
Build Mobile Apps
with SwiftUI and
Firebase

Learn SwiftUI and Firebase by Building
Real-World Applications Communicating
with a Backend
—
Sullivan De Carli

Build Mobile Apps
with SwiftUI and

Firebase
Learn SwiftUI and Firebase by

Building Real-World
Applications Communicating

with a Backend

Sullivan De Carli

Build Mobile Apps with SwiftUI and Firebase: Learn SwiftUI and Firebase

by Building Real-World Applications Communicating with a Backend

ISBN-13 (pbk): 978-1-4842-9283-9		 ISBN-13 (electronic): 978-1-4842-9452-9
https://doi.org/10.1007/978-1-4842-9452-9

Copyright © 2023 by Sullivan De Carli

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on the Github repository: https://github.com/Apress/Build-Mobile-Apps-
with-SwiftUI-and-Firebase. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Sullivan De Carli
Charleville-Mézières, France

https://doi.org/10.1007/978-1-4842-9452-9

I’d like to thank Tiago, Luis, and all the people who helped
me learn how to code along the way. I’d also like to thank

my girlfriend and my family for their support.

v

Table of Contents

About the Author��ix

About the Technical Reviewer��xi

Chapter 1: �Introduction to SwiftUI���1

Xcode Walk-Through��1

What Makes SwiftUI Different��8

Coding with SwiftUI��11

Summary���15

Chapter 2: �Introduction to Firebase���17

What Is Firebase?��17

Setting Up a Firebase Account and Project��20

Firebase Walk-Through��24

Connect Your iOS Application to Firebase��27

You Might Be Wondering What This File Is For���34

Summary���41

Chapter 3: �Playing with Firestore��43

Introducing the MVVM Design Pattern���44

Create Data to Firestore���46

Read Data from Firestore���55

Pass Data from Views��58

vi

Update Data from Firestore��62

Delete Data from Firestore���65

Summary���68

Chapter 4: �Authenticate Users with Firebase Auth������������������������������71

Setting Up Firebase Authenticate���72

Manage User Sessions���75

Sign Up with Email and Password���79

What If You Forget Your Password?��85

Secure the Firestore Database���88

Security Rules��92

Summary���94

Chapter 5: �Advanced Firestore��95

Introducing Our New Project��95

Why Are We Creating a New Firebase Project?��97

Call the Backend with Async/Await��100

Summary���104

Chapter 6: �Manage Pictures with Firebase Storage��������������������������105

Access the iPhone Camera and Library���105

Upload Pictures to Firebase Storage��108

Integrate Large Documents with Firestore��112

Summary���116

Chapter 7: �Authenticate with Apple���117

Set Up the Project and “Sign in with Apple”��118

Integrate “Sign in with Apple”���120

Summary���128

Table of Contents

vii

Chapter 8: �Adding Features Without Coding��������������������������������������129

Exploring Firebase Extension���129

Track Our App Usage with Analytics��132

Securing Our Database��134

Summary���135

�Index��137

Table of Contents

ix

About the Author

Sullivan De Carli is currently Consultant for Deloitte, where he works as

an iOS developer with several Fortune 500 companies as clients. He began

his development journey in 2017 and graduated from the Apple Developer

Academy in Naples, Italy, in 2020. He has built apps for personal projects

and successful entrepreneurial ventures.

xi

About the Technical Reviewer

Alexander Nnakwue is a self-taught software engineer with experience

in backend and full-stack engineering. With an experience spanning

more than four years, he loves to solve problems at scale. Currently, he

is interested in startups, open source web development, and distributed

systems. In his spare time, he loves watching soccer and listening to all

genres of music.

1

CHAPTER 1

Introduction to
SwiftUI
This first chapter is meant for beginners in iOS development. I will walk

you through the main functionalities of Xcode, your tool to create projects

and run code. Then, we will create a simple application: a map displaying

a few places.

This way, we will explore some SwiftUI APIs to build the user interface

and some basics of Swift such as creating a model. Let’s get started!

�Xcode Walk-Through
To build an iOS application, you first need Xcode. This software made by

Apple will be your program to write Swift code, create a user interface,

build and debug your project, and much more. Think of it like Photoshop

for photography or Sketch and Figma for UI design.

The software is available on the Mac App Store; you can easily

download it from there. Navigate to the App Store on your Mac and search

for Xcode, and then click DOWNLOAD (I have “OPEN” since I already

downloaded it):

© Sullivan De Carli 2023
S. De Carli, Build Mobile Apps with SwiftUI and Firebase,
https://doi.org/10.1007/978-1-4842-9452-9_1

https://doi.org/10.1007/978-1-4842-9452-9_1

2

Figure 1-1.  Download Xcode from the App Store

At the time of writing, the latest version is Xcode 14.1. I recommend

you download at least Xcode 14; otherwise, a lot of functionalities will not

be replicable throughout the book.

The download will take some time since it is quite a heavy program

(7GB). Once you have downloaded it, you can open it. It will ask you if you

want to download additional components for macOS and watchOS. You

can skip this step since we only need iOS for the scope of this book.

Then, this page will appear, inviting you to start a project:

Chapter 1 Introduction to SwiftUI

3

Figure 1-2.  Xcode welcome screen

Click Create a new Xcode project, and the following page will appear:

Chapter 1 Introduction to SwiftUI

4

Figure 1-3.  Xcode – choosing a template

Xcode will suggest to you a series of templates. In fact, you can build a

lot of things using the Swift language such as an Apple Watch app, a game

that runs on the iPhone, a Safari extension, or a utility app for Mac. We will

select App from the iOS platform for now. It will be the same for the other

projects although our application will also be able to run on the iPad.

Now, I invite you to enter the word Discover; this is going to be the

name of our first project written with SwiftUI.

Also, make sure that the SwiftUI framework is selected together with

the Swift language.

(Make sure to have your name or enterprise in the Team field. If

you’re new to Xcode, it is your Apple account that you use for the App

Store. That should be your team’s name. For me it is “Sullivan De Carli

(Personal Team).”

Chapter 1 Introduction to SwiftUI

5

Figure 1-4.  Xcode – settings for the project

Great! Now save your project wherever you prefer; I usually save it to

my desktop. We can start exploring the Xcode functionalities!

Chapter 1 Introduction to SwiftUI

6

Figure 1-5.  Xcode – walk-through

Xcode is composed of different tabs; each one has a different purpose:

1 – The left tab is showing all the files that your project contains. By

default, there will be three main folders: One contains your app entry

point named “DiscoverApp” like an index.html for the web developers.

The ContentView comes by default; it is a starter template to present a user

interface. Finally, there is an Assets folder that you can use to store your

images and videos; this is useful since it will reduce the size of any assets

that you upload. This folder will also contain your app logo.

The other two are for testing purposes. From there you can run tests to

see if your code is robust or the user interface is responding accordingly.

There is also a filter at the bottom to search through and a series of tabs at

the top that will be useful when we are running the application.

2 – The second is where we are going to work! From there we can

write code and see the content of our files. Also, in SwiftUI, every SwiftUI

view comes with a struct called Preview (inside the green square). This is

responsible to present you the screen on the right. If you delete this code,

you won’t be able to use the Canva feature.

Chapter 1 Introduction to SwiftUI

7

3 – Canva has been introduced in 2019; it is an easy way to see the user

interface that you are building live. From there, you can see how your app

looks when you make changes in the code.

For example, try to add the keyword .bold() in the second panel right

after the Text("Hello, world!"). Your text will turn to bold right away.

4 – The right tab is going to be your points of information for the file

you are currently viewing. From there, you can rename it, change the

programming language, and even edit some user interface elements, such

as fonts and spacing between elements if you navigate to the last button

at the top. Note that we won’t be using this section much throughout

the book.

Now, you can build your project. I invite you to click the build button,

at the top left of Xcode as follows:

Figure 1-6.  Simulator running on Xcode

Chapter 1 Introduction to SwiftUI

8

Once you click it, a Simulator app will pop up and present you with a

virtual iPhone running your application. You can also select other types of

iPhones or iPads at the top panel so you can see how what you are building

reacts to different screen sizes.

There are a lot of things to cover about Xcode. So far, what I highlighted

are the main things to know and recognize, but we will discover more

functionalities by coding. We will do just that in the next chapter and build

our first application using Xcode and SwiftUI.

�What Makes SwiftUI Different
SwiftUI has been introduced in 2019 by Apple at their WWDC; it is the

declarative framework used by developers around the world to build

applications for the Apple platforms. At the time of writing, we are at

version 4.

SwiftUI makes you write better apps with less code as Apple states. Is

it true? Prior to SwiftUI, we were using UIKit, an imperative framework

introduced by Apple in 2014 to build user interfaces. It is still available, but

it is slowly being replaced by Apple, since the company shifted the focus to

SwiftUI.

To understand the evolution of these two frameworks, let’s do a

comparison by building two user interfaces composed of a list that

displays elements from 1 to 10. For one of them, we will use UIKit, and the

other will be built using SwiftUI. The user interface will look like this:

Chapter 1 Introduction to SwiftUI

9

Figure 1-7.  A list displaying on an iPhone

Observe the following code in UIKit:

import UIKit

class ViewController: UIViewController, UITableViewDelegate,

UITableViewDataSource {

 let tableView = UITableView()

 override func viewDidLoad() {

 super.viewDidLoad()

 view.addSubview(tableView)

 �tableView.register(UITableViewCell.self,

forCellReuseIdentifier: "Cell")

 tableView.dataSource = self

 tableView.delegate = self

 }

 override func viewDidLayoutSubviews() {

 super.viewDidLayoutSubviews()

 tableView.frame = view.bounds

 }

Chapter 1 Introduction to SwiftUI

10

 �func tableView(_ tableView: UITableView,

numberOfRowsInSection section: Int) -> Int {

 return 10

 }

 �func tableView(_ tableView: UITableView, cellForRowAt

indexPath: IndexPath) -> UITableViewCell {

 �let cell = tableView.dequeueReusableCell(withIdentifier:

"Cell", for: indexPath)

 cell.textLabel?.text = "\(indexPath.row)"

 return cell

 }

}

As you can see, we import the framework UIKit at the top. We pass two

delegates to our class: UITableViewDelegate and UITableViewDataSource.

Then, we declare a UITableView to create the list that we manually added

in the viewDidLoad method.

This method is being called when the view is being loaded, presented

to the user. We also conform to this protocol with our two functions that

return the numbers of rows and what they are composed of, here a cell

with a text displaying the number of the current row.

Quite a bit of code to conform to the protocol and to present a basic

user interface composed of ten rows.

Let’s now code it using SwiftUI:

import SwiftUI

struct ContentView: View {

 var body: some View {

 List(0..<10) { index in

Chapter 1 Introduction to SwiftUI

11

 Text("\(index)")

 }

 }

}

That’s it! As you can see, with SwiftUI our list is way shorter. We

import the framework at the top of the file. Then we directly declare a list

in the body variable that contains 11 elements from zero to ten and its

composition: a text displaying one to ten. It is literally two lines of code to

create a List, much clearer and easier to read.

Now that we see that SwiftUI is much more efficient to build user

interfaces, we are going to introduce a few bases. We will create a little

application to introduce some APIs.

�Coding with SwiftUI
To understand SwiftUI, the best thing to do is to build an application. So

we are going to build a simple application that displays a few places on a

map. Along with it, I will explain a few basics about SwiftUI.

Head to the Xcode project we created earlier called Discover. Run the

application. You should have the following starter template:

Chapter 1 Introduction to SwiftUI

12

Figure 1-8.  Xcode running with Simulator

To recreate this screen, since it features Apple Maps, we need to import

a framework called MapKit to access their APIs. So add the following line

of code at the top of the file:

import MapKit

Then, right over the code struct ContentView, copy/paste the

following code:

struct Place: Identifiable {

 var id = UUID()

 var title: String

 var coordinate: CLLocationCoordinate2D

 var architecte: String

}

We just implemented a model to create a few items from this model.

Let me explain to you the code:

Chapter 1 Introduction to SwiftUI

13

struct in Swift is used to store variables. Here we give the name of this

struct: Place.

Identifiable is a protocol used to make this class identifiable. Since

we are going to display the data in a List, we need to make each item

identifiable.

Then, we give a few variables of type UUID to give a unique identifier,

String for words, and CLLocationCoordinate2D to pass coordinates

(latitude and longitude).

Great, we just created what is called a model, a modularization of our

object (Place) with a few variables.

Now we can take care of our user interface.

Right under struct ContentView, add the following line of code:

@State private var region = MKCoordinateRegion(center: CLLocat

ionCoordinate2D(latitude: 41.9028, longitude: 12.4964), span:

MKCoordinateSpan(latitudeDelta: 0.1, longitudeDelta: 0.1))

What is the @State variable?

A property wrapper type that can read and write a value
managed by SwiftUI.

—From the Apple documentation

This will allow us to manipulate data. Here we are passing coordinates

that correspond to the coordinates of the city of Rome.

Then, we are declaring a constant, which contains an array of places.

An array declared by [] is useful to present a series of data.

Chapter 1 Introduction to SwiftUI

14

Copy/paste the following code right after the @State you declared earlier:

let annotations = [

 �Place(title: "Fontana di Trevi", coordinate: CLLoc

ationCoordinate2D(latitude: 41.900833, longitude:

12.483056), architecte: "Nicola Salvi"),

 �Place(title: "Pantheon", coordinate: CLLocationCoo

rdinate2D(latitude: 41.8986, longitude: 12.4768),

architecte: "Marcus Agrippa"),

 �Place(title: "Villa Medici", coordinate: CLLocation

Coordinate2D(latitude: 41.908, longitude: 12.483),

architecte: "Bartolomeo Ammannati"),

 �Place(title: "Colosseo", coordinate: CLLocationCoor

dinate2D(latitude: 41.890278, longitude: 12.492222),

architecte: "Flavian Emperors")

]

Great, now we have all the necessary input to present locations on a

Map and a few places to display.

