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Preface to the Second Edition

The second edition of this book contains 46 new problems which, as the preceding
157 ones, originate fromour teaching experience. The lines alongwhich the problems
are presented are the same as in the first edition. In particular, we kept trying to relate
these problems to real applications.

While most problems have been created for final examinations, a few of them
are more appropriate to be discussed in a class. These latter problems may require a
bigger mathematical effort; however, they still do not require preresiquites beyond
the typical level of a second-year undergraduate course. A teacherwilling to use these
more challenging problems for an exam may simplify them and provide a “guided”
text with additional hints.

Some of the 157 problems of the first edition have been revised for additional
clarity or insight. For these improvements, a precious and continuous input has been
given by our students whom we warmly acknowledge.

Pisa, Tuscany, Italy
September 2022

Andrea Macchi
Giovanni Moruzzi

Francesco Pegoraro
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Preface to the First Edition

This book comprises 157 problems in classical electromagnetism, originating from
the second-year course given by the authors to the undergraduate students of Physics
at the University of Pisa in the years from 2002 to 2017. Our course covers the
basics of classical electromagnetism in a fairly complete way. In the first part we
present electrostatics and magnetostatics, electric currents and magnetic induction,
introducing the complete set ofMaxwell’s equations. The secondpart is devoted to the
conservation properties of Maxwell’s equations, the classical theory of radiation, the
relativistic transformation of the fields, and the propagation of electromagneticwaves
in matter or along transmission lines and waveguides. Typically, the total amount of
lectures and exercise classes is about 90 and 45 hours, respectively. Most of the
problems of this book were prepared for the intermediate and final examinations. In
an examination test, a student is requested to solve two or three problems in three
hours. The more complex problems are presented and discussed in detail during the
classes.

The prerequisite for tackling these problems is having successfully passed the first
year of undergraduate studies in Physics, Mathematics or Engineering, acquiring
a good knowledge of elementary classical mechanics, linear algebra, differential
calculus for functions of one variable.Obviously, classical electromagnetism requires
differential calculus involving functions of more than one variable. This, in our
undergraduate programme, is taught in parallel courses in the second year. Typically,
however, the basic concepts needed to write down theMaxwell equations in differen-
tial form are introduced and discussed in our electromagnetism course, in the simplest
possible way. Actually, while we do not require higher mathematical methods as a
prerequisite, the electromagnetism course is probably the place where the students
will encounter for the first time topics such as Fourier series and transform, at least
in a heuristic way.

In our approach to teaching we are convinced that checking the ability to solve
a problem is the best way, or perhaps the only way, to verify the understanding of
the theory. At the same time, the problems offer examples of the application of the
theory to the real world. For this reason, we present each problem with a title that
often highlights its connection to different areas of Physics or technology, so that the
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viii Preface to the First Edition

book is also a survey of historical discoveries and applications of classical electro-
magnetism. We tried in particular to pick examples from different contexts, such as,
e.g., Astrophysics or Geophysics, and to include topics that, for some reason, seem
not to be considered in several important textbooks, such as, e.g., radiation pres-
sure or homopolar/unipolar motors and generators. We also included a few examples
inspired by recent and modern research areas, including, e.g., optical metamaterials,
plasmonics, superintense lasers. These latter topics show that nowadays, more than
150 years after Maxwell’s equations, classical electromagnetism is still a vital area,
which continuously needs to be understood and revisited in its deeper aspects. These
certainly cannot be covered in detail in a second year course, but a selection of
examples (with the removal of unnecessary mathematical complexity) can serve as
a useful introduction to them. In our problems, the students can have a first glance at
“advanced” topics such as, e.g, the angular momentum of light, longitudinal waves
and surface plasmons, the principles of laser cooling and of optomechanics, or the
longstanding issue of radiation friction. At the same time, they can find the essential
notions on, e.g., how an optical fiber works, where a plasma display gets its name
from, or the principles of funny homemade electrical motors seen on YouTube.

The organization of our book is inspired by at least two sources, the book Selected
Problems in Theoretical Physics (ETS Pisa, 1992, in Italian; World Scientific, 1994,
in English) by our former teachers and colleagues A. Di Giacomo, G. Paffuti and P.
Rossi, and the great archive of Physics Examples and other Pedagogic Diversions by
Prof. K. McDonald (http://puhep1.princeton.edu/%7Emcdonald/examples/) which
includes probably the widest source of advanced problems and examples in classical
electromagnetism. Both these collections are aimed at graduate and postgraduate
students, while our aim is to present a set of problems and examples with valuable
physical contents, but accessible at the undergraduate level, although hopefully also
a useful reference for the graduate student as well.

Because of our scientific background, our inspirations mostly come from the
physics of condensed matter, materials, and plasmas as well as from optics,
atomic physics, and laser-matter interactions. It can be argued that most of these
subjects essentially require the knowledge of quantum mechanics. However, many
phenomena and applications can be introduced within a classical framework, at least
in a phenomenological way. In addition, since classical electromagnetism is the first
field theory met by the students, the detailed study of its properties (with particular
regard to conservation laws, symmetry relations, and relativistic covariance) provides
an important training for the study of wave mechanics and quantum field theories,
that the students will encounter in their further years of Physics study.

In our book (and in the preparation of tests and examinations as well), we tried
to introduce as many original problems as possible, so that we believe that we have
reached a substantial degree of novelty with respect to previous textbooks. Of course,
the book also contains problems and examples which can be found in existing litera-
ture: this is unavoidable sincemany classical electromagnetism problems are, indeed,
classics! In any case, the solutions constitute the most important part of the book.
We did our best to make the solutions as complete and detailed as possible, taking
typical questions, doubts, and possible mistakes by the students into account. When
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Preface to the First Edition ix

appropriate, alternative paths to the solutions are presented. To some extent, we tried
not to bypass tricky concepts and ostensible ambiguities or “paradoxes” which, in
classical electromagnetism, may appear more often than one would expect.

The sequence of Chaps. 1–12 follows the typical order in which the contents
are presented during the course, each Chapter focusing on a well-defined topic.
Chapter 13 contains a set of problems where concepts from different chapters are
used, and may serve for a general review. To our knowledge, in some undergraduate
programs the second-year Physics may be “lighter” than at our Department, i.e.,
mostly limited to the contents presented in the first six Chapters of our book (i.e., up
to Maxwell’s equations) plus some preliminary coverage of radiation (Chap. 10) and
wave propagation (Chapter 11). Probably this would be the choice also for Physics
courses in the Mathematics or Engineering programs. In a Physics program, most
of the contents of our Chaps. 7–12 might be possibly presented in a more advanced
course at the 3rd year, for which we believe our book can still be an appropriate tool.

Of course, this book of problems must be accompanied by a good textbook
explaining the theory of the electromagnetic field in detail. In our course, in addition
to lecture notes (unpublished so far) we mostly recommend the volume II of the
celebrated Feynman Lectures on Physics and the volume 2 of the Berkeley Physics
Course by E. M. Purcell. For some advanced topics the famous Classical Electrody-
namics by J. D. Jackson is also recommended, althoughmost of this book is adequate
for an higher course. The formulas and brief descriptions given at the beginning of
the chapter are not meant at all to provide a complete survey of theoretical concepts,
and should serve mostly as a quick reference for most important equations and to
clarify the notation we use as well.

In the first Chaps. 1–6, we use both the SI andGaussian c.g.s. system of units. This
choice was made because, while we are aware of the wide use of SI units, still we
believe theGaussian system to be themost appropriate for electromagnetism because
of fundamental reasons, such as the appearance of a single fundamental constant (the
speed of light c) or the same physical dimensions for the electric and magnetic fields,
which seems very appropriate when one realizes that such fields are parts of the same
object, the electromagnetic field. As a compromise we used both units in that part
of the book which would serve for a “lighter” and more general course as defined
above, and switched definitely (except for a few problems) to Gaussian units in the
“advanced” part of the book, i.e., Chaps. 7–13. This choice is similar to what was
made in the 3rd Edition of the famous Classical Electrodynamics book by J. D.
Jackson.

Problem-solving can be one of the most difficult tasks for the young physicist, but
also one of the most rewarding and entertaining ones. This is even truer for the older
physicist who tries to create a new problem, and admittedly we learned a lot from this
activity which we pursued for 15 years (some say that the only person who certainly
learns something in a course is the teacher!). Over this long time, occasionally we
shared this effort and amusement with colleagues including in particular Francesco
Ceccherini, Fulvio Cornolti, Vanni Ghimenti and Pietro Menotti, whom we wish to
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warmly acknowledge. Our final thanks go to the students who did their best to solve
these problems, contributing to an essential extent to improve them.

Pisa, Tuscany, Italy
May 2017

Andrea Macchi
Giovanni Moruzzi

Francesco Pegoraro
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Chapter 1
Basics of Electrostatics

Topics. The electric charge. The electric field. The superposition principle. Gauss’s
law. Symmetry considerations. The electric field of simple charge distributions (plane
layer, straight wire, sphere). Point charges and Coulomb’s law. The equations of
electrostatics. Potential energy and electric potential. The equations of Poisson and
Laplace. Electrostatic energy. Multipole expansions. The field of an electric dipole.

Units. An aim of this book is to provide formulas compatible with both SI (French:
Système International d’Unités) 3 units in this chapter and Chaps. 2–6, while only
Gaussian units will be used in Chaps. 7–13. This is achieved by introducing some
system-of-units-dependent constants.

The first constant we need isCoulomb’s constant, ke, which for instance appears in
the expression for the force between two electric point charges q1 and q2 in vacuum,
with position vectors r1 and r2, respectively. The Coulomb force acting, for instance,
on q1 is

f1 = ke
q1q2

|r1 − r2|2 r̂12 , (1.1)

where ke isCoulomb’s constant, dependent on the units used for force, electric charge,
and length. The vector r12 = r1 − r2 is the distance from q2 to q1, pointing towards
q1, and r̂12 the corresponding unit vector. Coulomb’s constant is

ke =
⎧
⎨

⎩

1

4πε0
= 8.987 · · · × 109 N · m2 · C−2 � 9 × 109 m/F SI

1 Gaussian.
(1.2)
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Constant ε0 � 8.854 187 817 620 · · · × 10−12 F/m is the so-called “dielectric per-
mittivity of free space”, and is defined by the formula

ε0 = 1

μ0c2
, (1.3)

where μ0 = 4π × 10−7 H/m (by definition) is the vacuum magnetic permeability,
and c is the speed of light in vacuum, c = 299 792 458 m/s (this is a precise value,
since the length of the meter is defined from this constant and the international time
standard).

Basic equations The two basic equations of this Chapter are, in differential and
integral form,

∇ · E = 4πke � ,

∮

S

E · dS = 4πke

∫

V

� d3r (1.4)

∇ × E = 0 ,

∮

C

E · d� = 0 . (1.5)

where E(r, t) is the electric field, and �(r, t) is the volume charge density, at a point
of location vector r at time t . The infinitesimal volume element is d3r = dx dy dz.
In (1.4) the functions to be integrated are evaluated over an arbitrary volume V , or
over the surface S enclosing the volume V . The function to be integrated in (1.5) is
evaluated over an arbitrary closed path C . Since ∇ × E = 0, it is possible to define
an electric potential ϕ = ϕ(r) such that

E = −∇ϕ . (1.6)

The general expression of the potential generated by a given charge distribution
�(r) is

ϕ(r) = ke

∫

V

�(r′)
|r − r′| d

3r ′ . (1.7)

The force acting on a volume charge distribution �(r) is

f =
∫

V

�(r′)E(r′) d3r ′ . (1.8)
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As a consequence, the force acting on a point chargeq located at r (which corresponds
to a charge distribution �(r′) = qδ(r − r′), with δ(r) the Dirac delta function) is

f = q E(r) . (1.9)

The electrostatic energyUes associatedwith a given distribution of electric charges
and fields is given by the following expressions

Ues =
∫

V

E2

8πke
d3r . (1.10)

Ues = 1

2

∫

V

� ϕ d3r , (1.11)

Equations (1.10)–(1.11) are valid provided that the volume integrals are finite and
that all involved quantities are well defined.

The multipole expansion allows us to obtain simple expressions for the leading
terms of the potential and field generated by a charge distribution at a distance much
larger than its extension. In the following we will need only the expansion up to the
dipole term,

ϕ(r) � ke

(
Q

r
+ p · r

r3
+ · · ·

)

, (1.12)

where Q is the total charge of the distribution and the electric dipole moment is

p ≡
∫

V

r′ρ(r′) d3r′ . (1.13)

If Q = 0, then p is independent on the choice of the origin of the reference frame.
The field generated by a dipolar distribution centered at r = 0 is

E = ke
3r̂ (p · r̂) − p

r3
. (1.14)

We will briefly refer to a localized charge distribution having a dipole moment as
“an electric dipole” (the simplest case being two opposite point charges ±q with a
spatial separation δ, so that p = qδ). A dipole placed in an external field Eext has a
potential energy

Up = −p · Eext . (1.15)
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1.1 Overlapping Charged Spheres

Fig. 1.1

We assume that a neutral sphere of radius R can be regarded as
the superposition of two “rigid” spheres: one of uniform pos-
itive charge density +�0, comprising the nuclei of the atoms,
and a second sphere of the same radius, but of negative uni-
form charge density−�0, comprising the electrons. We further
assume that its is possible to shift the two spheres relative to
each other by a quantity δ, as shown in Fig. 1.1, without per-
turbing the internal structure of either sphere.

Find the electrostatic field generated by the global charge
distribution

(a) in the “inner” region, where the two spheres overlap,
(b) in the “outer” region, i.e., outside both spheres, discussing the limit of small
displacements δ � R.

1.2 Charged Sphere with Internal Spherical Cavity

Fig. 1.2

A sphere of radius a has uniform charge density � over all its
volume, excluding a spherical cavity of radius b < a, where
� = 0. The center of the cavity, Ob is located at a distance d,
with |d| < (a − b), from the center of the sphere, Oa (Fig. 1.2).
Themass distribution of the sphere is proportional to its charge
distribution.

(a) Find the electric field inside the cavity.

Now we apply an external, uniform electric field E0. Find

(b) the force on the sphere,

(c) the torque with respect to the center of the sphere, and the torque with respect to
the center of mass.

1.3 Energy of a Charged Sphere

A total charge Q is distributed uniformly over the volume of a sphere of radius R.
Evaluate the electrostatic energy of this charge configuration in the following three
alternative ways:

(a) Evaluate the work needed to assemble the charged sphere by moving successive
infinitesimals shells of charge from infinity to their final location.

(b) Evaluate the volume integral of uE = |E|2/(8πke) where E is the electric field
(Eq.(1.10)).
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(c) Evaluate the volume integral of � φ/2 where � is the charge density and φ is the
electrostatic potential (Eq.(1.11)). Discuss the differences with the calculation made
in (b).

1.4 Plasma Oscillations

L

δ

h

Fig. 1.3

A square metal slab of side L has thickness h, with h � L .
The conduction-electron and ion densities in the slab are ne

and ni = ne/Z , respectively, Z being the ion charge.
An external electric field shifts all conduction electrons by

the same amount δ, such that |δ| � h, perpendicularly to the
base of the slab (Fig. 1.3). We assume that both ne and ni are
constant, that the ion lattice is unperturbed by the external field,
and that boundary effects are negligible.

(a) Evaluate the electrostatic field generated by the displace-
ment of the electrons.

(b) Evaluate the electrostatic energy of the system.

Now the external field is removed, and the “electron slab” starts
oscillating around its equilibrium position.

(c) Find the oscillation frequency, at the small displacement limit (δ � h).

1.5 Mie Oscillations

Now, instead of a the metal slab of Problem 1.4, consider a metal sphere of radius R.
Initially, all the conduction electrons (ne per unit volume) are displaced by −δ (with
δ � R) by an external electric field, analogously to Problem 1.1.

(a) At time t = 0 the external field is suddenly removed. Describe the subsequent
motion of the conduction electrons under the action of the self-consistent electrostatic
field, neglecting the boundary effects on the electrons close to the surface of the
sphere.

(b) At the limit δ → 0 (but assuming eneδ = σ0 to remain finite, i.e., the charge
distribution is a surface density), find the electrostatic energy of the sphere as a
function of δ and use the result to discuss the electron motion as in point (a).
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1.6 Coulomb Explosions

At t = 0 we have a spherical cloud of radius R and total charge Q, comprising N
point-like particles. Each particle has charge q = Q/N and mass m. The particle
density is uniform, and all particles are at rest.

(a) Evaluate the electrostatic potential energy of a charge located at a distance r < R
from the center at t = 0.

Fig. 1.4

(b) Due to the Coulomb repul-
sion, the cloud begins to expand
radially, keeping its spherical
symmetry (Fig. 1.4). Assume
that the particles do not over-
take one another, i.e., that if two
particles were initially located
at r1(0) and r2(0), with r2(0) >

r1(0), then r2(t) > r1(t) at any
subsequent time t > 0. Con-
sider the particles located in
the infinitesimal spherical shell

r0 < rs < r0 + dr , with r0 + dr < R, at t = 0. Show that the equation of motion of
the layer is

m
d2rs
dt2

= ke
q Q

r2s

(r0
R

)3
(1.16)

(c) Find the initial position of the particles that acquire the maximum kinetic energy
during the cloud expansion, and determinate the value of such maximum energy.

(d) Find the energy spectrum, i.e., the distribution of the particles as a function of
their final kinetic energy. Compare the total kinetic energy with the potential energy
initially stored in the electrostatic field.

(e) Show that the particle density remains spatially uniform during the expansion.

1.7 Plane and Cylindrical Coulomb Explosions

Particles of identical mass m and charge q are distributed with zero initial velocity
and uniform density n0 in the infinite slab |x | < a/2 at t = 0. For t > 0 the slab
expands because of the electrostatic repulsion between the pairs of particles.

(a) Find the equation of motion for the particles, its solution, and the kinetic energy
acquired by the particles.

(b)Consider the analogous problem of the explosion of a uniform distribution having
cylindrical symmetry.
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1.8 Collision of Two Charged Spheres

Two rigid spheres have the same radius R and the samemass M , and opposite charges
±Q. Both charges are uniformly and rigidly distributed over the volumes of the two
spheres. The two spheres are initially at rest, at a distance x0 � R between their
centers, such that their interaction energy is negligible compared to the sum of their
“internal” (construction) energies.

(a) Evaluate the initial energy of the system.

The two spheres, having opposite charges, attract each other, and start moving at
t = 0.

(b) Evaluate the velocity of the spheres when they touch each other (i.e. when the
distance between their centers is x = 2R).

(c)Assume that, after touching, the two spheres penetrate each other without friction.
Evaluate the velocity of the spheres when the two centers overlap (x = 0).

1.9 Oscillations in a Positively Charged Conducting Sphere

An electrically neutral metal sphere of radius a contains N conduction electrons. A
fraction f of the conduction electrons (0 < f < 1) is removed from the sphere, and
the remaining (1 − f )N conduction electrons redistribute themselves to an equilib-
rium configurations, while the N lattice ions remain fixed.

(a) Evaluate the conduction-electron density and the radius of their distribution in
the sphere.

Now the conduction-electron sphere is rigidly displaced by δ relatively to the ion
lattice, with |δ| small enough for the conduction-electron sphere to remain inside the
ion sphere.

(b) Evaluate the electric field inside the conduction-electron sphere.

(c) Evaluate the oscillation frequency of the conduction-electron sphere when it is
released.

1.10 Interaction Between a Point Charge and an Electric
Dipole

Fig. 1.5

An electric dipole p is located at a dis-
tance r from a point charge q, as in Fig.
1.5. The angle between p and r is α.

(a) Evaluate the electrostatic force on the
dipole.

(b) Evaluate the torque acting on the
dipole with respect to the dipole center.
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1.11 Electric Field of a Charged Hemispherical Surface

Fig. 1.6

A hemispherical surface of radius R is uniformly charged with
surface charge density σ . Evaluate the electric field and poten-
tial at the center of curvature (hint: start from the electric field
of a uniformly charged ring along its axis) (Fig. 1.6).

1.12 The Electric Field of an Array of Charged Wires (1)

Consider a uniformly spaced infinite array of parallel

Fig. 1.7

charged wires in the y = 0 plane of a Cartesian ref-
erence system. The wires have infinite lengths, neg-
ligible diameters, are spaced by a and are parallel to
the z axis, as shown in Fig. 1.7. Each wire carries a
uniform linear electric charge density λ. Using suit-
able approximations evaluate the electric field and the
electrostatic potential
(a) far away from the array, i.e., at |y| � a;
(b) close to the wires, i.e., at distances r � a from
each wire.
(c) Now show that the exact solution for the electric
potential is the following expression

ϕ(x, y) = −C ln [2 (cosh ky − cos kx)] , (1.17)

where C and k are constants to be determined. Hint:

i. Show that (1.17) is a solution of the two-dimensional Laplace equation∇2ϕ = 0;
ii. determine k from the symmetry of the problem;
iii. determine C from the boundary condition at great distances from the array;
iv. check that the values obtained for k and C lead to the correct electrostatic

potential also close to the wires.

1.13 The Electric Field of an Array of Charged Wires (2)

Reconsider the configuration of Problem1.12 and verify that (1.17) is a solution of the
two-dimensional Laplace equation∇2ϕ = 0 by exploiting the properties of the func-
tions of complex variables in the representation of twodimensional electrostatic fields
[1]. More specifically introduce the complex conjugate variables ζ = (x + iy)/2
and ζ̄ = (x − iy)/2, (where a bar denotes complex conjugation) and
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(a) Show that the two-dimensional Laplacian operator

∂2

∂x2
+ ∂2

∂y2
(1.18)

can be written as
∂2

∂x2
+ ∂2

∂y2
= ∂

∂ζ

∂

∂ζ̄
= ∂

∂ζ̄

∂

∂ζ
(1.19)

where ζ and ζ̄ are treated as independent variables.

Hint: use the chain rule for the x, y derivatives of a function of ζ = ζ(x, y) and
ζ̄ = ζ̄ (x, y) [2]

(b) Show that the real function ln [2 (cosh ky − cos kx)] is the real part of a function
of complex variable f (ζ ) and thus by definition is a solution of the two-dimensional
Laplace equation.

Hint use the following definitions of the trigonometric functions of complex variable:
cos (x + iy) = cos (x) cosh (y) − i sin (x) sinh (y), sin (x + iy) = sin (x) cosh (y)

+ i cos (x) sinh (y), and the product-to-sum relationship

cos (θ) − cos (φ) = −2 sin [(θ + φ)/2)] sin [(θ − φ)/2)]

where φ and θ are complex variables [3].

(c) Compute the imaginary part of the complex function corresponding to

ln [2 (cosh ky − cos kx)] .

Show that the curves of constant real and imaginary parts respectively are orthogonal
to each other. Relate the curves of constant imaginary part to the electric field lines if
the curves of constant real part correspond to constant values of the electric potential.

Hint: The orthogonality is a general property in the x-y plane of the curves of
constant real and imaginary parts respectively and does not depend on the specific
solution described above. Provide a general proof.

1.14 Mean Value Property and the Force on a Spherical
Charge

Assume that in a given compact spatial region U there are no electric charges, so
that the electric potential ϕ(r) satisfies satisfies Laplace’s equation∇2ϕ = 0 over U ,
i.e., ϕ(r) is harmonic over U .
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(a) Prove that the value of ϕ at the center C of a sphere of radius r contained in U
equals the average value of ϕ on the surface S of the sphere

ϕ(C) = ϕ(r) = 1

4πr2

∮

S

ϕ(r, θ, φ) dS , (1.20)

where (r, θ, φ) is a spherical coordinate system with the origin a the center of the
sphere. This is the mean value property of the harmonic functions. (Hint: show that
ϕ(r) does not depend on r).

(b) A sphere of radius a carrying a spherically symmetric charge distribution is
located in a space region where the electrostatic potential ϕ(r), prior to the introduc-
tion of the sphere, was a solution of Laplace’s equation. Show that the force exerted
on the sphere by the external field is the same as if its whole charge were concen-
trated at its center. (Hint: calculate the potential energy of the sphere in the external
potential ϕ(r) using the mean value property of the harmonic functions).
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Chapter 2
Electrostatics of Conductors

Topics. The electrostatic potential in vacuum. The uniqueness theorem for Poisson’s
equation. Laplace’s equation, harmonic functions and their properties. Boundary
conditions at the surfaces of conductors: Dirichlet, Neumann and mixed boundary
conditions. The capacity of a conductor. Plane, cylindrical and spherical capacitors.
Electrostatic field and electrostatic pressure at the surface of a conductor. Themethod
of image charges: point charges in front of plane and spherical conductors.

Basic equations. Poisson’s equation is

∇2ϕ(r) = −4πke �(r) , (2.1)

where ϕ(r) is the electrostatic potential, and �(r) is the electric charge density, at
the point of vector position r. The solution of Poisson’s equation is unique if one of
the following boundary conditions is true

1. Dirichlet boundary condition:ϕ is knownandwell definedon all of the boundary
surfaces.

2. Neumann boundary condition: E = −∇ϕ is known and well defined on all of
the boundary surfaces.

3. Modified Neumann boundary condition (also called Robin boundary con-
dition): conditions where boundaries are specified as conductors with known
charges.

4. Mixed boundary conditions: a combination of Dirichlet, Neumann, and modi-
fied Neumann boundary conditions:

Laplace’s equation is the special case of Poisson’s equation

∇2ϕ(r) = 0 , (2.2)

which is valid in vacuum.
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2.1 Metal Sphere in an External Field

A metal sphere of radius R consists of a “rigid” lattice of ions, each of charge +Ze,
and valence electrons each of charge −e. We denote by ni the ion density, and by ne
the electron density. The net charge of the sphere is zero, therefore ne = Zni. The
sphere is located in an external, constant, and uniform electric field E0. The field
causes a displacement δ of the “electron sea” with respect to the ion lattice, so that
the total field inside the sphere, E, is zero. Using Problem 1.1 as a model, evaluate

(a) the displacement δ, giving a numerical estimate for E0 = 103 V/m;

(b) the field generated by the sphere at its exterior, as a function of E0;

(c) the surface charge density on the sphere.

2.2 Electrostatic Energy with Image Charges

Fig. 2.1

Consider the configurations of point
charges in the presence of con-
ducting planes shown in Fig. 2.1.
For each case, find the solution for
the electrostatic potential over the
whole space and evaluate the elec-
trostatic energy of the system. Use
the method of image charges.

(a)Acharge q is located at a distance
a from an infinite conducting plane.

(b) Two opposite charges +q and
−q are at a distance d from each
other, both at the same distance a
from an infinite conducting plane.

(c) A charge q is at distances a and
b, respectively, from two infinite conducting half planes forming a right dihedral
angle.

2.3 Fields Generated by Surface Charge Densities

Consider the case (a) of Problem 2.2: we have a point charge q at a distance a from
an infinite conducting plane.

(a) Evaluate the surface charge density σ , and the total induced charge qind, on the
plane.
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(b) Now assume to have a nonconducting plane with the same surface charge distri-
bution as in point (a). Find the electric field in the whole space.

(c)Anon conducting spherical surface of radius a has the same charge distribution as
the conducting sphere of Problem 2.4. Evaluate the electric field in the whole space.

2.4 A Point Charge in Front of a Conducting Sphere

Fig. 2.2

A point charge q is located at a distance d from the
center of a conducting grounded sphere of radius
a < d (Fig. 2.2). Evaluate

(a) the electric potential ϕ over the whole space;

(b) the force on the point charge;

(c) the electrostatic energy of the system.

Answer the above questions also in the case of an
isolated, uncharged conducting sphere.

2.5 Dipoles and Spheres

Fig. 2.3

An electric dipole p is located at a distance d from the
center of a conducting sphere of radius a. Evaluate the
electrostatic potential ϕ over the whole space assuming
that (Fig. 2.3)

(a) p is perpendicular to the direction from p to the center
of the sphere,

(b) p is directed towards the center of the sphere.

(c) p forms an arbitrary angle θ with respect to the straight
line passing through the center of the sphere and the
dipole location.

In all three cases consider the two possibilities of (i) a
grounded sphere, and (ii) an electrically uncharged iso-
lated sphere.

2.6 Coulomb’s Experiment

Coulomb, in his original experiment, measured the force between two charged metal
spheres, rather than the force between two “point charges”. We know that the field of
a sphere whose surface is uniformly charged equals the field of a point charge, and
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that the force between two charge distributions, each of spherical symmetry, equals
the force between two point charges

F = ke
q1q2
r2

r̂, (2.3)

where q1 and q2 are the charges on the spheres, and r = r r̂ is the distance between
the two centers of symmetry. But we also know that electric induction modifies the
surface charge densities of conductors, so that a correction to (2.3) is needed. We
expect the induction effects to be important if the radius a of the spheres is not
negligibly small with respect to r (Fig. 2.4).

Fig. 2.4

(a) Using the method of image
charges, find the solution for
the electrical potential outside the
spheres as a series expansion, and
identify the expansion parameter.
For simplicity, assume the spheres
to be identical and to have the same
charge Q, as in the figure.

(b) Evaluate the lowest order correction to the force between the spheres with respect
to Coulomb’s law (2.3).

2.7 A Solution Looking for a Problem

An electric dipole p is located at the origin of a Cartesian frame, parallel to the z
axis, in the presence of a uniform electric fieldE, also parallel to the z axis (Fig. 2.5).

Fig. 2.5

(a) Find the total electrostatic potential ϕ = ϕ(r), with the condition ϕ = 0 on the xy
plane. Show that, in addition to the xy plane, there is another equipotential surface
with ϕ = 0, that this surface is spherical, and calculate its radius R.
Now use the result from point (a) to find the electric potential in the whole space for
the following problems:
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(b) A conducting sphere of radius a is placed in a uniform electric field E0;

(c) a dipole p0 is placed in the center of a conducting spherical shell of radius b.

(d) Find the solution to problem (c) using the method of image charges.

2.8 Electrically Connected Spheres

Two conducting spheres of radii a and b < a, respectively, are connected by a thin
metal wire of negligible capacitance. The centers of the two spheres are at a distance
d � a > b from each othe (Fig. 2.6). A total net charge Q is located on the system.

Evaluate to zeroth order approximation, neglecting the induction effects on the
surfaces of the two spheres,

(a) how the charge Q is partitioned between the two spheres.

Fig. 2.6

(b) the value V of the electrostatic
potential of the system (assuming
zero potential at infinity) and the
capacitance C = Q/V ,

(c) the electric field at the surface of
each sphere, comparing the intensi-
ties and discussing the limit b → 0.

(d) Now take the electrostatic
induction effects into account and
improve the preceding results to the
first order in a/d and b/d.

2.9 A Charge Inside a Conducting Shell

Fig. 2.7

A point charge q is located at a distance d from the center of a
spherical conducting shell of internal radius R > d, and exter-
nal radius R′ > R. The shell is grounded, so that its electric
potential is zero (Fig. 2.7).

(a) Find the electric potential and the electric field in the whole
space.

(b) Evaluate the force acting on the charge.

(c) Show that the total charge induced on the surface of the
internal sphere is −q.

(d) How does the answer to (a) change if the shell is not grounded, but electrically
isolated with a total charge equal to zero?
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2.10 A Charged Wire in Front of a Cylindrical Conductor

Fig. 2.8

We have two fixed points P ≡
(−a, 0) and P ′ ≡ (+a.0) on the xy
plane, and a third, generic point Q ≡
(x, y). Let r = QP and r ′ = QP ′
be the distances of Q from P and
P ′, respectively.
(a) Show that the family of curves
defined by the equation r/r ′ = K ,
with K > 0 a constant, is the family
of circumferences drawn in Fig. 2.8.

(b) Now consider the electrostatic
field generated by two straight infi-
nite, parallel wires of linear charge
densities λ and−λ, respectively. We
choose a Cartesian reference frame

such that the z axis is parallel to the wires, and the two wires intersect the xy plane
at (−a, 0) and (+a, 0), respectively. Use the geometrical result of point (a) to show
that the equipotential surfaces of the electrostatic field generated by the two wires
are infinite cylindrical surfaces whose intersections with the xy plane are the circum-
ferences shown in Fig. 2.8.

