Implementing
Ci#ll

.NET 7.0

Learn how to build cross-platform apps with .NET Core

& v ‘
¢ 5 \ b

- "‘4"‘(WA |

- h { vt
/. N
y 4 "

»
7,

[mplementing
C# 11 and .NET 7.0

Learn how to build cross-platform
apps with NET Core

Fiodar Sazanavets

www.bpbonline.com

http://www.bpbonline.com

ii
Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor BPB Online or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, BPB Online cannot guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork

119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55513-281

TATYATAT I’“’\]’\ﬂﬂ]11’1 P onm

R A

iif

Dedicated to

To my mother, Liliya Sazanavets, and to the

memory of my father, Dzmirty Sazanavets, who sadly

isn't with us anymore. To my wife, Olga Sazanavets

v

About the Author

Fiodar Sazanavets is a Microsoft MVP (Most Valuable Professional) and a senior
software engineer with over a decade of professional experience. He primarily
specializes in .NET and Microsoft stack. He is enthusiastic about creating well-
crafted software that fully meets business needs. He enjoys teaching aspiring
developers and sharing his knowledge with the developers’ community.

Throughout his career, he has built software of various types and various levels
of complexity in multiple industries. This includes a passenger information
management system for a railway, distributed smart clusters of ToT devices,
e-commerce systems, financial transaction processing systems, and more.

)
"

About the Reviewers

Vache Chek is currently a senior software engineer with a specialization in
backend and cloud computing,.

Science and technology have been a constant source of fascination for him since
his teenage years, when he began programming as a hobby on his Commodore
64 at the age of 13. Over time, his passion for programming grew, and he
eventually pursued it as a career. Despite being self-taught, he has found that
the most effective way to enhance his skills is by sharing his knowledge with
others.

Kratika Jain is an Enthusiastic Senior Software Developer eager to contribute
to team success through hard work, attention to detail, and excellent
organizational skills in leading and managing multiple projects while
ensuring code quality, security, design pattern, and test cases with continuous
integration build processes. She has participated in Agile project management
and developed backend applications using Asp.NET, MVC, NET CORE, Entity
Framework, SQL server, and knowledge of software patterns and practices.

Asp.NET

vi

Acknowledgement

I want to thank all the people who have supported and mentored me throughout
my careet. This includes Dikaios Papadogkonas, Vache Chek, lan Turner, Paul
Eccleston, Frank Lawrence, and all the other people I have worked or collaborated
with.

vii

Preface

Welcome to this book about C# 11 and .NET 7! If you are a software developer,
you have probably heard of C# and .NET, and you may have used them to create
desktop, web, or mobile applications. C# isamodern, object-oriented programming
language developed by Microsoft, while .NET is a powerful and flexible software
framework for building applications for Windows, Linux, macOS, and other
platforms.

This book is intended for developers who want to learn the latest features and
enhancements in C# 11 and .NET 7. Whether you are a beginner or an experienced
programmer, this book will provide you with the knowledge and skills you need
to take advantage of the latest developments in C# and .NET.

In this book, you will learn about the new language features in C# 11, such as
raw literal strings, improved date handling, and using generic maths. You will
also discover the new APIs and improvements in .NET 7, such as a more intuitive
command line interface, new functionality in the core libraries, and new project
templates.

Moreover, this book will guide you through the development of practical
applications using C# 11 and .NET 7. You will learn how to create web applications
using ASP.NET Core, mobile applications using NET MAUI, and compiled in-
browser code by using Blazor. Although these technologies are not new, all of
them have been enhanced quite significantly with the latest NET update and this
book will demonstrate these enhancements.

This book will also teach you how to use some more advanced .NET tools. You
will learn how to build and run artificial intelligence models by using ML.NET.
You will also learn how to build distributed applications by using the latest
containerization capabilities of .NET.

I hope you will enjoy reading this book as much as I enjoyed writing it. Happy
coding!

Chapter 1: Getting Familiar with .NET 7 Application Structure - introduces the
reader to .NET 7 and provides a full set of instructions on how to get started, even
if you have never used .NET before.

ASP.NET
ML.NET

Vil

We will first set up our development environment. As you can build .NET apps on
either Windows, Mac, or Linux, you will be shown what integrated development
environments (IDEs) or a code editor you can install on the operating system of
your choice.

We will then create a basic .NET application based on the Console Application
template. Once the application has been created, we will examine the structure of
a .NET project. Then we will write some code, which will enable us to get familiar
with the basic C# syntax along with its inbuilt data types.

Chapter 2: Overview of C# 11 Features - demonstrates many exciting new features
have been added to C# 11 to make the lives of developers easier and make the
process of writing software more efficient. And this chapter will showcase all these
features.

We will first cover struct auto-default, which allows struct-based objects to have
their property values set to default values of their data types. This would prevent
exceptions from being accidentally thrown. Next, we will cover generic attributes.
This feature allows developers to use the generics feature of C# while defining
attributes. This makes it easier to work with annotation in the code.

Afterwards, we will talk about sequence pattern matching. This feature gives
developers more flexibility while comparing collections. Then we will move on
to the new string-related features of the language. These include new raw string
literals and multi-line interpolated strings. We will complete the chapter by looking
at the required object members and static interface members.

Chapter 3: What is New in .NET 77 - focuses on the new features that have been
added to the .NET platform itself, which consists of the SDK, build tools and the
core libraries. We will start by going through the SDK and build tool improvements.
The new features in these areas include the improvement to the command line
interface, compiler optimization and so on.

Then we will cover various improvements to the core libraries, which come from
Microsoft and System namespaces. The new features that have been added to these
libraries include better observability improvements, new JSON features, improved
RegEx, the ability to use TAR compression and several other improvements. Finally,
we will go through the deprecated features of .NET 7 and breaking changes that
have been introduced into the platform.

ix

Chapter 4 MAUI and Cross-platform Native Applications - MAUI which stands
for Multi-platform App Ul, is a framework that allows developers to build native
applications that can be compiled to run on Windows, Mac OS, iOS, and Android.
The intention behind this framework was that the same code base can be used to
build an executable for any platform. And this includes both desktop computers
and mobile devices.

In this chapter, you will learn how to use MAUI to build any type of a native
application that the framework supports. You will learn how to set up your code
base in such a way that you would then be able to compile your code into any type
of executable. Some platforms supported by MAUI have some limitations in terms
of what you can and can't do on them. And in this chapter, you will get to know
those limitations.

Chapter5: Database Access with Entity Framework 7- the server-side components
of web applications are often required to access a database of some sort. Usually,
this is done via an object-relational mapper (ORM), which abstracts away the
database access and make it possible to manipulate data directly in the code.
ASPNET Core comes with its own ORM, which is known as Entity Framework
Core. In this chapter, we will have a look at the latest version of this ORM - Entity
Framework 7.

In this chapter, we will first examine the fundamentals of relational databases that
Entity Framework 7 was designed to work with. Then you will learn how to use
the ORM itself. There are a few ways you can set up the ORM inside your ASP.
NET Core application. And in this chapter, we will have a look at them all: code-
first and database-first.

Chapter 6: Web Application Types on .NET - introduces the reader to ASPNET
Core - the main framework on .NET that s designed for building web applications.
We will also have a look at various types of web applications that ASPNET Core
supports.

First, we will start with ASPNET Core fundamentals that are common to all ASP.
NET Core application types. Following this, we will have a look at Web API, which
is a type of an application that provides REST API for incoming HTTP requests
but doesn’t have any web pages. We will then move on to model-view-controller
(MVC) applications, which allow the web pages to be rendered dynamically
depending on the controller actions and the data from models. Finally, we will
cover Razor Pages, which is a type of ASPNET Core application where each web
page has a server-side object associated with it.

ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET

Chapter 7: Blazor and WebAssembly on .NET - Blazor is a framework that allows
developers to write .NET code that can be executed in browsers. This can be
achieved in two ways - either by using Blazor WebAssembly or Blazor Server.

Blazor WebAssembly application is compiled into an executable that can run
directly in browsers. It can also be hosted inside a standard ASPNET Core
application. Blazor Server, on the other hand, runs all its code on the server. In this
case, the component in the browser will be communicating with the code on the
server in real time via SignalR. Each of these hosting models has its pros and cons,
even though the code would be very similar. This chapter provides an overview of
all these hosting models.

Chapter 8: SignalR and Two-way Communication - introduces SignalR - an
inbuilt ASPNET Core library that allows the client and the server to engage in
two-way real-time communication. The chapter shows how to build server-side
components of SignalR, as well as demonstrating how to set up various types of
its clients.

We will cover two types of SignalR clients - JavaScript and .NET. Both client
types can be either used in-browser or as stand-alone applications. For example,
JavaScript is a language that is native to in-browser applications. However, with
technologies like Nodejs, it can also be used in stand-alone applications. .NET is
primarily used in stand-alone applications. But with a technology like Blazor, it
can be executed in the browser as well.

Chapter 9: gRPC on ASPNET Core - gRPC is a wrapper protocol that relies on
HTTP/2 and enables efficient exchange of messages. This chapter demonstrates
how to enable gRPC communication on ASPNET Core. We will cover all the
fundamental concepts of gRPC. You will learn Protobuf, which is the messaging
protocol that gRPC uses. You will learn how to use Protobuf to set up both server
and client-side gRPC components.

You will learn all four call types that gRPC supports, which are unary, server-
streaming, client-streaming, and bi-directional streaming. Finally, you will get
familiar with all the data types that Protobuf supports.

Chapter 10: Machine Learning with ML.NET - ML.NET is a library that allows
developers to build machine learning application on .NET with relative ease. For
example, the library makes it possible to select an ML algorithm and generate
model for it in C# code. This model can then be re-used for multiple scenarios.

ASP.NET
ASP.NET
ASP.NET
ASP.NET
ML.NET
ML.NET

xi

In this chapter, you will learn how to use ML.NET. First, we will go through its
most fundamental features. Then, we will create some sample ML models by
using some of its most popular algorithms. You will then learn the fundamentals
of training and evaluating your ML model. And you will also be shown how to
use a low-code model builder to build an ML model in a graphical user interface.

Chapter 11: Microservices and Containerization on .NET 7 - Large-scale
applications are often deployed as interconnected microservices that can be
scaled out individually. And usually, the best way to deploy microservices is via
containers. This will ensure that each service behaves consistently regardless of
what environmentit’s deployed on. Because it runs inits own isolated environment,
it won't be affected by any processes that happen on the operating system of the
host machine, unless it has been explicitly exposed to such processes.

This chapter will show you how to apply orchestration to .NET 7 applications.
It will walk your through NET 7 Docker container images and the process of
integrating Docker functionality with your .NET projects. Then you will learn the
basics of container orchestration. For this purpose, we will have a look at Docker
Swarm and Kubernetes.

ML.NET

xii

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/4xyu6op

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Implementing-C-Sharp-11-and-.NET-7.0.
In case there's an update to the code, it will be updated on the existing GitHub
repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications” Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at ;

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical

https://rebrand.ly/4xyu6op
https://github.eom/bpbpublications/Implementing-C-Sharp-ll-and-.NET-7.0
https://github.com/bpbpublications
mailto:errata@bpbonline.com
http://www.bpbonline.com
mailto:business@bpbonline.com
http://www.bpbonline.com

articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

xiit

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions. We at
BPB can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com
alici(al

mailto:business@bpbonline.com
http://www.bpbonline.com
http://www.bpbonline.com
https://discord.bpbonline.com

xiv

Table of Contents

1. Getting Familiar with NET 7 Application Structure 1
Introdycioncwmrrrramms T —— 1
S0 s 4 RS9 TSRS s ¥ EETEEEEEEECEE Y VR 2
ODBJECHIVES.......ooovvvvvvereeeeecssssssisissses s ssssssssssssss s 2
Setting up your development eNVIFONMENEuevvrsuvvevvvvmssssssssssmssssssesesss 2

Asuitable development MACKINEScccccevvvevvescsssciiccsveeseeeiessticsiiiiicsiee 2
MBLF SO omcsmrmrimmesmsmmmmrsmsremmmrmssspemmmempes g s 3
Setting up a code editor o A1 IDEcooccoccecvvcnccviivsccsenecssmecssssiniens 4
Installing a suitable code eAItOF.......vvvvvvovverssiisissiisscessisssssssisssesssississssns 4
Installing @ suitable IDE ..., 6
Microsoft Visual Studio 2022........vcevvcevvvvvveensscsvieeessscsiiseeesssssiiiseesssssnine 7
Microsoft Visual Studio 2022 for MAC ... 8
JOEBIAINS RIALT....oovoiiisisessreesicessiciciniiiniiniss st sssisssinns st 9
Creating a NET 7 application..........ccccoccccvvvvvvvnnssssiisnsssssssessssssssssssinen 10
Creating an application Vi CLL ..o 10
Creating an application via an IDE GUL........ccccvvnnsiicnnsciiscsssiiininns 11

NET 7 project Structure OVEIVIEW ... 14
AddiNG 0 SEUCEOBJEC......oooeceeerseeescteerseeeessesnnss s 14
Adding an interface and a class..........cocceecccenscceesssiceessces s 15
Modifying the entry point of the APp.......ccvevevevssccvvessssnsivivisssisinsscssssisiiee 18

C# 11 basics and inbuilt data types...........cccccemmricemsennscseesssinnees 21
TNDUITE ABEDEYPES ..o 21
ORI e e 23

G cilstoft WPes aummmmrmra s g R R A4
Accessotlierse s E R 25
CONClU ST O rtmrmessess s s rmmmmmmetemss s e e s ST PO v 25
POINES 0 TEMEMDEToovveveeeeivieereiveeieeiiieieesessesssssssesesseseereeesssses s 26
Multiple ChoICe qUESHONS.....voevvmvverssvrrsersssresssensssssssssssssssssssssssssessseen 26

ABISTETS oetrestverivesierinsese o sves st taes s seass s bsssees s st s b eees e s s bsss st ben s st 27

X0

KOy DB vt immmrmammome ks b om0 S e 40 27
2. Overview of C# 11 Features 29
INEFOAUCHON. ..o 29

1 (011 (OO 29
OBJECHVES...vvrrvvrersrsssmssnssserssssssss s s ssisssses 30

PRETe SIS vecconssmumssssmssssmsssssssmmmsmasssssmssssrsrsmysmssssrsmmmsmssssssssssssssrniinm 30

Struict Anito-defaiilfs e ranrem e T 30
(Generic atfributes mmmrmammmrm e ———— 32
Ganenizftuibute pxamplts mommsmams e s —— 3]

Sequence pattern MACKINGcocoeersmrserrsrssrseenssesessenesnssesssennsen 35
Sequence pattern matching demonStated..........oovvvvvvvesccciivvvenssiiiiivsren 36

Sequence pattern matching With CHAr SPAM.......c.ccvcrssvccvimssssicerivisssirierisenes 37

New String 0perations.........cccceueeeeeeeeersssssmmsssvsssssnssmissssssssesss s ssssssssssssee 39
61— H
Points to remember .= +
Multiple choice qUESHONS.......cc.ooevvrsvvrsrrssieessoricnsssisessessssissssinssssssins 45
PAYISTUBYS, o ocetesoes o om0 0 00 0 o 0 o O AT 45

Key termSoovvvvvvrvrrerereesissssinnene s sssnsssssssssssss s sssssssenee 46

3. What is New in .NET 7? 47
INEOAUCHON ... 47
SRS, v rwsresmrsermmsmsvrmsrm i m—————————" 47
ODBJECHIVES..oocsssevvsssersssssssssssssissssssssssssss s —————— 48
Brerequisites wrmmmmmmm s s e s e 48

SDK and build tool improvementsewrmmmmsssmmmsssssssmssesssinsinen 48

GEA $00]s HrpROTEINEHNES rvvsrmatocoerecmmrerearms sess oo stmvessesmass o et e 48
NativeAOT and enabling library HiMmMinG.......ovcvvversscisenssciicsssesissserssne 50

Central package MANAZETv.c..vvvvecccvvessiivvvessiseesssisssssssssess s 51

System and Microsoft library updates............mmmmmmmmmmmmmmmiin 52
Microseconds and nanoseconds SUPPOTt...........ouvvveverecvevrssiiivsessisssersssine 52

NEW JSON fETHUTES......ovvvvvevrsssirisssvsrsssiiisisssssssimissssssssssssssssssiseisssssssisins 3]

MaxDepth property of JsonWriterOptions classoewvvmssssnssiionnisiionnas 55

xvi

Default JsonSerializerOptions configuration ... 57
JSON-specific HTTP PATCH......ccoccooivvrsivvnnsiismssissssssssssssssssssssssssssss 57

JSON POIYMOTPRISHL cvvvsvsss s 58

Testing JSON fEUTES ..ovvvvvrrssssssisssnsssiss s 61

NEW SHEAM fEREUIES w.cvovvvversvvsersssessssvs s 62
REGEX HIPTOVEMENLS c.cvvvvvvvrs s ssssisisssssssssisssssssssssssssssssiissnes 63
Cryptographyy HPrOVEMENES ..ov.vevvvcssissessisissssssisssssissssssssisssssssisssesssssoss 65
New TAR APLrowmrramererarmramemerammamsmmmmymarms 67
Observability IMPrOVEMENESccummmmmmsrssssssssmmmsssssssssssssssssssssssssssssen 69
e 70
Monitoring stopped ACHVILES vvvvsvivssisssssissssssssssisss s 70

Curtent activity changed €. . v 71
Enumerating activity propertiesvveeevvveessssseesssssssssssssssssesssissssessss 71
UpDownCounter MEHIC. ... mmmmvmmivsvsssssisssianimisssssssssssssisssesesssasssssssssnn 73
Breaking changes of NET 7cccuermmrrsmmsimsmnmsnssssssnsssmssessssnsssns 74
Microsoft. Extensions Hullabilitycceveeevccsvceesssssiiseeessssssisiseessssssinie 74
Obsolete and non-nullable enAPOINEScccowcoricceisssicvvvvmsssiicssevssssisrinssens 75
PatternContext CoNSHAINEcccooovovviveiciiciniinitcssiiiierisnssiessisssicssesssssssssose 75
Multi-level lookup is disabled 01t Windows.............cowccccoerrscvivcvrsiiverssie 75
MSBuild serialization of CUSIOM FYPES....vcvvccivvvscivcsrecticsiaciicsvecsiissnsssi 7]
TS B Pl come s o s s ————— 75
Points t0 TEMEMbETuvuvvvrnssimissssssssmsiss s 76
Multiplé choice questionSwamumammnmmmmmmm s m———— i
NS08 o e e e R BT T TR 77
K IS romemst, it s i o o e i 5 78
4. MAUI and Cross-platform Native Applications 79
INEFOAUCHION. ccvvvreersnssncrs s 79
SETUCHUTE.....oooooeeeeeeeeeiiiisiesisesssssssssss s 80
ODJECHVES oovveessvsvvnssnsssnmssssssss s sssssssssssssss s ssisssses 80
PrRTRQUISHES . cmmasmimamsssivmsmammnsos ms o 80

Intreducing MAUL e sammms s 80

Enabling MAUI development envitonentcwcccnvessscsnccsvsssssisiee 81
Creating a basic MAUL applicationscccccccvccncccivncssicvicsicssssisecnnens 82
MAUI XAML TferenCes covvvvvvvvnsivvsisissssssissssssssssimsssssissssssimssssssssssssssssss 86
Working with Blazor on NET MAULc.ccovvvvvvsiiismsiiissrsssiisssssiiiiinn 89
MAUT architectural PAHEINS covvvveeevescvvveeveesscsssensssssissessssssssisinecsssssnn Ji
Model-View-VIEWMOeL.........c.cccccevevensiisiciivsisssssisisssssessssssssiisissssssssssins 91
Patterns supported by MAUL via third-party frameworks ... 94
Reaetrelllymrsmmnmerme s et et mon 94
Model-View-Update ..., 94

Using MAUTI to build desktop apphications...........ceerecmscsensssnisinnne 95
Preparing desktop developtment eHOINOMMENLceocecvvvvevveressssenssc 95
Running a desktop app in a debug mode.........ccvvoccevvvvvsrsssrisiiiivivivirinis 95
Publishing @ desktop ppocccvvecvvevscccssiisscssimsissessisissiisssssiies s 96
Using MAUI to build mobile apps...........cccmmmimmmsssmmisssssminsissnnes 97
Preparing mobile developtent envitONMENt ..c..cvvvvsssssivsevsscsssivissesssisiinnn 98
Running a mobile app o an EMUIRLOovvveeervvcvvvvvvvronscssssisiciivssissnene 99
Pulilishing amobils opp. o s s 99
Limitations of developing for Mac OS and i0S..........ccccceeverrrcsvcerresiinn 100
Extra tools required for publishing apps for i0S..........ovcowcvvvvvrerniiiivvrc 100
Slightly lighter requirements for Mac OS apps......c.cccoevssssiccsssssssiiiee 101
oM IG e ————— 101
PGS 10 WHEMBER srmsrmmmommrmsrmmem e 102
Multiple chOice qUESHIONS......cuurreerrsserremssssssssssssmrssssssssssssssssssssesssssssssss 102
ATSWELS .cvrvvsenvvcrrmsriinsseonmssssssssssssssssssmsssmmsssassssssissssssssssisssssssssssssassssssasanss 103
Koy eI s o w7 D T SRR T 103
5. Database Access with Entity Framework 7 105
INErOAUCHON. ..o 105
1 106
Ol BRIV e reremrer s ———————————————- 106
PREGUSHS s 106

Introducing fundamentals of relational databases............ocivvumsssiiiens 106

xviii

Overview of relational database management systems and SQL................ 107
Tables, relationships, and nOrMANZALIONcccccvccoecrecciicccnsscssiicrsesccrnn 108
Introducing primary Keys.....mmmmmmmveemssssssenssissssssssssssisssssssssssssissssssssissssen 109
Normalization and foreign key relationshipscovvvsvmissmsssmississsisinn 110
Introducing entity framework 7ccomvvermssinisiissemnssssessssesssinnen 112
Code-first approach in EF7...........ooerecsnssmsecsnssnssnssssssnsssnse 113
Adding Entity Fiatiewofk 0t smmemmmrmnaramananssm s e 114
Adding entity 0BJOCtS .oovvsvvvvvesirirsverssisesssisssee s 114
Addirgdatabasecoutexti v 117
Adding database creation SCrIPt...........eicoivericossiisessiessissessissssiiesns 120
Creating the database by running the application............ccvevvccvvverssce. 125
Database-first approach in EF7 ... 126
Creating EF7 models from an existing Aatabase..............cocvcvssiviosicveren 126
Looking at auto-generated eccocvvevvccccciessscciicvorsssccsiisonsssssinin 127
The latest featiided of BE rmmrammrmmmsras s 128
Controlling database-first via T4 templatesvvevvccvvvmscvvresssirrersne 128
Guuarded gy vamsemecmmimsmnmm nsssnasmsmm s o 129
Table-per-concrete-type (TPC) MAPPING.coccocvvvvrscrrnsiiirvcssirices s 130
TAECYCEPROTS ottt 134
CONCIUSION o 136
Points 10 TeMEMbEEccowuwmersmmrmmss s st 136
Multiple choice qUESHONS........cccouuurmmmmsmmrssmssssssnsssssssssssssssssssesssesssseses 137
Ao s 138
Keyterms. e s s e 138
6. Web Application Types on .NET 139
INETOAUCHON ..ot 139
SHUCHUTE ... s sesnes 140
()1 1SS R S — 140
o s — 140
ASPNET COTe DaSICS.....covverscsievsnsnssns 140

Basic ASPNET Core application SHUCHUTE........comumsssscsscsmicnsinssssiinnen 141

ASP.NET

xix

Wb APL on ABPNET Conerrrmr b b ima s s 143
Web APLWith COMTOUETSovvvvvvvescericriciessireveresevsesesse s 144
Minimal APTendpOintS.........vowevvvverscisesssissssesissssssiissssssssissssssssssssssins 150

Adding open APIMEtaAR...c.vvvccvovisisssssisssisssssssssssissississsssisssssiision 151
Improvements to minimal API Parameters ... wvveeissiissenssiiisssssisiinn 151
Minimal API and typed 16SUlLSvvvveccvveeessssssissssseesssissssssssissssessssissssen 152
Uploading files to minital APL.......cmmiismsiissssiiissmissnon 154
The new in request processing MidAIEWATEcccccoccceeccssiiicccicssscsien 155

MVC 01 ASPNET COTE......cccvcrvvensrsssesmsmssns 157

Razor Pages on ASPNET COTe w..vvvvvvvccivreressciersssnnssssessssnsssssessssssnssi 174

COFTRUTEORLS. ... 2 B e B P B S LT B B L L LR 176

POINES 10 TEMEMDET .vvvvvvvvscrrvvssisnsessans 176

Multiple choice qUESHONS........cccceevrriversemscrrssnsressnsssssssessssossnsesens 177
ATISTEYS .o 178

KeyrteiS cmmmammmmrm s e s e s s 178

7. Blazor and WebAssembly on .NET 179

Tnftrgelureftomt e om i s e s e T e 179

SETUCEUTE ... veevveeerecveesr e sesss s s 180

OBJEHTELL...c...oices5ueemsseniss v i s s smdi s Smsos s s Ssan s 180

PIOTEQUISIEES vuvvvvvvvvisississssssssssssissssisssssssssssssssssssssssssssssssssssssssiiniins 180

InbeoE g Blazt. s ————n—n 181
Razor componentt eXampleeeeveeccccvveeeesssciiriesssisirssessssssiisssesssssinin 181

@PRYGEs:somrrrovmmrms s T T I T T T TS 182
@ondlith s 183
QCOE covvvvvvvvvvcrecrveris st 183
Razor keywords in Razor COMPONENES.......ccovccciccoeecesccicccresaccsivccressccnione 183
RCRIT TR o 2208 T e T S o P e Ty e e e SR s B 01 183
@IMPIEMENLS covvvrsssrsrsssissirisssisisisss s s 183
e — 184
T T 184

XX

7777 SRS PSSR S— 184
@IESErVEWHIIESPACE vovvvsvvvvsvsssiissssssisssssssssissssssisssssssissss s 184
@attributes e e s T T T 184
L 185
L 185
O 185
Blazor WebAssembly OVEIVIEWccccivvvrmmsssinsnsssissssssssssssssssssnsen 186
O s 187
JAVASCHiDE INLEXOP covvcsssisisscsrsamsensasssssssssssmsiagimsmsssssssssssmsssrssesssgssssssssssssen 190
Passing parameters to Razor components..........csssissinecsssiiiimivion 192
Ahead-of-time COMpPilation...........vvvvsccvevssccseesissersssiisssssisisssssssssesssne 193
Empty Blazor WebAssembly template.........ovvewvvessciisssiisssrsssissssssin 194
Hosting Blazor WebAssembly in ASPNET Core.........ccccvvrmsvcnivnnicen 195
Adding a hoster Blazor WebAssembly to an existing
ASP.NET cote applicatione.eeeeecscossrmsssssssssssssmsmmsssssssssssersssssssssssssns 195
Formm validation i BIAZOT c......ovvecevconsscerevcrssmcsesssssinsssssassssessssssssssnesnes 196
NavigationManager and passing state between pages..............evvvvvvevscce. 199
Setting up Blazor SEIVeTovvmmvmminnrssssinsssssssssssssssssssssssssssen 200
Custom elements in BIAZOTocccccoococeevcciovicnsosssicrrtvemiecmievssresseesinesssecnseens 201
Razor component TeCyCleuevevceecccsivecerevvverensicsicciiivnneeesssssssssivinirene 202
Empty Blazor server template.........ovivsvvvvsvvssisimicsscsssssssssssssmsiisicssins 204
811][e 204
Poins toreMember ymommammrammmrmmm e s 205
Multiple ChOICE GUESHONS .vvvvvvvvvvessssrsesssessssssessessssisssssssssssssssesssssssseees 205
USRS, mvscms.imsssssvsrsssios o ormssefmsresadii s it ssmiss G T aseeesmvs s 206
Key termMS uvvvvvvvvvvvvsssssssmsssssssss s 206
8. SignalR and Two-way Communication 207
INEPOAUCHON.....oooooeeeeeeeeeivrreerieeesseeseesessss s 207
B AETUGHIIRRS seveeevesesvevessrsevevessrossseeseses s Feme oo e o s e P s 208
QEEEIIG —mrrerrrerrrrEETEE 208
PrRRiHistes o s s s R S 208

SignalR OVervieW s s T 209

xxi

WEbS ket s .omrma e, me s o, o oty s s 209
SCTVEI-SENE UBHES...cccves sttt 210
LONG-POUNG. oo sssssssssstsssssss s sessssnsssssee 210
Creating SignalR Hub on the Server..........emrmsessnnsenseessinne 210
Strongly-typed HUb .ovvvcvcvvevrscvvrssiiscsscsiiissessisenssccimsssssisssssssmsssesssns 214
Dependency injection in SigHAIR HUb.......ovevvcccseicveersvecesccenssir 215
JSON wersus Messagel s wmmamanaranarmmmmmsm m s momsm, 216
JavaScript client for SIgNalR.......c.covvvmsmvsersssenssinsssmsmssssesssssssinins 216
Adding HIML markup for SignalR client.........occnvcsmcnrvsniiicssisns 217
Applying SignalR functionality in JavaSCript.........cocesicicssicisesciecns 21
NET client for SignalR...........cccccmmvvvressmsseesssimssssmsssssssssmssessssssssssssssessns 24
OO BISTO Mo cvssseeeosseemsssessssmreesessssomsessassessssersssss eresesseessermsseessrsessmmee e 228
POINES t0 TEMEMDEToooeeveerseeeeesseesemssensserssssneessssssesssssssesssssssessssseene 229
Multiple choice qUESHONS.......cccuevrrsversrrsiirssariesrssisessessssissssnsseesne 229
AHS D Seraprermrrgramma oo T T 230
Key1eImS st 230
9. gRPC on ASP.NET Core 231
IETOAUCHION ... 231
S BIETISUETE; . 5 150453445k e s TS 232
ODJECHIVES .rrrsvvvvvrrrsssssssssssssssssssss s sssssss 52
BIeRqiisHe e —"— 232
GRPC QUBIVIEI cvvvvvrsnrsevesscsrsssssisssssnssmissssssssssssimmsssssssissssssssmsssmmsssssnsss 232
Protobuf as the main message serialization protocol.............wermeen: 233
Setting Up GRPC SEIVETccoocciivveecressiinsnrcsssssiscesssisssssssssssssssssssseens 234
ASPNET Cora,gRPC yrofect, Srehites s tomammiim s 234
GRPC call types and data BYpesocovewcvvevcicnsene st 237
QRPC JSON traNSCOAING.c.rvvvvrsiirvvversssvserssisivssisisssssssissssssisssssssinssssssns 240
T 0 O 244
Using gRPC client factory and dependency injection...........cocccoccecscc. 248
Overview of gRPC data types...........ccvmmmvvvemssssmsssisssemsmsssessssssesssnien 250

P 0 Ol Ao 1St T G 252

xXxii

Enabling collections with a repeated KeYwWord.........c..ccccccoverrversssssiierivens 252
Dictionary-like Protobuf unctionality............cevveessvnscverscinvssiisorsine 253
Using the oneof keyword in PrOtODUSc..covvevvscvvverrsssivvvcnessssciiencenssn, 253
Well-known data tyPesumumeveressmsmssene 253
CONCIUSION .. 255
FoIffS 1o BMEMbER smsmommmmmrmsrmmem e 256
Multiple choice qUESHIONS.......coovvveessserrersssmersesssssressssssssssssssssssssssssssssssene 256
ANSWB S mvesmrmrmr T T T T 257
Keyrferms s s e e e S G 257
10. Machine Learning with ML.NET 259
INETOAUCHON. ..o ssesees 259
S RTTQUERRS:ccvcvvssss s o 755573534 553 S SR 44548 T T T TR 260
ODJECHIVES......ooviviivcisirrcnrerssssssss s 260
PRER qUISIEES s rmmsseesmrrmsrmsmvmmsmsmmms s sy 260
MLNET fifhd aihehtals e 261
Tiypes of MACKING J0ATNING c.vvvvvvvvvversscrverssciiissrssissesssimisssssiisssssssmisssssines 262
R O 262
UNSUPETDISEd [eAINING covvcovvvssc st 262
Reinforcement [earning ...veeemvvveessssssscesssssisssssisssessssssssssssssssssssssissssns 262
Getting started With MLNET c.ucinvivssssiissssssiisisssssssisiivssssssssissns 263
Using ML.NET to create your first ML MOdel........occvvverenvcvsvecricsisscssssiin 265
Choosing a problem for ML............ocrrsrmsmmrmsrnssssnsssssessnne 267
Binary classification..........ccmmevessmmisscsssanimisssmsssssass s 267
Multiclass clasSIfication.........cw.evveersscisevssiiiseesissesssiisssssisissssssissssssne 269
Rogtess jonamsmmosomommmmors oo v 270
Recommenaations...........cecccceveecscssiiicscnsscssiccisssssisssessscssisicsssssssnne 272
FOTCASHNG vt 273
T O 275
B 276
ANOMALY AEEOCHON ... sssssssssnsessssss s ssnissssnenes 277

Riking vonmmmsawrmmmoea s o 277

Training and evaluating your model...........ccccccccuiiiiiiivscsnsnnssssssiiins 277
Binary classification MeticS.....eemvcccsssosicimmssssimecssessssoniiscssssseninnne 278
Multiclass classification MetICS.......cowvvvesisccovccrsccsicsnsccssiccresssssiee 278

L0§-L0SS TEAUCHOM covvvervveesvsressssesscsssissssssessisessssssssssssssissssssssssssnissss 279
T 1 O 279
T — 279
Regression and recommenARtionc.cevvveresverssciissssiisssessssssesssns 279
O L 280
Anomaly detection MEHICSc.....ccevevcccessceeeesseeesssssrsssssnensssseesessssee 280
RANKING MEHICS ovvrrrcvvvvvcrsscrcvnsccnsscncsvscvssssaimssssssssississssinsscssssssssinnes 280

Using a low-code model builder ... 281

CORBMIBION - merrrim i s ests e AL O Lt 285

POINES t0 FEMEMDET .vvvvvrsssssssvsvererssnnrssesesssnnes 285

Multiple ChOICe GUESHONS.......ouveersrrrserssnrrsnmsssssnsssssssnsssssssssssnsesese 286
A s T R T 286

Keytermswmmnmmmmmmmmmmremmmmmsawwstmmms m 287

11. Microservices and Containerization on .NET 7 289

IEEOAUCHION ..o 289

SHTUCHUTE.....oooooeeeeeeeeeevesisrseessssssssssssssssss s 290

851 1T 290

(S (0O 290

Docker container fundamentalsccccccccmmssneseesesesesnsssssssins 291
Containers and CONTAINES TMAZES ..ovvvvvevrsccrvvorrsiseessciivssscivssesssnsisesssnne 291
T 292
Network isolation and port MAPPING........c.ccwvvvvvcccirivivievnrccrrecsssssiieniien 292
File system isolation and Dind MOUREScvvcersccrvvcssccrcnvcssscsisccsssmsaninne 292
T N S B 293
Installing Docker 0n MAC......veveevcccccveveerssscicsissssisisssnsssssisiisse s 293
Installing Docker on WIHAOWSvvvvvvssvvcvvvcnssssiscvssssisiccccsssssiicnississsinenes 293

Base Doaker ifiage 107 NEI 7 swmmmmammmumesmrammmrasmmsamoss 294

Creating an application with Docker SUPPOTE ..ovvveeesrersrreesssrssireesen 29

XXiv

Adding Docker support to an existing application...............eeecessiivee 298
Docketfile SEUCHUTE .vovvvvrsscsrsvvvsrssscssicssesssssisscssssisisssssssssississssssisne 298
Building and running a Docker COMMAINEToooccvscvcvvscovssiverssssissi 300
Orchestrating applications with Docker SWarm..............eeeeecsns 301
Basic orchestration with Docker COMPOSE.......vvvvvvccviiicevcvvivsvisssssssimriecrien 302
SITFHRG LDDOKEF ST cmmmssmmrmarmmmammm s awwn 303
Orchestrating applications with Kubernetes..............ccoewerrrsnnsen 305
Installing Kubernetes 01 LUcc..cccccoeccresvcrcsssicenssirenessserensssne 305
Installing Kubernetes 01 MACooccecevcccvveensseesssivsssiiissessssssesssn 306
Adding services to a Kubernetes clUstermmmivirivisssiiiriicone 307
CONCIUSION ..ceceeereererseeveres s s 308
POINES 0 TEMEMDEToovvvvvvvevivvivirrrrcrseseessvessesessssssses s 308
Multiple ChOICE GUESHONS .vvvverevvrrsssvverssvesssssessesssssssssssssssssssssssssssssenes 308
R 309
Keyterms wrmammmmmmmamassmmsrrrm e 309

Index 311-317

CHAPTER 1

Getting Familiar
with NET 7
Application Structure

Introduction

From November 2022, .NET 7 is the latest version of a cross-platform software
development framework called .NET, which is being developed and maintained by
Microsoft. Although the framework supports a number of programming languages,
the most popular NET language is C#, and the new version of this language, C# 11,
is an integral part of NET 7.

The main benefit of using .NET 7 over some other software development platforms
is that it can run on any of the major operating systems on PCs, which include
Windows, MacOS, and Linux. In this version, that is, .NET 7, in particular, you will
be able to build applications that run on both PCs and mobile devices. Later in this
book, you will find out how.

This book will teach you how to use the latest features of both .NET 7 and C# 11.
Whether you are an experienced .NET developer or you have only started using
C# and .NET recently, this book will provide you with enough knowledge of these
subjects so that you will be able to write your own .NET applications.

