We will need
to replace the amd64 part with amd64 on an AMD machine:

curl -LO "https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/
release/stable.txt)/bin/linux/amd64/kubectl"

Then, we will need to install it, which we can do by executing the following command:
sudo install -o root -g root -m 0755 kubectl /usr/local/bin/kubectl

306 Implementing C# 11 and .NET 7.0

Installing Kubernetes on Mac
Mac OS can also use minikube as the Kubernetes server in the development
environment. The download and installation commands will be as follows for a Mac
with an Intel CPU chip:

curl -LO https://storage.googleapis.com/minikube/releases/latest/
minikube-darwin-amd64

sudo install minikube-darwin-amd64 /usr/local/bin/minikube

The commands will be as follows for a device with an Apple Silicon chip:

https://storage.googleapis.com/minikube/releases/latest/
https://storage.googleapis.com/minikube/releases/latest/
https://dl.k8s.io/release/$(curl
https://dl.k8s.io/
https://storage.googleapis.com/minikube/releases/latest/

cun -lu nccps://scorage.googieapis.com/miniKUDe/reieases/iaiesL/
minikube-darwin-arm64

sudo install minikube-darwin-arm64 /usr/local/bin/minikube

We can then download tire kubectl tool by executing the following command,
where amd64 option in the path is used for the Intel chip device version, and arm64
is used for the Apple Silicon version.

curl -LO "https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/
release/stable.txt)/bin/darwin/amd64/kubectl"

Next, we will need to execute the following commands to make the kubectl
available in the terminal:

chmod +x ./kubectl

sudo mv ./kubectl /usr/local/bin/kubectl

sudo chown root: /usr/local/bin/kubectl

Installing Kubernetes on Windows

On Windows, the simplest way to install Kubernetes is via Docker Desktop. We
can do so by right-clicking on the Docker Desktop icon in the taskbar tray, selecting
Settings, navigating to the Kubernetes section, and checking the Enable Kubernetes
option, as shown in figure 11.4:

S General

IS Resources

< Docker Engine

A Experimental Features

0 Kubernetes

■Cq Software Updates

Kubernetes
vl.22.5

Q Enable Kubernetes

Start a Kubernetes single-node cluster when starting Docker Desktop.

0 Show system containers (advanced)

Show Kubernetes internal containers when using Docker commands.

All stacks and Kubernetes resources will be deleted.

Figure 11.4: Enabling Kubernetes on Docker Desktop on Windows

Microservices and Containerization on .NET 7 ■ 307

Once we save the settings, all the required Kubernetes components will be installed,
including kubectl.

Adding services to a Kubernetes cluster
Once our local Kubernetes cluster has been installed, we can verify it by executing
the following command in the terminal:
kubectl --help

If there is no error, we can start deploying containers in our Kubernetes cluster. First, we
can deploy a specific Docker container by executing the kubectl create deploymen
rnmmonrl Tino l-nllniAzina- ovomnlo rlonlnvc □ corvirn uzihk lino rrnmo nf hocir.

nccps://scorage.googieapis.com/miniKUDe/reieases/iaiesL/
https://dl.k8s.io/release/$(curl
https://dl.k8s.io/

service from the Docker image with the name of basiccontainerapp: 1.0.0.

kubectl create deployment basic-service --image basiccontainerapp:1.0.0

Next, we can execute the following command to expose port 80 of the service:
kubectl expose deployment basic-service --type=NodePort --port=80

We can view the information about any given service by executing the following
command:
kubectl get services basic-service

The output of this command should look similar to this:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE

basic-service NodePort 10.109.141.219 <none> 80:31546/TCP
50s

To make the service accessible from the outside, we need to forward its internally
exposed port to a port on the host machine. We can forward the previously exposed
port 80 of the service to port 7080 of the host machine by executing the following
command:
kubectl port-forward service/basic-service 7080:80

Now, we can test our setup by navigating to the following address in the browser:
http://localhost:7080

If we want to remove our Kubernetes cluster, we can just uncheck the Enable
Kubernetes option in Docker Desktop on Windows and save the settings. If we are
on either Mac or Linux, we can do so by executing the following command to stop
all services in the cluster:
minikube stop

Then we can execute the following command to delete all the services.
minikube delete --all

308 ■ Implementing C# 11 and .NET 7.0

This concludes the overview of building and orchestrating Docker containers. Let us
summarize what we have learned.