Fig. 2.9

(c)Use the results of points (a) and (b) to solve the
following problemby themethod of image charges.
An infinite straightwire of linear charge densityλ is
located in front of an infinite conducting cylindrical
surface of radius R. The wire is parallel to the axis
of the cylinder, and the distance between the wire
and axis of the cylinder is d, with d > R, as shown
in Fig. 2.9. Find the electrostatic potential in the
whole space.

2.11 Hemispherical Conducting Surfaces

Find the configurations of image charges that solve the problems represented in Fig.
2.10a, b, and the corresponding induced-charge distributions, remembering that the
electric potential of an infinite conductor is zero.
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Fig. 2.10

(a) The plane infinite surface of a con-
ductor has a hemispherical boss of
radius R, with curvature center in O . A
point charge q is located at a distance
a > R from O , the line segment from
O to q forms an angle θ with the sym-
metry axis of the problem.

(b) An infinite conductor has a hemi-
spherical cavity of radius R. A point
charge q is located inside the cavity, at a
distance b < R from O . Again, the line
segment from O to q forms an angle θ

with the symmetry axis of the problem.

2.12 The Force Between the Plates of a Capacitor

The plates of a flat, parallel-plate capacitor have surface S and separation h � √
S.

Find the force between the plates, both for an isolated capacitor (as a function of the
constant charge Q), and for a capacitor connected to an ideal voltage source (as a
function of the constant voltage V ). In both cases, use two different methods, i.e.,
calculate the force

(a) from the electrostatic pressure on the surface of the plates,

(b) from the expression of the energy as a function of the distance between the plates.

2.13 Electrostatic Pressure on a Conducting Sphere

A conducting sphere of radius a has a net charge Q and it is electrically isolated.
Find the electrostatic pressure at the surface of the sphere

(a) directly, from the surface charge density and the electric field on the sphere,

(b) by evaluating variation of the electrostatic energy with respect to a.

(c) Now calculate again the pressure on the sphere, assuming that the sphere is not
isolated, but connected to an ideal voltage source, keeping the sphere at the constant
potential V with respect to infinity.
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2.14 Conducting Prolate Ellipsoid

(a) Show that the equipotential surfaces generated by a uniformly charged line seg-
ment are prolate ellipsoids of revolution, with the focal points coinciding with the
end points of the segment.

(b)Evaluate the electric field generated by a conducting prolate ellipsoid of revolution
ofmajor axis 2a andminor axis 2b, carrying a charge Q. Evaluate the electric capacity
of the ellipsoid, and the capacity of a confocal ellipsoidal capacitor.

(c) Use the above results to evaluate an approximation for the capacity of a straight
conducting cylindrical wire of length h, and diameter 2b.

2.15 A Non-coaxial Cylindrical Capacitor

Anon-coaxial cylindrical capacitor comprises two conducting cylindrical surfaces of
radii R1 and R2 > R1, respectively, both of height h � R2, disposed as in Fig. 2.11.
The axes of the two cylinders are parallel, separated by a distance c < (R2 − R1),
as shown in the figure. Evaluate the capacity of the system disregarding the border
effects.

Fig. 2.11 .

Hint: use the equipotential cylindrical surfaces discussed in Problem 2.10.

2.16 Induced Charge Density on a Conducting Plane

A point charge q is located at a distance h from an infinite conducting plane at zero
potential.

(a) Show, using Gauss’s law, that the total induced charge on the plane is −q.
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(b) Show that the induced charge on any area of the plane is proportional to the solid
angle Ω that the area subtends from the point charge.

2.17 Charge Density on a Metal Sphere in Front of a Point
Charge

A point charge q is located at a distance

Fig. 2.12

h from the center of a grounded conduct-
ing sphere of radius a < h, as shown in
Fig. 2.12.

(a) Evaluate the density of induced
charge on the sphere surface.

(b) Evaluate the ratio of the induced
charge on the part of the sphere visible from q to the induced charge on the rest
of the sphere.

(c) Evaluate the density of induced charge on the sphere surface if the sphere is not
grounded, but isolated and uncharged.



Chapter 3
Electrostatics of Dielectric Media

Topics. Polarization charges. Dielectrics. Permanent and induced polarization. The
auxiliary vectorD. Boundary conditions at the surface of dielectrics. Relative dielec-
tric permittivity εr .

Basic equations. Let P denote the electric polarization (electric dipole moment per
unit volume). Some special materials have a permanent non-zero value of P, but in
many more cases a polarization appears in the presence of an electric field E. We
consider linear dielectric materials fow which P and E are parallel and proportional,
i.e.

P =
{

ε0χ E , where χ = εr − 1 , SI

χ E , where χ = εr − 1

4π
, Gaussian,

(3.1)

where χ is called the electric susceptibility and εr the relative permittivity of the
material.1 Notice that εr is a dimensionless quantity with the same numerical value
both in SI and Gaussian units.

We shall denote by �b and �f the volume densities of bound electric charge and
of free electric charge, respectively, and by σb and σf the surface densities of bound
and free charge. Quantities �b and σb are related to the electric polarization P by

�b = −∇ · P , and σb = P · n̂ , (3.2)

1 In anisotropic media (such as non-cubic crystals) P and E may not be parallel and thus χ and
εr are actually second rank tensors, but here we are interested only in isotropic and homogeneous
media, for which χ and εr are scalar quantities.
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where n̂ is the unit vector pointing outwards from the boundary surface of the
polarized material. We may thus write Eq. (1.4) as

∇ · E =
⎧⎨
⎩

�f + �b

ε0
= �f

ε0
− 1

ε0
∇ · P , SI

4π(�f + �b) = 4π�f − 4π∇ · P , Gaussian.
(3.3)

We may also introduce the auxiliary vector D (also called electric displacement)
defined as

D =
{

ε0E + P , SI,
E + 4πP , Gaussian,

(3.4)

so that

∇ · D =
{

�f , SI,
4π�f , Gaussian.

(3.5)

In addition, ∇ × E = 0 holds in static conditions. Thus, at the interface between
two different dielectricmaterials, the component ofE parallel to the interface surface,
and the perpendicular component ofD are continuous. In amaterial of electric permit-
tivity εr

D =
{

ε0εrE , SI
εrE , Gaussian.

(3.6)

To facilitate the use of the basic equations in this chapter also with the system
independent units, we summarize some of them in the following Table 3.1.

Table 3.1

Quantity SI Gaussian System independent

Polarization P of an
isotropic dielectric
medium of relative
permittivity εr

ε0(εr − 1)E εr−1
4π E εr−1

4πke
E

∇ · E �f+�b
ε0

4π(�f + �b) 4πke (�f + �b)

∇ · (εrE)
�f
ε0

4π�f 4πke �f

∇ × E 0 0 0
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3.1 An Artificial Dielectric

We have a tenuous suspension of conducting spheres, each of radius a, in a liquid
dielectric material of relative dielectric permittivity εr = 1. The number of spheres
per unit volume is n.
(a) Evaluate the dielectric susceptibility χ of the system as a function of the fraction
of the volume filled by the conducting spheres. Use the mean field approximation
(MFA), according to which the electric field may be assumed to be uniform through-
out the medium.
(b) The MFA requires the field generated by a single sphere on its nearest neighbor
to be much smaller than the mean field due to the collective contribution of all the
spheres. Derive a condition on n and a for the validity of the MFA.

3.2 Charge in Front of a Dielectric Half-Space

Fig. 3.1

A plane divides the whole space into two halves, one of
which is empty and the other filled by a dielectricmedium
of relative permittivity εr. A point charge q is located in
vacuum at a distance d from the medium as shown in
Fig. 3.1.
(a) Find the electric potential and electric field in the
whole space, using the method of image charges.
(b) Evaluate the surface polarization charge density on
the interface plane, and the total polarization charge of
the plane.
(c) Find the field generated by the polarization charge in
the whole space.

3.3 An Electrically Polarized Sphere

Ferroelectricity is the property of some materials like Rochelle salt, carnauba wax,
barium titanate, lead titanate, …, that possess a spontaneous electric polarization in
the absence of external fields.
(a) Consider a ferroelectric sphere of radius a and uniform polarization P, in the
absence of external fields, and evaluate the electric field and the displacement field
in the whole space.
(b) Now consider again a ferroelectric sphere of radius a and uniform polarization
P, but with a concentrical spherical hole of radius b < a. Evaluate the electric field
and the displacement field in the whole space.
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3.4 Dielectric Sphere in an External Field

A dielectric sphere of relative permittivity εr and radius a is placed in vacuum, in an
initially uniform external electric field E0, as shown in Fig. 3.2.
(a) Find the electric field in the whole space (hint: use the results of Problem 3.3 and
the superposition principle).

Fig. 3.2 Fig. 3.3

Aspherical cavity of radius a is located inside an infinite dielectricmediumof relative
permittivity εr, as in Fig. 3.3. The system is in the presence of an external electric
field which, far from the cavity (i.e. at a distance � a), is uniform and equal to Ed.
(b) Find the electric field in the whole space.

3.5 Refraction of the Electric Field at a Dielectric Boundary

Fig. 3.4

A dielectric slab of thickness h, length L � h,
and dielectric permittivity εr , is placed in an exter-
nal uniform electric field E0. The angle between
E0 and the normal to the slab surface is θ , as in
Fig. 3.4.
(a) Find the electric field E′ inside the slab and
the angle θ ′ betweenE′ and the normal to the slab
surface.
(b) Find the polarization charge densities in the
dielectric medium.

(c) Evaluate the torque exerted by the external field on the slab, if any. Neglect all
boundary effects.
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3.6 Contact Force Between a Conductor and a Dielectric

Fig. 3.5

A conducting square slab of surface S = a2

and thickness h � a is in contact with a
dielectric medium of relative permittivity εr.
The dielectric medium is much larger than
the slab, we can consider it a hemisphere of
radius R � a, with the slab in contact with
its base, as shown in Fig. 3.5a. Part (b) of Fig.
3.5 is an enlargement of the area enclosed in
the dashed rectangle of part (a). With this
assumption, we can assume the slab to be in
contact with a semi-infinite medium filling
the half-space x > 0, while we have vacuum
in the half space x < 0. The conducting slab carries a total charge Q, and we assume
that the boundary effects at its edges are negligible.
(a) Considering both the cases in which the slab is in contact with the dielectric, and
in which it is displaced by an amount ξ � a to the left, find the free charge densities
on the left (σ1) and right (σ2) surfaces of the slab, the polarization charge density
(σb) at the surface of the dielectric, and the electric field in the whole space.
(b) Calculate the electrostatic force acting on the slab.
(c) How do these results change if the dielectric medium is assumed to be an infinite
(in the y and z directions) layer of finite thickness w in the x direction?

3.7 A Conducting Sphere Between Two
Dielectrics

Fig. 3.6

A conducting sphere of mass density � and radius R
floats in a liquid of density�1 > 2� and relative dielectric
permittivity εr1 in the presence of the gravitational field.
Above the liquid there is a gaseous medium of mass den-
sity �2 � � and relative dielectric permittivity εr2 < εr1.
The sphere is given a charge Q such that exactly one half of its volume is submerged
(Fig. 3.6). Evaluate
(a) the electric field in thewhole space, the surface free charge densities on the sphere,
and the surface polarization charge densities of the two dielectrics, as functions of
R, εr1, εr2 and Q;
(b) the value of Q.
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3.8 Measuring the Dielectric Constant of a Liquid

Fig. 3.7

A cylindrical capacitor has internal radius a,
external radius b > a, and length 	 � b, so that
the boundary effects are negligible. The axis of
the capacitor is vertical, and the bottom of the
capacitor is immersed in a vessel containing a
liquid of mass density � and dielectric permit-
tivity εr , in the presence of the gravitational field.
If a voltage source maintains a potential differ-
ence V between the two cylindrical plates, the
liquid rises for a height h in the cylindrical shell
between the plates. Show how one can evalu-
ate the value of εr from the measurement of h
(Fig. 3.7).
(This is a problem from Ref. [1]).

3.9 A Conducting Cylinder in a Dielectric Liquid

Fig. 3.8

A conducting cylinder of mass M , radius a and height
L � a is immersed for a depth L − h (with h � a) in a
dielectric liquid having relative permittivity εr . The liquid
is contained in a cylindrical vessel of radius b > a, with
conducting lateral surface. A free charge Q is located
on the internal cylinder. Boundary effects are assumed
to be negligible. The cylinder is free to move vertically
preserving its axis (Fig. 3.8). Find
(a) the electric field E(a) at the surface of the internal
cylinder, and the surface charge densities;
(b) the electric field in the region between the lateral
surface of the internal cylinder and the container of the
liquid (a < r < b);
(c) the electrostatic force on the internal cylinder.
(d) Assume that the internal cylinder has mass M , and
the liquid has mass density � > M/(πa2L). Discuss the

equilibrium conditions.
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3.10 A Dielectric Slab in Contact with a Charged
Conductor

A dielectric slab of relative permeability εr , thickness h and surface S � h is in
contact with a plane conducting surface, carrying a uniform surface charge density
σ , as in Fig. 3.9. Boundary effects are negligible.
(a) Evaluate the electric field in the whole space.

Fig. 3.9

(b) Evaluate the polarization surface-
charge densities on the dielectric sur-
faces.
(c)How do the answers to points (a) and
(b) change if the slab is moved at a dis-
tance s < h from the conducting plane?
How does the electrostatic energy of the system depend on s? Is there an interaction
force between slab and conductor?

3.11 A Transversally Polarized Cylinder

Fig. 3.10

An infinite cylinder of radius a has an internal uni-
form electric polarization P, perpendicular to its axis,
as shown in Fig. 3.10. Evaluate the electric charge den-
sity on the lateral surface of the cylinder, the electric
potential and the electric field in the whole space.

Hint: see Problem 1.1.

3.12 Force Between a Parallel-Plate Capacitor
and a Dielectric Slab

Fig. 3.11

An isolated parallel-plate
capacitor consists of two
rectangular metal plates of
length a and width b, sepa-
rated by distance h � a, b,
and has a charge Q. A
dielectric slab of dielectric
permittivity εr and edges of
lengths a, b and h, respectively, is partially inserted a depth x � h into the capacitor,
as shown in Fig. 3.11. Assume that boundary effects can be neglected.
(a) Evaluate the force exerted by the capacitor on the slab.
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(b) Now evaluate the force exerted on the slab assuming that the capacitor is not
isolated, but connected to a battery that keeps it at a constant potential difference V .
(c) Explain qualitatively where the force is exerted.

3.13 A Cylindrical Quadrupole

Cylindrical multipole moments are the coefficients in a series expansion of the elec-
trostatic potential generated by a 3D charge distribution that is translation invariant
in one direction, for instance along the z axis of a Cartesian coordinate system. The
expansion is in terms of r ′/r , where r ′ and r are the distances from the z axis of
the element of charge distribution and of the point where we evaluate the potential,
respectively, under the assumption r ′ � r . Problem 3.11 provides a first example of
a cylindrical dipole moment.

Fig. 3.12

As a special example of a cylindrical
quadrupole consider four infinite straight, uni-
formly charged wires, parallel to one another
and parallel to the z axis of a Cartesian coordi-
nate system.Wires 1 and 3 carry linear charge
densities −λ and intersect the z = 0 plane at
(x = ±a, y = 0), respectively, wires 2 and 4
carry linear charge densities +λ and intersect
the z = 0 plane at (x = 0, y = ±a), as shown
in Fig. 3.12. This system has zero cylindrical
monopole and dipole moments.
(a) Evaluate the electrostatic potential and the
electric field generated by the four wires at a

point P distant r from the z axis, with r � a. Hint: use a cylindrical coordinate
system (r, φ, z) with the z axis in common with our Cartesian coordinate system, as
shown in Fig. 3.12.
(b) Evaluate the electrostatic potential and the electric field generated by the four
wires at a point P distant r from the z axis, with r � a.

Reference

1. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975). Problem 4.13



Chapter 4
Electric Currents

Topics. Electric current density. Continuity equation. Stationary electric currents.
Drude model for a conductor. Ohm’s law. Joule heating.

Basic equations. The electric current density J = J(r, t) is the local flow of charge
per unit area and surface, which appears in the continuity equation

∂t� + ∇ · J = 0 , (4.1)

that states the conservation of the total electric charge. In integral form

dQ

dt
≡

∫

V

∂t� d3r =
∫
S
J · dS ≡ I . (4.2)

where Q is the total charge contained into the volume V bounded by the closed
surface S. Usually the flux (or electric current) I is defined also for an open surface,
as the total charge crossing the surface per unit time.

The quantity
w = J · E (4.3)

is interpreted as the work per unit time and volume done by the EM fields on a
distribution of currents.

In a model of matter where there are several species of charged particles (labeled
with the index s) each having a charge qs , a density of particles ns = ns(r, t) and
flowing with velocity vs = vs(r, t), the current density is given by

J =
∑
s

qsnsvs . (4.4)

In a metal where electrons are the only charge carrier, J = −eneve.
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Drude’s model for electrons in a metal assumes the classical equation of motion

me
dve
dt

= −eE − meνve , (4.5)

where ν is a phenomenological friction coefficient. In a steady state (dve/dt = 0)
this leads to Ohm’s law for a conductor

J = nee2

meν
E ≡ σE ≡ E

ρ
, (4.6)

where σ is the conductivity and ρ = 1/σ the resistivity of the material.1

In a material satisfying (4.6), the latter implies that the current I flowing between
two points (or layers) at different values of the electric potential, the potential drop
V is proportional to I , leading to the definition of the resistance R:

V = RI . (4.7)

In the common (but particular) example of a straight conductor of length � and
cross-section area A, such that the electric field is uniform inside the conductor,
one obtains R = �/(σ A) = ρ�/A. The equations (Kirchoff’s laws) describing DC
electric circuits, i.e., networks of interconnected conductors each satisfying (4.7),
can be found in any textbook and will not be repeated here.

Equation (4.7) is known asOhm’s law, but it is appropriate to use this name also for
the underlying and more general Eq. (4.6) due to G. Kirchoff. An Ohmic conductor
is defined as any material which satisfies (4.6). For such materials, Eq. (4.3) gives the
power per unit volume dissipated into the material as a consequence of the friction
term,

J · E = σ E2 = E2

ρ
, (4.8)

which causes the heating of the material (Joule effect). For the above mentioned
example, this is equivalent to state that the power dissipated into the whole conductor
is W = RI 2.

Notice that all the above equations have the same form both in the SI and in
the Gaussian system. However, the units of measure are different. For example, the
current I is measure in C/s or Ampère (1A = 1C/S) in SI, and in statCoulomb/s or
“statAmpère” in Gaussian units, while the resistance is measured in Ohms (�) in SI
and in s/cm in Gaussian units. For the latter, σ has the dimensions of the inverse of
a time, and is thus measured in s−1, while ρ can be measured in s.

1 Unfortunately the commonly used symbols for the resistivity and the conductivity are almost the
same as those used for the volume and surface densities of charge. However, throughout the book
the meaning of the symbols used should be clear from the context.
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4.1 The Tolman-Stewart Experiment

Fig. 4.1

The experiment of Tolman and Stewart [1] was conceived in
order to show that conduction in metals is due to electrons.
A metallic torus (ring) of major radius a and minor radius
b is spun at a very high angular velocity ω around its axis
(Fig. 4.1). We assume that b � a, so that the radial motion of
the charge carriers can be neglected. The cross section of the
ring is S = πb2.

At time t = 0 the rotation of the ring is suddenly stopped.
A current I = I (t) flowing in the ring and decaying in time is
observed for t > 0.
(a) Using the Drude model for conduction in metals, find I =
I (t) and its characteristic decay time τ for a ring of copper (electrical conductivity
σ � 107 �−1m−1 and electron density ne = 8.5 × 1028 m−3).
(b)Evaluate the charge that flows in the ring from t = 0 to t = ∞ as a function of σ .

4.2 Charge Relaxation in a Conducting Sphere

A conducting sphere of radius a and conductivity σ has a net charge Q. At time
t = 0 the charge is uniformly distributed over the volume of the sphere, with a
volume charge density �0 = Q (3/4πa3). Since in static conditions the charge in
an isolated conductor can only be located on the conductor’s surface, for t > 0 the
charge progressively migrates to the surface of the sphere.
(a) Evaluate the time evolution of the charge distribution on the sphere, and of the
electric field everywhere in space. Give a numerical value for the time constant τ in
the case of a good conductor (e.g., copper).
(b) Evaluate the time evolution of the electrostatic energy of the sphere during the
charge redistribution.
(c) Show that the energy dissipated into Joule heat equals the loss of electrostatic
energy.
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4.3 A Coaxial Resistor

Fig. 4.2

Two coaxial cylindrical plates of very low resistivity ρ0

have radii a and b, respectively, with a < b. The space
between the cylindrical plates is filled up to a height h
with a medium of resistivity ρ � ρ0, as in Fig. 4.2. A
voltage sourcemaintains a constant potential difference
V between the plates.
(a) Evaluate the resistance R of the system.
(b) Discuss the relation between R and the capacitance
of a cylindrical capacitor of radii a and b.

4.4 Electrical Resistance Between Two Submerged
Spheres (1)

(a) Two highly conducting spheres of

Fig. 4.3

radii a and b, respectively, are deeply
submerged in the water of a lake, at a dis-
tance x from each other, with x � a and
x � b. The water of the lake has resis-
tivity ρ. Evaluate the approximate resis-
tance between the two spheres, using
the results of the answer to point (b) of
Problem 4.3 (Fig. 4.3).

Fig. 4.4

(b) Now suppose that the two spheres
are not completely submerged, but just
sunk so that their centers are exactly at
the level of the surface of the lake, as
shown in Fig. 4.4. Evaluate the resistance
between them.

4.5 Electrical Resistance Between Two Submerged
Spheres (2)

Fig. 4.5

Two identical, perfectly con-
ducting spheres of radius a are
immersed in a fluid of resis-
tivity ρ and relative electric
permittivity εr. The distance
between the centers of the two
spheres is � � a. A constant



4.7 Charge Decay in a Lossy Spherical Capacitor 33

potential difference difference V is maintained between the spheres by a suitable
voltage source (Fig. 4.5).

As a first approximation, assume the charge to be uniformly distributed over the
surface of each sphere, neglecting electrostatic induction effects. Evaluate
(a) the charge on each sphere,
(b) the resistance R and the current I flowing between the spheres.
(c) Find the temporal law and the decay time for the discharge of the spheres when
the voltage source is disconnected.
(d) Discuss how electrostatic induction modifies the previous answers, to the lowest
order in a/�.

4.6 Effects of Non-uniform Resistivity

Two geometrically identical cylindrical conductors have both height h and radius
a, but different resistivities ρ1 and ρ2. The two cylinders are connected in series
as in Fig. 4.6, forming a single conducting cylinder of height 2h and cross section
S = πa2. The two opposite bases are connected to a voltage source maintaining a
potential difference V through the system, as shown in the figure.

Fig. 4.6

(a) Evaluate the electric fields, the
electric current and the current densi-
ties flowing in the two cylinders in sta-
tionary conditions.
(b) Evaluate the surface charge den-
sities at the surface separating the two
materials, and at the base surfaces con-
nected to the voltage source.

4.7 Charge Decay in a Lossy Spherical Capacitor

Fig. 4.7

A spherical capacitor has internal radius a and external
radius b. The spherical shell a < r < b is filled by a
lossy dielectric medium of relative dielectric permittiv-
ity εr and conductivity σ . At time t = 0, the charge of
the capacitor is Q0 (Fig. 4.7).
(a) Evaluate the time constant for the discharge of the
capacitor.
(b) Evaluate the power dissipated by Joule heating
inside the capacitor, and compare it with the temporal
variation of the electrostatic energy.
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4.8 Dielectric-Barrier Discharge

Fig. 4.8

Fig. 4.9

The plates of a parallel-plate capacitor have
surface S and separation d. The space between
the plates is divided into two layers, parallel to
the plates, of thickness d1 and d2, respectively,
with d1 + d2 = d, as in Fig. 4.8. The layer of
thickness d1 is filled with a gas of negligi-
ble dielectric susceptibility (χ = 0, εr � 1),
while the layer of thickness d2 is filled with
a dielectric material of dielectric permittiv-
ity εr > 1. The electric potential difference
between the plates, V , is kept constant by
a voltage source. Boundary effects can be
neglected.
(a) Find the electric field inside the capacitor.
An ionization discharge is started in the
gaseous layer at t = 0, and the gas instanta-

neously becomes conducting (Fig. 4.9). We assume that, for t > 0, the ionized gas
can be considered as an Ohmic conductor of constant and uniform resistivity ρ.
(b) After a sufficiently long time we observe that the current stops flowing in the
gas, and the system reaches a steady state (i.e., all physical quantities are constant).
Find the electric field in the capacitor in these conditions, and the surface free charge
density between the two layers.
(c) Find the time dependence of the electric field during the transient phase (t > 0),
and the relaxation time needed by the system to reach the steady state condition.

4.9 Charge Distribution in a Long Cylindrical Conductor

Fig. 4.10

Consider a conducting homoge-
neous cylindrical wire of radius a
and length 2h, with a � h, and
resistivity ρ. The wire is connected
to a voltage source that keeps a con-
stant potential difference V across
its ends. We know that the electric
fieldE and, consequently, the current
density J = E/ρ must be uniform
inside the wire, see Problem 4.6.
This implies the presence of charge
distributions generating the uniform
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field. Only surface charge distributions are allowed in a conductor in steady con-
ditions. The charge distributions on the bases of the cylinder are not sufficient for
generating an even approximately uniformfield in our case of a � 2h. Thus, a charge
density σL must be present also on the lateral surface. Verify that a surface charge
density σL = γ z, where γ is a constant and z is the coordinate along the cylinder
axis, leads to a good approximation for the field inside the conductor far from the
ends [2] (Fig. 4.10).

4.10 An Infinite Resistor Ladder

Fig. 4.11

An infinite resistor ladder consists of an
infinite number of resistors, all of resis-
tance R, arranged as in Fig. 4.11. Evalu-
ate the resistancemeasured between the
terminals A and B. Hint: use an invari-
ance property of the ladder.

References
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Chapter 5
Magnetostatics

Topics. Stationary magnetic field in vacuum. Lorentz force. Motion of an electric
point charge in a magnetic field. The magnetic force on a current. The magnetic field
of steady currents. “Mechanical” energy of a circuit in a magnetic field. Biot-Savart
law. Ampères’ circuital law. The magnetism of matter. Volume and surface magne-
tization current densities (bound currents). Magnetic susceptibility. The “auxiliary”
vector H. Magnetic field boundary conditions. Equivalent magnetic charge method.

Units. In order to write formulas compatible with both SI and Gaussian units, we
introduce two new “system dependent” constants, km and bm, defined as

km =

⎧
⎪⎨

⎪⎩

μ0

4π
, SI,

1

c
, Gaussian,

bm =

⎧
⎪⎨

⎪⎩

1, SI,

1

c
, Gaussian,

(5.1)

where, again, μ0 = 4π × 10−7 T·m/A is the “magnetic permeability of vacuum”,
and c = 29 979 245 800 cm/s is the light speed in vacuum.

Basic equations. The two Maxwell equations for the magnetic field B relevant to
this chapter are

∇ · B = 0 , (5.2)

∇ × B = 4πkm J . (5.3)

Equation (5.2) is always valid (in the absence ofmagnetic monopoles), while (5.3) is
valid in the absence of time-dependent electric fields. It is thus possible to introduce
a vector potential A, such that

B(r) = ∇ × A(r) , (5.4)
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Imposing the gauge condition ∇ · A = 0, the vector potential satisfies

∇2A(r) = −4πkmJ(r) , (5.5)

which is the vector analogous of Poisson’s equation (2.1). Thus,

A(r) = km

∫

V

J(r′)
|r − r′| d

3r ′. (5.6)

A particular and typical case is that of closed “line” currents, e.g. flowing in a
circuit having wires of negligible thickness. In such case one may replace J(r′) d3r ′
by I (r′) d� and calculate the field via the Biot-Savart formula

B(r) = km

∮
I (r − r′) d� × (r − r′)

|r − r′|3 , (5.7)

where the integral is extended to the closed path of the current.
The force exerted by a magnetic field over a distribution of currents is

f = bm

∫

v

J(r′) × B(r′)d3r ′. (5.8)

A single point charge q located at r and moving with velocity v is equivalent to a
current density j(r′) = qδ(r − r′)v, so that the magnetic force on the point charge
is

f = bmqv × B . (5.9)

The energy associated to a magnetic field distribution is given by the expression

Um =
∫

V

bmB2

8πkmμr
d3r. (5.10)

In the absence of magnetic monopoles, the first non-vanishing term of the multi-
pole expansion is the magnetic dipole m

m = 1

2

∫

V

r′ × J(r′) d3r′. (5.11)

In the simple case of a small plane coil of area A and electric current I this reduces
to the line integral over the coil path C
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m = I

2

∮

C

r′ × d� = AI n̂ , (5.12)

where n̂ is perpendicular to the coil surface. A magnetic dipole located at r = 0
generates a magnetic field

B(r) = km
3r̂ (m · r̂) − m

r3
. (5.13)

In an external magnetic field Bext, the magnetic force on a magnetic dipole is

f = (m · ∇)Bext. (5.14)

The magnetization density M of a material is defined as the dipole moment per
unit volue,

M = dm
dV

. (5.15)

Ampère’s equivalence theorem states that a magnetization density M = M(r) is
always equivalent to a distribution of volume current density Jm and surface current
density Km bound to the material, and given by

Jm = 1

bm
∇ × M , (5.16)

Km = 1

bm
M · n̂ , (5.17)

where n̂ is the unit normal vector pointing outwards from the boundary surface of
the material. The total volume and surface current densities are thus

J = Jf + Jm , K = Kf + Km , (5.18)

the subscript f denoting the free (e.g., conduction) current densities.
The auxiliary field H is defined as

H =
⎧
⎨

⎩

B
μ0

− M , SI,

B − 4πM , Gaussian,
(5.19)

so that Eq. (5.3) becomes
∇ × H = 4πkm Jf , (5.20)

Amaterialmayhave either a permanentmagnetization, or amagnetization induced
by a magnetic field. In linear, isotropic diamagnetic and paramagnetic materials M
is parallel and proportional to H,
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M = χmH , (5.21)

where χm is the magnetic susceptibility of the material, with χm < 0 for diamag-
netic materials and χm > 0 for paramagnetic materials.1 The (relative) magnetic
permeability μr is defined as

μr =
{
1 + χm , SI,
1 + 4πχm , Gaussian.

(5.22)

We have μr < 1 for diamagnetic materials and μr > 1 for paramagnetic materials.
Inserting (5.21) and (5.22) into (5.19) we obtain

B =
{

μ0μr H , SI,
μr H , Gaussian,

(5.23)

valid for isotropic, non-ferromagnetic, materials.
To facilitate the use of the basic equations in this chapter also with the system

independent units, we summarize some of them in the following Table 5.1.

Table 5.1

Quantity SI Gaussian System independent

∇ × B μ0J 4π
c J 4πkmJ

Magnetic force on a point
charge q moving with veloc-
ity v in a magnetic field B

q v × B q v
c × B bm q v × B

Magnetic field dB generated
by a wire element d� carry-
ing a current I at a distance
r (Biot-Savart’s law)

μ0
4π

Id�×r̂
r2

1
c

Id�×r̂
r2

km
Id�×r̂
r2

Magnetic moment m of a
ring circuit carrying an elec-
tric current I , and enclosing
a surface S

I S 1
c I S bm I S

Volumetric magnetic energy
density um

B2

2μ0μr

B2

8πμr

bmB2

8πkmμr

Self-inductance L of a so
lenoid of cross-section S,
length � and n turns per
unit length, filled with a
medium of relative permit-
tivity μr

μ0 μr n2� S
4πμr n2� S

c2
4πkmbm μr n2� S

1 Themagnetization is expressed in terms of the auxiliary fieldH, rather than in terms of themagnetic
field B, for historical reasons. In ferromagnetic materials there is no one-to-one correspondence
betweenM and H (betweenM and B) because of magnetic hysteresis.