Tf von have 1ieed NFET and C# hefare this hank will oive van a ennd intradiiction

B B e e i e B

to the latest features of both the platform and the language. If you are a beginner to
C#, you will be able to follow this book, but you should familiarize yourself with the
basic C# syntax first. The primary focus of this book is to showcase the latest features

2 Implementing C# 11 and NET 7.0

of C# 11 and .NET 7. However, we will still briefly recap all the fundamentals. Also,
carefully selected links to the official language documentation will be provided at
the end of this chapter. So, whether you are only starting to learn NET or are already
an experienced software engineer that specializes in .NET, you will find this book
valuable.

Structure

In this chapter, we will discuss the following topics:
¢ Setting up your development environment
o Creating a .NET 7 application
o NET7 project structure overview

o (C#11 basics and inbuilt data type

Objectives

In this chapter, we will focus on setting up your development environment and
creating a basic application by using .NET 7 templates. Then, once we have created
our initial project, we will recap some basics of C#.

The following chapters will focus on the new and shiny features of NET 7 and C#
11. But before we get there, we need to have our fundamental dependencies set up.
So, let us begin.

Setting up your development environment
To start working with NET 7 and C# 11, you will need the following:

¢ Asuitable machine is running either Windows, MacOS, or Linux operating
system.

e NET7SDK
o Asuitable IDE or a code editor

If you do not have any of these prerequisites installed already, let us go through the
steps vou need to take to install them.

A suitable development machines

Since .NET is a cross-platform software development framework, it will work on
either Windows, Linux, or MacOS. Therefore, a machine running either of these

Getting Familiar with NET 7 Application Structure W 3

operating systems will be suitable. .NET is also compatible with a variety of CPU
architectures. It will work with either Intel/ AMD or ARM.

Regarding the processing power, disk space, and memory size, any average
consumer-grade laptop or desktop would do. You do not need an extra-powerful
machine to run your .NET code on. However, I would recommend a machine with
at least 8 GB of RAM.

NET 7 SDK

NET software development kit (SDK) contains everything that you need as a.NET
developer, including the platform, the compiler, and all supporting tools. The latest
NET 7 SDK can be installed via the following steps:

1. To obtain .NET 7 SDK; you will need to visit the following page:
https://dotnet.microsoft.com/

2. Once on the page, you will need to click on the Download tab, as per figure
L1

B Microsoft | NET wyner. g leamy D mloads Communty | LVETY

Free. Cross-platform. Open source.
Build any app
with .NET

Create beautiful apps and scalable cloud
services, faster and easier with the free, open-
source platform that's loved by developers and
trusted by organizations.

Supported on Windows, Linux, and macOS

Get started

Figure 1.1: Download tab on Microsoft NET page

3. You will then be taken to the download page, where you will need to choose
the latest NET 7 SDK to download and make sure that the ontion that vou

https://dotnetmicrosoft.com/

choose is SDK rather than Runtime. The NET 7 runtime will allow you to run
NET 7 applications on your machine, but you will not be able to build them.
SDK; on the other hand, contains both the runtime and all the development
tools that you will need, including command line interface (CLI) tools that
we will cover in detail in Chapter 3: What is new in .NET 7.

4 Implementing C# 11 and NET 7.0

4. Next, we will set up a suitable IDE or a code editor if you have not done so
already.

Setting up a code editor or an IDE

It does not matter whether you will choose a code editor or an IDE for your
application development. You will be able to use either. And you will be able to
perform all exercises in this book regardless of this choice. However, it would be
useful to know the difference between the two, so you can decide which tool would
be more suitable for you.

A code editor allows you to write the code and navigate through it. It comes with a
variety of code formatters and highlighters, so your code will be easy to read. But
this is pretty much what the capabilities of a code editor are limited to. Typically, you
will have to use some external tools or install additional plugins to be able to build
your application from the source code. However, because code editors are limited
in their capabilities, they tend to be substantially lightweight and faster to load than
IDEs.

Integrated Development Environment (IDE) can do absolutely everything a code
editor can do and much more. Things like creating new projects from various
templates, running and debugging your applications, and building your source
code into a deployable application are available out of the box. And all of these
things can be managed via Graphical User Interface (GUI). But all of this comes
at the expense of performance. Typically, an IDE would be slow to install, occupy
a reasonably large chunk of disk space, and noticeably slower to load than a code
editor, especially if you are running it on a slower machine.

So, which one should you choose for application development with NET 72 Well,
you can choose either of these, depending on your preferences. If you do not mind
building and testing your application via a CLI, which comes with .NET 7 SDK; a
code editor would probably be sufficient. However, if you prefer the comfort of using
a GUI for everything and you do not mind longer loading times and occasional dips
in performance, then you should probably use an IDE. Also, I would recommend
that you use an IDE if you are a beginner.

T ot 11e now review which ende editare and TNFRe wanld wark with NIFT 7 and ('t 11

AL WAL LIV VY LG VLYY WY LRI LU R L I B i VY LI FY LN PV LD oLl WL M AT Ak,

Installing a suitable code editor

If you want to use a simple code editor, then the choice would be Visual Studio
Code. And it does not matter which OS your development machine runs. There is a
version of Visual Studio Code available for all supported operating systems.

Getting Familiar with NET 7 Application Structure W 5

Visual Studio Code can be downloaded from the following Web page:
https://code.visualstudio.com/download

You will then need to choose the download option that is relevant for your OS and
your CPU architecture, as per figure 1.2:

Download Visual Studio Code

Free and built on open source. Integrated Git, debugging and extensions.

ll [\

4 Windows 4 deb 4 .rpm ¢ Mac
Windaws 8 10,11 Debian, Ubuntu Red Hat, Fedara, SUSE macQS 10.11+

Usernstaler (50 D D) deb B e e Cop e icen
System Installer _@mam Ipm m
i CINEE mgz@

Figure 1.2: Visual Studio Code download page

Once downloaded, you will then just need to follow the installation instructions that
are specific to the OS you are using. Once installed, you will need to download a
C# plugin for the code editor to make sure that all C# code is highlighted correctly.
Either you can do it now, or you will be prompted to do so the first time you use the
editor to open any file with the .cs extension. If you choose to do it now, you will
need to open Visual Studio Code and click on the Extensions bar on the left-hand
side, which is represented by a symbol containing four squares. Then, you will just

https://code.visualstudio.com/download

6 Implementing C# 11 and .NET 7.0

need to type C# in the search panel and install the first plugin that comes up in the
results, as per figure 1.3:

| File Edit Selection View Go Run Terminal Help

1ARKETPLACE TS -

c

(¢}
€D c# for visual Studio Code (powered by OmniSharp)
Microsoft
[DEPRECATED] C# Format Revolve <
[DEPRECATED) Fix format of usings / indents / braces
Przemystaw Orlowski
C# Extensions
C# |DE Extensions for VSCode
jchannon Install

Figure 1.3: C# extension in Visual Studio Code

And this is all you need to start building your apps. However, if you prefer an IDE,
then these are the steps you would need to take.

Installing a suitable IDE

Installing an IDE is not as simple as installing a code editor. Visual Studio Code is the
only recommended code editor for NET development, regardless of which OS you
are using. But when it comes to an IDE, different operating systems have different
options available. The options can be summarized as follows:

Windows
o Microsoft Visual Studio 2022

o JetBrains Rider

MacUb
s Microsoft Visual Studio 2022 for Mac
¢ JetBrains Rider

Linux

¢ JetBrains Rider
So, as you can see, the only common IDE is JetBrains Rider. But it has its own caveats
too, so it might not be the best option for everyone. In fact, every IDE from this list

has its own pros and cons. We will now examine each of the options, so you can
decide which IDE to choose.

Getting Familiar with NET 7 Application Structure W 7

Microsoft Visual Studio 2022

This is the official NET IDE from Microsoft. Although it was mainly designed to work
with NET, it supports a range of different platforms, languages, and technologies.
Despite its name, it is not related to Visual Studio Code in any way. It looks different
and feels different. The only common things between the two is that both are made
by Microsoft, and both can be used for writing code.

It comes with all the tools that you need. And you can also get it for free, as it has
the so-called community edition. There are also premium professional and enterprise
editions that you have to purchase a license for. They come with more tools than
the free community edition. However, even the community edition comes with a
sufficient amount of tools for developing your NET applications. You will definitely
not need anything more than the community edition to follow the exercises in this
book.

The biggest advantage of using Visual Studio 2022 over any other IDE is that it is
kept up to date with NET updates. So, whenever NET SDK gets updated (even if it
is only a preview version of it), an update for Visual Studio will be made available
immediately to make it compatible with it. So, you can be certain that your IDE will
always be able to handle the latest .NET features.

To download Visual Studio 2022, you can visit its official page via the following link:

https://visualstudio.microsoft.com/downloads/

You will be greeted by the following screen, which is illustrated in figure 1.4, where
you can choose the version to download. Choose the Community option if you are
not sure which version you will need. You can always upgrade later if you have to.

Downloads

https://visualstudio.microsoft.com/downloads/

v,

Visual Studio 2022 Community Professional Enterprise Preview

Powerful IDE. free for Professional IDE best suited Scalable, end-to-end Get early access to latest
" ‘ Version 17.2 students, open-source to small teams solution for teams of any features not yet in the main
The best comprehensive IDE for NET contributors. and individuals size release
and C++ develapers on Windows. Fully L .

earn more

packed with a sweet array of tools and e m m PR
features to elevate and enhance every
stage of software development.

Release notes) Compare Editions » How ta install offline)

Figure 1.4: Visual Studio 2022 download page

8 Implementing C# 11 and NET 7.0

Once the download begins, you will just need to follow the installation instructions.
But you will need to be aware that both the downloading and the installation may
take a while, as Visual Studio 2022 is a fairly sizeable IDE.

Even though Visual Studio 2022 provides you with all the tools that you need, the
main caveat is that it is only available for Windows. There is an IDE called Visual
Studio for Mac, but despite its name, it is not a Mac version of the same IDE. It is a
completely different piece of software. And this is what we will have a look at next.

Microsoft Visual Studio 2022 for Mac

If you use Mac instead of Windows, Visual Studio 2022 for Mac might be a good IDE
option. This IDE comes with sufficient tooling to build your .NET applications, but it
is more basic than the Windows version of Visual Studio 2022. It is also that the GUI
of the IDE looks completely different, so if you have previously been using Visual
Studio on Windows and you have now switched to using Mac, it will take you some
time to get used to it.

Another caveat of using Visual Studio for Macis that its development lags somewhat
behind the development of Visual Studio for Windows. And it does not keep up with
the evolution of .NET. Sometimes you even have to wait months before you can start
using any new .NET features. Sometimes the only way to use any new .NET features
in this IDE is to install the preview version of it, which, as a piece of software that has
not yet been signed off for an official release, may have some bugs.

You can download Visual Studio for Mac from its official page, which can be accessed
via the following link:

https://visualstudio.microsoft.com/vs/mac/

Because there is only one version of this IDE, you will be presented with a single
download button, as illustrated in figure 1.5:

https://visualstudio.microsoft.com/vs/mac/

Visual Studio for Mac

Develop apps and games for iOS, Android, and
the web using .NET.

Download Visual Studio for Mac

Read more about activating your license »

Figure 1.5: Visual Studio 2022 for Mac download page

Getting Familiar with NET 7 Application Structure W 9

Then you just need to follow the download and the installation instructions, which
should be self-explanatory. There is also a third IDE option. There is an IDE made by
JetBrains called Rider. And it is worth examining regardless of the OS you are using.

JetBrains Rider

The main advantage of Rider over any other IDESs is that it comes with a lot of inbuilt
tooling by default. It will automatically find potentially problematic code, and it will
provide refactoring suggestions. It will be able to decompile third-party libraries, so
you will be able to see the original code they were written in. And the list goes on.

If you are a Windows user, then you will get a much richer IDE than Visual Studio
at a relatively low price. It will be even more noticeable if you are a Mac user. And if
you happen to be a Linux user, this will be your only option. The IDE will look the
same and have the same functionality regardless of the OS you run it on.

However, it comes with its own caveats. But there are only two I can think of.
There is no free version of it. After the initial 30-day trial, you must purchase the
license. However, the price of it tends to be cheaper than either the professional or
the enterprise edition of Visual Studio. The second caveat is that, since it is made by a
third party rather than Microsoft, it sometimes lags slightly behind when new .NET
SDK updates get released. However, the Rider development team tends to work
fast, so these delays do not tend to be big. It tends to get updated quicker than Visual
Studio for Mac.

Rider can be obtained from its official Download page, which can be found via the
following link:

https://www.jetbrains.com/rider/

The Web page should automatically detect which OS you are on, so you will be

nrocontod urith tho daurnlaad linl that ic emacific ta vane NG

https://www.jetbrains.com/rider/

tJlL.JL]lL\,bl VVILLL UL VU VYILVUM LILUN L 13 ﬂt}\.\.lli\. [AVER R VWY BN W WM
o

[|
E Rlder part of dotUltimate

Fast & powerful cross-platform .NET IDE

Download free 30-day tri

Figure 1.6: Rider downloads page

10 Implementing C# 11 and .NET 7.0

Then all you have to do is just follow the instructions.

By now, you have chosen and installed either an IDE or a code editor that s right for
you. Now, we are ready to start creating our first NET 7 applications and examining
their structure.

Creating a NET 7 application

When you write a.NET application, you work with projects and solutions. A project
is a collection of code files that will later be built into a single executable file or a
single reference library. These files form an application. An application can consist
of a single executable file or have the main executable file alongside some other
files that provide additional functionality. The latter types of files are known as
libraries, and they can be shared between different applications. The libraries are
also represented in the source code by projects.

A'solution is something that holds multiple projects together. It is represented by a
file with a . s1n extension that gets placed alongside the project folders in the source
code. Although you do not strictly require a solution, having one is helpful if you
are using an IDE, as it would make it easier to manage and organize related projects.

Both projects and solutions can be created either via the CLI or via IDE GUL And
in this section, we will go through both of these methods. Later in the book, we will
be primarily using the CLI commands, as they will be the same on all operating
systems. Plus, NET CLI comes with the NET SDK, so if you have the SDK installed,
you have the CLI too.

Creating an application via CLI

The most basic type of a .NET application is known as a console application. It does
not have any GUI. The only way it can interact with the outside world is via a textual
interface, such as the one provided by CMD, PowerShell, Terminal, Shell, and so on.
And because it is so basic, it is a perfect application type to use for our demo.

And now, we will go ahead and create our solution. To do so, you can open any
command line terminal of your choice, create a folder in which you want to place
your solution, navigate to this folder, and execute the following command:

dotnet new sln
This will create a file inside this folder with the same name as the name of the

folder and the . s1n extension. So, assuming that your folder is called BasicApp, the
solution file will be called BasicApp.sln.

Now, we will create a project. For demonstration purposes, we will call it
BasicConsoleApp. We will do so by executing the following command:

dotnet new console -o BasicConsoleApp

Getting Familiar with NET 7 Application Structure W 11

The console argument is there to indicate that we are using the Console Application
template. The -0 parameter stands for output. This is where we put the name of our
project.

After executing this command, you should have ended up with a folder inside
the solution folder called BasicConsoleApp. Inside it, you will see two files:
BasicConsoleApp.csproj and Program.cs. The file with the .csproj extension
is the project file, which provides information about the project to the compiler.
It contains various XML properties, including the .NET version. And, as long as
you have version 7 of the SDK installed, it should be picked up automatically. Your
project file should look like the following:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net7.6</TargetFramework>
<ImplicitUsings>enable</ImplicitUsings>
<Nullable>enable</Nullable>
</PropertyGroup>

</Project>

The Progran. cs file is the entry point into your application. It contains the C# code
that will be executed first when the application is launched. By default, it will be
just outputting Hello World! message into the console, as its content would be as
follows:

// See https://aka.ms/new-console-template for more information

Console.WriteLine("Hello, World!");

You can now add this project to the solution. To do so, you need to navigate to your
solution folder and execute the following command:

dotnet sln add BasicConsoleApp/BasicConsoleApp.csproj

Now, we will go through exactly the same process but by using an IDE GUIL

Creating an application via an IDE GUI

In our example, we will use Visual Studio 2022 on Windows. But the process will be
very similar regardless of which IDE you will use. The GUI will look different. Some
of the labels will be different. But the principles will be the same.

Program.es
Program.es
https://aka.ms/new-console-template

12 W Implementing C# 11 and .NET 7.0

First, you will need to open an IDE and choose the option from the menu that will
allow you to create a new project, as it is demonstrated in figure 1.7:

Visual Studio 2022

Open recent Get started
Search recert (AR ol & Clone a repository
Get code from an anline repository
» This week like GitHub or Azure DevOps
© Older

B Opena project or
solution

Open a local Visual Studio project
of sinfile

5 Opena local folder

Navigate and edit code within any
folder

fﬁ] Create a pew project ™=,

Choose a project template with code
scaffolding to get started

Continue without code »

Figure 1.7: Creating a new project from Visual Studio 2022

Then you will need to select Console App as your project template, as per figure 1.8.
But make sure you select the C# version of it, as this project template is also available
in other languages.

a X

project Seaich for templates (Alt+S) P

Allanguages * Alplatforms - Alproject types
Recent project templates

¢4 Aaure Functions 0 [
N ConsoleApp ot Atemplate to create an Azure Function project

C# Aure Cloud
™ e]
 Class Library c# —_—
& Console App

@ Blazor WebAssembly App c# Aproject for creating a command-line application that can run

on NET on Windows, Linux and macOS
\ C# Unux macOS Windows Console

_\
5—1 ASPNET Core Weo Ap =

Aproject template for creating an ASENET Core application with
example ASPNET Razor Pages conient

1 ASPNET Core WebApp s
(Model-View-Controlier)

C# Linux macOS Windows Cloud Service Web

g Blazor Server App

Aproject template for crealing a Blazor server app that runs

Back ’7 Next —’

Figure 1.8: Console App template in Visual Studio 2022

exampleASP.NET

Getting Familiar with NET 7 Application Structure W 13

Then you will be taken through various screens where you will be asked to provide
names for your project and solution and select the framework version (which should
be NET 7). The details of how different IDEs do it vary slightly. For example, this is
what the naming screen looks like in Visual Studio 2022:

Configure your new project

Console App ©C# Lnu maOS Windows Console
Project name

‘ BasicConsoleApp

Location

‘ C:Repos\ ’ B

Solution name ©

‘ BasicApp

O Place solution and project in the same directory

Back | Nexi

Figure 1.9: Naming your solution and your project

Then, if you just keep the default values in all remaining settings and follow the
process till the end, both the solution and the project will be created for you, and the
IDE will automatically open the solution. It should look similar to figure 1.10:

o) Fie Edit View Gt Proec Buld Debug Test Analze Tools Extensions |Seaich l Ba.pp - O X
Window Help
§-s - - |Dabug -| Ay CPU +| » BasicConsaleApp - 0 & - % B3, % (R 5% @ LiveShae R

Program.cs + x ~ & Solution Explorer s
[BasicConsoleApp o -l & af o-s08 ﬁ
1 J/ see https://aka.ns/new-cansole-tenplate for more i Search Solution Explorer (Clrl+) £|-

iteline(" . e L
; Console.WriteLine("Hello, World!"); 3 Soktion Basichop (1 o 1 proec)

4 [BasicConsoleApp
b #8 Dependencies
c# Program.cs

1]
o
2
8
m
Y
2
g
g
g
s
g
<]
2

[133% @ © Hoissues fownd AR) lni o ohi SR CRIF
Output
‘Show output from: JElss|Ele

Solution.

Properties

()52

[SIVARER Output

. Ready 1 Addto Source Confrol « € Select Repository « £y

Figure 1.10: Solution opened in Visual Studio 2022

14 Implementing C# 11 and .NET 7.0

Now, since our solution is ready, we can start adding some useful functionality to it.

NET 7 project structure overview

To demonstrate .NET 7 project structure, we will add some meaningful capabilities
to our application. The complete example can be found via the following URL:

hitps://github.com/fiodarsazanavets/a-complete-guide-to-implementing-
csharp11-and-dotnet7/tree/main/Chapter-01

Adding a struct object

First, we will create a Customer. cs file inside our BasicConsoleApp project folder.
The content of the file will be as follows:

namespace BasicConsoleApp;

public struct Customer

{
public Customer(string name)
{
Name = name;
b

public string Name { get; set; }
public short Age { get; set; }
public int Id => randomId;

private int randomId = (new Random()).Next();

}

Let us use this example to recap a basic C# syntax. We start our file with anamespace
declaration statement. Namespaces in C# are used for modularization. If your object
is said to work together, you assign them to the same namespace, and then you will
be able to reference this namespace to be able to use the custom data types assigned
to it.

In our example, the Customer data type that we have created is a struct. C# supports
other object types, such as class and record. We will recap the differences between
them shortly. But for now, we have chosen to use our object as a struct to demonstrate
one of the latest C# 11 struct-specific features.

https://github.com/fiodarsazanavets/a-complete-guide-to-implementing-csharpll-and-dotnet7/tree/main/Chapter-01

Getting Familiar with NET 7 Application Structure W 15

Our Customer object has a constructor that accepts the name parameter of a type
string. This allows the Name property to be given a value as soon as an instance of
Customer is created. It also has two other properties: Age and Id. Age property is
a short integer. By default, the value of it will be 0. And this demonstrates a new
feature that has been added to C# 11. If any properties are not set in the constructor,
then they will be automatically set to their default value, which, for the data type
short, is 0. However, this only works for struct object types. Prior to C# 11, this
would have thrown a compilation error, as all properties had to be given values
before the code block inside the constructor executes.

The other property, Id, is a read-only property that cannot be changed after an
instance of the object is created. It takes its value from the randomId field, which gets
arandom value assigned to it. And, as the field is private, it is not visible to anything
outside this object. The other members of the object are all marked as public. This
keyword at the beginning at an object member definition is known as an access
modifier.

Adding an interface and a class

Next, we will add CustomerRepository. cs file to our project folder, and the first
thing we will insert into this file is the following interface definition:

namespace BasicConsoleApp;

public interface ICustomerRepository

{
int Count { get; }

void AddNewCustomer(Customer customer);
Customer GetCustomer(int id);

Customer GetCustomer(string name);
IEnumerable<Customer> GetCustomers();

IEnumerable<Customer> GetCustomers(string nameMatch);

}

As before, we have added a namespace definition right at the top. Because we are
using the same namespace as we used in our Customer struct, we do not need to
import any additional namespace into our file. We have implicit access to any other
object that uses the same namespace.

Interfaces are not functional objects, so you cannot use them directly. They act
like contracts for object definitions. An interface provides signatures for all public
members that an object that implements the interface must have. Otherwise, the

CustomerRepository.es

16 lmplementing C# 11 and .NET 7.0

code will not compile. This is why there is neither a body nor an access modifier in
the interface members.

However, you can assign an interface as a return data type for fields, properties,
methods, and variables. If you do so, then absolutely any object that implements this
interface can be assigned to it. And we do have an example of this here. Both versions
of our GetCustomers method have IEnumerable as their data type. IEnumerable
is an in-built interface that is meant to be implemented by collections. And in our
case, we will be able to return absolutely any concrete collection type as long as it
implements this interface.

Next, we will add the following class definition to our file:

internal class CustomerRepository : ICustomerRepository

{

private readonly List<Customer> customers;

public CustomerRepository()

{

customers = new List<Customer>();

public int Count => customers.Count;

public void AddNewCustomer(Customer customer)

{

customers.Add(customer);

public Customer GetCustomer(int id)

{

return customers.SingleOrDefault(c => c.Id == id);

public Customer GetCustomer(string name)

/

return customers.SingleOrDefault(c => c.Name == name);

Getting Familiar with NET 7 Application Structure W 17

public IEnumerable<Customer> GetCustomers()

{

return customers;

public IEnumerable<Customery GetCustomers(string nameMatch)

{

return customers.Where(c => c.Name.Contains(nameMatch));

}

This class implements the interface we have defined earlier, as there is a semicolon
followed by the interface name after the class name. In C#, the semicolon is used in
this context as an implementation or inheritance operator.

You may have also noticed that the class has internal as its access modifier rather
than public. There is a difference between the two. While the public access modifier
makes an object visible to every other object, both inside your project and in any
project that references your project, the internal modifier restricts visibility to only
those objects that exist inside the same project. While implementing interfaces, you
can go from a lower restriction level to the higher one, but not the other way around.
And this is demonstrated in our example by having a public interface getting
implemented by an internal class.

Next, we have a private read-only list of Customer objects. When we use a read-only
modifier, the value of the field can only be instantiated as the field gets declared or
inside the object’s constructor. We cannot assign a new value to this field later.

After this, we just provide complementation for all of the members that we have
previously defined in the interface. Please note that we have some duplicate method
names. But this is OK, as they have different signatures. A method signature
is defined by the combination of the name, the return data type, and the input
parameters. Being able to define methods with the same name and the same data
type but different parameters is known as polymorphism.

So, we are implementing the following interface members:
Count: It returns the current count of customers list.

o AddNewCustomer(Customer customer): It acceptsa Customer object as an
input parameter and adds it to the customer list.

s GetCustomer(int id): It retrieves a single Customer entry based on the id
input parameter.

18 Implementing C# 11 and NET 7.0

¢ GetCustomer(string name): It retrieves a single Customer object by name.
» GetCustomers(): It returns all entries from the customer’s list.

¢ GetCustomers(string nameMatch): It returns only those entries from the
customers list that contain a specific pattern in the name.

The latter two methods demonstrate how we can return a concrete implementation
where the return type was defined as an interface. The return type for both of these
methods is IEnumerable. But we are returning List. We can do it because the List
data type happens to implement IEnumerable.

Modifying the entry point of the app

Next, we will replace the content of our Program.cs file. We will start by deleting
the existing content from it. And then, we will add the following code:

using BasicConsoleApp;

// Creating a repository

var customerRepository = new CustomerRepository();

// Creating Customer objects
var customerl = new Customer("John Smith");
var customer2 = new Customer("David Smith");

var customer3 = new Customer("Gary Rogers");

So, since Progranm. cs class does not have any namespace definition, and we need
to import the namespace of the objects that we have just created. To do so, we are
applying using a statement followed by the namespace name.

Then we create an instance of CustomerRepository object and store it in
customerRepository variable. After this, we create three instances of Customer
object and store them in named variable. A variable is a temporary data storage
in memory. It is normally defined by the var keyword. However, you can also
provide an explicit data type instead of using this keyword. However, using var is
recommended for most situations.

We will then add the following code, where we modify the data in some Customer
objects and then insert them all into the customerRepository:

// Applying additional data

Program.es
Program.es

30;

customerl.Age

customer2.Age = 21;

Getting Familiar with NET 7 Application Structure 19

// Adding customers to the repository

customerRepository.AddNewCustomer(customerl);
customerRepository.AddNewCustomer(customer?);
customerRepository.AddNewCustomer(customer3);

Finally, we willadd the following code to our file, where we will be trying out different
methods of extracting Customer object instances from the CustomerRepository:

// Extracting data from the repository

Console.WriteLine("The following data has been obtained while iterating
through all customers:");

foreach (var customer in customerRepository.GetCustomers())

{
Console.WriteLine($"""
Customer id: {customer.Id},
Customer Name: {customer.Name},

Customer Age: {customer.Age}

")

// Extracting filtered data

Console.WriteLine("The following data has been obtained while iterating
through customers while filtering by 'Smith' in name:");

foreach (var customer in customerRepository.GetCustomers("Smith"))

{

Console.WriteLine($"""
Customer id: {customer.Id},
Customer Name: {customer.Name},

Customer Age: {customer.Age}

)

// Extracting a single customer by name

20 Implementing C# 11 and .NET 7.0

Console.WriteLine("The following data was returned for David Smith:");

var specificCustomer = customerRepository.GetCustomer("David Smith");

Console.WriteLine($
Customer id: {specificCustomer.Id},
Customer Name: {specificCustomer.Name},

Customer Age: {specificCustomer.Age}

wy o

And this example showcases another new language feature that has been added
to C# 11, which is multi-line string literals. If you wrap your string value up in
triple double-quote symbols, then anything you write inside of it will be treated as a
literal character rather than a special C# character. But you can still combine it with
interpolated string feature if you place a dollar sign at the beginning of it. This will
allow you to insert data from your code into the string. To do so, you need to wrap
your code in curly braces inside the string.

We can now launch our application, which we can do either by right-clicking on
the IDE and selecting Run option or by executing the following command inside the
project folder:

dotnet run

We should be expecting to see the following result:

owing data has been obtained while iterating through all customers:
Lustomer id: 452867481,
Lustomer Name: John Smith,
[ustomer Age: 30

Customer id: 31176956,
fustomer Name: David Smith,
Customer Age: 21

Customer id: 2062322027,
[ustomer Name: Gary Rogers,
[ustomer Age: @

he following data has been obtained while iterating through customers while filtering by 'Smith' in name
[ustomer id: 452867481,

[ustomer Name: John Smith,

[ustomer Age: 3@

Customer id: 31176956,

ustomer Age: 21

he following data was returned for David Smith:
[ustomer id: 31176956,

ustomer Name: David Smith,

[ustomer Age: 21

Figure 1.11: The output of our application

Getting Familiar with NET 7 Application Structure W 21

As we can see here, the age of Gary Rogers is 0. This is because we have not explicitly
set this age for this specific customer. It was just initialized to the default value of its
data type, which happens to be 0. And this has proven that the mechanism of auto-
initializing struct properties to their default values has worked.

Next, we will briefly recap the fundamentals of C# and its inbuilt data types. If you
are just starting your journey to become a C# programmer, links to various online
documentation sources will also be provided, so you can study the fundamentals of
the C# syntax in more detail.

C# 11 basics and inbuilt data types

Many C# language features have existed since the initial version of the language
and many of these are still relevant. However, over time, C# has evolved, and
some of the old functionality became obsolete because better ways of doing things
were invented. There are also some parts of the language that have changed their
paradigm. For example, the string data type used to be a value type, which means
that if you use it as a parameter, it is only the value of it that gets passed. So, if
the parameter gets modified inside the method that it was passed into, the original
string variable would not get modified. But since C# 10, the string is now a reference
type. This means that when it gets passed as a parameter, modifications made to the
parameter inside the method that it is been passed into will cause these modifications
to be applied to the original variable.

There are still various ways of applying old behavior to the parts of the language
where the behavior has been changed. Also, the old ways of doing things are still
available in the language to make it backward-compatible with the older versions.
But in our examples, we will focus purely on how things work in C# 11. We will start
by listing all inbuilt data types.

Inbuilt data types

Inbuilt data types are the types of data that are supported by the language out of the
box. These are available in the language even without any additional libraries.

Each of the data types has a default value. So, if you are using a variable, field, or
property of a particular type and you do not explicitly set a value to it, the default
value will be used.

The data types in C# can also be categorized as either value or reference types. When
you use a value type and pass a variable of this type into a method, then it will only
be the value of this variable that will be passed to the method and not the variable
itself (unless you explicitly choose to pass the variable by reference by using ref
keyword). When you use a reference type and pass it to the method, itis the reference

2 Implementing C# 11 and .NET 7.0

to the whole variable that gets passed and not just its value. Therefore, if the variable
gets modified inside the method, your original variable will be modified too.

The following table shows all built-in data types that are available in C#:

Name Description Reference or | Default
value type value

bool A representation of Boolean value that can| Value type false
either be true or false.

byte Arepresentation of a single byte consisting of 8| Value type 0
bits. Can accept values in the range of 0 to 255 if
converted to decimal.

sbyte | A representation of a single byte consisting of | Value type 0

8 bits. Differs from byte by the range of the
values it accepts, which is between 128 and
127 if converted to decimal.

char A single character. Value type “\0”

decimal | A numeric data type that supports high-| Value type 0.0M
precision decimal fractions.

float A numeric data type that supports decimal | Value type 0.0F
fractions. It is smaller than double but has
much lower precision.

double | Anumeric data type that is similar to float but | Value type 0.0D
comes with double the precision and double

the size.

int A numeric value that does not support decimal | Value type 0
point and has a size of 16 bits.

uint A numeric value that does not support decimal | Value type 0
point and negative values. Has a size of 16 bits.

nint A pointer to a memory location containing an | Value type 0
integer value.

nuint | A pointer to a memory location containing an | Value type 0

unsigned integer value.

long A numeric value that does not suovort decimal | Value tvpe 0

L S i

point and has the size of 64 bits.

ulong | Anumeric value that does not support decimal | Value type 0
point and negative values. Has the size of 64
bits.

short | A numeric value that does not support decimal | Value type 0

point and has the size of 32 bits.

Getting Familiar with NET 7 Application Structure W 23

Name Description Reference or | Default
value type value
ushort | Anumeric value that does not support decimal | Value type 0
point and negative values. Has the size of 32
bits.
string | Representation of any arbitrary text. Reference i
type as of
NET 6. Used
to be a value
type prior to
this.
object | The base type for all other data types in C#. Reference null
type
dynamic | A data type that accepts any other data type| Reference null
and allows it to be changed dynamically. Not type
recommended for most situations.

Table 1.1: Inbuilt data types that are found in C#

More detailed information on inbuilt C# data type can be found in the official
Microsoft documentation via the following link:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/
built-in-types

Next, we will have a look at different types of control from the C# 11 supports. These
allow you to execute code conditionally, create branches in the executional flow and
perform repeated actions.

Control flow

Control flow is what allows your code to make decisions. Some control flow elements
allow you to repeatedly execute a given action, whereas others allow you to execute
an action only if a specific condition is met.

The following table ists the main control flow elements that are available in C#:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/

Statement type Description
if .. else if .. |Indicates what condition needs to be applied to a block of code for
else it to get executed.
switch .. case | Another type of conditional logic is where a single distinct
scenario is selected from multiple options.
for A looped execution of a statement that will continue executing
until an arbitrarily defined counter reaches a specific value.
24 Implementing C# 11 and NET 7.0
Statement type Description
foreach A piece of logic is executed for each item of a collection.
while Ablock of code keeps executing while a condition remains true.
do .. while Same as while, but the block of code executes at least ones.

Table 1.2: Control flow elements of C#

To find out about control flow in C# in more detail, you can visit the appropriate
section from the official language documentation via the link as follows:

https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/tutorials/
branches-and-loops-local

Next, will have a look at different ways of how we can create our own custom types

in C#.

C# custom types

As well as using inbuilt data types, it is very important in programming to be able to
build custom objects. And C# supports a number of structures that allow software
developers to do it. These structures are listed in table 1.3:

Structure type Description

interface Provides only the signatures of public members (methods,
fields, and properties) that implementing object must have
defined.

class A reference type structure that enables the creation of custom
data types with bespoke fields, properties, and methods.

struct A value type structure that enables the creation of custom
data types with bespoke fields, properties, and methods.

record A class or a struct that is specifically designed to represent

Aatahaco nhiorte and ckara Aaka Qa it hinically rancicke Aanly

https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/tutorials/

udaLavaoc UUJCLLD Clliv OLULIC Judld. Uy 1L L)’J.Jl\.(,llly LULLO1OLWD Ulu)’

of properties.

Table 1.3: C# structures that enable the creation of custom data Lypes

To learn more about the C# type system, you can visit the official documentation via
the link as follows:

https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/types/

Next, we will have a recap of the access modifiers available in C#.

Getting Familiar with NET 7 Application Structure W 25

Access modifiers

Access modifiers are keywords that control the visibility of the objects and object
elements, such as fields, properties, and methods. For example, you can make certain
elements of an object completely inaccessible to other objects. You can make a certain
object visible to other objects inside the same library but completely inaccessible to
any code outside the library.

Table 1.4 provides the full list of access modifiers that are available in C#:

Access modifier Description
public Visible to all objects inside the executable and to all objects
in any other executable that references it.
private Visible only to the members of the same object.
protected Visible only to the members of the same object and the
members of any derived object.
internal Visible to all objects inside the executable.

protected internal | Visible to all objects inside the executable or a derived
object created in another executable.

private protected | Visible only to the members of the same object and the
members of a derived object, as long as the derived object
belongs to the same project.

Table 1.4: C# access modifiers

A more detailed information on the C# access modifier can be found here:

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-
structs/access-modifiers

Of course, there is much more in C# than we have managed to cover in this chapter.
But these summaries cover the bulk of language fundamentals.

https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/types/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/access-modifiers

And this concludes our introduction to C# 11 and .NET 7. Let us summarize what
we have learned.

Conclusion

C# 11 and .NET 7 come with some new features. But the old features will still work.

If you are familiar with the previous iteration of the platform and the language,
then you may have noticed that hardly anything has changed in terms of the project
structure. Once you create a new project, it looks almost identical to what your .NET
6 project would have looked like.

26 Implementing C# 11 and .NET 7.0

And there is a good reason for it. Microsoft keeps up with its tradition of making as
few breaking changes as possible. One of the benefits of this is that migrating your
older applications to the new platform is easy. Typically, all you have to do is just
change the framework version in the project file.

But there is also a disadvantage to it. Because old features do not get marked as
deprecated as the language evolves, the complexity of the language keeps increasing,.
Therefore, there is a lot more to learn in C# 11 than there was in C# 1.

But there is an approach that you can use to work around it. While studying the
language, focus only on the latest of its features. And ignore everything else. If you
then happen to come across some old code feature while looking at somebody else’s
code, you will always be able to look it up easily, as long as you know the language
fundamentals, which we have briefly recapped in this chapter.

In the upcoming chapter, you will learn about the new features that have been added
to version 11 of the C# language.

Points to remember
¢ Towork with C# 11 and .NET 7, you will need to download the NET 7 SDK.
* You can either use a code editor or an IDE to work with your code.
o The suitable code editor is Visual Studio Code.

s Depending on your OS, the suitable IDEs are Visual Studio 2022, Visual
Studio 2022 for Mac, or Rider.

¢ One of the new C# features is the auto-initialization of struct properties to
the default values of their data type.

o Another new C# feature is a new type of string literal, where you do not

have to escape any special characters.