Inside the body variable, replace the VStack with the following line

of code:

Map(coordinateRegion: $region, annotationItems: annotations) {

 MapMarker(coordinate: $0.coordinate)

 }

This Map modifier will present a map in our application. We are

passing a region parameter that we defined earlier with the coordinates of

Rome, using the $ sign; it is the syntax to use with the @State variable. Also,

we are adding annotations (the four places that we declared earlier).

To present these annotations, we are using MapMarker with the

coordinates passed in our object.

If you correctly follow these short tutorials, you should have your

Canva presenting a map with four annotations as follows:

Chapter 1 Introduction to SwiftUI

15

Figure 1-9.  Our map application

�Summary
If you are new to Swift, this chapter has been useful to introduce you to

Xcode, your tool to build applications for the Apple platform. Then, we saw

the basics of Swift by creating a model and writing static data. Then, we

used a map to display annotations, importing from the framework MapKit

to access Apple’s map APIs.

Now that we have a clearer idea of how to create a static model of data

and present them, we can go ahead and talk about the backend. The next

chapters will be focused on Firebase and how to download data from a

backend, present them, modify them, and handle user input. Let’s dive

into the Firebase console.

Chapter 1 Introduction to SwiftUI

17

CHAPTER 2

Introduction
to Firebase
I am going to introduce you to the Firebase console and how to create a

new project and connect an iOS application.

We will cover what is Firebase, why we are selecting this backend over

others, and the advantages and disadvantages that come with it.

There is a walk-through to create your first Firebase project directly

from the web browser. We are also going to connect our iOS application to

talk to Firebase through its APIs.

By the end of this chapter, you will be able to create a new iOS app

linked to the Firebase backend. For reference, please go to the Firebase

documentation at the following link: HTTPS://FIREBASE.GOOGLE.COM/

DOCS/IOS/SETUP.

�What Is Firebase?
Firebase is what we call a backend as a service (BaaS), which means that

rather than running your server to run your online applications, you pass

through their services to read, write, update, and delete data, authenticate

your users, and many more things!

Have a look at the following graphic that shows a native iOS

application built with a custom backend running on the cloud:

© Sullivan De Carli 2023
S. De Carli, Build Mobile Apps with SwiftUI and Firebase,
https://doi.org/10.1007/978-1-4842-9452-9_2

https://doi.org/10.1007/978-1-4842-9452-9_2

18

Figure 2-1.  An iOS app built with a backend host on a cloud service

Figure 2-2.  An iOS app built with Firebase’s backend

As you can see, the app will be communicating with a virtual machine

usually coded in Ruby, Node.js, or PHP, itself hosted by a cloud service

(which could also be physical, but it is rare nowadays) such as Amazon

Web Services, Google Cloud Platform, Microsoft Azure, or whatever

service. In complex applications with a large user base, it usually requires

a frontend developer, in our case an iOS developer; a backend developer

to develop the logic and the APIs; and finally a DevOps, responsible

for bringing all of that to a cloud service and distributing it. A full-stack

developer can also do it, but it is rare and requires a lot of experience.

Now, let’s have a look at an iOS application built with Firebase:

Chapter 2 Introduction to Firebase

19

As you see, the architecture is way easier. Our iOS is notifying and

receiving data from Firebase using their APIs that come along with great

documentation. There is no need to write code on the server side or host

it to a third-party provider since it is already built on top of Google Cloud

with no deployment needed by you! Additionally, you can still run backend

code, thanks to the Firebase Cloud function, if you want to achieve more

complex interactions later. In terms of a team, you need an iOS developer,

and you’re ready to publish an application on the App Store.

We have seen how much easier it is to use Firebase rather than running

your backend code, but there is more: it comes with a series of out-of-the-

box tools that help speed up your development.

For example, they have their APIs to authenticate a user with multiple

third-party providers such as Apple, Facebook, Google, etc. They have

Google Analytics preinstalled and ready to go.

Additionally, there are a series of extensions with third-party providers

to sign up users to an email list, adding in-app purchase with RevenueCat

with no code required.

You can discover them at this link:

HTTPS://FIREBASE.GOOGLE.COM/PRODUCTS/EXTENSIONS

Firebase comes with advantages and disadvantages. Here is the list:

The pros:

–– You are faster to ship your application. You don’t need to write

code on the backend unless you need to execute some more

advanced functionalities.

–– You have access to Google Cloud Platform with no operations

needed on your side.

Chapter 2 Introduction to Firebase

20

–– You get out-of-the-box authenticate APIs with third parties. You

don’t need to use an API for Google sign-in and another one for

Facebook sign-in, for example. You can pass directly through

Firebase’s APIs.

–– You don’t have to worry about scalability and managing servers.

The cons:

–– The data don’t belong to you to store them. The best thing to do

is to run a snapshot of your data every day and store it in a

secure place.

–– You could be limited in some advanced applications where you

need full control of the backend because the user interface is

relying heavily on the backend.

Overall, Firebase is a great option if you want to release an application

as fast as possible, the cheapest since you don’t need to hire a backend

developer. You can concentrate on what matters: building your product

and monitoring the usage so you can implement features that your users

want, which is also easier thanks to event follow-up and app analytics

powered by Google Analytics that comes “for free.”

That being said, let’s discover Firebase, create our first project, and

make our iOS app communicate with it.

�Setting Up a Firebase Account and Project
To start on Firebase, you need to sign up for their services, which belong

to Google, so you will need a Gmail account. If you don’t already have

one, sign up for a Gmail account first. Then go to the Firebase website

(https://firebase.google.com), click “Get started,” and you will be on

your Firebase’s console. You should see something like this:

Chapter 2 Introduction to Firebase

https://firebase.google.com

21

Figure 2-3.  Homepage of the Firebase console

Click Create a project to create your first project on Firebase. I am

going to guide you through every step, so you don’t get lost on your way. It

requires you to follow three straightforward steps.

Chapter 2 Introduction to Firebase

22

Let’s start with the first one:

For step 1, you just need to give it a name. I invite you to name it “Note”

since it is the application we are going to build in the next chapter, but it

doesn’t matter.

The second step is to enable Google Analytics:

Figure 2-4.  Firebase new project, step 1 – project name

Chapter 2 Introduction to Firebase

23

Figure 2-5.  Firebase new project, step 2 – Google Analytics

This comes for free with Firebase, and it gives you access to basic

data about how long your users are spending time on each screen, user

usage over weeks, etc. You can even add events later to create funnels.

For example, you will be able to find out how many users complete the

signup process and then, for all those registered users, how many of them

complete a purchase. For now, simply enable it and click Continue.

Chapter 2 Introduction to Firebase

24

The third step looks like this screen:

For now, we can simply use the Firebase default account. If you have

a website with Google Analytics tags to track usage and you want to build

a related iOS application, you might want to select directly your Google

Analytics account during this step. Click Create project, and you have

created your first project on Firebase.

�Firebase Walk-Through
You’re now on the Firebase console. This is going to be the backbone of

your application. Let me introduce it to you although we’re going to dive in

with our development in the next chapters.

Figure 2-6.  Firebase new project, step 3 –Configure Google
Analytics account

Chapter 2 Introduction to Firebase

25

Once the project is created, you will arrive at something like this:

This is a classic dashboard. In the left panel, you will get access to

different menus categorized into four sections:

Build – This is the place that we are going to explore

the most. Here we will set up our authentication

with third-party providers, create our database, and

write our security rules and add extensions, a no-

code solution.

Release & Monitor – Once we have released our

application on the App Store or even on TestFlight,

you will be able to see reports if our users

experienced crashes and even implement backend-

powered distribution, which is not part of this

book but good to have a look at because it is really

powerful for iteration.

Figure 2-7.  The Firebase console

Chapter 2 Introduction to Firebase

26

Analytics – From here you will have access to data

usages of our app for free and implement some

funnel from our code to monitor how a journey is

being completed by our users.

Engage – This is especially powerful for stores and

games. It offers features to send notifications with

promotions, present advertisements with AdMob,

and run A/B testing.

As you can imagine, there are a lot of features to cover with Firebase.

For the scope of this book, you will be 90% of the time between Xcode and

Firebase’s Build section.

On the right, you have your Google account that you can switch as

with every Google product and a “Go to docs” button. It is always good to

refer to the documentation when you want to implement something or

understand better how it works.

At the top, there is your project name. From there you can switch

between projects.

The “Spark plan” label is your billing plan; this one is for free

and comes with quite a lot of things. There is also the “pay as you go”

connected to Google Cloud Platform. You will be billed based on your

users’ usages and the number of documents written and read.

For this book, the Spark plan will be enough although we might need

to switch to pay as you go when we implement some extensions later

because they run on Google Cloud Platform. It is going to be a few cents

anyway since we are at a development stage.

It is now time to add our iOS application to talk to Firebase!

Chapter 2 Introduction to Firebase

27

�Connect Your iOS Application to Firebase
It’s time to link our application to Firebase. To achieve this we will need to

do some back-and-forth between Xcode and the Firebase console.

This walk-through is based on the Firebase documentation (https://

firebase.google.com/docs/ios/setup). At the time of writing, the

documentation doesn’t include SwiftUI, so I recommend you follow it

through.

First, we need to create a new Xcode project. Go ahead and click Create

a new Xcode project:

Then, in terms of templates, it is going to be a classic application, so

select the App template under the iOS platform:

Figure 2-8.  Xcode – welcome screen

Chapter 2 Introduction to Firebase

https://firebase.google.com/docs/ios/setup
https://firebase.google.com/docs/ios/setup

28

Figure 2-9.  Xcode – selecting an App template

Finally, we need to give a name to our project. We will call it Note since

this is the application we are building in the next chapter. Make sure to

select SwiftUI for Interface. The use of Core Data is not required since we

will have Firebase to store data:

Chapter 2 Introduction to Firebase

29

Figure 2-10.  Xcode – options for a new project

You can save your project wherever you prefer. I saved it on my

desktop. Now that our project is created, let’s see how to connect it to

Firebase. You can navigate back to the Firebase console. From the project

overview, click iOS+ as follows:

Chapter 2 Introduction to Firebase

30

Figure 2-11.  Firebase console – adding an iOS app

Firebase will present you a page inviting you to complete a five-step

process, to connect your app to Firebase.

The first thing you need to do is to grab the Apple bundle ID. You

will find it in Xcode on your main target. It is usually composed like the

following:

com.[name of your team].[name of your project].

Please, check the following screenshot if you don’t know where it is

located:

Chapter 2 Introduction to Firebase

31

Figure 2-12.  Xcode – where to find the bundle identifier

Once you have copied your identifier, you can copy/paste it. You also

have the option to leave a nickname and the App Store ID, but these are

optional:

Chapter 2 Introduction to Firebase

32

Figure 2-13.  Add Firebase to your Apple app – step 1

Click Continue, and this will bring you to step 2, downloading the

GoogleService-Info.plist file. Click the blue download button and save

your file wherever you prefer. I saved it on my desktop:

Chapter 2 Introduction to Firebase

33

Figure 2-14.  Add Firebase to your Apple app – step 2

Now that you have your file, you can drag and drop it to your Xcode

folder from where you saved it. In my case, I dragged the file with my

mouse directly to Xcode and then clicked the Finish button.

Make sure that Create folder references, Copy items if needed, and the

target Note are selected

Chapter 2 Introduction to Firebase

34

Figure 2-15.  Drag and drop the GoogleService-Info.plist file to Xcode

Now that you have the file added to your project, Firebase will be able

to recognize your app when you are making the APIs call it. You can now

click Next.

�You Might Be Wondering What This File Is For
The GoogleService-Info.plist is a file that contains all the information to

communicate between your application and the Firebase backend; it

contains the API key, the URL where your data will be collected, and a

series of information to set up your project.

Make sure to add properly the file; otherwise, Firebase will not be able

to find the essential information to connect to your iOS application and

cause a crash when you call it.

Chapter 2 Introduction to Firebase

35

In case you lose this file for some reason, you can always find it and

download it from the Firebase console. Next to the project overview,

there is a settings button. Click Project settings and then scroll down to

SDK setup and configuration, and you will be able to download it again

from there:

That being done, we can go to step 3 and install the Firebase Software

Development Kit (SDK). This can be achieved in multiple ways. The most

popular are CocoaPods and Swift Package Manager. We will use the latter

in our case.

You can copy the URL suggested by Firebase indicated in the following

figure (https://github.com/firebase/firebase-ios-sdk):

Figure 2-16.  Finding the GoogleService-Info.plist file in the console

Chapter 2 Introduction to Firebase

https://github.com/firebase/firebase-ios-sdk

36

Figure 2-17.  Add Firebase to your apple app – step 3

Once you have copied it, go back to Xcode and, at the top-left level,

click File ➤ Add Packages…, and a pop-up screen will appear. Enter the

URL you just copied into the search bar, and the Firebase-ios-sdk package

should appear as in the following figure:

Chapter 2 Introduction to Firebase

37

Figure 2-18.  Xcode – adding the package

Note S ince I already added it to previous projects, it is already
appearing under the section “Recently used.”

Click the blue button at the bottom right called Add Package, and

fetching will start and will propose you to add a product. For now, we will

only use the three following packages:

–– FirebaseFirestore

–– FirebaseFirestoreSwift

–– FirebaseAuth

Only these three modules will be necessary for our next chapters:

replicating the Apple Notes app. However, for the following project, we will

also be using Firebase Analytics, Firebase Storage, and more.