5.2 Pinch Effect in a Cylindrical Wire 41

5.1 The Rowland Experiment

Fig. 5.1

This experiment by Henry
A. Rowland (1876) aimed at
showing that moving charges
generate magnetic fields. A
metallic disk or radius a and
thickness b � a is electrically
charged and kept in rotation
with a constant angular veloc-
ity ω.
(a) The disk rotates between
two conducting plates, one at a distance h � 0.5 cm above its upper surface, and
the other at h below its lower surface, as in Fig. 5.1. The two plates are connected
to the same terminal of a voltage source maintaining a potential difference V0 = 104

V, while the other terminal is connected to the disk by a sliding contact. Evaluate the
surface charge density on the disk surfaces.
(b) Calculate the magnetic field Bc near the center of the disk and the magnetic field
component Br parallel and close to the disk surfaces, as a function of the distance
r from the axis. Typical experimental values were a = 10 cm, and ω � 2π × 102

rad/s (period T = 2π/ω = 10−2 s).
(c) The field component Br generated by the disk at r = a can be measured by
orienting the apparatus so that r̂ is perpendicular to the Earth’s magnetic field B⊕, of
strength B⊕ � 5 × 10−5 T, and measuring the deviation of a magnetic needle when
the disk rotates. Find the deviation angle of the needle.

5.2 Pinch Effect in a Cylindrical Wire

Fig. 5.2

Auniform current density J flows in an
infinite cylindrical conductor of radius
a. The current carriers are electrons
(charge−e) of number volume density
ne and drift velocity v, parallel to the
axis of the cylinder. Ions can be con-
sidered as fixed in space, with uniform
number density ni and charge Ze. The system is globally neutral (Fig. 5.2).
(a) Evaluate the magnetic field generated by the current, and the resulting magnetic
force on the electrons.
The magnetic force modifies the volume distribution of the electrons and this, in
turn, gives origin to a static electric field. At equilibrium the magnetic force on the
electrons is compensated by the electrostatic force.
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(b) Evaluate the electric field that compensates the magnetic force on the electrons,
and the corresponding charge distribution.
(c) Evaluate the effect in “standard” conditions for a good Ohmic conductor.

5.3 A Magnetic Dipole in Front of a Magnetic Half-Space

Fig. 5.3

The plane x = 0 divides the space into two half-spaces,
labeled 1 and 2, respectively. We have vacuum in half-
space 1, while half-space 2 is filled by a medium of
magnetic permittivityμr. Amagnetic dipolem, parallel
to the y axis, is located in vacuum at position x = −d
(Fig. 5.3). Find
(a) the magnetic field B in the whole space,
(b) the force acting on the magnetic dipole.

5.4 Magnetic Levitation

In a given region of space we have a static magnetic field, which, in a cylindrical
reference frame (r, φ, z), is symmetric around the z axis, i.e., is independent ofφ, and
can be written B = B(r, z). The field component along z is Bz(z) = B0z/L , where
B0 and L are constant parameters.
(a) Find the radial component Br close to the z axis.
A particle of magnetic polarizability α (such that it acquires an induced magnetic
dipole moment m = αB in a magnetic field B), is located close to the z axis.
(b) Find the potential energy of the particle in the magnetic field.
(c) Discuss the existence of equilibrium positions for the particle, and find the fre-
quency of oscillations for small displacements from equilibrium either along z or r
(let M be the mass of the particle).

5.5 Uniformly Magnetized Cylinder

A magnetically “hard” cylinder of radius R and height h, with R � h, carries a
uniform magnetization M parallel to its axis.
(a) Show that the volumemagnetization current density Jm is zero inside the cylinder,
while the lateral surface of the cylinder carries a surfacemagnetization current density
Km, with |Km| = |M|.
(b) Find the magnetic field B inside and outside the cylinder, at the limit h → ∞.
(c) Now consider the opposite case of a “flat” cylinder, i.e., h � R, and evaluate the
magnetic field B0 at the center of the cylinder.



5.7 Cylindrical Conductor with an Off-Centered Cavity 43

(d) According to the result of (c), limR/h→∞ B0 = 0. Obtain the same result using
the equivalent magnetic charge method.

5.6 Charged Particle in Crossed Electric and Magnetic
Fields

Fig. 5.4

Aparticle of electric chargeq andmass
m is initially at rest in the presence of a
uniform electric field E and a uniform
magnetic field B, perpendicular to E.
(a) Describe the subsequent motion of
the particle.
(b)What is the time dependence of the
kinetic energy of the particle? Which field exerts the force responsible for the varia-
tion of the kinetic energy in time?
(c) Use the result of point (a) to discuss the following problem. We have a parallel-
plate capacitor with surface S, plate separation h and voltage V , as in Fig. 5.4. A
uniform magnetic field B is applied to the capacitor, perpendicular to the capacitor
electric field, i.e., parallel to the plates. Ultraviolet radiation causes the negative
plate to emit electrons with zero initial velocity. Evaluate the minimum value of B
for which the electrons cannot reach the positive plate.

5.7 Cylindrical Conductor with an Off-Centered Cavity

Fig. 5.5

An infinite cylindrical conductor of radius a has a cylindrical
hole of radius b bored parallel to, and centered at a distance h
from, the cylinder axis, as in Fig. 5.5. We have h + b < a. The
conductor carries a total current I , due to a current density J
uniform throughout the metal part of the cylinder. The current
density J is parallel to the axis of the conductor. The figure
shows a section of the conductor. Evaluate the magnetic field
B everywhere in space.
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5.8 Conducting Cylinder in a Magnetic Field

Aconducting cylinder of radius a and height h 	 a rotates around its axis at constant
angular velocity ω in a uniform magnetic field B0, parallel to the cylinder axis
(Fig. 5.6).

Fig. 5.6

(a) Evaluate the magnetic force acting on the conduction
electrons, assumingω = 2π × 102 s−1 and B = 5 × 10−5 T
(the Earth’s magnetic field), and the ratio of the magnetic
force to the centrifugal force.
Assume that the cylinder is rotating in stationary conditions.
Evaluate
(b) the electric field inside the cylinder, and the volume and
surface charge densities;
(c) the magnetic field B1 generated by the rotation currents
inside the cylinder, and the order of magnitude of B1/B0

(assume a ≈ 0.1m).

5.9 Rotating Cylindrical Capacitor

Fig. 5.7

The concentric cylindrical shells of a cylindrical capacitor
have radii a and b > a, respectively, and height h 	 b. The
capacitor charge is Q, with +Q on the inner shell of radius
a, and −Q on the outer shell of radius b, as in Fig. 5.7. The
whole capacitor rotates about its axis with angular velocity
ω = 2π/T . Boundary effects are negligible.
(a) Evaluate the magnetic field B generated by the rotating
capacitor over the whole space.
(b) Evaluate the magnetic forces on the charges of the two
rotating cylindrical shells, and compare them to the electro-
static forces.

5.10 Magnetized Spheres

(a) A sphere of radius R has a uniform and permanent magnetization M. Calculate
the magnetic field inside and outside the sphere. (Hint: see Problem 3.3.)
(b)A sphere of radius R has a magnetic permeabilityμr and is located in an external,
uniform magnetic field B0. Calculate the total magnetic field inside and outside
the sphere, discussing the limit of a perfectly diamagnetic material (μr = 0), as a
superconductor.
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5.11 A Transversally Magnetized Cylinder

(a) An infinite cylinder of radius a has a permanent,

Fig. 5.8

uniform magnetization M perpendicular to its axis,
as shown in Fig. 5.8. Determine the magnetic field
inside the cylinder, showing that it is uniform.
(b) A portion of a particle accelerator consists of a
long, thin conducting cylindrical shell. An electric
current is distributed over the cylinder surface in order
to generate a uniform magnetic field B0 inside, per-
pendicular to the cylinder axis. The magnetic field
deflects charged particles traveling along the acceler-
ator. Determine the current distribution.

5.12 A Rotating Charged Spherical Shell

A spherical shell of radius a, uniformly charged with surface charge density σ , is
rotating about an axis passing through its center with constant angular velocity ω.
(a) Evaluate the magnetic field inside and outside the spherical shell by comparison
to the results of point (a) of Problem 5.10.
(b) Now evaluate directly the magnetic vector potential A and the magnetic field B
inside and outside rotating the shell using (5.6) and (5.4).

5.13 Magnetic Field of a Polygonal Loop

Fig. 5.9

A loop carrying a current I has the form of a regular poly-
gon of n sides inscribed in a circle of radius a. Fig. 5.9
shows the case of a hexagon.
(a) Evaluate the magnetic field at the center of the loop.
(b) Show that the limit for n → ∞ is the magnetic field at
the center of a circular loop of radius a.
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5.14 Helmholtz Coils

Fig. 5.10

A device commonly used for producing a region of
nearly uniformmagnetic fieldB consists of two equal,
coaxial coils, both of radius a and carrying the same
current I , at a distance 2b from each other, as shown
in Fig. 5.10. The device is named after the German
physicist Hermann von Helmholtz. Use a system of
cylindrical coordinates (r, φ, z) with the symmetry
axis of the system as z axis, and the origin located
halfway between the coils, as shown in the figure.
(a) Evaluate the value of b such that, at the origin, all
derivatives of B with respect to z vanish up to, and

including, the third order. This ensures a high uniformity of the magnetic field.
(b) Evaluate the radial component of the magnetic field close to the symmetry axis.



Chapter 6
Magnetic Induction and Time-Varying
Fields

Topics. Magnetic induction. Faraday’s law. Electromotive force. The slowly varying
current approximation. Mutual inductance and self-inductance. Energy stored in an
inductor. Magnetically coupled circuits. Magnetic energy. Displacement current and
the complete Maxwell’s equations.

Basic equations. In the presence of a time-varying magnetic field, Eq. (1.5) is modi-
fied into the exact equation

∇ × E = −bm∂tB , (6.1)

so that the line integral of ∇ × E around a closed path C is

∮

C

E · d� = −bm

∫

S

∂tB · dS (6.2)

Thus, for a fixed path, the line integral of E equals the time derivative of the flux of
the time-varying field B through a surface delimited by the contour C .

The electromotive force (emf) E in a real circuit having moving parts is the work
done by the Lorentz force on a unit charge over the circuit path,

E =
∮

circ

(E + bmV × B) · d� ≡ −bm
d

dt
Φcirc(B) , (6.3)

where V is the velocity of the circuit element. In (6.3) the flux Φcirc(B) of B through
the circuit may vary because of both the temporal variations of B and of the circuit
geometry. Equation (6.3) is the general Faraday’s law of induction.

For a system of two electric circuits, the magnetic flux through each circuit can
be written as a function of the currents flowing in each circuit,

Φ1 = L1 I1 + M21 I2 , Φ1 = L2 I2 + M12 I1 , (6.4)
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where the terms containing the (self-)inductance coefficients Li are the contribution
to flux generated by the circuit itself, and the terms containing the mutual inductance
coefficients M21 = M12 give the flux generated by one circuit over the other.

Finally, for time-varying fields the complete Maxwell’s equation replacing (5.3)
is

∇ × B = 4πkm J + km
ke

∂tE =
⎧⎨
⎩

4π

c
J + 1

c
∂tE (Gaussian),

μ0J + μ0ε0∂tE (SI.)
(6.5)

6.1 A Square Wave Generator

We have a uniform magnetic field B = B ẑ in the half

Fig. 6.1

space x < 0 of a Cartesian coordinate system, while the
field is zero for x > 0. A semicircular loop of radius a
and resistance R lyes in the xy plane, with the center of
the full circumference at the origin O of our coordinate
system, as in Fig. 6.1. The loop rotates around the z axis
at constant angular velocity ω.

First, assume that the self-inductance of the coil is
negligible and evaluate
(a) the current circulating in the coil;
(b) the torque exerted by the magnetic forces on the
coil, and the mechanical power needed to keep the coil
in rotation. Compare this to the electric power dissipated in the coil.
(c) Now consider the presence of the self-inductance of the coil, and discuss how it
changes the answer to point (a).

6.2 A Coil Moving in an Inhomogeneous Magnetic Field

Fig. 6.2

A magnetic field has rotational symmetry around a
straight line, that we choose as longitudinal axis, z, of a
cylindrical reference frame (r, φ, z). The z component
of the field on the z axis, Bz(0, z), is known and equals
Bz(0, z) = B0 z/L , where L is a constant. A circular
coil has radius a, resistance R, and axis coinciding with
the z axis of our reference frame. The coil performs a
translationalmotion at constant velocity v = v ẑ, and its
radius a is assumed to be small enough that the mag-
netic field is always approximately uniform over the
surface limited by the coil (Fig. 6.2).
(a) Find the current I flowing in the coil.
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(b)Find the power P dissipatedby the coil due to Joule heating, and the corresponding
frictional force f on the coil.
(c) Calculate f as the resultant magnetic force on the loop carrying the current I .

6.3 A Circuit with “Free-Falling” Parts

In the presence of the Earth’s gravitational field g, two high-conducting bars are
located vertically, at a distance a from each other. A uniform, horizontal magnetic
field B is perpendicular to the plane defined by the vertical bars. Two horizontal
bars, both of mass m, resistance R/2 and length a, are constrained to move, without
friction, with their ends steadily in contact with the two vertical bars (Fig. 6.3).
The resistance of the two fixed vertical bars is assumed to be much smaller than
R/2, so that the net resistance of the resulting rectangular circuit is, with very good
approximation, always R, independently of the positions of the two horizontal bars.

Fig. 6.3

First, assume that the upper horizon-
tal bar is fixed, while the lower bar starts
a “free” fall at t = 0. Let’s denote by
v = v(t) the velocity of the falling bar
at time t , with v(0) = 0.
(a) Write the equation of motion for
the falling bar, find the solution for v(t)
and show that, asymptotically, the bar
approaches a terminal velocity vt .
(b) Evaluate the power dissipated in the
circuit by Joule heating when v(t) = vt ,
and the mechanical work done per unit
time by gravity in these conditions. Now
consider the case in which, at t = 0, the
upper bar already has a velocity v0 �= 0
directed downwards, while the lower bar
starts a “free” fall.
(c)Write the equations ofmotion for both

falling bars, and discuss the asymptotic behavior of their velocities v1(t) and v2(t),
and of the current in the circuit I (t).
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6.4 The Tethered Satellite

The Earth’s magnetic field at the Earth’s

Fig. 6.4

surface roughly approximates the field of a
magnetic dipole placed at the Earth’s cen-
ter. Its magnitude ranges from 2.5 × 10−5

to 6.5 × 10−5 T (0.25 to 0.65G inGaussian
units), with a value Beq � 3.2 × 10−5 T at
the equator.

A satellite moves on the magnetic equa-
torial plane with a velocity v � 8 km/s
at a constant height h � 100 km over the
Earth’s surface, as shown in the figure (not
to scale!). A tether (leash, or lead line), con-
sisting in a metal cable of length � = 1 km,
hangs from the satellite, pointing to the
Earth’s center (Fig. 6.4).
(a) Find the electromotive force on the wire.
(b) The satellite is traveling through the ionosphere, where charge carriers in outer
space are available to close the circuit, thus a current can flow along the wire. Assume
that the ionosphere is rigidly rotating at the same angular velocity as the Erath. Find
the power dissipated by Joule heating in the wire and the mechanical force on the
wire as a function of its resistance R.

6.5 Eddy Currents in a Solenoid

A long solenoid consists of a helical

Fig. 6.5

coil of n turns per unit length wound
around a soft ferromagnetic cylinder of
radius R and length � � R. The ferro-
magnetic material has a relative mag-
netic permittivity μr , and an electri-
cal conductivity σ . An AC current I =
I0 cosωt flows in the coil (Fig. 6.5).
(a) Find the electric field induced in
the solenoid.
(b)Explain why the cylinder warms up
and evaluate the dissipated power.
(c) Evaluate how the induced currents affect the magnetic field in the solenoid.
(Boundary effects and the displacement current are assumed to be negligible).
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6.6 Feynman’s “Paradox”

A non-conducting ring of radius R is at rest on the xy plane, with its center at the
origin of the coordinate system. The ring has mass m, negligible thickness, and an
electric charge Q distributed uniformly on it, so that the ring has a linear charge
density λ = Q/(2πa). The ring is free to rotate around its axis without friction.

Fig. 6.6

A superconducting circular ring of
radius a � R, coaxial to the charged
ring and carrying an electric current
I0, also lies on the xy plane, as in Fig.
6.6. At time t = 0 the superconducting
loop is heated above its critical temper-
ature, and switches to normal conduc-
tivity. Consequently, its current decays
to zero according to a law I = I (t).
(a) Neglecting self-induction effects,
evaluate the angular velocityω = ω(t)
of the charged ring as a function of the
current I (t) in the smaller ring. Evalu-
ate the final angular velocity ωf , and the final angular momentum L f , of the charged
ring.
(b) Evaluate the magnetic field at the ring center, Bc, generated by the rotation of the
ring.
(c) Discuss how the results of (a) are modified by taking the “self-inductance” L of
the charged ring into account.

This is one of the possible versions of the so-called Feynman’s disc paradox [2],
presented in Vol. II, Sect. 17–4, of The Feynman’s Lectures on Physics. The apparent
paradox arises because the initial totalmechanical angular momentum of the system
is zero, no external torque is applied, and one could (wrongly) expect the final total
angular momentum to be zero, i.e. no rotation of the ring. This conclusion is wrong,
of course, for reasons further discussed in Problem 8.8.

6.7 Induced Electric Currents in the Ocean

A fluid flows with uniform velocity v in the presence of a constant and uniform
magnetic field B perpendicular to v. The fluid has an electrical conductivity σ and
volumetric mass density �.
(a) Evaluate the electric current density J induced in the fluid.
(b)Give a numerical estimate of |J| for the terrestrial oceans, knowing that the Earth’s
magnetic field has an average value B � 0.5G = 5 × 10−5 T, the conductivity of sea
water is σ � 4�−1m−1 (σ � 3.6 × 1010 s−1cm−1 in Gaussian units), and a typical
value of the flow velocity is v = 1m/s.
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(c)Due to the presence of the induced current, the magnetic force tends to slow down
the fluid. Estimate the order of magnitude for the time constant of this effect.

6.8 A Magnetized Sphere as Unipolar Motor

Fig. 6.7

A magnetized, non-conducting sphere has radius
a, mass m and permanent, uniform magnetiza-
tionM throughout its volume. An electric circuit
is formed by pasting a conducting wire along a
half meridian, from the pole P to the equator, and
another conducting wire around the whole equa-
tor of the sphere, as shown in Fig. 6.7. The circuit
is closed by two brush contacts (the white arrows
in Fig. 6.7) connecting the pole P , and a point A
of the wire on the equator of the sphere, to a volt-
age source of electromotive forceV . The resulting
circuit has resistance R.
(a) Evaluate the torque on the sphere when a current I flows in the circuit.
(b) If the sphere is free to rotate without friction around the z axis of a cylindrical
coordinate system, parallel to M and passing through the center O of the sphere, it
reaches asymptotically a terminal angular velocity ωt . Evaluated ωt and the charac-
teristic time of the system.

6.9 Induction Heating

Consider a homogeneous material of electrical conductivity σ and relative magnetic
permeability μr , both real, positive and independent of frequency. The electric per-
mittivity is εr = 1.
(a) Show that, if the displacement current density ∂tE/(4πke) can be neglected, the
magnetic field B inside the material obeys the equation

∂tB = α∇2B , (6.6)

and determine the value of the real constant α.
The material fills the half-space x > 0 in the presence of a uniform oscillating mag-
netic field B0 = ŷ B0 cos(ωt) = ŷRe

(
B0 e−iωt

)
in the half-space x < 0.

(b)Evaluate themagnetic fieldB(x, t) for x > 0, assuming that the displacement cur-
rent is negligible. Discuss under what conditions the result is a good approximation
for the case of a finite slab of the material.
(c) Evaluate the power dissipated in the medium by Joule heating.
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6.10 A Magnetized Cylinder as DC Generator

Fig. 6.8

A long hard-iron cylinder has height h, radius a � h,
and permanent, uniform magnetizationM throughout
its volume. The magnetization is parallel to the cylin-
der axis, which we choose as the z axis of a cylindrical
coordinate system (r, φ, z).
(a) Show that the magnetic field inside the cylinder,
far from the two bases, is B0 � 4π(km/bm)M, or
B0 � μ0M in SI units, B0 = 4πM in Gaussian units.
Show that the magnitude of the z component of the
field at the two bases is Bz � B0/2.
(b) Two brush contacts (the white arrows in Fig. 6.8)
connect the center of the upper base of the cylinder,
A, and a point on the equator of the cylinder, B, to a
voltmeter. The cylinder is kept in rotation around the
z axis with constant angular velocity ω. Evaluate the
electromotive force measured by the voltmeter.
This problem is taken from an example of [1], Sect. 88, p. 379.

6.11 The Faraday Disk and a Self-Sustained Dynamo

Fig. 6.9

A perfectly conducting disk, of radius a and
thickness h � a, rotates at constant angular
velocityω (parallel to the disk axis), in the pres-
ence of a uniform and constant magnetic field
B parallel to ω.
(a) Evaluate the electric field E in the disk
in steady state conditions, and the correspond-
ing potential drop between the center and the
boundary of the disk (hint: the total force on
charge carriers must be zero at equilibrium).
(b) We now form a closed circuit by connecting the center of the disk to a point of
the circumference by brush contacts (white arrows in the figure), as in Fig. 6.9. Let
R be the total resistance of the resulting circuit. Calculate the external torque needed
to keep the disk in rotation at constant angular speed.
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Fig. 6.10

(c) Finally, we place the rotating disk at
the center of a long solenoid of radius
b > a and n turns per unit length. The disk
and the solenoid are coaxial, as shown in
Fig. 6.10. The two brush contacts of point
(b) are now connected to the ends of the
solenoid coil, so that the rotating disk pro-
vides the current circulating in the turns.
The total resistance of the disk-solenoid
circuit is R. The circulating current is thus
due to the disk rotation and to the pres-
ence of the magnetic field B, that the cur-
rent itself generates by circulating in the
solenoid (self-sustained dynamo). Find a the value of ω for steady-state conditions.
This is an elementary model for a dynamo self-sustained by rotation, such as the
generation mechanism of the Earth’s magnetic field [3].

6.12 Mutual Induction Between Circular Loops

Fig. 6.11

The centers of two circular conducting loops
A and B, of radii a and b � a, respectively,
are located at the origin O of a Cartesian
reference frame. At time t = 0 both loops
lie on the xy plane. While the larger loop
remains at rest, the smaller loop, of resis-
tance R, rotates about one of its diameters,
lying on the x axis, with angular velocity ω,
as shown in Fig. 6.11. A constant current I
circulates in the larger loop.
(a) Evaluate the current IA induced in loop
A, neglecting self-inductance effects.
(b) Evaluate the power dissipated in loop A

due to Joule heating.
(c)Evaluated the torque needed to keep loop A in rotation, and the associatedmechan-
ical power.
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(d) Now consider the case when loop A is at rest on the xy plane, with a constant
current I circulating in it, while loop B rotates around the x axiswith constant angular
velocityω. Evaluate the electromotive force induced in B, neglecting self-inductance
effects.

6.13 Mutual Induction Between a Solenoid and an Internal
Loop

Fig. 6.12

Fig. 6.13

A conducting loop of radius a and
resistance R is located with its center
at the center of solenoid of radius b >

a and n turns per unit length, as in
Fig. 6.12.The loop rotates at constant
angular velocity ω around a diame-
ter perpendicular to the solenoid axis,
while a steady current I flows in the
solenoid.
(a) Evaluate the flux of the magnetic
field through the rotating coil as a
function of time.
(b)Evaluate the torque exerted by the
external forces on the loop in order
to keep it rotating at constant angular
velocity.
Now assume that the solenoid is dis-
connected from the current source,

and that the rotating loop is replaced by amagnetic dipolem, still rotating at constant
angular velocity ω, as in Fig. 6.13.
(c) Evaluate the electromotive force induced in the solenoid.

6.14 Skin Effect and Eddy Inductance in an Ohmic Wire

A long, straight cylindrical wire of radius r0 and conductivity σ (which we assume to
be real and constant in the frequency range considered) carries an alternating current
of angular frequencyω. The impedance per unit length of the wire, Z�, can be defined
as the ratio of the electric field at the wire surface to the total current through the
wire cross section. Evaluate Z� as a function of ω.
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6.15 Magnetic Pressure and Pinch Effect for a Surface
Current

Fig. 6.14

A current I flows on the surface of a conducting cylinder of radius a
and infinite length, in the direction parallel to the axis ẑ. The current
layer has negligible thickness, so that we can write I = 2πaK , with
K = K ẑ the surface current density (Fig. 6.14). Calculate
(a) the magnetic field B in the whole space,
(b) the force per unit surface P on the cylinder surface
(c) the variation of magnetic field energy (per unit length) dUm

associated to an infinitesimal variation of the radius da. Explainwhy
P �= −(2πa)−1dUm/da and how to calculate P correctly from the
energy variation.

Notice: for point (b) it might be useful to show first that for a mag-
netostatic field we have

J × B = 1

4πkm

[
(B · ∇)B − 1

2∇B2
]

. (6.7)

6.16 Magnetic Pressure on a Solenoid

A current source supplies a constant current I to a solenoid of radius a, length h � a,
so that boundary effects are negligible, and n coils per unit length.
(a) Evaluate the magnetic pressure on the solenoid surface directly, by computing
the magnetic force on the coils.
(b) Now evaluate the magnetic pressure on the solenoid surface by evaluating the
variation of the magnetic energy of the system for an infinitesimal increase da of
the radius of the solenoid, and the corresponding work done by the current source in
order to keep I constant.

6.17 A Homopolar Motor

A homopolar motor is a direct current electric motor

Fig. 6.15

consisting of a circuit carrying a direct current I in the
presence of a static magnetic field. The circuit is free
to rotate around a fixed axis, so that the angle between
the current and the magnetic field remains constant in
time in each part of the circuit. The resulting electro-
motive force is continuous, and the homopolar motor
needs no device, like a commutator, to switch the cur-
rent flow. But it still requires slip rings (or brush con-
tacts) to operate. “Homopolar” means that the electri-
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cal polarity of the conductor (the direction of the current flow at each point of the
circuit) and the magnetic field do not change in time, and the motor does not require
commutation. A simple practical realization of a homopolar motor is shown in Figs.
6.15 and 6.16, based on a Wikipedia entry.

Fig. 6.16

The idea is the following: an electrochemical cell
drives a DC current into the double circuit shown in
the figures, while a magnetic field is generated gen-
erated by the permanent magnet cylindrical located
at the bottom of the cell, in electrical contact with its
negative pole, as shown in Fig. 6.16. The magnetic
field has rotational symmetry around the z axis and
is constant in time, in spite of the magnet rotation,
and the circuit is free to rotate around the z axis. The
magnetic forces on the current-carrying circuit exert
a torque, and the circuit starts to rotate.

The dimensions,mass and resistance of the circuit
(the mass includes battery and magnet), the voltage
of the battery and themagnetic field strength generated by themagnet at each point of
the circuit are known. Find the torque acting on the circuit, and the angular velocity
of the system as a function of time,

6.18 A Magnetic Cylinder Sliding inside a Solenoid

A solenoid of length a, radius b � a and n turns per unit length is connected to
a current source that supplies a constant electric current I0. A cylinder of relative
magnetic permeabilityμr �= 1 and radius b is introduced into the solenoid for a depth
Z < a, as shown in Fig. 6.17, with Z � b and (a − Z) � b.

Fig. 6.17

(a) The system may be considered
as a series of two inductors. Using
the expression of the inductance for
a long solenoid, calculate the total
inductance as a function of Z . Use
this result to evaluate the magnetic
energy of the system and the force
acting on the cylinder.
(b) Show that, because of the
boundary conditions at the interface
of two materials, the magnetic field B cannot be uniform inside the partially filled
solenoid. Discuss how this affects the assumptions underlying the approach followed
in a), and explain why, however, these assumptions lead to an acceptable result for
the force. Also discuss where the force is exerted. (Hint: compare this discussion to
that of Problem 3.12.)
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6.19 Conducting Cylindrical Shell in a Magnetic Field

Fig. 6.18

A conducting cylindrical shell has radius a, thick-
ness h � a, height b � a and conductivity σ , as
shown in Fig. 6.18. We choose a cylindrical coordi-
nate system with the shell axis as longitudinal axis
z, The shell is in a uniform oscillating magnetic
field B0(t) = ẑB cos(ωt) = Re

(
ẑB e−ıωt

)
. Assume

that border effects are negligible.
(a) Evaluate the magnetic field in the region surroun-
ded by the shell. Use the slowly-varying currents
and fields approximation, and neglect the displace-
ment current. Discuss the validity of the approxima-
tions. Give a numerical estimate for the case of copper
(σ � 6 × 107 �−1m−1) at a frequency of 50 Hz.
(b) Evaluate the entering and exiting flux of electro-
magnetic energy through the internal and external surfaces of the shell. Show that their
difference equals the power dissipated by Joule heating in the conducting material.
(c) Now evaluate the magnetic field in the region delimited by the cylindrical shell
assuming it to be uniform and the displacement current to be negligible, but that the
slowly-varying fields approximation is not valid. Compare the result to the result of
question (a).

6.20 Electromagnetic Inertia of a Rotating Charged Ring

Fig. 6.19

An electric charge Q is uniformly distributed
over a thin non-conducting ring of radius
a, resulting in a linear charge density λ =
Q/(2πa). The ring lies on the z = 0 plane of
the cylindrical coordinate system shown in Fig.
6.19. The ring rotates at a given time-dependent
angular velocity ω(t), parallel to the ring axis
(the z axis of our coordinate system) under the
action of an appropriate external torque τ ext(t).
For what follows it is useful to remember that a

conducting loop of radius a has inductance L = αa/c2 s2/cm, where α is a numerical
coefficient of the order of unity. Evaluate as functions of ω(t) and its derivatives
(a) the azimuthal electric field Ei(a) = Ei(a) φ̂ induced on the ring;
(b) the torque τ E exerted by Ei(a) on the ring, showing that its effect is equivalent
to an increase of the moment of inertia I of the ring;
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(c) the mechanical power PE provided by τ E , comparing it to the rate of change of
the magnetic energy.

6.21 A Bar Sliding in a Magnetic Field

Fig. 6.20

Two straight horizontal, semi-infinite,
and highly conducting wires are paral-
lel to the x axis of a Cartesian coordi-
nate system at a distance h from each
other along the y axis, in the presence
of a uniform magnetic field B0 parallel
to the z axis, as shown in Fig. 6.20. The
initial points of the wires, both located
at x = 0, are joined by a fixed bar of

length h and resistance R/2. At time t = 0 a second, movable bar of mass m and
resistance R/2 is located at x = x0 with an initial velocity v0, as shown in the figure.
The movable bar slides without friction over the wires keeping electrical contact, so
that the resistance of the circuit is R independently of the bar position.
(a) Disregarding the self-inductance of the circuit, evaluate the position of the mov-
able bar as a function of time and the maximum distance it will reach.
(b) Now assume that the circuit has a self-inductance L . How does this affect the
motion?

6.22 Magnetic Levitation of a Superconducting Ring

A superconducting ring of mass m and radius r lies on a support at a small height
z0 above a circular coil of radius R >> r , in the presence of the Earth gravitational
field g. The superconducting ring is constrained to move vertically maintaining its
axis vertical and coinciding with the axis of the coil. The self-inductances of the ring
and of the coil are Lr and Lc, respectively.

At time t = 0 the coil is connected to a current source providing a constant electric
current Ic.
(a) Evaluate the mutual inductance M(z) between coil and superconducting ring in
the approximation r � R.
(b) Evaluate the maximum height zmax reached by the superconducting ring in the
approximation M (zmax) � M (z0). Why do we need the initial position of the ring
to be above the coil by a finite amount?
(c) Describe the subsequent motion.
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6.23 Electromagnetic Brake with Energy Recovery

Fig. 6.21

Figure 6.21 shows an elementary model of an elec-
tromagnetic brake, where magnetic induction is
used to stop the rotation of a wheel. A rotor has
moment of inertia I and four conducting arms of
length a connected to an external circuit through
sliding contacts. The geometry is such that circuit
is always closed by a single armof the rotor. For sim-
plicity we assume the absence of external mechan-
ical torques, friction and self-induction.