Multiple choice questions

1. What is the minimum set of tools you need to start working with C# 11
and .NET 72

NET 7 SDK
Code Editor
¢ IDE

d. All of these

et

=

Getting Familiar with NET 7 Application Structure W 27

2. Which data types of support auto-initialization of their properties to their
default values?

a. class
b. struct
c. record
d. All of these

e. None of these

3. Which statement best describes the new string literals from C# 117

a. You cannot combine it with interpolated strings because curly brackets
will be treated as literal characters

b. You cannot combine it with interpolated strings because this string
type does not support the dollar sign at the beginning of its value
definition

¢. You can combine it with interpolated strings as long as you place the
dollar sign at the beginning of its value definition

d. None of these are true

Answers
1. a
2. b
3. ¢

Key terms

¢ IDE: Integrated development environment that provides all tools that you
need to manage your code

¢ Code editor: This allows you to write code, but you will typically need
external tools to run it.

¢ SDK: Software development kit that allows you to use specific languages,
platforms, frameworks, and collections of libraties to build your code with.

¢ CLI: Command line interface that allows you to execute commands inside a
text-based terminal.

s Access modifier: A keyword that controls the visibility of your objects or the
members of these objects.

28 Implementing C# 11 and NET 7.0

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord .bpbonline.com

https://discord.bpbonline.com

CHAPTER 2

Overview of
Ct 11
Features

Introduction

This chapter will cover all the latest features that have been added in C# 11. Some
of these language features have already been made available in older versions of the
language, but we had to install some external dependencies to enable them. At the

¢l £

same time, SOme Other teatures are completely brand new. dome Of these features
are improvements of other new features that have been added to the language in the
most recent versions of it, whereas other features are completely stand-alone.

Whatever the new features are, this chapter covers them all. For each of these features,
the chapter also provides implementation examples and showcases its benefits.

Structure

In this chapter, we will discuss the following topics:
¢ Struct auto-defaults
¢ Generic attributes
o Sequence pattern matching

 New string operations

30 Implementing C# 11 and NET 7.0

Objectives

By the end of this chapter, you will have learned how to use each of the C# features
that were added to the language with the version 11 update. This will be achieved
by demonstrating implementation examples that you can try out in your own code.
This will help you to understand the importance and benefits of each of the new
features.

Prerequisites
To follow this chapter, you will need the following;
¢ Amachine running either Windows, MacOS, or Linux operating system
» NET7SDK
¢ Asuitable IDE or a code editor
¢ Being familiar with C# fundamentals

If you do not have any of the preceding listed dependencies installed already, let
us know the setup instruction provided in Chapter 1: Getting Familiar with .NET 7
Application Structure, which also provides a recap of C# fundamentals.

Struct auto-defaults

We will start by examining auto-default property initialization in struct data types.
We have already touched upon it in Chapter 1: Getting Familiar with NET 7 Application
Structure. But as we want to keep listing all new C# 11 features in one place, we will
examine it in more detail here.

Before we can make start looking at the new C# language features, we will need to
create a new .NET console application. In my example, I will call the application
project NewFeatures.

If you are using an IDE, you can create a new application project via the GUI by
selecting a Console Application template. But you can also use the command line
interface, which will be available on any system that has NET SDK installed. And to
do it via the CLI, you can execute the following command in a folder of your choice:

dotnet new console -o NewFeatures

This will create a folder called NewFeature with a console application project inside
it. And now, we will add a struct, which will allow us to demonstrate the auto-default
feature. To do so, create a folder called AutoDefaults inside the NewFeature project
folder. Then create a StructExample. cs file inside this folder and populate it with
the following content:

Overview of C# 11 Features W 31

namespace NewFeatures.AutoDefaults;

public struct StructExample

{
public int Id { get; set; } // Auto-initialized to @
public string Name { get; set; } // Auto-initialized to ""
public bool Active { get; set; } // Auto-initialized to false
}

We have already added some comments to the properties of this struct to indicate
what each of these properties will auto-initialize to. So, basically, when we create a
new instance of the StructExample struct, we will be able to read the properties
right away. An attempt to read them will not result in a Nul1ReferenceException
being thrown. And this is despite the fact that we have not explicitly assigned any
values to these properties.

To test this behavior, we can replace the content of the Program. cs file with the
following code:

using NewFeatures.AutoDefaults;

StructExample.es
Program.es

Console.WriteLine("Testing auto-defaults.");

var testStruct = new StructExample();

Console.WriteLine($
Struct data is as follows:

Id: {testStruct.Id},
Name: {testStruct.Name},
Active: {testStruct.Active}

s

This is something that would have thrown a NullReferenceException in the
previous versions of C# as soon as we attempted to read any of the properties of the
testStruct variable. But if we run our application on the latest version of .NET, it

32 Implementing C# 11 and NET 7.0

will produce the following output, which confirms that all of our properties have
been auto-initialized to their default values, as shown in the following figure:

Testing auto-defaults.

Struct data is as follows:

Active: False

Figure 2.1: Auto-initialized struct properties

The next C# 11 feature that we will have a look at is generic attribute classes.

Generic attributes

In C#, attribute classes are used for extending the functionality of classes and
class members and adding metadata to them. For example, placing the Authorize
attribute above a method in a Web API controller will ensure that the endpoint that
this method represents will only be accessible by authenticated users. And passing
some additional parameters into this attribute will apply even stricter authorization
requirements to the endpoint.

All attribute classes inherit from System.Attribute class. By convention, the name
of an attribute class should end with Attribute suffix, which can be stripped out
when the attribute is applied in the code. For example, the previously-mentioned
Authorize attribute is actually defined as AuthorizeAttribute at its source.

An attribute is placed above a class or a class member in square brackets. And the
syntax for applying attributes to classes and class members is as follows:

[<attribute class name without Attribute suffixs<optional: attribute
properties in brackets>]

Just like any other class, attributes have methods, fields, and properties. But prior
to C# version 11, they did not support generics. So, if you need to be able to pass
any arbitrary type into an attribute class, the only way to do it is to pass it into
the attribute constructor and store it in some field or property. But now, generic
attributes have been added. And this has made things a lot simpler.

But why would you even want to pass an arbitrary type definition into an attribute
class? Well, there are many scenarios where such an ability may be useful. For
example, you may want to add some behavior to the attribute that is specific to the
return data type of the class member that the attribute is placed on. And to make
sure that the attribute can be applied anywhere, the type should be injectable at
runtime.

Overview of C# 11 Features W 33

Generic attribute example

To demonstrate how generic attributes work, we will compare them against the old
way of passing arbitrary type definitions into attribute classes. This way, the benefit
of using a generic attribute will be demonstrated more clearly.

To make a start, we will add a GenericAttributes folder to our project and will
place 01dTypeAttribute. cs file into it with the following content:

namespace NewFeatures.GenericAttributes;

public class OldTypeAttribute : Attribute

{

public 0ldTypeAttribute(Type attributeType) => AttributeType =
attributeType;

public Type AttributeType { get; }
}

As you can see, we have a read-only property in this class that holds a type. It is set
during the class initialization via the class constructor. And to find out what type the

% 1 aa . 1 1. 1 1 1 [.

attribute holds, you actually need to have a I00K at this property once the attripute
has been initialized.

And we will now add a new generic attribute. To do so, we will create
NewTypeAttribute.cs file inside the same folder and will populate it with the
following content:

namespace NewFeatures.GenericAttributes;

public class NewTypeAttribute<T> : Attribute { }

As you can see, there is no longer any need for an additional class member to store
the attribute in. This also makes it easier to obtain the type at runtime. Also, it makes
for a cleaner syntax when applying the attribute.

To demonstrate how both of these attributes are applied, we will add
ParametrizedClass. cs file to the same folder. It will contain the following code:

namespace NewFeatures.GenericAttributes;

public class ParametrizedClass

{

34 Implementing C# 11 and NET 7.0

[01dType(typeof(int))]
public int DoOldStyleJob() => default;

[NewType<int>]
public int DoNewStyleJob() => default;

}

As you can see, the generic attribute syntax is cleaner. There is one less keyword
we have to use. But what is even better is that the type that the attribute stores
can be instantly obtained by reflections without having to look at its members. To
demonstrate this, we will add some code to our Program. cs file. First, we will add
the following using statement at the beginning of the code in the file:

using NewFeatures.GenericAttributes;

Then, we will add the following code at the end of the file:

Console.WriteLine("Testing Generic Attributes.");

NewTypeAttribute.es
Program.es

var methods = typeof(ParametrizedClass).GetMethods();

foreach (var method in methods)

{

var attribute = method?
.GetCustomAttributes(false)
.FirstOrDefault();

if (attribute !'= null)

Console.WriteLine($"""

Method name: {method?.Name},
Method attribute: {attribute.GetType()}

")

Overview of C# 11 Features

35

And the output of this code will look like the following:

esting Generic Attributes.

"ethod name: DoOldStylelob,
Method attribute: NewFeatures.GenericAttributes.0ldTypeAttribute

Hethod name: DoNewStyleJob,

tethod attribute: NewFeatures.GenericAttributes.NewTypeAttribute 1[System.Int32]

Method name: GetType,
Method attribute: System.Runtime.CompilerServices.NullableContextAttribute

Figure 2.2: Generic versus non-generic attribute class

As you can see, with a generic attribute, we can see what data type it represents right
away. The old style attribute, however, does not show this information when we use
reflections to obtain the definition of its instance. So, not only a generic attribute is

easier to set up, but it is also easier to read.

Next, we will have a look at some improvements to a C# feature that has been added

to the language in its fairly recent versions: sequence pattern matching.

Sequence pattern matching

Pattern matching feature in C# allows you toidentify whether aspecific value adheres
to a specific pattern. And in C# 11, this feature has been applied to collections.

There are various patterns that you can match a collection against. There is an
exact match, where the sequence that you are testing the collection against must be
identical to the sequence inside the collection. But you can also do a loose match,
where certain places in the sequence can match against any value or a range thereof.

Sequence pattern matching completely disregards collection types. It only cares
about the sequences in the collections. It does not matter if you are working with
arrays, lists, or anything else. As long as your collection contains a specific sequence
of values, it will match if this is the sequence that has been specified.

The syntax for sequence pattern matching is as follows:

<collection variable> is [<sequence>]

To check whether the collection that you are comparing the sequence against contains
exactly the same sequence as specified, you just put the full list of the exact comma-
separated values inside the square brackets in the same order as you expect them to
appear inside the collection. To see if the collection contains specific values in specific
positions, while you do not care about any other values, you can just use the discard
(underscore; _) character in the positions of the values you do not care about. If you

36 Implementing C# 11 and NET 7.0

are looking for a specific sequence of values, while you do not care where exactly in
the collection this sequence resides, you can use a double-dot character to represent
arange of any values. And, of course, you can combine all of these to perform more
sophisticated pattern matching.

Sequence pattern matching demonstrated

To demonstrate how sequence pattern matching works, we will create a
PatternMatching folder inside our project. Then, we will add a Collection
Operations. cs file to it and populate it with the following content:

namespace NewFeatures.PatternMatching;

public class CollectionOperations

{

private List<int> items = new List<int>

}

2,3,6,7,8

b

public bool MatchExactSequence => items is [2, 3, 6, 7, 8];
public bool MatchWithDiscard =»> items is [2, _, 6, _, 8];

public bool MatchWithRange => items is [2, ..];

In this class, we have the following three fields:

l.

MatchExactSequence performs an exact match. This means that the
collection the sequence is being compared against must be comprised of
exactly the same sequence as the one specified.

MatchWithDiscard method only cares that the collection has a specific
number of items and that items at the index of 0, 2, and 4 have specific values.
It does not care what values the items at the indexes of 1 and 3 have.

MatchWithRange method only cares that the first item of the collection is 2.
It does not care how many more items there are in the collection and what
they are.

But the good news is that this new pattern matching feature does not only work with
classic collection types but also with fairly recently added char span types. And this
is what we will have a look at next.

Overview of C# 11 Features W 37

Sequence pattern matching with char span

Span is a data type that has been added to version 8 of C# language. It is a collection

type

that is meant to represent a specific span of another collection. For example,

if you are using an array and you only ever want to modify a specific set of items
inside of it, you can assign this set of items to a Span object. This way, you will be
protected from accidentally modifying the members of the original collection that
you did not want to modify.

InC# 11, you can use sequence pattern matching against a span. To demonstrate how
this works, we will add a CharSpanOperations.cs file to our PatternMatching
folder. In this class, we will first create the following class definition:

namespace NewFeatures.PatternMatching;

public class CharSpanOperations

{

CharSpanOperations.es

private char[] charArray = new char[3]

{
'at,
b,
o
b
private Span<chary GetSpan()
{
Span<chary span = charArray;
return span;
}
private ReadOnlySpan<char> GetReadonlySpan()
{
ReadOnlySpan<char> span = charArray;
return span;
}

}

And then, we will add the following public properties to it:
public bool MatchiholeSpan => GetSpan() is ['a', 'b', 'c'];

public bool MatchWholeReadOnlySpan => GetReadonlySpan() is ['a‘, 'b',
'

38 Implementing C# 11 and .NET 7.0

public bool MatchiholeSpanWithDiscard => GetSpan() is ['a', _, 'c'];

public bool MatchWholeReadOnlySpanWithDiscard => GetReadonlySpan() is
[‘a', _, 'c'];

public bool MatchiWholeSpanByRange =» GetSpan() is ['a’, ..];

public bool MatchWholeReadOnlySpanBtRange => GetReadonlySpan() is ['a‘,
¥

Now, we can test whether all our examples of sequence pattern matching work. To
do so, we will add the following using statement to our Progran. cs file:

using NewFeatures.PatternMatching;
And then, we will add the following code to the file:

Console.WriteLine("Testing Pattern Matching.");

var collectionOperations = new CollectionOperations();

Console.WriteLine($

MatchExactSequence returns {collectionOperations.MatchExactSequence},
MatchWithDiscard returns {collectionOperations.MatchWithDiscard},

MatchWithRange returns {collectionOperations.MatchWithRange}

")

var charSpanOperations = new CharSpanOperations();

Console.WriteLine($"""
MatchiWholeSpan returns {charSpanOperations.MatchiWholeSpan},

MatchiWholeReadOnlySpan returns {charSpanOperations.
MatchiWholeReadOnlySpan},

MatchiWholeSpanWithDiscard returns {charSpanOperations.

Program.es

Overview of C# 11 Features W 39

MatchiWholeSpanWithDiscard},

MatchiWholeReadOnlySpanWithDiscard returns {charSpanOperations.
MatchiholeReadOnlySpanWithDiscard},

MatchiWholeSpanByRange returns {charSpanOperations.
MatchWholeSpanByRange},

MatchiWholeReadOnlySpanBtRange returns {charSpanOperations.
MatchiholeReadOnlySpanBtRange}

")

If the sequence pattern matching works the way we expect it to, we expect every
public property in the newly created classes to return true. And, as the following
console output in figure 2.3 indicates, this is indeed what happens:

esting Pattern Matching.

fatchExactSequence returns True,
fatchwithDiscard returns True,
iatchWithRange returns True

fatchWwholeSpan returns True,
fatchiholeReadOnlySpan returns True,
datchiholeSpaniithDiscard returns True,
iatchWholeReadOnlySpanWithDiscard returns True,
iatchWholeSpanByRange returns True,
jatchiholeReadOnlySpanBtRange returns True

Figure 2.3: Sequence pattern matching demonstrated

So, as you can see, C# 11 has substantially expanded the pattern-matching capabilities
of the language. But it has also improved the way programmers can work with
strings. And this is what we will have a look at next.

New string operations

C# 11 has included some new things you can do with strings. These new operations
make your code less verbose and easier to read. One of the new improvements is
being able to use multiple lines in interpolated string. This feature is especially
helpful when you want to insert the results of some complex expression into a string.
Another newly added feature is the new raw string literal, which we briefly touched
upon in Chapter 1: Getting Familiar with NET 7 Application Structure.

40 Implementing C# 11 and .NET 7.0

We will start by applying multi-line string interpolation. We will use a multi-step
LINQ expression as the code we will insert into the string. And to showcase the
benefits of this feature, we will apply it twice. On the first occasion, we will use
the old-style single-line string interpolation. And then, we will apply the new-style
multi-line string interpolation.

We will create a StringOperations folder inside our project folder and add an
InterpolatedStrings.cs file to it. The content of the file will be as follows:

namespace NewFeatures.StringOperations;

public class InterpolatedStrings
{
private List<(string, int)> names = new List<(string, int)>
{
("John", 25),
("Mike", 34),
("Laurence", 42)

b

public string 0ldStyleInterpolation => $"The age of Laurence
is: {names.Where(n => n.Iteml == "Laurence").Select(n => n.Item2).
FirstOrDefault()}.";

public string NewStyleInterpolation => $"The age of Laurence is: {
names
.Where(n => n.Iteml == "Laurence")
.Select(n => n.Item2)
.FirstOrDefault()
| B
}

So, we have two string properties: OldStylelnterpolation and NewStyleInterpolation.
Both of these are read-only properties that return identical values. The only difference
between them is how the code is formatted.

By looking at this code, you can immediately see what makes multi-line string
interpolation so useful. When we have a look at the OldStyleInterpolation property,
along LINQ expression has been placed on a single line, which makes it difficult to
read. In fact, the expression is so long that it does not fit the width of the page.

Overview of C# 11 Features W 41

NewStylelnterpolation, on the other hand, has the same LINQ expression split
across multiple lines. This makes the code much easier to read. And each line of the
expression neatly fits within the width of the page.

Next, we will examine a raw string literal. To do so, we will create another file inside
the StringOperations sub-folder and call it StringLiterals.cs. The content of this file
will be as follows:

namespace NewFeatures.StringOperations;

public class Stringliterals

{

public string RawStringLiteral =>
This text may contain any symbols, including
newlines, "quoted text",

indentations, and so on.

There is no need to escape any characters.

wun,
3

public string NewStyleInterpolation =» $
This is a combination of a new string

literal and interpolated string.

This is a value from inserted code: {5 + 8}.

[URTRTI
)

}

So, we have the new raw string literal applied in two varieties: on its own and
combined with string interpolation. The syntax for this new string literal is to
surround the text value in triple double-quote characters on both ends. And both the
start and the end sequence of three double quotes must be placed on their own line.

Anything in between will be interpreted as text, even if a character that you use
happens to have a special meaning in C#. You will not have to perform the escape
of any special characters. In fact, the backslash (\) symbol that you would normally
have used to escape special characters will also be interpreted just as a normal
character in the text. And so will be double quotes until we reach a new line where
double quotes are presented in a sequence of three. This is how we know we have
reached the end of the text.

StringLiterals.es

42 Implementing C# 11 and .NET 7.0

If you place a dollar sign in front of the opening double-quote sequence, you will be
able to insert the code into the string by using curly braces, as you would do with
any other type of string interpolation. And this is the only scenario where you will
need to escape curly braces if you want to include them as part of your text instead
of using them for string interpolation.

And now, we can test all of the string features that we have added. So, we will place
some code into Program. cs file. And the first thing we will do is add the following
statement at the beginning of the file:

using NewFeatures.StringOperations;

Then, we will test our multi-line string interpolation feature and see if it produces

the same result as a single-line version of it. To do this, we will add the following
block of code to the file:

Console.WriteLine("Testing String Operations.");

var interpolatedStrings = new InterpolatedStrings();
Console.WriteLine($"""

01ld style interpolation:
{interpolatedStrings.0ldStyleInterpolation}

New style interpolation:
{interpolatedStrings.NewStyleInterpolation}

s

Figure 2.4 shows the result it produces, which indeed confirms that multi-line string
interpolation works as expected:

Testing String Operations.

Dld style interpolation:

he age of Laurence is: 42.

ew style interpolation:

he age of Laurence is: 42.

LIZUTE L4 LOSLLIE IMHELISLLAC SETULE LT PUlRLIOT

Overview of C# 11 Features W 43

Next, we will test our string literals to confirm that they produce the results we
expect. To do so, we will add the following code to the Program. cs file:

var stringLiterals = new Stringliterals();
Console.WriteLine($"""

Raw string literal:
{stringliterals.RawStringtiteral}

String literal with interpolation:

{stringlLiterals.NewStyleInterpolation}

nlln),
3

This code produces the results as shown in figure 2.5, which confirms that the new
string literals work properly both with and without interpolation:

Raw string literal:
his text may contain any symbols, including
ewlines, "quoted text",

indentations, and so on.

here is no need to escape any characters.

tring literal with interpolation:

This is a combination of a new string
literal and interpolated string.

This is a value from inserted code: 13.

Figure 2.5: Testing string literals

Also, we see the obvious benefits of these new-style string literals when we use them
inside the Console logger. We no longer have to make multiple calls to Console.
WriteLine. We can now make a single call and add multiple lines to the text itself.

This completes the overview of the newly introduced C# 11 features. Let us

armMmm 31‘1“70 ‘AT]’\ at wo]’12‘70]021‘1’10({

Program.es

OULIHLIMULIZA VYLILUL VYU LU VL AL ULLIv,

44 Implementing C# 11 and NET 7.0

Conclusion

C# 11 has added an array of useful features which make the code easier to read,
write, and execute. One of such feature is auto-default properties on non-nullable
fields in a struct, which allows us to have less verbosity in our code and to prevent
our code from accidentally throwing errors if we have not explicitly set any of the
properties of a struct object.

Another useful feature is generic attribute classes. This feature allows us to easily
determine what exact type is associated with an attribute. We no longer have to store
a type in one of the members of the attribute class. This makes our code less verbose
and easier to use.

As well as this, we have new sequence pattern matching available in C# 11. Thisis a
powerful feature that provides multiple ways of how various collection types can be
used inside conditional logic. The feature works with any collection type, including
Span and ReadOnlySpan.

C# 11 has also substantially improved how strings are used. First, there is now an
ability to use multiple lines in interpolated strings. This allows us to format the code
in such a way that it becomes much easier to read. Second, there is a new type of
string literal, which does not require programmers to use escape characters. And
this new string literal can work with and without string interpolation.

In the upcoming chapter, we will cover the features that have been newly added to
NET 7, including its base SDK; its command line interface, and its core libraries.

Points to remember

s Auto-default properties ensure that non-nullable properties inside a struct
data type are always set.

+ Generic attribute classes enable the insertion of any arbitrary type into an
attribute.

¢ Sequence pattern matching enables pattern matching on collections.

s Multi-line interpolated strings enable the programmers to use multi-line
expressions inside interpolated strings.

¢ New string literal allows for the construction of string literal that do not
require escaping special characters.

Overview of C# 11 Features W 45

Multiple choice questions

1. What makes auto-default properties useful?
a. Less verbosity in the code
b. Prevents errors from being accidentally thrown
¢. Noneed to use a constructor
d. Allof these

2. What makes generic attributes useful?
a. Easier to determine a type associated with it
b. No need to store the type in a dedicated class member
c. Both of these
d. None of these
3. What characters do you need to escape while using raw string literals
without interpolation?
a. Curly braces
b. Newlines
¢. Double quotes
d. None of these
4. What characters do you need to escape while using raw string literals with
interpolation?
a. Curly braces
b. Newlines
¢. Double quotes
d. None of these

Answers
1. d
2 ¢
3. d

46 Implementing C# 11 and NET 7.0

Key terms

¢ Auto-default properties: The non-nullable properties that are set to the
default value of their data type if not set explicitly.

¢ Generic attribute class: An attribute class that can use generic syntax and be
associated with any arbitrary type.

o Raw string literal: A string literal that is surrounded by sequences of three
double-quote characters. None of the characters inside such a string literally
requires escaping.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

B

https://discord.bpbonline.com

CHAPTER 3

What is New in
NET 7?

Introduction

We have already covered core changes to the C# 11 language. However, NET 7
platform is more than C#. Some exciting changes were added to the platform itself.

Broadly speaking, .NET consists of a wide range of components. These include build
tools, code generation tools, code analysis tools, compilers, and so on. But it also
includes command line intetface (CLI) and various core libraries that can be used
by any .NET-compatible programming language.

As you can see, the .NET platform is a fairly broad topic. And this chapter aims to
cover the main improvements that have been introduced to all parts of it.

Structure

In this chapter, we will discuss the new features of NET 7, which will include the
following topics:

(%] L

¢ SDK and build tool improvements
¢ System and Microsoft library updates
o Observability improvements

s Breaking changes of NET 7

48 Implementing C# 11 and .NET 7.0

Objectives

By the end of this chapter, you will be familiar with the new features that have been
added to version 7 of the .NET platform. You will also learn which of the older
features have been either marked as deprecated, removed, or had their behavior
changed. This way, you will be able to migrate your code base to .NET 7 without
breaking any of your existing code.

Prerequisites
To follow this chapter, you will need the following;
o Amachine running either Windows, MacOS, or Linux operating system
» NET7SDK
* Asuitable IDE or a code editor
¢ Being familiar with C# fundamentals

If you do not have any of the preceding listed dependencies installed already, let
us know the setup instruction provided in Chapter 1: Getting Familiar with .NET 7
Application Structure, which also provides a recap of C# fundamentals.

SDK and build tool improvements

We will start by covering the most fundamental components of NET—it is SDK and
the build tools that come with it. That also includes the CLI.

Many improvements have been made to .NET 7 that are purely performance related.
But there are also some functional changes that are easy to demonstrate. And this is
precisely what we will do now, starting with the CLI improvements.

CLI tools improvements

One of the major improvements to the .NET CLI tools is the output of dotnet --help
command. It has been made much more detailed than before. The output you will

get after executing this command will look similar to the following:

Usage: dotnet [runtime-options] [path-to-application] [arguments]
Execute a .NET application.

runtime-options:

--additionalprobingpath <path> Path containing probing policy and

What is New in NET7? W 49

assemblies to probe for.

--additional-deps <path> Path to additional deps.json file.

--depsfile Path to <application>.deps.json file.

--fx-version <version» Version of the installed Shared

Framework to use to run the application.

--roll-forward <setting> Roll forward to framework version
(LatestPatch, Minor, LatestMinor, Major, LatestMajor, Disable).

--runtimeconfig Path to <application>.runtimeconfig.
json file.

path-to-application:
The path to an application .dll file to execute.

Usage: dotnet [sdk-options] [command] [command-options] [arguments]

Execute a .NET SDK command.

sdk-options:
-d|--diagnostics Enable diagnostic output.
-h|--help Show command line help.
--info Display .NET information.
--list-runtimes Display the installed runtimes.
--list-sdks Display the installed SDKs.
--version Display .NET SDK version in use.

SDK commands:

add Add a package or reference to a .NET project.
build Build a .NET project.
build-server Interact with servers started by a build.

clean Clean build outputs of a .NET proiect.

in.NET

format
help
list
msbuild
new
nuget
pack

mmmais = e e mpoae= = m saae prmgm=--

Apply style preferences to a project or solution.
Show command line help.

List project references of a .NET project.

Run Microsoft Build Engine (MSBuild) commands.
Create a new .NET project or file.

Provides additional NuGet commands.

Create a NuGet package.

50 Implementing C# 11 and NET 7.0

publish
remove
restore
run

sdk

sln

store

test

tool

vstest
workload

Additional commands
dev-certs
fsi
user-jwts
user-secrets

watch

Publish a .NET project for deployment.

Remove a package or reference from a .NET project.
Restore dependencies specified in a .NET project.
Build and run a .NET project output.

Manage .NET SDK installation.

Modify Visual Studio solution files.

Store the specified assemblies in the runtime package
store.

Run unit tests using the test runner specified in a
.NET project.

Install or manage tools that extend the .NET
experience.

Run Microsoft Test Engine (VSTest) commands.
Manage optional workloads.

from bundled tools:

Create and manage development certificates.
Start F# Interactive / execute F# scripts.
Manage JSON Web Tokens in development.
Manage development user secrets.

Start a file watcher that runs a command when files
change.

Run dotnet [command] --help for more information on a command.

But this is not the only improvement to NET CLI. There is also an inclusion of tab
completion. So, pressing the Tub key after partially typing a command attribute will
complete the attribute for you. This makes the CLI consistent with other CLIs.

NativeAQT and enabling librarv trimmine

R il et I Tt et Rttt ARy

Ahead of Time (AOT)is a mechanism used to compile the code into binaries that are
specific to a particular platform. There is no longer any intermediate code running
between the application and the machine it is running on. The application was
already pre-compiled to run on a machine with a specific operating system and CPU
architecture. Because there is no intermediate code that needs to be interpreted as
it runs, such pre-compiled applications perform significantly faster than their NET
runtime counterparts. And NativeAOT is a .NET 7 feature that enables this type of
compilation on .NET.

What is New in .NET 77 51

Because the application has been pre-compiled to run on a specific type of machine,
it no longer relies on .NET components. But there are also some .NET components
that actually prevent the code to be compliable into a fully native application. To
make your .NET application work with NativeAOT if it needs to be trimmed.

Luckily, there is a feature that has been added to the .NET 7 project templates
that make the process of trimming the libraries easy. All we need to do is add the
following entry to the project file markup:

<IsTrimmable>true</IsTrimmable>

The complete content of the . csproj file may look as follows:
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net7.0</TargetFramework>
<ImplicitUsings>enable</ImplicitUsings>
<LangVersion>preview</LangVersion>
<Nullable>enable</Nullable>
<IsTrimmable>true</IsTrimmable>

</PropertyGroup>
</Project>

Central package manager

The central package manager is a new feature that has been added to the NuGet
package management system. This is a feature that allows us to easily manage
common dependencies for multiple projects in complex solutions.

Ta enable this feature. vour will need ta create a Directarv.Packases.nrans file

B piidinniey. 8 . e T L I I L Ty STl SR e

1n51de your solutlon This ﬁle w111 contain XML with the Project root element. You
will need to then have the following markup inside this element to enable the central
package manager:

<PropertyGroup>
<ManagePackageVersionsCentrally>true</ManagePackageVersionsCentrally>

</PropertyGroup>

Then, you can have ItemGroup element that will contain references to each
individual package you want to use in your projects. This will be represented by
PackageVersion element, which will be added in the following format:

52 Implementing C# 11 and .NET 7.0

<PackageVersion Include="{ NuGet package name }" Version="{ NuGet
package version }" />

This will be the only reference to a specific package you will need in your entire
solution. To apply it in your project, you will just need to add the following element
to any arbitrary ItemGroup element inside your . CSPROJ file:

<PackageReference Include="{ NuGet package name }” />

This concludes our overview of the SDK and builds tool improvements. Now, we will
move on to the improvements that have been introduced to the core NET libraries.

System and Microsoft library updates

We will now have a look at some improvements that have been added to the
core libraries used by .NET, which primarily come from System and Microsoft
namespaces. To showcase these new features, we will create a console application
project. We will call our project CoreLibraryImprovements. You can either create
it via a GUI of an IDE of your choice, or you can execute the following command
inside any folder on your computer:

dotnet new console -o CorelLibraryImprovements

This will create a CoreLibraryImprovements folder with the project structure
inside it. Thereafter, we will start adding classes to the project to showcase the new
core library features. The first feature we will have a look at is the improvement to
the time-related data types in the System library.

Microseconds and nanoseconds support

Prior to .NET 7, millisecond was the smallest unit of time that .NET has supported.
But now, you can work with microseconds and nanoseconds. Both of these units of

measure have been added to DateTime, DateTimeOffset, TimeOnly, and TimeSpan
objects.

To demonstrate how these units can be applied, follow the following steps:

1. We will add TimeDatatypeImprovements.cs file to our CoreLibrary
Improvements project folder. The initial content of this file will be as follows:

namespace CoreLibraryImprovements;

public class TimeDatatypeImprovements

{
public static void DemoNewTimeFeatures()
{
What is New in NET 77 53
}
}

2. Inside the DemoNewTimeFeatures method, we will place some code for
every data type that had microseconds and nanoseconds added. First, we
will insert the following code into the method to demonstrate the new
DateTime APL:

var dateTime = new DateTime(2022, 3, 2, 15, @e, 3@, 30, 30);

Console.WriteLine($"""
DateTime object is {dateTime} with {dateTime.Microsecond

} microseconds and {dateTime.Nanosecond} nanoseconds.

s

3. In this code, we are setting microsecond and nanosecond values while
creating a new instance of a DateTime object.

4. Then, we are printing those values in the console.

5. Apply a similar action to the DateTimeOffset object by inserting the
following code into the method:
var dateTimeOffset = new DateTimeOffset(2022,
3, 2, 15, oo, 30, 30, 36,
TimeSpan.FromMicroseconds (6@ * 1000 * 1000));

TimeDatatypeImprovements.es

Console.WriteLine($"""

DateTimeOffset object is {dateTimeOffset } with
{dateTimeOffset.Microsecond

} microseconds and {dateTimeOffset.Nanosecond} nanoseconds.

nnmy
]

Next, we will insert the following code that demonstrates the new APl on the
TimeOnly object type:

var timeOnly = new TimeOnly(15, @@, 3@, 36, 30);

Console.WriteLine($"""

54 Implementing C# 11 and .NET 7.0

TimeOnly object is {timeOnly} with {timeOnly.Microsecond

} microseconds and {timeOnly.Nanosecond} nanoseconds.

s

7. As you may have noticed, the TimeOnly object is very similar to DateTime,
but it does not have the date part in it.

8. And finally, we will add the following code to demonstrate the new API of
the TimeOffset data type:

var timeSpan = new TimeSpan(19, 3, 48, 20, 38, 30);
Console.WriteLine($"""
TimeSpan object is {timeSpan} with {timeSpan.Microseconds
} microseconds and {timeSpan.Nanoseconds} nanoseconds.

Ticks per microsecond: {TimeSpan.TicksPerMicrosecond}.

Nanoseconds per tick: {TimeSpan.NanosecondsPerTick}.

")

As you may have noticed, this data type has some additional constant static
fields, namely, TicksPerMicrosecond and NanosecondsPerTick.

9. Andnow, tosee our codein action, we can replace the content of the Program.
cs file inside the project folder with the following:

using CoreLibraryImprovements;

Console.WriteLine("Demonstrating time-related data type
improvements.");

TimeDatatypeImprovements.DemoNewTimeFeatures();

And if we now run the application, the output of it is expected to look similar to
what is displayed in figure 3.1:

Demonstrating time-related data type improvements.
DateTime object is ©2/63/2022 15:@0:3@ with 3@ microseconds and @ nanoseconds.

ateTimeOffset object is 02/03/2022 15:00:30 with 30 microseconds and @ nanoseconds.

imeOnly object is 15:80 with 30 microseconds and @ nanoseconds.

rimeSpan object is 19.03:40:20.8300300 with 3@ microseconds and @ nanoseconds.
icks per microsecond: 10.
anoseconds per tick: 100.

Figure 3.1: Demonstration of new time-related APls

What is New in NET 77 55

This concludes the overview of the new time-related .NET functionality. Next, we
will examine the new features related to JSON processing.

New JSON features

The improvements to JSON that have been added to .NET 7 include the following:

s MaxDepth property has been added to JsonWriterOptions class from
System.Text.Json library.

o The default JsonSerializerOptions is being made accessible externally, so
developers can see what the options are.

¢ Animplementation of HTTP PATCH calls specific to JSON
¢ JSON object polymorphism features have been added.

To demonstrate these JSON features, we will add NewJsonFeatures. cs file to our
project folder, and we will initially populate it with the following content:

using System.Net.Http.Json;

using System.Text.Json;

using System.Text.Json.Serialization;
namespace CoreLibraryImprovements;

public static class NewlsonFeatures

{
}

Next, we will add a method to this class that will demonstrate how to use the
MaxDepth of the JsonlWriterOptions class.

MaxDepth propetty of JsonWriterOptions class

MaxDepth property enforces the maximum depth of inner objects inside the [SON
output. If this number is exceeded and the structure of an object is deeper, an
exception will be thrown. The method that we will add to demonstrate this will look
as follows:

public static void DemoJsonWriterOptions()

{

var options = new JsonWriterOptions

{

NewJsonFeatures.es
http://Http.Json

56 Implementing C# 11 and NET 7.0

Indented
MaxDepth

true,
5

¥

using var fileStream = File.Create("output.json");
using var writer = new Utf8JsonWriter(fileStream, options: options);

using JsonDocument document = JsonDocument.Parse("""

{
"levell": {
"level2": {
"level3": {
"key": "value"
}
}
}
}

")

var root = document.RootElement;

if (root.ValueKind == JsonValueKind.Object)

{
writer.WriteStartObject();
}
else
{
return;
}

foreach (JsonProperty property in root.EnumerateObject())

{

property.WriteTo(writer);

writer.WriteEndObject();
writer.Flush();

What is New in NET 77 57

In this method, we are setting JSON writer that writes indented JSON and is only
capable of dealing with up to five levels of depth. Then, we use this writer to write
aJSON document into a file.

In the JSON that we are using in our example, we only have three levels of depth, so
it fits within our maximum value of 5. However, if we had more than five levels, this
code would throw an exception.

Default JsonSerializerOptions configuration

Next, we will add the following method that demonstrates the accessibility of the
default values in the JsonSerializerOptions object. The method will look like the
following:

public static void ShowDefaultlsonSerializerOptions()

{
var options = new JsonSerializerOptions
{
WriteIndented = true
b

Console.WriteLine("Showing default JsonSerializerOptions.");

Console.Writetine(JsonSerializer.Serialize(JsonSerializerOptions.
Default, options));

}

In this method, we are serializing the Default static property of the
JsonSerializerOptions object to see what the default settings are if you do not
set any explicit vatues in any of the fields.

JSON-specific HTTP PATCH

Next, we will add the following method to demonstrate how a JSON-specific HTTP
PATCH request can be made from an instance of the HttpClient class. The method
will have the following structure:

public static async Task DemoPatchAsJsonAsync()

{
var client = new HttpClient();
client.DefaultRequestHeaders.Add("Accept”, "application/json");
var jsonBody = new { Key = "value" };

var response =

58 Implementing C# 11 and NET 7.0

await client.PatchAsJsonAsync("https://localhost”, jsonBody);
}

To see how this method works, we will need to host a server application with an
appropriate endpoint that accepts the PATCH verb and JSON payload. In this example,
the application is expected to be hosted at the https://localhost address. However,
if you want to see how this method works, you may want to host an appropriate
application at any address that suits you.