Chapter 2 Introduction to Firebase

38

Once these three modules are selected, click Add Package again as in

the following figure:

The installation will proceed for a few minutes depending on your

Internet connection. Then you will see your project with the packages you

installed, and you will be ready to use Firebase’s APIs.

Let’s move to step 4. In this step, we’re going to initialize Firebase from

our app main entry.

Figure 2-19.  Xcode ➤ Add Package – choosing products

Chapter 2 Introduction to Firebase

39

Figure 2-20.  Add Firebase to your Apple app – step 4

Head to your file NoteApp.swift in Xcode and import Firebase at

the top:

import FirebaseCore

Then, add the following code over the @main keyword:

class AppDelegate: NSObject, UIApplicationDelegate {

 �func application(_ application: UIApplication,

didFinishLaunchingWithOptions launchOptions:

[UIApplication.LaunchOptionsKey : Any]? = nil) -> Bool {

 FirebaseApp.configure()

 return true

 }

}

Chapter 2 Introduction to Firebase

40

Then add to following line of code inside the struct but over the

body variable to register the App Delegate:

@UIApplicationDelegateAdaptor(AppDelegate.self) var delegate

Once you have implemented this code, your application will be able to

communicate with Firebase. You can run your app (click the play button in

the left tab), and you should have something like the following figure with

the print in the console:

[boringssl] boringssl_metrics_log_metric_block_invoke(144)

Failed to log metrics

Note D uring the process, Xcode will be running quite a lot of
modules from Firebase. If your MacBook is making a sound like an
airplane at landing, it is normal; it is processing lots of files.

Figure 2-21.  Xcode running and communicating to Firebase

Chapter 2 Introduction to Firebase

41

Congratulations! You have successfully set up Firebase to

communicate with your app over an HTTP request, and you will now be

able to use Firebase’s APIs to use their amazing framework. You can now

go ahead and click Continue to console:

�Summary
Over this chapter, we discovered what Firebase is and why we should

consider it in our project development. We briefly explored the console

and how to navigate the dashboard since we are going to dive in, in the

next chapters.

Also, I walked you through how to create our first Firebase project and

connect an iOS application using Swift Package Manager so you’re ready to

use their APIs.

Thanks to this setup, we are now ready to build our first working

application and communicate data between Firebase and our application.

Figure 2-22.  Add Firebase to your Apple app – step 5

Chapter 2 Introduction to Firebase

43

CHAPTER 3

Playing with Firestore
We are going to be focusing on Firebase Firestore over this chapter with a

classic programming exercise: the Create-Read-Update-Delete (CRUD).

Firestore is a NoSQL document-based database that will allow us to query,

synchronize, and store data without managing infrastructure.

After introducing our app architecture and the MVVM design pattern,

we will finally leave the “how it works” with the theory and the setup to

the coding part by building an iOS application replicating the Apple Notes

application that comes by default with Apple products. It is going to look

like the following figure:

Figure 3-1.  Screenshots of the Note application we’re going to build

© Sullivan De Carli 2023
S. De Carli, Build Mobile Apps with SwiftUI and Firebase,
https://doi.org/10.1007/978-1-4842-9452-9_3

https://doi.org/10.1007/978-1-4842-9452-9_3

44

The app will feature a list of notes – we can delete a note directly from

the main screen – a form to upload a new note, and a details screen to read

it entirely, and we will have the ability to edit our notes.

By the end of this chapter, you will be able to properly structure your

iOS project and make API calls to Firestore.

�Introducing the MVVM Design Pattern
You might be wondering what is MVVM and what it stands for. MVVM is

the short version for Model–View–View Model; it is an architecture widely

used by the community of SwiftUI developers. Consider it as a “how do I

organize my code” solution.

In Chapter 1, we played around with SwiftUI, and we kind of put all

the pieces together without any structure. That’s fine for an introduction.

However, as our app becomes more complex, it can be unreadable

and create conflicts in our code. That’s where app architecture comes

into place!

It will help us break down our code into multiples files. Each one has a

specific purpose:

–– The Model is responsible for structuring our data and

holding the logic.

–– The View Model will be responsible for managing the

data, notified by the Model, and making the call to and

from Firebase in our case.

–– The View will present our user interface to our user: lists,

buttons, text, images, and so on. It is going to be binding

the data with our View Model.

Chapter 3 Playing with Firestore

45

You might be wondering why we need an architecture at all in

our application. Well, it becomes important when you want to work

on a project with more than one person and when the application

becomes complex. It’s preventing bugs in your code. Overall, it has these

advantages:

–– We will have a separation of concern. This way, each file

has its own responsibility, and we avoid bugs and

conflicts.

–– It is easier to read and identify bugs. For example, if there

is a UI problem, you must look in your View; if there is an

HTTP request problem, the View Model is the file to look

for. Missing a data? You might have to add it inside

the Model.

Now, take a moment to see the following graphic showing the design

pattern:

Figure 3-2.  MVVM architecture in graphic

Chapter 3 Playing with Firestore

46

As you can see, the Model is communicating with the View Model,

responsible to interpret the data and pass them to the View, which is solely

responsible for presenting the user interface and notifying also the View

Model about users’ intent.

For example, in our application that we are going to build, the Model

will be composed of an identifier and a title. This structure will be notifying

the View Model responsible for making the read call to Firebase and then

presenting the data inside our View in a list.

What happens when the data flows the other way?

If it is from the View to the Model through the View Model, the View

will notify the View Model, which will interpret this action and then modify

the Model. For example, when a user deletes a note, the View will notify

the View Model, which will inform Firebase to delete that document based

on the information structured in our Model.

Now, if this still sounds abstract to you, do not worry. By practicing it in

our application during this chapter, it will be clearer to you.

�Create Data to Firestore
Before we start coding, Firebase still needs a bit of setup to work with the

Firestore database. Go to your Firebase console and head to the Firestore

Database section in the left panel and click the Create database button as

in the following figure:

Chapter 3 Playing with Firestore

47

Figure 3-3.  Firebase console – Firestore section

A pop-up will appear inviting you to complete a two-step process. The

first one is to choose how to start your database. We will go ahead with

test mode, since we are only discovering Firebase in this chapter. We don’t

need to set up rules to restrict our Firebase usage to authenticated users,

for example. Additionally, we are on the Spark plan, and we didn’t enter a

credit card yet, so we are good to go regarding billing.

The second step is to select a location. Simply choose the one closer to

you. I picked up US-Central, but if you’re going to distribute the app for the

European market, it is better to select Central Europe as the database since

it is going to be closer and slightly more efficient. Follow the two steps as

described in the following:

Chapter 3 Playing with Firestore

48

Figure 3-4.  Firestore two-step setup

Now that our database is activated, it’s time to get back to Xcode. Open

the project Note that we created and connected to Firebase earlier.

According to the MVVM architecture we spoke about earlier, we are

going to create the Model.

Click Create a new file ➤ Swift File and call it Note. Then paste the

following code:

import Foundation

import FirebaseFirestoreSwift

struct Note: Codable {

 @DocumentID var id: String?

 var title: String?

}

That’s all we need for our Model, an identifier and a title that will hold

the text we will enter later in our form.

Chapter 3 Playing with Firestore

49

Note here that we have imported FirebaseFirestoreSwift to access the

@DocumentID keyword; this comes from Firebase to help us map the

document correctly with the identifier from Firebase.

The next step is to create our View Model. This file will be responsible

for passing data to our View conforming to the Model we just created. It’s

also going to talk to Firebase using their APIs, so we need to import the

Firestore framework at the top.

Click Create a new file ➤ Swift File and name it NoteViewModel and

import the framework at the top:

import FirebaseFirestore

You can then copy/paste the following code into your file:

class NoteViewModel: ObservableObject {

 @Published var notes = [Note]()

 �private var databaseReference = Firestore.firestore().

collection("Notes")

 // function to post data

 // function to read data

 // function to update data

 // function to delete data

}

Great, we just created a class conforming to the ObservableObject; it

allows instances of this class to be used inside views later, so when changes

happen, the View will reload with the updated changes.

Then, we have created a reference to our Model with the Published to

tell our program to reload when changes happen with our Model.

Chapter 3 Playing with Firestore

50

Also, we added a variable so we can refer to the Firestore collection

that we just named Notes. It is useful to add this reference, so we don’t

need to write it multiple times when we are writing a function to fetch,

read, delete, or update data.

It is now time to add the function to post data to Firestore right under a

comment I left:

// function to post data

 func addData(title: String) {

 do {

 �_ = try databaseReference.addDocument

(data: ["title": title])

 }

 catch {

 print(error.localizedDescription)

 }

 }

There is not much to comment on here. We are using the

addDocument APIs from Firebase passing our data: the title as a string. It’s

also catching errors in case there are some; it is going to be printed in our

console with the catch.

That’s enough for our Model–View Model to post data to Firestore. It’s

now time to build our user interface. We are going to create the UI for our

form and handle the logic to present it from our ContentView.swift file.

Go ahead and click Create a new file ➤ SwiftUI View and call it

FormView:

import SwiftUI

struct FormView: View {

 @Environment(\.dismiss) var dismiss

 @State var titleText = ""

Chapter 3 Playing with Firestore

51

 var body: some View {

 // ...

 }

}

These lines of code will be helpful to handle the presentation and

handle the text entry of our user with a title.

Now let’s build a form. Add the following code inside the body variable:

NavigationStack {

 Form {

 Section {

 TextEditor(text: $titleText)

 .frame(minHeight: 200)

 }

 Section {

 Button(action: {

 //TODO: upload data

 }) {

 Text("Save now")

 }.disabled(self.titleText.isEmpty)

 .foregroundColor(.yellow)

 }

 }.navigationTitle("Publish")

 .toolbar {

 �ToolbarItemGroup(placement:

.destructiveAction) {

 Button("Cancel") {

 dismiss()

 }

 }

 }

 }

Chapter 3 Playing with Firestore

52

Great! We just added a NavigationStack with a form composed of a

TextEditor (better than TextField for long entries). Also, we added a button

to publish, which is disabled if there is no text entry, and another button as

part of the navigation at the top to dismiss it.

We can now call this screen from the ContentView.swift file! Add the

followings @State to observe the presentation:

import SwiftUI

struct ContentView: View {

 �@State private var showingSheet = false @State private var

postDetent = PresentationDetent.medium

 var body: some View {

 // ...

 }

}

struct ContentView_Previews: PreviewProvider {

 // ...

}

It’s now time to create our bottom bar with the button to present our

form modally.

Add the following code inside the body variable:

NavigationStack {

 List {

 // TODO: present our notes

 }

 .toolbar {

 ToolbarItemGroup(placement: .bottomBar) {

 Text(" X notes") // TODO

 Spacer()

Chapter 3 Playing with Firestore

53

 Button {

 // Write a new note

 showingSheet.toggle()

 } label: {

 Image(systemName: "square.and.pencil")

 }

 .imageScale(.large)

 .sheet(isPresented: $showingSheet) {

 �FormView().presentationDetents

([.large, .medium])

 }

 }

 } }.navigationTitle("Notes")

We just added another NavigationStack with a list that we are going to

fill out with data in the next section and a button at the bottom replicating

the one from the Apple Notes app, thanks to SF Symbols.

SF Symbols is a library of icons built by Apple. As of now, it
provides over 4, 400 symbols. This way, you don’t need designer
skills to integrate nice-looking icons into your application. If
you want to check out what icons you can pick up, you can
download Apple’s application at the following page:

https://developer.apple.com/sf-symbols/.

This sheet will be presented upon button tap and can be dismissed

from the form.

You can run your application and check the interaction; you should be

able to access the form and close it multiple times.

Now that we are good to go with our user interface, it’s time to post

data to Firestore and head to FormView again.

And add the following observer just over the body variable:

@ObservedObject private var viewModel = NoteViewModel()

Chapter 3 Playing with Firestore

https://developer.apple.com/sf-symbols/

54

This will make the data binding between our View and our View

Model. Now we only need to call the function we created earlier inside our

button action, where we left the TODO: upload data comment, as follows:

var body: some View {

 NavigationStack {

 Form {

 Section {

 // ..

 }

 Section {

 Button(action: {

 �self.viewModel.addData(title:

titleText)

 titleText = ""

 dismiss()

 }) {

 // ..

 }

 // ...

 }

 }.navigationTitle("Publish")

 // ...

 }

}

Et voilà! We simply recall our function from the View Model to publish

data to Firebase, passing the content of the title text. Then we dismiss the

View with dismiss().

Run your application, write some texts, and click “Save now.”

Chapter 3 Playing with Firestore

55

Figure 3-5.  Uploading data to Firestore

Let’s see what’s happens on your Firebase Firestore console:

Congratulations! We just did our first call with Firebase’s APIs, adding

a document under the Notes collection. You can even go ahead and add as

many as you want!

It’s now time to read these notes and display them inside our list!

�Read Data from Firestore
It is now time to read our notes since we have posted a few on Firestore.

Inside our ContentView.swift file, we added a NavigationView, composed

of a List. We will display the data in this list, but we haven’t added the

function to fetch these data. It’s time to head to the NoteViewModel.swift

file and add the following function under the comment that we left:

 // function to read data

 func fetchData() {

Chapter 3 Playing with Firestore

56

 �databaseReference.addSnapshotListener { (querySnapshot,

error) in

 �guard let documents = querySnapshot?.

documents else {

 print("No documents")

 return

 }

 �self.notes = documents.compactMap {

queryDocumentSnapshot -> Note? in

 �return try? queryDocumentSnapshot.data

(as: Note.self)

 }

 }

 }

This function to read data from Firestore was missing. It is adding a

listener so our frontend can receive updates from our backend in real time

based on the Model Note we have created.