The circuit contains a battery, i.e., a voltage source maintaining a constant voltage
drop V0 across its terminals. The resistance R of the circuit is assumed to be time
independent (the effects of circuit length variations are neglected). The system is
immersed in a uniform and constant magnetic field B0 = B0 ẑ perpendicular to the
plane of the rotor.
(a) Evaluate the electromotive force induced on the circuit.
(b) Evaluate the torque exerted by the magnetic forces on the rotor.
(c) Show that the time variation of the kinetic energy of the rotor equals the sum of
the power dissipated in the resistance and the power either supplied or absorbed by
the battery, discussing the conditions on V0 for each case.
(d) Find the time dependence of ω(t) assuming that the circuit is closed at t = 0
with the initial angular velocity ω(0) = ω0 > 0 such that E(ω0) + V0 > 0. Discuss
the cases V0 = 0 (no battery), V0 > 0 and V0 < 0.
(e) Using the solution for ω(t) calculate the total energy that can be absorbed by the
battery, and discuss the conditions on the system parameters for which the highest
percentage of the initial kinetic energy of the rotor is eventually stored into the battery.

6.24 A High Frequency Capacitor

Fig. 6.22

A plane capacitor consists of two circular, coaxial
and parallelmetallic plates at a distance h � a from
each other. All boundary effects are assumed to be
negligible (Fig. 6.22).

Assume the capacitor to be in series with an ideal
current source that supplies the current I = I (t) =
I0e−iωt in complex notation.
Using the slowly varying currents approximation
(SVCA), calculate
(a) the electric field E0 = E0(t) inside the capacitor and the surface charge density
±σ0 = ±σ0(t) on the two plates to the lowest order in the SVCA, for which both E0

and σ0 are considered as uniform;
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(b) the magnetic field B1 = B1(r, t) inside the capacitor, to the lowest non-vanishing
order (r being the distance from the capacitor axis);
(c) the first-order correction to the electric field E1 = E1(r, t) and to the surface
densityσ1 = σ1(r, t); to fix any integration constant, remember that the current source
maintains a fixed current in the circuit.
(d) Now assume that the capacitor is connected to a voltage source that maintains a
voltage drop E0he−iωt across the axis of the capacitor (z axis for reference), so that
the electric field on axis is E(r = 0, t) = E0e−iωt ẑ. Show that the SVCA iteration
leads to the following expression for the electric field as an infinite power series,

E(r, t) = e−iωt
∞∑
n=0

En = E0e
−iωt

∞∑
n=0

(−1)n

(n!)2
(ωr

2c

)2n ≡ E(0)e−iωt J0
(ωr

2c

)
, (6.8)

with the convergent series defining the function J0(x), known as the Bessel function
of zero order. (Hint: use the principle of mathematical induction.)

This problem is taken from Feynman’s lectures ([2], Volume II, Sect. 23–2) with
minor additions mostly to discuss a different choice of boundary conditions and how
the series solution can be checked.
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Chapter 7
Electromagnetic Oscillators and Wave
Propagation

Topics. Harmonic oscillators. Resonances. Coupled oscillators, normal modes and
eigenfrequencies. Basics of the Fourier transform. Electric circuits: impedances,
simple LC and RLC circuits. Waves. The wave equation. Monochromatic waves.
Dispersion. Wavepackets. Transmission lines.

Useful formulas for this chapter:
Fourier transform of the Gaussian function

+∞∫

−∞
e−(αk)2eikxdk =

√
π

α
e−x2/4α2

, (7.1)

where in general α is a complex number with Re(α) > 0.

7.1 Coupled RLC Oscillators (1)

Fig. 7.1

Consider an electrical circuit con-
sisting of two identical resistors
R, two identical inductors L , two
identical capacitors C1, and a
capacitor C0, all arranged in two
meshes as in Fig. 7.1. Let I1 and I2
be the current intensities flowing in
the left and right mesh of the cir-
cuit, respectively, as shown in the

figure. Initially, assume that I1 and I2 are flowing in the absence of voltage sources,
and assume R = 0.
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(a) Find the equations for the time evolution of I1 and I2. Describe the normal modes
of the system, i.e., look for steady-state solutions of the form

I1(t) = A1e
−iωt , I2(t) = A2e

−iωt , (7.2)

determining the possible values for ω. Find a mechanical equivalent of the circuit.
(b) Now consider the effect of the nonzero resistances R in series with each of the
two inductances L . Find the solutions for I1 and I2 in this case.
(c) Evaluate I1 and I2 as functions of ω if a voltage source V = V0 e−iωt is inserted
into the left mesh of the circuit.

7.2 Coupled RLC Oscillators (2)

Fig. 7.2

An electrical circuit consists of two
identical resistors R, two identical
inductors L , two identical capac-
itors C , and an inductor L0, all
arranged in two meshes as in Fig.
7.2. Let I1 and I2 be the currents
flowing in the left and rightmesh of
the circuit, respectively, as shown
in the figure.

(a) Initially, assume that the currents are flowing in the absence of sources, and
assume R = 0. Find the equations for the time evolution of I1 = I1(t) and I2 = I2(t).
Determine the normal modes of the circuit.
(b) Now assume R �= 0. Show that now the modes of the system are damped, and
determine the damping rates.

7.3 Coupled RLC Oscillators (3)

Fig. 7.3

An electrical circuit con-
sists of three identical resis-
tors R, three identical induc-
tors L , and two identical
capacitors C , arranged in
three meshes as in Fig. 7.3.
Let I1, I2, and I3 be the cur-
rents flowing in the three
meshes, as in the figure. Ini-
tially, assume R = 0.
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(a) Write the equations for the time evolution of In(t). Find a mechanical system
with three degrees of freedom and the same equations of motion as those for In(t).
(b) Determine the normal oscillation modes of the system and their frequencies.

(c) Now assume R �= 0, and determine the decay rate of the normal modes.

7.4 The LC Ladder Network

Fig. 7.4

An LC ladder network is formed
by N inductors L , and N capaci-
tors C , arranged as shown in Fig.
7.4. We denote by In = In(t) the
current in the nth inductor. Resis-
tance effects are assumed to be
negligible. The distance between
two neighboring nodes is a.
(a) Find the equations for the time
evolution of In . Which is a mechanical equivalent of the system?
(b) Show that solutions exist in the form of propagating monochromatic waves

In = C ei(kna−ωt) (7.3)

and find the dispersion relation between k and ω.
(c) For a given value of ω, find the allowed values of k with the boundary conditions
I0 = IN = 0.
(d) Discuss the limit to a continuum system, i.e., N → ∞, n → ∞, a → 0, with
na → x , where inductance and capacity are continuously distributed, i.e., defined
per unit length.

7.5 The CL Ladder Network

Fig. 7.5

Consider an infinite ladder net-
work of identical capacitorsC and
inductors L , arranged as shown
in Fig. 7.5. Let Qn = Qn(t) be
the charge on the nth capacitor,
Vn = Vn(t) the voltage drop on
the nth inductor, and In = In(t) =

dQn/dt is the current flowing in the nth mesh, across the nth capacitor, i.e., between
the network nodes at Vn−1 and Vn .
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(a) Show that the currents In satisfy the coupled equations

L
d2

dt2
(In+1 − 2In + In−1) = In

C
. (7.4)

(b) Show that the solutions of (7.4) have the form

In = A ei(kna−ωt) , (7.5)

with a the distance between two adjacent network elements, and determine the dis-
persion relation ω = ω(k).

7.6 Non-dispersive Transmission Line

Fig. 7.6

The “elementary cell” scheme
of a transmission line is
sketched in (Fig. 7.6). In addi-
tion to the inductance L and
capacitance C typical of the
ideal “LC” transmission line,
there is a resistance R in series
with L , which accounts for the
finite resistivity of the two con-
ductorswhich form the line. In addition,weassumeafinite leakageof current between
the two conductors (i.e., in the direction “transverse” to the propagation) which is
modeled by a second resistance RL in parallel to C . The corresponding conductance
is G = 1/RL . In the limit of a continuous system with homogeneous, distributed
properties, we define all quantities per unit length by replacing R with R�dx , L with
L�dx , C with C�dx and G with G�dx (it is proper to use G as a quantity defined
per unit length instead of RL because the latter is proportional to the inverse of the
length of the line).
(a) Show that the current intensity I = I (x, t) satisfies the equation

(∂2
x − L�C�∂

2
t )I = (R�C� + L�G�)∂t I + R�G� I = 0 . (7.6)

(b) Study the propagation of a monochromatic current signal of frequency ω, i.e.,
search for solutions

I = I0e
ikx−iωt , (7.7)

for x > 0 with the boundary condition I (0, t) = I0e−iωt , and determine the disper-
sion relation k = k(ω).
(c) Find the condition on the line parameters for which a wavepacket traveling along
the lines undergoes attenuation of the amplitude but no dispersion. This condition
corresponds to solutions having the general form

I (x, t) = e−κx f (x − vt) , (7.8)

where f (x) is an arbitrary differentiable function. Find the expression for v and κ .



7.8 Resonances in an LC Ladder Network 67

7.7 An “Alternate” LC Ladder Network

Fig. 7.7

Consider an “alternate” LC ladder network formed by identical capacitors C and
inductors of value alternatively L1 and L2, as shown in Fig. 7.7. Let I2n be the current
flowing in the mesh of the nth inductor of value L2, and I2n+1 the current flowing in
the n-th inductor of value L1.
(a) Show that the currents satisfy the equations

L2
d2 I2n
dt2

= 1

C
(I2n−1 − 2I2n + I2n+1) , L1

d2 I2n+1

dt2
= 1

C
(I2n − 2I2n+1 + I2n+2) .

(7.9)
What is a mechanical equivalent of this network?
(b) Search for solutions of (7.9) of the form

I2n = Ie e
i [2nka−ωt] , I2n+1 = Io e

i [(2n+1) ka−ωt] , (7.10)

where Ie and Io (the subscripts “e” and “o” stand for even and odd, respectively)
are two constants, and determine the dispersion relation ω = ω(k). Determine the
allowed frequency range for wave propagation (for simplicity, assume L2 � L1).

7.8 Resonances in an LC Ladder Network

Consider the semi-infinite LC ladder network shown in Fig. 7.8. Let In = In(t) be
the current flowing in the n-th mesh of the circuit. An ideal current source provides
the input current

I (t) = Ise
−iωt , (7.11)

where
(a) Assuming ω < 2ω0, evaluate In(t) as a function of Is and ω.
(b) Now find In(t) assuming ω > 2ω0. Hint: search for a solution of the form

In(t) = Aαne−iωt , (7.12)

determining the dependence of α on ω and ω0.
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Fig. 7.8

Fig. 7.9

Now assume that our LC ladder is finite, comprising N meshes numbered from
0 to N − 1, as in Fig. 7.9. Evaluate In(t) both for the case ω > 2ω0 and for the case
ω < 2ω0, determining for which values of ω resonances are observed.

7.9 Cyclotron Resonances (1)

Fig. 7.10

Consider a particle of charge q and mass m in the pres-
ence of a constant, uniform magnetic field B = B0 ẑ, and
of a uniform electric field of amplitude E0, rotating with
frequency ω in the (x, y) plane, either in clockwise or in
counterclockwise direction (Fig. 7.10 shows the counter-
clockwise case).
(a) Describe the motion of the particle as a function of B,
E , and ω, and show that, given B, a resonance is observed
for the appropriate sign and value of ω.

(b) Evaluate the solution of the equations of motion at resonance in the absence of
friction.
(c)Now assume the presence of a frictional force f = −mγ v, where v is the velocity
of the particle. Find the steady-state solution of the equations ofmotion, and calculate
the power dissipated by friction as a function of ω.

7.10 Cyclotron Resonances (2)

Consider a particle of charge q and mass m in the presence of a constant uniform
magnetic field B = B0ẑ, and of an oscillating uniform electric field E = E0x̂ cosωt .

(a)Write the equations ofmotion (assuming no friction) and determine the resonance
frequency of the system (hint: show that the equations for the velocity components
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vx and vy can be separated into two uncoupled equations of the forced harmonic
oscillator type)

(b) Now assume the presence of a frictional force f = −mγ vwhere γ � ω and γ �
qB0/m. Find the steady state solution of the equations of motion and the spectrum of
the absorbed power (hint: the equations for vx and vy cannot be separated in this case,
but seeking a solution in the form v = v0e−iωt , with v0 a complex vector, will work).

7.11 A Quasi-Gaussian Wave Packet

Fig. 7.11

Let us consider a wave packet of Gaus-
sian profile propagating with velocity
v along the x axis in a non-dispersive
medium,with dispersion relationω(k) =
kv (Fig. 7.11). In these conditions, the
wave packet’s profile remains constant,
and the packet is described by the func-
tion g(x − vt)

g(x − vt) = √
π

A

L
eik0(x−vt)e−(x−vt)2/4L2

=
+∞∫

−∞
g̃(k) eik(x−vt)dk,

(7.13)

where L , A and k0 are constant parameters, and g̃(k) = Ae−(k−k0)2L2
is the Fourier

transform of g. Now consider a secondwave packet described by a function f , whose
Fourier transform is

f̃ (k) = g̃(k) eiφ(k) = Ae−(k−k0)2L2
eiφ(k) , (7.14)

where the “phase perturbation” φ(k) is a smooth function, that can be approximated
by its Taylor polynomial expansion of degree 2 around k = k0,

φ(k) � φ(k0) + φ′(k0)(k − k0) + 1

2
φ′′(k0)(k − k0)

2 , (7.15)

where φ′ and φ′′ are the first and second derivatives of φ. The second wave packet
can be considered as an “attempt” to build up a Gaussian wave packet from its
spectral components, but with some error on the relative phases of the components
themselves. Find the width of the wave packet and discuss its shape in order to show
its deviations from the Gaussian profile.
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7.12 A Wave Packet Along a Weakly Dispersive Line

A transmission line extends from x = 0 to x = +∞. A generator at x = 0 inputs a
signal

f (t) = Ae−iω0te−t2/τ 2
, (7.16)

where A and τ are constant and ω0τ 	 1, i.e., the signal is “quasi-monochromatic”.
The dispersion relation of the transmission line can be written

ω = ω(k) = kv (1 + bk) , (7.17)

where v and b are known constants, and we assume k > 0.
(a) Find the expression f (x, t) for the propagating signal, i.e., for the wave packet
traveling along the line, assuming b = 0.

From now on, assume dispersive effects to be small but not negligible, i.e., assume
bk0 � 1, where k0 = k(ω0) according to (7.17).
(b)Within the above approximation, write the phase and group velocities as functions
of ω0 to the lowest order at which dispersive effects are present.
(c) Give an estimate of the instant tx when the “peak” of the signal reaches the
position x , and of the corresponding length of the wave packet.
(d) Now find the expression of the wave-packet shape as a function of (x, t), by
calculating the integral

f (x, t) =
∫

eik(ω)x−iωt f̃ (ω) dω , (7.18)

where f̃ (ω) is the Fourier transform of the wave packet. As a reasonable approxi-
mation, keep only factors up to the second order in (k − k0)2, for instance use

k(ω) � k(ω0) + k ′(ω0)(ω − ω0) + 1

2
k ′′(ω0)(ω − ω0)

2. (7.19)



Chapter 8
Maxwell Equations and Conservation
Laws

Topics. Maxwell’s equations. Conservation laws: energy, momentum and angular
momentum of the electromagnetic field. Poynting’s theorem. Radiation pressure.

Basic equations.
(Note: Gaussian c.g.s. units are used in this chapter unless otherwise specified.)
Maxwell’s equations

∇ · E = 4πρ , (8.1)

∇ · B = 0 , (8.2)

∇ × E = −1

c
∂tB , (8.3)

∇ × B = 4π

c
J + 1

c
∂tE . (8.4)

Energy conservation (Poynting’s) theorem

∂t u + ∇ · S = −J · E , (8.5)

where

u = 1

8π

(
E2 + B2

)
(8.6)

is the energy density of the EM field, and

S = c

4π
E × B (8.7)

is the Poynting (also named Poynting-Umov) vector.
Momentum conservation theorem:

∂tg + ∇ · T = −
(

ρE + 1

c
J × B

)
, (8.8)
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where

g = 1

4πc
(E × B) = S

c2
(8.9)

is the momentum density of the EM field and T is Maxwell’s stress tensor with
components

Ti j = 1

4π

[
1

2
(E2 + B2)δi j − Ei E j − Bi B j

]
. (8.10)

Thus, ∇ · T is a vector with components

(∇ · T)i =
j=3∑

j=1

∂ j Ti j . (8.11)

Angular momentum density of the EM field

� = r × g = r × S
c

. (8.12)

8.1 Poynting Vector(s) in an Ohmic Wire

A constant and uniformly distributed current density J = σE flows inside an infinite
straight wire of radius a and conductivity σ .
(a) Calculate the Poynting vector S = (c/4π)E × B and discuss the energy conser-
vation in the wire.
(b) The Poynting vector occurs in Poynting’s theorem only through its divergence,
since the theorem only requires that the flux of the Poynting vector through any a
closed surface describes the net flow of electromagnetic energy. Show that, conse-
quently, S′ = ϕJ, where ϕ is the electrostatic potential, is also a suitable choice for
S (hint: substitute E = −∇ϕ into (8.7) and manipulate the result).

8.2 Poynting Vector(s) in a Capacitor

a

h E

Fig. 8.1

A plane capacitor consists of two parallel circular plates
of radius a, at a distance h � a from each other. The
electric field inside the capacitor is slowly varying in
time, E = E(t) ẑ, for instance, assume E = E0 t/τ .
Boundary effects are negligible (Fig. 8.1).
(a) Evaluate the magnetic field B inside the capacitor.
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(b) Calculate the Poynting vector S = (c/4π)E × B, and show that the flux of S
though any surface enclosing the capacitor equals the time variation of the energy
associated to the electromagnetic field.
(c) Show that an alternative Poynting vector is

S′ = 1

4π
ϕ ∂tE , (8.13)

where ϕ is the electric potential (E = −∇ϕ). Verify that also the flux of S′ through
the closed surface of point (b) equals the variation of the energy in the volume inside
the surface (hint: proceed as in point (b) of Problem 8.1).

8.3 Poynting’s Theorem in a Solenoid

A time-dependent current, I = I (t) = I0 t/τ , flows through the coils of an infinitely
long, cylindrical solenoid. The solenoid has radius a and n turns per unit length.
(a) Find the magnetic and electric fields, B and E, inside the solenoid.
(b) Verify the law of energy conservation (Poynting’s theorem), for a closed internal
cylindrical surface, coaxial to the solenoid.
(c) Now verify Poynting’s theorem for an external, coaxial cylindrical surface
(remember that B = 0 outside an infinite solenoid).

8.4 Poynting Vector in a Capacitor with Moving Plates

Fig. 8.2

A plane capacitor consists of two circu-
lar metallic plates of radius a, parallel to
each other. One plate is kept at rest while
the other moves at constant velocity v,
so that the distance between the plates
is h = h(t) = h0 + vt (Fig. 8.2). In the
following we consider only the case in
which h � a at any time t , so that bound-
ary effects are negligible.We also assume
that v is small enough to ensure the valid-
ity of the slowly varying current approx-
imation.

Considering both the case of electrically isolated plates having opposite charges
±Q0, and the case of plates connected through a voltage source keeping a constant
electric potential drop V0 between them, calculate
(a) the force F needed to keep v constant,
(b) the rate of change of the electrostatic energy U ,
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(c) the magnetic field between the plates,
(d) the Poynting vector S and its flux through a cylindrical surface enclosing, and
coaxial with, the capacitor; use this last result to discuss energy conservation in the
system.

8.5 Radiation Pressure on a Perfect Mirror

A perfect mirror is defined as a medium inside which E = 0 and B = 0. Thus, an
EM wave cannot penetrate the mirror surface and will be reflected by it.

Find the radiation pressure Prad, i.e., the cycle–averaged force per unit surface
exerted by a plane wave incident on the surface of a perfect plane mirror, as a
function of the intensity I of the wave by each of the following three methods:
(a) Consider the reflection of a square wave packet of arbitrary, but finite, duration.
Determine Prad from the difference between the total momentum of the incident wave
packet and the momentum of the reflected wave packet.
(b) Calculate the force on the mirror directly, from the knowledge of the EM fields
and of the charge and current densities on the mirror surface.
(c) Determine Prad from Maxwell’s stress tensor.

8.6 A Light Beam

A beam of monochromatic light with frequency ω, linearly polarized, propagates
along the z direction. The beam has a finite width in the plane perpendicular to z.
We assume that in some region of space the transverse components of the EM fields
may be written approximately as

Ex = E0(r) cos(k0z − ωt) = E0e
−r2/r20 cos(k0z − ωt),

By = B0(r) cos(k0z − ωt) = B0e
−r2/r20 cos(k0z − ωt), (8.14)

where r = √
x2 + y2. The parameter r0 is called the waist of the beam. The assump-

tion of a Gaussian function to describe the trasverse profile is very common in optics,
since for instance the beams emitted by most laser sources have profiles close to a
Gaussian shape.
(a) Show that, in addition to the transverse components (8.14), longitudinal compo-
nents Ez and Bz must exist because of the divergence equations, and use the latter to
give an expression for Ez and Bz and to estimate their amplitude with respect to E0

and B0.
(b) Show that, by imposing that ∂t Ez and ∂t Bz satisfy the relevant Maxwell’s equa-
tions, a relation between E0, B0 and k0 is obtained.
(c) Compute the Poynting vector of the beam S and its average over a period 〈S〉,
showing which components are vanishing.
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(d) Verify that the fields (8.14) do not satisfy the wave equation in vacuum, hence
they are only an approximate expression, as mentioned above. Explain in which
range of z, depending on the value of k0r0, the approximate expressions are accurate.

8.7 Intensity and Angular Momentum of a Light Beam

A circularly polarized monochromatic light beam of frequency ω propagates along
the z direction. The beam has a finite width in the plane perpendicular to z. We
assume that in a region of space, close to the “waist” (i.e. to the plane where the
beam has minimal width) the transverse components of the EM fields can be written
approximately as

Ex = +E0(r) cos(kz − ωt) , Ey = −E0(r) sin(kz − ωt) ,

Bx = E0(r) sin(kz − ωt) , By = E0(r) cos(kz − ωt) , (8.15)

where r = √
x2 + y2, k = ω/c, and E0(r) is a known real function.

(a) Write the intensity I = I (r), defined as the “energy flow along z”, i.e., I (r) =
Sz = S · ẑ where S is the Poynting vector.
(b)Show that, in addition to the transverse components of the fields, also longitudinal
components (Ez , Bz) must exist, and give their expression.
(c) Evaluate the Sx and Sy component of S, and discuss the result.
(d) Show that the density of angular momentum (Eq. (8.12)) of the beam can be
written as


z = 
z(r) = − r

2cω
dr I, (8.16)

and compute the quantity

Lz =
∞∫

0


z(r) 2πr dr (8.17)

as a function of the total power of the beam W = ∫ ∞
0 I (r) 2πr dr .
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8.8 Feynman’s Paradox solved

Fig. 8.3

The system in Fig. 8.3 is composed by a non-conducting
cylindrical surface of height h and radius a, over which
there is a net charge Q uniformly distributed with sur-
face density σ = Q/(2πah), and a wire of same length
oriented along the cylinder axis and having charge −Q
distributed with uniform linear density λ = −Q/h, so
that the system is globally neutral. The cylindrical sur-
face is free to rotate around its axis without friction, and
has moment of inertia I per unit length. The system is at
rest in the presence of an external uniformmagnetic field
Bext, parallel to the system axis. Assume that boundary
effects can be neglected.

Starting at time t = 0, the external magnetic field is reduced from its initial value
Bext = B0 to zero at a time t f � a/c, according to some temporal lawBext = Bext(t).
(a) Initially assuming that the field generated by the motion of the charges on the
cylinder is negligible, evaluate the angular velocity ω = ω(t) of the cylinder as a
function of time during the decay of Bext, and the corresponding mechanical angular
momentum Lc of the cylinder.
(b) Now take the field generated by rotating charges into account, and evaluate how
the results of (a) change.
(c) Consistently with Eqs. (8.8)–(8.9), we introduce the angular momentum of a
given distribution of electromagnetic fields as

LEM =
∫

r × gd3r , (8.18)

where g = E × B/4π is the electromagnetic momentum density. Use Eq. (8.18) to
check the conservation of the total angular momentum for the system (thus solving
the “paradox” as outlined in Problem 6.6).

8.9 Magnetic Monopoles

Assume that an experiment gives evidence of the existence of “magneticmonopoles”,
i.e., of point-like particles with a net magnetic charge qm, such that the magnetic field
Bm generated by such charge is

Bm = α
qm
r2

r̂ , (8.19)
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while in the presence of an “external” magnetic field Bext the force on the particle
is f = qmBext. Thus, for example, the interaction force between two particles with
magnetic charges qm1 and qm2 is given by

f1→2 = α
qm1qm2

r212
r̂12 , f2→1 = −f1→2 . (8.20)

where r12 is the distance vector directed from charge 1 to charge 2. We also assume
that conservation of the total magnetic charge holds.
(a) Determine, both in SI and Gaussian units, the expressions for the coefficient α

and the dimensions of the magnetic charge qm with respect to the electric charge
qe. (Hint: we may assume that the field generated by two magnetic charges +qm
and −qm, separated by a distance h, is equivalent to the field of a magnetic dipole
m = qmh at distances r � |h|.)
(b) Complete Maxwell’s equations in order to take the presence of magnetic
monopoles into account.
(c)Now consider a beam of magnetic monopoles of radius a, of uniform density and
infinite length. The number density of the particles of the beam is n, and all particles
have the same magnetic charge qm and the same velocity v. Find the electric and
magnetic fields generated by the beam.

8.10 An Interstellar Light Sail

Fig. 8.4

Aquasi-monochromaticwave
packet of central wavelength
λ has total energyU , duration
τ � c/λ and square cross-
section of side L � λ, so that
it can be approximated by a
plane wave. The wave packet
is propagating along the x
direction of a Cartesian refer-
ence frame.

(a) Show that the wave packet has momentum p = x̂U/c.
(b) The wave packet impinges normally on a perfectly reflecting mirror of area
A > L2 and mass M , as shown in Fig. 8.4. The mirror is initially at rest and free to
move. Show that its final velocity is v 	 2U/(Mc), in the approximation that v � c.

The aim of the Breakthrough Starshot project is to develop light-sail interstellar
probes capable of making the journey to the Alpha Centauri star system, which,
at 4.37 light-years from the Sun, is the closest star system to our Solar System.
Each “sail” will have a mass M = 10 g, a reflecting surface A = 16 m2, and will be
accelerated by a laser beam radiating from the Earth.
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(c) Assuming L2 = A evaluate the laser energy needed to accelerate the sail up to
a velocity v = 0.3 c. Assuming a laser power of 1010 W evaluate the distance 
a
traveled by the sail during acceleration. Estimate the laser wavelength required for
the Rayleigh length of the laser beam to be larger than 
a. The Rayleigh length 
R
is the distance along the propagation direction of a laser beam from the waist to the
place where the area of the cross section of the beam is doubled. Approximately we
have 
R = S/λ, where S is the cross-section of the beam at the waist.

8.11 Radiation Pressure at Oblique Incidence

Fig. 8.5

Evaluate the radiation pressure, i.e., the force
exerted per unit area by an electromagnetic wave
of intensity I impinging at an angle θi on the planar
surface of a medium for which the reflectivity is R,
as shown in Fig. 8.5. Show that, in general, the force
has both components perpendicular and parallel to
the surface.

Hint: consider themomentumbalance for a long and
wide “squared” quasi-monochromatic wavepacket
of duration τ and cross-sectional area A, which is
partially reflected by the surface.

8.12 A Square Law Detector

In electromagnetism a square law detector is a detector that gives an output signal
directly proportional to the power of the input electrical signal, for example of a radio
signal. A conceptual realization of such a detector may be provided by a mirror,
of mass M , kept in place by a spring of Hooke constant κ , as shown in Fig. 8.6.
The mirror is subject to the radiation pressure of a reflected beam of light which
compresses the spring.

Fig. 8.6

Referring again to Fig. 8.6 let us con-
sider a circularly polarized plane wave
with an electric field of amplitude E and
frequency ω, being reflected at normal
incidence by amirror with a reflecting sur-
face of area D2. The mirror-spring system
forms an oscillator with oscillation fre-
quency ω0.
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(a) Compute the displacement of the mirror under the effect of the pressure exerted
by the wave.

Consider now an additional linearly polarized plane wave impinging normally on the
mirrorwith a small amplitude E1 << E of frequencyω1 such that (ω − ω1)

2 << ω2.

(b) Compute the displacement of the mirror with respect to its rest position and dis-
cuss the solution obtained for the case where (ω − ω1)

2 << ω2
0 and (ω + ω1)

2 >>

ω2
0, i.e., ω

2
1 >> ω2

0.
For the sake of simplicity assume that the displacements and the displacement

velocities are small so that you can disregard any Doppler effect in the reflection of
the two waves.
(c) Compare the result obtained with the case where E = 0 while E1 
= 0.

8.13 Poynting Vector for a Rotating Charged Spherical
Shell

Consider the rotating charged spherical shell of Problem 5.12.
(a)Evaluate the Poynting vector in thewhole space, due to the simultaneous presence
of an electric and a magnetic field.
(b) Evaluate the angular momentum associated to the electromagnetic field.
(c) For a particle of massm and charge q in the presence of amagnetic field described
by a vector potential A we define the canonical momentum as

pcan = mv + q

c
A , (8.21)

see also Problem 13.30. In the case of a medium with volume-distributed mass and
electric charge we have a canonical momentum density P can

P can = �mv + ρ

c
A , (8.22)

where �m is the mass density and ρ the charge density of the medium. Evaluate
accordingly the canonical angular momentum of our rotating charged shell, and
compare the result to the result of point (b).



Chapter 9
Relativistic Transformations of the Fields

Topics. Relativistic covariance of Maxwell’s equations. Four-vectors in electromag-
netism: four-current, four-potential. The electromagnetic four-tensor. Lorentz trans-
formations of the fields.

Basic equations. Relation of four-current and four-potential to densities and poten-
tials in three-dimensional space

Jμ ≡ (ρc, J) , Aμ = (φ,A) . (9.1)

Lorentz transformations of a four-vector Kμ = (K0,K) from the frame S to the
frame S′ moving with relative velocity v = βc with respect to S:

K ′
0 = γ (K0 − β · K) , K ′

‖ = γ (K‖ − βK0) , K′
⊥ = K⊥ , (9.2)

where “‖” and “⊥” denote the directions parallel and perpendicular toβ , respectively,
and γ = 1/

√
1 − β2.

Compact three-dimensional formulas for the transformation of the EM fields

E ′
‖ = E‖ , E′

⊥ = γ (E⊥ + β × B) , B ′
‖ = B‖ , B′

⊥ = γ (B⊥ − β × E) ,(9.3)

or, equivalently

E′ = γ (E + β × B) − γ 2

γ + 1
β(β · E) , (9.4)

B′ = γ (B − β × E) − γ 2

γ + 1
β(β · B) . (9.5)

Three-dimensional transformation of the “Newtonian” force
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F ′
‖ = F‖ − VF · v⊥/c2

1 − V v‖/c2
, F ′

⊥ = F⊥
γ (1 − V v‖/c2)

, (9.6)

where F = dp/dt in the S frame and F′ = dp′/dt ′ in the S′ frame.

9.1 The Fields of a Current-Carrying Wire

Fig. 9.1 .