Finally, we will have a look at the new JSON polymorphism feature.

JSON polymorphism

To demonstrate JSON polymorphism, we will need to add some classes that will
represent JSON objects. We can add them in the same file immediately below the
NewJsonFeatures class definition. And the first pair of classes will look as follows:
[JsonDerivedType(typeof(BasicBaseObject))]
[JsonDerivedType(typeof(BasicDerivedObject))]

public class BasicBaseObject

{
public int BaseData { get; set; } = 1;

public class BasicDerivedObject : BasicBaseObject

{
public int ExtraData { get; set; } = 2;

}

Here, we have two classes. As indicated by the JsonDerivedType attributes, both
of these types are meant to represent a JSON object. Both of these can inherit and
be inherited from. This is why, when we derive BasicDerivedObject class from
BasicBaseObject, this will be known by JSON serializer and deserializer.

This is the most basic setup of JSON polymorphism. Now we will add two more
classes that will demonstrate more advanced usage. These classes will look as
follows:

[JsonDerivedType(typeof(BaseStringDiscriminator), typeDiscriminator:
"baseObject")]

[JsonDerivedType(typeof(DerivedStringDiscriminator), typeDiscriminator:
"derivedObject")]

public class BaseStringDiscriminator

https://localhost
https://localhost

What is New in NET 77 59

public int BaseData { get; set; } = 1;

public class DerivedStringDiscriminator : BaseStringDiscriminator

{
public int ExtraData { get; set; } = 2;

}

These classes have typeDiscriminator parameters setinside the JsonDerivedType
attribute. This parameter allows you to derive a JSON string into the correct type
during the deserialization. In C#, when you derive one class from another, the
derived class implicitly matches its type with its base type. So, if your method
expects a parameter of the BaseStringDiscriminator type, you can pass a variable
of DerivedStringDiscriminator into it.

The typeDescriminator parameter allows you to use this feature of the language
while deserializing a JSON string into a class. The value specified in this parameter
corresponds to the value of the Stype field inside the JSON string. When you specify
BaseStringDiscriminator type as the target of your deserialization, the JSON
string will be deserialized into this type if you specify baseObject as the value of
the Stype field. But it will be deserialized into DerivedStringDiscriminator type
if the value that you have specified is derivedobject.

You can also use a numeric type discriminator. And the following pair of classes
demonstrates how you can use it:

[JsonDerivedType(typeof(BaseIntDiscriminator), 8)]
[JsonDerivedType(typeof(DerivedIntDiscriminator), 1)]

public class BaseIntDiscriminator

{
public int BaseData { get; set; } = 1;

public class DerivedIntDiscriminator : BaseIntDiscriminator

{
public int ExtraData { get; set; } = 2;

60 Implementing C# 11 and NET 7.0

In this case, the same principle applies as with the string type discriminator. But this
time, it will be an integer number inside the $type field.

Now, we will add some code that will help us to see these features in action. We will
do it by adding the following method to our NewJsonFeatures class:

public static void DemoJsonPolymorphism()
{
Console.WriteLine("Demonstrating basic JSON polymorphism:");

Console.WriteLine(JsonSerializer.Serialize(new
BasicDerivedObject()));

Console.WriteLine(
"Demonstrating JSON polymorphism with string type discriminator:");

var jsonStringDiscrimnator = JsonSerializer.
Deserialize<BaseStringDiscriminator>("""

{
"$type": "derivedObject”,
"ExtraData":2,
"BaseData":1

}

TRTRTRNN
s

Console.WriteLine($"JSON is of derived type: {jsonStringDiscrimnator
is DerivedStringDiscriminator}.”);

Console.WriteLine(

"Demonstrating JSON polymorphism with integer type discriminator:");

var jsonIntDiscrimnator = JsonSerializer.
Deserialize<BaseIntDiscriminator>("""

{
"$type": 1,
"ExtraData":2,
"BaseData":1

}

s

Console.WriteLine($"JSON is of derived type: {jsonIntDiscrimnator is
DerivedIntDiscriminator}.”);

}

What is New in .NET 7?7 61

So, we are serializing an object with basic JSON polymorphism into a JSON string.
Then, we are testing the type discriminator features while deserializing a JSON
string into a class. We test both the numeric and the textual type discriminators.

Now, we will add some logic to execute the code that we have added.

Testing JSON features

We will add the following code to our Program.cs file:
Console.WriteLine("Demonstrating JSON improvements.");
NewJsonFeatures.DemoJsonWriterOptions();
NewJsonFeatures.ShowDefaultJsonSerializerOptions();

NewJsonFeatures.DemoJsonPolymorphism();

And this should produce results similar to what is displayed in figure 3.2:

Deionstrating JSON improvements.
Showing default JsonSerializerOptions.

“Converters": [],
“PolymorphicTypeConfigurations": [],
“AllowTrailingCommas": false,
"DefaultBufferSize": 16384,
"Encoder": null,
"DictionaryKeyPolicy": null,
"IgnoreNullvalues": false,
“DefaultIgnoreCondition”: @,
“NumberHandling": @,
“IgnoreReadOnlyProperties": false,
"IgnoreReadonlyFields”: false,
"IncludeFields": false,
"MaxDepth": o,
"PropertyNamingPolicy": null,
"PropertyNameCaseInsensitive": false,
“ReadCommentHandling": @,
"UnknownTypeHandling": @,
"WriteIndented": false,
"ReferenceHandler": null
!
Demonstrating basic JSON polymorphism:
"ExtraData":2,"BaseData":1}
Demonstrating JSON polymorphism with string type discriminator:
SON is of derived type: True.
Demonstrating JSON polymorphism with integer type discriminator:
PDSON is of derived type: True.

Figure 3.2: The output of our [SON-related methods

This concludes the demonstration of the new JSON-related features in .NET 7. Next,
we will have a look at the new Stream features.

in.NET
Program.es

62 Implementing C# 11 and NET 7.0

New stream features

The main improvement to the Stream class in the core System library of .NET is
that it had two methods added to it: ReadExactly and ReadAtLeast. These methods
allow for greater flexibility while reading data from the stream into the byte array
buffer.

ReadExactly method will read the exact number of bytes that the buffer contains. If
there is insufficient data to fill the buffer, an exception will be thrown.

ReadAtLeast method will read at least as many bytes as specified in a specific
parameter. It does not have to fill the entire buffer. It will throw an exception if there
are fewer bytes to read than are specified in the parameter.

To demonstrate both of these methods in action, we will add NewStreamFeatures.
s file to our CoreLibrarylmprovements project and populate it with the following
content:

namespace CoreLibraryImprovements;

public static class NewStreamFeatures

{
public static void DemoReadExactly()

{

using var fileStream = File.Open("output.json", FileMode.Open);

var buffer = new byte[10];
fileStream.ReadExactly(buffer);
Console.WriteLine($"""

Bytes read with ReadExactly:
{BitConverter.ToString(buffer)}
llllll);

}

public static void DemoReadAtLeast()
{

using var fileStream = File.Open("output.json", FileMode.Open);

var buffer = new byte[10];
fileStream.ReadAtLeast(buffer, 10);

What is New in .NET 77 63

Console.WriteLine($"""
Bytes read with ReadAtLeast:
{BitConverter.ToString(buffer)}

gl

}

So, we have two methods in here: DemoReadExactly and DemoReadAtLeast.
Both methods read data from the file that was created when we were testing some
new JSON-related features. DemoReadExactly method demonstrates how to use
ReadExactly method on the Stream class, which is accessible to any class that
inherits from Stream, such as FileStream from our example. DemoReadAtLeast
method demonstrates how to use ReadAtLeast. Here, we are setting both the buffer
length and the minimum number of bytes to 10, which will make the behavior of this
method identical to that of ReadExactly.

Now, we will add the following code to the Program.cs file to test these newly
added methods:

Console.WriteLine("Demonstrating Stream improvements.");
NewStreamFeatures.DemoReadExactly();

NewStreamFeatures.DemoReadAtLeast();

And if we now run our program, we should expect to see an output similar to that
shown in figure 3.3:

emonstrating Stream improvements.
Bytes read with ReadExactly:
7B-0D-0A-20-20-22-6C-65-76-65

Bytes read with ReadAtLeast:
7B-@D-0A-20-20-22-6C-65-76-65

Figure 3.3: The data read by ReadExactly and Read Atleast methods

This concludes the overview of the new streaming features from .NET 7. Now, we
will ook at the improvements to the RegEx engine.

RegEx improvements

RegEx is a technology that allows programmers to verify if some arbitrary text
matches a specific pattern. It is very powerful because you can construct any

T 1 1 n 1 o 11

Program.es

pattern with a relativety low number ot Symbols. Isut because ot 1ts abiity to work
with virtually limitless patterns, rules, and combinations thereof, it is relatively
computationally expensive to use RegEx.

64 Implementing C# 11 and NET 7.0

NET 7, however, has introduced a feature that substantially improves the
performance of the RegEx engine. If you want your code path to only work with a
specific RegEx expression, you can pre-compile it. So, the pattern comparison will
be very quick to execute during the runtime. And this is what we will have a look
at now.

We will add NewRegexFeatures.cs file to our CoreLibraryImprovements project.
The content of this file will be as follows:

using System.Text.RegularExpressions;
namespace CoreLibraryImprovements;

public partial class NewRegexFeatures
{
[RegexGenerator(@"*[a-z]+$", RegexOptions.IgnoreCase)]

public static partial Regex LettersRegex();

public static void DemoPrecompiledRegex(string input)
{
Console.WriteLine(
$"'{input}' matches '"[a-z]+$' RegEx: {
LettersRegex().IsMatch(input)}.");
Console.WriteLine(
$"The number of matches: {LettersRegex().Count{input)}.");

var matchEnumerator = LettersRegex().EnumerateMatches(input);
while (matchEnumerator.MoveNext())

Console.WriteLine($"Match of {matchEnumerator.Current.Length

} found at index {matchEnumerator.Current.Index}.");

Here, we first define a method that returns a RegEx object. The RegexGenerator
attribute above indicates that this object comes with a pre-compiled pattern. To
make this work, it needs to have static and partial access modifiers. In our case,
the pattern determines whether a specific text consists entirely of letters. No other
characters are allowed.

What is New in NET 77 65

Then, we have the DemoPrecompiledRegex method that uses the pre-compiled
RegEx pattern. It takes an input text and compares it against the pattern. Then, it
creates outputs in the console as a result of this comparison.

This method also showcases another RegEx improvement that is new to NET 7—the
EnumerateMatches method. This method allows you to go throw all parts of the
input text that match the pattern.

Another useful feature about this new pre-compiled RegEx that is worth mentioning
is that the Roslyn analyzer will automatically highlight the places in the code where
the existing RegEx logic can be replaced with this. This will allow you to refactor and
optimize your old code with just a few clicks if you are using Roslyn-compatible IDE
like Visual Studio.

Now, we will test this method. We will do so by adding the following lines of code
into the Progranm. cs file of the project:

Console.WriteLine("Demonstrating RegEx improvements.");

var lettersOnlyText = "letters";

var mixedText = "fwef340";

NewRegexFeatures.DemoPrecompiledRegex(lettersOnlyText);

NewRegexFeatures.DemoPrecompiledRegex(mixedText);

Here, we are running the comparison against two strings. One of them contains only
letters, as expected by our RegEx pattern, while the other contains numbers too.

Figure 3.4 demonstrates the kind of results you are expected to see if you execute
this code:

emonstrating RegEx improvements.
"letters' matches '~[a-z]+$' RegEx: True.
The number of matches: 1.

iatch of 7 found at intex 0.
"fwef340' matches '~[a-z]+$' RegEx: False.
The number of matches: @.

Figure 3.4: Demonstration of pre-compiled RegEx

This concludes our demonstration of RegEx improvements. Now, we will have a

Program.es

look at the new cryptography-related features.

Cryptography improvements

NET always had many ways to work with SSL/TLS encryption certificates.
Previously, working with the certificate name attributes was not always easy. The

66 Implementing C# 11 and .NET 7.0

primary way of doing so was to pass a string where different attributes were encoded.
But it was not the most convenient thing to work with if any of the names had some
special characters in them. Plus, because you were dealing with raw strings, it was
easy to make a typo somewhere.

NET 7 fixed this problem by adding the X56@DistinguishedNameBuilder class.
This class comes with methods that allow you to add the naming attributes that are
commonly used in encryption certificates. This way, each name will be short enough
to minimize the chance of accidental misspelling. And, as it is treated as a separate
unit, using special characters inside of it will not affect the integrity of the entire
attribute structure.

To demonstrate the X5@@DistinguishedNameBuilder class, we will add the
CryptographyEnhancements . cs file to our project and will populate it with the
following content:

using System.Security.Cryptography.X5@9Certificates;
namespace CoreLibraryImprovements;

public static class CryptographyEnhancements
{
public static void DemoCertificateNameBuilder()
{
var builder = new X58@DistinguishedNameBuilder();
builder.AddCommonName("CertificateSubject");
builder.AddOrganizationalUnitName("TestUnit");

builder.AddOrganizationName("Scientific Programmer Ltd.");

Console.WriteLine($"The certificate name is: {
builder.Build().Decode(X5@@DistinguishedNameFlags.None)}");

CryptographyEnhancements.es

Here, we are adding some arbitrary names to the builder, building the name structure,
and then decoding it to see what it consists of. We will now add the following code
to the Program.cs class, which will allow us to run this method:

Console.WriteLine("Demonstrating cryptography improvements.");

CryptographyEnhancements.DemoCertificateNameBuilder();

What is New in NET 77 67

Now, if we run it, we are expected to see the following output:

Demonstrating cryptography improvements.

he certificate name is: 0O=Scientific Programmer Ltd., OU=TestUnit, CN=CertificateSubject

Figure 3.5: Decoded result of using X500DistinguishedNameBuilder

We will now move on to another extremely useful feature of NET 7—the TAR APL

New TAR API

TAR is one of the popular file-archiving algorithms. But despite its popularity, NET
did not have any inbuilt functionality to deal with it. But now it does.

To demonstrate what this new functionality consists of, we will add TarApi.cs file to
our project, which will then be populated with the following content:
using System.Formats.Tar;

using System.IO0.Compression;
namespace CoreLibraryImprovements;

public static class TarApi

{
}

Next, we will add the following method to the class. This method demonstrates how
you can use the TAR API to take all the files inside a specified folder and save them
ina TAR archive at a specified location.
public static void CreateTarFile(

string sourceDirectoryName,

string destinationFileName)

TarFile.CreateFromDirectory(

Program.es
in.NET

sourcebirectoryName: sourcevirectoryname,
destinationFileName: destinationFileName,

includeBaseDirectory: true);

}

Next, we will add the following method to demonstrate how to use the APIto extract
the content of a TAR file into a specified directory:

68 Implementing C# 11 and NET 7.0

public static void ExtractTarFile(
string sourceFileName,

string destinationDirectoryName)

{
TarFile.ExtractToDirectory(
sourceFileName: sourceFileName,
destinationDirectoryName: destinationDirectoryName,
overwriteFiles: false);
}

The API can also work with streams, including the memory stream. This allows
you to process some complex logic without storing intermediate files on the drive.
For example, this method demonstrates how you can extract a TAR archive into the
memory stream and then write another TAR archive from this stream:
public static void CreateTarFileFromStream(

string sourceDirectoryName,

string destinationDirectoryName)

using var stream = new MemoryStream();

TarFile.CreateFromDirectory(
sourceDirectoryName: sourceDirectoryName,
destination: stream,

includeBaseDirectory: true);

TarFile.ExtractToDirectory(
source: stream,
destinationDirectoryName: destinationDirectoryName,

overwriteFiles: false);

}

You can also use the API to transfer the full or partial content of one TAR file to
another. And the following method demonstrates how this can be done:
public static void TransferFilesToDifferentArchive(

string sourceFileName,

string destinationFileName)

{
using var stream = File.OpenRead(sourceFileName);

What is New in NET 77 69
using var reader = new TarReader(stream, leaveOpen: false);
TarEntry? entry;
while ((entry = reader.GetNextEntry()) != null)

{
destinationFileName = Path.Join(destinationFileName, entry.
Name);
entry.ExtractToFile(destinationFileName, overwrite: true);
}
}

Also, you can use GZIP compression algorithm together with TAR. This method is
demonstrated as follows:
public static void ExtractFromGzipArchive(

string sourceFileName,

string destinationDirectoryName)

using var compressedStream = File.OpenRead(sourceFileName);

using var decompressor = new GZipStream(compressedStream,
CompressionMode.Decompress);

TarFile.ExtractToDirectory(
source: decompressor,
destinationDirectoryName: destinationDirectoryName,

overwriteFiles: false);

}

This concludes the overview of the new TAR API that has been added to version 7
of the NET platform.

There are also some core library improvements in NET 7 that deserve a category of
their own. Those are related to observability. We will discuss that next.

Observability improvements

NET 7 added some new ways that can help you monitor your applications. A whole
new set of improvements was added to the platform because its developers want it
to be in line with the emerging cloud-native OpenTelemetry standards.

The new observability features in .NET 7 can be broadly split into the following
categories:

70 Implementing C# 11 and .NET 7.0

¢ New ways to monitor activities
» UpDownCounter metric

And to demonstrate these improvements, we will create a new console application
project and call it ObservabilityImprovements. It can either be created froma GUI
of an IDE or by executing the following command:

dotnet new console -0 ObservabilityImprovements

Now, we will start adding content to it too. First, we will have alook at the new ways
we can monitor activities.

New ways to monitor activity

System.Diagnostics.Activity is a class that represents a running process from
the context of logging. Its main purpose is to obtain the status and some other
supporting information about the running processes and log it.

To have a look at what activity monitoring options are available in NET 7, we will
add the ActivityMonitoring.cs file to the ObservabilityImprovements project
with the following content:

using System.Diagnostics;
namespace ObservabilityImprovements;

public static class ActivityMonitoring

{
}

Now, we will start adding various methods to 1t to showcase new activity monitoring
features. We will start by adding the logic that monitors a stopped activity.

Monitoring stopped activities

To monitor stopped activities, an IsStopped property has been added to the
Activity class. And to demonstrate its usage, we can add the following method to
our newly created class:

public static void MonitorStoppedActivity()

{
var activity = new Activity("test");
activity.Start();
activity.Stop();
What is New in NET 77 71
Console.WriteLine($"Is activity stopped? {activity.IsStopped}");
}

Here, we start an activity. Then we stop it and check its stopped status.

Next, we will have a look at the ability to trigger an event when the current activity
changes.

Current activity changed event

To demonstrate how a change of the current activity can trigger an event, we will
add the following method:

public static void DemoCurrentChangedEvent()

{
Activity.CurrentChanged += ChangeEvent;

var activity = new Activity("test");
activity.Start();

activity = new Activity("test2");
activity.Start();

void ChangeEvent(object? sender, ActivityChangedEventArgs e)
{
Console.WriteLine($"Operation changed from {
(e.Previous?.OperationName ?? "[No Activity]")} to {

e.Current?.OperationName}."):

}

Here, we are associating an event handler with the static CurrentChange event on
the Activity class. Then, we start a new activity that will create a trigger for this
event. The event gets triggered even if the current activity changes from no activity.
Then, we create another activity, which will trigger the change even once again.

Now, we will have a look at the newly added ability to enumerate activity properties.

Enumerating activity propetties

NET 7 has added the ability to enumerate tags, links, and events of activity. This
ability has been enabled by adding EnumerateTagObjects, EnumerateLinks,

72 Implementing C# 11 and NET 7.0

and EnumerateEvents methods. To demonstrate how it works, we will add the
following method:

public static void DemoActivityEnumerators()
{
var activity = new Activity("test");
activity.SetTag("tagl", "valuel");
activity.SetTag("tag2", "value2");
activity.SetTag("tag3", "value2");

Console.WriteLine("Activity has the following tags:");

foreach (ref readonly KeyValuePair<string, object?> tag
in activity.EnumerateTagObjects())

Console.WriteLine($"Tag name: {tag.Key}, tag value: {tag.Value}");
activity.AddEvent(new ActivityEvent("eventl"));
activity.AddEvent(new ActivityEvent("event2"));

Console.WriteLine("Activity has the following events:");

foreach (var ev in activity.EnumerateEvents())

{

Console.WriteLine($"Event name: {ev.Name}");

}

In addition to this, these properties themselves have tags that can be enumerated.
This can be demonstrated in the following method:

public static void DemoInnerTagEnumerators()

{

var tagCollection = new List<KeyValuePair<string, object?>>()

{

new KeyValuePair<string, object?>("tagl", "valuel"),

new KeyValuePair<string, object?>("tag2", "value2"),

What is New in NET7? 11 73

b

var activitylink = new Activitylink{default, new
ActivityTagsCollection(tagCollection));

Console.WriteLine("ActivityLink has the following tags:");

foreach (ref readonly KeyValuePair<string, object?> tag
in activitylink.EnumerateTagObjects())

Console.Writeline($"Tag name: {tag.Key}, tag value: {tag.Value}");

var e = new ActivityEvent("TestEvent", tags: new
ActivityTagsCollection(tagCollection));

Console.WriteLine("ActivityEvent has the following tags:");

foreach (ref readonly KeyValuePair<string, object?> tag
in e.EnumerateTagObjects())

Console.WriteLine($"Tag name: {tag.Key}, tag value: {tag.value}");

in.NET

}

Next, we will examine a new metric type that has been added to the .NET 7
platform—the UpDownCounter.

UpDownCounter metric

UpDownCounter is a class that has been added to System.Diagnostics.Metrics
namespace. Itis meant tobe used alongside the Meter class from the same namespace.

This is a type of metric that is frequently referred to as a gauge in other telemetry
libraries. A normal counter metric would only go up. However, a gauge (or up-down
counter) is meant to go either up or down. The following example demonstrates
how this metric can be used.

public static Meter MeterObject = new Meter("HTTP.Connections",
"1.0.0");

74 Implementing C# 11 and NET 7.0

public static UpDownCounter<int> ActiveConnections = MeterObject.
CreateUpDownCounter<int>("Active-Connections");

Then, to change the values of the metric, we can call the Add method on it with either
positive or negative integer parameters.

ActiveConnections.Add(10);
ActiveConnections.Add(-2);

The normal counter metric is intended for monitoring the things that can only have
their count increased. For example, it can be used for monitoring the number of
requests that the system receives. An up-down counter, on the other hand, is there
to monitor the counts that are meant to be changed in real time. For example, you
can use it to monitor the real-time number of logged-in users. As a user logs in, the
count increases. And as someone logs off, the count decreases.

This concludes the overview of the changes that were introduced into .NET 7. Now,
we will cover the breaking changes that may cause your old code to not be fully
compatible with .NET 7.

Breaking changes of .NET 7

This is a list of the main changes that may make your old code either behave
differently once it has been migrated to .NET 7 or does not work at all. And that is
why it is important to know these.

http://HTTP.Connections

Microsoft.Extensions nullability

NET 6, the nullability of various types has changed. For example, until .NET 6,
objects were nullable, and so were strings. Now, it has been changed. You now have
to explicitly mark them as nullable to make them nullable.

On the one hand, you can still configure your applications to use the old behavior.
But on the other hand, there are plenty of libraries that just did not keep up with
these nullability changes. And those include various libraries that use Microsoft.
Extensions namespace.

But now this has been fixed, and the libraries fully adhere to the nullability rules
of both the new and the old versions of .NET. This, however, may cause potential
problems if you have been using the libraries against NET 6 with the new nullability
rules enabled. If you are using any libraries with this namespace and you have
migrated your application to .NET 7, make sure those code paths still work as
intended.

What is New in .NET 7? 75

Obsolete and non-nullable endpoints

There are some other endpoints in various .NET libraries that had their nullability
behavior changed. There are also some endpoints that have been either deprecated
or removed. The first type of endpoint will give you a warning. The endpoints from
the second type will prevent your code from compiling.

The easiest way to identify if your code is affected is to migrate your solution to
NET 7 and then build it. If there are any new deprecation warnings or errors, you
will know that you need to make some changes to your code to adhere to the new
APIs.

PatternContext constraint

Generic PatternContext<T> allowed any type to be used as T. However, in .NET
7, you can only use struct for this purpose. If you have been using any other type
before, your code will no longer compile.

Multi-level lookup is disabled on Windows

Previously, if you were running the dotnet command, the command was looking for
the framework in multiple install locations. And now, it only looks inside a single
install location that is specified inside the DOTNET_ROOT environment variable. This
will probably not be an issue for most developers, but it is still worth knowing about.

MSBuild serialization of custom types

In NET 7, MSBuild no longer supports the serialization of the types derived from
BuildEventArgs and ITaskItemvia BinaryFormatter serializer. So, you will need
to change your code that was previously using these types.

Conclusion

NET 7 platform had many useful features added to it. They cover both the core SDK
and the core libraries, which exist under either System or Microsoft namespace.
Some of these improvements are non-functional, such as performance improvements
to the compiler. But there are plenty of functional improvements too, the most
notable of which have been covered in this chapter.

The notable SDK improvements that we have covered in this chapter are the new
CLI features, the NativeAOT functionality, and the central package manager feature
for NuGet. The core library improvements that we had a look at included new time-
related APIS, new JSON features, new stream-related features, pre-compiled RegEx,
cryptography improvements, and the new TAR AP,

76 Implementing C# 11 and NET 7.0

Anotable category of the new core library features is the collection of observability
improvements that were added to bring .NET more in line with OpenTelemetry
standards. These include new ways to monitor activities and new metric types.

But there are also some breaking changes that have been introduced into .NET
7. But most of these are fairly easy to identify by migrating your code to .NET 7
and building your application. Deprecated features will then produce warnings,
whereas the features with completely changed functionality will prevent your code
from being built.

In the upcoming chapter, we will talk about MAUI, which is a framework for
building native applications that can be ported to either mobile devices or desktop
computers.

Points to remember

» NET 7 CLI is now more intuitive and provides more information on the
available commands.

+» NET7applications canbe compiled into native executables and automatically
trimmed.

o NuGet central package manager feature allows developers to easily manage

1

dependencles Inside complex solutions.
* Microseconds and nanoseconds have been added to the time-related objects.

o NET 7 has new JSON functionalities, which include JSON polymorphism,
access to default serialization options, and so on.

s New stream options allow you to specify the exact number of bytes to read
into the stream.

¢ Pre-compiled RegEx allows you to execute textual pattern matching much
quicker.

o With NET 7, you can easily construct the name attributes of cryptographic
certificates.

o Anew API has been added to .NET 7 to deal with TAR files.

¢ Observability improvements that have been added to NET 7 include activity
monitoring and new metric types.

s Some breaking changes have been introduced into .NET 7 too, so developers
need to be aware of those.

What is New in NET 7?7 1 77

Multiple choice questions
1. Whatis NativeAOT?

a.
b.

C.

d.

A framework for building mobile applications
A framework for building desktop applications

A technology that complied code into an application that runs
directly on a specific hardware type

None of these

2. Whatis JSON polymorphism?

a. Theability to inherit from a JSON-specific class and deserialize [SON
string into an appropriate type

b. The ability to replace data types in JSON fields

c. The ability to add or remove JSON fields at will

d. The ability to store either a singular JSON object or a collection
thereof in the same field

3. What can .NET TAR API be used for?

4.

2

Unpacking and packing TAR files

o

Transferring the content between TAR archives

n

Transferring the content between TAR archives and memory

d. All of the above

Which of the following properties of System.Diagnostics.Activity
class you can enumerate?

a. Tags
b. Links
c. Events

d. All of the above

Answers
I @
2
3.
4
78 Implementing C# 11 and .NET 7.0

Key terms

NativeAOT: A technology thatallows developers to compile their application
into a format that would run close to the hardware on a particular type of a
machine

Library trimming: The process of removing NET-specific components from
the libraries to make them compatible with NativeAOT

NuGet Central Package Manager: The feature that allows NuGet
dependencies to be managed in a single place for the whole solution

JSON: JavaScript Object Notation—a format for transferring data

JSON serialization: The process of converting an object from the code into
aJSON string

JSON deserialization: The process of converting a JSON string into a
specified class

JSON polymorphism: The ability for the JSON-specific classes to inherit
from one another and et a TSON string to deserialize into an abprooriate

ST e U S Tsssssp B e i s o S R

denvedclass:when the base class is specified és il;;>%arget of deserialization
s RegEx: Regular expression, which is a technology for string pattern matching
¢ TAR:File archiving format
¢ GZIP: Data compression algorithm that works alongside TAR

s OpenTelemetry: A framework for applying observability features to cloud-
native applications

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com
mgm
s
CfiEr

CHAPTER 4

MAUI and

Cross-platform
Native Applications

https://discord.bpbonline.com

Introduction

Multi-platform UI (MAUI) is a framework for developing native applications for
mobile devices and desktop computers using the same codebase. MAUI framework
was initially introduced into.NET 6, but it reached its maturity several months after
the initial NET 6 releases. Therefore, it is still appropriate to consider this technology
new at the time of the .NET 7 release.

Prior to MAUI, there was a mixture of native application development options on
NET. WinForms and Windows Presentation Framework enabled us to build desktop
applications for Windows. Xamarin.Forms allowed us to develop cross-platform
mobile applications. It had some limited capacity to build Windows applications
via the Unified Windows Platform. But there was no inbuilt framework in NET for
developing desktop applications for non-Windows operating systems. And there
was not a unified framework that enabled the development of applications for both
desktop computers and mobile devices equally well.

And now, MAUI has changed all of this. It is one true unified platform for developing
any type of native application from the same codebase. In this chapter, you will learn
how to use it.

80 Implementing C# 11 and NET 7.0

Structure

In this chapter, we will discuss the new features of NET 7, which will include the
following topics:

¢ Introducing MAUI

o Using MAUI to build desktop applications

¢ Using MAUI to build mobile apps

+ Limitations of developing for Mac OS and i0S

Objectives

By the end of this chapter, you will be able to create your own MAUI application.
You will have learned the main designed patterns used by MAUL You will also learn
how to compile your codebase into a platform-specific application for any operating
system supported by MAUL

Prerequisites

To follow this chapter, you will need the following;
s Amachine running either Windows, MacOS, or Linux operating system
o NET7SDK
o Asuitable IDE or a code editor
¢ Being familiar with C# fundamentals

If you do not have any of the preceding listed dependencies installed already, let
us setup using the instruction provided in Chapter 1: Getting Familiar with NET 7
Application Structure, which also provides a recap of C# fundamentals.

Introducing MAUI

For those who have previously used Xamarin.Forms to build mobile applications
would find MAUI relatively easy to learn. There is a good reason for it because
MAUL is an evolution of Xamarin.Forms.

But it is not just a new version of Xamarin.Forms that happen to have additional
desktop deployment capabilities. It is different from its predecessor in many
fundamental ways. For example, it uses a much simpler project structure, where all
supported deployment platforms, both desktop and mobile, share the same project.
Of course, you can still use additional projects in your application. There is even a
new type of class library project template that is specific to MAUL But we no longer
need a separate project for every target operating system.

MAUI and Cross-platform Native Applications 81

There are also some differences in the markup syntax for building user interfaces
between Xamarin.Forms and MAUL Even though both technologies can use XAML
as their main markup language, they use different libraries of elements. Therefore,
some elements in the application layouts will have different names and attributes.

But perhaps, the most fundamental difference between Xamarin.Forms and MAUI
is that the former was a separate framework, whereas the latter has been fully
integrated in .NET since version 6. Therefore, MAUI has access to all the latest
language features and all other framework features. For example, you can use NET
CLI commands with MAUI applications. And this is what we will do next.

Enabling MAUI development environment

Before you can start writing MAUI applications, you need to enable MAUI workload
onyour development machine. You can do it via.NET CLIby executing the following
command:

Adadwad cinmliTamnd dardaTlT wmand

UoLneL wWUrkiudu 1rdtdil fidul

Then, you can install a tool that will check if your environment has any missing
MAUI dependencies:

dotnet tool install -g Redth.Net.Maui.Check
To then use this tool, you can execute the following command:

maui-check

Alternatively, you can set up the MAUI workload via your IDE tools. For example, if
you are using Visual Studio on Windows, you can open Visual Studio Installer and
click Modify button next to the latest version of the IDE, like it is shown in figure 4.1:

Visual Studio Installer

Installed ~ Available

] Visual Studio Community 2017 Modity
15922 Launch
0 Update available More »
15949 View details L] Update

of) Visual Studio Community 2019 Modity
16.84 Launch
@ update available More »
161117 View details % Update

0] visual Studio Community 2022 I
2 T
Powertul IDE, free for students, open-source contriburtors, and individuals More *

Release notes

Figure 4.1: Modifying workloads via Visual Studio Installer

82 Implementing C# 11 and .NET 7.0

Then, you would need to enable the workloads with the title of NET Multi-platform
App Ul development, as demonstrated in figure 4.2:

Workloads Individual components Language packs Installation locations

© Need help choosing what to install? More info X
Web & Cloud (4)
@ ASPNET and web development A Azure development
Build web applications using ASP.NET Core, ASP.NET, Azure SDKs, tools, and projects for developing cloud apps
HTML/JavaScript, and Containers including Dacker supp... and creating resources using NET and .NET Framework...
Python development \ | Nodejs development
Editing, debugging, interactive development and source .~ Build scalable network applications using Node.js, an
control for Python asynchronous event-driven JavaScript runtime.

Desktop & Mobile (5)

gﬂ NET Multi-platform App Ul development NET desktop development
Build Android, i0S, Windows, and Mac apps from a single Build WPF, Windows Forms, and cansole applications
codebase using C# with NET MAUI using C#, Visual Basic, and F# with NET and NET Frame..

Figure 4.2: Enabling MAU workload via Visual Studio Installer

Now, we can start creating MAUI apps to see how they work.

Creating a basic MAUI applications

To create a new MAUT app with the name of SampleMauiApp, you can execute the
following command:

dotnet new maui -o SampleMauiApp

And now, we can have a look at the basic structure of the MAUI app project, which
can be seen in figure 4.3:

f4 Solution 'SampleMauiApp' (1 of 1 project)
4 [SampleMauiApp

b & Dependencies

b 833 Properties

b a B Platforms

b & @ Resources

> D) App.xaml

b I3 AppShell xaml

> [} MainPage xaml

b ¢s MaulProgram.cs

Figure 4.3: The root folder of MAUI project

ASP.NET
ASP.NET
ASP.NET
MauiProgram.es

MAUI and Cross-platform Native Applications W 83

By default, we have a couple of files with the code in the root folder. MauiProgram.
¢s is the file that contains the entry point into the application that is shared by all
platforms. App.xaml is the base file used by the app. It contains links to all shared
resources, such as specific fonts and styles. It has a code-behind file with the name of
App. xaml. cs. This file tells the application which shell layout to load.

AppShell. xaml file represents the main application layout. Its purpose s to provide
a common structure to all pages of your application. It is not meant to represent
the application UI by itself. For this purpose, we have MainPage.xaml file in our
example. Just like all other XAML files, it has a code-behind C# file with a CS
extension.

MAUI project also has P1atforms folder, which has platform-specific entrypoint
code and any other native code that is applicable to platforms. Its structure can be
demonstrated as shown in figure 4.4:

48[Platforms
468 Android
b a1 Resources
+[;) AndroidManifest xml
b +c» MainActivity.cs
b +c= MainApplication.cs
4608
+c# AppDelegate.cs
+[Info.plist
+C# Program.cs
4 & MacCatalyst
+c= AppDelegate.cs
+[) Info.plist
+C# Program.cs
48 Tizen
+c# Main.cs
+ [tizen-manifest xml
4 81 Windows
+n88 app.manifest
b +[) App.xam
+[3 Package appxmanifest

Figure 4.4: The structure of Platforms folder

MamActivity.es
MainApplication.es
AppDelegate.es
Program.es
AppDelegate.es

84 Implementing C# 11 and NET 7.0

And finally, another noteworthy folder of an MAUI project is Resources. It is a
folder that contains all images, fonts, locale-specific text, and any other resource that
your application might need. The structure of this folder can be seen in figure 4.5:

468 Resources
480 Applcon
+E appicon.svg
+{ appiconfg.svg
48l Fonts
+1 OpenSans-Regular tf
+1 OpenSans-Semibold tf
48[Images
+f4 dotnet_bot svg
45 Raw
+B AboutAssets bt
48[Splash
+[splash.svg
48/ Styles
+[3) Colors.xaml
+1)) Styles xam

Figure 4.5: The structure of Resources folder

Now we will apply some modifications to our MainPage. xaml file to demonstrate
how it works. If we open it, we will see various nested elements. The root element
is called ContentPage. It is a container element that represents the whole page.
Immediately inside it, we have Scrol1View. This is a container element that has an
inbuilt ability to scroll if the entire content of the page does not fit on a single screen.
Next, we have Image and Label elements, which represent an image and textual
labels, respectively.

We also have a Button element, which represents a clickable button. But other than
that, we do not have any elements that the user can interact with. So, we will add
one. We will insert an Entry element just above the Button. This element represents
a field with editable text. And now, the content of our MainPage.xaml file will look
like the following;

«xml version="1.8" encoding="utf-8" ?»

<ContentPage xmlns="http://schemas.microsoft.com/dotnet/20821/maui"
xmlns:x="http://schemas.microsoft.com/winfx/20089/xaml"

x:Class="SampleMauiApp.MainPage"»

<Scrollview>
<VerticalStackLayout
Spacing="25"
Padding="30,0"
VerticalOptions="Center">

http://schemas.microsoft.com/dotnet/2021/maui
http://schemas.microsoft.com/winfx/2009/xaml

MAUI and Cross-platform Native Applications W 85

<Image
Source="dotnet_bot.png"

SemanticProperties.Description="Cute dot net bot waving hi
to you!"