Let’s use it in our ContentView now to fetch the data and display them

in a list. As we did in the FormView, we need to also observe our View

Model. Please add the following line of code, over the body variable inside

our ContentView.swift file:

 @ObservedObject private var viewModel = NoteViewModel()

Now that we are ready to listen to the updates from our View Model,

let’s implement the UI now (still in the ContentView.swift file):

import SwiftUI

struct ContentView: View {

 // ...

Chapter 3 Playing with Firestore

57

 var body: some View {

 NavigationStack {

 List {

 ForEach(viewModel.notes, id:\.id) { Note in

 VStack(alignment: .leading) {

 �Text(Note.title ?? "").font(.

system(size: 22, weight: .regular))

 }.frame(maxHeight: 200)

 }

 }.onAppear(perform: self.viewModel.fetchData)

 .toolbar {

 ToolbarItemGroup(placement: .bottomBar) {

 Text("\(viewModel.notes.count) notes")

 Spacer()

 Button {

 // ...

 } label: {

 Image(systemName: "square.and.pencil")

 }

 // ...

 }

 }

}.navigationTitle("Notes")

// ..

We just implemented a list based on our Model, attributing to each one

an identifier; otherwise, when we add or delete notes, SwiftUI wouldn’t be

able to know what to refer to. That’s what this id:\.id is for.

Also, we are fetching the data with the .OnAppear modifier, so the

function is called anytime the View appears.

Chapter 3 Playing with Firestore

58

We also added the code viewModel.notes.count to let the user know

how many notes there are registered on our application, similar to Apple’s

Notes application.

Run the app, and all the data you added will be there. I added a few

quotes from the US presidents. My list looks like this:

Figure 3-6.  Reading data from Firestore

�Pass Data from Views
Now, what if we want to read the entire quote? Not easy from the list. It

might be cool to present another screen with more details. That’s what we

are going to implement. The challenge here is to pass the data between

views with the correct identifier. Let’s do that.

We are going to create a DetailsView to present our text in a ScrollView

so we can read the whole text.

Chapter 3 Playing with Firestore

59

Create a new SwiftUI View file and call it “DetailsView” and add the

following code to it:

import SwiftUI

struct DetailsView: View {

 var note: Note

 var body: some View {

 Text("\(note.title ?? "")")

 }

}

struct DetailsView_Previews: PreviewProvider {

 static var previews: some View {

 �DetailsView(note: Note(id: "bKrivNkYirmMvHyAUBWv", title:

"Issues are never simple. One thing I'm proud of is that very

rarely will you hear me simplify the issues.Barack Obama"))

 }

}

This way, we have a reference to pass the data from the ContentView

to our DetailsView. Also, we need to init inside our preview with some

default data; otherwise, Xcode won’t let us run our application.

We also replace the Text “Hello, world” with our note’s title, passing a

default empty string in case there is no data with ?? "".

It’s now time to make the row clickable and pass the data. Let’s head

back to the ContentView file and embed the VStack with your text in a

NavigationLink modifier as follows:

struct ContentView: View {

 // ...

 var body: some View {

 NavigationStack {

Chapter 3 Playing with Firestore

60

 List(viewModel.notes, id: \.id) { Note in

 �NavigationLink(destination: DetailsView(note:

Note)) {

 VStack(alignment: .leading) {

 �Text(Note.title ?? "").font(.

system(size: 22, weight: .regular))

 }.frame(maxHeight: 200)

 } }

 }.onAppear(perform: self.viewModel.fetchData)

 }

.toolbar {

 // ...

 }

 }.navigationTitle("Notes")

} }

And this is all that we need. With SwiftUI’s NavigationLink, we just

need to pass which views we want to present and the data they need to

contain. Here we refer to the Note Model that we have also called inside

the DetailsView to make it work.

Note that the NavigationLink only works inside a NavigationView as

it is part of the protocol.

You can now run your app and click a row; it will open the DetailsView

and present you the details based on the row you clicked.

But let’s improve a bit our user interface for our DetailsView. We

will give a title to the navigation bar, and we will place our text inside a

ScrollView so we can read it entirely when the text is long. Implement the

following code inside the body variable:

 NavigationStack {

 ScrollView {

 VStack {

Chapter 3 Playing with Firestore

61

 Text(note.title ?? "")

 �.font(.system(size: 22, weight:

.regular))

 .padding()

 Spacer()

 }

 }

 }.navigationTitle("Details")

That is nicer! We are now conforming to our initial user interface:

Figure 3-7.  Navigating from a list to another view

Chapter 3 Playing with Firestore

62

Thanks to the NavigationLink, a > symbol appears automatically in

our row, indicating to our user that it is clickable. Now, what if we miswrite

a note? Let’s implement an editor for that!

�Update Data from Firestore
In this section, we will implement a new screen to edit a note and save that

text entry to Firestore. But first, let’s head to our View Model and add the

necessary functionality to update it to Firestore.

Paste the following code in NoteViewModel.swift:

// function to update data

 func updateData(title: String, id: String) {

 �databaseReference.document(id).updateData(["title" :

title]) { error in

 if let error = error {

 print(error.localizedDescription)

 } else {

 print("Note updated successfully")

 }

 }

 }

As you can see, we are passing an identifier inside our document to let

Firestore know which document needs to be updated. Then, we pass the

title to be modified inside the updateData function. As usual, we print the

errors if there are any.

Time for the user interface. We will use an alert presentation with a

TextField to let the user update the text. Add the following code at the top

of DetailsView:

 @State private var presentAlert = false

 @State private var titleText: String = ""

 @ObservedObject private var viewModel = NoteViewModel()

Chapter 3 Playing with Firestore

63

We will need these parameters for our interaction:

–– @State as a Boolean to handle the presentation of

our alert

–– @State to follow the entry of our TextField

And, of course, our View Model informs it from our View to be

updated.

We are good to go to present our Alert from our DetailsView. First, we

need to add a button “Edit” to this screen; we will do this with a toolbar.

You can add it right under the navigationTitle:

 .toolbar {

 �ToolbarItemGroup(placement:

.confirmationAction) {

 Button {

 presentAlert = true

 } label: {

 Text("Edit").bold()

 �}.alert("Note", isPresented: $presentAlert,

actions: {

 �TextField("\(note.title ?? "")", text:

$titleText)

 Button("Update", action: {

 //TODO: Update data and erase the text

 })

 �Button("Cancel", role: .cancel,

action: {

Chapter 3 Playing with Firestore

64

 presentAlert = false

 titleText = ""

 })

 }, message: {

 Text("Write your new note")

 })

 }

 }

Great! Now we can present our Alert, passing data along the way. We

can now add our function to update our notes. Add the following code

where we left the // TODO: comment, in the DetailsView:

self.viewModel.updateData(title: titleText, id: note.id ?? "")

titleText = ""

Et voilà! We are now ready to run our app and edit our notes. The field

that we enter will now populate the note selected with the appropriate

identifier.

Let’s say you want to change the citation from Abraham Lincoln

“Leave nothing for tomorrow which can be done today. - Abraham

Lincoln”

to another quote from Barack Obama:

“Change will not come if we wait for some other person, or if we wait

for some other time. - Barack Obama”

Go ahead to your list, navigate to details, and click the Edit button.

Then enter the preceding text. You will see that the text is going to be

updated in the DetailsView and then inside our List:

Chapter 3 Playing with Firestore

65

Figure 3-8.  Editing a note from our Simulator

We are now editing a note, and it’s edited in real time on our backend

and in our user interface.

Now, what if you want to delete a note? Let’s implement our last

feature.

�Delete Data from Firestore
Let’s implement our last step: deleting the data from Firestore. We left

a mark in our NoteViewModel just for that. Head to this file and add the

following code:

// function to delete data

 func deleteData(at indexSet: IndexSet) {

 indexSet.forEach { index in

 let note = notes[index]

 �databaseReference.document(note.id ?? "").delete {

error in

Chapter 3 Playing with Firestore

66

 if let error = error {

 print("\(error.localizedDescription)")

 } else {

 �print("Note with ID \(note.id ?? "")

deleted")

 }

 }

 }

 }

In the delete function, we are giving an indexSet, useful to have a

reference to our list, and then passing the identifier that we created in

our Model so we are passing the correct ID information to Firestore to

delete the right document (the one selected in the row). As always, we

are printing the error if there is any, and we are printing the document

identifier if it’s successful.

Now let’s make it happen on screen! Head to the ContentView.

swift file:

struct ContentView: View {

 // ...

var body: some View {

 NavigationStack {

 List {

 ForEach(viewModel.notes, id:\.id) { Note in

 �NavigationLink(destination:

DetailsView(note: Note)) {

 // ...

 }

 �}.onDelete(perform: self.viewModel.

deleteData(at:))

Chapter 3 Playing with Firestore

67

 }.onAppear(perform: self.viewModel.fetchData)

 .navigationTitle("Notes")

 }

 .toolbar {

 // ...

 }

 }.navigationTitle("Notes")

} }

That’s it! It is super easy to delete an item from a list using SwiftUI. The

onDelete modifier handles the swipe left with a Delete title and a red

background. Our function will do the rest to delete the document on

Firestore.

Now I invite you to run your application on the Simulator. Swipe left on

a row you wish to delete, and check out what’s happening on your Firestore

console:

Chapter 3 Playing with Firestore

68

Figure 3-9.  Deleting a note from the list and Firestore database

By doing this, you will see a deletion occurring on the backend in real

time. Then your note will disappear from the list, and our number of notes

will be updated inside the toolBar.

�Summary
We have completed our first Note app with feature functions present in

most applications: the ability to post, read, update, and delete content to

and from a backend. This was a nice CRUD exercise and a great way to get

you started with SwiftUI and Firebase.

Chapter 3 Playing with Firestore

69

In this chapter, we covered how to structure our app using the MVVM

design pattern and the first use of Firebase’s APIs and set up a cloud

Firestore database and make things work between our user interface and

our backend or, better, between our View Model and our backend.

In the following, you will find the link to the repository of this first

application. In case you missed something on the way, check out the

repository:

How to use this repository? If you clone this repository and run your

application, it will crash. Why? Because there is no GoogleService-Info.plist

file in this project. Firebase will look for it and not find the necessary API

key and so not be able to initiate and cause the crash.

To make it work, you will need to go to your Firebase console, add a

new iOS project as we did in Chapter 2, pass the correct bundle identifier,

and add the GoogleService-Info.plist to this project. These two steps are

crucial for making the app run properly. Normally, the packages should

fetch themselves with SPM, so you can skip this step.

It’s now time to head to the next chapter: we will discover Firebase

Auth and authenticate our first user!

Chapter 3 Playing with Firestore

71

CHAPTER 4

Authenticate Users
with Firebase Auth
We are going to be focusing on Firebase Auth SDK over this chapter. We

are going to create an authentication flow that grants us access to our

Create-Read-Update-Delete (CRUD) functionalities that we implemented

earlier. We will perform this thanks to the Firebase authenticate API to

validate credentials against their response from the server. We will also use

Firestore to store user information in a collection (similar to tables in the

SQL kind of databases).

Then we will restrict the access to users with an account only like

onboarding in applications like Twitter, Instagram, etc. For this, we will

need to listen to the status of the user that Firebase provides us.

Firebase Auth SDK allows us to know when a user is logged in or

logged out, thanks to their listener APIs. These are the screens we are going

to build:

© Sullivan De Carli 2023
S. De Carli, Build Mobile Apps with SwiftUI and Firebase,
https://doi.org/10.1007/978-1-4842-9452-9_4

https://firebase.google.com/docs/auth/ios/start
https://doi.org/10.1007/978-1-4842-9452-9_4

72

Figure 4-1.  Screenshots of the screens we are going to create

At the end, we will also edit the security rules to allow only

authenticated users to have access to our application.

�Setting Up Firebase Authenticate
The first thing to do is to set up Firebase in our dashboard. We will head to

the console to enable authentication. It will take us only a few steps. For

this, select the Authentication section and click “Get started”:

Chapter 4 Authenticate Users with Firebase Auth

73

Figure 4-2.  Firebase console Authentication section

As you can see, Firebase offers many options to authenticate users.

It natively supports email with password, phone authentication, and

anonymous, which allows you to generate a unique identifier for your

users without requiring them to enter any information.

Regarding the third parties, there are plenty of options between the

bigger tech providers: Facebook, Google, Apple, Microsoft, Twitter, GitHub,

Yahoo, and more. We will implement one of these in one of the next

chapters.

For this application, we will only use email and password to get started.

Select Email/Password under Native providers:

Chapter 4 Authenticate Users with Firebase Auth

74

Figure 4-3.  Authentication – selection of Email/Password

Figure 4-4.  Authentication – enabling the provider and saving

Then, simply enable it and save the changes:

Chapter 4 Authenticate Users with Firebase Auth

75

Now, you can send users’ information to register our users and receive

back responses from their servers. It’s now time to structure our code and

implement the Firebase APIs. Let’s code!

�Manage User Sessions
Let’s build our call to Firebase to listen to changes in users’ sessions. Let’s

go ahead and create a new file. Let’s call it AuthViewModel; it is going to

be our View Model to communicate with Firebase Authenticate.

Copy/paste the code as follows:

import SwiftUI

import FirebaseAuth

final class AuthViewModel: ObservableObject {

 @Published var user: User?

func listenToAuthState() {

 �Auth.auth().addStateDidChangeListener { [weak self]

_, user in

 guard let self = self else {

 return

 }

 self.user = user

 }

 }

// function to sign-in

// function to create an account

// function to logout

// function to reset password

}

Chapter 4 Authenticate Users with Firebase Auth

76

Please, note that we won’t be using a model this time.