Conclusion
In this chapter, we have covered the process of containerizing a .NET application.
We have learned that the main containerization tool used for this purpose is Docker
and that .NET 7 SDK has inbuilt support for it.

http://localhost:7080

vve nave learned now to install DocKer, write uocKernie script, ana now to ouna
.NET applications into Docker containers. We have covered this process with a
variety of GUI tools and the command line interface.

We have also covered the process of orchestrating a distributed application that
consists of containerized microservices. We had a look at three industry-standard
tools to do so: Docker Compose, which allows us to run containers together; Docker
Swarm, which allows us to scale individual services; and Kubernetes, which comes
with many advanced orchestration features. For each of these tools, we have a look
at how to run it in a development environment.

This concludes the book about the core features of C# 11 and .NET 7.

Points to remember
• Docker is a technology that allows to deploy applications in containers.

• Each container would include the application and its most fundamental OS
dependencies.

• The application inside a container is normally inaccessible from the outside
unless it has port mappings and bind-mounting its internal folders to the
specific folders on the host machine.

• Containerization is especially useful in distributed applications, which can
be orchestrated via Docker Swarm or Kubernetes.

Multiple choice questions
1. What is the difference between a Docker container and a Docker image?

a. They are interchangeable

b. Container is a repository of Docker images
c. Image represents container's data in a passive state, whereas a

container represents a running application
d. Container represents image's data in a passive state, whereas an

image represents a running application

Microservices and Containerization on .NET 7 309

2. What system can be used for orchestrating Docker containers?
a. Docker Swarm

b. Kubernetes
c. Either of the above
d. Cron

3. What are the benefits of using containerization?

a. Consistent behavior on all environments
b. Isolation of an application from any potential sources of unintentional

side-effects
c. Application is easy to deploy and orchestrate
d. All of the above

4. What is the main benefit of using multi-stage image-building process in
Docker?

a. Separating runtime from build SDK and build-specific dependencies
b. Readability improvement
c. Adherence to common standards
d. There is no tangible benefit of doing it

Answers
1. c
2. c
3. d
4. a

Key terms
• Docker: Asystem that allows packing applications into isolated environments

known as containers.

• Docker container image: A pre-build piece of software that contains an
application and its OS dependencies that can be launched as a container.

• Docker container: An executable that includes the main application and the
core OS components that allow the application to function.

310 Implementing C# 11 and .NET 7.0

• Docker image registry: A system that stores Docker container images that
can be pulled.

• Dockerfile: A file that dictates how a Docker image is built.

• Bind mount: A process of mapping files and folders inside a Docker container
to files and folders inside the host machine.

• Orchestration: The process of coordinating components of a distributed
application to work as one unit.

• Docker Swarm: A group of physical or virtual machines that work together
as a single cluster and can orchestrate a collection of Docker containers.

• Kubernetes: A heavyweight container orchestration system that is suitable
for large-scale production deployments of distributed applications.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com

Index

Symbols
.NET 7 1

central package manager 51,52
CLI tools improvements 48,50
development environment, setting

up 2
Microsoft.Extensions nullability 74
MSBuild serialization of custom

types 75
NativeAOT 50,51
observability improvements 69,70
obsolete and non-nullable end­

points 75
PatternContext constraint 75
SDK and build tool 48
System and Microsoft library up­

dates 52
.NET 7 application

creating 10

creating, via CLI 10,11
creating, via IDE GUI 11-13

.NET 7 project structure
class, adding 15-18
entry point, modifying 18-20
interface, adding 15-18
overview 14
struct object, adding 14,15