HeightRequest="200"

HorizontalOptions="Center" /»

<Label
Text="Hello, World!"
SemanticProperties.HeadinglLevel="Levell"
FontSize="32"

HorizontalOptions="Center" /»

<Label
Text="Welcome to .NET Multi-platform App UI"
SemanticProperties.Headinglevel="Level2"

SemanticProperties.Description="Welcome to dot net Multi
platform App U I"

FontSize="18"

HorizontalOptions="Center" />

<Entry
x:Name="IncrementInput"
Placeholder="1"

HorizontalOptions="Center" />

<Button
x:Name="CounterBtn"
Text="Click me"
SemanticProperties.Hint="Counts the number of times you click"
Clicked="0OnCounterClicked"

HorizontalOptions="Center" />

</VerticalStacklLayout>
</Scrollview>
¢/ContentPage>

86 Implementing C# 11 and .NET 7.0

This adds the ability to change the increment by which the counter gets increased
when the button gets clicked. To make it work, we will replace the content of the
MainPage.xaml. cs file with the following:

namespace SampleMauiApp;

public partial class MainPage : ContentPage

{
int count = 9;
public MainPage()
{
InitializeComponent();
}

private void OnCounterClicked(object sender, EventArgs e)

i

var increment = int.Parse(IncrementInput.Text);
count += increment;

if (count == 1)

CounterBtn.Text = $"Clicked {count} time";
else

CounterBtn.Text = $"Clicked {count} times";

SemanticScreenReader.Announce(CounterBtn. Text);

}
}

As we can see, the IncrementInput property became accessible in our code behind.
This is the same name as we have specified in x.Name attribute of the newly added
Entry element. We parse the content of this element as int. Then, we apply this
number as our increment.

We have just briefly touched upon MAUI XAML syntax. Now, let us have a look at
the elements available in XAML in more detail.

MAUI XAML references

XAML elements used by MAUI can be broadly separated into pages, layouts, and
views, the latter of which are also commonly referred to as controls. We will have

a lanls af all mabararine ckarbne unth nacao or hinh aun licknd in tha fallauriae tahlas

d IUUN dl dll LﬂLCSULll‘.’D, DLCU.LU[S WiLLL }JC[?.’,CD, WILLILLL dl€ 1IDLEU L LLIE 1u11uw1115 Lavic.,

MAUI and Cross-platform Native Applications 87
Page type Description
ContentPage The most basic page type that displays a single page.
FlyoutPage Managed two related pages: flyover that represents items and
details page containing details of an individual item.
NavigationPage A page that represents navigation hierarchy.
TabbedPage A page that contains a series of pages represented by tabs.

Table 4.1: MAUI XAML pages

Next, we will talk about layouts. In the context of MAUI, a layout is a control that is
positioned inside of a page control. Its responsibility is to act as a container for the

views. Table 4.2 shows

the layouts that MAUI supports:

Layout Type Description

Absolutelayout Positions each child element at a specific location.

BindablelLayout Can auto-generate its content by binding it to a collection
of items.

FlexLayout Allows children to be stacked or wrapped with different
styling options.

Grid A table-like layout where child controls are placed in rows
and columns.

HorizontalStackLayout | Stacks child elements horizontally.

StackLayout Stacks child elements either horizontally or vertically.

VerticalStackLayout | Stacks child elements vertically.

Table 4.2: MAUI XAML layouts
And finally, we will go through the individual views that MAUI supports. Those are
listed in table 4.3:
View type Description

ActivityIndicator | Uses animation to show that the app is busy.

BlazoriebView Hosts a Blazor application inside MAUL

Border Draws either borders or backgrounds.

BoxView Draws either squares or rectangles.

Button A clickable button.

CarouselView Displays a scrollable collection of items.

CheckBox Abox that can be checked.

88 Implementing C# 11 and NET 7.0

View type Description
CollectionView Displays a scrollable collection of items based on layout
specifications.
ContentView Enables creation of custom reusable controls.
DatePicker Allows to pick a specific date.
Editor Accepts multi-line text input.
Ellipse Draws either an ellipse or a circle.
Entry Accepts single-line text input.

Table 4.3: Some MAUI XAML views

There are many views available in NET MAU], so it would be easier to show them
at multiple tables. Table 4.4 shows the additional views:

Layout type Description
Frame Wraps layout elements within a configurable border.
GraphicsView A canvas for drawing 2D graphics.
Image Displays an image.
ImageButton A clickable image that can perform some action.
IndicatorView Works in conjunction with CarouselView and displays the

number of items on it.

Label Displays read-only text.
Line Displays a line.
ListView Displays a scrollable list of selectable items.
Path Displays complex curve-like shapes.
Picker Displays a list of items where one can be selected.
Polygon Displays an arbitrary 2D polygon.
Polyline Displays a line with multiple vertexes.
ProgressBar Displays the progress of a given long-running action.
RadioButton Allows the user to toggle between multiple values.
Rectangle Displays a rectangle or a square.
RefreshView Enables pull-to-refresh functionality for scrollable content.
RoundRectangle | Displays either a rectangle or a square with rounded corners.
Scrollview A container element that allows scrolling through its children.

CrmmalhlDanm

e L 1 UGN N SN S

Sedi'Lipdr £naples searcn runcuonalry.

Slider Enables the user to select a fractional numeric value from a range.

MAUI and Cross-platform Native Applications W 89

Layout type Description

Stepper Enables the user to select a fractional numeric value from a range
of incremental values.

SwipeView Enables a swipe gesture.

Switch On/off style toggle.

TableView Represents a table.

TimePicker Allows to pick a specific time.

WebView Allows the display of any arbitrary HIML that can be normally
displayed in the browser.

Table 4.4: Additional MAUI XAML views

However, XAML is not the only way the views can be constructed in MAUI. Since
every one of these elements is represented by a class in the code, you can write user
interfaces by using pure C#. This is something that you could do in Xamarin.Forms
too. However, since MAUT is fully integrated in the current version of .NET, there is
also another way of writing a Ul that was not available in Xamarin.Forms. You can
do it by using Blazor.

Working with Blazor on NET MAUI

Blazor is a collection of technologies that allows developers to compile .NET code
into WebAssembly, which is binary code that can run in browsers. The benefits of
Blazor are numerous, ranging from the ability to write front-end code in C# to the
performance benefits of running low-level compiled code. Since both MAUI and
Blazor are fully integrated in .NET, you can combine these two technologies together.
Now you will learn how.

Although Blazor dependencies can be added to an MAUI project retroactively, there
is a project template available for MAUI applications with Blazor UL This makes it
available. You will need to have both MAUI and ASPNET core Web development
workloads enabled on your development machine. You will need the latter because
Blazor is primarily a Web development technology.

We will now create an MAUI project with Blazor Ul by executing the following
command:

dotnet new maui-blazor -o BlazorMauiApp

ASP.NET

90 Implementing C# 11 and .NET 7.0

And now, we can have a look at the project structure, which should look like what
figure 4.6 demonstrates:

+ Solution ‘BlazorMauiApp' (1 of 1 project)
4 + [BlazorMauiApp
» &8 Dependencies
» &3l Properties
b 8 Data
b ol Pages
» 8 B Plafforms
» & B Resources
b a B Shared
b a B wwwroot
+B _Imports razor
b+ L) App xaml
+@ Manrazor
4 +[) MainPage xaml
» +c# MainPage xaml.cs
b +C# MauiProgram.cs

Figure 4.6: Blazor MAUI project structure

We have all our standard MAUI components, including App.xaml, MauiProgram.
cs,and MainPage.xaml. But this time, our MainPage . xaml file contains BlazorView
component in its markup. We also have Blazor-specific files with RAZOR extension.
And we have wwwroot folder with JavaScript, HTML, and CSS files that you would
normally see in a Web application.

So, the MAUI components just act as the foundation for our application. Since
BlazorView is the dominant component of the Ul the entire Ul is delegated to
Blazor.

We will cover Blazor in more detail in Chapter 7: Blazor and WebAssembly on .NET.
But for now, we will make some modifications to the existing code to see how it
reflects in the app we are building. To do so, we will locate Counter. razor file
inside Pages folder. This page is similar to the default Blazor UI, as it comes with a
counter and a clickable button to increment it. And, just like before, we will add the
ability to change the increment value by binding it to a variable. So, the content of
the Counter. razor file will now look like the following:

@page "/counter”
<h1>Counter</hl>
<p role="status">Current count: @currentCount</p>

<input type="number" @bind="increment" />

MauiProgram.es

MAUI and Cross-platform Native Applications W 91

<button class="btn btn-primary" @onclick="IncrementCount">Click me</
button>

{@code {

private int? increment = 1;
private int currentCount = @;

private void IncrementCount()

{

currentCount += increment ?? 0;

}

We will run this code on both desktop and mobile platforms later. But for now,
we will have a look at another important feature of MAUI—support for various
architectural patterns.

MAUI architectural patterns

With MAUI, you can just use the default coding pattern that comes with the project
templates. But once your application becomes more complex, you will probably
have to start using well-established architectural patterns. Otherwise, your code will
become hard to maintain.

There are three main architectural patterns supported by MAUL: Model-View-
ViewModel (MVVM), ReactiveUI (RxUI), and Model-View-Update (MVU).
MVVM is a pattern that is available in MAUT out of the box, so we will have a look
at its implementation example. The other two patterns are enabled in MAUI via
third-party libraries. But we will still go through an overview of each.

Model-View-ViewModel

MVVM design pattern consists of three primary components: Model, View, and
ViewModel.

+ Modelis a component that represents some back-end data, such as a database
record.

* View represents an individual page of the UL

¢ ViewModel is an object that holds the data that is directly bound to the
controls in a particular view.

9. Implementing C# 11 and .NET 7.0

To show an example of MVVM implementation, we will create a new MAUI project
by executing the following command:

dotnet new maui -o MvvmMauiApp

We will then place MainPageVviewModel. cs file into the project folder and populate
it with the following content:

namespace MvvmMauiApp

{
public class MainPageViewModel
{
public int IncrementBy { get; set; } = 1;
t
}

Basically, we are building an app that has similar logic to what we had before. But
this time, our increment value will be inside the view model, which will bind directly
to the control in the UL To make it work, we will need to insert the ViewModel
into the constructor of our MainPage class. We will then map this ViewModel to the
BindingContext property shown as follows:

namespace MvvmMauiApp;

public partial class MainPage : ContentPage

{

int count = 9;

public MainPage(MainPageViewModel viewModel)
{

BindingContext = viewModel;

InitializeComponent();

}

private void OnCounterClicked(object sender, EventArgs e)

{

count += ((MainPageViewModel)BindingContext).IncrementBy;

if (count == 1)
CounterBtn.Text = $"Clicked {count} time";
else

CounterBtn.Text = $"Clicked {count} times";

MAUI and Cross-platform Native Applications W 93

SemanticScreenReader.Announce(CounterBtn. Text);

}

}

And now, we will need to modify the markup inside the MainPage.xaml file. First,

we will replace the opening ContentPage element with the following:

<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
xmlns:local="clr-namespace:MvvmMauiApp"

x:Class="MvvmMauiApp.MainPage">

<ContentPage.BindingContext>
<local:MainPageViewModel />
</ContentPage.BindingContext>

In here, we have specified the type that will be used as the BindingContext. And
how we will add the following element just before the Button element markup:

<Entry
x:Name="IncrementInput"

Text="{Binding IncrementBy}"
HorizontalOptions="Center" />

The text in this field is now bound directly to the IncrementBy property of the
MainViewModel. But since this class now gets injected into the MainPage via its
constructor, we need to register both these classes in the dependency injection
container. To do so, we will open MauiProgram. cs file and add the following lines
just before return builder.Build():

builder.Services.AddTransient<MainPage>();

builder.Services.AddTransient<MainPageViewModel>();

Now, our application should be identical in its functionality to the first application
that we created. But this time, the interaction between the UI and the back-end is
done via ViewModel binding.

Now, we will briefly have a look at architectural patterns that can be applied in
MAUI applications by using third-party frameworks.

http://schemas.microsoft.com/dotnet/2021/maui
http://schemas.microsoft.com/winfx/2009/xaml

94 Implementing C# 11 and NET 7.0

Patterns supported by MAUI via third-party
frameworks

Even though these patterns are not available in MAUT out-of-the-box, they can make
the life of a MAUI developers a lot easier. Therefore, they are still worth going over.

ReactiveUI

ReactiveUl pattern combines MVVM with reactive programming. So, if you, as a
developer, have used MVVM before, you will see many familiar concepts, such as
ViewModels and data binding. However, this pattern also adds many techniques for
quick and efficient updates to the UI, so the UT will feel much more responsive than
it would be otherwise.

OnMAUIJ, the ReactiveUl pattern is available by installing ReactiveUI . Maui NuGet
package. And its API documentation is available via the following URL:

https://www.reactiveui.net/api/reactiveui.maui/

Model-View-Update

MVU pattern became popularized by Web development frameworks and libraries,
such as React. Just like ReactiveU], it is highly suitable for building responsive user
interfaces. However, its structure is completely different.

As the name suggests, the pattern consists of three main components: View, Model,
and Update.

View represents a user interface and all its data. So, it is analogous to both View and
ViewModel from MVVM. Model represents the current state of the application. And
Update is a function that creates a new copy of the application’s state, that is, the
Model.

The easiest way to enable MVU on MAUT s to use Comet library, which is represented
by Clancy. Comet NuGet package. The code repository of the package can be found
via the following link:

https://github.com/dotnet/Comet

Now, we will cover the process of running and publishing MAUI apps on specific
platforms. We will start by covering the process of building desktop applications on
Windows.

https://www.reactiveui.net/api/reactiveui.maui/
https://github.com/dotnet/Comet

MAUI and Cross-platform Native Applications W 95

Using MAUI to build desktop applications

MAUL is available on two desktop operating systems, Mac and Windows. You can
build MAUI apps for Linux as well. But this is a purely community-enabled feature
that is not officially supported by Microsoft. Now we will discuss the process of
running and publishing an MAUI app on a Windows PC.

Preparing desktop development environment

Before we can build and run an MAUI application on Windows, we need to switch
the developer mode on. This can be found in your settings. Alternatively, if you try
to run your application from an IDE, you will be prompted to switch the developer
mode on. Figure 4.7 demonstrates what this prompt looks like on Visual Studio:

Enable Developer Mode for Windows ‘ - >XT
This device needs to be set up correctly to develop this type of app for Windows.
ff you dont, then you can't install and test your app before you submit it to the
Windows Store.

Go to setitngs for developers on your device, and select Developer Mode.

This device is not currently in developer mode.

Close |

Figure 4.7: A prompt to enable the developer mode on Windows

Now your environment is ready for running MAUI apps on it. The first thing we
will cover is running an MAUI app in debug mode.

Running a desktop app in a debug mode

As with any other type of app, you should be able to debug the MAUI codebase and
set breakpoints in it. The process of doing so for MAUI apps is identical to what it
would be with any other app type.

If you are running the MAUI app on Windows, the Windows profile should be
enabled by default. Therefore, you will be able to run the application by either
executing an appropriate command from .NET CLI or by clicking on the Run button
from the IDE.

9% Implementing C# 11 and NET 7.0

If we launch either the SampleMauiApp or the MvvmMauiApp application that we
created earlier, we are expected to see the user interface as shown in figure 4.8:

‘ o X

Home

Hello, World!

Welcome to .NET Multi-platform App Ul

19

Figure 4.8: MAUI user interface

If we launch our BlazorMauiApp and navigate to the Counter component, we
should expect the UI shown in figure 4.9:

) BONORE @ O ¢
BlazorMauiApp About

A Home Counter

Current count. 0

— -

+ Counter

i Fetch data

Figure 4.9: Blazor MAUI app Ul

This concludes the overview of the process of launching an MAUI application
on a desktop PC. Now, we will have a look at how we can publish i, so it can be
deployable on other devices.

Publishing a desktop app

If you want to deploy any Windows application on any official app store or
otherwise distribute it in professional settings, your application needs to be signed
with a certificate. Otherwise, the operating system will complain that the application

MAUI and Cross-platform Native Applications W 97

comes from an unknown publisher. However, it is not strictly necessary if you want
to create a deployment package purely for evaluation and test purposes.

As with any other type of NET application, the easiest way to publish an MAUT app
is via an IDE. You can do it via the CLI too, but the process will be more involved. To
publish your application from Visual Studio, all you have to do is select your main
application project in Solution Explorer, right-click on it, and click Publish. You will
then be prompted to select the distribution method, as shown in figure 4.10:

Create App Packages ? X

Select distribution method

’ How will you distribute this application?

J Microsoft Store under a new app name
‘ @ Sideloading What is sideloading?
|¥] Enable automatic updates

(g | Coce

Figure 4.10: Selecting distribution mode while publishing a MAUI Windows app

Then, you will be presented with the option of selecting a package signing method,
which you will need to perform to make your package production ready. Following
this, you will be able to specify the CPU architecture for your package. And you can
just follow all the steps to complete the package-generation process.

This covers the process of running and deploying MAUI applications on a Windows
desktop. Next, we will have a look at how to build MAUI mobile apps for Android.

Using MAUI to build mobile apps

You can build MAUI apps for Android by using any machine with any operating

system, as long as 1t supports either the ability to connect a real Android device to
it and run it in developer mode or use emulators. So, let us now learn to set up our

development environment so we can start building mobile applications on it.

98 Implementing C# 11 and NET 7.0

Preparing mobile development environment

The easiest way to test your mobile application before publishing it is to use an
emulator. Emulator is a virtual machine that closely mimics a real mobile device. The
easiest way to set one up is by using an IDE. For example, in Visual Studio, you can
click on Tools tab, select Android and click on Android SDK Manager, as demonstrated

in figure 4.11:

Tools | Extensions Window Help
, Get Tools and Features ..
Manage Preview Features

R Search= MvvmMauiApp

|®@, 0 banE, Q0

4

g

f Android '] B Android Device Manager .
{108 * [é4 Android SDK Manager...
Archive Manager.. O Device Log...
%3 Connectto Database M Android Adb Command Prompt...
19 Connectto Server.. Restart Adb Server

‘n Code Snippets Manager. . Ctrl+K, Ctrl+B |

Figure 4.11: Android SDK Manager menu option in Visual Studio

You will then be able to select any emulator from the list and install it. Choosing to
install it will prompt you to accept the license agreement, as demonstrated in figure

4.12:

Android SDK - License Agreement

Read and accept the Android SDK license below to continue.

android-sdk-arm-dbt-license
Google Play Inte! x86 Atom_64 Syste

android-sdk-arm-dbt-license

Terms and Conditions
This is the Android Software Development Kit License Agreement
1_Introduction

1.1 The Android Software Development Kit (referred to in the
License Agreement as the "SDK" and specificaily including the
Android system files, packaged APIs, and Google APIs add-ons) is
licensed to you subject to the terms of the License Agreement. The
License Agreement forms a legally binding contract between you
and Google in relation to your use of the SDK.

1 % "Anrrnir" moane tha Andrnid enfhwara clack far Aoviroe ac

T ——
made available under the Android Open Source Project, which is
located at the following URL: htip.//source android com/, as
updated from time to time.

1.3 A"compatible implementation" means any Android device that
(i) complies with the Android Compatibiity Definition document,
which can be found at the Android compatibility website (http://
source.android.com/compatibility) and which may be updated from

Accept || Cancel

Figure 4.12: Android SDK license agreement

MAUI and Cross-platform Native Applications W 99

It will take a while for emulators to get installed. And then, we will be able to run
our applications on it.

Running a mobile app on an Emulator

You will be able to select the emulator as the execution target from the Run menu of
the IDE, as figure 4.13 demonstrates:

Analyze Tools Extensions Window Help = P Search- MvvmMauiApp
|» Android_Accelerated_x86_Oreo (Ancroid 8.1 -API27) -|> =B /B, D aml, OO © | % R

Ty 1 i\
! Android_Accelerated_x86_Oreo (Android 8.1 -API 27) it MainPage_Modelcs

¥ Android_Accelerated x86_Oreo (Android 8.1 - API 27)

© Windows Machine |
Download New Emulators. . =
Framework (net6.0-android) '

| Android Emuiators * [Android_Accelerated x86 Oreo (Android 8.1 - API27) |
10§ Local Devices ' SR
108 Simulators '
105 Remote Devices ’

MwmMauiApp Debug Properties

Figure 4.13: Selecting Android emulator from the Run menu of Visual Studio

The rest of the process is the same as running any other application type in Visual
Studio. Once you click Run while an Android emulator is selected, the emulator will
be launched, and your application will be launched on it. While it is running, you
will be able to place breakpoints in the code.

This conctudes the subject of running Android MAUI apps on a PC. Next, we will
have a look at the process of publishing your app, so you will be able to distribute
it via app stores.

Publishing a mobile app

The process of publishing MAUI apps for Android is not much different from
publishing them for Windows. While Android is selected as the build target and the
build configuration is selected as Release, all you have to do is right-click on your
project in Solution Explorer and click Publish. It will then take you to the Android-

4 85 P 17O 1 i 412

source.android.com/compatibility

Specuic publishing screen, as SNOWN 1N figure 4.14.

MwmMauiApp

CiRepo: pleteg i harp11-and-dotnet7\Chap

M MwmMauiApp
Creation Date . 08/08/2022 14.22
Version: VersionCode: Bundle Format -

Cancel
Archiving App Bundie 'MwmMaulApp'...

Figure 4.14: Publishing an MAUL app for Android

100 Implementing C# 11 and NET 7.0

This will produce an APK file that can install the app on Android devices. The file
will reside inside the following location inside the project:

bin/Release/net7.0-android

Alternatively, the following command can be executed from the project folder via
the CLL:

dotnet build -f net7.8-android -c:Release

This concludes the process of publishing MAUI apps for Windows and Android.
Now, we will cover the process of running and publishing MAUI apps for Mac and
iOS.

Limitations of developing for Mac OS and
i0S

When we covered the process of building MAUT apps for Windows, you may have
noticed that all the steps of it imply that we do it on a Windows device. There is

no such thing as a Windows emulator. If you try to run a Windows app on a non-
Windows machine, it simply will not work.

A similar limitation exists for Mac and iOS apps. You need an Apple device to run
them. But even though iOS emulators are available, they can only be run on another
Apple device. One reason for this is that you need an Apple account to be able to
deploy your apps into any of Apple’s app stores. But this is not the only reason. To
be able to emulate iOS on your development machine, you will need some special
tools. Apple refuses to publish any of these tools for any operating system other than
Apple’s own.

Extra tools required for publishing apps for i0OS

Normally, if you would want to build standard native iOS apps, you would need
an IDE called XCode. This IDE is only available on Mac. Unfortunately, you cannot

emulate an i0S device without the tools that this IDE provides. And you cannot
build a native i0S deployment package for your application either. So, even if you
intend to develop i0S apps by using MAUL you will still have to install XCode,
which can be found via the following link:

https://developer.apple.com/xcode/

Once XCode is installed, you will need to either connect your existing development
account to it or create a new one. To do so, you will need to open the Preferences
dialog from the XCode menu. Then you will need to select the Accounts tab. From
the dialog that appears, you can then select a plus (+) button to add a new account.
What you can then do is link your Apple ID and follow the remaining instructions.

MAUI and Cross-platform Native Applications W 101

You will then need to add some metadata to your project file and sign the package.
But the publishing tool should notify you if any of it is missing. Likewise, you can
connect Visual Studio for Mac to your Mac build host to be able to use the IDE to
work with MAUI code. You will need this if you still want to use full IDE capabilities,
as XCode has not been designed to work with .NET and C#.

Then, to publish your application for iOS, you will need to execute the following
command from your project folder:

dotnet publish -f net7.0-ios -c Release

Your application package will then be placed into the bin folder of the project.

Slightly lighter requirements for Mac OS apps

If you want to publish an MAUI application for Mac OS, the restrictions will be
somewhat lighter. You will not need XCode or any other additional tools. You will
not even need anything beyond any standard .NET IDE or a code editor. However, if
you then intend to publish your app into any official app repositories, you will still
need a developer account and need to sign your package.

Mac will still allow you to download and install packages that are not signed. But
a security warning will be given. We have now completed the overview of .NET
MAUL

Conclusion

In this chapter, you have learned that NET MAUI is an evolution of Xamarin.Forms
that allows developers to write both desktop and mobile applications. Unlike its
predecessor, MAUI is fully integrated with .NET 7 and has access to all the latest
language features of C# 11. Likewise, its project structure is much more convenient
to work with than that of Xamarin Forms. It also supports a full range of mobile and
desktop operating systems.

~ TrTErm L s ATYY 0 o~ M1 " e 1 | LT e 0. L] LI 1 |

https://developer.apple.com/xcode/

Since .NE1I MAUI 15 tully integrated with .NEL /, 1t can be combined with any
NET 7 libraries and frameworks. For example, you can build its UI by using Blazor
WebAssembly.

NET MAUI supports three main architectural patterns, MVVM, RxUI, and MVU.
The latter pattern allows developers that had no prior experience of using MAUI to
learn it quickly, as the pattern is incredibly easy to understand.

What makes MAUI particularly convenient is that you can write your application
on any type of machine and compile it for any other supported operating system.
However, there is one caveat. If you intend to develop applications for Mac or iOS,
you will need Mac to do so. This is because Apple does not allow developers to

102 W Implementing C# 11 and NET 7.0

publish software that was not developed on Mac, and it does not provide tooling for
any other operating systems.

In the upcoming chapter, you will learn about the latest version of Entity Framework
Core, which is used for accessing structural SQL data by abstracting it in the code.

Points to remember
» .NET MAUI can be used for building mobile and desktop applications.

¢ MAUTI s an evolution of Xamarin.Forms.

» MAUIs fully integrated in .NET 7 and has full access to the latest language
features.

¢ The primary markup language for MAUI user interfaces is XAML.

» MAUI can have its Ul built by using other technologies, including Blazor
WebAssembly.

s MAUI can use either of the following architectural patterns: MVVM, RxUJ,
and MVU.

¢ The applications built for either Mac or iOS can only be published from a
Mac device due to restrictions imposed by Apple.

Multiple choice questions

1. What operating systems can you tun MAUI apps on?
a. Android
b. i0S

¢. Windows
d. All of the above

2. What is the key difference between MAUI and Xamarin.Forms?

a. Xamarin.Forms does not have access to the latest C# language
features, whereas MAUI does

b. Xamarin.Forms cannot run Blazor WebAssembly, whereas MAUI can

c. Xamarin.Forms was primarily intended for mobile, whereas MAUI
is intended for both mobile and desktop

d. All of the above

MAULI and Cross-platform Native Applications | 103

3. Which architectural pattern is not supported by MAUI?
a. ReactivelUl

b. MVVM
c. MVC
d. MVU
4. What is the main language used by MAUI for defining user interface
layouts?
a. XML
b. XAML
c. JSON
d. HTML
Answers
1. d
2. d
3 €
4. b
Key terms

» MAUL Multi-platform Ul a framework for developing native mobile and
desktop applications on .NET.

¢ Xamarin.Forms: A predecessor of MAUI that was specifically designed for

building cross-platform mobile applications.

s MVVM: Model-View-ViewModel; An architectural pattern that consists of
a user interface component (view), back-end data abstraction (model), and
the data that populates the user interface (ViewModel).

¢ ReativeUL: A framework that adds reactive programming components on
top of MVVM.

s MVU: Model-View-Update, also known as Elm Architecture, is an
architectural pattern that consists of the user interface (view), data abstraction
(model), and a component that updates the model when some action is
triggered in the Ul (update).

104 Implementing C# 11 and NET 7.0

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord .bpbonline.com

https://discord.bpbonline.com

CHAPTER 5

Database
Access with Entity
Framework 7

Introduction

Entity Framework Core (EF Core)is an object-relational mapper (ORM) that is used
by NET platform. The purpose of an ORM is to allow application code to interact
with a relational database by abstracting objects from the database as objects in the

code (classes, records, and so on). There are other ORMs also available on .NET, but
those are developed and maintained by third parties. EF Core is developed by the
core Microsoft team alongside the rest of .NET.

In this chapter, we will cover the most fundamental features of EF Core. By the end
of it, you will have learned how to use it inside your application code to manipulate
data in a database. We will also cover the scenarios where we need to create EF Core
code from an existing database and cover the process of creating a new database
from EF Core objects.

Also, because ORMs work with relational databases, you will need to know the
fundamentals of relational databases to fully understand ORMs. Therefore, this
chapter will provide a brief overview of relational database concepts.

Finally, as the scope of this book is to cover the latest feature of C# 11 and .NET 7,
we will have a look at what new features have been added to version 7 of EF Core,
which is properly called EF7 rather than EF Core 7. So, not only will you know the
fundamentals of EF Core, but you will also know how to use its cutting-edge features.

106 Implementing C# 11 and NET 7.0

Structure

In this chapter, we will discuss the latest features of Entity Framework 7, which will
include the following topics:

¢ Introducing fundamentals of relational databases
¢ Introducing Entity Framework 7

s Code-first approach in EF7

s Database-first approach in EF7

o The latest features of EF7

Objectives

By the end of this chapter, you will have learned how to integrate a .NET core
application with a database by using EF7. You will also know how to apply the
latest features of EF7.

Prerequisites

To follow this chapter, you will need the following;

¢ Amachine running either Windows, MacOS, or Linux OS

o NET7SDK
o Asuitable IDE or a code editor
s Being familiar with C# fundamentals

If you do not have any of the preceding listed dependencies installed already, let
us set up using the instruction provided in Chapter 1: Getting Familiar with NET 7
Application Structure, which also provides a recap of C# fundamentals.

Introducing fundamentals of relational
databases

Since EF7 is an ORM that is primarily designed to interoperate with relational
databases, one needs to understand how relational databases work before attempting
to learn how the ORM works. Fortunately, you do not need to be a database expert
before you can start using EF7. But you will definitely need to understand the
fundamentals.

Database Access with Entity Framework 7 W 107

Overview of relational database management
systems and SQL

Relational databases are hosted inside Relational Database Management Systems
(RDBMS). There are several different RDBMS technologies manufactured by
different vendors. Although there are some fundamental architectural differences
between them, there are also some shared characteristics. Any RDBMS, regardless of
the vendor, has the following components:

o Databases comprised of tables.

s Each table has a rigid schema, which means that it consists of a fixed number
of columns, and each of these columns only accepts data of a specific type
(integer, textual, binary / Boolean, and so on).

o Tables refer to each other via the so-called foreign keys, which enables
relationships between tables.

o SQLlanguage is used for retrieving data, manipulating data, and modifying
the structure of the database itself.

Structured Query Language (SQL)is a universal language of database management.
Different RDBMS vendors use different flavors (or dialects) of SQL, so a statement
written for a particular type of RDBMS would not necessarily be compatible with
another type of RDBMS manufactured by another vendor. The most fundamental
commands will either be the same regardless of the vendor or verv similar. For

example, let us look at the following SQL expression:
SELECT * FROM USERS

Anyone who is familiar with SQL will be able to tell what this expression does. The
SELECT keyword indicates that we are selecting some data. The * symbol means that
we are selecting all fields. Alternatively, we could have written down specific fields
that we wanted to return. FROM is the keyword that is used to specify the object that
we want to return the data from, which would typically be a table. USER is the name
of a specific object.

Typically, a SQL expression to retrieve data is known as a query. A SQL expression to
modify the data, either inserting or updating it, is referred to as a command.

The most popular RDBMS types are the following:

s SQL Server: manufactured by Microsoft as a proprietary product primarily
used for commercial projects

o Oracle Database: the main RDBMS product manufactured by Oracle as a
proprietary product primarily used for commercial projects

108 Tmplementing C# 11 and NET 7.0

» MySQL: lightweight free and open-source RDBMS maintained by Oracle
that is frequently used for non-commercial projects

s PostgreSQL: free and open-source RDBMS with advanced features that are
primarily used for commercial projects

Now, let us have a look at a typical structure of an RDBMS table.

Tables, relationships, and normalization

Since relational databases store data in tables, we will have a look at an example of
such a table. Then, we will make some changes to it to highlight the fundamental
features of an RDBMS.

Let us imagine that we have a system that manages data for a company that owns
multiple factories. The database behind this system will store information on the
factory’s employees, their pay, their shifts, their job titles, and so on. Initially, we
would store this information in a single table, which will have the following columns,
as outlined in table 5.1:

Column name Data type

First Name Textual
Last Name Textual
Job Title Textual
Annual Salary Decimal
Date of Birth Date
Date of Joining the Company Date
Employment Location Textual
Factory Name Textual
Shift Start Time
Shift End Time

Table 5.1: The structure of the initial flat table containing employee information

Even though there is nothing that stops us from storing data this way, there are
many problems with this approach.

o First of all, it is just a flat table containing the entire employee data. It is
something we could do easily in an Excel spreadsheet. So, why would we
even need to set up an RDBMS?

+ Second, storing all information on a single table makes it harder to apply
any changes. For example, there is probably a very finite number of job titles

Database Access with Entity Framework 7 W 109

with associated salaries. Also, there is a finite number of factories where
the employee work. But what happens if one of the job titles gets the salary
associated with it increased? Or what if a particular factory gets closed
and its employees need to be transferred to a nearby factory? If you have
the job title, salary, and site data stored on the same table as the employee
information, you will then need to find and update every record that has
outdated information. If you have a large organization with thousands of
employees, then this process might take longer.

¢ Also, asingle flat table makes it difficult to store employee shift information.
We currently have shift start and end time. This is OK if a given employee
is always doing the same shift and if the factory is open only on specific
days. But what if this is not the case? What if the factory is open 24/7, and
each employee may be doing a combination of different shifts? Or what if
the same employee shifts in different factories? This would be very difficult
to store in a flat table. You would either need to store this information in a
free text field, which will be harder to query or you would need multiple
redundant columns for multiple start and end times and days worked.

These are, perhaps, the most obvious disadvantage of storing a large amount of data
inside a flat table. But a relational database will be able to address all these issues.
All we need to do is turn this flat table into multiple tables linked to each other. And
this is what we will do next.

Introducing primary keys

Before splitting our table, we will first add a primary key to it. The primary key is
a column that has a unique value in each row. Or it can be a mixture of multiple
columns, but the combination of the values in each row still must be unique.

Using a primary key has multiple advantages. But the main ones are as follows:

¢ Aprimary key acts as both a unique identifier of a record and its index, so a
specific record becomes faster to retrieve.

s Aprimary key of one table can be used as the so-called foreign key in another
table, enabling a relationship between two tables.

So, what could we use as a primary key in our table? Well, theoretically, we could
use a combination of the first and the last name. But then, there is no guarantee that
we will have a unique combination in every row, as unrelated people who share the
same name exist. Perhaps we could add a date of birth to it. Even then, it would not
necessarily guarantee uniqueness. Also, having different data types in our primary
key will make it more complicated and harder to manage.

110 Implementing C# 11 and .NET 7.0

To address this, we will just do what is commonly done in this situation and add
another column that will just store the primary key. It will be an integer column with
auto-generated sequential values, so each record is guaranteed to have a unique
value. This type of column is usually referred to as identity. Its name could either
be idor <table name>_id, such as employee_id. Next, we will apply the technique
known as normalization to split the table into multiple tables.

Normalization and foreign key relationships

Normalization is the process of removing repeated and redundant data from one
table and moving it into separate tables, which the original table will still be able
to refer to. This way, instead of being repeated, each value will be stored in its own
table. Then, if another table needs to refer to this value, it will refer to the index of
the record of the table where this value is stored. So, if you then need to change the
value (such as the name of the factory or a job title), you will only have to change it
in a single place.

Now, we will apply normalization to our own data. Since we have a finite number
of job types, each having its own annual salary, we will move job information into a
separate table, which will have a structure outlined in table 5.2:

Column name Data type Notes
JobID Integer (identity) Primary key
Job Title Textual
Compensation Decimal

Table 5.2: The structure of the Jobs table

Next, we can create a table containing information on factories, as outlined in table
B3

Column name Data type Notes
Factory ID Integer (identity) Primary key
Factory Name Textual
Factory Location Textual

Table 5.3: The structure of Factories table

We will take care of the shift table later. For now, we will get back to our tables
containing the remaining employee data, which will now be structured as shown in
table 5.4:

Database Access with Entity Framework 7 W 111

Column name Data type Notes
Employee ID Integer (identity) Primary key
First Name Textual
Last Name Textual
Date of Birth Date
Date of Joining the Company | Date
JobID Integer Foreign key (matches a
primary key of Jobs table)

Table 5.4: The structure of the employees’ table

Here, we have our first example of a relationship between two tables via a foreign
key. Job ID column in the Employees table refers to the Job ID column in the Jobs
table. Here, we have a one-to-many relationship between a job and employees, as
there can be multiple employees with the same job title. In the preceding example
(and in any other instance of foreign key relationships), the value that you put into
the Job ID column of the Employees table must match a value that exists in the Job
ID column of the Jobs table.

Finally, we will add a Shifts table, which will be structured as shown in table 5.5:

Column name Data type Notes

ShiftId Integer (identity) Primary key

Weekday Integer Must be between 1 and 7

Start Time Time

End Time Time

Employee ID Integer Foreign key (primary key
of Employees table)

Factory ID Integer Foreign key (primary key
of Factories table)

Table 5.5: The structure of the shifts table

Now, we can easily store detailed enough information about the shifts employees
are assigned to do. Now, it is also possible to associate an employee with multiple
factories via the Shifts table. So, there is now a many-to-many relationship between
employees and factories.

This concludes an overview of relational databases. Of course, the subject is much
larger, especially as every type of RDBMS has its own nuances. But we have covered
enough of the basics to be able to understand how EF7 works. So, let us set our

nerriunimsmanal s Lnassnta~ il

CILVIIUILIIELIL Up 101 UsLlg L.

112 W Implementing C# 11 and NET 7.0

Introducing entity framework 7

So far, we have briefly mentioned that relational databases rely on the language
called SQL for data retrieval and manipulation. But if you are using an ORM, such
as entity framework 7 (EF7), you would not have to use SQL directly in most cases.
Your tables and relationships will be represented by objects in the code, which, in
C#, would normally be either classes or records. The ORM will do all the necessary
mapping for you.