We will directly pass through the User object that Firebase Auth

SDK provided us called FIRUser. It provides a series of information: a

displayName, a picture URL, an email, a phone number, and a provider

identifier.

Since we are using email/password, we will only need the email and

an identifier. It allows us to not write the Model ourselves. We only made a

reference with this line of code:

 @Published var user: User?

For now, we added a reference to our user model and a function to

take information from Firebase listenToAuthState(). This will be useful to

determine if we need to present the list of notes or the signup view from

the response we obtain from Firebase.

The first thing to do is to create two SwiftUI views to handle both cases.

Go ahead and create two files. Call these screens with the following names:

–– SignUpView (where we enter the credentials)

–– HolderView (where we will implement the logic)

This is the representation of the logic we are going to implement:

Chapter 4 Authenticate Users with Firebase Auth

77

Figure 4-5.  Logic implemented with the Firebase Auth listener

To perform this logic, we need to add this View Model as an

environment object at the start-up of our app, the NoteApp.swift file (the

starting point of our application), inside the body variable.

The @environmentObject property from SwiftUI allows us to share

data between views and ensure that our views get automatically updated

based on what they receive.

Here, we need to inform our app entry the state of the user session, so

we can present the right screen at the right moment.

Head to the NoteApp file, and instead of ContentView(), we will add

the following line of code:

 HolderView().environmentObject(AuthViewModel())

What is this for? It will allow us to notify our application upon start-up

(when a user opens for the first time, after killing the app or whatever) that

we are binding this to the View Model, so we are able to use the snapshot

listener implemented here and present the correct screen based on the

user’s session.

Chapter 4 Authenticate Users with Firebase Auth

78

Now, we will head to the HolderView to incorporate the logic.

First, let’s observe our View Model in the HolderView. Copy/paste the

following @EnvironmentObject variable:

@EnvironmentObject private var authModel: AuthViewModel

And now, let’s implement the conditional statement to present the

appropriate view based on the Firebase response. Inside the body variable,

instead of the current

Text("Hello, World!")

paste the following code:

Group {

 if authModel.user == nil {

 SignUpView()

 } else {

 ContentView()

 }

 }

 .onAppear {

 authModel.listenToAuthState()

 }

Now, run the application, and you should have the following:

Chapter 4 Authenticate Users with Firebase Auth

79

Figure 4-6.  Xcode – app running with the Auth listener

Great! As you can see, we have the SignUpView presented at start-up.

It makes sense because Firebase is returning nil when we ask for a user

because we didn’t sign up any yet.

Now that we have implemented the logic, we can go ahead and sign

up our user. Let’s create the user interface to sign up and implement the

function.

�Sign Up with Email and Password
First things first, let’s build the user interface. We are going to add two

fields – one for the email and one for the password – and two buttons: one

for signing up and one for signing in.

To achieve this, we are going to use a form since it comes with a

scrolling feature for free and it is faster to implement.

Chapter 4 Authenticate Users with Firebase Auth

80

Head to our AuthViewModel, and implement the API calls to sign in,

sign up and sign out:

// function to sign-in

func signIn(

 emailAddress: String,

 password: String

) {

 �Auth.auth().signIn(emailAddress: emailAddress,

password: password) { result, error in

 if let error = error {

 �print("an error occurred: \(error.

localizedDescription)")

 return

 }

 }

 }

// function to create an account

func signUp(

 emailAddress: String,

 password: String

) {

 �Auth.auth().createUser(withEmail: emailAddress,

password: password) { result, error in

 if let error = error {

 �print("an error occurred: \(error.

localizedDescription)")

 return

 }

 }

 }

Chapter 4 Authenticate Users with Firebase Auth

81

// function to logout

 func signOut() {

 do {

 try Auth.auth().signOut()

 } catch let signOutError as NSError {

 print("Error signing out: %@", signOutError)

 }

 }

Great, we just implemented the necessary functions; the syntax of

the APIs is quite clear here. We are using sign-in and creating a user and

passing an email and password object as part of the parameter.

To log out, we are using a do, try catch to catch any errors in case there

is a bad Internet connection, for example.

Head to the SignUpView, and implement the following code:

@State private var emailAddress: String = ""

@State private var password: String = ""

These two variables will allow us to observe the user’s input and pass

it to the Firebase backend. Now, let’s implement the user interface and

replace the current:

 NavigationStack {

 Form {

 Section {

 TextField("Email", text: $emailAddress)

 .textContentType(.emailAddress)

 .keyboardType(.emailAddress)

 SecureField("Password", text: $password)

 }

 Section {

 Button(action: {

Chapter 4 Authenticate Users with Firebase Auth

82

 // Sign Up to Firebase

 }) {

 Text("Sign Up").bold()

 }

 }

 Section(header: Text("If you already have an

account:")) {

 Button(action: {

 // Sign In to Firebase

 }) {

 Text("Sign In")

 }

 }

 }.navigationTitle("Welcome")

 .toolbar {

 �ToolbarItemGroup(placement:

.cancellationAction) {

 Button {

 showingSheet.toggle()

 } label: {

 Text("Forgot password?")

 }

 .sheet(isPresented: $showingSheet) {

 ForgotPasswordView()

 }

 }

 }

 }

Great, now we have our user interface. It’s time to pass the email and

password to Firebase. Let’s observe the View Model we created earlier:

@EnvironmentObject private var authModel: AuthViewModel

Chapter 4 Authenticate Users with Firebase Auth

83

And let’s implement the signup function inside the button action that

belongs to the signup button:

authModel.signUp(emailAddress: emailAddress,

 password: password)

And let’s do the same thing for the sign-in process – add the function

inside the button action:

 authModel.signIn(emailAddress: emailAddress,

 password: password)

It is now time to sign up our first user. Go ahead, run your application,

enter an email and a password, and check out the Firebase console!

Figure 4-7.  App running and posting user data to Firebase
Authenticate

Chapter 4 Authenticate Users with Firebase Auth

84

Great! By entering an email and a password, our app is notified in real

time that the user has an active session. Then, it automatically brings us to

the main screen, the ContentView.

But what about signing out the user? This time, we also need to update

our user interface and bring back our user to the signup screen. Also,

giving the ability to log out will grant us the ability to log in again on the

same device and check if our sign-in function is working properly.

Let’s add this logout button and execute the sign-out function.

Observe the AuthViewModel at the top of the ContentView.swift file:

@ObservedObject private var authModel = AuthViewModel()

Then, right below the first ToolbarItemGroup and inside the graph of

the .toolbar modifier, add the following:

 ToolbarItemGroup(placement: .cancellationAction) {

 Button {

 authModel.signOut()

 } label: {

 Text("Logout")

 }

 }

Really simple. Since we added all the functions in the View Model, we

only need to call them in the user interface.

Go ahead and click the logout button. You will be brought back to the

signup screen. It’s now time to try the sign-in function. Enter the email and

password you used earlier.

You can perform the action many times and create as many accounts

as you want to see the robustness of the code. That’s it. We have a fully

functioning login flow!

Chapter 4 Authenticate Users with Firebase Auth

85

�What If You Forget Your Password?
That can happen often, especially nowadays, where we have so many

accounts to manage. Thankfully, Firebase provides us with an API to reset

the password and even send an email on our behalf! Great, isn’t it?

We just need to pass an email address from the frontend.

To achieve this, we will create a new screen to reset the password.

So go ahead and create a new SwiftUI View and call it

ResetPasswordView; we will call this view from our SignUpView as

a pop-up.

Before implementing the user interface, we will implement the

function to reset our password, so head to AuthViewModel and implement

the following code:

// function to reset password

 func resetPassword(emailAddress: String) {

 Auth.auth().sendPasswordReset(withEmail: emailAddress)

 }

This API from Firebase Auth will send a reset password email for us

without implementing any backend code. We only need to pass the email

from the frontend!

Let’s now build the user interface for our screen. Head to SignUpView

to make our reset password screen accessible.

Start with a State variable to handle the pop-up presentation:

@State private var showingSheet = false

We will then add a button at the top left of our screen and place the

following modifier, right above the .NavigationTile:

 .toolbar {

 �ToolbarItemGroup(placement:

.cancellationAction) {

Chapter 4 Authenticate Users with Firebase Auth

86

 Button {

 showingSheet.toggle()

 } label: {

 Text("Forgot password?")

 }

 .sheet(isPresented: $showingSheet) {

 ResetPasswordView()

 }

 }

 }

Great, now that we can access this screen, let’s implement the

functionality and the user interface. Let’s add these few State variables

first to the ResetPasswordView.swift file:

 @State private var emailAddress: String = ""

 @EnvironmentObject var authModel: AuthViewModel

 @Environment(\.presentationMode) var presentationMode

These will be useful to connect our View Model, handling the email

address we are passing and finally presenting our screen as a pop-up.

Now, let’s implement a form to let the user provide their email:

NavigationStack {

 Form {

 Section {

 TextField("Email", text: $emailAddress)

 .textContentType(.emailAddress)

 .textInputAutocapitalization(.never)

 .keyboardType(.emailAddress)

 }

 �Section(footer: Text("Once sent, check your

email to reset your password.")) {

Chapter 4 Authenticate Users with Firebase Auth

87

 Button(

 action: {

 �authModel.

resetPassword(emailAddress:

emailAddress)

 }) {

 Text("Send email link").bold()

 }

 }

 }.navigationTitle("Reset password")

 .toolbar {

 �ToolbarItemGroup(placement:

.confirmationAction) {

 Button("Done") {

 �presentationMode.wrappedValue.

dismiss()

 }

 }

 }

 }

As usual, we used a simple and native iOS API to build our user

interface, so the user is familiar with it. We use the button to execute the

function we implemented in the View Model and another button inside

the toolbar to close the form.

Now, I invite you to go ahead, sign up with a real email, then log out,

and check the reset password functionalities.

Enter your password and click “Send email link” and then go your

mailbox (also your spam) as follows:

Chapter 4 Authenticate Users with Firebase Auth

88

Figure 4-8.  Steps to follow to reset your password

Once it is done, you can sign in again with your newly created

password. Everything is handled by Firebase!

�Secure the Firestore Database
Now that we have implemented a full user login flow, you might be

wondering how to let the user access their own notes and not a collection

accessible by everyone. That’s what we are going to do in this section. For

that we need to reorganize our database structure.

So far, it is composed of a collection called “Notes” that contains a

series of documents that contain two string values: a text and an identifier.

This iteration will be slightly more complex and will look as follows:

Chapter 4 Authenticate Users with Firebase Auth

89

Figure 4-9.  Collection hierarchy of our iteration

We will have a collection of users, and each user will have a

subcollection of “Notes” containing a series of documents based on their

input. It makes sense to operate with a subcollection since the user will be

querying their own notes in our application.

It is time to register our user and create the collection. For this we

need to save user information upon signup. We will do just that in the

AuthViewModel, in the signup function.

First, let’s import the Firestore framework at the top:

import FirebaseFirestore

Now, we will replace the current signup function with a more complete

one that features the saving of user information to Firestore:

 func signUp(emailAddress: String, password: String) {

 �Auth.auth().createUser(withEmail: emailAddress,

password: password) { result, error in

 if let error = error {

Chapter 4 Authenticate Users with Firebase Auth

90

 �print("DEBUG: error \(error.

localizedDescription)")

 } else {

 �print("DEBUG: Succesfully created user with ID

\(self.user?.uid ?? "")")

 �guard let uid = Auth.auth().currentUser?.uid

else { return }

 �Firestore.firestore().collection("Users").

document(uid).setData(["email" : emailAddress, "uid":

uid]) { err in

 if let err = err {

 print(err)

 return

 }

 print("Success")

 }

 }

 }

 }

Great, now if there are no errors while signing up, we are saving our

user information (email and identifier) under the collection “Users”; we

are also debugging that in our console to check if the identifiers match.

Only one step is missing, editing the path of our database, so when you

write a note, it is saved under your own user collection and not a top-level

collection anymore.

But, first, let’s clean up our Firestore database. Go ahead and delete the

collection as follows:

Chapter 4 Authenticate Users with Firebase Auth

91

Figure 4-10.  Deleting a Firestore collection

Now, we can change the current path

private var databaseReference = Firestore.firestore().

collection("Notes") // reference to our collection

to this one:

private lazy var databaseReference: CollectionReference? = {

 �guard let user = Auth.auth().currentUser?.uid else

{return nil}

 �let ref = Firestore.firestore().collection("Users").

document(user).collection("Posts")

 return ref

 }()

We also need to import the Firebase Auth framework at the top of the

NoteViewModel.swift file since we are checking the corresponding user

identifier before moving forward:

Chapter 4 Authenticate Users with Firebase Auth

92

import FirebaseAuth

Also, add a ? after the database reference since we make it optional

for safety.

You can now have fun and sign up a brand-new user and write a few

notes. Then your database will look like the following path:

Users (collection) ➤ document ➤ Posts (collection) ➤ document

�Security Rules
One last step is missing, securing our database from the Rules section.

So far, we are in development mode, which means everybody can read

and write documents until 30 days after the creation of the database.

Since this Note application is private, we want to limit the ability to

read and write data to authenticated users only, within their own user

collection.

Go to the Firestore database ➤ Rules and type the followings rules in

the console:

rules_version = '2';

service cloud.firestore {

Figure 4-11.  Screenshots of the Firestore database matching our
frontend data

Chapter 4 Authenticate Users with Firebase Auth

93

 match /databases/{database}/documents {

 match /Users/{uid}/{document=**} {

 allow read, write: if uid == request.auth.uid;

 }

 }

}

Then, click Publish:

This code that we implemented will tell our database to restrict the

access of our data to authenticated users only where their data match their

identifier that was created when they signed up.