.NET 7 SDK 3

.NET SignaIR client
demonstrating 224-228

A
Active Server Pages (ASP) 139
Ahead of Time (AOT) 50
anomaly detection 277
anomaly detection metrics

Area Under ROC Curve 280
Detection Rate, at false positive

312 Implementing C# 11 and .NET 7.0

count 280
application orchestrating

with Docker Swarm 301
artificial intelligence (Al) 259
ASP.NET Core 139

application structure 141-143
basics 140,141

B
binary classification 267-269
binary classification metrics 278

accuracy 278
Area Under Curve (AUC) 278
Area Under curve for Precision-Re­

call (AUCPR) 278
Fl-score 278

Blazor 89,181
Blazor Server 181
Blazor Web Assembly 181
working with, on .NET MAUI 89-

91
Blazor Server

custom elements 201,202
empty Blazor Server template 204
Razor component lifecycle 202,203
settingup 200,201

Blazor Web Assembly
Ahead-of-Time (AoT)

compilation 193,194
code-behind approach, using 187-

190
default Blazor Web Assembly

project template 194
JavaScript interop 190-192
overview 186,187
parameters, passing to Razor

components 192,193

Blazor WebAssembly, on ASP.NET
Core

form validation 196-199
hosier Blazor WebAssembly,

adding 195,196
hosting 195
NavigationManager class 199,200

C
C# 11

access modifiers 25
basics 21
control flow 23,24
custom types 24
generic attributes 32
inbuilt data types 21-23
new strings operations 39-43
sequence pattern matching 35
struct auto-defaults 30-32

central package manager 51
clustering 276
clustering metrics

average distance 280
Davies Bouldin index 280
normalized mutual information 280

code editor 4
code-first approach, EF7 113

database context, adding 117-120
database creation, by running

application 125
database creation script, adding

120-124
Entity Framework code, adding 114
entity objects, adding 114-117

Create, Read, Update, Delete
(CRUD) operations 174

ASP.NET
ASP.NET

Index 313

D
database-first approach, EF7 126

auto-generated code 127,128
EF7 models, creating from existing

database 126,127
development environment, .NET 7

code editor, setting up 4
development machines 2,3
IDE, setting up 4
JetBrains Rider 9,10
Microsoft Visual Studio 2022 7,8
Microsoft Visual Studio 2022, for

Mac 8
.NET 7 SDK 3
suitable code editor, installing 4-6
suitable IDE, installing 6

Docker
installing, on Linux 293
installing, on Mac 293
installing, on Windows 293,294

Docker Compose 302
orchestration, performing with 302,

303
Docker container

base images and layers 292
bind mount 293
building 300
file system 292,293
fundamentals 291
images 291
network solution 292
port mapping 292
running 301

Dockerfile structure 298,299,300
Docker image, for .NET 7 294,295
Docker support

adding, to existing application 298

.NET application, creating with
296,297

Docker Swarm 303,304
applications, orchestrating with 301

E
EFCLI tools

installing 112
Entity Framework 7 105,112,113

code-first approach 113
database-first approach 126
providers 112

Entity Framework 7 features 128
database-first, controlling via

T4 templates 128,129
guarded key 129,130
interceptors 134-136
table-per-concrete-type (TPC)

mapping 130-134
Entity Framework Core (EF Core)