To start working with EF7, you will need two things: EF CLI tools and a NuGet
package representing a specific RDBMS provider.

EF7 supports the following providers:

¢ Microsoft SQL Server: Represented by Microsoft. EntityFrameworkCore.
SqlServer NuGet package.

» SQLight: Represented by Microsoft.EntityFrameworkCore.Sqlite
NuGet package.

o Azure Cosmos DB: Represented by Microsoft.EntityFrameworkCore.
Cosmos NuGet package.

¢ PostgreSQL: Represented by Npgsql.EntityFrameworkCore.PostgreSQL
NuGet package.

o MySQL: Represented by Pomelo.EntityFrameworkCore.MySql NuGet
package.

o In-memory database: Represented Microsoft.EntityFrameworkCore.
InMemory NuGet package.

Not all these providers represent true relational databases. For example, Azure
Cosmos DB is a document store, a different type of database. Likewise, In-memory
Database is not a real database. But nevertheless, a relational database is the primary
database type, EF7, designed to work with.

To install EF CLI tools, you can execute the following command in your terminat:
dotnet tool install --global dotnet-ef

If you already have the tools installed, you can execute the following command to
update them to the latest version:

dotnet tool update --global dotnet-ef

You can use EF7 on any OS that can work with NET. But Visual Studio 2022 for

Windows has the richest user experience. For example, Visual Studio 2022 comes
with an inbuilt version of SQL Server called LocalDB, so you do not have to set up
an instance of SQL Server manually. It just needs to be enabled via Visual Studio

Database Access with Entity Framework7 W 113

Installer. All you need to do is open the Installer, click the Modify button next to the
Visual Studio 2022 instance, and select to install Data storage and processing workload,
as demonstrated by figure 5.1:

Other Toolsets (5)
@ Data storage and processing |!.| | Data science and analytical applications
Connect, develop, and test data solutions with SQL Server ﬁé Languages and tooling for creating data science
Azure Data Lake, or Hadoop. applications, including Python and F#,
=1 Visual Studio extension development u Office/SharePoint development
el Create add-ons and extensions for Visual Studio, including Create Office and SharePaint add-ins, SharePoint

new commands, code analyzers and tool windows. solutions, and VSTO add-ins using C#, VB, and JavaScript.

Linux and embedded development with C++
& Create and debug applications running in a Linux
environment or on an embedded device.

Figure 5.1: Installation of Data storage and processing workload

Once installed, we will be able to access SQL Server by selecting SQL Server Object
Explorer option from the View tab, as demonstrated by figure 5.2:

View ' Git Project Build Debug Test Analyze

EC’ Open
¢« OpenWith..

(R Solution Explorer Ctri+Aft+L

& Git Changes Ctrl+0, Ctri+G

{ & GitRepository Ctri+0, Ctri+R
: & Team Explorer Ctrl+, Ctrl+M

B Server Explorer Ctrl+Alt+S

@ Data Lake Analytics Explorer

[SQL Server Object Explorer Ctrl+\ CirksS |
1 Test Explorer Cii+E T

Figure 5.2: Accessing SQL server object explorer

This is everything you need to get started with EF7. Now, we will have a look at
how to use EF7 in the code. We will start by applying one of its most powerful
capabilities—being able to create a fresh database purely from the code. This is
known as the code-first approach.

Code-first approach in EF7

Code-tirst approach, as well as giving you the ability to create a complete database
from the code, also allows you to populate the database with the initial data. Now,
we will go through the steps that are needed to set up Entity Framework in your

114 Implementing C# 11 and NET 7.0

application, get it to automatically generate a database for you, and then populate it
with some data. We will start by going through the EF7 basics.

Adding Entity Framework code

Entity Framework is commonly used inside ASPNET Core Model-View-Controller
(MVC) apps. We will cover this type of apps in detail in Chapter 6: Web Application
Types on .NET. But, for now, we will create an MVC Web application with database
access by executing the following command:

dotnet new mvc -o MvcDataApp
Next, we will go into the MvcDataApp project folder and run the following command

to install a NuGet package that contains EF7 diagnostics. Alternatively, you can
install this package via the GUI of your IDE.

dotnet add package Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore
Next, we will install the following NuGet package, which contains Entity Framework
provider for SQL Server:

dotnet add package Microsoft.EntityFrameworkCore.SqlServer

Now, we are ready to add objects that will represent our database tables. We will

use the same factory management solution that we have described earlier when we
covered database normalization.

Adding entity objects

The first object we will add will represent an entry in the Jobs table. To add the
object, we will add Job. s file into the Models folder of the project and populate it
with the following code:

using System.ComponentModel.DataAnnotations.Schema;
namespace MvcDataApp.Models;

public record Job

|
[DatabaseGenerated (DatabaseGeneratedOption.Identity)]

ASP.NET

pupbllc 1nt Jobld { get; set; }
public string JobTitle { get; set; }
[Column(TypeName = "decimal(8, 2)")]

public decimal Compensation { get; set; }

Database Access with Entity Framework 7 W 115

public ICollection<Employee> Employees { get; set; }
}

We have used a record as our base type. This keyword has been added in C# 10. It is
similar to a class but is primarily designed to represent a database record. However,
the code would work with a class too.

This code contains some annotation attributes that we have added to demonstrate
the capabilities of EF7. The first one is DatabaseGeneratedAttribute, which we
have placed above the JobId property. This attribute is not strictly necessary, as
this property will be recognized as the primary key identity column based on the
naming conventions. But we have put it there to demonstrate how we can mark any
arbitrary column as the primary key identity.

Decimal data type in SQL server requires precision and scale. Precision is the total
number of digits that we are allowed to store. Scale is how many digits we can have
after the decimal point. And to specify this information, we have added a Column
attribute.

Entity Framework objects represent one-to-many relationships as collections. In
our case, because we have a one-to-many relationship between a Job entity and
Employee records, we have a collection of Employee objects inside our Job record.

Next, we will add the definition of an employee record. We will, once again, place
the Employee. cs file into the Models folder and will populate it with the following
code:

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;
namespace MvcDataApp.Models;

public record Employee

d
[DatabaseGenerated(DatabaseGeneratedOption.Identity)]
public int Employeeld { get; set; }
[StringLength(20)]
public string FirstName { get; set; }

[StringlLength(20)]

public string LastName { get; set; }
public DateTime DateOfBirth { get; set; }
public DateTime StartDate { get; set; }
public int JobId { get; set; }

116 Implementing C# 11 and .NET 7.0

public Job { get; set; }
public ICollection<Shift> Shifts { get; set; }

[NotMapped]

public string FullName => FirstName +

({313

+ LastName;

}

Here, we have added some more useful attributes. The stringLength attribute
will add a constraint on the database column to restrict it to a specific number of
characters. NotMapped attribute is added to the properties that may be useful in the
code but should not represent a database column.

Since each Employee entity can only relate to a single Job entity, we have added a
singular Job property. But because an Employee can be associated with multiple
Shift entities, we have a Shifts property representing a collection of Shift entities.

Next, we will add the Factory. cs file into the Models folder with the following
content:
using System.ComponentModel.DataAnnotations.Schema;

namespace MvcDataApp.Models;

public record Factory

{
[DatabaseGenerated(DatabaseGeneratedOption.Identity)]
public int Factoryld { get; set; }
public string FactoryName { get; set; }
public string Location { get; set; }
public ICollection<Shift> Shifts { get; set; }
}

Finally, we will add the following object representing a Shift entity:
using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

namespace MvcDataApp.Models;

Database Access with Entity Framework7 W 117

public record Shift
{
[DatabaseGenerated(DatabaseGeneratedOption.Identity)]
public int ShiftId { get; set; }
[Range(1, 7)]
public int WeekDay { get; set; }
public TimeSpan StartTime { get; set; }
public TimeSpan EndTime { get; set; }
public int Factoryld { get; set; }
public int Employeeld { get; set; }

public Employee Employee { get; set; }
public Factory Factory { get; set; }
}

We now have entity objects representing all database tables that we have described
earlier. The properties in this class map to SQL data types. We can also apply
additional constraints on these data types like we are doing with the Range attribute
on the WeekDay property. In our example, the only values we are allowing to be
inserted into the corresponding integer column are between 1 and 7.

Now, we need to let the Entity Framework know that these objects represent entities
in database tables. To do so, we will need to add the so-called database context and
register it.

Adding database context

Database context is a custom class that is derived from DbContext base class of
Entity Framework. This class allows us to register all the entity objects that we intend
to map to database tables.

In our case, we will call our database context class FactoryManagerContext. To
create it, we will create a Data folder inside the root folder of our project and add
FactoryManagerContext. cs file to it with the following code:

using Microsoft.EntityFrameworkCore;

using MvcDataApp.Models;

namespace MvcDataApp.Data;

118 Implementing C# 11 and .NET 7.0

public class FactoryManagerContext : DbContext

{

public FactoryManagerContext(DbContextOptions<FactoryManagerContext>
options) : base(options)

{
}

public DbSet<Employee> Employees { get; set; }
public DbSet<Factory> Factories { get; set; }
public DbSet<Job> Jobs { get; set; }

public DbSet<Shifty Shifts { get; set; }

}

We have added a DbSet property for each of the entity types we added earlier.
Now, we need to register this database context object and associate it with a specific
connection string to a SQL Server instance. We will do so in the Program. cs file,
which would have the following content at the beginning:

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.
builder.Services.AddControllersWithViews();

var app = builder.Build();
CreateDbIfNotExists(app);

// Configure the HTTP request pipeline.
if (!app.Environment.IsDevelopment())
{
app.UseExceptionHandler(" /Home/Error");

// The default HSTS value is 30 days. You may want to change this
for production scenarios, see https://aka.ms/aspnetcore-hsts.

app.UseHsts();

app.UseHttpsRedirection();
app.UseStaticFiles();

app.UseRouting();

Program.es
https://aka.ms/aspnetcore-hsts

Database Access with Entity Framework7 W 119

app.UseAuthorization();

app.MapControllerRoute(
name: "default",
pattern: "{controller=Home}/{action=Index}/{id?}");

app.Run();

static void CreateDbIfNotExists(IHost app)
{

using var scope = app.Services.CreateScope();

var services = scope.ServiceProvider;
try

var context = services.
GetRequiredService<FactoryManagerContext>();

DbInitializer.Initialize(context);

}

catch (Exception ex)

{
var logger = services.GetRequiredService<ILogger<Program»>();
logger.LogError(ex, "Failed to create the DB.");

}

}

We will start by adding the following using statements to the Program. cs file:

using Microsoft.EntityFrameworkCore;

using MvcDataApp.Data;

Then, we will add the following lines anywhere before builder.Build():
builder.Services

.AddDbContext<FactoryManagerContext>(options =>

options

.UseSqlServer(builder

.Configuration

.GetConnectionString("DefaultConnection")));

builder.Services.AddDatabaseDeveloperPageExceptionFilter():

120 [mplementing C# 11 and .NET 7.0

Here, wehaveregistered the database context with the database connection string that
has the key of DefaultConnection. The AddDatabaseDeveloperPageException
Filter method call will help us to debug any errors with the database setup by
outputting them as HTML. However, it would be bad practice to use this line in
production.

To make the database connection work, we need to add this entry to the settings.
To do so, we will add the ConnectionStrings section to our appsettings.json
file with the DefaultConnection entry inside it. The following example shows the
content of the appsettings. json file that uses an inbuilt LocalDB connection:

&
"Logging": {
"LogLevel": {
"Default": "Information",
"Microsoft.AspNetCore": "Warning"
}
b

"AllowedHosts": "*",
"ConnectionStrings": {

"DefaultConnection": "Server=(localdb)\\
mssqllocaldb;Database=FactoryManager;Trusted_
Connection=True;MultipleActiveResultSets=true"

}
}

Now, we have Entity Framework fully configured inside our application. Next, we
will add some additional code to take full advantage of the code-first approach.

Adding database creation script

If we apply a code-first approach to our Entity Framework, a database will be
generated at the location-specific by the connection string when we launch our
application for the first time. To enable this, we can add DbInitializer class to our
Data folder and add the following content to it:

using MvcDataApp.Models;
namespace MvcDataApp.Data;

public class DbInitializer

i

Database Access with Entity Framework 7

121

public static void Initialize(FactoryManagerContext context)

{

context.Database.EnsureCreated();

if (context.Jobs.Any())

{

return;

}

The Initialize method will create a database if it does not already exist. This
is done by calling the EnsureCreated method on the Database property of the
database context object. Also, this code will exit if the database already has some

data in the Jobs table. This is needed so we can skip the data insertion steps if we

already went through them.

To add data insertion steps, we will need to add some more code to the Initialize

method. Since it will be a relatively long script, we will add it step-by-step. First, we

will add the following code to add some entries to the Jobs table:

var jobs = new Job[]

{
new Job
{
JobTitle = "Manager”,
Compensation = 50000
b
new Job
{
JobTitle = "Laborer",
Compensation = 25000
}
b

foreach (var j in jobs)
1
context.Jobs.Add(j);

}

context.SaveChanges();

122 [mplementing C# 11 and .NET 7.0

Here, we are creating a collection of Job objects. Then, we are adding each of them
to the Jobs dataset in the database context. Then, we are calling the SaveChanges
method.

It is vitally important that we call the SaveChanges method once we are ready to
insert the data. This is the method that performs the actual insertion of the data into
the database. Until it s called, all the data will reside only in the memory.

Next, we will add some data to the Employees table:

var employees = new Employeel[]

{

new Employee

i

FirstName="John",
LastName="Smith",
DateOfBirth=DateTime.Parse("1992-10-01"),
StartDate=DateTime.Parse("2020-09-01"),

Jobld = 1,
b
new Employee
{
FirstName="Alexander",
LastName="Marshall",
Date0OfBirth=DateTime.Parse("1982-09-12"),
StartDate=DateTime.Parse("2017-09-01"),
Jobld = 2,
b

new Employee
i
FirstName="Michael",
LastName="Davidson",
Date0fBirth=DateTime.Parse("1989-085-11"),
StartDate=DateTime.Parse("20108-09-01"),
JobId = 2,
b
b
foreach (var e in employees)

¢

Database Access with Entity Framework 7 1 123

context.Employees.Add(e);
}

context.SaveChanges();
Following this, we will add some Factories entities:

var factories = new Factory[]

{

new Factory

{
FactoryName = "Best Cookies",
Location = "New York"

}

b

foreach (var f in factories)

{

context.Factories.Add(f);
}

context.SaveChanges();

Then, we can apply the same principle to insert any number of arbitrary Shifts
data, as per the following example:

var shifts = new Shift[]

{
new Shift

{
WeekDay = 1,
StartTime = new TimeSpan(9,@,0),
EndTime = new TimeSpan(17,9,0),
Factoryld = 1,
Employeeld = 1
b
new Shift
{
WeekDay = 2,
StartTime = new TimeSpan(9,0,0),
EndTime = new TimeSpan(17,0,0),
FactoryIld = 1,

Employeeld = 1

124 Implementing C# 11 and NET 7.0

b
b
foreach (var s in shifts)

{
context.Shifts.Add(s);

}

context.SaveChanges();

Please note that we are not manually inserting the identity columns. This is because
the database will do it for us automatically. If we are inserting the data into a newly
created database, then the identity value of the first record in each table will be 1.
The next one will be 2, and each record will have its identity value auto-incremented
by 1. This is the principle that we have based the values of our foreign key columns
on. For example, since we only have two Job entities, the JobId column inside the
Employees table can only have values of 1 and 2.

Now, we just need to add some code that will call this script when the application
starts up. To do so, we will first add the following method to the Program. cs file:

static void CreateDbIfNotExists(IHost app)
{

using var scope = app.Services.CreateScope();

var services = scope.ServiceProvider;
try

var context = services.
GetRequiredService<FactoryManagerContext>();

DbInitializer.Initialize(context);

}

catch (Exception ex)

{
var logger = services.GetRequiredService<ILogger<Program>>();
logger.LogError(ex, "Failed to create the DB.");

}

}

Then we will eall this methad hv nassine the ann variahle ta it

LLAVAL TN TPALL LML LLD ML MLUM M MU e ML T MLt L

CreateDbIfNotExists(app);

Now, we are ready to launch the application and see how the database gets generated.

Database Access with Entity Framework 7 W 125

Creating the database by running the application

We can launch our application by either executing the dotnet run command from
the console or by doing it via the IDE. Since we have not yet created a database,
we should expect to see various SQL statements being displayed in the console.
Then, when the application is up and running, we can open our SQL Server Object
Explorer and have a look at the newly created database. Figure 5.3 shows what we
should expect the data in the Jobs table to look following:

Jobld JobTitle Compens...

1 Manager 50000.00
) Laborer 25000.00

Figure 5.3: Daia in the Jobs table

Figure 5.4 demonstrates what you should expect to see inside the Factories table:

Factoryid FactoryName Location
1 Best Cookies New York

Figure 5.4: Data in the Factories table

The data that we expect to see in the Employees table is shown in figure 5.5:

Employeeld FirstName LastName DateOfBith StartDate Jobld

1 John Smith 01/10/199... 01/08/202.. 1

2 Alexander Marshall 12/091198... 01/09201.. 2
Michael Davidson ~ 11/05/1989 (1/09201 = 2

Figure 5.5: Data in the Employees table

And finally, depending on what specific records we have added to the Shifts table,
its data would look similar to what is shown in figure 5.6:

Shiftd WeekDay StatTme EndTime Factordd Employeeld
il 09:00:00 17:00:00
0900:00 17:00:00
09:00:00 17:00:00
09:00:00 17:00:00
09:00:00 17:00:00
09:00:00 17:00:00
09:00:00 17:00:00
09:00:00 17:00:00
09:00:00 17:00:00
09:00:00 17:00:00
090000 17:00:00
09:00:00 17:00:00

D s W RO

14
12

1
1
1
1
1
2
2
2
2
2
3
3

o~
RN = O B N = QB N =

1 3 09:00:00 170000 1 3
14 4 09.00:00 17:0000 1 3
15 5 09:0000 17:00:00 1 3

Figure 5.6: Data in the Shifts table

126 W Implementing C# 11 and NET 7.0

This concludes the overview of the code-first approach in EF7. But you can also do
things the other way around. You can auto-create your Entity objects by reverse-
engineering an existing database. This is what we will have a look at next.

Database-first approach in EF7

EF7 CLI tools can create the entirety of Entity Framework code from an existing
database connection. The tool is not perfect, and very frequently, you would need
to refactor the auto-generated classes and remove redundant code from them. But
the resulting entity objects would usually still represent the database table with a
reasonable degree of accuracy.

Creating EF7 models from an existing database

Before we can start reverse-engineering an existing database, we need to add the
following NuGet package to the project that we want to do it in:

Microsoft.EntityFrameworkCore.Design

Then, we need to add a NuGet package representing a specific database provider
that we intend to work with. For example, to use an SQL Server provider, we would
add the following NuGet package:

Microsoft.EntityFrameworkCore.SqlServer

Then, to trigger the reverse-engineering process, you would need to execute the
following command from your project folder:

dotnet ef dbcontext scaffold <database connection string> <the name of
the database provider NuGet package>

This will initiate the scaffolding process, which consists of reading the database
schema and automatically generating code based on this schema. The EF objects
that we created manually in the code-first approach, such as DB context and data
models, are created automatically.

There are some additional parameters you can apply. For example, you can use
--table parameter multiple times if you want to include only specific tables. Or
you can use - -schema parameter to include only the objects from a specific schema.
For example, if we want to reverse-engineer the SQL Server database that we have
created previously and only include the objects from the default dbo schema, we will

wimmeibn thn Fallasiitmin Anmais ned,

gAcLuLe e lUllUWlllB CULLLILdlIU.

dotnet ef dbcontext scaffold "Server=(localdb)\
mssqllocaldb;Database=FactoryManager;Trusted_
Connection=True;MultipleActiveResultSets=true" Microsoft.
EntityFrameworkCore.SqlServer --schema dbo

Database Access with Entity Framework 7 W 127

We can also improve the security of this command by retrieving the connection
string from .NET secrets instead of using an open text value. To do so, we will first
need to add a secret entry by executing the following command:

dotnet user-secrets set ConnectionStrings:Default
"Server=(localdb)\mssqllocaldb;Database=FactoryManager;Trusted_
Connection=True;MultipleActiveResultSets=true"

And then, we can modify our original command by referencing the key of the secret
rather than the actual value:

dotnet ef dbcontext scaffold Name=ConnectionStrings:Default Microsoft.
EntityFrameworkCore.SqlServer --schema dbo

Now, we can create another Web application project, add the necessary NuGet
packages to it and run either of the preceding commands inside the project folder.

Looking at auto-generated code

Once we run these commands inside a new project folder, we should expect all the
entity objects to be present in it, along with the database context, as demonstrated
by figure 5.7:

48] DatabaseFirstDataApp
b @ Connected Senvices
b &8 Dependencies
b agd Properties
b a @ wwwroot
» 6B Pages
» a1} appsettings.json
b a¢# Employee.cs
b acs Factory.cs
b act FactoryManagerContext.cs
b ac# Job.cs
b 8C# Program.cs
b ac= Shift cs

Figure 5.7: Auto-generated code inside a project folder

Employee.es
Program.es

128 [mplementing C# 11 and .NET 7.0

If we open one of the files containing the entity objects, it will look similar to what

is shown in figure 5.8:
1 =
2
3
4 [namespace DatabaseFirstDataApp
5 {
6 [public partial class Employee
7 {
8§ = public Employee()
9 {
104" Shifts = new HashSet<Shifts();
1 }
12
13 public int Employeeld { get; set; }
1 public string FirstName { get; set; } = null!;
15 public string LastName { get; set; } = null!;
16 public DateTime DateOfBirth { get; set; }
17 public DateTime StartDate { get; set; }
1 public int JobId { get; set; }
20 public virtual Job Job { get; set; } = null!;
21 public virtual ICollection<Shift> Shifts { get; set; }
2 }
23 }
A

Figure 5.8; Auto-gencrated employee entity class

As you can see, the code may need some refactoring and removal of the redundant
entries. For example, we can clearly see that we do not need either of the using
statements in the previous example. But it would still save us a lot of time, as we do
not have to write any of the entity classes manually.

This concludes the overview of the most fundamental features of Entity Framework.
Now, we will have a look at the new features that were added to EF7.

The latest features of EF7

Version 7 of Entity Framework, just like every version that was released before it,
comes with its own set of useful features. These go beyond simple bug fixes and
performance improvements.

Controlling database-first via T4 templates

T4 templates were used by various Microsoft technologies for many years. These
templates were used primarily for generating text based on specific rules. The
formatting of T4 templates allowed developers to apply a complex mixture of text
and contro] logic to generate documents of any complexity. Now, T4 templates can
be used for defining complex configurations for applying database-first reverse
engineering by EF7.

Database Access with Entity Framework 7 | 129

Not all databases are as simple as a collection of tables inside a single schema. There
are many enterprise databases that use a large number of tables, multiple schemas,
and complex business rules. Sometimes you do not want to represent them all in
your ORM code. This is when T4 templates may be especially handy.

Guarded key

By default, entity objects used by Entity Framework use int data type to represent a
primary key identity property. The property needs to have both the getter and the
setter, which may cause some problems. Even though the value inside the identity
column is meant to be immutable in the database, it is just a writeable int in the
object that represents a database record. Therefore, there is nothing that stops you
from accidentally modifying key values and getting unexpected results, such as
updating the wrong record in the database.

To protect against these situations, EF7 has added the concept of a guarded key. A
guarded key is a key wrapped in its own class. The value can be initiated via the
constructor, so Entity Framework can still extract the value from the database into
an entity object. But, once created, the value cannot be modified.

To apply a guarded key, we can make the following modification to our auto-
generated Employee entity class:

namespace DatabaseFirstDataApp

{
public partial class Employee
{
public Employee()
{
Shifts = new HashSet<Shifty();
]

public EmployeeKey Employeeld { get; set; }
public string FirstName { get; set; } = null!;

public
public
public
public

public
public

string LastName { get; set; } = null!;
DateTime DateOfBirth { get; set; }
DateTime StartDate { get; set; }

int JobId { get; set; }

virtual Job Job { get; set; } = null!;
virtual ICollection<Shift> Shifts { get; set; }

130 [mplementing C# 11 and .NET 7.0

public class EmployeeKey

{
public EmployeeKey(Func<int> generator) => Employeeld = generator();
public EmployeeKey(int id) => Employeeld = id;
public int Employeeld { get; private set; }
}
}

As we can see, instead of having the EmployeeId property as an int, we have it as
EmployeeKey class that acts as a wrapper for a read-only int property. This class has
two constructors. One accepts int value, whereas the other one accepts a function
that returns an int value. So, it is compatible with any code that Entity Framework
might call.

Table-per-concrete-type (TPC) mapping

The predecessor of EF7, EF Core 6, had two ways of dealing with entity objects that
were inherited from one another:

s Table-per-hierarchy (TPH) mapping, where each complete inheritance
hierarchy was represented by a single table.

o Table-per-type (TPT) mapping, where any types, including abstract types,
were placed into their own individual tables that were referring to each other
by foreign key relationships.

Now, a third type of mapping has been added, table-per-concrete-type (TPC), which
creates a table based on each concrete type in the hierarchy.

To explain how different types of mappings work, let us modify our original code-
first application. Let us add a Person. cs file to the Models folder and populate it
with the following code:

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;
namespace MvcDataApp.Models;
public abstract record Person

{
public int Id { get; set; }

Database Access with Entity Framework 7 W 131

[StringLength(20)]

public string FirstName { get; set; }
[Stringlength(20)]

public string LastName { get; set; }
public DateTime DateOfBirth { get; set; }

[NotMapped]

public string FullName => FirstName +

+ LastName;
}

We will then modify our Employee record so it inherits from this base record:

namespace MvcDataApp.Models;

public record Employee : Person

{

public DateTime StartDate { get; set; }

public int JobId { get; set; }

public Job Job { get; set; }

public ICollection<Shift> Shifts { get; set; }
}

Then, we will add a Supervisor. cs file, which will contain a record that will inherit
from an Employee record:

namespace MvcDataApp.Models;

public record Supervisor : Employee

{
public int TeamSize { get; set; }

}

Here is how different mapping types will work. If we are to use TPH, we will have a
single table in the database because we have only one inheritance hierarchy (Person
to Employee to Supervisor). If we were to use TPT, we would have three tables, one
for Person, one for Employee, and one for Supervisor. Each table will only have
those fields that correspond to the properties of the original entity class, except for
the Id column, which will be present in all tables. The tables will use this column to
link to each other. If we use the newly added TPC mapping, we will have two tables:
Supervisors and Employees. Person entity will not have a table associated with it

132 [mplementing C# 11 and .NET 7.0

because it is an abstract record. But each table will have all the fields present in the
entire inheritance hierarchy.

To demonstrate how TPC works, we will delete our existing database and modify
our FactoryManagerContext definition:
using Microsoft.EntityFrameworkCore;

using MvcDataApp.Models;
namespace MvcDataApp.Data;

public class FactoryManagerContext : DbContext

{

public FactoryManagerContext(DbContextOptions<FactoryManagerContext>
options) : base(options)

{
}

public DbSet<Employee> Employees { get; set; }
public DbSet<Supervisor> Supervisors { get; set; }
public DbSet<Factory> Factories { get; set; }
public DbSet<Job> Jobs { get; set; }

public DbSet«Shifty Shifts { get; set; }

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
modelBuilder.Entity<Person>().UseTpcMappingStrategy();
modelBuilder.Entity<Employee>();
modelBuilder.Entity<Supervisor>();
modelBuilder.Entity<Factory>();
modelBuilder.Entity<Job>();
modelBuilder.Entity<Shift>();

}

To apply TPC, we will need to register all our entity objects, including the abstract
classes, inside an override of the OnModelCreating method. We will also need to call

HeaTnraMAannd naCtnntams an tha lina that vamickare tha haca bian A€ thn hinsarahe

UWCilpLMappLiigauialtgy Uil UIC LIIE Widl ICEIDLCID LLIE Daddt Ly})l‘.’ Ul uic llltlclll.ll_y,

Database Access with Entity Framework 7 1 133

which in our case is Person. TPT is enabled by default, or it can be enabled explicitly
by calling the UseTptMappingStrategy method. TPH is enabled by calling the
UseTphMappingStrategy method.

Now, after deleting the original database, we can apply TPC while creating a new
database. To do so, will replace the script to insert Employee records inside the
DbInitializer class with the following:

var employees = new Employee[]

{
new Employee
{
Id=1,
FirstName="Alexander",
LastName="Marshall",
Date0OfBirth=DateTime.Parse("1982-089-12"),
StartDate=DateTime.Parse("2017-09-01"),
JobId = 2,
b
new Employee
{
Id=3,
FirstName="Michael",
LastName="Davidson",
DateOfBirth=DateTime.Parse("1989-085-11"),
StartDate=DateTime.Parse("2016-09-81"),
JobId = 2,
b
b
foreach (var e in employees)
{
context.Employees.Add(e);
}

context.SaveChanges();

Then, we will add the following script to insert a Supervisor record:

var supervisors = new Supervisor[]

\

new Supervisor

134 Implementing C# 11 and NET 7.0

Id=1,
FirstName="John",
LastName="Smith",
Date0OfBirth=DateTime.Parse("1992-16-61"),
StartDate=DateTime.Parse("2020-09-01"),
JobId = 1,
b
1§
foreach (var s in supervisors)

{
context.Employees.Add(s);

}

context.SaveChanges();

Now, our Employees table should look as shown in figure 5.9:

d FirstName LastName DateOfBith StatDate Jobld
2 Alexander Marshall 12/09/198... 01/09/201.. 2
3 Michael Davidson ~ 11/05/1989.. 01/09/201.. 2

Figure 5.9: Data in Employees table

Our Supervisors table should look like as shown in figure 5.10:

Id FirstName EastName path@rlh §taq0@ Jobld TeamSize
1 John Smith 01/101199.. 01/09/202.. 1 0

Figure 5.10: Data in Supervisors lable

Now, we will move on to the final notable new feature of EF7: the interceptors.

Interceptors

Interceptors are used by EF7 to apply some additional logic when a query is initiated.
Such an interceptor needs to implement the IMaterializationInterceptor
interface from Microsoft.EntityFrameworkCore.Diagnostics namespace. We
will now add an example.

Let us create EmployeeCachingInterceptor.cs file inside the Data folder of our

EmployeeCachingInterceptor.es

original project and populate it with the following content:

Database Access with Entity Framework7 W 135

using Microsoft.EntityFrameworkCore.Diagnostics;
using MvcDataApp.Models;

using System.Collections.Concurrent;
namespace MvcDataApp.Data;

public class EmployeeCachingInterceptor : IMaterializationInterceptor

{

private static readonly ConcurrentDictionary<string, Employee>
EmployeeCache = new();

public InterceptionResult<object> CreatingInstance(
MaterializationInterceptionData materializationData,
InterceptionResult<object> result)

if (materializationData.EntityType.ClrType == typeof(Employee))
{
var employeeName = materializationData
.GetPropertyValue<string>(nameof (Employee.FullName));

if (EmployeeCache.TryGetValue(employeeName, out var
employee))

Console.WriteLine($"Got employee '{
employee.FullName}' from the cache.");
return InterceptionResult<object>

.SuppressWithResult(employee);
}

return result;

}

This interceptor uses a concurrent dictionary for caching Employee data. If a

wmutiaiilan Pmnlaiian sanaud ia avnnnal fa ha dlallamaws siva wabularea 3 Mitlhawoias wiva

})dl Lculdl EIIIIJJ.UyC‘: IeCOru 1y Pltbﬁlll 11 Ue LllLUUlldly, WE IELIIEVE Il \LUIEL WlbU, we
retrieve it from the database.

136 W Implementing C# 11 and NET 7.0

Now, we need to register our interceptor. To do so, we will add the following override
of the OnConfiguring method to our FactoryManagementContext class:

protected override void OnConfiguring(DbContextOptionsBuilder
optionsBuilder)

=> optionsBuilder.AddInterceptors(new
EmployeeCachingInterceptor());

This concludes the overview of EF7 and all of its new features.

Conclusion

In this chapter, we had an overview of relational databases. We also looked at SQL—
the language used by relational databases to interact with the data. We have also
covered various ways of how EF7 can be used. You should now be familiar with all
the ways you can set up your relational database and connect EF7 to it, both code-
first and database-first.

The code-first approach allows you to create a completely new database from
the code. This approach allows a developer to focus on the code and allows the
framework to automate the creation of data storage.

Database-first is more suited for scenarios where the ORM needs to be connected to
an existing database. EF7 has tools that can read a database schema and generate the
corresponding code abstractions.

We have also covered the latest features of EF7, such as guarded keys that hide
implementation detail of key-generating logic and prevent developers from
accidentally passing wrong keys to methods.

In the upcoming chapter, you will learn how to use ASPNET Core, which is the main
framework for building Web applications on .NET.

Points to remember

¢ Relational databases are defined by tables that are linked with other tables
via the so-called foreign key relationships.

¢ Structured Query Language (SQL)'s purpose is to interact with relational
databases.

ASP.NET

o EF7 is the main (and the current) NET ORM and has libraries to make it
compatible with all major relational database types.

o EF7 is both capable of generating databases from the code and generating
code from existing databases.

Database Access with Entity Framework 7 W 137

o Code-first approach is when you write the ORM code first and then create a
relational database from it.

o Database-first approach is when you generate ORM code from an existing
database.

Multiple choice questions

1. What s the difference between a query and a command?
a. There is no difference, and these are interchangeable

b. Aqueryisfor retrieving data, whereas a command is for manipulating
data

c. Aqueryis for manipulating data, whereas a command is for retrieving
data

d. Queries are logged, whereas commands are not
2. What is the difference between code-first and model-first approaches on
B
a. They are the same
b. There is no code-first in EF7
c. There is no model-first in EF7

d. Code-first generates a new database, whereas model-first relies on an
existing database

3. What approach do you need to apply to generate EF7 models from an
existing database?

a. Code-first
b. Modelfirst
¢. Schema-first

d. Database-first

4. What is database normalization?

138

a. The process of eliminating redundant entries
b. The process of making each table contain as few columns as possible
c. Allof the above

d. None of these

Implementing C# 11 and NET 7.0

Answers

i

2
3.
4

b
c
d

c

Key terms

RDBMS: Relational database management system.

SQL Server: An RDBMS from Microsoft.

Oracle Database: A commercial RDBMS from Oracle.

MySQL: A semi-commercial lightweight RDBMS from Oracle.
PostgreSQL: An advanced open-source RDBMS.

SQL: Structured query language that is used for interacting with RDBMS.

ORM: Object-relational mapper. A framework that mapped objects in the
code (for example, classes) to objects in a database (for example, tables).

Entity Framework 7: The main NET ORM, which is developed by Microsoft
alongside .NET itself.

Code-first: An approach of setting up an ORM where the code is written
first, and the database is generated afterward.

Database-first: A technique of setting up an ORM by generating code from
an existing database.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord .bpbonline.com

CHAPTER 6

Web Application
Types on
NET

Introduction

NET has its own Web application development framework, which is called ASP.
NET Core. Active Server Pages (ASP), and its initial version, which is now referred
as ASP Classic, consisted of semi-static files that had a mixture of HTML markup
and server-side code. Since then, an advanced version has been created and given
the name ASPNET. In this version, developers no longer had to combine client-side
markup and server-side code in the same files. They could separate front-end and
back-end components into separate files, which allowed them to maintain a clear
separation of concerns and make the code more readable and maintainable. The new
framework also came with its own implementations of commonly used architectural
patterns, such as MVC, so developers no longer had to apply them manually.

One maior disadvantage of ASPNET was that it was onlv available on Windows.

https://discord.bpbonline.com
ASP.NET

s g i e RS S SR . R AR ey e e 04 g
just like the rest of the NET Framework at the time. But itall changed in 2016 whena
cross-platform .NET Core was born. A new version of ASPNET was created that was
deployable on any major operating system and not just Windows. This new variant
of the framework was given the name ASPNET Core.

ASPNET Core is a continuously evolving framework for Web application
development. In this chapter, we will cover all application templates that are
available on ASPNET Core. While doing so, we will have a look at the latest features
that were introduced in its version 7.

140 Implementing C# 11 and NET 7.0

Structure

In this chapter, we will discuss the latest features of ASPNET Core 7, which will
include the following topics:

o ASPNET Core basics

o Web APl on ASPNET Core

o MVConASPNET Core

s Razor pages on ASPNET Core

Objectives

By the end of this chapter, you will have learned how to use all main Web application
types of ASPNET Core and will be familiar with the latest features that have been
added to version 7 of the framework.

Prerequisites
To follow this chapter, you will need the following;
¢ Amachine running either Windows, MacOS, or Linux operating system
o NET7SDK
o Asuitable IDE or a code editor
¢ Being familiar with C# fundamentals

If you do not have any of these dependencies installed already, you can use the setup
instructions provided in Chapter 1: Getting Familiar with .NET 7 Application Structure,
which also provides a recap of C# fundamentals.

A AMATII M 1 ’

ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
MVConASP.NET
ASP.NET
ASP.NET

AdJI.NE1 Lore basics

ASPNET Core project templates are available in the .NET SDK by default. However,
if you are using Visual Studio 2022 and want to create ASPNET Core projects from
the GUI, you might have to enable the Web development workload via the Visual
Studio Installer. To do so, you will need to open Visual Studio Installer, click the
Modify button next to the Visual Studio 2022 instance and select ASPNET and Web
development workload to install, as figure 6.1 demonstrates:

Web Application Types on NET W 141

Web & Cloud (4)
@ ASPNET and web development B A development
Build web applications using ASP.NET Core, ASP.NET, Azure SDKS, tools, and projects for developing cloud apps
HTML/JavaScript, and Containers including Docker supp. and creating resources using NET and NET Framework.
ﬁ Python development Nodejs development
Editing, debugging, interactive development and source Build scalable network applications using Node,s, an
control for Python asynchronous event-driven JavaScript runtime.