In practice, a user can only read, post, and edit their own notes. It is a

crucial step before releasing any application to production as our previous

rules would allow anyone on the Internet to access everyone’s documents

and user information.

Figure 4-12.  Editing rules in the Firestore database

Chapter 4 Authenticate Users with Firebase Auth

94

�Summary
With this chapter, we implemented a full authentication process with

real-world business logic. Thanks to the Firebase SDK, we didn’t even

need to create our Model since FIRUser already provided us the necessary

information.

We were able to post users’ credentials to Firebase and match them

against the response from the server, as well as implementing a password

recovery with only one line of code!

Thanks to their listener APIs, we were also able to determine when a

user session is active or terminated and present the appropriate screen.

With this being done, we have a fully working application, ready to be

shipped on the App Store! It is now time to head to the next chapter with a

brand-new application to build!

If you lost something on the way, find in the following a link to the

repository of the application:

https://drive.google.com/drive/folders/1UWZ4

IDw5J81SxIjpjKd5QiSa5jR4mVHC?usp=share_link

Chapter 4 Authenticate Users with Firebase Auth

https://drive.google.com/drive/folders/1UWZ4IDw5J81SxIjpjKd5QiSa5jR4mVHC?usp=share_link
https://drive.google.com/drive/folders/1UWZ4IDw5J81SxIjpjKd5QiSa5jR4mVHC?usp=share_link

95

CHAPTER 5

Advanced Firestore

�Introducing Our New Project
Since we completed a note-taking application, we are now more

comfortable with SwiftUI and the Firebase console. It is time to create a

new application, this time with more complexity: there will be a feed view

like that of famous social media platforms such as Instagram, a search

feature, and a profile section where you can view your posts, and there is

the ability to sign in seamlessly with your Apple account.

This chapter will focus on how to structure our database using

Firestore, and I will introduce you to a larger model with more document

types. By the end of it, you will be able to post and read a feed view and

display a picture, a description, and a date when it is posted.

Here is what our application will look like:

© Sullivan De Carli 2023
S. De Carli, Build Mobile Apps with SwiftUI and Firebase,
https://doi.org/10.1007/978-1-4842-9452-9_5

https://doi.org/10.1007/978-1-4842-9452-9_5

96

Figure 5-1.  Screenshots of our application

Since there are many screens to be created, I prepared a starter file that

you can download at the following link:

https://drive.google.com/drive/folders/1fXNQ

wIOKj9AhIxHQxWlWxjorLpp1mKs5?usp=share_link

This file already has the following Swift packages installed:

–– FirebaseAuth

–– FirebaseFirestore

–– FirebaseFirestoreSwift

–– FirebaseStorage

Now, I invite you to start a new Firebase project. Click Add project and

call it Socially:

Chapter 5 Advanced Firestore

https://drive.google.com/drive/folders/1fXNQwIOKj9AhIxHQxWlWxjorLpp1mKs5?usp=share_link
https://drive.google.com/drive/folders/1fXNQwIOKj9AhIxHQxWlWxjorLpp1mKs5?usp=share_link

97

Figure 5-2.  Starting a new project in Firebase

�Why Are We Creating a New Firebase Project?
It is important to differentiate an application and a Firebase project.

Overall, you should put in the same Firebase project applications that

have a common business logic. Let’s say you are building a competitor of

User, the taxi ride application. As you want to reach a large market, you will

be publishing on iOS and Android; therefore, you might be building four

applications, two for the drivers and two for the riders on each platform.

Since booking on Android or iOS is the same process on the backend, you

can consider doing everything under the same Firebase project. Then, you

will have something like this:

Chapter 5 Advanced Firestore

98

Figure 5-3.  Firebase project and applications

Since, in our new project, we don’t really share anything with the note-

taking application, we are creating a new Firebase project.

Now, follow the step-by-step setup on the Firebase console and grab

the GoogleService-Info.plist file and add it to the starter project. Once you

have added the file and finished the five steps on the Firebase console, you

can successfully run your project and connect to the Firebase backend.

Now that we have set up our project, let’s code. As usual, we will start

with our Model, create a new Swift file inside the Model folder, call it Post,

and then copy/paste the following code:

import SwiftUI

import FirebaseFirestoreSwift

struct Post: Identifiable, Decodable {

 @DocumentID var id: String?

 var description: String?

 var imageURL: String?

 @ServerTimestamp var datePublished: Date?

}

Chapter 5 Advanced Firestore

99

So our Model that will be used for our Feed section is going to be

composed of an identifier, a description, an image, and a date on which it

has been published. The @ServerTimestamp comes from the Firebase APIs

and gives us access to the server time. Then, the type Date is preferable to

post a date.

Please, note that the image will be treated in our next chapter
on Firebase Storage.

Let’s dive into the View Model. Create a new file in the View Model folder

and call it PostViewModel and then import these two frameworks at the top:

import SwiftUI

import FirebaseFirestore

We can create our class with our reference to the Model we created

earlier and to our Firestore database:

class PostViewModel: ObservableObject {

 @Published var posts = [Post]()

 private var databaseReference = Firestore.firestore().

collection("Posts")

// Function to post data

}

And finally, here is our function to post data to the server:

// function to post data

 �func addData(description: String, datePublished:

Date) async {

 do {

 �_ = try await databaseReference.addDocument(data:

["description": description, "datePublished":

datePublished])

Chapter 5 Advanced Firestore

100

 } catch {

 print(error.localizedDescription)

 }

 }

This View Model is similar to what we have already done in Chapter 3,

except that we are using the async/await method this time. You might be

wondering what these keywords are for.

�Call the Backend with Async/Await
In our application, we are uploading a few things – a picture and a

description – and we are saving the date and time. The problem is the

following: the data can take time to be uploaded to the server, especially if

the picture is large.

Therefore, if we do a classic call, our user might be left on the screen

for a few seconds while the picture is being uploaded to the database. This

is not a great user experience. That’s why we are using this method, so the

call is asynchronous, and the user can safely navigate and await. While

they are doing something else, the code is executed in the background.

Now that we have implemented our function to post, let’s try it out!

Head to the PostView file (already created in the starter project) and make

a link with our View Model:

@ObservedObject private var viewModel = PostViewModel()

Then we simply call it inside the button where I left the comment:

 // MARK: Post data to Firestore

 Task {

 �await self.viewModel.addData(description: description,

datePublished: Date())

 }

Chapter 5 Advanced Firestore

101

As you can see, we are saving the text input from the user. Regarding

the date, we are passing Date(), which is taking the current iPhone date.

For now, we don’t do anything with the image since it is going to be the

topic of our next chapter on Firebase Storage.

Additionally, we put the function inside a Task, which is necessary to

be able to use the await key to inform our program that we must run this

code in the background since it can take time to upload.

Now our frontend is ready to post data to the backend, but we still

haven’t set up Firestore to receive data. Head to the Firebase console,

section Firestore Database, and click Create database. As with Chapter 3,

enable the database in test mode:

Then, we can run the application and try to post a comment. You

should have it on your database:

Figure 5-4.  Firestore – creating a database

Chapter 5 Advanced Firestore

102

Figure 5-5.  Firebase Firestore console and application running

Great, we have published data to Firestore with a text and the current

date from our iPhone. It is now time to present this data that we just added.

For this, we will use a nice Firebase wrapper. First, add the following

framework in the FeedView:

import FirebaseFirestoreSwift

Then, add the following code in the FeedView, right over the body

variable:

@FirestoreQuery(collectionPath: "Posts")

var posts: [Post]

This way, we don’t even need to implement a function inside our View

Model. This is a great feature from Firebase APIs. It allows us to fetch data

with only one line of code by just passing our Model together with the

name we used for our Firebase collection.

Chapter 5 Advanced Firestore

103

Replace the current list in the FeedView with the following one:

 List(posts) { posts in

 VStack(alignment: .leading) {

 VStack {

 Text(posts.description ?? "")

 .font(.headline)

 .padding(12)

 �Text("Published on the \(posts.

datePublished?.formatted() ?? "")")

 .font(.caption)

 }

 }.frame(minHeight: 100, maxHeight: 350)

 }

The formatted() modifier allows us to transform a data of type Date to

String. This way, we can easily display a date in our application.

You can now run your application, and this will present the posts that

you posted in a nice list.

Chapter 5 Advanced Firestore

104

Figure 5-6.  Figure of the list

�Summary
This chapter was pretty like Chapter 3 with a large model and an

introduction to a new property wrapper from Firebase that made our life

much easier.

We have seen how to handle not only data of type String but also Date.

But we are not done with Firestore yet!

In this next chapter, we will still be using it to retrieve an image after we

have uploaded it to our Storage. Let’s discover how to handle large assets

with Firebase.

You can have a look at the project at the following link, if you have lost

something on the way:

https://drive.google.com/drive/folders/1_qr

Ko171QkgGHMuX4vDsbPzi36xoXci4?usp=share_link

Chapter 5 Advanced Firestore

https://drive.google.com/drive/folders/1_qrKo171QkgGHMuX4vDsbPzi36xoXci4?usp=share_link
https://drive.google.com/drive/folders/1_qrKo171QkgGHMuX4vDsbPzi36xoXci4?usp=share_link

105

CHAPTER 6

Manage Pictures with
Firebase Storage
We are looking to include pictures in our posts. The problem is the

following: Firestore doesn’t support such large documents. We can only

add text, numbers, arrays, Booleans, timestamps, etc.

Therefore, Firebase introduced Storage. This is a package that lets

us upload and download large data such as video, images, and audio

documents. Through this chapter, we are going to see how to upload a

picture to Firebase Storage, retrieve the URL where this picture is, and add

it to the corresponding Firestore document.

Over this chapter, we will explore how to access the iPhone photo

library, upload the picture to Storage, and retrieve it inside the Firestore

backend. Let’s get started!

�Access the iPhone Camera and Library
Before uploading a picture, we first need to take one or, at least, let the user

access the photo library from our application. In iOS 16, Apple introduced

a new framework for SwiftUI: PhotosUI, which will let us select a picture

with only a few lines of code.

Head to the PostView file, and import the framework:

import PhotosUI

© Sullivan De Carli 2023
S. De Carli, Build Mobile Apps with SwiftUI and Firebase,
https://doi.org/10.1007/978-1-4842-9452-9_6

https://doi.org/10.1007/978-1-4842-9452-9_6

106

Once we have access to the framework, we can get access to

PhotosPickerItem. Let’s add the following two variables over the body

variable:

@State var data: Data?

@State var selectedItem: [PhotosPickerItem] = []

The first variable is to observe the data we pass while selecting a

picture. The second variable will let us observe what item the user is

selecting (which picture).

It’s now time to implement the user interface. Implement the following

section inside the SwiftUI Form of the PostView, right over the two other

sections already implemented:

 Section {

 �PhotosPicker(selection: $selectedItem,

maxSelectionCount: 1, selectionBehavior:

.default, matching: .images,

preferredItemEncoding: .automatic) {

 �if let data = data, let image =

UIImage(data: data) {

 Image(uiImage: image)

 .resizable()

 .scaledToFit()

 .frame(maxHeight: 300)

 } else {

 �Label("Select a picture",

systemImage: "photo.on.rectangle.

angled")

 }

 }.onChange(of: selectedItem) { newValue in

 �guard let item = selectedItem.

first else {

Chapter 6 Manage Pictures with Firebase Storage

107

 return

 }

 �item.loadTransferable(type: Data.self)

{ result in

 switch result {

 case .success(let data):

 if let data = data {

 self.data = data

 }

 case .failure(let failure):

 �print("Error: \(failure.

localizedDescription)")

 }

 }

 }

 }

Here, we are doing a few things. We are adding the PhotosPicker that

lets us access the user library. We are passing a few things:

–– selection – This is the item variable earlier.

–– maxSelectionCount – We give the ability to only select

one picture.

–– matching – From there you can pass a series of things:

only video, only images, just screenshots, etc. Here we

will focus on images only.

–– preferredItemEncoding – Here we left it to automatic, so

the system will decide itself which resolution is better.

Chapter 6 Manage Pictures with Firebase Storage

108

Then we created a label if there is no image selected; otherwise, we

display the selected image.

That’s it to access the photo library and display the image selected. The

new APIs have made it easy for us to implement this feature. Prior to iOS

16, it was necessary to request authorization and implement some code

and capabilities in Xcode. Here, Apple is handling everything, making it

easier for us. You can try it out from the PostView.

Figure 6-1.  Uploading a picture from the library

�Upload Pictures to Firebase Storage
Now that we have access to the pictures, it is time to upload this data in

Firebase Storage. Let’s head to the Firebase console and select Storage.

Chapter 6 Manage Pictures with Firebase Storage

109

As usual, we need to do a bit of setup. Click “Get started” on the

following screen:

Figure 6-2.  “Get started” from Firebase Storage

Chapter 6 Manage Pictures with Firebase Storage

110

Next, you can select the test mode since we are going to secure the

database at the end of our development phase:

Great, we are now ready to receive large assets from our

application to the Firebase backend. Let’s go back to code! Head to the

PostViewModel file.

Import the Storage framework at the top of the file:

import FirebaseStorage

As usual, we need a reference to the database. Add the following line

of code:

let storageReference = Storage.storage().reference().child

("\(UUID().uuidString)")

Figure 6-3.  Development mode

Chapter 6 Manage Pictures with Firebase Storage

111

We need to implement this code to have a reference. We are using

the storage APIs, and we are passing a Swift powerful feature: UUID. It

basically creates a unique identifier every time it is called. This way,

every time we upload an asset, we will have a different identifier for every

single asset.