105

F
forecasting metrics

MeanAbsolute error 279
Root Mean Squared error 279

forecasting model 273-275

G
generic attributes 32

example 33-35
Graphical User Interface (GUI) 4
gRPC

overview 232,233
gRPC client

factory and dependency
injection 248-250

settingup 244-247

314 Implementing C# 11 and .NET 7.0

gRPC data types
collections, enabling with repeated

keyword 252
dictionary-like Protobuf functional­

ity 253
oneof keyword, using in Protobuf

253
overview 250,252
Protobuf enums 252

gRPC server
ASP.NET Core gRPC project

structure 234-236
datatypes 237-240
gRPC call types 237-240
gRPC JSON transcoding 240-243
settingup 234

guarded key
applying 129,130

I
image classification 275,276
image classification metrics

log-loss 279
per-class log-loss 279

Integrated Development
Environment (IDE) 4

interceptors 134-136

J
JavaScript client, for SignalR 216,217

HTML markup, adding 217-221
SignalR functionality, applying in

JavaScript 221-224
JetBrains Rider 9
JSON features, .NET 7 55

default JsonSerializerOptions
configuration 57

JSON polymorphism 58-61

JSON-specific HTTP PATCH 57,58
MaxDepth property, of

JsonWriterOptions class 55,57
testing 61

K
Kubernetes 305

installing, on Linux 305
installing, on Mac 306
services, adding to cluster 307

L
long-polling 210
low-code model builder

using 281-284

M
machine learning (ML) 259

reinforcement learning 262
supervised learning 262
unsupervised learning 262

MAUI apps, for Mac OS and iOS
limitations 100,101

MAUI architectural patterns 91
Model-View-Update 94
Model-View-ViewModel

(MVVM) 91-93
ReactiveUI 94
via third-party frameworks 94

MAUI, for desktop applications 95
desktop app, publishing 96,97
desktop app, running in debug

mode 95,96
development environment, prepar­

ing 95
MAUI, for mobile apps 97

development environment, prepar­
ing 98

ASP.NET

Index 315

mobile app, publishing 99,100
mobile app, running on emulator

99
Microsoft Visual Studio 2022 7

for Mac 8
minimal API endpoints 150

files, uploading 154,155
minimal API parameters

improvements 151,152
open API metadata, adding 151
typed results 152-154

ML model
anomaly detection metrics 280
binary classification metrics 278
clustering metrics 280
evaluating 278
forecasting metrics 279
image classification metrics 279
log-loss reduction 279
multiclass classification metrics 278
ranking metrics 280
regression and recommendation

metrics 279
training 277

ML.NET 259
fundamentals 261,262
machine learning types 262
problem, selecting for ML 267
used, for creating ML model 265-

267
working with 263

ML.NET tools
installing 263
installing, on Linux 264
installing, on MacOS 264
installing, on Windows 263,264

Model-View-Controller (MVC) 157

Model-View-Update (MVU) 94
' Model-View-ViewModel (MVVM)

91-93
multiclass classification 269,270
multiclass classification metrics

log-loss 279
macro-accuracy 279
micro-accuracy 278

Multi-platform UI (MAUI) 79-81
apps, creating 82-86
Blazor, working with 89-91
development environment, en­

abling 81,82
XAML references 86-89

MVC, on ASP.NET Core 157-173
j MySQL 108

N
normalization 110

O
object-relational mapper (ORM) 105
observability features, .NET 7 69,70

activity monitoring 70
activity properties, enumerating

71-73
current activity changed event 71
stopped activities monitoring 70,71
UpDownCounter metric 73,74

Oracle Database 107
orchestration 301

with Docker Compose 302,303
with Docker Swarm 301
with Kubernetes 305

P
PostgreSQL 108
primary key 109

ML.NET
ML.NET
ASP.NET

316 Implementing C# 11 and .NET 7.0

advantages 109,110
Protobuf

as main message serialization
protocol 233

Protocol buffers 233

R
ranking 277
ranking metrics

discounted cumulative gains 280
normalized discounted

cumulative gains 280
Razor Component example 181

@code directive 183
@onclick event handler 183
©page directive 182

Razor Components 181
Razor keywords, in Razor Compo­

nents
©attributes 184,185
©bind 185
©implements 183
©inherits 184
©inject 184
©layout 184
©namespace 184
©preservewhitespace 184
@ref 185
©typeparam 185
©using 183