In the laboratory frame S, a constant current
I flows in an infinitely long wire. The wire
has no net charge density. A test charge q
moves with a velocity v parallel to the cur-
rent at a distance r from the wire, as in Fig.
9.1.
(a) Find the force F acting on q in the lab-
oratory frame. Then evaluate the force F′
acting on the charge in the reference frame
S′ where the charge is at rest, applying the

appropriate Lorentz transformation.What can be inferred on the EMfields in S′ from
the expression of F′?
(b) Use the Lorentz transformations to obtain the charge and current densities of the
wire in S′, and the related EM fields. Evaluate the scalar and vector potentials in S′.
Compare the results to what obtained from the direct transformation rules for the
EM field.
(c) The answers to points (a) and (b) imply that in S′ there is a net charge density on
the wire. Recover this result by calculating the linear densities of electrons (flowing
with velocity ve in S) and ions (at rest in S) in S′ via the Lorentz transformations
for velocity and length. (this last point corresponds to the one presented by E. M.
Purcell in Ref. [1].)

9.2 The Fields of a Plane Capacitor

Fig. 9.2 .

In the laboratory frame S, a plane capacitor has
parallel square plates of area A = L2, located
at a distance h � L from each other, so that
the boundary effects can be assumed to be neg-
ligible. The plates have electric charges ±Q,
uniformly distributed over their surfaces, with
surface charge density ±σ = ±Q/A, respec-
tively (Fig. 9.2).

Evaluate, in a reference frame S′ moving
with respect to S with velocity v = βc parallel to the capacitor plates,
(a) the electric and magnetic fields in the region between the plates;



9.4 The Four-Potential of a Plane Wave 83

(b) the sources of the fields;
(c) the force per unit surface and the total force on each plate, comparing the the
results to the corresponding values in S.

9.3 The Fields of a Solenoid

Fig. 9.3 .

In the laboratory frame S a constant current I flows in an
infinite solenoid of radius R and n turns per unit length. At
a given instant t = 0 a test particle of charge q is located
inside the solenoid, with a velocity v perpendicular to the
axis of the solenoid, as shown in Fig. 9.3.
(a) Find the electromagnetic fields and the force on the
particle both in S, and in the frame S′ where the particle is
instantaneously at rest (v′ = 0).
(b) Assuming v/c � 1, evaluate the sources of the fields
in S′ up to the first order in v/c.

9.4 The Four-Potential of a Plane Wave

Consider a monochromatic plane wave, propagating in vacuum along the x axis of
the (Cartesian) laboratory frame S, linearly polarized along ŷ, and of frequency ω.
(a) Show that the electric fieldE = E(x, t) and the magnetic fieldB = B(x, t) of the
wave can be obtained from a suitable four-potential Aμ = (Φ,A) = (0, 0, Ay, 0).
Now consider the same wave observed in a frame S′, moving with velocity v = v ŷ
with respect to S.
(b) Evaluate the frequency ω′ and the wave vector k′ of the wave in S′. Calculate the
electric field E′ = E′(r′, t ′) and the magnetic field B′ = B′(r′, t ′) in S′ as functions
of E in the S frame.
(c) Verify that the wave is linearly polarized in S′ and show that E′ and B′ can be
obtained from a four-potential A′

μ = (0,A′) where A′ = A′(r′, t ′).
(d) Find the four-potential Ā′

μ obtained from Aμ through a Lorentz transformation.
Verify that E′ and B′ can be obtained also from Ā′

μ.
(e) Show that A′

μ and Ā′
μ are related by a gauge transformation.
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9.5 The Force on a Magnetic Monopole

Assume that an experiment has given evidence for the existence of magnetic
monopoles, i.e., point-like particles which, in the presence of a magnetic field B,
are subject to a force

Fm = qmB , (9.7)

where qm is the magnetic charge of the monopole. We assume that these particles
have no electric charge.
(a) Show that the force exerted by an electric field E on a monopole moving in the
laboratory frame with velocity v is

Fe = −qm
v

c
× E . (9.8)

(b) The “Lorentz force” on a magnetic monopole is the sum of (9.7) and (9.8). Use
this expression to study the motion of a magnetic monopole of mass m in either an
electric field E or in perpendicular E and B fields, where the fields are both constant
and uniform, and E > B. (For simplicity assume a non-relativistic motion. Compare
the results to those of Problem 5.6, point (a)).

9.6 Reflection from a Moving Mirror

An electromagnetic wave of frequency ω and electric field amplitude Ei, linearly
polarized along the y axis, is perpendicularly incident on a perfect conductor whose
bounding surface lies on the yz plane. The perfect conductor behaves as a perfect
mirror, i.e., we have E = 0 and B = 0 inside the material (x > 0).
(a) Evaluate the the field of the reflected wave and the total electromagnetic field.
Themirror is now set inmotionwith respect to the laboratory frame S, with a constant
velocity v = x̂ v parallel to the x axis.
(b) Find the frequencies and the fields of the incident and reflected waves in the S′
frame, where the mirror is at rest.
(c) Find the frequency and the fields of the reflected wave in the S frame.
(d) Discuss the continuity of the fields at the moving mirror surface.
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9.7 Oblique Incidence on a Moving Mirror

Fig. 9.4 .

In the laboratory frame S, a perfectly reflecting mir-
ror moves with constant velocity v, perpendicular to
its surface. In S, the wave vector ki of an incident
EM wave makes an angle θi with the normal to the
mirror surface, as in Fig. 9.4. The incident wave has
frequency ωi. Find
(a) the frequency ω′

i of the incident wave, the inci-
dence angle θ ′

i , and the reflection angle θ ′
r in the in

the S′ frame, where the mirror is at rest;
(b) the frequency ωr of the reflected wave, and the
reflection angle θr, in the S frame. What happens if
cos θi � v/c?

9.8 Pulse Modification by a Moving Mirror

Fig. 9.5 .

In the laboratory frame S we have an EM square
wave packet of amplitude Ei, comprising N com-
plete oscillations of frequencyωi, therefore of dura-
tion τi = 2πN/ωi. Assume that N � 1, so that the
packet is “quasi-monochromatic”. The wave packet
impinges perpendicularly on a perfect mirror. In the
laboratory frame, the mirror itself is moving with
constant velocity v perpendicularly to its surface (Fig. 9.5).
(a) Determine the form, duration and amplitude of the reflected wave packet.
(b) Compare the total energies of the incident and reflected wave packets, and deter-
mine the amount of mechanical work W done by the mirror during the reflection
stage (consider all quantities per unit surface).
(c) Show that W is equal to the integral over time and volume of J · E, in agreement
with Poynting’s theorem.

9.9 Boundary Conditions on a Moving Mirror

Fig. 9.6 .

The reflecting surface of a perfect mir-
ror is parallel to the yz plane of a labora-
tory (Cartesian) reference frame S. The
mirror is translatingwith constant veloc-
ity v parallel to the x axis, as in Fig. 9.6.
A plane monochromatic wave of fre-
quency ωi, amplitude Ei, and wave vec-
tor ki = x̂ωi/c, linearly polarized along
the y axis, impinges onto the mirror.
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(a) Show that in the laboratory frame S both total (i.e., incident + reflected) fields
E and B are discontinuous at the mirror surface, lying on the plane x = x(t), with
dx/dt = v.
(b) The EM fields can be derived from a vector potential A(x, t). Show that the
boundary conditions for the EM fields at the mirror surface are equivalent to the
condition

d

dt
A[x(t), t] = 0 , (9.9)

which states that the value of the vector potential at the surface is constant (i.e.,
time-independent) in the laboratory frame.
(c) As a consequence of (9.9), we can assume A[x(t), t] ≡ 0. Use this boundary
condition to obtain the frequency (ωr) and amplitude (Er) of the reflected wave in
the laboratory frame.

9.10 Lorentz Transformations on a Coaxial Cable

An inifinite coaxial cable consists of an inner cylindrical core of radius a and a
concentric external cylindrical shield of radius b > a. In the laboratory reference
frame S the internal conductor has a linear electric charge density λ and carries
a global courrent I . Both λ and I are constant in time and uniformly distributed
over the cylindrical surface r = a. Correspondingly, a linear electric charge density
−λ and an electric current −I , are uniformly distributed over the outer cylindrical
conducting surface r = b, as in Fig. 9.7.

Fig. 9.7 .

(a) Find two reference frames S′ and
S′′, moving with velocities V1 and V2,
respectively, both parallel to the cable
axis, such that λ′ = 0 and I ′′ = 0.
In the three reference frames S, S′ and
S′′ evaluate
(b) the electric and magnetic fields,
checking that they satisfy the transfor-

mation laws;
(c) the pressure (force per unit surface, with the correct sign) on both conductor
surfaces;
(d) the electromagnetic eneregy and momentum densities.
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9.11 Lorentz Transformations on a Rectangular Metal Pipe

Fig. 9.8 .

An infinite rectangular metal pipe is at
rest in the laboratory frame S. Figure 9.8
shows the cross section of the pipe: the
pipe (infinite) length is parallel to the z
axis, the cross section has sides a and b,
parallel to the x and y axes, respectively.
The pipe walls have thickness h � a, b.
Inside the walls flows a uniform and
constant current density J, as shown in
Fig. 9.8. According to Ampère’s cir-
cuital law the magnetic field is B0 =
ẑ 4π Jh/c inside the pipe and zero out-
side.

Now consider the pipe as seen from a reference frame S′ moving with constant
velocity V = V x̂ = βc x̂ with respect to S.
(a) Evaluate the current density, the charge density and the electromagnetic fields
inside and outside the pipe in S′.
(b) Evaluate the energy and electromagnetic momentum densities in S and S′.
(c) Check the boundary conditions for the electromagnetic fields at the pipe walls in
S′, at the limit of very thin walls.
(d) Check that the continuity equation (in integral and differential form) holds on
the pipe walls in S′. In particular, check the behavior at the pipe edges.

9.12 Force on an Ohmic Wire

A straight, infinite, cylindrical conducting wire of cross section A = πa2 and con-
ductivity σ is located in a constant uniform electric field E0,
(a) Evaluate the power lost by Joule heating per unit length of the wire and compare
it to the flux of the Poynting vector at the wire surface.
Now consider the wire as seen from a reference frame S′ in motion with respect to the
laboratory framewith constant velocityV perpendicular to thewire and toE. Assume
V � c so that terms in V/c of the second order and higher can be disregarded.
(b) Evaluate the electromagnetic fields, the charge densities and the current densities
in S′.
(c) Show that in S′ there is a force per unit length acting on the wire, and determine
its value. What is the physical origin of this force?
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Reference

1. E.M. Purcell, Electricity and Magnetism (Berkeley Physics Course - Vol. 2, Section 5.9), 2nd
edn. (McGraw-Hill Book Company, New York, 1984)



Chapter 10
Radiation Emission and Scattering

Topics. The radiation field. Multipole expansion. Electric dipole radiation. Magnetic
dipole radiation.

Basic equations. Fields in the radiation zone of a point-like source at r = 0 having
an electric dipole moment p(t):

E(r, t) =
[
p̈(tret) × r̂

] × r̂

rc2
, B(r, t) = r̂ × E (10.1)

where tret = t − r/c.
Instantaneous radiation power from the electric dipole source and its angular distri-
bution

Prad = 2

3c3
|p̈|2 ,

dPrad
dΩ

= 3Prad
4π

sin2 θ , (10.2)

where θ is the angle between p and r, and the infinitesimal solid angle dΩ =
2π sin θdθ .
Analogous formulas for the fields and the power of a magnetic dipole m(t):

E(r, t) = −
[
m̈(tret) × r̂

]

rc2
, B(r, t) = r̂ × E , (10.3)

Prad = 2

3c3
|m̈|2 ,

dPrad
dΩ

= 3Prad
4π

sin2 θ . (10.4)
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10.1 Cyclotron Radiation

An electron moves in the xy plane in the presence of a constant and uniform
magnetic field B = B0 ẑ. The initial velocity is v0 � c, so that the motion is non-
relativistic and the electron moves on a circular orbit of radius rL = v0/ωL and
frequency ωL = eB0/mec (Larmor frequency).
(a) Describe the radiation emitted by the electron in the dipole approximation speci-
fying its frequency, its polarization for radiation observed along the z axis, and along
a direction lying in the xy plane, and the total irradiated power Prad. Discuss the
validity of the dipole approximation.
(b) The electron gradually loses energy because of the emitted radiation,. Use the
equation Prad = −dU/dt , whereU is the total energy of the electron, to show that the
electron actually spirals toward the “center” of its orbit. Evaluate the time constant
τ of the energy loss, assuming τ � ω−1

L , and provide a numerical estimate.
(c) The spiral motion cannot occur if we consider the Lorentz force fL = −(e/c) v ×
B as the only force acting on the electron. Show that a spiral motion can be obtained
by adding a friction force ffr proportional to the electron velocity.

10.2 Atomic Collapse

In the classical model for the hydrogen atom, an electron travels in a circular orbit
of radius a0 around the proton.
(a) Evaluate the frequency ω of the radiation emitted by the orbiting electron, and
the emitted radiation power, both as functions of a0.
(b) Use the results of point (a) to show that, classically, the electron would collapse
on the nucleus, and find the decay time assuming a0 = 0.53 × 10−8 cm (Bohr radius,
actually obtained from quantum considerations) .

10.3 Radiative Damping of the Elastically Bound Electron

The motion of a classical, elastically bound electron in the absence of external fields
is described by the equation

d2r
dt2

+ η
dr
dt

+ ω2
0r = 0 , (10.5)

where the vector r is the distance of the electron from its equilibrium position, η is
a friction coefficient, and ω0 is the undamped angular frequency. We assume that at
time t = 0 the electron is located at r(0) = s0, with zero initial velocity.
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(a) As a first step, find the solution of (10.5) assuming η = 0, and evaluate the
cycle-averaged emitted radiation power Prad due to the electron acceleration.
(b) Assuming the oscillation amplitude to decay due to the radiative energy loss,
estimated the decay time τ using the result of point (a) for the emitted power Prad.
Determine under which conditions τ is much longer than one oscillation period.
Now assume η �= 0, with η � ω0, in Eq. (10.5). In the following, neglect quantities
of the order (η/ω0)

2 or higher.
(c) Describe the motion of the electron and determine, a posteriori, the value of η

that reproduces the radiative damping.

10.4 Radiation Emitted by Orbiting Charges

Two identical point charges q rotate with constant angular velocity ω on the circular
orbit x2 + y2 = R2 on the z = 0 plane of a Cartesian reference frame.
(a) Write the most general trajectory for the charges both in polar coordinates ri =
ri (t), φi = φi (t) and in Cartesian coordinates xi = xi (t), yi = yi (t) (where i = 1, 2
labels the charge) and calculate the electric dipole moment of the system.
(b) Characterize the dipole radiation emitted by the two-charge system, discussing
how the power depends on the initial conditions, and finding the polarization of the
radiation emitted along the x̂, ŷ and ẑ directions.
(c) Answer questions (a) and (b) in the case where the charges are orbiting with
opposite angular velocity.
(d) Now consider a system of three identical charges on the circular orbit with the
same angular velocity. Find the initial conditions for which the radiation power is
either zero or has its maximum.
(e) Determine whether the magnetic dipole moment gives some contribution to the
radiation, for each of the above specified cases.

10.5 Spin-Down Rate and Magnetic Field of a Pulsar

Fig. 10.1

A pulsar is a neutron star with mass M ≈ 1.4M� ≈ 2.8 ×
1033 g (where M� is the Sun mass), and radius R � 10 km =
105 cm. The star rotates with angular velocity ω and has a
magnetic momentm, which is, in general, not parallel to the
rotation axis [1].
(a) Describe the radiation emitted by the pulsar, and find the
total radiated power, assuming that the angle between the
magnetic moment and the rotation axis is α, as in Fig. 10.1.
(b) Find the “spindown rate” (decay constant of the rotation)
of the pulsar, assuming that energy loss is due to radiation
only.
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(c) Explain how, from the knowledge of mass, radius, rotation period T , and time
derivative dT/dt of the pulsar one can estimate the magnetic field at the pulsar
surface. Give a a numerical approximation based on the results of observations [3]
which give T = 7.476551 ± 3 s and Ṫ = (2.8 ± 1.4) × 10−11 � 10−3 s/year (for
simplicity assume that m is perpendicular to ω).

10.6 A Bent Dipole Antenna

Fig. 10.2

A dipole antenna consists of two identical con-
ductive elements, usually two metal rods, each
of length a and resistance R. The driving current
is applied between the two halves of the antenna,
so that the current flows as shown in Fig. 10.2a.
For a “short” antenna (a � λ = 2πc/ω) the cur-
rent can be approximately specified as [2]

I = I (z, t) = Re

[
I0

(
1 − |z|

a

)
e−iωt

]
. (10.6)

The dependence of the current oscillation
amplitude on z is shown in Fig. 10.3. Calculate
(a) the cycle-averaged the dissipated power Pdiss;
(b) the linear charge density q� on the rods of the antenna, and the antenna electric
dipole moment p;
(c) the cycle-averaged radiated power Prad and the ratio Prad/Pdiss.

I0

I 0
(1

−
|z

a)

−a 0 +a z

|

Fig. 10.3

(d) Find the directions along which there no
radiation is observed.
Now assume that the upper rod of the dipole
antenna is bent by 90◦, so that it is parallel to
the x axis, as shown in Fig. 10.2b, without per-
turbing either the current or the charge density
anywhere in the two rods.

(e) Answer questions (a), (b) and (c) again for the bent antenna, pointing out the
differences with the straight antenna.
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10.7 A Receiving Circular Antenna

Fig. 10.4

A receiving circular antenna is a circular coil of radius a and
resistance R. The amplitude of the received signal is propor-
tional to the current induced in the antenna by an incoming EM
wave (Fig. 10.4).
(a) Assume that the incoming signal is a monochromatic, lin-
early polarized wave of wavelength λ � a, and electric field
amplitude E0. Find how the antenna must be oriented with
respect to the wave vector k and to the polarization in order
to detect the maximum signal, and evaluate the signal ampli-
tude.
(b) In a receiving linear antenna the signal is approximately proportional to E‖�,
where E‖ is the component of the electric field of the wave parallel to the antenna,
and � is the length of the antenna. Old portable TV sets were provided with both
a linear and a circular antenna, typical dimensions were � � 50 cm and a � �/2.
Which antenna is best suited to detect EM waves with λ in the 102 − 103 cm range?
(c) Calculate the power Prad scattered by the antenna, and the ratio Prad/Pdiss, where
Pdiss is the power dissipated in the antenna by Joule heating.

10.8 Polarization of Scattered Radiation

An EMwave impinges on a particle that acquires an electric dipolemoment p = αE,
where E is the electric field of the wave at the position of the particle. Assume that
the size of the particle is much smaller than the wavelength of the incoming wave.
(a) Find the polarization of the scattered radiation as a function of the polarization
of the incoming wave, and of the angle between the directions of observation and
propagation.
(b) If the incoming radiation is unpolarized, what can be said about the polarization
of the scattered radiation?

10.9 Polarization Effects on Thomson Scattering

An electron is in the field of an elliptically polarized plane wave of frequency ω

propagating along the z axis of a Cartesian reference frame. The electric field of the
wave can be written as

E = E0
[
x̂ cos θ cos(kz − ωt) + ŷ sin θ sin(kz − ωt)

]
, (10.7)
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where θ is a constant real number with 0 � θ � π/2. such that we have linear
polarization along the x axis for θ = 0, linear polarization along the y axis for
θ = π/2, and circular polarization for θ = π/4.

First, neglecting the effects of the magnetic force −e v × B/c,
(a) characterize the radiation scattered by the electron by determining the frequency
and the polarization observed along each axis (x , y, z), and find a direction along
which the radiation is circularly polarized;
(b) calculate the total (cycle-averaged) scattered power and discuss its dependence
on θ ;
Now consider the effect of the magnetic force on the scattering process.
(c) Evaluate the −ev × B/c term by calculating the B field from (10.7) and using
the result of point a) for v. Discuss the direction and frequency of the magnetic force
and its dependence on θ as well.
(d) Discuss how the scattering of the incident wave is modified by the magnetic
force by specifying which new frequencies are observed, in which direction and
with which polarization, and the modification of the scattered power.

10.10 Scattering and Interference

Fig. 10.5

A monochromatic plane wave prop-
agates along the x axis of a Carte-
sian coordinate system. The wave is
linearly polarized in the ẑ direction,
and has wavelength λ. Two identi-
cal, point-like scatterers are placed
on the x axis at x = ±d/2, respec-
tively, as in Fig. 10.5. The dipole
moment of each scatterer is p = αE,
where E is the electric field of the

incoming wave at the scatterer position. The intensity Is of the scattered radiation is
measured on the y = L plane, with both L � d and L � λ.
(a) Evaluate the phase difference Δφ between the two scattered waves in a generic
point P ≡ (x, L , 0), with L a constant, as a function of the observation angle θ =
arctan(x/L), as shown in Fig. 10.5.
(b) Study the scattered intensity distribution Is = Is(θ) as a function of kd, where k is
the wave vector of the incomingwave. Determine for which values of kd interference
fringes appear.
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10.11 Optical Beats Generating a “Lighthouse Effect”

Fig. 10.6

Two oscillating dipoles, p− and p+, are loca-
ted at (0,−d/2, 0) and (0,+d/2, 0), respec-
tively, in a Cartesian reference frame. The
two dipoles are parallel to the z axis and
oscillate, with equal amplitude, at slightly
different frequencies ω± = ω0 ± δω/2, with
δω � ω0. In complex representation we have
p± = p0 e−iω±t . The distance between the two
dipoles is d = λ0/2 = πc/ω0. The radiation
emitted by the dipoles is observed at a point P
at a distance r from the origin, with r � λ0,
on the z = 0 plane. Let φ be the angle between r and the x axis, as shown in Fig.
10.6.
(a) Determine the direction of the electric field in P and its dependence on φ and
ω±, up to the first order in δω/ω0.
The wave intensity in P is measured by two detectors with different temporal reso-
lutions: the first detector measures the “instantaneous” flux averaged over an inter-
val Δt such that 2π/ω0 � Δt � 2π/δω, while the second detector averages over
Δt ′ � 2π/δω.
(b) Determine the dependence on the angle φ and the time t of the fluxes measured
with the two detectors.
(c) How do the above results change if the observation point is located in the x = 0
plane?

10.12 Radiation Friction Force

An accelerated point charge emits radiation. Considering for definiteness an elec-
tron performing a periodic (non-relativistic for simplicity) motion in an oscillating
external field, there is a finite amount of energy leaving the electron as radiation, but
on the average the external field produces no work. Thus, to account self-consistently
for the energy lost as radiation, it is necessary to modify the Newton-Lorentz force
by adding a new “friction” term Frad so that the mechanical work done by Frad equals
the radiated energy.1

We thus write for the electron

me
dv

dt
= −e

(
E + v

c
× B

)
+ Frad , (10.8)

1 From another viewpoint, Frad aims to describe the back-action or reaction of the self-generated
EM fields on the accelerated charge.
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and look for a suitable expression for Frad starting from the condition

t+T∫

t

Frad(t) · v(t) dt = −
t+T∫

t

Prad(t) dt , (10.9)

where T is the period of the electron motion and Prad(t) is the instantaneous radiated
power, which is given by the Larmor formula

Prad(t) = 2e2

3c2

∣∣∣∣
dv

dt

∣∣∣∣

2

. (10.10)

(a) Show by direct substitution of the expression for Frad

Frad = meτ
d2v

dt2
(10.11)

into (10.9), that the equation is verified, and find the expression of the constant τ ,
estimating its numerical value.
(b) Determine the steady state solution of (10.8), where Frad is given by (10.11), for
an electron in a uniform, oscillating electric field

E(t) = Re
(−eE0 e

−iωt
)

. (10.12)

Compare the result with what obtained using the simple classical model an electron
subject to a frictional force

me
dv

dt
= Fext − meη v . (10.13)

10.13 Radiation of an Electron Falling on a Proton

An electron, initially at rest at infinity, is attracted by a proton by Coulomb force.
Assume the proton mass to be infinite.

(a) Evaluate the electron velocity v as a function of the distance r from the proton
assuming a non-relativistic motion. Use the result to estimate the minimum distance
r1 at which the assumption is valid. For instance, you may assume that the motion is
non-relativistic for v < c/

√
10.

(b) Evaluate the instantaneous radiated power as a function of r , using the electric
dipole approximation.
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(c) Evaluate the total energy Ur lost by radiation as a function of r for r > r1,
assuming it to be negligible with respect to the kinetic energy of the electron. Use
the result to estimate the minimum distance r2 at which this assumption is valid.

10.14 Scattering by a Perfectly Conducting Sphere (1)

In a Cartesian reference frame (x, y, z), a linearly polarized, plane monochromatic
electromagnetic wave has the electric field

E(x, t) = ŷ E0 cos(kx − ωt) , where k = ω

c
, (10.14)

and impinges on a metallic sphere of radius a � λ = 2π/k, located at the origin of
the reference frame. We further assume that the sphere is “perfectly conducting” at
the frequency of the wave, so that the total electric field can be assumed to be zero
over the whole volume of the sphere.
(a) Find the power scattered by the sphere in the electric dipole approximation, and
the corresponding scattering cross section.
(b)Assuming that the sphere is also perfectly diamagnetic (B = 0 inside the sphere),
find the contribution of the magnetic dipole to the scattering cross section.

10.15 Scattering by a Perfectly Conducting Sphere (2)

Fig. 10.7

A plane, monochromatic, linearly polarized
electromagnetic wave of electric field ampli-
tude Ei and wavevector k = x̂ω/c impinges
on a small conducting sphere of radius a �
λ = 2πc/ω, as shown in Fig. 10.7. As in Prob-
lem 10.14, assume that the sphere is perfectly
conducting and perfectly diamagnetic, so that
the total electric and magnetic fields are zero
at its inside.

(a) Evaluate the intensity of the radiation emitted by the sphere in the xy plane
as a function of the angle θ between k and the direction of emission, both for y
and z polarization of the impinging wave. What are the directions of maximum and
minimum emission?Hint: show that the electric field of the emitted wave depends on
the vector ps × ms , where ps andms are the electric and magnetic dipole moments
induced by the wave on the sphere, respectively. Consider that only the dependence
on the angles is required.
(b) What is the dependence on θ in the case of unpolarized impinging radiation?
Unpolarized radiation means that the radiation can be considered as consisting of



98 10 Radiation Emission and Scattering

wave packets of finite duration whose polarization changes randomly between suc-
cessive packets, and that the radiation is measured by integrating over times long
compared to the duration of a single packet.
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Chapter 11
Electromagnetic Waves in Matter

Topics. Wave equation in continuous media. Classical model of the electron, bound
and free electrons. Frequency-dependent conductivity σ(ω) and dielectric permit-
tivity ε(ω) for harmonic fields. Relation between σ(ω) and ε(ω). Transverse and
longitudinal waves. The refraction index. Propagation of monochromatic waves in
matter. Dispersion relations. Reflection and transmission at a plane interface: Snell’s
law, Fresnel’s formulas, total reflection, Brewster’s angle. Anisotropic media.

Basic equations. Wave equation for the electric field:

∇2E − 1

c2
∂2
t E − ∇(∇ · E) = 4π

c2
∂tJ = 4π

c2
∂2
t P . (11.1)

(Note that J = ∂tP.)
Definition of σ(ω), χ(ω) and ε(ω) for harmonic fields E(r, t) = Re

[
Ẽ(r)e−iωt

]
,

J(r, t) = Re
[
J̃(r)e−iωt

]
, P(r, t) = Re

[
P̃(r)e−iωt

]
:

J̃ = σ(ω)Ẽ , P̃ = χ(ω)Ẽ , (11.2)

ε(ω) = 1 + 4πχ(ω) , χ(ω) = iσ(ω)

ω
(ω �= 0) . (11.3)

Dispersion relation in a medium and refraction index n(ω):

k2c2

ω2
= ε(ω) = n2(ω) . (11.4)
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Let us consider the reflection and refraction of a plane electromagnetic wave at the
boundary between two media of refractive indices n1 and n2, respectively, both real.
We also assume that both media have magnetic permittivity μr = 1. The incident
wave has wave vector ki lying in the xy plane of Fig. 11.1 and forming an angle θi
with the x axis, as shown in the figure. Also the wave vectors of the reflected and
transmitted wave, kr and kt , respectively, lie in the xy plane forming angles θr and
θt with the x axis, as shown in Fig. 11.1. We have θr = θi , while

n2 sin θt = n1 sin θi (11.5)

according to Snell’s law. If the electric field Ei of the incident wave is paral-
lel to the z axis, thus perpendicular to the xy incidence plane (S polarization,
S for senkrecht, “perpendicular” in German), also the electric fields Er and Et

of the reflected and transmitted waves are perpendicular to the incidence plane.
According to the Fresnel equations we have for the field amplitudes Er and Et

Fig. 11.1 .

Er

Ei
= n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt
, (11.6)

Et

Ei
= 2n1 cos θi

n1 cos θi + n2 cos θt
. (11.7)

If Ei lies on the incidence plane so do also Er and
Et , andwe have P polarization (P for parallel to the
incidence plane). In this case the Fresnel equations
are

Er

Ei
= n2 cos θi − n1 cos θt

n2 cos θi + n1 cos θt
, and

Et

Ei
= 2n1 cos θi

n2 cos θi + n1 cos θt
.

(11.8)
Other polarizations can be treated as superpositions of S and P polarizations.
According to the Fresnel equations P-polarized light is not reflected if the angle

of incidence is

θi = θB = arctan

(
n2
n1

)
, (11.9)

which is called Brewster’s angle.

11.1 Wave Propagation in a Conductor at High and Low
Frequencies

In a classical treatment, a metal has ne conduction electrons per unit volume, whose
equations of motion in the presence of an external electric field E(r, t) are
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me
dv

dt
= −eE(r, t) − meη v , v = dr

dt
, (11.10)

where −e and me are electron charge and mass, respectively, and η is a constant
describing friction.

(a)Determine the complex conductivity of the metal, σ = σ(ω), as a function of the
angular frequency ω of the electric field, and the values of ω for which σ is either
purely real or purely imaginary. Discuss these limits for a good conductor, whose
DC conductivity (i.e., its conductivity for static fields) has values of the order of
σDC ∼ 5 × 1017 s−1.

Now consider a monochromatic, plane EM wave, linearly polarized along the y axis
and traveling in the positive direction along the x axis of a Cartesian coordinate
system. The wave is incident on a conductor filling the x > 0 half-space, while we
have vacuum in the x < 0 half-space.

(b) Consider both cases of σ purely real and purely imaginary, and determine the
frequency ranges in which the wave is evanescent inside the metal.

(c) Find the time-averaged EM energy flux through the metal surface and show that
it is equal to the amount of energy dissipated inside the metal.

11.2 Energy Densities in a Free Electron Gas

A plane, monochromatic, transverse electromagnetic wave propagates in a medium
containing ne free electrons per unit volume. The electrons move with negligible
friction. Calculate

(a) the dispersion relation of the wave, the phase (vϕ) and group (vg) velocities, and
the relation between the amplitudes of the electric (E0) and magnetic (B0) fields;

(b) the EM energy density uEM (averaged over an oscillation period) as a function
of E0;

(c) the kinetic energy density uK (averaged over an oscillation period), defined as
uK = neme〈v2〉/2, where v is the electron oscillation velocity, and the total energy
density u = uEM + uK.

(d)Assume that the medium fills the half-space x > 0, while we have vacuum in the
half-space x < 0. An EM wave, propagating along the x axis, enters the medium.
Assume that both vg and vϕ are real quantities. Use the above results to verify the
conservation of the energy flux, expressed by the relation

c(ui − ur) = vgut , (11.11)

where ui, ur and ut are the total energy densities for the incident, reflected and
transmitted waves, respectively.



102 11 Electromagnetic Waves in Matter

11.3 Longitudinal Waves

Consider a longitudinal monochromatic plane wave, propagating in a medium along
the x axis of a Cartesian reference frame. “Longitudinal” means that the electric field
E of the wave is parallel to the wavevector k. Assume that the electric and magnetic
fields of the wave are

E = E(x, t) = x̂ E0 e
ikx−iωt , B ≡ 0 , (11.12)

respectively, and that the optical properties of the medium are described by a given
frequency-dependent dielectric permittivity εr(ω).

(a) Show that the possible frequencies for the wave (11.12) correspond to zeros of
the dielectric permittivity, εr(ω) = 0.

(b) Find the charge and current densities in the medium associated to the presence
of the wave fields (11.12).