Desktop & Mobile (5)

@ Mobile development with .NET NET desktop development
Build cross-platform applications for iOS, Android or =" Build WPF, Windows Forms, and ¢onsole applications
Windows using Xamarin. This includes a preview of the using C#, Visual Basic, and F# with NET and NET Frame..

Figure 6.1: Enabling ASPNET Core workload in Visual Studio Installer

Once the installation of all required components is completed, we can create a basic
ASPNET Core application, and we will get to know its structure.

Basic ASP.NET Core application structure

Let us create a project by using ASP.NET Core Empty project template and call it
BasicAspNetCoreApp. If you are using NET CLI, you can do so by executing the
following command:

dotnet new web -o BasicAspNetCoreApp

Once created, your project will have the structure as displayed in figure 6.2:

4 § BasicAspNetCoreApp
b & Connected Services
b 24 Dependencies
4837 Properties

.Y laiimahC alinan inan

ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET

T 1LY JdUNLTOELITYS Juil
4 + [t} appsettings json
+[d appsettings. Development json
¢# Program.cs

Figure 6.2: The fundamental structure of an ASPNET Core project

The file called appsettings.json is the main file that holds the settings for
the application. There can also be environment-specific varieties of it, such as
appsettings.Development.json. An environment-specific file will override
the main file if the application is running on a machine that has the ASPNETCORE_
ENVIRONMENT variable set to the same value as the suffix in the file name.

142 W Implementing C# 11 and NET 7.0

There is also a Properties folder with the launchSettings. json file. This file is
primarily used in a development environment and sets the hosting rules for the
application. For example, the settings in figure 6.3 allow the application to be hosted
on IIS Express and an inbuilt Web service called Kestrel:

{
"iisSettings": {
“windowsAuthentication®: false,
"anonymousAuthentication™: true,
"iisExpress”: {
"applicationUrl*: "http://localhost:12139",
"sslPort"; uu317
}
h
»profiles”: {
“BasicAspNetCoreApp": {
"conmandName”™: "Project”
"dotnetRunMessages": true,
"launchBrowser": true,
“applicationUrl*: "https://localhost:7851;http://localhost:5@51",
"environmentVariables": {
"ASPNETCORE_ENVIRONMENT": "Development"
}
}
"IIS Express": {
"commandName”™: "IISExpress",
"launchBrowser”: true,
"environmentVariables": {
"ASPNETCORE_ENVIRONMENT": "Development”
}
}
}
}

Figure 6.3: An example of a launchSettings.json file

If hosted on IIS Express, the application is accessible on http://localhost:12138
if no certificate is used and on https://localhost:44317 if an SSL certificate is
used. For a Kestrel-hosted application, the values are http://localhost:5051 and
https://localhost:7051, respectively.

Program.es
ASP.NET
http://localhost:12139
https://localhost:_7951
https://localhost:44317

To run an application with an SSL certificate on a development machine, you would
need to set the development certificate as trusted. You can do it via the IDE or via
the NET CLI by executing the following command on either Mac OS or Windows:

dotnet dev-certs https --trust

The command will be different if you are using Linux and will depend on the specific
distro you are using.

Finally, we have a Progranm. cs file, which is a standard .NET application entry point.
Its content would look as follows:

var builder = WebApplication.CreateBuilder(args);
var app = builder.Build();

Web Application Types on NET 1 143

app.MapGet("/", () => "Welcome to ASP.NET Core!");

app.Run();

In this file, we have a builder variable, which allows us to configure various service
dependencies for our application. Once we have configured everything we need, we
then call the Build method on the builder variable and create the app variable from
it. This variable allows us to add various steps to the request processing middleware.
Since .NET6, we can also configure the HTTP endpoints for the application directly
on the app variable in the Program. cs file. For example, we are calling MapGet to
return a specific text when the root address of our application is called.

To see how it works, we can change this text, launch the application, open the
browser, and navigate to the application URL, as defined in the 1aunchSettings.
json file. For example, if we replace the text with Welcome to ASP.NET Core!, the
content of the file will be as follows:

var builder = WebApplication.CreateBuilder(args);

var app = builder.Build();

app.MapGet("/", () => "Welcome to ASP.NET Core!");

app.Run();

To launch an application in Kestrel, all we have to do is execute dotnet run
command from inside the application folder. Then, we can navigate to its URL in
the browser and verify that it displays Welcome to ASP.NET Core!.

Now, we will move on to more advanced Web application templates, starting with
Web APL.

aProgram.es
ASP.NET
Program.es
ASP.NET
ASP.NET
ASP.NET

Web API on ASPNET Core

Web AP application template on ASPNET Core is designed primarily for building
applications without user interfaces. Such applications are also known as Web
services, and their purpose is to provide data to other authorized applications upon
request.

Web API on ASPNET Core primarily relies on REpresentative State Transfer (REST)
as its external interface. It is integrated with tools, such as OpenAPI (also known as
Swagger), which help visualize the application’s REST endpoint in the browser.

In version 7 of ASPNET Core, there are two kinds of Web API applications: Web AP
with controllers and Minimal API application. We will have a look at them both.

ASP.NET
ASP.NET
onASP.NET
ASP.NET

144 [mplementing C# 11 and .NET 7.0

Web API with controllers

Web API with controllers relies on the so-called controller classes to define the
endpoints accessible via HT'TP. To demonstrate how it works, we will create a
new application from the ASPNET Core Web API template. If we are creating an
application via an IDE, we need to ensure that the Use Controllers option is enabled.
If you are using .NET CLI, you can create the application by using the following
command:

dotnet new webapi -o WebApiAppWithControllers

Now, we have an application that has some additional options added to the
Progranm. cs file. For example, it has builder.Services.AddControllers() call
to add controller components, builder.Services.AddSwaggerGen() to enable
Swagger support and app.MapControllers() to add the controller classes to the
request processing pipeline and make them usable.

In fact, the template shows how a proper request processing middleware pipeline
can be constructed. Most of the methods on the app variable ensure that certain
steps are added to the pipeline in the order in which these methods are called. For
example, calling UseHttpsRedirection before UseAuthorization and calling
MapControllers afterwards ensure that the redirection to HTTPS happens first if
the HTTP protocol was used in the original request. Then, we verify that the client
is authorized to proceed any further. Only then the client is directed to a specific
resource based on the path provided in the URL.

Let us now have a look at the WeatherForecastController.cs file, which is
located inside the Controllers folder. We know that the class is an API controller
because it has ApiController attribute and inherits from ControllerBase. Since
it has [controller] set as its default route, the base path for any endpoints on this
controller will match the controller class name minus the Controller suffix. It will
be as follows:

{base URL}/WeatherForecast

To demonstrate some useful capabilities of ASPNET Core, we will refactor this
code. We will create a service that we will then inject into the controller by using
dependency injection. This will allow us to maintain the so-called thin controller
principle, which mandates that a controller should only be processing HTTP
requests and returning responses to the clients. All business logic needs to happen
inside separate services.

We will start by adding the WeatherForecastService. cs file to the project and
adding the following interface to it:

ASP.NET
Program.es
WeatherForecastController.es
ASP.NET
WeatherForecastService.es

Web Application Types on NET

145

namespace WebApiAppWithControllers;

public interface IWeatherForecastService
{

IEnumerable<WeatherForecast> GetFiveDayForecast();
}

Then, we can add the class that implements this interface to the same
file:

public class WeatherForecastService : IWeatherForecastService
{
private static readonly string[] Summaries = new[]
{
"Freezing",
"Bracing",
"Chilly",
"Cool",
"Mild",
"Warm",
"Balmy",
"Hot",
"Sweltering",

"Scorching”

b

public IEnumerable<WeatherForecast> GetFiveDayForecast()

i

return Enumerable.Range(1, 5).Select(index => new
WeatherForecast

{
Date = DateOnly.FromDateTime(DateTime.Now.AddDays(index)),
TemperatureC = Random.Shared.Next(-28, 55),

Summary = Summaries[Random.Shared.Next(Summaries.Length)]

b
.ToArray();

146 [mplementing C# 11 and .NET 7.0

Essentially, we have created a separate class that performs the same work that the
controller used to do. Now, we can register this class in our dependency injection
container. To do so, we just need to add the following line to the Program.cs file
anywhere before the Build method is called on the builder variable:
builder.Services.AddTransient<IWeatherForecastService,
WeatherForecastService>();

This tells the underlying framework that if any file thatis not directly referenced from
the code, such as a controller, hasa parameter of the type INeatherForecastService
passed into its constructor, it will be automatically resolved to a new instance of the
WeatherForecastService class.

Since we have used AddTransient, we willhave anew instance of this class per every
request. But, if we wanted to use the same instance of the WeatherForecastService
class throughout the application, we could use AddSingleton instead.

While we are in the Program. cs file, we can also configure logging to output into
the console. To do so, we will add the following two lines before the Build method
is called:

builder.Logging.ClearProviders();
builder.Logging.AddConsole();

Now, we will make the changes to our controller, so it will look like the following:

using Microsoft.AspNetCore.Mvc;
namespace WebApiAppWithControllers.Controllers;

[ApiController]
[Route("[controller]")]
public class WeatherForecastController : ControllerBase

{

private readonly IWeatherForecastService weatherForecastService;
private readonly ILogger<WeatherForecastController> _logger;

public WeatherForecastController(
ILogger<WeatherForecastController> logger,

IWeatherForecastService weatherForecastService)

_logger = logger;
_weatherForecastService = weatherForecastService;

Program.es
Program.es

Web Application Types on NET W 147

We will then add the following method, which will replace the method we had
before:

[HttpGet(Name = "GetWeatherForecast")]
public IActionResult Get()

{
_logger.LogInformation("Obtaining 5-day weather forecast.");
try
{
var forecast = weatherForecastService.GetFiveDayForecast();
return Ok(forecast);
;
catch (Exception ex)
{
_logger.LogError(ex, "Error obtaining weather forecast;");
throw;
}
}

The HttpGet attribute indicates that this method is called when a client submits
a GET HTTP request. As this method does not have the path specified, it will be
triggered when the base path of the controller is used.

This method relies on the IWeatherForecastService implementation that was
injected into the constructor. But you can also apply dependency injection to the
individual methods. Version 7 of ASPNET Core will do it implicitly. To test it, you
can add the following method:

[HttpGet("injected-service")]

public IActionResult GetFromService(

IWeatherForecastService weatherForecastService)

{

_logger.LogInformation("Obtaining 5-day weather forecast.");

try
{
var forecast = weatherForecastService.GetFiveDayForecast();

return Ok(forecast);

ASP.NET

148 Implementing C# 11 and NET 7.0

catch (Exception ex)
{
_logger.LogError(ex, "Error obtaining weather forecast;");

throw;

}

This method specifies injected-service as the path. So, the full path to trigger this
endpoint will be as follows:

{base URL}/WeatherForecast/injected-service

Now, we will have a look at another feature that was newly added to version 7
of the framework—the ability to use TryParse functionality in controller
method parameters. This functionality allows you to gracefully handle cases of
clients sending you parameters of the wrong data type. To demonstrate how this
functionality works, we will add TryParseDemoController.cs controller into the
Controllers folder and will populate it with the following content:

using Microsoft.AspNetCore.Mvc;
namespace WebApiAppWithControllers.Controllers;

[ApiController]
[Route("[controller]")]

public class TryParseDemoController : ControllerBase

i
[HttpGet(Name = "TryParseInt")]
public IActionResult Get([FromQuery] IntParser parser)
{
if (parser?.Value == null)
return NoContent();
return Ok(parser.Value);
}
}

public class IntParser

{
public int? Value { get; set; }

public static bool TryParse(int? input, out IntParser? result)

Web Application Types on NET W 149

{
if (input is null)
{
result = default;
return false;
}
result = new IntParser { Value = input };
return true;
}

}

To make this functionality work, we need a custom class with a static boolean
TryParse method thatreturns an output parameter. Thisis the role of the IntParser
class. Now, if we call this endpoint via the following URL, it will return 204 response
code because there is no query string parameter supplied, and the parser will set the
Value property to null.

{base URL}/TryParseDemo

However, if we supply the query string parameter as below, we will get the
200-response code with the supplied integer value returned back to us:

{base URL}/TryParseDemo?Value=2

Now, we can launch our application and see how our newly added controller
endpoints look like in Swagger. We have all the required Swagger middleware set

150 [mplementing C# 11 and .NET 7.0

up in the Program. cs file already, so all we need to do is navigate to the base URL of
the application. We will expect to see a page similar to the one displayed in figure 6.4:

@ sz somemon

SMARTEEAR

- WebApiAppWithControllers © %=

TryParseDemo A
/TryParseDemo V

WeatherForecast 2
/WeatherForecast W
/WeatherForecast/injected-service v

Figure 6.4: The Swagger Ul

Now, we will cover another way of developing Web AP applications on NET 7—
the minimal AP,

Minimal API endpoints

Minimal APl is a feature that allows you to add REST API endpoints to your Web
application without controllers. This feature has only been added to ASPNET Core
version 6 and is very similar to how REST endpoints are configured in a Nodejs
application.

We briefly saw the use of minimal API when we have created our initial basic ASP.
NET Core application. It was calling the MapGet method on the app variable in the
Program. cs file. But there is also a more advanced minimal API template that you
can use. All you need to do is create an application from the Web API and then
either uncheck Use Controllers option if you are doing it from an IDE or add -minimal
parameter if you are doing it from .NET CLI. So, our full command may look as
follows:

dotnet new webapi -o WebApiAppWithMinimalApis -minimal

https://localhost:7209/swagger/v1/swagger
ASP.NET

Web Application Types on NET W 151

The application it will create will have all its HI'TP endpoints mapped inside the
Program. cs class. In version 7 of ASPNET Core, a whole range of new features has
been added specifically to the minimal AP functionality. We will now have a look
at them.

Adding open API metadata

In the Program. cs file of the newly added project, you can locate the call to MapGet
of the app variable and insert the following statement before the semicolon at the
end of the full statement:

JWithDescription("The endpoint for retrieving weather forecasts.")

This will add the description to the Open API document, which can be displayed on
the Swagger page. Alternatively, you can add the same description by inserting the
EndpointSummary attribute into the main call, like the following:

app.MapGet ("/weatherforecast", [EndpointSummary("The endpoint for
retrieving weather forecasts.")]() => ..

Or you can locate the WithOpenApi call and modify it as follows:
WithOpenApi(operation =» {

operation.Summary = "The endpoint for retrieving weather
forecasts.";

return operation;

9%

Next, we will have a look at the recent improvements to how minimal APTendpoints
can accept parameters.

Improvements to minimal API parameters

If you are using multiple parameters of the same data type, you can now pass all
parameters into your endpoint methods as a single array. But this only applies to
arrays of primitive types, string arrays and Stringvalues objects. This is done as
follows:

app.MapGet("/repeated-strings”, (string[] names) =>
$"value 1: {names[@]} , value 2: {names[1]}, value 3: {names[2]}");

Likewise, instead of passing individual parameters into your endpoint methods,
you can just create an object that will represent each parameter as a property and
then pass this object. This can be done as follows. First, we would add this object:

Program.es
ASP.NET

152 [mplementing C# 11 and .NET 7.0

internal struct ParamsRequest

{
public int Id { get; set; }
public int Page { get; set; }
}

Then, we can create an endpoint method that accepts this object as a set of parameters:

app.MapGet("/parameters-object",
([AsParameters] ParamsRequest request) =>

$"Id{request.Id}, Page: {request.Page}");

It will automatically recognize this object as a set of parameters because it is marked
by AsParameters attribute.

Next, we will have a look at how to get your minimal API to return typed results.

Minimal API and typed results

Typed results allow you to return objects that have a strongly typed data payload
and various metadata fields associated with it. To enable this, your endpoint method
needs to return an implementation of the IResult interface. To demonstrate this, we
will add TypedResultsDemo. cs file with the following content:

namespace WebApiAppWithMinimalApis;

public class Data

i

public int Id { get; set; } = 1;

public string Name { get; set; } = "test";
}

public static class TypedResultsDemo

{

public static void MapTypedDataApi(this IEndpointRouteBuilder
routes)

{
routes.MapGet("/typed-data", ReturnTypedResult);

}

public static Task<IResult> ReturnTypedResult()
{

return Task.FromResult(Results.Ok(Task.FromResult(new Data())));

Web Application Types on NET W 153

}

We can now call the MapTypedDataApi extension method from our Program.cs
class to register this endpoint. To do so, we will need to ensure that the namespace
from this newly added file is referenced by the Program. cs file, like so:

using WebApiAppWithMinimalApis;

And then all we have to do is add the following line anywhere before app.Run():
app.MapTypedDataApi();

Now, if we launch our application, open its Swagger page, and make a call to the

endpoint we have just added, we can see that it has returned the JSON version of our
Data object along with several metadata fields, as demonstrated in figure 6.5:

20 Response body

{

"result”: {
"id": 1,
"name”: "test”
}s
"id": 413,
"exception": null,

"status”: %,

"isCanceled”: false,

"isCompleted”: true,

"isCompletedSuccessfully”: true,

"creationOptions”: 0,

"asyncState”: null,

"isFaulted": false f¢ Download

Response headers

content-type: application/json; charset=utf-8

date: Thu,25 Aug 2022 14:09:29 GMT
server: Kestrel

Figure 6.5: The]SON-serialize version of the IResult implementation

We can also configure our endpoints to return multiple types of results. To
demonstrate this, we can add the following method to our TypedResultsDemo class:

public static Results<Ok<Data>, NotFound> ReturnSingeItem({int id)
{
return id ==
? TypedResults.Ok(new Data())
: TypedResults.NotFound();

Program.es
Program.es

154 Implementing C# 11 and NET 7.0

And then, add the following line to the MapTypedDataApi method:
routes.MapGet("/typed-data/{id}", (int id) => ReturnSingeItem(id));

The response object returned from this endpoint will look similar to
this:

{

"result": {

a3 1,

"name": "test"
b
"id": 686,
"exception": null,
"status": 5,
"isCanceled": false,
"isCompleted”: true,
"isCompletedSuccessfully": true,
"creationOptions": @,
"asyncState": null,

"isFaulted": false

}

Now, we will move to another new capability of minimal API: the ability to upload
files in a secure manner.

Uploading files to minimal API

Uploading a file to a server requires POST HTTP request rather than GET, so we will
need to call MapPost method instead of MapGet to add an appropriate endpoint. Our
endpoint may look like the following:

app.MapPost("/upload", async (IFormFile file) =>

{
using var stream = File.OpenWrite("test.txt");
await file.CopyToAsync(stream);

}).RequireAuthorization();

Here, we are getting the data that represents a file uploaded by the user and save it
inside the test.txt file in the same folder where our application is hosted. In a real-life
scenario, we would probably pass the data into blob storage.

Web Application Types on NET W 155

We also have a RequireAuthorization call at the end of this call. This is something
we can add to our endpoint mappings to ensure that only authorized users can
access it. We can also pass some additional options into this method to specify more
fine-grained access requirements (roles, policies, claims, and so on). But to make it
work, we need to have authentication and authorization middleware configured.

Speaking about middleware, some new features have recently been added to it,
which we will look at next.

The new in request processing middleware

Program.cs allows you to configure request-processing middleware via the builder
variable and build a pipeline for it via the app variable. Now, we will examine the
latest features that have been added to the ASPNET Core middleware.

We will start with configuring the middleware via the builder. One of the newly
added features is the ability to log custom header information in the server logs,
known as W3C logs. This can be any arbitrary data with any arbitrary keys. For
example, to log request information that contains custom keys of custom-header and
another-custom-header headers, you can add the following code:

builder.Services.AddW3CLogging(logging =>

{
logging.AdditionalRequestHeaders.Add("custom-header");
logging.AdditionalRequestHeaders.Add("another-custom-header");

};

You can also configure custom problem information that you can record in your
code. To do so, you will need to add the following code before builder.Build():

builder.Services.AddProblemDetails();

This will register an implementation of the IProblemDetailsService interface. You
can then resolve it from any place inside your application and call its WriteAsync
method to record the details of the problem. This is how you can resolve this service
from IHttpContext:

var problemDetailsService =

context.RequestServices.GetService<IProblemDetailsService>();

Then, we will add the following line that will register the appropriate provider that
will allow us to decomoress anv comoressed reauest data:

Program.es
ASP.NET

i

builder.Services.AddRequestDecompression();

156 [mplementing C# 11 and .NET 7.0

Next, we will look at the actual middleware pipeline. The first thing we can add to
it is the ability to automatically decompress compressed request data. To do so, we
can add the following line after builder.Build():

app.UseRequestDecompression();

Then, we can either get or set the value of the cookie that tracks whether
the user has consented to the use of the cookie policy. This can be done via the
ConsentCookieValue property of the CookiePolicyOptions class. This is how we
can set this value in the request processing pipeline:

app.UseCookiePolicy(new CookiePolicyOptions

{

ConsentCookieValue = "yes"

b;

Some request processing steps are added to the endpoint mappings. For example,
the CacheQutput method can be added to cache the results of the request, so the call
does not have to make many round trips to the data storage or do a computationally
expensive calculation. For example, the following endpoint will only calculate the
date once. And then, if called again by the same client, it will just return the value
that has already been calculated:

app.MapGet("/cached-date", () => DateTime.UtcNow.ToString()).
CacheOutput();

Next, there is some custom filtering that we can apply via the AddEndpointFilter
method. For example, the following code demonstrates an endpoint that restricts
access to the user with a particular name:

string GetGreetingMessage(string name) => $"User {name} is allowed to
access reource";

app.MapGet("/filter/invocation-context/{name}", GetGreetingMessage)
.AddEndpointFilter(async (routeHandlerInvocationContext, next) =>
{
var name = (string)routeHandlerInvocationContext.Arguments[@];
if (name == "Chris Davidson")
{

return Results.Problem("Access is not allowed for Chris
Davidson!");

}

return await next(routeHandlerInvocationContext);

Web Application Types on NET W 157

AddEndpointFilter method can also work with the RouteHandlerContext attribute
or an implementation of the [RouteHandlerFilter interface.

This concludes an overview of the Web API and the most recent features that have
been added to it. Next, we will have a look at Web application types that have user
interfaces and start with the MVC template.

MVC on ASP.NET core

Model-View-Controller (MVC) is an architectural pattern that is specifically
designed to enable efficient data manipulation via a user interface. This characteristic
makes the MVC pattern specifically suitable for building enterprise applications.

As the name suggests, an MVC application consists of three types of components:
(1). Model, which represents the data in the back-end
(2). View, which represents a specific screen in the user interface
(3). Controller, which facilitates the connectivity between Views and Models

MVC controllers are conceptually similar to Web API controllers that we looked at
earlier. But instead of merely returning some data, they are serving the views to the
browsers.

We already had a look at examples of MVC models in Chapter 5: Database access with
Entity Framework Core, and entity object, such as Employee, is a model in the MVC
context. To demonstrate the fundamentals of ASPNET Core MVC applications, we
will just continue building upon the MveDataApp application that we created in that
chapter.

To make the demonstration simple, we will remove any interceptors that we have
added. The easiest way to do it is to remove the OnConfiguring override from the
FactoryManagerContext class.

Next, we will make some modifications to the _Layout . cshtml file, which is located
in the Shared folder inside the Views folder. This is the file that provides the shared
layout to all views inside the application. So, it enables features such as the common
header, common navigation bar, common footer, and so on. It is written as a Razor
template, which is a combination of raw HTML markup, C#, and various keywords
and operators that glue the markup and the code together. The template executes on
the server and renders an HTML page, which is then delivered to the client.

The first thing we will do is locate the title HTML element and replace it with the
following:

<title>@VviewData["Title"] - Factory Manager</title>

ASP.NET
ASP.NET

158 [mplementing C# 11 and .NET 7.0

Then, we will make some changes to our navigation bar. To do so, we will locate the
ul element with the navbar -nav class attribute and will replace it with the following:
<ul class="navbar-nav flex-grow-1">
<li class="nav-item">
<a class="nav-link text-dark" asp-area=""
action="Index">Home
</11>

<1i class="nav-item"»

asp-controller="Home" asp-

<a class="nav-link text-dark" asp-area="
action="Privacy">Privacy
</1i>

<li class="nav-item"»

asp-controller="Home" asp-

<a class="nav-link text-dark" asp-area=
asp-action="Index">Employees</a»
</11>
<ful>

asp-controller="Employees"

Now, we have three items on the navigation bar: Home, Privacy, and Employees.
The asp-controller and asp-action elements indicate which controller and
which action method (that is, view) each item represents. MVC controllers have the
same naming convention as the Web API controllers we had a look at earlier. So, in
this case, the first two items refer to the HomeController class. The first item refers
to the action method called Index, whereas the second item refers to the Privacy
action method. We can examine what these action methods look like by opening
HomeController.cs class inside the Controllers folder. The views are located
inside the Home folder of the Views folder. The third item refers to the Index action
method of the EmployeesController class, which we have not added yet. So, we
will now go ahead and add it.

Our EmployeesController class and corresponding views will give us the ability
to view and manage Employees data from the database we have created earlier. If
you are using Visual Studio 2022, the easiest way to add the appropriate controller
and the view is to scaffold them. To do so, you will need to right-click on your project
from the solution explorer, click New and select Scaffolded Item. In the dialog that
appears, you will need to select MVC Controller with views using Entity Framework,
as figure 6.6 demonstrates:

HomeController.es

Web Application Types on .NET W 159

Add New Scaffolded Item

4 |nstalled
4 Common E WVC Area

AP|

» MVC ‘[: MVC Controller - Emply
Razor Component ‘
Razor Pages ’[: MVC Controller with reacwrite actions

ldemlw ‘It-:j MVC Controller with views, using Entity Frameweork

Layout ;

‘E: API Cantroller - Empty

‘[_: API Controller with readiwrite actions

‘[: AP Controller with actions, using Entity Framework
‘[: AP| with readiwrite endpoints

‘[: APl with read/write endpoints, using Entity Framework

Razor View - Emply

D Razor View

* MVC Controller with views,

@ Razor Component 2

using Entity Framework
by Microsoft
v1.00.0

AnMVC controller with actions
and Razor views lo create, read,
update, delete, and list entities
from an Entity Framework data
context.

Id: MvcControllerWithContextScaf
folder

Add | | Cancel

Figure 6.6: Scaffolding views and controller from the EF models

Then, you will need to select the appropriate database context class
(FactoryManagerContext in our case), and the entity model (Employee), select all
options for the views, and ensure that the controller’s nameis EmployeesController,

as demonstrated in figure 6.7:

Add MVC Controller with views, using Entity Framework

Model class \Emglovee (MvcDataApp Models)

Data context class IFadnrvMananerCnntext {MvcDataAnn Data)

Views

Y] Generate yiews
41 Reference script libraries
41 Use layout page

{Leave emply ifitis setin a Razor _viewstar file)

Controller name FmnlaveesController

Add

| | Cancel

Figure 6.7: Configuring the items to scaffold

160 [mplementing C# 11 and .NET 7.0

The scaffolding process may take a while, but once it is finished, you should see
the EmployeesControlelr.cs file inside your Controllers folder of the project.
You should also see the Employees folder inside the Views folder with a bunch of
CSHTML files, as figure 6.8 demonstrates:

48[Controllers
» +cs EmployeesController.cs
b acx HomeController.cs
» & Data
» 88 Models
48[Views
4 5[Employees
+@ Create cshtml
+[@ Delete.cshtml
+[Details.cshtml
+B Edit cshtml
+[@ Index.cshtml

Figure 6.8: Newly created controller and views

If you are not using Visual Studio 2022, we can add the controller and the views
manually. We will start by adding EmployeesControler.cs file to our Controllers
folder and populating it with the following content:

using Microsoft.AspNetCore.Mvc;

using Microsoft.AspNetCore.Mvc.Rendering;

using Microsoft.EntityFrameworkCore;

using MvcDataApp.Data;

using MvcDataApp.Models;

namespace MvcDataApp.Controllers;

public class EmployeesController : Controller

{

private readonly FactoryManagerContext _context;

public EmployeesController(FactoryManagerContext context)

{

_context = context;

private bool EmployeeExists(int id)

{

EmployeesControlelr.es
EmployeesController.es

Web Application Types on NET W 161

return (_context.Employees?.Any(e => e.Id == 1d)).
GetValueOrDefault();

}
}

Then, we will add the Index action method, which will serve us the view that lists
all the Employees entities we have in our database:
public async Task<IActionResult> Index()
{
var factoryManagerContext = context.Employees.Include(e => e.Job);

return View(await factoryManagerContext.ToListAsync());

}

Then, we will add the Details action method, which will show us the details on any
specific Employee entity based on its Id:

public async Task<IActionResult> Details(int? id)
{
if (id == null || _context.Employees == null)

{
return NotFound();

var employee = await _context.Employees
.Include(e => e.Job)
.FirstOrDefaultAsync(m => m.Id == id);

if (employee == null)

{

return NotFound();

return View(employee);

}

We will also add two action methods that will give us the ability to create a new
Employee entity. One of them will be accessed by GET request and will give us the
creation form. The other will be accessed by POST request that allows us to submit
the form:

162 Implementing C# 11 and NET 7.0

public IActionResult Create()

{
ViewData["JobId"] = new SelectList(_context.Jobs, "JobId", "JobId");

return View();

}

[HttpPost]

[ValidateAntiForgeryToken]
public async Task<IActionResult> Create(
[Bind("StartDate,Jobld,Id,FirstName,LastName,Date0fBirth")]
Employee employee)

{
if (ModelState.IsValid)
{
_context.Add(employee);
await context.SaveChangesAsync();
return RedirectToAction(nameof(Index));
}

ViewData["JobId"] =
new SelectList{ context.Jobs, "JobId", "JobId", employee.JlobId);

return View(employee);

}

Then, we will add GET and POST action methods to give us the ability to edit the
existing Employee entities. Please note that the action endpoints are accessible via a
GET HTTP verb by default. If we need to apply a different verb, we need to add an
attribute to the method, such as HttpPost or HttpDelete.

public async Task<IActionResult> Edit(int? id)

{
if (id == null || _context.Employees == null)
{
return NotFound();
}

var employee = await _context.Employees.FindAsync(id);
if (employee == null)
{

Web Application Types on NET

163

return NotFound();
}
ViewData["JobId"] =
new SelectList(context.Jobs, "JobId", "JobId", employee.JobId);

return View(employee);

[HttpPost]

[ValidateAntiForgeryToken]

public async Task<IActionResult> Edit(int id,
[Bind("StartDate,Jobld,Id,FirstName,LastName,DatedfBirth")]
Employee employee)

{
if (id != employee.Ild)
{
return NotFound();
}

if (ModelState.IsValid)
{
try
{
_context.Update(employee);

await _context.SaveChangesAsync();

}
catch (DbUpdateConcurrencyException)
{
if (!EmployeeExists(employee.Id))
1
return NotFound();
}
else
{
throw;
}

164 [mplementing C# 11 and .NET 7.0

return RedirectToAction(nameof(Index));

}
ViewData["JobId"] =

new SelectList(_context.Jobs, "JobId", "JobId", employee.JlobId);

return View(employee);

}
Finally, we will add GET and POST action methods to delete an Employee entity:

public async Task<IActionResulty Delete(int? id)

{
if (id == null || _context.Employees == null)
{
return NotFound();
}

var employee = await _context.Employees
.Include(e => e.Job)
.FirstOrDefaultAsync(m => m.Id == id);

if (employee == null)

{

return NotFound();

return View(employee);

}

[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)

{
if (_context.Employees == null)

{

return Problem("Entity set 'FactoryManagerContext.Employees' is
null.");

}

var employee = await _context.Employees.FindAsync(id);

if (employee != null)

Web Application Types on NET W 165

_context.Employees.Remove(employee);

await _context.SaveChangesAsync();

return RedirectToAction(nameof(Index));

}

So now, we will need to create a Razor view for each GET action method we have
added to the controller. For this, we will create the Employees folder inside the
Views folder. The first file we will insert will be Index.cshtml, the first part of
which will look like the following;

@model IEnumerable<MvcDataApp.Models.Employee>

o
ViewData["Title"] = "Index";
}
<h1>Index</h1>
<p>
<a asp-action="Create">Create New
</p>
<table class="table"»
<thead>
<t
thy
@Html.DisplayNameFor(model => model.StartDate)
</th>
<th>
@Html.DisplayNameFor(model => model.Job)
</th>
<thy
@Html.DisplayNameFor(model => model.FirstName)
</th>
<thy

@Html.DisplayNameFor(model => model.LastName)

166 [mplementing C# 11 and .NET 7.0

</th>
<thy
@Html.DisplayNameFor(model => model.DateOfBirth)
</th>
<th></thy
<Jtry
</thead>
<tbody>

Then, to construct the rows for the table, we can execute the following foreach loop:
@foreach (var item in Model) {
<t

>
@Html.DisplayFor(modelItem => item.StartDate)

</td>

<td>
@Html.DisplayFor{modelItem => item.Job.JobId)

</td>

<td>
@Html.DisplayFor(modelItem => item.FirstName)

</td>

<td>
@Html.DisplayFor{modelItem => item.LastName)

</td>

<td>
@Html.DisplayFor(modelItem => item.DateOfBirth)

/td>

td>
<a asp-action="Edit" asp-route-id="@item.Id">Edit |
<a asp-action="Details" asp-route-id="@item.Id"»>Details
<a asp-action="Delete" asp-route-id="@item.Id">Delete

/td>

<ftr>

</tbody>
</table>

Web Application Types on NET W 167

Then, we will insert Create. cshtml file, which will have the following content:

@model MvcDataApp.Models.Employee

of

ViewData["Title"] = "Create";

<h1>Create</h1>

<h4>Employee</hd>
<hr />
<div class="row">
<div class="col-md-4">
<form asp-action="Create™

<div asp-validation-summary="ModelOnly" class="text-
danger"></div>

<div class="form-group">

<label asp-for="StartDate" class="control-label"></
label>

<input asp-for="StartDate" class="form-control" /»

<span asp-validation-for="StartDate" class="text-
danger">

</divy
<div class="form-group">
<label asp-for="JobId" class="control-label"></label>

<select asp-for="JobId" class ="form-control" asp-
items="ViewBag.JobId"></select>

</divy
<div class="form-group">

<label asp-for="FirstName" class="control-label"»></
label>

<input asp-for="FirstName" class="form-control" />

<span asp-validation-for="FirstName" class="text-
danger">

</div>
<div class="form-group">
<label asp-for="LastName" class="control-label"></label>

168 Implementing C# 11 and NET 7.0

<input asp-for="LastName" class="form-control" /»

<span asp-validation-for="LastName" class="text-
danger”>

</div>
<div class="form-group">

<label asp-for="Date0fBirth" class="control-label"></
label»

<input asp-for="DateOfBirth" class="form-control" />

<span asp-validation-for="Date0fBirth" class="text-
danger">

</div>
<div class="form-group">

<input type="submit" value="Create" class="btn btn-
primary" />

</divy
</formy
</divy

</divy

<div>
<a asp-action="Index">Back to List
</divy

dsection Scripts {
@{await Html.RenderPartialAsync(" ValidationScriptsPartial");}

}

Please note that the name of each of these files is the same as the name of one of the
GET action methods on the controller, plus the CSHTML extension. So, the file for the
Details action method will look like the following:

@model MvcDataApp.Models.Employee

o
ViewData["Title"] = "Details";

<h1>Details</hl>

Web Application Types on NET

169

<div>

<h4>Employee</h4>
<hr />

<dl class="row"»

<dt class = "col-sm-2"»
@Html.DisplayNameFor(model => model.StartDate)
</dt>
<dd class = "col-sm-1@">
@Html.DisplayFor{model => model.StartDate)
</dd>
<dt class = "col-sm-2">
@Html.DisplayNameFor(model => model.Job)
</dt>
<dd class = "col-sm-1@">
@Htm1.DisplayFor(model => model.Job.JobId)
</dd>
<dt class = "col-sm-2">
@Html.DisplayNameFor(model => model.FirstName)
</dt>
<dd class = "col-sm-10">
@Html.DisplayFor(model => model.FirstName)
</dd>
<dt class = "col-sm-2">
@Html.DisplayNameFor(model => model.LastName)
</dt>
<dd class = "col-sm-16">
@Html.DisplayFor(model => model.lastName)
</dd>
<dt class = "col-sm-2">
@Html.DisplayNameFor(model => model.Date0fBirth)
</dt>
<dd class = "col-sm-10">
@Html.DisplayFor(model => model.DateOfBirth)
</dd>

</dl>

</div>

170 Implementing C# 11 and NET 7.0

<div>
<a asp-action="Edit" asp-route-id="@Model?.Id">Edit |
<a asp-action="Index">Back to List

<fdivy

The Edit view will look like the following;
@model MvcDataApp.Models.Employee

o
ViewData["Title"] = "Edit";

<h1>Edit</h1>

<hd>Employee</hd>
<hr />

Then, we will have the following form:

<div class="row">
<div class="col-md-4">
<form asp-action="Edit">

<div asp-validation-summary="ModelOnly" class="text-
danger"></div>

<div class="form-group">

<label asp-for="StartDate" class="control-label"></
label»

<input asp-for="StartDate" class="form-control" />

<span asp-validation-for="StartDate" class="text-
danger”>

</div>
<div class="form-group">
<label asp-for="JobId" class="control-label"></label>

<select asp-for="JobId" class="form-control" asp-
items="ViewBag.JobId"></select>

</
span»

</divy
<input type="hidden" asp-for="Id" />

Web Application Types on NET W 171

<div class="form-group">

<label asp-for="FirstName" class="control-label"></
label>

<input asp-for="FirstName" class="form-control" />

<span asp-validation-for="FirstName" class="text-
danger">

</div>

<div class="form-group">
<label asp-for="LastName" class="control-label"></label>
<input asp-for="LastName" class="form-control" />

<span asp-validation-for="LastName" class="text-
danger”>

</div>
<div class="form-group">

<label asp-for="Date0fBirth" class="control-label"></
label>

<input asp-for="DateOfBirth" class="form-control" />

<span asp-validation-for="DateOfBirth" class="text-
danger">

</divy
<div class="form-group">

<input type="submit" value="Save" class="btn btn-
primary" />

</divy
</form>

</divy
</div>
Then, we would finish off with the following footer:
<divy

<a asp-action="Index"»>Back to List</a»
<fdiv>

{@section Scripts {
@{await Html.RenderPartialAsync(" ValidationScriptsPartial");}

172 [mplementing C# 11 and .NET 7.0

The Delete view will look like the following;
(@model MvcDataApp.Models.Employee

&
ViewData["Title"] = "Delete";

<hl>Delete</hl>

<h3>Are you sure you want to delete this?</h3>
<divy
<hd>Employee</hd>
<hr />
<dl class="row">
<dt class = "col-sm-2">
@Html.DisplayNameFor(model => model.StartDate)
</dt>
<dd class = "col-sm-18">
@Htm1.DisplayFor(model => model.StartDate)
</dd>
«dt class = "col-sm-2">
@Html.DisplayNameFor(model => model.Job)
</dt>
<dd class = "col-sm-16">
@Html.DisplayFor(model => model.Job.JobId)
</dd>
<dt class = "col-sm-2">
@Html.DisplayNameFor(model => model.FirstName)
</dt>
<dd class = "col-sm-10">
@Html.DisplayFor(model => model.FirstName)
</dd>
<dt class = "col-sm-2">
@Htm1.DisplayNameFor(model => model.LastName)
<fdt>

<dd class = "col-sm-10">

Web Application Types on NET W 173

@Html.DisplayFor(model => model.lastName)
</dd>
<dt class = "col-sm-2">
@Html.DisplayNameFor(model => model.DateOfBirth)
</dt>
<dd class = "col-sm-10">
@Html.DisplayFor(model => model.DateOfBirth)
</dd>
</dl>

<form asp-action="Delete">
<input type="hidden" asp-for="Id" />
<input type="submit" value="Delete" class="btn btn-danger" /> |
<a asp-action="Index"»Back to List¢/a>
</form>
</div>

A basic MVC application is now complete and is fully capable of manipulating
Employee data. To test it, we can launch the application and navigate to the
Employees tab. We should see the page shown in figure 6.9. If we click on any links,
we should be taken to an appropriate view, whether it is Edit, Details, or Delete

MvcDataApp Home Privacy Employees

Index
Create New

StartDate Job FirstName LastName DateOfBirth

01/09/2020 1 John Smith 01/10/1992 Edit | Details |
00:00:00 00:00:00 Delete
01/09/2017 2 Alexander Marshall 12/09/1982 Edit | Details |
00:00:00 00:00:00 Delete
01/09/2010 2 Michael Davidson 11/05/1989 Edit | Details |
00:00:00 00:00:00 Delete

Figute 6.9: The Index view of the Employees controller

This concludes the overview of the ASPNET Core MVC application template. Next,
we will have a look at the final ASPNET Core application template that has a user

imbnwbann Dacaw Daman

ASP.NET
ASP.NET

HIlELdle—N\diUL 1 dstb.