Razor Pages 174
Razor Pages, on ASP.NET Core 174,

175
ReactiveUI pattern 94
real-time interactivity 207
recommendation ML model 272,273
RegEx 63-65

regression algorithm 270,271
regression and recommendation

metric
absolute-loss 279
RMB-loss 280
R-Squared 279
squared-loss 279

Relational Database Management
Systems (RDBMS) 107

foreign key relationships 110, 111
MySQL 108
normalization 110, 111
Oracle Database 107
PostgreSQL 108
primary keys 109,110
SQLServer 107
tables 108,109

relational databases
fundamentals 106

REpresentative State Transfer (REST)
143

request processing middleware 155,
156

S

sequence pattern matching 35
demonstration 36
with char span 37-39

server-sent events 210
SignalR

long-polling 210
overview 209
server-sent events 210
WebSocket 209

SignalR Hub
creating, on server 210-214
dependency injection 215

ASP.NET

Index 317

JavaScript client, for SignalR 216,
217

JSON, versus MessagePack 216
strongly-typed hub 214,215

SQLServer 107
stream features, .NET 7 62,63
struct auto-defaults 30-32
Structured Query Language (SQL)

107
System and Microsoft library

updates, .NET 7 52
cryptography improvements 65,66
JSON features 55
microseconds and nanoseconds

support 52-54
RegEx improvements 63-65
stream features 62,63
TAR API 67-69

T
table-per-concrete-type (TPC)

mapping 130,131
working 132-134

table-per-hierarchy (TPH) mapping
130

table-per-type (TPT) mapping 130
TAR 67

U

UpDownCounter metric 73

V

virtual machine (VM) 291

W

Web API, on ASP.NET Core 143
minimal API endpoints 150
request processing middleware

155-157
Web API with controllers 144-150

WebSocket 209
well-known data types 253-255

ASP.NET

Implementing C# 11 and .NET 7.0
DESCRIPTION

.NET is a programming platform that allows developers
to write and run any type of application. Although the
.NET platform officially supports many programming
languages, C# is its main and the most popular
language.

This book takes you through the fundamentals of .NET
and provides a step-by-step guidance on building
native applications that work seamlessly across
multiple platforms. You will then get familiar with the
fundamentals of relational databases and Entity
Framework Core 7, including its code-first, database-
first. and model-first approaches. Moving on, the book
will introduce you toASP.NET Core, the main
framework on .NET that is designed for building web
applications. You will also learn how to host and deploy
BlazorWebAssemblyusingASP.NET Core. In the
subsequent sections, the book will teach you to set up
bi-directional communication between the server and
client using SignaIR and enable gRPC communication
on ASP.NET Core. Lastly, you will acquire the skills to
manage and deploy your app with Docker Swarm and
Kubernetes.

KEYFEATURES

• Use the .NET MAUI (Multi-platform App Ul)
framework to develop scalable native apps.

• Learn how to set up. develop, and deploy
cross-platform apps with .NET Core.

• Build apps that can run seamlessly across
multiple platforms, devices, and operating
systems.

WHAT YOU WILL LEARN

• Get familiar with all the latest features of C#.
• Work with the new features of .NET 7.

including its SDKs and libraries.
• Learn how to build web applications using

 Core 7.ASP.NET
• Build your machine learning models using

.ML.NET
• Learn how to build and deploy distributed

apps faster and more securely.

By the end of the book, you will be able to build cross'
platform native apps with C# & .NET,

WHO THIS BOOK IS FOR

This book caters to a wide audience, including beginners and experienced .NET developers who want to build cross­
platform apps using C# and .NET.