Now that we have a reference, we need to implement the function to

upload an asset. Let’s first add an additional parameter in the following

function we created in the previous chapter:

func addData(description: String, datePublished: Date)

Replace the preceding function with the following:

func addData(description: String, datePublished: Date,

data: Data)

Great, now we can add the function to upload the data and download

the URL where this image is stored.

Replace the current function addData() with the following:

func addData(description: String, datePublished: Date, data:

Data) async {

 do {

 _ = try await

 �storageReference.putData(data, metadata: nil) {

(metadata, error) in

 guard let metadata = metadata else {

 return

 }

 �self.storageReference.downloadURL { (url,

error) in

 guard let downloadURL = url else {

 // Uh-oh, an error occurred!

 return

Chapter 6 Manage Pictures with Firebase Storage

112

 }

 �self.databaseReference.addDocument(data:

["description": description,

"datePublished": datePublished, "imageURL":

downloadURL.absoluteString])

 }

 }

 } catch {

 print(error.localizedDescription)

 }

 }

Here we have added two important functions:

–– putData – This basically takes the asset we have

selected and upload it to the Firebase backend.

–– downloadURL – This is responsible for grabbing the

URL where the asset has been in the Firebase backend.

This way, we are using this URL while passing the data

to Firestore with downloadURL.absoluteString.

�Integrate Large Documents with Firestore
Let’s now call the function so we can upload documents to Firebase

Storage in our View. Head to the PostView file.

You will see a warning telling you that you are missing a parameter

named data. Let’s correct that by replacing the call with the following one,

which includes the data parameter:

await self.viewModel.addData(description: description,

datePublished: Date(), data: data!)

Chapter 6 Manage Pictures with Firebase Storage

113

With the exclamation mark, we are saying in our program that we

should have this data. Therefore, we need to prevent the user from clicking

the button if there are no images selected. So add the following modifier

after the button last graph:

.disabled(data == nil)

Great, now our function includes all that we need to upload a picture.

You can go ahead and write another post, writing a description and

selecting a picture. After this, check the Storage console. You should have

the following:

Our application has successfully uploaded an asset to the Firebase

Storage backend. You can click the link on the right. It will open a new

URL, downloading the picture we just uploaded. We basically put this data

in a bucket, which generates a unique URL to store it.

Also, a unique identifier is generated from the frontend, thanks to the

UUID().uuidString feature, that we use as a document reference.

Figure 6-4.  Firebase Storage – new upload

Chapter 6 Manage Pictures with Firebase Storage

114

Now, have a look at the Firebase Firestore document that you just

uploaded:

As you can see, we have a URL saved as a string under the field

imageURL.

If you pay close attention, the URL is composed like this:

https://firebasestorage.googleapis.com / [our

project reference] / [the identifier we generated]

Once it is uploaded to Storage, this URL is downloaded with

storageReference.downloadURL and added to our Firestore collection.

Fantastic! Now we can go ahead and read that image URL in our feed.

To achieve that, we will use the SwiftUI AsyncImage modifier.

Figure 6-5.  Firebase Firestore – new document uploaded

Chapter 6 Manage Pictures with Firebase Storage

https://firebasestorage.googleapis.com

115

Add the following code in the FeedView, right over our two texts inside

the List:

 �AsyncImage(url: URL(string: posts.imageURL ?? "")) {

phase in

 switch phase {

 case .empty:

 EmptyView()

 case .success(let image):

 �image .resizable()

.frame(width: 300, height: 200)

case .failure:

 Image(systemName: "photo")

 @unknown default:

 EmptyView()

 }

 }

This code is useful to get an image from a URL. AsyncImage already

handles the asynchronous call. We also pass an EmptyView in case the

server is returning no image.

Chapter 6 Manage Pictures with Firebase Storage

116

We now have our feed screen created matching the documents we

have in Firestore:

�Summary
Through this chapter, we have implemented a SwiftUI photo picker with

only a few lines of code. We then extracted the data picked by the user and

stored it. Following this, we introduced Firebase Storage and stored the file

in a bucket with a unique link. Then, we downloaded the URL where the

data was stored to add it to our Firestore document.

Thanks to this process, we can enrich our application with assets.

We could even have used video like successful social media sites such as

TikTok and Instagram.

Please, find at the following link the source code of this chapter:

https://drive.google.com/drive/folders/19cPy

xU8AYdW_80bUZOhxryLBLPx8qtRQ?usp=share_link

It is now time to head to our next chapter: implementing the login flow.

This time, we will use “Sign in with Apple.”

Figure 6-6.  Our feed screen displaying documents from Firestore

Chapter 6 Manage Pictures with Firebase Storage

https://drive.google.com/drive/folders/19cPyxU8AYdW_80bUZOhxryLBLPx8qtRQ?usp=share_link
https://drive.google.com/drive/folders/19cPyxU8AYdW_80bUZOhxryLBLPx8qtRQ?usp=share_link

117

CHAPTER 7

Authenticate
with Apple
Over this chapter, we will go back to Firebase Auth, but this time we are

going to implement a better user experience. Instead of requiring email

and password, we will be presenting “Sign in with Apple.”

Additionally, we will let the user access our application even if they

don’t have an account, and we will restrict the ability to post to registered

users only with Firestore rules, in the next chapter.

This logic will look like the following:

Figure 7-1.  Logic of the signup flow

© Sullivan De Carli 2023
S. De Carli, Build Mobile Apps with SwiftUI and Firebase,
https://doi.org/10.1007/978-1-4842-9452-9_7

https://doi.org/10.1007/978-1-4842-9452-9_7

118

�Set Up the Project and “Sign in with Apple”
Sign in with Apple has been introduced with iOS 13 and allows the user

to use their Apple ID (the one they generally use for iCloud or App Store

purchases) for signing up to your application. It is highly recommended

to add it since it’s more user-friendly, there’s no need to remember a

password, you sign up in one click, and the user can hide the email with

Apple private relay. As always, it is a great privacy enhancement provided

by Apple.

How does it work with Firebase?

Firebase provides an API to work with Apple sign-in, to sign up a user.

It will make the call to the Apple server to verify the identity, furnish a

callback response to Firebase that will register our user in the database,

and send back to us a response stating that the signup has been successful

or unsuccessful if it has returned any errors.

As with email and password, we still have access to the User object

provided by Firebase. So we can go ahead and implement the function in

the View Model and then the native Apple button in the user interface.

Important note  To work with Sign in with Apple, you need an
Apple developer account, which costs $99 a year. If you don’t want to
sign up for a developer account, you can still follow this chapter. You
simply need to use the signup and sign-in code with the email and
password that I left as commented in the starter file.

First, we need to add the capabilities to use Sign in with Apple. Head

to the main target. Under Signing & Capabilities, search for “Sign in with

Apple” and then press Enter as follows:

Chapter 7 Authenticate with Apple

119

Figure 7-2.  Xcode ➤ Signing & Capabilities – Sign in with Apple

If it doesn’t appear on the search, you might have your membership or

a certificate expired. Check your Apple developer account.

Now that we have set up Sign in with Apple in Xcode, it is time to add it

on the Firebase console. Head to your console and click “Get started.” For

the sign-in method, select Apple, enable, and save.

Chapter 7 Authenticate with Apple

120

Figure 7-3.  Firebase console – enabling Sign in with Apple

We have now completed all the setup to work with Sign in with Apple.

Now it is time to code. Let’s head to our View Model to implement the

necessary functions to work with Sign in with Apple.

�Integrate “Sign in with Apple”
It’s now time to code. The first thing to do is to head to AuthViewModel and

import the necessary framework to work with Apple authentication:

import AuthenticationServices

import CryptoKit

The framework AuthenticationServices is necessary to talk with the

Apple server, and CryptoKit lets us create a cryptography key that allows us

to pass the data in a secure way.

Now, go to the AuthViewModel file, and add these two variables:

@Published var user: User?

var currentNonce: String?

Chapter 7 Authenticate with Apple

121

We are using the User object from the Firebase Auth framework again

and a String that we will use to generate a unique key to pass our data.

Now, you can implement the following two functions:

func randomNonceString(length: Int = 32) -> String {

 precondition(length > 0)

 let charset: [Character] =

 �Array("0123456789ABCDEFGHIJKLMNOPQRSTUVXYZabcdefghijklm

nopqrstuvwxyz-._")

 var result = ""

 var remainingLength = length

 while remainingLength > 0 {

 let randoms: [UInt8] = (0 ..< 16).map { _ in

 var random: UInt8 = 0

 �let errorCode = SecRandomCopyBytes(kSecRandomDefault,

1, &random)

 if errorCode != errSecSuccess {

 fatalError(

 �"Unable to generate nonce. SecRandomCopyBytes

failed with OSStatus \(errorCode)"

)

 }

 return random

 }

 randoms.forEach { random in

 if remainingLength == 0 {

 return

 }

Chapter 7 Authenticate with Apple

122

 if random < charset.count {

 result.append(charset[Int(random)])

 remainingLength -= 1

 }

 }

 }

 return result

 }

Great! We have now completed all this first piece. This piece of code

is suggested by the Firebase documentation. It is useful to create a node

for passing the data from the frontend to the Apple server. Also add the

following function:

func sha256(_ input: String) -> String {

 let inputData = Data(input.utf8)

 let hashedData = SHA256.hash(data: inputData)

 let hashString = hashedData.compactMap {

 String(format: "%02x", $0)

 }.joined()

 return hashString

 }

This one is to implement the SHA-256 protocol, a world-class

cryptography protocol used also in the Bitcoin blockchain, for example.

Now that we have added the function, we can go ahead to the View:

SignUpView.

At the top of the file, import the following framework to access the

Apple sign-in button and Firebase authentication:

import AuthenticationServices

import FirebaseAuth

import FirebaseFirestore

Chapter 7 Authenticate with Apple

123

Then, observe our View Model by adding this code over the body

variable:

@ObservedObject private var authModel = AuthViewModel()

We can now implement the following code in the SignUpView, inside

the VStack:

SignInWithAppleButton(onRequest: { request in

 let nonce = authModel.randomNonceString()

 authModel.currentNonce = nonce

 request.requestedScopes = [.email]

 request.nonce = authModel.sha256(nonce)

 },

 onCompletion: { result in

 //Completion

 switch result {

 case .success(let authResults):

 switch authResults.credential {

 �case let appleIDCredential as

ASAuthorizationAppleIDCredential:

 �guard let nonce = authModel.

currentNonce else {

 �fatalError("Invalid state: A login

callback was received, but no login

request was sent.")

 }

 �guard let appleIDToken = appleIDCredential.

identityToken else {

 �fatalError("Invalid state: A login

callback was received, but no login

request was sent.")

 }

Chapter 7 Authenticate with Apple

124

 �guard let idTokenString = String(data: appleIDToken,

encoding: .utf8) else {

 �print("Unable to serialize token

string from data: \(appleIDToken.

debugDescription)")

 return

 }

 �let credential = OAuthProvider.credential

(withProviderID: "apple.com",idToken:

idTokenString,rawNonce: nonce)

 �Auth.auth().signIn(with: credential) {

(authResult, error) in

 if (error != nil) {

 �print(error?.localized

Description as Any)

 return

 }

 print("signed in")

 �guard let user = authResult?.user else

{ return }

 let userData = [

"email": user.email, "uid": user.uid]

 �Firestore.firestore().

collection("User")

 .document(user.uid)

 .setData(userData) { _ in

print("DEBUG: Did upload user data.")

 }

 }

print("\(String(describing: Auth.auth().currentUser?.uid))")

Chapter 7 Authenticate with Apple

125

 default:

 break

 }

 default:

 break

 }

 }

).signInWithAppleButtonStyle(.black)

 .frame(width: 290, height: 45, alignment: .center)

We just implemented the native Sign in with Apple button in which we

are passing the credentials handled by the user through the Apple service.

We are also checking if the credentials are being passed correctly with the

guard let statements.

Since we are going to present this SignUpView from the ProfileView,

we need to handle the presentation from there. We need to incorporate a

logic to show the signup screen when there is no user and display user info

when they have signed up. For this, we need to head to AuthViewModel

and integrate these two functions:

func listenToAuthState() {

 �Auth.auth().addStateDidChangeListener { [weak self] _,

user in

 guard let self = self else {

 return

 }

 self.user = user

 }

 }

Chapter 7 Authenticate with Apple

126

This will help us listen for changes from the Firebase Auth framework.

We also need to implement the logout function:

func signOut() {

 do {

 try Auth.auth().signOut()

 } catch let signOutError as NSError {

 print("Error signing out: %@", signOutError)

 }

 }

Great! Now we can build the user interface in the ProfileView. Let’s

observe this Boolean for handling the presentation and our ViewModel of

the SignUpView:

 �@State private var showSignUp: Bool = false

@ObservedObject private var authModel = AuthViewModel()

And add the following code inside the body variable:

VStack(alignment: .center) {

 if authModel.user != nil {

 Form {

 Section("you account") {

 Text(authModel.user?.email ?? "")

 }

 Button {

 authModel.signOut()

 } label: {

 Text("logout")

 .foregroundColor(.red)

 }

 }

Chapter 7 Authenticate with Apple

127

 } else {

 Form {

 Section("you account") {

 �Text("Seem's like you are not logged

in, create an account")

 }

 Button {

 showSignUp.toggle()

 } label: {

 Text("Sign Up")

 .foregroundColor(.blue)

 .bold()

 }.sheet(isPresented: $showSignUp) {

 �SignUpView().presentationDetents([.

medium, .large])

 }

 }

 }

 }.onAppear { authModel.listenToAuthState() }

Now our UI is ready, presenting the email of the user when logged in or

a button where there is no session detected by the Firebase server. We are

going to pass all that we need to the Apple server.

What can we expect from the response?