(c)Assuming that the optical properties of themedium are determined by ne classical
electrons per unit volume, bound to atoms by an elastic force −meω

2
0r, determine

εr(ω) and the dispersion relation for the longitudinal wave.

11.4 Transmission and Reflection by a Thin Conducting
Foil

Fig. 11.2 .

A plane wave of frequency ω = 2πc/λ
strikes at normal incidence a thin metal
foil of thickness d � λ. At the limit of an
infinitely thin foil (Fig. 11.2), the volume
electron density in space can be approx-
imated as nv(x) = ned δ(x), where ne is
the volume electron density in the con-
ductor, so that ned is the surface elec-
tron density on the foil, and δ(x) is
the Dirac delta function. Analogously,
the volume current density in space can
be approximated as J(x, t) = K(t) δ(x),

where K(t) is the surface current density on the foil.

(a) Prove the following relations for the field components parallel to the foil surface

E‖(0+) − E‖(0−) = 0, B‖(0+) − B‖(0−) = 4π

c
K . (11.13)
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(b) Evaluate the EM field in the whole space as a function of the foil conductivity
σ , with σ , in general, a complex scalar quantity. Assume a linear dependence of the

current density J on the electric fieldE, using the complex notation J = Re
(
J̃ e−iωt

)
.

(c) Now use the classical equation of motion for the electrons in the metal

me
dv

dt
= −eE − meνv , (11.14)

where ν is a damping constant, to obtain an expression for σ , and evaluate the cycle-
averaged absorbed power at the limits ν 
 ω and ν � ω, respectively.

(d) Verify the conservation of energy for the system by showing that the flux of EM
energy into the foil equals the absorbed power.

11.5 Anti-reflection Coating

Fig. 11.3 .

A monochromatic plane EM wave of angu-
lar frequency ω travels in vacuum (x < 0)
along the x direction of a Cartesian coordi-
nate system. On the plane x = 0 the wave
strikes normally a semi-infinite composite
medium. The medium comprises a first layer,
between the planes x = 0 and x = d, of
real refractive index n1, followed by a semi-
infinite layer filling the half-space x > d,
of real refractive index n2, as shown in Fig. 11.3.

We want to determine the conditions on n1 and d in order to have a total trans-
mission of the incident wave, so that there is no reflected wave in the vacuum region.
Proceed as follows:

(a) write the general solution for the EM wave in each region of space;

(b) write the relations between the amplitudes of the EM fields in each region due to
matching conditions at the two interfaces;

(c) having determined from point b) the relation between n1, n2 and d necessary to
the absence of reflection, find the values of n1 and d for which a solution exists in
the n2 = 1 case.

(d) How does the answer to point c) change if n2 �= 1?
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11.6 Birefringence and Waveplates

The refractive index of anisotropic crystals depends on both the propagation direction
and the polarizationof the incomingEMwave.Wechoose aCartesian reference frame
such that the x = 0 plane separates the investigated medium from vacuum.

Fig. 11.4 .

The wave vector of the incident wave,
ki, lies in the xy plane and forms an angle
θi with the x axis, as shown in Fig. 11.4.
In this context we consider a material
whose refractive index has the values ns
for a wave polarized perpendicularly to
the incidence xy plane (S polarization,
from German senkrecht, perpendicular),
and np for waves whose electric field lies
in the xy plane (P polarization, frompar-
allel). Here, both ns and np are assumed
to be real and positive, with np > ns. The
treatment of the opposite case, ns > np,
is straightforward.

(a) Assume that the incoming wave is linearly polarized, and that its electric field
forms an angleψ = π/4with the z axis, so that its polarization is amixture of S and P
polarizations. The incident ray splits into two refracted rays at different angles, θt± =
θt ± α, as shown in Fig. 11.4, where kt+ corresponds to S, and kt− to P polarization.
Show how the values of ns and np can be obtained from the measurements of θt
and α. Assume that np = n̄ + δn, and n− = n̄ − δn, with δn/n̄ � 1, and keep only
first-order therms in δn/n̄.

Fig. 11.5 .

(b) Now assume normal incidence (θi =
0), and that the electric field of the lin-
early polarized incoming wave, Ei, still
forms an angle ψ = π/4 with the ẑ axis,
as inFig. 11.5. The crystal has a thickness
d 
 λ. Find the values of d such that the
light exiting the crystal is either circu-
larly polarized, or linearly polarized, but
rotated by π/2 with respect to the polar-

ization of the incident light. Neglect the difference between the reflection coefficients
for S and P polarizations.
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11.7 Magnetic Birefringence and Faraday Effect

An EM plane wave of frequency ω travels in a medium in the presence of a static
uniformmagnetic fieldB0 = B0 ẑ, where ẑ is the z unit vector of aCartesian reference
frame. B0 is much stronger than the magnetic field of the wave. The direction of the
wave propagation is also parallel to ẑ. The medium contains ne bound electrons per
unit volume, obeying the classical equations of motion

me
d2r
dt2

= −e
(
E + v

c
× B

)
− meω

2
0 r , v = dr

dt
. (11.15)

where me and −e are the electron mass and charge, respectively.

(a) Show that the propagation of the wave depends on its polarization by evaluating
the refractive index for circular polarization, either left-handed or right-handed.

(b) Now consider the propagation of a linearly polarized wave. Assume the electric
field at z = 0 to be given byEi(z = 0, t) = x̂ Ei e−iωt , and a relativelyweakmagnetic
field so that ω 
 ωc and terms of order higher than ωc/ω may be neglected. Find the
electric field at the position z = �, showing that the polarization has rotated (Faraday
effect).

11.8 Whistler Waves

Lightnings excite transverse EM signals which propagate in the ionosphere, mostly
in the direction parallel to the Earth’s magnetic field lines.

(a) Show that, in a frequency range to be determined, and depending on the wave
polarization, the dispersion relation for such signals has the form

ω = αk2 , (11.16)

with α a constant depending on the free electron density ne and the magnetic field
B0 (both assumed to be uniform for simplicity). Give a numerical estimate for the
frequency range, knowing that typical values are ne ≈ 105 cm−3, and B0 ≈ 0.5 G.

(b) Determine the group and phase velocities following from (11.16) as functions of
ω, and compare them to c.

(c) Suppose that a lightning locally excites a pulse having a frequency spectrum
extending from a value ω1 to ω2 = 2ω1, within the frequency range determined at
point (a). Assuming the pulse to be “short” (in a sense to be clarified a posteriori),
estimate the pulse length after propagation over a distance L � 104 km.Try to explain
why these signals are called whistlers.

(Refer to [1], Sect. 7.6, and to Problem 11.7 for the propagation of EM waves along
a magnetic field).
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11.9 Wave Propagation in a “Pair” Plasma

A “pair” plasma is composed by electrons and positrons with equal density n0 (pair
annihilation is neglected).
(a) In the absence of external fields, find the dispersion relation for transverse EM
waves, determining cut-off and/or resonance frequencies, if any.
(b) Find and discuss the dispersion relation as in (a), but for waves propagating along
the direction of an external, static magnetic field B0 (see also Problem 11.7).

11.10 Surface Waves

A homogeneous medium fills the x > 0 half-space of a Cartesian reference frame,
while we have vacuum for x < 0. The dielectric permittivity of the medium, ε =
ε(ω), assumes real values in the frequency range of interest. A monochromatic EM
wave propagates along the y-direction, parallel to the interface between the medium
and vacuum. Inside the medium, the magnetic field of the wave has the z-component
only, given by

Bz = B0 e
−qx cos(ky − ωt) = Re

(
B0 e

−qxeiky−iωt
)

(x > 0) , (11.17)

where q is a real and positive quantity.

(a) Using the wave equation for B inside the dielectric medium, find a relation
between q, k and ω.

(b)Write the expression for the electric field E inside the medium.

(c) Calculate the Poynting vector S and specify the direction of the time-averaged
EM energy flow.

Fig. 11.6 .

Now consider two different homogeneous media of
dielectric permittivities ε1 and ε2, respectively, filling
the x < 0 and x > 0half-spaces (Fig. 11.6).A linearly-
polarized EMwave propagates along the y-axis on the
x = 0 interface, with the magnetic field given by

B = Re
[
ẑ Bz(x) e

iky−iωt
]

, (11.18)

where

Bz(x) =
{
B1 e+q1x , x < 0
B2 e−q2x , x > 0

. (11.19)

(d) Using the boundary conditions for Bz at the x = 0 surface, find the relation
between B1 and B2.
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(e) Using the continuity of Ey at the x = 0 surface, find the relation between q1
and q2. Show that ε1 and ε2 must have opposite sign in order to have q1,2 > 0, i.e.,
vanishing fields for |x | → ∞.

(f) From the results of points (a) and (e) find the dispersion relation ω = ω(k) as a
function of ε1 and ε2, showing that wave propagation requires ε1 + ε2 < 0.

(g) If medium 1 is vacuum (ε1 = 1), how should medium 2 and the wave frequency
be chosen in order to fulfill the condition found at point (f)?

11.11 Mie Resonance and a “Plasmonic Metamaterial”

A plane, monochromatic wave of frequency ω impinges on a a small sphere of
radius a � λ = 2πc/ω. The sphere is made of a material whose dielectric function
ε = ε(ω) can be written as

ε = 1 − ω2
p

ω2 − ω2
0 + iωη

(11.20)

Fig. 11.7 .

where, according to the model of the elastically
bound electron, ωp is the plasma frequency, ω0 is
the resonance frequency of bound electrons, and
η is a damping constant.

(a) Find the induced field and polarization inside
the sphere, and discuss any resonant behavior.
(Hint: have a look back at Problem 3.4.)

(b)Assume that theEMwave is propagating inside
a material where there are ns metallic (ω0 = 0)
nanospheres per unit volume, with nsλ3 
 1 

λ/a (Fig. 11.7). Find themacroscopic polarization
of the material and discuss the propagation of the
wave as a function of the frequency ω.

11.12 Wave Incident at Brewster’s Angle

A medium of real refractive index n = n(ω) > 0 fills the half-space x > 0. A
monochromatic plane wave of angular frequency ω and electric field amplitude E0 is
incident on the x = 0 plane at an angle θi , as shown in Fig. 11.8. The wave is linearly
polarized in the plane of incidence, and the incidence angle θi equals Brewster’s
angle θB = arctan(n), so that there is no reflected wave.
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Fig. 11.8 .

(a) Evaluate the amplitudes of the electric and mag-
netic fields of the transmitted wave.

(b) Show that the flux (averaged over one period)
of the Poynting vector S is continuous through the
vacuum-medium interface.

(c) Show that there is a surface charge density on the
x = 0 plane, and evaluate its value.

(d) Evaluate the electromagnetic pressure (averaged
over one period) on the surface.

Now assume that the medium is not infinite in the x
direction, but has a thickness d.

(e) Evaluate the electromagnetic fields in the whole
space.

11.13 Electromagnetic Wave in a Conducting Medium

An electromagnetic plane wave of angular frequency ω is incident normally on a
conducting half-space limited by the yz plane of a Cartesian reference frame. We
have vacuum for x < 0 and conductingmedium for x > 0. In the conductingmedium
Ohm’s law J = σE holds, with σ real and σ 
 ω.

(a) Write the dielectric function and the refractive index of the medium, showing
that at the limit σ 
 ω we have n � n0(1 + i), with n0 real.

(b) Let Et be the amplitude of the electric field of the transmitted wave at x = 0.
Evaluate the energy flux, averaged over one period, through the medium surface, and
show that it equals the power dissipated by Joule heating per unit volume.

11.14 Wave Reflection at the Ionosphere

The ionosphere is a layer of ionized gas, located from about h � 48 000 m altitude to
about 965 000m.As a very roughmodel we assume the ionized gas as amediumwith
free electrons without the effects of either dissipation or the Earth’s magnetic field,
so that it can be described by the dielectric permittivity εr = εr(ω) = 1 − ω2

p/ω
2;

we further assume the free electron density ne (and thus the plasma frequency ωp)
to be uniform (a typical value is ne � 1012 m−3).
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Fig. 11.9 .

The antenna of a radio broadcaster (S in Fig.
11.9) is located at sea level and can be modeled
as an electric dipole oscillating in the direction
perpendicular to the Earth surface. The radio is
transmitting signals to a receiver (R in Fig. 11.9)
located at a distance L , via reflection from the
lower boundary of the ionosphere (assumed to be
of infinite extension above h).

(a) Determine the conditions on the broadcaster
frequency ω and the distance L for total reflection from the ionosphere of the signal
sent from S to R.

Let θ be the angle between the wave vector of the emitted signal and the dipole,
as in Fig. 11.9, determine what values of θ correspond to total reflection of the wave
at the ionosphere.

(b) Evaluate the intensity of the signal reaching R as a function of the total power
emitted by the antenna (Pa).
(c) The Earth’s magnetic field has an intensity of approximately 0.5 G. Is this
intensity strong enough to affect the propagation of radio waves in the ionosphere?
Wavelengths used for radio broadcasting range from approximately 0.1 m to approx-
imately 100 m.

11.15 Waves in a Dipole Chain

Fig. 11.10 .

Consider a one-dimensional chain
of small spheres of radius a,
located at the positions xn = nd
(withn an integer) along the x-axis,
with a spacing d 
 a, as shown in
Fig. 11.10. The spheres aremade of
a simple metal with dielectric permittivity εr = 1 − ω2

p/ω
2, where ωp is the plasma

frequency of the metal, and negligible dissipation.
By considering only the interactions between neighboring dipoles, discuss the

propagation along the chain of monochromatic waves of frequency ω for which the
n-th dipole is given by

pn = p eikxn−iωt . (11.21)

with p a constant amplitude, for the cases in which p is either parallel or transverse
to the chain axis. Assume λ = 2πc/ω 
 d.
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Chapter 12
Transmission Lines, Waveguides,
Resonant Cavities

Topics. Guided propagation of EM waves. Transmission lines, TEM mode. Waveg-
uides, TE and TM modes. Resonant cavities and discretization of frequencies.

12.1 The Coaxial Cable

Fig. 12.1

A coaxial cable consists of two coaxial,
infinitely long conductors: an inner cylinder of
radius a, and an outer cylindrical shell of inter-
nal radius b > a. In general, if there is a charge
per unit length λ on the inner conductor, there is
an opposite charge −λ on the outer conductor.
Similarly, if a total current I flows through the
inner conductor, an opposite “return” current
−I flows in the outer one (Fig. 12.1).

We use a cylindrical coordinate system (r, φ, z) with the cable axis as z axis, and,
at first, we assume that the region a < r < b is filled by an insulating medium of
dielectric permittivity ε = 1 and magnetic permeability μ = 1.
(a) Evaluate the capacitance and inductance per unit length of the cable.
(b) Describe the propagation of a current signal I (z, t) and of an associated linear
charge signal λ(z, t) along the cable, remembering the results of Sect. 7.4. How are
I (z, t) and λ(z, t) related to each other?
(c) For given I (z, t) and λ(z, t), find the electric field E and the magnetic field B
in the space between the conductors, assuming that both E and B are transverse,
i.e. perpendicular to the direction of propagation (such configuration is called TEM
mode).
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(d) Now consider a semi-infinite cable with an ideal source imposing the voltage
V (t) between the inner and outer conductors at the end of the cable. Show that the
work done by the generator equals the flux of the Poynting vector through the cable
(far enough from the end, so that we may neglect boundary effects).
(e) How do the preceding answers change if the medium between the internal and
external conductors has real and positive values for ε andμ, but different from unity?

12.2 Electric Power Transmission Line

Consider a thin, infinite straight wire along the z axis of a cylindrical coordinate
system (r, φ, z). The wire is located in a medium of relative electric permittivity
εr = 1 and relative magnetic permeability μr = 1. Assume a current I = I (z, t) to
flow in the wire, with

I = I (z, t) = I0 e
ikz−iωt . (12.1)

(a) Calculate the linear charge density λ = λ(z, t) on the wire.
(b)Assume that the electric and magnetic fields have only their radial and azimuthal
components, respectively,

Eφ = Ez = 0 , Er = Er (r) e
ikz−iωt , Br = Bz = 0 , Bϕ = Bϕ(r) eikz−iωt . (12.2)

Fig. 12.2

Calculate Er and Bϕ as functions of I0 and ω, and use
Maxwell’s equations to evaluate the phase velocity of the sig-
nal vϕ = ω/k.
(c) A high voltage transmission line comprises two straight
parallel wires, at a constant distance d = 5 m and typical
height over the ground h = 30 m (Fig. 12.2). The two wires
have opposite current intensities ±I (z, t) given by (12.1),
where typically I0 = 103 A and ω = 2π × 50 s−1. Calcu-
late the electric and magnetic fields on the symmetry plane
between the two wires, and evaluate their magnitude on the
ground.

12.3 TEM and TM Modes in an “Open” Waveguide

Fig. 12.3

An “open” waveguide comprises two parallel,
perfectly conducting planes, between which the
waves propagate. Let us choose a Cartesian coor-
dinate system (x, y, z) such that the two conduct-
ing planes are at y = ±a/2, respectively, as in Fig.
12.3. An EM wave of frequency ω propagates in
the waveguide along x̂. The magnetic field of the
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wave is directed along ẑ and has the form

Bz(x, y, t) = B0 cos(ky y) e
ikx x−iωt . (12.3)

(a) Find the relations between ω, kx and ky .
(b) Find the expression for the electric field E = E(x, y, t) of the EM wave.
(c) Find how the possible values for ky are determined by the boundary conditions
on E, and discuss the existence of cut-off frequencies.
(d) Find the flux of energy along the direction of propagation x̂, showing that it is
proportional to the group velocity of the wave.

12.4 Square and Triangular Waveguides

Fig. 12.4 Fig. 12.5

A waveguide has perfectly conducting
walls and a square section of side a, as
shown in Fig. 12.4. We choose a Carte-
sian coordinate system (x, y, z) where
the interior of the waveguide is delim-
ited by the four planes x = 0, x = a,
y = 0 and y = a. Consider the propaga-
tion along ẑ of a wave of frequency ω,
whose electric field E(x, y, z, t) is per-

pendicular to ẑ (a TE mode). Assume that the electric field can be written as

E(x, y, z, t) = Ẽ(x, y) eikz z−iωt , (12.4)

where Ẽ(x, y) depends on x and y only.
(a) Assume that E is parallel to x̂, i.e. E = x̂ Ex , and determine the lowest value of
ω for which the TE mode can propagate in the waveguide, and the corresponding
expressions for the electric and magnetic fields.
(b) Determine the lowest frequency and the EM fields for a waveguide delimited
by the conducting planes x = 0, y = 0, and y = x , whose cross section is the right
isosceles triangle shown in Fig. 12.5.
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12.5 Waveguide Modes as an Interference Effect

Fig. 12.6

An electric dipole p = p ŷ is located at the origin
of a Cartesian coordinate system (x, y, z), between
two infinite, perfectly conducting planes located at
y = ±a, respectively, as shown in Fig. 12.6.
(a) Find the the electrostatic potential between the
two conducting planes, using the method of images.

Nowassume that the dipole is oscillating, in com-
plex notation p = p0 e−iωt , and consider the emitted
radiation in the region between the two conducting

planes, at large distances from the dipole, i.e., with both |x | � λ and |x | � a.
(b) Find in which directions n̂, lying in the z = 0 plane, we observe constructive
interference between the waves emitted by the dipole and its images, and the corre-
sponding constraints on the possible values of the oscillation frequency ω.
Now consider two types of waves, labeled “0” and “1”, respectively, propagating
between the two conducting planes with their wavevectors k0,1 lying in the z = 0
plane. Assume that the only nonzero component of the magnetic field of both waves
is parallel to ẑ (TM waves), and that the magnetic fields have the form

B0 = ẑ B0 e
ik0x x−iωt , B1 = ẑ B1 sin(k1y y) e

ik1x x−iωt . (12.5)

(c) Find the relation between the components of the wavevectors and ω for both
waves.
(d) Find the expressions for the electric fields E0,1 of the waves corresponding to the
magnetic fields (12.5).
(e) Verify (or impose when appropriate) that for the expressions found in (d) the
component of E parallel to the planes vanishes at their surface, and the related
constraints on k = (kx , ky). What is the relation with the orders of interference found
at point (b)?

12.6 Propagation in an Optical Fiber

Fig. 12.7

Figure 12.7 represents a simple model for an
optical fiber. In a Cartesian reference frame
(x, y, z) the space between the planes y =
±a/2 is filled by a material of a real and pos-
itive refractive index n > 1 (in the frequency
range of interest), while we have vacuum (n =
1) in the regions y > a/2 and y < −a/2. A
monochromatic electromagnetic wave of fre-
quency ω propagates parallel to x̂ inside the
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fiber. We assume that the only nonzero component of the electric field E of the
wave is parallel to z (i.e. perpendicular to the plane of the figure). Further, we
assume that the wave is the superposition of two plane waves with wavevectors
k1 ≡ (kx , ky, 0) ≡ k(sin θ, cos θ, 0), and k2 ≡ (kx ,−ky, 0) ≡ k(sin θ,− cos θ, 0),
where θ is the angle of incidence shown in the figure. We have, in complex notation,

E = ŷ Ez(x, y, t) = ŷ
(
E1 e

ik1·r−iωt + E2 e
ik2·r−iωt

)

= ŷ
(
E1 e

ikx x+iky y−iωt + E2 e
ikx x−iky y−iωt

)
. (12.6)

(a) Find the relation between k and ω, and the range of θ for which the wave propa-
gates without energy loss through the boundary surfaces at y = ±a/2.
(b) The amplitude reflection coefficient r = Er/Ei is the ratio of the complex ampli-
tude of the reflected wave to the amplitude of the incident wave, at the surface
separating two media. In the case of total reflection we have r = eiδ , with δ a real
number. Show that, in our case, we have

kya + δ = mπ , with m ∈ N , (12.7)

and write the equation for the cut-off frequencies of the fiber. Find the values of ky
explicitly at the n sin θ � 1, θ → π/2 limit.
(c) How do the results change if E lies in the xy plane?

12.7 Wave Propagation in a Filled Waveguide

Fig. 12.8

A waveguide has rectangu-
lar cross section and perfectly
conducting walls. We choose
a Cartesian reference frame
where the waves propagate par-
allel to the x axis, and the con-
ducting walls lie on the y =
±a/2 and z = ±a/2 planes, as
in Fig. 12.8. The waveguide is

uniformly filled with a medium having refractive index n = n(ω).
(a) Consider the propagation of a TE mode of frequency ω, for which the electric
field isE = ẑ Ez(y) eikx−iωt . Find the general expression for Ez(y) and the dispersion
relationω = ω(k). Determine the cut-off frequencies for the particular case in which
the filling medium is a gas of free electrons, i.e., a plasma, with plasma frequency
ωp. In this case we have for the refractive index n2(ω) = 1 − ω2

p/ω
2.

(b) Now assume that the medium fills only the x > 0 region of the waveguide. A
monochromatic wave of the lowest frequency that can propagate in both regions
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(x < 0 and x > 0) travels in the guide from x = −∞. Find the amplitudes of the
reflected and transmitted waves at the x = 0 interface.

12.8 Schumann Resonances

Fig. 12.9

The system formed by the Earth and the ionosphere can be
considered as a resonant cavity. The cavity is delimited by
two conducting, concentrical spherical surfaces: the Earth’s
surface (radius R⊕ � 6400 km) and to the lower border of
the ionosphere, located at an altitude h � 100 km above, as
shown in Fig 12.9, obviously out of scale. Inside this “cav-
ity” there are standing electromagnetic waves of particular
frequencies, called Schumann resonances.

We want to estimate the typical frequency ω of these reso-
nances, assuming that both the Earth and the ionosphere are perfect conductors, and
thus completely reflect the electromagnetic waves in the resonant frequency range.

Fig. 12.10

In order to avoidmathematical complications
due to the spherical geometry of the problem,
we choose a simplified, flat model consisting
in a rectangular parallelepiped with two square,
conducting bases of side L , and height h. In a
Cartesian reference frame, the base standing for
the Earth surface lies on the z = 0 plane, while
the base standing for the surface at the bottom of
the ionosphere lies on the z = h plane, as shown
in Fig. 12.10. We choose L = 2πR⊕, and, in order to reproduce somehow spherical
geometry, we impose periodic boundary conditions on the lateral surface of the
parallelepiped, namely

E(0, y, z, t) = E(L , y, z, t) , E(x, 0, z, t) = E(x, L , z, t) , (12.8)

where E is the field of the wave, the same conditions are assumed for the magnetic
field of the wave. We assume εr = 1 and μr = 1 in the interior of our parallelepiped.
Further, we assume a TE mode with an electric field of the form

E = ẑ E0 e
ikx x+iky y−iωt . (12.9)

(a) Find the possible values of kx , ky , ω and give a numerical estimate of ω and the
corresponding wavelength for the lowest frequency mode.
(b) The low-frequency conductivity of sea water is σ � 4.4 Ω−1m−1. Discuss if
approximating the surface of the oceans as a perfect conductor is reasonable at the
frequency of the Schumann resonances.
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12.9 A One-Dimensional Cavity Fed by an Antenna (1)

Fig. 12.11

As a toy model for a resonant cavity fed by
an antenna, consider two infinite conducting
planes placed at x = ±a/2 in a Cartesian refer-
ence frame, and a surface currentK(t) = K (t) ŷ
flowing on the x = 0 plane, as shown in Fig.
12.11. This surface current is equivalent to a vol-
ume current density J(x, y, z, t) = K (t) δ(x) ŷ,
where δ(x) is the Dirac delta function. The cur-
rent is driven by an external generator at fre-
quency ω, so that K (t) = K0 e−iωt .

Assuming that the confining walls are per-
fectly conducting, determine

(a) the electromagnetic fields inside the cavity,

(b) the instantaneous and average power provided by the generator. In particular, dis-
cuss the behavior at ω = ωn = (2n + 1) π c/a, with n = 0, 1, 2, . . ., corresponding
to the normal modes of the cavity.

12.10 A One-Dimensional Cavity Fed by an Antenna (2)

Reconsider Problem 12.9 with the assumption that the walls are not perfectly con-
ducting, but are made of a metal with resistive skin depth δ at the frequency ω.

(a) Determine the electromagnetic fields inside the cavity and the power provided
by the antenna in the case of the normal modes of the cavity, ka = π(2n + 1)

(b) Extend the results of (a) to the general case of an arbitrary value of ω.



Chapter 13
Further Problems

13.1 Electrically and Magnetically Polarized Cylinders

Fig. 13.1

Let us consider a cylinder of relative magnetic perme-
abilty μr , located in a uniform magnetic field B0 parallel
to the cylinder axis, and the analogous problem of a cylin-
der of relative electric permittivity εr located in a uniform
electric fieldE0 parallel to the cylinder axis. In both cases
the cylinder has radius a an height h (Fig. 13.1).
(a) First, consider “long” cylinders, with a � h. Evaluate
the magnetic field Bi, and, respectively, the electric field
Ei, inside the cylinders, neglecting boundary effects.
(b)Now evaluate the internal magnetic and electric fields
in the case of “flat” cylinders, a � h, again neglecting
boundary effects.
(c)Evaluate the fields of point (a) at the next order of accu-
racy, taking the boundary effects at the lowest nonzero
order in a/h into account.
(d) Evaluate the fields of point (b) at the lowest nonzero order in h/a.

13.2 Oscillations of a Triatomic Molecule

Fig. 13.2

A triatomic symmetric linear molecule,
like CO2, can be schematized as a central
point mass M , of charge 2q, and two iden-
tical point masses m, each of charge −q,
which, when the molecule is at rest, are
located symmetrically aroundM , as shown
in Fig. 13.2. In the case of longitudinal
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small-amplitude vibrations, the interactions between the three masses (including
the electrostatic forces) can be described as two identical springs, each of rest length
� and elastic constant k, located as in the figure.

Let x1 and x2 be the positions of the two lateral masses, and xc the position of
the central mass. We want to study the longitudinal vibrations of the molecule in its
center-of-mass reference frame, defined by the condition

xcm = mx1 + mx2 + Mxc
2m + M

= 0 . (13.1)

When the molecule is at rest we have thus

x1 = −� , xc = 0 , x2 = � . (13.2)

(a) Find the normal longitudinal oscillation modes of the molecule, and their fre-
quencies.
(b) The molecule emits radiation because the charged masses oscillate around their
equilibrium positions. If the electric dipole term is dominant, the frequency of only
one of the normalmodes is observed in the spectrum of the emitted radiation. Explain
why, and evaluate the observed frequency.
c) Assume that, initially, the molecule is “excited” by locating the masses at x1 =
−� + d1, x2 = � + d2, and xc such that xcm = 0. Then, at t = 0, the three masses are
simultaneously released. Find the power radiated at t > 0.

13.3 Impedance of an Infinite Ladder Network

Fig. 13.3

Consider the (semi-)infinite ladder of Fig. 13.3, where each (identical) section
contains a “horizontal” impedance Z1 = Z1(ω), and a “vertical” impedance Z2 =
Z2(ω).
(a) Calculate the input impedance Z0 of the semi-infinite network. How can a real,
finite network be terminated after N sections, so that its impedance has also the
value Z0?
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(b) Let Vn be the voltage at the nth node. Find the relation between Vn and Vn+1 and,
from this, the dependence of Vn on n and on the input voltage V0. Discuss the result
for the case of a purely resistive network (Z1 = R1, Z2 = R2).
Now consider the case of an LC network, with Z1 = −iωL and Z2 = −1/iωC , in
the presence of an input signal V0(t) = V0e−iωt .
(c) Find the frequency range in which signals can propagate in the network. Show
that there is a cut-off frequency ωco, such that the signal is damped if ω > ωco, and
evaluate the damping factor.
(d) Discuss the case of a CL network, with Z1 = −1/iωC and Z2 = −iωL .

13.4 Discharge of a Cylindrical Capacitor

Fig. 13.4

A cylindrical capacitor has internal radius a, external
radius b > a, and height h � b. For t < 0, the two cylin-
drical plates have charges±Q0, respectively, and are dis-
connected. At t = 0 the plates are connected through a
resistor R as in Fig. 13.4. We assume that during the
discharge (i) the slowly-varying current approximation
holds, (ii) the surface charge density on the plates remains
uniform, (iii) we can neglect the effects of the external
circuit and the resistance of the plates, (iv) other bound-
ary effects are negligible.We use a cylindrical coordinate
system (r, φ, z) with the capacitor axis as z axis, and the
origin at the center of the capacitor.
(a) Calculate the current I = I (z, t) flowing on the
plates, and the magnetic field B = φ̂ Bφ(r, z, t) inside
the capacitor, for |z| � (h/2).
(b) Calculate the Poynting vector S for |z| � (h/2), and
verify that its flux through a cylindrical surface coaxial to
the capacitor equals the time variation of the electrostatic
energy inside the surface.
(c) Discuss the validity of the slowly varying current approximation and of the
assumption of uniform charge distribution over the plates.

13.5 Fields Generated by Spatially Periodic Surface
Sources

Evaluate the electromagnetic fields and potentials generated by the following three
surface charge and/or current densities, located on the y = 0 plane of a Cartesian
coordinate system,
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(a) a static surface charge density σ = σ0 cos kx ;
(b) a static surface current density K = ẑ K0 cos kx ;
(c) a time-dependent surface current density K = ẑ K0 e−iωt cos kx , discussing for
which values of ω (for fixed k) the fields are propagating.
(d) In case (c), calculate the time- and space-averaged power dissipated per unit
surface on the y = 0 plane

W = k

2π

+π/k∫

−π/k

〈
K(x, t) · E(x, y = 0, t)

〉
dx, (13.3)

and find for which values of ω we haveW = 0. Discuss the result with respect to the
findings of point (c).