ISBN 978-93-5551-328-1

BPB PUBLICATIONS
www.bpbonline.com

toASP.NET
BlazorWebAssemblyusingASP.NET
ASP.NET
ASP.NET
ML.NET
http://www.bpbonline.com

	Implementing C# 11 and .NET 7.0

	About the Author

	About the Reviewers

	Acknowledgement

	Preface

	Code Bundle and Coloured Images

	https://rebrand.ly/4xyu6op

	Errata

	Table of Contents

	Chapter 1

	Getting Familiar with .NET 7

	Application Structure

	Introduction

	Structure

	Objectives

	Setting up your development environment

	A suitable development machines

	.NET 7 SDK

	Setting up a code editor or an IDE

	Download Visual Studio Code

	Microsoft Visual Studio 2022

	JetBrains Rider

	Creating a .NET 7 application

	Creating an application via CLI

	.NET 7 project structure overview

	Adding a struct object

	Adding an interface and a class

	Modifying the entry point of the app

	C# 11 basics and inbuilt data types

	Inbuilt data types

	Control flow

	C# custom types

	Access modifiers

	Conclusion

	Points to remember

	Multiple choice questions

	Answers

	Key terms

	Chapter 2

	Overview of

	C# 11 Features

	Introduction

	Structure

	Objectives

	Prerequisites

	Struct auto-defaults

	Generic attributes

	Generic attribute example

	Sequence pattern matching

	Sequence pattern matching demonstrated

	Sequence pattern matching with char span

	New string operations

	Conclusion

	Points to remember

	Multiple choice questions

	Answers

	Key terms

	Chapter 3

	What is New in .NET 7?