174 Implementing C# 11 and NET 7.0

Razor Pages on ASP.NET Core

Unlike MVC, Razor Pages applications are not specifically designed for working
with data. While they can work with data, they are more flexible than MVC, as each
page is a semi-autonomous unit that has its own back-end logic. So, while Razor
Pages allow more flexibility, they probably are not as easy to work with as MVC
when an application needs to be specifically designed for facilitating Create, Read,
Update, Delete (CRUD) operations via the user interface.

To create a Razor Pages application, we can either select the ASPNET Core Razor
Pages template while creating a new project via the GUI or execute the following
command via the CLI:

dotnet new web -o RazorPagesApp
The structure of our project will be similar to what is displayed in figure 6.10:

4 +gl RazorPagesApp
» & Connected Services
» &8 Dependencies
> a&§3 Properties
» 8@ wwwroot
480 Pages
b 6 Shared
+@ Viewimports.cshtml
+@ ViewStart cshtml
b +@ Error.cshtml
b +[@ Index.cshtm
b +@ Privacy.cshtml
b +[d appsettings json
b +cx Program.cs

Figure 6.10: The structure of a Razor Pages project

In this project type, instead of having Models, Views, and Controllers folders, we
have a folder called Pages. Just like in the MVC template, we have some common
layout components that are located in the Shared folder inside the Pages folder. Just
like with the MVC views, the files representing pages have the CSHIML extension
and use Razor syntax. But this is where the similarities end. In Razor Pages, a
page can have the so-called code-bihind file, which has the same name as the file
representing the page but has an extra CS extension. So, for the Index. cshtml file,
the code-behind file is called Index. cshtml.cs.

ASP.NET
ASP.NET
Program.es

Code-behind file is a pure C# file, so you can do anything in it that you can do in
any other C# class, such as pass dependencies to it via the constructor and have any

Web Application Types on NET W 175

kind of business logic. In the context of Razor Pages, such a class that inherits from
PageModel can be fully referenced from the Razor code in the page.

When a client requests a page in a Razor Pages application, certain events get
triggered in code-behind files in a particular order. There are also some methods
that get executed by convention. These methods have the following names:

On<Pascal-case version of a HTTP verb>

So, if a GET request gets submitted to the page, the OnGet method will be triggered.
If a POST request is submitted, the OnPost method is triggered, and so on. We can
apply some additional logic to these methods. For example, if we would replace the

content of the Index.cshtml.cs file with this, a session Id will be recorded as a
debug message in the logs:

using Microsoft.AspNetCore.Mvc.RazorPages;
namespace RazorPagesApp.Pages;

public class IndexModel : PageModel
{

private readonly ILogger<IndexModel> logger;

public IndexModel(ILogger<IndexModel> logger)

{
_logger = logger;

public void OnGet()

{

_logger.LogDebug($"Homepage requested. Session id: {HttpContext.
Session.Id}");

}
}

Please note that the implementation of the ILogger constructor parameter is
configured in the dependency injection pipeline. This object allows us to log the
information. We can register our own implementation if we need to.

il L I | Al . £OT oA MmINTTm o . L T . a 1

Index.cshtml.es

Lhus concludes the overview of all ASF.INE L Lore templates. Let us summarize what
we have learned in this chapter.

176 W Implementing C# 11 and NET 7.0

Conclusion

In this chapter, we have learned all the fundamentals of ASPNET Core. We have
covered all available project templates of ASPNET Core: empty, MVC, Web AP,
and Razor pages. We have covered the fundamental structure of ASPNET Core
applications, such as its start-up script, which includes dependency registration and
request processing middleware. We have also covered the ASPNET Core hosting
model and the process of hosting it in a development environment.

We had a look at MVC project templates that allow developers to build display
components separately from the back-end business logic and the database access.
We also had a look at Web API templates, which are used for building Web services
with REST API endpoints. Finally, we had a look at Razor Pages, which allows
developers to have individual back-end logic for every page.

We have also covered the new features that have been added to version 7 of ASP,
NET Core, such as improvements to the caching mechanism.

In the upcoming chapter, we will cover Blazor, which allows developers to build
compiled .NET applications that can run inside browsers.

Points to remember

o ASPNET Core is the main Web application development framework
available on .NET.

s Any ASPNET Core will have dependency registration and chained request
processing middleware in its start-up code.

o ASPNET Core comes with four main project templates by default: empty,
MVC, Web AP, and Razor Pages.

o Empty project template provides just the most bare-bone plumbing for
Web application development, allowing the developers to add only those
components that they would strictly need.

¢+ MVC template uses Model-View-Controller architectural pattern.
» Web APItemplate is primarily designed for building REST APIs.

s Razor Pages template comprises of Web page templates, each of which may

ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET

also have the so-called code-behind file associated with it.

Web Application Types on NET & 177

Multiple choice questions

1. What is the difference between controllers in Web API and controllers in

MVC?
a.

b.

G

d.

There is no difference, and they are fully equivalent

MVC controllers are designed for serving views, while Web API
controllers will only return data

There are no controllers in Web API

Web API controllers can return data, whereas MVC controllers cannot

2. What is Razor in the context of razor pages?

i

&
d.

Alanguage that can be used in the back-end of the application instead
of C#

The name of the dependency injection framework used by Razor
pages
Alanguage that is designed for writing front-end templates

It is just an arbitrary name of the application template

3. What is the Services property of the builder object is used for in the ASP.
NET Core start-up script?

a.

To register required services, that is, objects that other objects depend
on

To provide the request processing middleware

¢. To connect the application to any external Web services

d.

To initiate background tasks

4. What is the request processing middleware of ASP.NET Core is used for?

To enforce authentication
To enforce authorization

To provide a chain of processing steps that the request must go
through before reaching its intended target

ASP.NET

178

d. All of the above

Implementing C# 11 and NET 7.0

Answers

i

2,
%
4

b

c
a
d

Key terms

ASPNET Core: The main Web application development framework on .NET.

Model-View-Controller (MVC): An architectural pattern where Views are
responsible for display logic, Models are responsible for business logic and
back-end data manipulation, and Controllers are responsible for bringing
these types of components together.

Representational state transfer (REST): Atype of Web services interface that
allows the client applications to exchange data with Web services, typically
by using JSON.

Web API: An ASPNET Core application template designed for building Web
services with REST APL

Minimal APT: A type of Web APl application development practice that does
not use Controller classes.

Razor pages: An ASPNET Core application template that allows developers
to build individual Web page templates with individual back-end logic.

Dependency injection: The process of regjstering required services (such as
classes) when the application starts up.

Request processing middleware: A configurable chain of processing steps
applied to an incoming request in a specific order before it can reach its
intended target.

Join our book's Discord space

ASP.NET
ASP.NET
ASP.NET

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

CHAPTER 7

Blazor and
WebAssembly on
NET

Introduction

Not very long ago, the only way to run a compiled high-performance application in
your browser was to install a special plugin. Even then, the plugin would only be
compatible with a specific application type. For instance, you needed a Java plugin
to run Java applications, an Adobe Flash plugin to run Flash applications, and
Microsoft Silverlight to run .NET Framework applications. The only other option
was to run JavaScript code, which is interpreted rather than compiled, so it cannot
reach the level of compiled code in terms of performance.

But it all changed with the introduction of WebAssembly, which became a standard
feature of all browsers. WebAssembly is a binary instruction format for compiled
applications. Essentially, just like with the standard Assembly language, the source

rade oote camniled intn thie farmat ahoad af Hme Rerares tho annlicatinn rancicte

https://discord.bpbonline.com

Ay ST AT el LA oL PE0T LN/ Lok AR LY o572 (b RS U | LISy IR L A DAL LT R, SRR LR

of low-level instructions, it is faster to execute than JavaScript, which is stored in its
textual form and gets interpreted into executable instructions as it is being read.

NET has its own implementation of WebAssembly called Blazor. This allows
developers to write in-browser applications in C#. So, while having the ability to
build high-performance applications for browsers, NET developers can also do
full-stack development without having to learn JavaScript and its countless modern
frameworks.

180 Implementing C# 11 and NET 7.0

But Blazor is bigger than just a technology that facilitates the process of turning .NET
code into WebAssembly. It also provides an easy way of hosting your WebAssembly
apps inside the standard ASPNET Core applications. There is also a variety of
Blazor known as Blazor Server. If you choose to use it, your code will be identical
to Blazor WebAssembly code. But the compiler will do something different with it.
Your compiled code will be running on the server, but the browser and the server
will be communicating with each other in real-time, so the elements on the page will
instantly react to the events happening on the server. And the code on the server can
be instantly triggered by events in the browser.

In this chapter, we will cover all these concepts. We will also highlight the new Blazor
features that were added in NET 7.

Structure

In this chapter, we will discuss the latest features of Blazor on ASPNET Core 7 and
cover the following topics:

» Introducing Blazor
o Blazor WebAssembly overview
¢ Hosting Blazor WebAssembly in ASPNET Core

¢ Setting up Blazor Server

Objectives

By the end of this chapter, you will have learned how to use .NET Blazor in allits form.
You will be familiar with building stand-alone Blazor WebAssembly applications.
You will also learn how to host a Blazor WebAssembly application inside a standard
ASPNET Core application. You will know how and when to use Blazor Server and
will be familiar with the most recent features of Blazor.

ASP.NET
ASP.NET
ASP.NET
ASP.NET

Prerequisites

To follow this chapter, you will need the following:
o Amachine running either Windows, MacOS, or Linux OS
o NET7SDK
¢ Asuitable IDE or a code editor

¢ Being familiar with C# fundamentals

Blazor and WebAssembly on NET W 181

If you do not have any of the preceding listed dependencies installed already, refer
to the setup instruction provided in Chapter 1: Getting Familiar with NET 7 Application
Structure, which also provides a recap of C# fundamentals.

Introducing Blazor

Blazor comes in two flavors—Blazor WebAssembly and Blazor Server. Each has
its own distinct project template and compiles differently. While Blazor Server is
nothing more than a server-hosted ASPNET Core Web application with some
additional libraries, Blazor WebAssembly compiles into an executable that is hosted
entirely in a browser.

But, despite the differences in the application structure, both flavors of Blazor share
exactly the same syntax in its modules, which are referred as Razor Components.
These are not to be confused with Razor Pages. Both are used to generate HIML
that gets then rendered in the browser. But while Razor Pages have .cshtml file
extension, the extension of Razor Components is .razor. Also, even though both
types of modules work with Razor syntax, there are some keywords that only work
in Razor Components and do not work in Razor Pages. The reverse is also true for
some other keywords. For example, the @code keyword is only applicable to Razor
Components, whereas the @model keyword is only applicable to Razor Pages.

Razor Components refer to other Razor Components in a similar manner as how
HTML elements are referenced. There are opening and closing tags, and you can put
some further content inside the elements like you can do with HTML and XML. You
can also use properties of elements in a similar manner to HTML attributes. But the
naming conventions are different. If you would normally use lowercase letters to
write HTMLelements, Razor Components use PascalCase, that s, every word starting
with a capital letter while all other letters remain the same. For example, if there was
aRazor Component called Counter and it had a property called IncrementBy, then
it would be referenced inside other Razor Components as follows:

<Counter IncrementBy="5" />

ASP.NET

Let us now have a look at some examples of Razor components to see how they are
structured.

Razor component example

When you create a new application project from either Blazor WebAssembly or Blazor
Server template, it will have some Razor components already present as examples.
Both projects will have Counter. razor file inside the Pages folder, which will have
the following content:

182 [mplementing C# 11 and .NET 7.0

@page "/counter”

<PageTitle>Counter</PageTitle>

<h1>Counter</hl>

<p role="status">Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</
button>

(@code {

private int currentCount = @;

private void IncrementCount()

{
currentCount++;
}
}
Let us break it down.

@page

The first thing that we have is the @page directive. This directive represents the path
that the component is reachable on by default. So, in this case, if you would type the
base application URL followed by the /counter path, your browser will take you to
this component.

Next, we have a reference to the PageTitle Razor component with its inner content
set to Counter. We can tell that it is a Razor component based on the fact that it looks
similar to an HTML /XML element while it has a name in PascalCase.

Next, we have a paragraph element that has part of its text bound to the
currentCount field. If we have a look inside the @code directive further down,
there is a private integer field with this name. Please note that the markup in a Razor
Component has full access to private members of its code. So, whenever the value
of the currentCount will be changed in the code, the content inside the paragraph
element will be updated too.

Blazor and WebAssembly on NET W 183

@onclick

Next, we have a button with the @onclick event handler. As before, we can tell that
this is a Razor event handler because it starts with the @ symbol. This event handler
refers to the IncrementCount method inside the @code directive. When this button
is clicked, the method is triggered.

@code

Finally, we have the @code directive, which represents the C# code that we can
trigger from our markup. If we had any members with public access modifier and
[Parameter] attribute, then we could access those members from other Razor
components. However, we can also access this code from our normal C# code. Each
Razor component is represented as a class that inherits from ComponentBase from
Microsoft.AspNetCore.Components namespace. The class will have the same
name as the file. In this case, since the file is called Counter.razor, the class will
be accessible as Counter. Inside other Razor components, you can reference it as
<Counter />.

A Razor Component does not represent the entire page. Just like Razor Pages and
MVC views, it is wrapped in a shared layout. Itis the layout that has all the remaining
page elements, such as HTML headers and navigation menu. However, the format
of the fayouts is different depending on whether you are using Blazor WebAssembly
or Blazor Server project template. We will go over both variants later in the chapter.
For now, let us go through all keywords that are used in Razor components.

Razor keywords in Razor components

We already covered @page, @onclick, and @code directives. We also had a look at
how a single @ character can reference something inside plain C# code. So let us have
alook at some other keywords you can use inside Razor components.

@using

In the context of Razor components, this keyword is used for inserting namespaces
into the @code block in the same manner as using keyword is used for inserting
namespace references into C# classes. The statements with this directive go just
under the @page directive. Here is an example of such a statement:

@using HostedBlazorWasmDemo.Client.Models;

@implements

This directive is used if you want your Razor component to implement an interface.
For example, you will use this directive as follows if you want to implement an

184 [mplementing C# 11 and .NET 7.0

IDisposable interface:
@implements IDisposable

@inherits

You can use this directive if you want to inherit your Razor component from a
specific C# class. This is how it can be applied:

@inherits SomeBaseClass

@inject
This directive is used for adding any dependencies into a Razor component that is

registered in Program. cs file when the application starts up. The following example
injects a NavigationManager instance into the component:

@inject NavigationManager

@layout

This directive specifies a layout component that can be applied to the Razor
component. Even though there is an application-wide layout typically configured,
this directive allows to apply a specific set of reusable elements to a specific Razor
component. This is how this directive is used on top of a Razor component:

@layout CustomLayout

@namespace

This directive allows us to override the default namespace of a Razor component
(which corresponds to the project folder structure) and set a specific namespace for
it. This is how it can be used:

@namespace SomeNamespace

@preservewhitespace

By default, Blazor trims unnecessary whitespaces from the HTML markup to
increase the performance. However, if whitespaces need to be preserved, this is how
it can be achieved:

(@preservewhitespace true

@attributes

This directive allows the dynamic insertion of any arbitrary HIML attributes into
an HTML element from a C# dictionary. For example, we may have the following

element:

Blazor and WebAssembly on NET W 185

<input id="mainText" @attributes="Attributes" />
We can have a dictionary field that looks similar to the following;

private Dictionary<string, object> Attributes { get; set; } =
new()
{
{ "maxlength", "18" },
{ "placeholder", "Default value" },
{ "required”, "required" },
{ "class", "green-textbox" }

L
@bind

This keyword allows you to bind an HTML element to a variable from C# code. If
you apply it, changing the input value will change the value of the variable and vice
versa. For example, if you have a string variable called name, you can bind it to an
input element as follows:

<input @bind="name" /»

@ref

This directive is used when you want to send commands to a specific reference of
another Razor component. To use t, you will need to use the target Razor component
as a variable in your code and then use the name of the variable with the keyword
in your markup.

For example, if you had a Razor Component called ChildComponent, you could
declare it as a private field inside your @code directive as follows:

private ReferenceChild? child,;

Then, declare it in the markup to make sure that you refer to this specific field rather
than a new instance of this component:

<ReferenceChild @ref="child" />

@typeparam

This directive allows you to use generics inside your Razor components. This is an
example of its usage:

@typeparam TEntity where TEntity : class

186 [mplementing C# 11 and .NET 7.0

This concludes the basic overview of features that are applicable to both Blazor
WebAssembly and Blazor Server. Now, we will have a look at the process of setting
up a Blazor WebAssembly project.

Blazor WebAssembly overview

We can create a new Blazor WebAssembly project either from the corresponding
template in the IDE or by running the following command, which will create a
project with the name of BlazoriasmDemo:

dotnet new blazorwasm -o BlazorWasmDemo

WASM is a commonly used abbreviation for WebAssembly. So, this is why we used
it in the proceeding command.

Once the project is created, let us have a look at its structure. The first thing that
we will look at is the topmost layout, which is provided by the index.html file
inside the wwwroot folder. This plain HTML file provides the structure to the Blazor
WebAssembly application; it is used as an outer shell by all Blazor Components.
This is where HTML headers are defined, along with any placeholder elements,
additional scripts, and style references.

A noteworthy script reference is a reference to the _framework/blazor.
webassembly. Js file. This file provides all JavaScript that is needed for rendering
client-side Razor Components and providing interop functionality between them
and plain JavaScript. Therefore, if you need to add any JavaScript that is meant to
work alongside Blazor, you will need to add this code (or a reference to a JS file) after
this scrip file reference.

Next, we have _Imports.razor file in the root of the project folder. This file is
needed for listing any namespaces that we want to make available for import into
Razor Components.

Then, there is App.razor file, which acts as the root element of the Blazor
application itself. This is the file which determines what layout file is used and
what to display if the path specified in the browser does not match with any Razor
Component. Additionally, this is the file where you would add custom logic for
other error responses, such as the user not being authorized. This file is registered
inside Program. cs file and is inserted into an appropriate HTML element on the
following line:

builder.RootComponents.Add<App>("#app");

By default, this will be an element where the id attribute is set to the app inside the
index.htm] file.

By default, the App. razor file points at the MainLayout as the layout component.
Thislayout can be found in the MainLayour. razor file inside the Shared folder. This

Program.es

Blazor and WebAssembly on NET W 187

will be the default layout Razor components will use unless it is overwritten with
the @layout directive. The layout has some top-level HTML and Razor elements.
The content of the Razor component that we navigate to will be replace the @Body
directive in the layout.

Then, we have the individual Razor components. These are placed inside the
Pages folder and have a Razor extension. Other than that, the entrypoint into the
compiled part of a Blazor WebAssembly app is Program. s, just like in most .NET
application types.

This concludes the overview of the basic Blazor WebAssembly project structure.
So far, we have covered scenarios where both the markup and the code are placed
in the same file. But when you have a complex markup and complex code, this
arrangement does not necessarily ensure the best readability. So, Blazor allows you
to split the markup and the code into separate files. This is known as code-behind
approach. This is what we will have a look at next.

Using code-behind approach

If you want to move the C# code from the Razor file into a separate file, you will need
to create the file with the same name as your Razor file but give it an additional CS
extension. To demonstrate this, we will split the content of the FetchData. razor file
into two separate files. To do so, we will create FetchData. razor. cs file alongside
our original FetchData. razor file and will populate it with the following content:
using Microsoft.AspNetCore.Components;

using System.Net.Http.Json;
namespace BlazorWasmDemo.Pages;

public class FetchDataBase : ComponentBase

{
[Inject] HttpClient Http { get; set; }

protected WeatherForecast[]? forecasts;

protected override async Task OnInitializedAsync()
{
forecasts =
await Http.GetFromJsonAsync<WeatherForecast[]>

("sample-data/weather.json");

FetchData.razor.es
http://Http.Ison

188 Implementing C# 11 and NET 7.0

public class WeatherForecast

{

public DateOnly Date { get; set; }

public int TemperatureC { get; set; }

public string? Summary { get; set; }

public int TemperatureF =»> 32 + (int)(TemperatureC / 0.5556);
}

}

We are inheriting from ComponentBase class because every Razor component
must inherit from ComponentBase. Please note that we have also called our class
FetchDataBase, which is different from our original FetchData component.
This is because Blazor would still treat these two files as two separate classes. The
implementation of code-behind functionality is performed via inheritance. This
is also why we have changed the access modifier on all members from private to
protected.

Please note the field with the [Inject] attribute. This attribute is used for injecting
services into code-behind files of Razor components instead of using the constructor
injection. This attribute is equivalent to using @inject in Razor components.

In this class, we are loading some data from the weather. json file that can be found
in the sample-data folder when the component is initiated. The content of the file
is as follows:

(

"date": "2022-01-06",

"temperatureC": 1,

"summary": "Freezing"
b

{
"date": "2022-01-07",

"temperatureC": 14,

"summary": "Bracing”

Blazor and WebAssembly on NET W 189

b

"date": "2022-01-08",
"temperatureC": -13,

"summary": "Freezing"

b

{
"date": "2022-01-09",

"temperatureC": -16,

"summary": "Balmy"

b

{
"date": "2022-01-10",

"temperatureC": -2,

"summary"”: "Chilly"

]

Now, we will replace the content of the FetchData. razor file with the following:

@page "/fetchdata"
@inherits FetchDataBase

<PageTitle>Weather forecast</PageTitle>
<hl>Weather forecast</hl>
<p>This component demonstrates fetching data from the server.</p>

@if (forecasts == null)
{

<p>Loading...</p>

}

else
{
<table class="table">
<thead>

190

Implementing C# 11 and NET 7.0

}

As we can see, the entire icode section has been removed. And the file now inherits
from the FetchDataBase class. Otherwise, it is functionally identical to what it was
before.

Another interesting feature of Blazor is its ability to interoperate with JavaScript on
your Web page, which we will have a look at next.

<tr>
<th»Date</thy
<thy>Temp. (C)</th>
<th>Temp. (F)</thy
<th>Summary</th>
</tr>
</thead>
<tbody>
@foreach (var forecast in forecasts)
{
<try
<td>@forecast.Date.ToShortDateString()</td>
<td>@forecast.TemperatureC</td>
<td>@forecast.TemperatureF</td>
<td>@forecast.Summary</td>
</t

}
</tbody>

</table>

JavaScript Interop

JavaScript interop functionality in Blazor allows both the C# code to call JavaScript
methods and the JavaScript code to call C# methods. Let us demonstrate how it
works. First, we will add the following script element to the index. html file from
the wwwroot folder anywhere below the reference to the Blazor JavaScript library:

<script>

window.displayAlert = () => {

A . o |

alert(‘Lounter successtully 1ncreased),

}

</script>

Blazor and WebAssembly on NET W 191

Please note that the displayAlert method is added to the scope of the window.
This is the scope Blazor works with. Otherwise, the method would be unreachable
to Blazor code.

Then, we will open the Counter. razor file in the Pages folder and will replace its
content with the following:

@page "/counter”
@inject IJSRuntime 1S

<PageTitle>Counter</PageTitle>
<h1>Counter</hl>
<p role="status">Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</
button>

{icode {

private int currentCount = @;

private async Task IncrementCount()

{

currentCount++;

await JS.InvokeVoidAsync("displayAlert");

}

To make the JavaScript interop work, we have injected an IJSRuntime object, which
is registered automatically alongside all other Blazor dependencies. This service
allows us to call any suitable JavaScript method. In our case, we are calling the
displayAlert method via InvokeVoidAsync because it does not return any value.
However, if we wanted to extract a value from a JavaScript method, we would use
InvokeAsync instead. Also, if the JavaScript method accepts any parameters, we
would pass them after the method name. For example, if we had a method called

getFullName that accepted two string parameters and returned a string, we would
call it in the following manner:

192 W Implementing C# 11 and NET 7.0

var fullName = await JS.InvokeAsync<stringy("getFullName", "John",
"Smith");

To call a C# method from JavaScript, the method must be a public static task with
[3SInvokable] attribute. Then, to invoke this method from JavaScript, you will
need to use DotNet object, which is available in the Blazor JavaScript library. The call
needs to be constructed as follows:

DotNet. invokeMethodAsync('{Namespace Name}', '{.NET Method Name}',
{parameters});

Next, we will have a look at how to pass parameters from a Razor component to its
child components.

Passing parameters to Razor components

To pass parameters from one Razor Component to its child component, the
type representing the child component needs to be public and marked with the
[Parameter] attribute. For example, we can change the increment logic in our
Counter component. Instead of getting it to increment by one, we can make it
increase by a custom number when the button is clicked. To do so, we have modified
the content of the component by adding the IncrementBy property to it, which is
marked with the [Parameter] attribute:

<PageTitle>Counter</PageTitle>
<h1>Counter</hl>
<p role="status">Current count: @currentCount</p»

<button class="btn btn-primary" @onclick="IncrementCount">Click me</
button>

@code {

private int currentCount = 0;

private async Task IncrementCount()
!

currentCount += IncrementBy;

await JS.InvokeVoidAsync("displayAlert");

Blazor and WebAssembly on NET W 193

[Parameter]

public int IncrementBy { get; set; } = 1;
}

Now, all we need to do is just set the value of this property the same way we set
attribute values in HTML. To demonstrate this, we will change the content of our
Index. razor file to the following;

oage /"

<Counter IncrementBy="5" />

Now, if we launch our application, the Counter component will be displayed on the
homepage. And if we click the button, the number will increase by one.

So far, we have only looked at the examples that used the default compilation
mechanism for Blazor WebAssembly: compilation into NET Intermediate Language
(IL), which uses just-in-time (JIT) compilation into the machine instructions when
the code is run. So, when the application runs, every piece of its logic is interpreted
into low-level machine instruction as it is being read.

But there is also another compilation mechanism that can be used in Blazor
WebAssembly: Ahead-of-Time (AoT) compilation, which we will look at next.

Ahead-of-time compilation

Ahead-of-time compilation ensures that the application is pre-compiled into a set
of hardware-specific instructions. So, there is no intermediate language and no per-
instruction interpretation. The hardware already understands how to run everything
inside the executable directly.

Because there is no intermediate interpretation step, the execution of such an
application is quicker. However, there is also a downside. The process of preparing
the executable for specific hardware will make the file larger. Hence, the initial
download of the file will be longer.

To prepare your development environment, you will need to install wasm-tools
workload, which can be done by executing the following command in the terminal:

dotnet workload install wasm-tools

Next, we will need to add the following section to the . csproj file:
<PropertyGroup>

<RunAOTCompilation>true</RunAOTCompilation>
</PropertyGroup>

194 Implementing C# 11 and NET 7.0

Since Aol compilation creates a self-contained executable that no longer relies on
any external NET dependencies, you cannot run it in Debug mode. Therefore, to
compile your project into an executable, you will need to publish it in Release mode.
This can be done by executing the following command from the project folder:

dotnet publish -c Release

Next, we will briefly cover an alternative Blazor WebAssembly project template that
you can use.

Empty Blazor WebAssembly template

If you use the default Blazor WebAssembly project template, it will give you all
the dependencies and examples that you need. But then you will have to remove
all the default Razor Components because they have been intended purely for
demonstration purposes and do not provide any useful functionality.

But, if you are already familiar with Blazor, you can just initiate an empty Blazor
project that does not have any of these demo components. The template is called
blazorwasm-empty and can be applied to a new project by executing the following
command:

dotnet new blazorwasm-empty -o EmptyBlazorWasm

Once created, the project will have fewer files than the original Blazor WebAssembly
project. The difference is demonstrated in figure 7.1:

4 +&] BlazorWasmDemo 4 + & EmptyBlazortWasm
» & Connected Services > & Connected Services
» & Dependencies b #8 Dependencies
> agd Properties 483 Properties
» & @ wwwroot + [launchSettings json
48 Pages > 8@ wwwroot
+[B Counterrazor 45 Pages
+[@ FetchData razor +[2 Index razor
+[@ Index razor +@ _Imports razor
480 Shared +[App.razor
> +[@ MainLayot razor +[@ MainLayout razor
b +[& NavMenu razor b +C# Program.cs
+[8 SurveyPrompt razor
+@ _Imports. razor

Program.es

+[App.razor
» +C# Program.cs

Figure 7.1: The difference between the default Blazor WebAssembly project and an empty project

So far, we have covered Blazor WebAssembly as a stand-alone, self-contained
application. But we can also host it inside an ASPNET Core application and make it
load automatically as one of its views.

Blazor and WebAssembly on NET W 195

Hosting Blazor WebAssembly in ASP.NET
Core

It is possible to create a Blazor WebAssembly project that will be hosted in an
ASPNET Core application. All you have to do is select such an option while
creating a project from this template. Or you can specify --hosted flag to the CLI
command. For example, to create a hosted Blazor WebAssembly application called
HostedBlazoriasmDemo, we can execute the following command:

dotnet new blazorwasm -o HostedBlazorWasmDemo --hosted

This command will create a solution called HostedBlazoriWasmDemo. There will be
three project folders placed inside these folders: Client, Server, and Shared:

¢ (lient is our Blazor WebAssembly application.
o Sever is the ASPNET Core application that hosts WebAssembly.
s Shared isa class library that contains components used by both applications.

When a Blazor WebAssembly is hosted by ASPNET Core, it is the ASPNET Core
project that you will need to bring up to see the entire setup in action. You will no
longer need to run the Blazor application on its own. So, in our specific case, it is the

project inside the Server folder that needs to be run to bring up both the server and
the WebAssembly.

We can also add a hosted Blazor WebAssembly application to an existing ASPNET
Core application. We can have a look at our project structure to find out how to doit.

Adding a hoster Blazor WebAssembly to an
existing ASP.NET core application

To host a Blazor WebAssembly application, you need to have the following NuGet
package installed in your ASPNET Core application:

Microsoft.AspNetCore.Components.WebAssembly.Server

Program.es
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET

Then, you will need to reference the Blazor WebAssembly project from the ASP.
NET Core application to ensure that the WebAssembly is available before the server
application is ready. For example, our HostedBlazorWasmDemo.Server.csproj
file has a reference to HostedBlazorWasmDemo. Client project.

Then, you will need to enable WebAssembly hosting by adding the following line to
the Program. cs file of the ASPNET Core project:

app.UseBlazorFrameworkFiles();

1% Implementing C# 11 and NET 7.0

Then, if you do nothave any defaultindex page configured in your server application,
Blazor WeBAssembly will take over and will be your index page. Otherwise, if the
Blazor application is not meant to be on the homepage, you will need to add a
.cshtml file for the Razor Page or the MVC view that you want to host your Blazor
application in and add the following content to it:

@using { name of the Blazor application namespace that hosts the
component that you need };

<component type="typeof({ name of the Razor Component you want to host
})II

render-mode="WebAssemblyPrerendered" />

<script src="_framework/blazor.webassembly.js"></script>

This concludes the basic overview of hosting a Blazor application inside an ASP.
NET Core project. Since such a setup uses both the client-side and the server-
side components, now is an appropriate time to talk about Blazor forms and their
validation.

Form validation in Blazor

In Blazor, you can use forms to post editable data to the server, just like you can
do so in standard HTML pages. The data can also be validated with validation
attributes, which are custom classes that can perform any validation logic. These
classes inherit from ValidationAttribute class of the System.ComponentModel.
DataAnnotations namespace. Since NET 7, you can also pass services into these
classes from dependency injection.

Let us create a MaxIncrementValidator.cs file inside our Client project folder
and populate it with the following content:

using System.ComponentModel.DataAnnotations;

namespace HostedBlazorWasmDemo.Client;

Program.es
ASP.NET
MaxIncrementValidator.es

public class MaxIncrementValidator : ValidationAttribute

{

protected override ValidationResult? IsValid(object? value,
ValidationContext validationContext)

{

var paramValuesConfig = validationContext.
GetRequiredService<ParamvaluesConfig>();

if ((int)value > paramValuesConfig.MaxIncrementValue)

return new ValidationResult($"Values greater than

Blazor and WebAssembly on .NET

197

{paramValuesConfig.MaxIncrementValue

} are not allowed!", new[] { validationContext.
MemberName });

return ValidationResult.Success;

public class ParamValuesConfig

{
public int MaxIncrementValue { get; set; } = 5;

}

In this class, we are checking that an integer value is not greater than a specific
amount. The amount we compare it against is extracted from an instance of the
ParamValuesConfig service and is 5 by default. We resolve this service via the
ValidationContext parameter. To register this service, we just need to add the

following line to the Program. cs file:

builder.Services.AddScoped<ParamvaluesConfig>();

Next, we will need to add a model to our form so we can then apply this attribute
to. In our example, we will create a Models folder inside the project and add

CounterModel. cs file to it with the following content:

namespace HostedBlazorWasmDemo.Client.Models;

public class CounterModel

{

[MaxIncrementValidator]

public int IncrementBy { get; set; } = 1;

Program.es

}

As you can see, we have an integer field called IncrementBy. This is the field to
which we are applying the attribute.

Next, we will replace the content of the Counter. razor file with the following:

{¥page "/counter”
@using HostedBlazorWasmDemo.Client.Models;

<PageTitle>Counter</PageTitle>

198 W Implementing C# 11and NET 7.0

<h1>Counter</hl>»
<p role="status">Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</
button>

<EditForm Model="@counterModel" >
<DataAnnotationsValidator />
<ValidationSummary />
<label for="incrementBy">Increment by:</label>

<InputNumber id="incrementBy" @bind-Value="counterModel.IncrementBy"
/>
</EditForm»

Inhere, we have EditForm Razor component, which represents a Blazor form. Inside
of it, we have DataAnnotationsValidator and ValidationSummary components,
which provide the ability to validate the form and display the validation error. There
is an InputNumber Razor component, which we are binding to the IncrementBy
field of the CounterModel instance.

Now, we will need to make some changes to our @code block. It will need to look as
follows:

@code {

private CounterModel counterModel = new();

private int currentCount = @;

private async Task IncrementCount()

{

currentCount += counterModel.IncrementBy;

}

Now, if we build and launch our Server project and navigate to the Counter page,
we can test our validation logic. If we enter any number into the IncrementBy field
higher than 5, we should see a validation error, as shown in figure 7.2:

Blazor and WebAssembly on NET M 199

Counter

Current count: 18

« Values greated than 5 are not allowed!

Increment by {6

Figure 7.2: Validation ervor on Blazor form

This concludes the overview of form validation in Blazor. Now, we will have a look
at its navigation functionality and the ability to pass state from one Razor component
to the next.

NavigationManager and passing state between
pages

Blazor comes with NavigationManager class, which allows to navigate from one
page to another. As of NET version 7, you can also use it to pass information between
the pages.

To demonstrate it, we have replaced the content of the Index.razor component
with the following;

@page II/II

@inject NavigationManager NavigationManager

<button class="btn btn-primary" @onclick="NavigateToCounterComponent">
Go to Counter
<<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>