13.6 Energy and Momentum Flow Close to a Perfect
Mirror

Consider a plane EM wave, propagating along the x axis of a Cartesian coordinate
system, of frequency ω and elliptical polarization, with electric field

Ei = E0√
1 + ε2

[
ŷ cos(kx − ωt) − ẑ ε sin(kx − ωt)

]
, (13.4)

where k = ω/c, and ε is a real parameter, 0 < ε < 1, characterizing the eccentricity
of the polarization ellipse. The normalization factor 1/

√
1 + ε2 has been chosen so

that the intensity of the wave is I = cE2
0/8π for any value of ε. The wave is incident

on a plane, perfect mirror located at x = 0.
(a) Evaluate the Poynting vector S = S(x, t) in front of the mirror, including the
contribution of the reflected wave. Find the value of ε for which S = 0 everywhere,
and the corresponding angle between the total electric (E) and magnetic (B) fields.
(b) Find the force per unit surface on the mirror Fx = Txx , where Txx = T11(x = 0−)

is the (1, 1) component of the stress tensor at x = 0−. Show that, in general, Fx has
both a steady and an oscillating component, and find the frequency of the latter. For
which value of ε the oscillating component is missing?



13.8 Radiation Pressure on a Thin Foil 123

13.7 Laser Cooling of a Mirror

Fig. 13.5

A plane mirror has surface area A, finite thick-
ness, mass M , and its two opposite surfaces are
perfectly reflecting. At t = 0 themirror lies on the
x = 0 plane of a Cartesian coordinate system, as
in Fig. 13.5. Two plane EM waves of intensities
I1 and I2, respectively, are impinging at normal
incidence on the two surfaces.
(a)Find the total force on themirror and the direc-
tion of its acceleration if I1 > I2.
Now assume that the two waves have equal inten-
sities, I1 = I2 = I , and that the mirror is moving
with velocity v = x̂ v.
(b) Evaluate the force on the mirror, in the system where the mirror is at rest.
(c) Discuss the motion of the mirror under the action of the force found at point (b),
at the limit v � c.

13.8 Radiation Pressure on a Thin Foil

An EM wave of frequency ω, traveling along the x axis of a Cartesian coordinate
system, is impinging normally on a very thin foil of thickness d and surface A (see
Problem 11.4, in particular Fig. 11.2). The foil is perfectly conducting in a frequency
range containing ω. As shown in the solution of Problem 11.4, the (complex) trans-
mission and reflection coefficients of the foil are

t = 1

1 + η
, r = − η

1 + η
, where η = i

ω2
pd

2ωc
, (13.5)

and ωp is the plasma frequency of the foil.
(a) Show that the radiation pressure on the thin foil is

Prad = 2RI

c
, (13.6)

where I is the intensity of the wave and R ≡ |r|2.
(b) Now assume that the foil is moving with velocity v = βcx̂ in the laboratory
frame. Assuming R = 1 (a perfectly reflecting foil), evaluate the force on the foil.
(c) How does the answer to (b) change if R = R(ω) < 1?
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13.9 Thomson Scattering in the Presence of a Magnetic
Field

In a Cartesian reference frame, an electron moves in the presence of a uniform
and constant magnetic field B0 = ẑ B0 and of a monochromatic plane EM wave,
propagating along ẑ, of electric field

E(z, t) = ŷ Ei e
ikz−iωt , (13.7)

with Ei � B0.
(a)Describe the motion of the electron in steady state conditions, neglecting friction
and the effect of the magnetic field of the wave.
(b) Calculate the power radiated by the electron. Discuss the dependence of the
emitted spectrum on ω, and the angular distribution of the emitted radiation at the
limits ω � ωc and ω � ωc, where ωc = eB0/me is the cyclotron frequency of the
electron in the presence of B0.

13.10 Undulator Radiation

In a Cartesian laboratory reference frame S ≡ (x, y, z), we have a static magnetic
field B. In a certain region of space, free of charges and currents, the magnetic field
is independent of z, and its y and z components can be written as

By = b(y) cos(kx) , Bz ≡ 0 , (13.8)

where b(y) is an even function of y. The field is generated by sources located outside
the region of interest, at finite values of |y|.
(a) Show that, in the region of interest, we must have

By = B0 cos(kx) cosh(ky) , (13.9)

and determine the expression for Bx .
Now assume that, in the laboratory frame S, an electron enters our magnetic field

region with initial velocity v = x̂ v.
(b) Describe the electron motion in the frame S′, moving at the velocity v relative
to the laboratory frame S, and discuss the emitted radiation. (Assume the electron
motion to be non-relativistic and keep only linear terms in the equation of motion.)
(c) Determine the frequency of the radiation emitted in the directions both parallel
and antiparallel to v, as observed in S. In which directions the radiation intensity is
zero in S′?
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13.11 Electromagnetic Torque on a Conducting Sphere

A plane, monochromatic, circularly polarized electromagnetic wave, of wavelength
λ = 2πc/ω and amplitude E0, impinges on a small metallic sphere of radius a � λ.
We assume that ω is low enough so that the metal can be considered as an Ohmic
conductor, of conductivity σ independent of frequency.
(a) Evaluate the dipole moment induced on the sphere.
(b) Show that the EM wave exerts a torque on the sphere.

13.12 Surface Waves in a Thin Foil

A very thin conductive foil is located between the x = −� and x = +� planes of a
Cartesian coordinate system. A surface wave propagates along both sides of the foil,
in the y-direction. The fields of the surface wave have only the following non-zero
components : Ex , Ey , and Bz , all of them independent of z. We know that the electric
field component parallel to the propagation direction is

Ey(x, y, t) = E0 e
−q|x |ei(ky−ωt) , (13.10)

where the frequency ω is such that λ = 2πc/ω � �. In these conditions, the foil
can be treated, with good approximation, as the superposition of a surface charge
σ(y, z, t), and a surface current K(y, z, t), all lying on the x = 0 plane.

Starting from (13.10) and Maxwell’s equations in vacuum, evaluate
(a) the field components Ex and Bz , specifying their parity with respect to x̂, and the
surface current K(y, z, t),
(b) the Poynting vector and the time-averaged flux of electromagnetic energy asso-
ciated to the surface wave,
(c) the relations between q, k, and ω.

Now assume that, in the relevant frequency range, the relation between the current
density J and the electric field E in the foil can be written (for harmonic fields) as

J = 4π i
ω2
p

ω
E , (13.11)

where ωp is the plasma frequency of the foil. Equation (13.11) characterizes of an
ideal conductor in the high-frequency regime (Problem 11.1).
(d) Using (13.11) and the boundary conditions for the fields of a thin foil discussed
in Problem 11.4, obtain an additional relation between q, k, and ω.
(e) By combining the results of points (d) and (e) find the dispersion relation ω =
ω(k) and discuss its limits of validity.
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13.13 The Fizeau Effect

A plane electromagnetic wave of frequency ω and wavevector k = x̂ k propagates
in a homogenous medium, while the medium itself is moving with velocity u = x̂ u
(thus parallel to k) in the laboratory frame. The refractive index of the medium is
real and positive, n > 0, in the rest frame of the medium. Assume u � c, and answer
the following questions evaluating all results up to the first order in β = u/c.

First, assume a non-dispersive medium, with n independent of frequency.
(a) Evaluate the phase velocity of the wave, vϕ , in the laboratory frame.
Now assume that themedium is dispersive, with n depending on frequency according
to a known law n = n(ω), defined in the rest frame of the medium.
(b) Evaluate the phase velocity in the laboratory frame in this case, showing that
now

vϕ � c

n(ω)
+ βc

(
1 − 1

n2(ω)
+ ω

n(ω)
∂ωn(ω)

)
+ O(β2) . (13.12)

Hint: use the first-order Doppler effect for evaluating the relation between the fre-
quency in the laboratory frame and the frequency observed in the rest frame of the
medium.
(c) Use (13.12) to show that, in a medium containing free electrons moving with
negligible friction (a simple metal or an ideal plasma), the phase velocity does not
depend on β up to to first order [1].

13.14 Lorentz Transformations for Longitudinal Waves

Consider a longitudinal wave with fields

E = E(x, t) = x̂ E0 e
i(kx−ωt) , B ≡ 0 , (13.13)

in the (Cartesian) laboratory frame S. We have shown in Problem 11.3 that the phase
velocity of this wave, vϕ = ωL/kL is undetermined, and can have arbitrary values.

Find the frequency, wavevector and fields of the wave in a frame S′, moving with
velocity v with respect to S, for the three following cases:
(a) v = vϕ x̂, with vϕ < c;
(b) v = (c2/vϕ)x̂, with vϕ > c;
(c) v = V ŷ with V < c.
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13.15 Lorentz Transformations for a Transmission Cable

A transmission cable can be schematized as an infinite straight conducting wire.
We choose a cylindrical coordinate system (r, φ, z) with the z axis along the wire.
A monochromatic charge and current signal, of frequency ω, propagates along the
cable, with total current I and linear charge density λ given by, in complex notation,

I = I (z, t) = I0 e
ikz−iωt , λ = λ(z, t) = λ0 e

ikz−iωt . (13.14)

The cable is located in a uniform medium of real dielectric permittivity ε > 1, and
magnetic permeability μ = 1, in the frequency region of interest.
(a) Find the relation between I0 and λ0.
(b) Evaluate the electric and magnetic fields in the medium, E(r, z, t) and B(r, z, t),
assuming that they are in a TEM mode, i.e.,

E(r, z, t) = E(r)eikz−iωt , B(r, z, t) = B(r)eikz−iωt , (13.15)

with E · ẑ = 0 and B · ẑ = 0. Evaluate the dispersion relation between the frequency
ω and the wave vector k.

(c) Show that the fields and their sources are independent of time in a reference frame
S′, moving at the phase velocity ẑ vϕ = ẑ (ω/k) relative to the laboratory frame S
where the wire is at rest. Show that, in S′, we have E′ = 0 and I ′ = 0, while λ′ �= 0
and B′ �= 0. Explain this apparently surprising result.

13.16 A Waveguide with a Moving End

Fig. 13.6

Two perfectly conducting plane sur-
faces located at y = ±a/2, respec-
tively, form a waveguide. The waveg-
uide is terminated at x = 0 by a per-
fectly conducting wall, as shown in
Fig. 13.6. Consider the propagation of
a monochromatic TE10 wave along the
x axis. The electric field of the wave
has only the z component. In com-
plex notation we have Ez(x, y, t) =
Ez(y) eikx−iωt , where ω and k are related by the dispersion relation of the TE10

mode.
(a) Find the total electric and magnetic fields inside the waveguide.

Now assume that the end of the waveguide moves with constant velocity v = v x̂.
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(b) Assuming v < kc2/ω, determine the frequency ωr and the wavevector kr of the
reflected wave. Verify thatωr and kr are related by the dispersion relation of the TE10

mode.
(c)What happens in the v > kc2/ω case?

13.17 A “Relativistically” Strong Electromagnetic Wave

We consider a circularly polarized, plane electromagnetic wave propagating parallel
to the z axis of a Cartesian reference frame. The wave fields are

E = E0
[
x̂ cos(kz − ωt) − ŷ sin(kz − ωt)

]
, (13.16)

B = E0
[
x̂ sin(kz − ωt) + ŷ cos(kz − ωt)

]
. (13.17)

We assume that the field is strong enough that electrons oscillate at relativistic veloc-
ities not much smaller than c. The relativistically correct equation of motion for an
electron in the presence of the intense wave is

dp
dt

= −e
(
E + v

c
× B

)
, (13.18)

where p = meγ v, and γ = 1/
√
1 − v2/c2 = √

1 + p2/(mec)2.
We want to study the propagation of such a “relativistic” wave in a medium with

free electrons (ions are considered at rest).
(a) Show that it is self-consistent to assume that the electron motion occurs on the
xy plane. Do this in two steps. First we assume that, at t = 0, the z component of
the momentum of the electrons is zero, pz = 0. Then solve the equations of motion
in steady state conditions and verify the consistency of the assumption a posteriori.
(b) Show that the Lorentz factor γ is time-independent, and give its expression.
(c) Calculate the refraction index for a medium with free electron density ne.
(d) Find the dispersion relation and the cut-off frequency for the electromagnetic
wave, comparing the result with the “non-relativistic” case of low field amplitudes.

13.18 Electric Current in a Solenoid

Fig. 13.7

A solenoid is made by winding a thin
conducting wire of radius a and con-
ductivity σ around a non-conducting
cylinder of radius b � a and height
h � b. Thus the solenoid coil has a
pitch
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θ = arctan
( a

πb

)
� 1 , (13.19)

since the wire moves in the ẑ direction by a step of length 2a at every turn of length
2πb. The solenoid is located in an external uniform electric fieldE = E ẑ (Fig. 13.7).
(a)Evaluate themagnetic fieldB both inside (r < b) and outside (r > b) the solenoid,
neglecting boundary effects.
(b) Calculate the flux of the Poynting vector S = cE × B/4π through a cylindrical
surface external and coaxial to the solenoid, and compare its value with the power
dissipated by Joule heating.

13.19 An Optomechanical Cavity

Fig. 13.8

Fig. 13.9

We have a one-dimensional cavity limited by two per-
fectly conducting plane surfaces located at x = ±d/2,
respectively, as in Fig. 13.8. The electromagnetic field
inside the cavity has frequency ω, peak amplitude of
the electric field E0, and is linearly polarized parallel
to the walls.
(a) Find the possible values for ω and write the most
general form of the electromagnetic field.
(b) Calculate the electromagnetic energy per unit sur-
face U inside the cavity.
(c) Calculate the radiation pressure P on the walls as
a function of E0, and the ratio U/P .
(d) Now assume that the two cavity walls are finite
squares, each of mass M and surface S � d2. Each
cavity wall is connected to an external fixed wall
by a spring of Hooke’s constant K , as shown in
Fig. 13.9. Neglecting boundary effects, evaluate the
relation between frequency and amplitude of the elec-
tromagnetic modes of the cavity.

13.20 Radiation Pressure on an Absorbing Medium

In an appropriate Cartesian reference framewe have vacuum in the x < 0 half-space,
while the x > 0 half-space is filled with a medium of complex refractive index

n = n1 + in2 , (13.20)
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with n1 > 1 � n2. A monochromatic plane wave of frequency ω and intensity Ii,
propagating in the positive x direction, is incident on the x = 0 plane. Calculate
(a) the power absorbed by the medium,Wabs, showing thatWabs = (1 − R) Ii, where
R is the reflection coefficient (R = |r|2 where r is the usual amplitiude coefficient
for the reflected wave as defined in the Fresnel formulas);
(b) the pressure on the medium, Prad, showing that Prad = (1 + R) Ii/c.

13.21 Radiation and Scattering from a Linear Molecule

Fig. 13.10

A simple model for a polar linear molecule, neglecting vibrations, is a one-
dimensional rigid rotor associated to an electric dipole moment p0. The molecule
has moment of inertia I about any rotational axis passing through its barycenter and
perpendicular to the molecule. Let us consider a polar linear molecule located in a
uniform and constant electric fieldE0, parallel to the x axis of a Cartesian coordinate
system (right part of Fig. 13.10).
(a) Find the equilibrium positions of the molecule, and discuss the motion when the
molecule at time t = 0 is slightly displaced from its stable equilibrium position.
(b) Describe the radiation emitted by the molecule during small amplitude oscilla-
tions, and estimate the damping time of such oscillations.

Now assume that a monochromatic plane wave, linearly polarized along the y
axis, of frequency ω and electric field amplitude E1, is propagating along the x axis.
Also assume that the length of the molecule, d, is much smaller than the wavelength,
d � λ = 2πc/ω = 2π/k.
(c) Describe the motion of the molecule in these conditions.
(d) Calculate the power scattered by the molecule and its scattering cross section.

13.22 Radiation Drag Force

The classical motion of a particle of charge q and mass m, under the simultaneous
action of an electric field E and a magnetic field B, is described by the equation

d2r
dt

= dv

dt
= q

m

(
E + v

c
× B

)
− νv , (13.21)
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where ν is a damping coefficient.
Given a Cartesian reference frame (x, y, z), consider the motion of the particle

in the presence of a plane, monochromatic electromagnetic wave propagating along
the x axis. The wave is linearly polarized along y with electric field amplitude E0,
has frequency ω and wave vector k = x̂ω/c. Assume the velocity of the particle to
be much smaller than c, so that, as a first order approximation, we can neglect the
v × B/c term.
(a) Solve (13.21) in steady-state conditions.
(b) Calculate the cycle-averaged power Pabs absorbed by the particle, i.e., the work
made by the electromagnetic force over an oscillation period.
(c) Calculate the cycle-averaged power Prad radiated by the particle, and obtain an
expression for the damping coefficient ν assuming that all the absorbed power is
re-emitted as radiation, Prad = Pabs.
(d) Now use the result of point b) to evaluate the effect of the term v × B/c. The
cycle-averaged force along x , which accelerates the particle in the wave propagation
direction, is

Fx =
〈
q

(v

c
× B

)
x

〉
. (13.22)

Calculate Fx and the Pabs/Fx ratio.
(e) Assume that instead of a point particle we have a small sphere of radius a, such
that ka � 1, containing N � 1 particles (plus a neutralizing background). Find the
force on the sphere and the related acceleration as a function of N (neglect any
collective effect such as screening of the electromagnetic field inside the sphere).

13.23 A Coaxial Cable with a Faraday Generator

Fig. 13.11

A conducting toroid has rectangular cross section,
inner radius a, outer radius b > a and height h �
a, as shown in Fig. 13.11. The toroid terminates a
coaxial cable whose inner conductor has radius a
and the outer shield has radius b.

A constant current I is flowing in the cable as
shown in Fig. 13.11. The current is uniformly dis-
tributed in the inner conductor and over the outer
shield. Assume that the current flows from the
inner conductor of the coaxial cable to the outer
shield through the toroidal termination, and that,
inside the termination, the current density J is
radial in the cylindrical coordinate system (r, φ, z)
shown in Fig. 13.11, with J = Jr (r) r̂, indepen-
dent of z and φ. Assume that the border effects are negligible.
(a)Write J as a function of I and the coordinate r .
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(b) Assume that the toroid is made of an Ohmic metal where the law E = ηJ holds,
η being the resistivity of the metal. Evaluate the resistance R of the termination.
(c) Evaluate the surface charge densities at the contact surfaces at r = a and r = b,
and show that the volumic charge density ρ is zero inside the toroid.

Fig. 13.12

Now assume that the conducting toroid
is rotating with constant angular velocity ω

around the z axis, in the presence of an exter-
nal, constant and uniform magnetic field B
parallel to the z axis, as shown in Fig. 13.12,
thus acting as a Faraday disk generator (see
Problem 6.11). Assume a radial current den-
sity in the toroid. Assume that the resistivity
of the cable is negligible with respect to η.
(d) Evaluate the electric field E inside the
toroid as a function of I ,B,ω and r . Evaluate
the surface and volume charge densities in
the toroid.
(e) Evaluate the torque exerted by the magnetic field on the rotating toroid and the
mechanical power Pm needed to maintain the rotation at constant angular velocity.
(f) Assuming that Pm equals the power Pd dissipated by Joule heating in the toroid,
evaluate a relation between I and B. Assume that friction is negligible.

13.24 Reflection and Transmission from a Moving
Transparent Medium

A plane monochromatic electromagnetic wave is incident normally from vacuum
on a semi-infinite, moving medium of refractive index n, real and positive (valid
for the medium at rest). Thus, in the laboratory frame S we have vacuum for x <

V t , and the refractive medium for x ≥ V t , with V constant in time. The wave is
traveling in the positive x direction. The incident wave has frequencyωi and electric-
field amplitude Ei in S. Assuming that n is independent of frequency, evaluate the
following quantities in the laboratory frame S
(a) the frequencies of the reflected and of the transmitted waves;
(b) the amplitudes of the electric and magnetic fields of the reflected and transmitted
waves.
(c) Answer the questions (a) and (b) in the case of a frequency-dependent refractive
index n(ω).
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13.25 The Electromotive Force in Two Different Frames

Fig. 13.13

In a Cartesian reference frame S fixed
with the laboratory we have a static
non-uniform magnetic field B = ẑ Bz(x) =
ẑ B0 x/L , where B0 and L are constants. A
square coil with sides of length a � L par-
allel to the x and y axes is kept in motion
by a force F so that it has constant velocity
V = V x̂, with V � c, parallel to the x axis,
as shown in Fig. 13.13. Assuming that the self-inductance of the coil is negligible,
calculate
(a) the electromotive force in the coil, both from Faraday’s law and from its definition
as a line integral of the electric field around the coil;
(b) the external mechanical force F exerted on the coil to keep its velocity constant,
and the work done per unit time by F.
(c) Now answer to questions (a) and (b) in the reference frame where the coil is at
rest (use Galilean transformations, consistently with V � c).

13.26 Electron Orbits in a Magnetic Field

Consider the motion of an electron in a given stationary magnetic field of the form
B = Bz(x) ẑ.
(a)Write the equation ofmotion of the electron and show that there are three constants
ofmotion: (i) the energy, (ii) themomentumalong z and (iii) a generalizedmomentum
along y which involves the y component of the vector potential.
(b)Reduce the solution of the electronmotion to a 1-D problemusing these invariants
and defining an effective potential.
(c) Consider the case Bz(x) = B0 (x/L) and show, on the basis of the shape of the
effective potential, that one can distinguish three classes of orbits, i.e., those (class
a) that remain in the half-plane x < 0, those (class b) that remain in the half-plane
x > 0 and those (class c) that can cross the magnetic null line at x = 0.

13.27 A Parallel-Wire Metamaterial

(a) A dielectric cylinder of relative permittivity εr,

Fig. 13.14

radius a and infinite length is in the presence of an
external uniform electric field E0 perpendicular to the
cylinder axis, as shown in Fig. 13.14. Using the results
of Problem 3.11 show that the cylinder acquires the
polarization density
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P = εr − 1

2πke(εr + 1)
E0 . (13.23)

(b)Determine the surface charge density of an inifinite conducting cylinder of radius
a in the presence of an external uniform electric fieldE0 perpendicular to the cylinder
axis

Fig. 13.15

(c) A metamaterial is made of parallel infi-
nite dielectric cylinders of permittivity εr
and sadius a, as described in point (a),
with an average distance b � a between the
cylinder axes, as shown in Fig. 13.15. A
plane linearly-polarizedmonochromatic ele-
cromagnetic wave of electric field

E(x, t) = E0 e
i(kx−ωt) (13.24)

is incident on themetamaterial. Thewave is propagating perpendicularly to the cylin-
der axes and is polarized perpendicularly to the cylinder axes, and has wavelength
λ = 2π/k � b.

Evaluate themacroscopic (i.e., averaged over a volume containing a large number
of cylinders) dielectric permittivity εmet⊥

r of the metamaterial.
(d) Evaluate εmet⊥

r = εmet⊥
r (ω) for the case of cylinders made of a metal with dielec-

tric permittivity εr = εr(ω) = 1 − ω2
p/ω

2, where ωp is the plasma frequency of the
metal and ω the frequency of the incident wave. Determine the spectral regions
where the wave is propagating or evanescent. Determine the cutoff and resonance
frequencies, if any.
(e)Answer to points (c) and (d) in the case of a wave polarized parallel to the cylinder
axes.

13.28 Motion in an Inhomogeneous Magnetic Field

Fig. 13.16

In a given region of space of the laboratory frame
S, a constant (time-independent) magnetic field
B has the following spatial profile

B = B(x) =
{
B2ẑ (x < 0)

B1ẑ (x > 0)
(13.25)

as shown in Fig. 13.16. At time t = 0 a particle of
massm and charge q is located at (x = 0, y = 0)
with initial velocity v(0) = v0 x̂, with v0 > 0.
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(a) Study the motion and the trajectory of the particle, showing that it drifts in the ŷ
direction with an average velocity vd = vd ŷ (to be determined).
(b) Study the motion and the trajectory of the particle in a reference frame S′ moving
with velocity vd with respect to S (assume vd � c and non-relativistic motion).

13.29 Solar Sail

The Sun emitsmost of its light in the visible region of the spectrum, i.e., at wavelegths
between approximately 4 × 10−7 m and 7.5 × 10−7 m. In this spectral range, the
intensity of sunlight impinging on the upper atmosphere of the Earth is about IE =
1.6 × 103 W/m2. The average distance between the Earth and the Sun is rE � 1.5 ×
1011 m. The Sun mass is M� � 2 × 1030 kg. The gravitational constant is G =
6.67 × 10−11 in SI units. Using this information only, show that
(a) a spherical grain of dust having a sufficiently small radius ag may be swept away
from the solar system (assume ag to be larger than the wavelength of visible light,
and the density of the grain ρg to be approximately that of water);
(b) a thin, perfectly reflecting sail of surface a2S and sufficiently small thickness
ds � aS can be accelerated outwards from the Sun (assume the density of the sail
material to be approximately 2.3 times that of water).
(c) If the sail ismade ofGraphenewith area densityσs = 7.6 × 10−7 kg m−2 estimate
its final velocity when launched in space from the neighborhood of the Earth.

13.30 Canonical Momentum

Consider the motion of a particle of mass m and charge q on the xy plane of a
Cartesian coordinate system (x, y, z) in the presence of a magnetic field B(x) =
ẑBz(x), constant in time, but depending on the x coordinate. The magnetic field can
be obtained from a vector potential of the form A(x) = ŷ Ay(x).
(a) Show that the quantity Py = mvy + (q/c) Ay(x), where vy is the y component
of the particle velocity v, is a constant of motion. The quantity P = mv + qA/c is
called the canonical momentum of the particle in the presence of a magnetic field.

Now we consider the special case of a uniform field B = ẑ B0, which can be
obtained from a vector potential of the form A(x) = ŷ B0x .
(b) Show that the conserved quantity Py is proportional to the x coordinate of the
center of the circular orbit described by the particle, called the center of gyration.
(c) In the presence of the same uniformmagnetic field, how can we choose the vector
potential so that the conserved quantity corresponds to the y coordinate of the center
of gyration?
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13.31 Classical Zeeman Effect

Fig. 13.17

In the classical model of a hydrogen atom
the electron follows a circular orbit around the
nucleus, initially in the absence of external fields.
The orbit has radius r , and the electron has
angular velocity ω0 and peripheral velocity v0 =
ω0 × r, as shown in Fig. 13.17. At time t = 0
a uniform magnetic field B0, perpendicular to
the orbit plane, and out of page in the figure, is
switched on. For simplicity, assume that all fields
have axial symmetry around the orbit axis.
(a) Assume (i) arbitrarily for the moment, that
the orbit remains a circle of radius r , and (ii)

that the new angular frequency ω is such that |ω − ω0| = |δω| � ω0. Evaluate an
approximation for δω. What would δω be ifB0 were antiparallel, rather than parallel,
to the orbital angular momentum?
(b) Now assume that the applied magnetic field changes gradually from 0 to B0 in
a finite time interval �t . Show that assumption (i) of question a) is justified within
the limits of assumption (ii).
(c) What is the change of the electron orbital angular momentum after applying
the magnetic field? In Problem 13.30 we defined as P = mv + qA/c the canonical
momentum of a particle of mass m, velocity v and charge q in the presence of a
magnetic field B = ∇ × A. Evaluate the canonical angular momentum Lc = r × P
of the electron before and after applying themagnetic field. Following Problem 13.30
and with our assumed axial symmetry we can write the vector potential as

A = B0

2

(−x̂ y + ŷ x
)

.

13.32 Force-Free Magnetic Field

A force-free magnetic field is a magnetic field in which the Lorentz force is equal
to zero in spite of the presence of an often very large magnetic energy density
B2/(8πμr) [2]. This occurs rather frequently, for instance, in astrophysics. As an
example, the magnetic field in the Sun’s corona is often approximated as a force-free
field.

Here, as a simple model, we consider a cylindrical conducting medium of radius
R where the field lines of the current density J are helices wound around the cylinder
axis, as shown in Fig. 13.18. We shall use a cylindrical coordinate system (r, φ, z)
with the z axis coinciding with the cylinder axis. The current density J(r) has com-
ponents Jz(r) and Jφ(r) depending on r only, with 0 ≤ r ≤ R, and the conditions
Jφ(0) = 0 and Jz(0) = J0.
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Fig. 13.18

(a)What is the condition on the directions of the current
density J(r) and of the magnetic field B(r), which sat-
isfies the relation ∇ × B = (4π/c) J, for the total force
acting on the moving charges to be zero? Consider the
special case where the ratio |J|/|B| is independent of r .
(b) Write the relation between the components of the
magnetic field B and their derivatives with respect to r
implied by the condition on |J|/|B| of point a).
(c) Show that the equation for Bz can be decoupled from
the equation for Bφ and written in terms of the Laplace
operator in cylindrical coordinates.
(d) Using the properties of Bessel’s functions write the
expressions for Bz and Bφ and determine how the ratio
|B|/|J|must be chosen in order to have Bz = 0 at r = R.

13.33 Field Inside a Spherical Shell

(a) A spherical shell has inner radius a, outer radius

Fig. 13.19

b > a, and is made of a dielectric material of relative
permittivity εr. The shell is located in a uniform external
electric field E0 (Fig. 13.19). Calculate the electric field
(assumed to be uniform) inside the shell. (Hint: make
the following educated guess for the field,

E =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E0 + (3p0 · r̂) r̂ − p0
r3

(r > b)

E1 + (3p1 · r̂) r̂ − p1
r3

(b > r > a)

E2 (r < a)

(13.26)

and determine the values of p0, p1, E1 and E2 from the boundary conditions.)
(b) Consider the analogous problem of a shell of mag-

netic permeability μr located in an external magnetic field B0.

13.34 Resonances in a Spherical Shell

Ametallic shell of inner radius a and outer radius b > a is placed in an uniform, oscil-
lating electric field E(t) = E0e−iωt . In the relevant frequency range, the permittivity
of the material can be described by the usual expression ε = ε(ω) = 1 − ω2

p/ω
2,

assumed to be real for simplicity.
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(a)Determine the frequencies forwhich the response of the shell is resonant.Consider
in particular the limit of a thin shell having thickness d = b − a � a.
(b) In medical laser surgery, metallic nanoshells are inserted in organic tissue to
locally increase the absorption of electromagnetic waves at frequencies for which
the tissue is non-absorbing. Determine suitable fabrication parameters for a Gold
nanoshell (ωp � 1.4 × 1016 Hz) and a laser source operating at λL = 800 nm wave-
length.
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Chapter S-1
Solutions for Chapter 1

S-1.1 Overlapping Charged Spheres

(a) The electrostatic field at any point in space is the sum

Fig. S-1.1

of the fields generated by each charged sphere (superposi-
tion principle). The field generated by a single uniformly
charged sphere at its interior is E(r) = 4πke�0r/3, where
�0 is the charge density and r is the position vector rel-
ative to the center of the sphere. Thus, the two spheres
generate at their interiors the fields E± = ±4πke�0r±/3,
respectively, r± being the position vectors relative to the
two centers. We assume that the centers are located on the x
axis at points O+ ≡ (+δ/2, 0, 0) and O− ≡ (−δ/2, 0, 0) (Fig. S-1.1). We thus have
r± = r ± δ/2, where r is the position vector relative to the origin O ≡ (0, 0, 0). The
total field in the overlap region is

Ein = +4πke
3

�0

(
r − δ

2

)
− 4πke

3
�0

(
r + δ

2

)
= −4πke

3
�0 δ . (S-1.1)

The internal field E in is thus uniform and proportional to −δ.
(b) The electrostatic field generated by a uniformly charged sphere, with volume
charge density �0, outside its volume equals is the field of a point charge Q =
4πR3�0/3 located at its center. Thus, the electrostatic field in the outer region (outside
both spheres) is the sum of the fields of two point charges±Q located at O+ and O−,
respectively. If R � δ, this is equivalent to the field of an electric dipole of moment

p = Qδ = 4πR3

3
�0 δ (S-1.2)
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located at the origin and lying on the x axis. The external field is thus

Eext(r) = ke
3r̂ (p · r̂)− p

r3
, (S-1.3)

where r = r r̂ is the vector position relative to the origin.
In the two transition “shell” regions, of net charge densities ±�0, the field is the

sum of the inner field of one sphere and of the outer field of the other. We omit to
write down the expression for brevity.