–– A unique relay email or their original email

–– Their full name (optional – we are not asking for it for

this project)

Following that, on completion, we will be able to proceed and register

the credentials onto Firebase. Now, we could check our Firebase console

to see if we had correctly signed up our user. (I recommend checking this

feature on a real device.)

Chapter 7 Authenticate with Apple

128

Figure 7-4.  Sign in with Apple working with Firebase Auth

�Summary
We explored the Firebase authenticate SDK with a more advanced feature:

Sign in with Apple. Thanks to their APIs, we were able to authenticate the

user. However, Sign in with Apple requires a bit more setup since we need

to talk to both the Apple server and Firebase server to get a response.

Thanks to their great listener, we were also able to determine whether

our user is signed in or not, and from this response, we presented the

right screen.

Now that we know how to use Sign in with Apple, I have a challenge for

you: integrate Sign in with Apple with our Note application that we created

over Chapters 3 and 4.

If you missed something while following this chapter, you can check

this source code:

Chapter 7 Authenticate with Apple

129

CHAPTER 8

Adding Features
Without Coding
We have created a nice basis for a social media application, but it is not

completed yet. There are many areas of improvements and a few features

to be implemented.

Over this chapter, we will be working on Socially by implementing

a feature to resize the images uploaded on the backend, so they are

downsized and can be presented faster to our end user. We will achieve

this thanks to Firebase Extension: a great no-code tool to implement

functionalities on the backend without writing code.

Finally, we will secure our database, so certain data is only accessible

to the current user. We will also restrict the ability to post content to

registered users only.

�Exploring Firebase Extension
Firebase Extension is a framework developed by Firebase to allow you to

implement functionalities on the backend without writing any code. Some

have been developed by Firebase such as triggering images, sending data

to Google BigQuery, or resizing an image. It also includes many third-party

providers like Stripe for running subscriptions and Algolia to search inside

Firestore documents, integrates in-app purchase with RevenueCat, and

many more.

© Sullivan De Carli 2023
S. De Carli, Build Mobile Apps with SwiftUI and Firebase,
https://doi.org/10.1007/978-1-4842-9452-9_8

https://doi.org/10.1007/978-1-4842-9452-9_8

130

We will get started with Resize Images made by Firebase.

This functionality will be useful in our application since the users are

uploading images to the database and retrieving them in our feed. This

functionality will resize the images to a determined size and therefore

reduce the size. This will make our application much more efficient!

To install this extension, you need to upgrade your Firebase project

to the Blaze plan. This means Google will be able to charge you for using

the function you are implementing on the backend. It is only going to

represent a few cents for the tests we are going to execute.

Head to the Firebase console ➤ Build ➤ Extensions. Then look for

Resize Images and click Install.

Figure 8-1.  Firebase Extension marketplace

Chapter 8 Adding Features Without Coding

131

If you haven’t subscribed to the Blaze plan yet, the console will

invite you to upgrade. Follow the steps and enter your credit card

information. If you correctly followed the instructions, you would have the

following pop-up:

Figure 8-2.  Project updated to the Blaze plan

Now, you can start installing the extension. Follow the four steps

provided by Firebase, and you can edit the followings fields:

–– Backfill existing images – No

–– Sizes of resized images: 320 × 200

Chapter 8 Adding Features Without Coding

132

This way, Firebase will automatically resize the images to 320 × 200

pixels, so it looks nice on our screen and the overall weight of the file will

be reduced. You can click Install extension; it will take a few minutes to

take effect:

Figure 8-3.  Installing the Firebase extension

You can now test your application by publishing a post with an image.

The images will be retrieved faster since they have been downsized by the

backend. Therefore, we have improved our application in a few minutes

without writing any code.

�Track Our App Usage with Analytics
It is useful to figure out how our users are using our application, to

determine our conversion for signup, for example (how many users create

an account / how many users download the app). Thanks to Firebase, it is

easy to implement this tracker with Google Analytics.

Chapter 8 Adding Features Without Coding

133

The first thing to do is add the Firebase Analytics package to our

application. Head to your main target. Under General scroll down to

Frameworks, Libraries, and Embedded Content and click the plus button.

Then select FirebaseAnalytics and click Add.

Figure 8-4.  Adding a package to the project

Now we are ready to use the Firebase analytics APIs. First thing I want

to check is how many users are converting to authenticated users. To do so,

I need to add an event every time a user successfully signs up.

Let’s head to SignUpView and import the framework at the top:

import FirebaseAnalytics

Then, add the following line of code right after the print(signed in) –

this way, we are sure the authentication has been successful:

 �Analytics.logEvent("user_sign_up",

parameters: nil)

Chapter 8 Adding Features Without Coding

134

That’s it. In one line of code, we have logged an event to Firebase to see

each user that signed up to our application.

You can check in the Firebase console ➤ Analytics ➤ Events in the next

24 hours. You will see the events logged each time a user authenticates.

�Securing Our Database
One final step is left before releasing our application to the public: secure

our database. Since we are using Firestore, we need to head to this part in

the console and edit the rules.

Right now, everybody can write posts and read user information on

our database without being authenticated. It is a concern for security

and cost.

Therefore, we need to restrict the ability to write data for authenticated

users only, but we can allow anyone to read since profiles are public, as

well as posts in our application.

Head to the Firebase console ➤ Firestore ➤ Rules and implement the

following rules and then click Publish:

rules_version = '2';

service cloud.firestore {

 match /databases/{database}/documents {

 match /{document=**} {

 allow read: if true;

 allow write: if request.auth != null;

 }

 }

}

Chapter 8 Adding Features Without Coding

135

Figure 8-5.  Cloud Firestore rules

Now nobody can write anything if they didn’t sign up. We have usefully

restricted the access of our data!

�Summary
Over this last chapter, we explored Firebase Extension, the no-code tool

to enhance our application with additional features. Then we logged

events to see how our users are using our application, here with each time

someone authenticates on our application.

Finally, we secured our database to disable anyone who doesn’t sign

up to post any document on Firestore.

That closes our book. Thank you for following along! You can find the

source code of the final project at the following link:

https://drive.google.com/drive/folders/1eF-

OXxC1jn0Ob30BsfXOFH7LzV2w24pU?usp=share_link

Chapter 8 Adding Features Without Coding

https://drive.google.com/drive/folders/1eF-OXxC1jn0Ob30BsfXOFH7LzV2w24pU?usp=share_link
https://drive.google.com/drive/folders/1eF-OXxC1jn0Ob30BsfXOFH7LzV2w24pU?usp=share_link

137

Index

A
addData() function, 111
addDocument APIs, 50
Algolia, 129
Apple authentication, 120
Apple ID, 118
Apple server, 118, 120, 122, 127, 128
Arrays, 105
AsyncImage, 115
AuthenticationServices

framework, 120
AuthViewModel, 75, 80, 85, 89, 120

B
Backend as a service (BaaS), 17
Bitcoin blockchain, 122
Blaze plan, 130, 131
Booleans, 63, 105, 126

C
ContentView.swift file, 50, 52, 55,

56, 66, 84
Create-Read-Update-Delete

(CRUD), 43, 71
CryptoKit, 120

D
Data parameter, 112
downloadURL.absoluteString

function, 112
downloadURL function, 112

E
Embedded Content, 133
EmptyView, 115

F
Feed screen, 116
FeedView, 102, 103, 115
Firebase

add iOS app, 30
advantages, 19
Apple app, 32, 33, 36, 39, 41
BaaS, 17
cloud service, iOS

application, 17, 18
connect iOS application

GoogleService-Info.
plist, 34, 35

SDK, 35
Xcode (see Xcode)

© Sullivan De Carli 2023
S. De Carli, Build Mobile Apps with SwiftUI and Firebase,
https://doi.org/10.1007/978-1-4842-9452-9

https://doi.org/10.1007/978-1-4842-9452-9

138

dashboard, 25, 26
disadvantages, 20
Firestore section, 47
Google Analytics, 22, 23
Homepage, 21
iOS application, 18, 19
project name, 22
select Google Analytics

account, 24
Spark plan label, 26

Firebase Analytics package, 133, 134
Firebase authentication, 122
Firebase Auth framework, 91,

121, 126
Firebase Auth SDK

authentication section, 73
email/password selection, 74
enable provider and save, 74
logic implementation, 77
manage user sessions, 75–79
secure firestore database

collection hierarchy, 89
delete Firestore collection, 91
import, 91
security rules, 92, 93
signup function, 89

sign up with email and
password

app run/post user data, 83
AuthViewModel, 80, 84
reset password, 85, 87, 88
sign-in process, 83
SignUpView, 81

user interface, 81
View Model, 82, 84

Xcode, 79
Firebase collection, 102
Firebase console, 15, 17, 21, 24, 25,

27, 29, 30, 35, 46, 47, 69, 73,
83, 95, 98, 101, 108, 119,
120, 127

Firebase documentation,
17, 27, 122

Firebase extension
exploration, 129–132
installation, 132
marketplace, 130
no-code tool, 129, 135

Firebase Firestore, 43, 114
Firebase Firestore console, 54, 102
Firebase project

Async/Await, backend, 100–103
creation, 97–99

Firebase server, 127, 128
Firebase Software Development

Kit (SDK), 35
Firebase Storage, 37, 99, 101, 105–116
Firestore

create database, 46–55
database, 92
delete data, 65–68
document, 105
MVVM design pattern, 44–46
NoSQL document-based

database, 43
note application, 43
pass data, views, 58–62

Firebase (cont.)

INDEX

139

read data, 55–58
two-step setup, 48
upload data, 55

FIRUser, 76, 94
formatted() modifier, 103
Frameworks, 133

G, H
Google Analytics, 19, 20, 22–24, 132
Google BigQuery, 129
GoogleService-Info.plist, 34, 69, 98

I, J, K
imageURL field, 114
import FirebaseAnalytics, 133
import FirebaseStorage, 110
import PhotosUI, 105
Integrating documents, 112–115
iOS 16, 108
iPhone, 102
iPhone camera and library access,

105, 107, 108
iPhone photo library, 105

L
Libraries, 133
listenToAuthState(), 76

M
Matching, 107
maxSelectionCount, 107
MVVM design pattern, 44–46, 69

N, O
NavigationLink, 59, 60, 62
NavigationView, 55, 60
NoteViewModel, 49, 65
Numbers, 105

P, Q
PhotosPicker, 106, 107
PhotosUI, 105
Picture uploading, firebase storage,

108, 110–112
PostView file, 100, 105, 112
PostViewModel, 99, 110
preferredItemEncoding, 107
ProfileView function, 125, 126
putData() function, 112

R
RevenueCat, 129

S
Securing database, 134, 135
@ServerTimestamp, 99
SF Symbols, 53
SHA-256 protocol, 122
Sign in with Apple, 117

advanced feature, 128
integration, 120–123, 125–127
note application, 128
project set up, 118, 119
view model, 120
in Xcode, 119

INDEX

140

SignUpView function, 122, 125, 126
Social media, 95, 116, 129
Storage console, 113
storageReference.downloadURL, 114
String, 104
Swift language, 4
Swift packages, 35, 41, 96
SwiftUI, 44, 57, 67

in 2019, Apple, 8
AsyncImage modifier, 114
code, 10
identifiable, 13
map application, 14, 15
MapKit, 12
photo picker, 116
UIKit, 8–10
Xcode, 1–8

T
Taxi ride application, 97
Text, 105
Timestamps, 105

U
UIKit, 8–10
UITableViewDataSource, 10
User interface, 1, 6–8, 10, 11, 13, 20,

44, 46, 50, 53, 60–62, 65, 69,
79, 81, 82, 84–87, 106,
118, 126

UUID, 111, 113

V, W
viewDidLoad method, 10
View model, 44, 46, 49, 50,

54, 56, 77, 78, 86, 99,
100, 102, 123

X, Y, Z
Xcode

add package, 37, 38
Apple, 1
App Store, 2
drag and drop the

GoogleService-Info.plist
file, 34

identifier, 31
Mac App Store, 1
new project, 29
NoteApp.swift, 39
run and communication to

Firebase, 40
select App template, 27, 28
settings, project, 5
Simulator app, 8
simulator run, 7, 12
Swift language, 4
tabs, 6
template, 4
14.1 version, 2
welcome screen, 3, 27

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction to SwiftUI
	Xcode Walk-Through
	What Makes SwiftUI Different
	Coding with SwiftUI
	Summary

	Chapter 2: Introduction to Firebase
	What Is Firebase?
	Setting Up a Firebase Account and Project
	Firebase Walk-Through

	Connect Your iOS Application to Firebase
	You Might Be Wondering What This File Is For

	Summary

	Chapter 3: Playing with Firestore
	Introducing the MVVM Design Pattern
	Create Data to Firestore
	Read Data from Firestore
	Pass Data from Views
	Update Data from Firestore
	Delete Data from Firestore
	Summary

	Chapter 4: Authenticate Users with Firebase Auth
	Setting Up Firebase Authenticate
	Manage User Sessions
	Sign Up with Email and Password
	What If You Forget Your Password?

	Secure the Firestore Database
	Security Rules

	Summary

	Chapter 5: Advanced Firestore
	Introducing Our New Project
	Why Are We Creating a New Firebase Project?

	Call the Backend with Async/Await
	Summary

	Chapter 6: Manage Pictures with Firebase Storage
	Access the iPhone Camera and Library
	Upload Pictures to Firebase Storage
	Integrate Large Documents with Firestore
	Summary

	Chapter 7: Authenticate with Apple
	Set Up the Project and “Sign in with Apple”
	Integrate “Sign in with Apple”
	Summary

	Chapter 8: Adding Features Without Coding
	Exploring Firebase Extension
	Track Our App Usage with Analytics
	Securing Our Database
	Summary

	Index