	Introduction

	Structure

	Objectives

	Prerequisites

	SDK and build tool improvements

	CLI tools improvements

	Central package manager

	System and Microsoft library updates

	Microseconds and nanoseconds support

	New JSON features

	New stream features

	RegEx improvements

	Cryptography improvements

	New TAR API

	Observability improvements

	New ways to monitor activity

	UpDownCounter metric

	Breaking changes of .NET 7

	MicrosoftExtensions nullability

	Obsolete and non-nullable endpoints

	PatternContext constraint

	Multi-level lookup is disabled on Windows

	MSBuild serialization of custom types

	Conclusion

	Points to remember

	Multiple choice questions

	Answers

	Key terms

	Chapter 4

	MAUI and

	Cross-platform

	Native Applications

	Introduction

	Structure

	Objectives

	Prerequisites

	Introducing MAUI

	Enabling MAUI development environment

	Creating a basic MAUI applications

	Working with Blazor on .NET MAUI

	MAUI architectural patterns

	Patterns supported by MAUI via third-party frameworks

	Using MAUI to build desktop applications

	Preparing desktop development environment

	Running a desktop app in a debug mode

	Publishing a desktop app

	Using MAUI to build mobile apps

	Preparing mobile development environment

	Running a mobile app on an Emulator

	Publishing a mobile app

	Limitations of developing for Mac OS and iOS

	Extra tools required for publishing apps for iOS

	Slightly lighter requirements for Mac OS apps

	Conclusion

	Points to remember

	Multiple choice questions

	Answers

	Key terms

	Chapter 5

	Database

	Access with Entity Framework 7

	Introduction

	Structure

	Objectives

	Prerequisites

	Introducing fundamentals of relational databases

	Overview of relational database management systems and SQL

	Tables, relationships, and normalization

	Introducing entity framework 7

	Code-first approach in EF7

	Adding Entity Framework code

	Adding entity objects

	Adding database context

	Adding database creation script

	Creating the database by running the application

	Database-first approach in EF7

	Creating EF7 models from an existing database

	Looking at auto-generated code

	The latest features of EF7

	Controlling database-first via T4 templates

	Guarded key

	Table-per-concrete-type (TPC) mapping

	Interceptors

	Conclusion

	Points to remember

	Multiple choice questions

	Answers

	Key terms

	Chapter 6

	Web Application Types on .NET

	Introduction

	Structure

	Objectives

	Prerequisites

	Asr.ix r1 core oasics

	Basic ASP.NET Core application structure

	Web API on ASP.NET Core

	Web API with controllers

	Minimal API endpoints

	The new in request processing middleware

	MVC on ASP.NET core

	Razor Pages on ASP.NET Core

	Conclusion

	Points to remember

	Multiple choice questions

	Answers

	Key terms

	Chapter 7

	Blazor and Web Assembly on .NET

	Introduction

	Structure

	Objectives

	Prerequisites

	Introducing Blazor

	Razor component example

	Razor keywords in Razor components

	Blazor Web Assembly overview

	Using code-behind approach

	JavaScript Interop

	Passing parameters to Razor components

	Ahead-of-time compilation

	Empty Blazor Web Assembly template

	Hosting Blazor WebAssembly in ASP.NET Core

	Adding a hosier Blazor WebAssembly to an existing ASP.NET core application

	Form validation in Blazor

	NavigationManager and passing state between pages

	Setting up Blazor Server

	Custom elements in Blazor

	Razor component lifecycle

	Empty Blazor server template

	Conclusion

	Points to remember

	Multiple choice questions

	Answers

	Key terms

	Chapter 8

	SignalR and

	Two-way

	Communication

	Introduction

	Structure

	Objectives

	Prerequisites

	SignalR overview

	WebSocket

	Server-sent events

	Long-polling

	Creating SignalR Hub on the server

	Strongly-typed Hub

	Dependency injection in SignalR Hub

	JSON versus MessagePack

	JavaScript client for SignalR

	Adding HTML markup for SignalR client

	Applying SignalR functionality in JavaScript

	.NET client for SignalR

	Conclusion

	Points to remember

	Multiple choice questions

	Answers

	Key terms

	Chapter 9

	gRPC on ASP.NET Core

	Introduction

	Structure

	Objectives

	Prerequisites

	gRPC overview

	Protobuf as the main message serialization protocol

	Setting up gRPC server

	ASP.NET Core gRPC project structure

	gRPC call types and data types

	gRPC JSON transcoding

	Setting up gRPC client

	Using gRPC client factory and dependency injection

	Overview of gRPC data types

	Protobuf enums

	Enabling collections with a repeated keyword

	Dictionary-like Protobuf functionality

	Using the oneof keyword in Protobuf

	Well-known data types

	Conclusion

	Points to remember

	Multiple choice questions

	Answers

	Key terms

	Chapter 10

	Machine

	Learning with

	ML.NET

	Introduction

	Structure

	Objectives

	Prerequisites

	ML.NET fundamentals

	Types of machine learning

	Getting started with ML.NET

	Choosing a problem for ML

	Regression

	Recommendations

	Forecasting

	Image classification

	Clustering

	Anomaly detection

	Ranking

	Training and evaluating your model

	Binary classification metrics

	Multiclass classification metrics

	Image classification

	Forecasting

	Regression and recommendation

	Clustering metrics

	Anomaly detection metrics

	Ranking metrics

	Using a low-code model builder

	Conclusion

	Points to remember

	Multiple choice questions

	Answers

	Key terms

	Chapter 11

	Microservices and Containerization on .NET 7

	Introduction

	Structure

	Objectives

	Prerequisites

	Docker container fundamentals

	Containers and container images

	Base images and layers

	Network isolation and port mapping

	File system isolation and bind mounts

	Installing Docker on Linux

	Installing Docker on Windows

	Base Docker image for .NET 7

	Creating an application with Docker support

	Adding Docker support to an existing application

	Dockerfile structure

	Building and running a Docker container

	Orchestrating applications with Docker Swarm

	Basic orchestration with Docker compose

	Starting Docker Swarm

	Orchestrating applications with Kubernetes

	Installing Kubernetes on Linux

	Installing Kubernetes on Mac

	Adding services to a Kubernetes cluster

	Conclusion

	Points to remember

	Multiple choice questions

	Answers

	Key terms

	Index