S-1.2 Charged Sphere with Internal Spherical Cavity

(a) Once again we use the superposition principle. Our

Fig. S-1.2

charged sphere with an internal spherical cavity can be
thought of as the superposition of two uniformly charged
spheres: a sphere of radius a centered in Oa , with charge
density �, and a smaller sphere of radius b centered in Ob,
with charge density −�. The electric field everywhere in
space is the sum of the fields generated by the two spheres.
The field generated by a uniformly charged sphere at its
inside is E = (4πke/3) � r, where r is the distance from
the center of the sphere. The total field inside the cavity

at a point of vector position r relative to Oa , and vector position r′ relative to Ob

(Fig.S-1.2), is thus

Ecav = 4πke
3

� (r − r′) = 4πke
3

� d , (S-1.4)

uniform and parallel to the straight line passing through Oa and Ob. If d = 0 we
obtain E = 0, as expected from Gauss’s law and symmetry considerations.
(b) In an external field E0 the total force on the system is the sum of the forces that E0

would exert on the two point charges Qa = 4πa3�/3 and Qb = −4πb3�/3, located
in Oa and Ob, respectively, so that

F = 4π

3
� (a3 − b3) E0 . (S-1.5)

(c) Since the vector sum of the forces is different from zero, the torque depends on
our choice of the origin. The torque about the center of the sphere Oa is

τ = d× F = −4π

3
�b3d× E0 . (S-1.6)
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Let us introduce a reference system with the x axis passing through Oa and Ob, and
the origin in Oa . We denote by �m = α� the mass density, with α some constant
value. Our coordinate origin is thus the location of the center of mass of the cavity-
less sphere of radius a and mass Mtot = 4πa3�m/3, while x = d is the location of
the center of mass of a sphere of radius b and mass Mb = 4πb3�m/3. Let us denote
by xc the center of mass of the sphere with cavity, of mass Mc = 4π(a3 − b3)�m/3.
We have

0 = Mcxc + Mb d

Mtot
, thus xc = −d Mb

Mc
= −d b3

a3 − b3
. (S-1.7)

The torque about the center of mass xc is thus

τ c = b3d

a3 − b3
4π

3
�a3 x̂ × E0 −

(
d + b3d

a3 − b3

)
4π

3
�b3 x̂ × E0 = 0 , (S-1.8)

as was to be expected, since each charged volume element d3r is subject to the force
�E0 d3r , and acquires an acceleration

a = � E0 d3r

�md3r
= E0

α
, (S-1.9)

equal for each charged volume element.

S-1.3 Energy of a Charged Sphere

(a) We can assemble the sphere by moving successive infinitesimal shells of charge
from infinity to their final location. Let us assume that we have already assembled a
sphere of charge density � and radius r < R, and that we are adding a further shell of
thickness dr . The assembled sphere has charge q(r) = �(4πr3/3), and its potential
ϕ(r, r ′) at any point at distance r ′ ≥ r from the center of the sphere is

ϕ(r, r ′) = ke
q(r)

r ′
= ke �

4πr3

3

1

r ′
. (S-1.10)

The work needed to move the new shell of charge dq = � 4πr2dr from infinity to r
is

dW = ϕ(r, r ′) dq = ke �
4πr3

3

1

r
� 4πr2dr = ke

(4π�)2

3
r4dr . (S-1.11)
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The total work needed to assemble the sphere is obtained by integrating dW from
r = 0 (no sphere) up to the final radius R

U0 = ke
(4π�)2

3

R∫
0

r4dr = ke
(4π�)2R5

15
= 3ke

5

Q2

R
, (S-1.12)

where Q = (�4πR3)/3 is the total charge of the sphere.
(b) The electric field everywhere in space is, according to Gauss’s law,

E(r) = ke Q ×

⎧⎪⎨
⎪⎩

r

R3
, r ≤ R

1

r2
, r ≥ R ,

(S-1.13)

and the integral of the corresponding energy density uE = E2/(8πke) over the whole
space is

U0 =
∞∫
0

E2(r)

8πke
4πr2 dr = k2eQ

2

2ke

⎡
⎣

R∫
0

( r

R3

)2
r2dr +

∞∫
R

(
1

r2

)2

r2dr

⎤
⎦

= ke
Q2

2

(
1

5R
+ 1

R

)
= 3ke

5

Q2

R
. (S-1.14)

(c) The electrostatic potential generated by the sphere everywhere in space is

ϕ(r) = keQ ×

⎧⎪⎪⎨
⎪⎪⎩
− r2

2R3
+ 3

2R
, r ≤ R

1

r
, r > R

(S-1.15)

where the constant 3keQ/(2R) appearing for r ≤ R is needed for ϕ(r) to be contin-
uous at r = R. Since � = 0 for r > R, we need only the integral of �ϕ/2 inside the
sphere

U0 = 1

2

R∫
0

�keQ

(
− r2

2R3
+ 3

2R

)
4πr2 dr = ke

Q

4

Q

R3/3

(
− R2

5
+ R2

)

= 3ke
4

Q2

R3

4R2

5
= 3ke

5

Q2

R
. (S-1.16)
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All methods, including (b) and (c), lead to the correct result, as expected. However,
a comparison between methods (b) and (c) shows that it is incorrect to interpret
the “energy density” of the electric field as the “energy stored in a given region of
space per unit volume”. If we give this meaning to quantity E2/(8πke), as in (b), we
conclude that the energy is spread over the whole space. If, on the other hand, we
assume the energy density to be 1

2 �ϕ, as in (c), the energy is “stored” only inside
the volume of the sphere, i.e., “where the charge is”. Thus, the concept of energy
density is ambiguous, while the total electrostatic energy of the system is a well
defined quantity, at least in the absence of point charges.

S-1.4 Plasma Oscillations

(a) Assuming δ > 0, the collective rigid disp-

Fig. S-1.3

lacement of the conduction electrons due to the
external field gives origin to the charge density

�(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 , x < 0 ,

+e n , 0 < x < δ ,

0 , δ < x < h ,

−e n , h < x < h + δ ,

0 , x > h + δ .

(S-1.17)

The electrostatic field E(x) generated by this charge distribution is obtained by
integrating the equation ∇ · E = ∂x Ex = 4πke� with the boundary condition
E(−∞) = 0:

Fig. S-1.4

Ex (x) = 4πenke

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 , x < 0 ,

x , 0 < x < δ ,

δ , δ < x < h ,

h + δ − x , h < x < h + δ ,

0 , x > h + δ .

(S-1.18)
If we assume a negative displacement −δ (with
δ > 0) the charge density and the electric field
are

�(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 , x < −δ ,

−e n , −δ < x < 0 ,

0 , 0 < x < h − δ ,

+e n , h − δ < x < h ,

0 , x > h .

Ex (x) = 4πenke

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 , x < −δ ,

−x − δ , −δ < x < 0 ,

−δ , 0 < x < h − δ ,

x − h − δ , h − δ < x < h ,

0 , x > h .

(S-1.19)
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The plots are obtained from Figs. S-1.3 and S-1.4, respectively, by flipping around
the x axis and translating by δ towards the negative x values.
(b) The electrostatic energy of the system, in the case of a positive displacement,
can be evaluated by integrating the “energy density” u = E2

x/(8πke) over the whole
space:

Ues =
∫

E2
x

8πke
d3r = L2

8πke

h+δ∫
0

E2
x dx

= L2

8πke
(4πen)2

⎡
⎣

δ∫
0

x2 dx +
h∫

δ

δ2 dx +
h+δ∫
h

(h + δ − x)2 dx

⎤
⎦

= 2πke(enL)2
[

δ3

3
+ δ2(h − δ)+ δ3

3

]
= 2πke(enL)2

(
hδ2 − δ3

3

)
,

(S-1.20)

where, due to the symmetry of the problem, we used d3r = L2 dx . Exactly the same
result is obtained for a negative displacement by−δ. The δ appearing in the last line
of (S-1.20) is actually to be interpreted as the absolute value |δ|.
(c) At the limit δ � h we can neglect the third-order term in δ of (S-1.20), and
approximate Ues 	 2πke(enL)2hδ2, which is the potential energy of a harmonic
oscillator. The force on the “electron slab” is thus

F = −∂Ues

∂δ
= −4πke(enL)2hδ , (S-1.21)

where δ can be positive or negative. The equation of motion for the electrons is

M δ̈ = F ≡ −Mω2δ , (S-1.22)

where M = menL2h is the total mass of the conduction-electron slab. We thus have

ω2 = 4πkene2

me
≡ ω2

p , (S-1.23)

where ωp is called the plasma frequency, and is an intrinsic property of the given
conductor, dependent only on the density of free electrons.
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S-1.5 Mie Oscillations

(a) In Problem 1.1 we showed that the electric field is

Fig. S-1.5

uniform and equal to −4πke �0 δ/3, with �0 = ene, in
the region where the conduction-electrons sphere and
the ion-lattice sphere overlap,

Eint = −4πke
3

eneδ . (S-1.24)

We assume that the displacement δ is sufficiently small
for the volumes a (only conduction electrons) and c
(only ion lattice) of Fig. S-1.5 to be negligible com-
pared to the overlap volume b, an order of magnitude for δ is found in (S-2.4) of
Solution S-2.1. Assuming further that conduction electrons behave like a “rigid”
body, oscillating in phase with the same displacement δ = δ(t) from their rest posi-
tions, the equation of motion for the single electron is

me
d2δ

dt2
= −eEint = −e4πke

3
eneδ = −me

ω2
p

3
δ , (S-1.25)

whereωp is the plasma frequency (S-1.23). Thus, the displacement of each conduction
electron from its rest position is

δ(t) = δ(0) cos

(
ωp√
3
t

)
, (S-1.26)

where δ(0) is a constant and ωp/
√
3 is called the Mie frequency. This type of motion

is known as Mie oscillation (or surface plasmon of the sphere).
(b) The electrostatic energy of the system is given by the integral

Ues =
∫

E2

8πke
d3r . (S-1.27)

For δ approaching 0, the electric field is given by (S-1.24) inside the sphere (r < R),
and by (S-1.3), i.e., an electric dipole field, outside the sphere (r > R). Thus we
can split the integral of (S-1.27) into the sum of two terms, corresponding to the
integration domains r < R and r > R, respectively

Ues = U in
es +U out

es =
1

8πke

⎛
⎝ ∫
r<R

E2 d3r +
∫

r<R

E2 d3r

⎞
⎠ . (S-1.28)

For r < R the field is uniform and we immediately find
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U in
es =

1

8πke

(
ke
4π

3
eneδ

)2 4π

3
R3 = ke

8π2

27
(eneδ)

2R3 . (S-1.29)

For evaluating the contribution of the outer region, we substitute

d3r = r2 sin θ dr dθ dφ , and E2 =
(
ke p

r3

)2

(3 cos2 θ + 1) , (S-1.30)

where p = Qδ = δ ene 4πR3/3 (see Problem 1.1), into the second integral at the
right-hand side of (S-1.28)

U out
es = 2π

1

8πke
k2e p

2

+∞∫
R

r2 dr

π∫
0

sin θ dθ
3 cos2 θ + 1

r6
, (S-1.31)

and obtain

U out
es = ke

p2

3R3
= ke

4π

9
(eneδ)

2 4π

3
R3 = ke

16π2

27
(eneδ)

2R3 , (S-1.32)

thus U out
es = 2U in

es . For the total energy we have finally

Ues = U in
es +U out

es = ke
8π2

9
(eneδ)

2R3 . (S-1.33)

The derivative ofUes with respect to δ gives the force associated to the displacement
of the electron sphere:

F = −∂Ues

∂δ
= −ke 16π

2

9
R3 (ene)

2δ . (S-1.34)

The equation of motion for the rigid sphere of electrons is M d2δ/(dt2) = F, where
M = mene4πR3/3 is the total mass of electrons. Thus

d2δ

dt2
= −ke 4πnee

2

3me
δ ≡ −ω2

p

3
δ , (S-1.35)

and we are back to the oscillations at the Mie frequency of (S-1.26).
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S-1.6 Coulomb Explosions

(a) The electric field has radial symmetry, E = E(r) r̂. According to Gauss’s law
we have 4πr2E(r) = 4πkeQint(r), where Qint(r) is the charge inside the sphere of
radius r . At t = 0 we have Qint = Q (r/R)3 for r < R, and Qint = Q for r > R,
thus the electric field inside and outside the cloud is, respectively,

E(r) = keQ ×

⎧⎪⎨
⎪⎩

r

R3
, r ≤ R ,

1

r2
, r ≥ R .

(S-1.36)

Due to the spherical symmetry of the problem, we have E = −∂ϕ/∂r , whereϕ is the
electric potential, and the potential at t = 0 can be obtained by a simple integration:

ϕ(r) = keQ ×

⎧⎪⎪⎨
⎪⎪⎩
− r2

2R3
+ 3

2R
, r ≤ R ,

1

r
, r ≥ R .

(S-1.37)

As in Eq. (S-1.15) of Problem 1.3, the integration constants have been chosen so that
ϕ(∞) = 0 and ϕ(r) is continuous at r = R. The potential energy of a test charge qt
located at distance r from the center is thus qt ϕ(r).
(b)Under the action of the electric field, the test chargewouldmove and convert all its
potential energy into kinetic energy if the field remained stationary during the charge
motion, i.e., if all the source charges of the field remained fixed. At t = 0 the electric
field inside the spherical cloud increases with r . Thus, the “outer” particles, located
at larger r , have a higher acceleration than the “inner” particles, located at smaller r .
After an infinitesimal time interval the “outer” particles will acquire a higher velocity
(we are assuming that all particles are at rest at t = 0), and will not be overtaken
by the “inner” ones. Moreover, also the acceleration has radial symmetry, and thus
any spherical shell preserves its shape in time. These arguments can be iterated for
any following time, proving the validity of our assumptions that the particles do not
overtake one another, and that the spherical symmetry is preserved.

Let us denote by rs(r0, t) the position of a particle initially located at r0. Since the
particles do not overtake one another, the charge inside a sphere of radius rs(r0, t) is
constant. The electric field intensity at rs(r0, t) can be evaluated by applying Gauss’s
law: from

4πr2s (r0, t) E [rs(r0, t)] = 4πkeQ
(r0
R

)3
(S-1.38)

we obtain
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E [rs(r0, t)] = ke
Q

r2s (r0, t)

(r0
R

)3
, (S-1.39)

from which Eq. (1.16) can be derived. The forces on the particles, and thus their
accelerations, increase with increasing r0, in agreement with our “non-overtaking”
result. Note that the electric field, and thus the force, at t = 0 is proportional to r0,
not to r30 , because we have r

2
s (r0, 0) = r20 at the denominator.

(c) Each infinitesimal spherical shell expands from its initial radius r0 to its final
radius rs (r0,∞) = ∞ under the action of the force (1.16). The final kinetic energy
of a particle belonging to the shell, Kfin(r0), equals the work done by the force on
the particle

Kfin(r0) =
+∞∫
ri0

ke
qQ

r2i

(r0
R

)3
dr = ke

qQ

r0

(r0
R

)3 = ke q Q
r20
R3

. (S-1.40)

Quantity Kfin(r0) is a monotonically increasing function of r0, thus its maximum
value Kmax is observed for r0 = R

Kmax = Kfin(R) = ke
qQ

R
. (S-1.41)

This means that the particles initially located at r0 = R, i.e., at the cloud surface,
acquire the maximum final kinetic energy.
(d) The energy distribution, or energy spectrum, function f (K ) is defined so that
the number dN of particles with kinetic energy in the interval (K , K + dK ) equals
f (K ) dK , therefore f (K ) = dN/dK . A particle belonging to the shell r0 < rs <

r0 + dr0 at t = 0 has a kinetic energy in the interval (Kfin(r0), Kfin(r0)+ dKfin) at
t = ∞, where

dKfin = 2ke qQ r0
R3

dr0 . (S-1.42)

On the other hand, at t = 0 the number of particles in the shell (r0, r0 + dr0) is

dN = N
3

4πR3
4πr20 dr0 = N

3r20
R3

dr0 , (S-1.43)

and the number of particles in a given shell is constant during the motion, since
the particles do not overtake one another. Thus, inserting (S-1.40) and (S-1.41), we
obtain

f (Kfin) = dN

dKfin
= N

3r20
R3

R3

2keqQr0
= N

3r0
2keqQ

= 3N

2K 3/2
max

√
Kfin , (S-1.44)

valid for Kfin ≤ Kmax.
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The final total kinetic energy is

Ktot =
Kmax∫
0

K f (K ) dK = 3N

2K 3/2
max

Kmax∫
0

K 3/2dK = 3N

5
Kmax

= 3ke
5

NqQ

R
= 3ke

5

Q2

R
, (S-1.45)

which equals the total electrostatic energy stored in the charged sphere at t = 0
(Problem 1.3). Here we have substituted Nq = Q. Thus, all the electrostatic energy
stored in the initial configuration is eventually converted into kinetic energy.

It is a relatively common error to assume that the final kinetic energy of a particle
initially in the shell r0 < rs < r0 + dr is equal to the potential energy of the same
particle at t = 0, i.e., that Kfin = q ϕ (r0), where ϕ is given by (S-1.37). This is
obviously wrong, because a particle initially at r0 = 0 has the highest possible initial
potential energy, ϕ(0) = 3keQ/(2R), while it undergoes the lowest possible gain in
kinetic energy (zero)! Moreover, this behavior would not preserve the total energy
of the system, because the initial potential energy of the sphere is (see Problem 1.3)

U (0) = 1

2

∑
i

q ϕ[ri (0)] , not U (0) =
∑
i

q ϕ[ri (0)] .

The point is that while the field is electrostatic (∇ × E = 0) at any time, it is time
dependent. Thus,ϕ can be defined for any value of t , but it cannot be used to evaluate
the final kinetic energy, because ϕ changes as the particles move.

The gain in kinetic energy equals the initial potential energy qϕ(R, t = 0) for the
particles initially at ri = R, i.e., for the most external ones. Only these particles are
accelerated by a field that can be treated as static, being simply equal to the field of
a point charge Q located at r = 0 at any time.
(e) If we introduce the new variable x(t) = rs(r0, t)/r0, (1.16) becomes

m
d2x

dt2
= ke

qQ

R3x2
, (S-1.46)

which is independent of r0. The solution of (S-1.46), x = x(t), with the initial con-
dition x(0) = 1, is thus valid for all the particles of the cloud. Thus, if two shells,
labeled 1 and 2, have initial radii r10 and r20, with r20 > r10, their subsequent radii
will be r1(t) = rs(r10, t) = r10 x(t) and r2(t) = rs(r20, t) = r20x(t). It will always
be r2(t) > r1(t), and the internal shell cannot overtake the external one. The number
of particles contained between the layers 1 and 2 is constant and equal to

δN12 = N

R3

(
r320 − r310

)
. (S-1.47)
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Thus the particle density between the two layers at time t is

n(t) = 3

4π
[
r32 (t)− r31 (t)

] δN12 = 3N

4πR3

r320 − r310
(r320 − r310) x

3(t)
= 3N

4πR3 x−3(t) . (S-1.48)

This result does not depend on the particular choice of the two layers, and the
particle density is uniform at any time t , and decreases with increasing time as
x−3(t) (Fig. S-1.6).

S-1.7 Plane and Cylindrical Coulomb Explosions

(a)Theelectric field is parallel to the x axis and inde-

Fig. S-1.6

pendent of the y and z coordinates for symmetry
reasons, thus we have E(x, y, z) = E(x) x̂. Again
for symmetry reasons, the electric field is antisym-
metric with respect to the x = 0 plane, so that
E(−x) = −E(x). Thus it is sufficient to consider
the field for x ≥ 0. The charge density at t = 0 is
�(x) = qn0Θ(a/2− |x |), whereΘ(x) is the Heav-
iside step function, defined as Θ(x) = 1 for x >

0, and Θ(x) = 0 for x < 0. The electric field at
t = 0 can be evaluated by integrating the equation
∇ · E = ∂x Ex = 4πke�(x), with the boundary con-
dition E(0) = 0, obtaining

E(x) = 4πke

⎧⎪⎨
⎪⎩
qn0x , x <

a

2
,

qn0
a

2
, x >

a

2
.

(S-1.49)

Since the particles are at rest at t = 0, and the electric field increases with increasing
x , the particles cannot overtake one another. The motion of a particle initially at x0
is described by an equation xs = xs(x0, t). Let us consider a parallelepiped of base S
lying on the x = 0 plane and height xs(x0, t). The charge inside our parallelepiped is
constant in time since no particle can cross the moving base. We can apply Gauss’s
law to evaluate the electric field on the particle located at xs(x0, t)

E[xs(x0, t), t] S = 4πkeQin(t) = 4πkeQin(0) = 4πkeqn0x0S . (S-1.50)

Thus, the field accelerating each particle is constant in time, and equals

E(x0) = 4πkeqn0x0 , (S-1.51)
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where x0 is the particle position at t = 0. The equation of motion is thus

m
d2xs(x0, t)

dt2
= qE(x0) = 4πkeq

2n0x0 , (S-1.52)

with the initial conditions xs(x0, 0) = x0 and ẋs(x0, 0) = 0. The solution is

xs(x0, t) = x0 + 2πke
q2n0x0

m
t2 = x0

(
1+ ω2

p t
2

2

)
, (S-1.53)

where ωp =
√
4πkeq2n0/m is the “plasma frequency” of the infinite charged layer

at t = 0 (see Problem 1.4). Thus, the acceleration of an infinitesimal plane layer of
thickness dx is proportional to its initial x coordinate, and more external layers are
faster than more internal ones. The velocity, and the kinetic energy, of each layer
grow indefinitely with time, which is not surprising since the system has an infinite
initial potential energy.

If we introduce the dimensionless variable ξ = xs/x0, its equation of motion

m
d2ξ

dt2
= qE(x0) = 4πkeq

2n0, ξ(0) = 1 ,
dξ(0)

dt
= 0 , (S-1.54)

is independent of x0. Thus the position of any particle can be written in the form

xs(x0, t) = x0 ξ(t) , (S-1.55)

which shows that the particle density, and the charge density, remain uniform during
the explosion.
(b) The case of the Coulomb explosion of a system of charged particles initially
confined, at rest, inside an infinite cylinder of radius a, is similar. We use cylindrical
coordinates (r,φ, z), and assume that the initial particle density is uniform and equal
to n0 for r < a, and zero for r > a. All particles havemassm and chargeq. According
to Gauss’s law, at t = 0 the field at position (r0,φ, z), with r0 < a, is

E(r0) = 2πke n0q r0 . (S-1.56)

Again, the particles cannot overtake one another because the electric field increases
with increasing r0. A particle initially at r0 willmove along the r coordinate according
to a law rs = rs(r0, t), with rs(r0, 0) = r0. The field acting on the particle at time t is

E(r0, t) = 2πke n0q r20
rs(r0, t)

, (S-1.57)

and its equation of motion is
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m
d2rs(r0, t)

dt2
= q

2πke n0q r20
rs(r0, t)

. (S-1.58)

It is not possible to solve (S-1.58) for rs(r0, t) in a simple way, however, we can
multiply both sides by drs(r0, t)/dt , obtaining

m
drs(r0, t)

dt

d2rs(r0, t)

dt2
= 2πke n0 q

2r20
1

rs(r0, t)

drs(r0, t)

dt
. (S-1.59)

Equation (S-1.59) can be rewritten

m

2

d

dt

[
drs(r0, t)

dt

]2

= 2πke n0 q
2r20

d

dt
ln[rs(r0, t)] , (S-1.60)

which can be integrated with respect to time, leading to

m

2

[
drs(r0, t)

dt

]2

= 2πke n0 q
2r20 ln [rs(r0, t)]+ C

= 2πke n0 q
2r20 ln

(
rs(r0, t)

r0

)
, (S-1.61)

where the integration constant C has been determined by the condition that the
kinetic energy of the particle must be zero at t = 0, when rs(r0, t) = r0. The first
side of (S-1.61) is the kinetic energy K (rs) at time t , when the particle is located at
rs(r0, t), which we can simply denote by rs. Thus we have the following, seemingly
time-independent equation for the kinetic energy of a particle initially located at r0

K (rs) = 2πke n0 q
2r20 ln

(
rs
r0

)
. (S-1.62)

At the limit rs →∞, t →∞, the integral diverges logarithmically. Again, this is
due to the infinite potential energy initially stored in the system.

S-1.8 Collision of Two Charged Spheres

(a) The electrostatic energy of a uniformly charged sphere of radius R and total
charge Q is, according to the result of Problem 1.3,

U0 = 3

5
ke

Q2

R
, (S-1.63)

so that the initial energy of our system of two spheres is
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Utot = 2U0 = 6

5
ke

Q2

R
. (S-1.64)

(b) Let us denote by x the distance between the centers of the two spheres. When x
is such that the interaction energy Uint(x) is no longer negligible with respect to U0,
but still larger than 2R, the total potential energy Upot(x) of the system is

Upot(x) = 2U0 +Uint(x) . (S-1.65)

As long as x � 2R the force between the spheres is identical to the force between
two point charges ±Q located at the centers of the spheres, and

Uint(x) = −ke Q2

x
. (S-1.66)

Both the total momentum and the total energy of the system are conserved. Thus,
the velocities of the two sphere are always equal and opposite. As long as x � 2R
the total energy of the systemUtot = 2U0 equals the sum of the potential and kinetic
energies of the system

Utot = 2
1

2
Mv2(x)+ 2U0 +Uint(x) , (S-1.67)

where M is the mass of each sphere, and±v(x) are the velocities of the two spheres.
Thus

6

5
ke

Q2

R
= Mv2(x)+ 6ke

5

Q2

R
− ke

Q2

x
, and v(x) =

√
ke

Q2

Mx
. (S-1.68)

When x = 2R, the velocity is

v(2R) =
√
ke

Q2

2MR
. (S-1.69)

(c)When the two spheres overlap completely, the charge density and the electrostatic
field are zero over the whole space, so that also the electrostatic energy is zero. This
means that all the initial energy has been converted into kinetic energy, i.e.,

2
1

2
Mv2(0) = 2U0 , (S-1.70)

from which we obtain

v(0) =
√
6

5
ke

Q2

MR
. (S-1.71)
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S-1.9 Oscillations in a Positively Charged Conducting
Sphere

(a) At equilibrium, the remaining (1− f )N conduction electrons must be subject
to zero electric field. For symmetry reasons, this is possible only if they occupy a
spherical volume of radius b < a concentric with the conducting sphere, where the
where e is the elementary electric charge, and ne and ni are the conduction-electron
density and the ion density, respectively (Fig. S-1.7). Thus, we must have ne = ni,
with total charge density � is zero. We thus have

�(r) = e(ni − ne) = 0 for r < b , (S-1.72)

Fig. S-1.7

where

ni = 3N

4πa3
and ne = 3 (1− f )N

4πb3
, (S-1.73)

and we get
b = a 3

√
1− f , (S-1.74)

and

�(r) = 3Ne

4πa3
for b < r < a . (S-1.75)

Note that the electric field is nonzero in the spherical shell b < r < a. However, this
region is not conducting, since the conduction electrons are confined in the inner
region r < b.

Fig. S-1.8

(b) Now the conduction electron sphere is rigidly displaced
by an amount δ relative to themetal sphere centered in O , so
that its center is in O ′, as in Fig. S-1.8. The electric field in
any point of space can be evaluated by superposition, adding
the field generated by the ion lattice, of charge density �i =
eni and the field generated by the conduction electrons of
charge density �e = −ene. The electric field Ec in a point
P inside the conduction-electron sphere, of vector position
r relative to O , and r′ relative to O ′, is

Ec = 4πke
3

(�ir − �er′) = 4πke
3

3Ne

4πa3
(r − r′) = keNe

a3
δ , (S-1.76)

spatially uniform uniform and parallel to δ.
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(c) Each conduction electron is subject to the force

Fc = −eEc = −keNe2

a3
δ , (S-1.77)

proportional to the displacement from its equilibrium position. The equation of
motion for each electron is thus

me
d2δ

dt2
= Fc = −keNe2

a3
δ = −me ω2

M δ , (S-1.78)

where me is the electron mass, and ωM the oscillation frequency for the resulting
harmonic motion. The oscillation frequency is thus

ωM =
√
keNe2

mea3
, (S-1.79)

i.e., the Mie frequency of (S-1.26).

S-1.10 Interaction Between a Point Charge and an Electric
Dipole

(a) The simplest way to evaluate the force exerted by the

Fig. S-1.9

point charge q on the dipole p is to evaluate the force exerted
by p on q and reversing the sign, according to Newton’s
third law.We choose a spherical coordinate system (r,β,φ)

with the origin located at the dipole position, the polar axis
parallel to p and such that p and q lie on the φ = 0 plane as
in Fig. S-1.9. We denote the polar angle by β, and the field
generated by p at the location of q by Ep. We have for the
force f acting on q

f = qEp = ke
qp

r3

(
2 cosβ r̂ + sin β β̂

)
= ke

qp

r3

(
−2 cosα r̂ + sinα β̂

)
,

(S-1.80)
the compoment parallel to r is attractive if cosα > 0, repulsive if cosα < 0, the
component pependicular to r is directed downwards in Fig. 1.5 if sinα > 0 (β̂
is directed counterclockwise). Thus the force F = −f exerted by q on p has the
components

Fr = −ke 2qp cosα

r3
, F⊥ = ke

2qp sinα

r3
. (S-1.81)
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(b) The energy of the dipole in the field of the point charge is

U = −p · E = −ke q
r2

p · r̂ = −ke qp cosα

r2
(S-1.82)

thus the torque acting on the dipole is

τ = −∂U

∂α
= −ke qp sinα

r2
, (S-1.83)

if q > 0, the torque tends to align p to r.
Alternatively we can directly evaluate the force exerted by q on p. For this we

model the dipole as a system of two charges+q ′ and−q ′ at a distance 2h from each

Fig. S-1.10

other, and consider the limit h → 0,
q ′ → ∞ with 2hq ′ = p constant. It
is important to note that this does not
mean that every dipole consists of two
opposite charges at a small distance
from each other, but simply that this
model leads to the correct result. We
start by evaluating the energy of the
dipole in the field of the point charge
q. We choose a spherical coordinate
system (r, θ,φ) such that p and q
lie on the φ = 0 plane, the origin is

located at q, the center of the dipole has coordinates (r, θ, 0), and the dipole forms
an angle α with the polar axis z, as shown in Fig. S-1.10.

The energy of the dipole, neglecting its self-energy, is

U = keq

(
q ′

r1
− q ′

r2

)
. (S-1.84)

According to the law of cosines we have r1 =
√
r2 + h2 + 2rh cos(α− θ), thus the

first-order Taylor expansion for 1/r1 is

1

r1
= 1√

r2 + h2 + 2rh cos(α− θ)
	 1

r
− cos(α− θ)

r2
h , (S-1.85)

and, analogously, we have for 1/r2

1

r2
	 1

r
+ cos(α− θ)

r2
h . (S-1.86)

Substituting into (S-1.84) we obtain
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U 	 keqq
′
(
1

r
− cos(α− θ)

r2
h − 1

r
− cos(α− θ)

r2
h

)
= −keqq ′ 2h cos(α− θ)

r2

= −ke qp
r2

(cosα cos θ + sinα sin θ) , (S-1.87)

which is independent of φ, thus the force F acting on the dipole has only the Fr and
Fθ components. We are interested in Fr and Fθ evaluated at θ = 0, see Fig. 1.5. The
gradient components in spherical coordinates are

Fr
∣∣
θ=0 = −

∂U

∂r

∣∣∣∣
θ=0

= −ke 2qp cosα

r3
, (S-1.88)

Fθ

∣∣
θ=0 = −

1

r

∂U

∂θ

∣∣∣∣
θ=0

= ke
qp sinα

r3
, (S-1.89)

in agreement with (S-1.81).

Fig. S-1.11

A further possibility is eval-
uating directly the forces acting
on the charges q ′ and −q ′ of
our model, see Fig. S-1.11, and
their limits as q ′ → ∞, h → 0
with 2q ′h = p constant. We can
approximate 1/r21 and 1/r22 as

1

r21
	 1

r2
− 2 cosα

r3
h ,

(S-1.90)

1

r22
	 1

r2
+ 2 cosα

r3
h ,

(S-1.91)

obtaining for the force f1 acting on the positive charge q ′ of the dipole and for f2
acting on the negative charge −q ′

f1 	 keqq
′
(
1

r2
− 2h cosα

r3

)
r̂1 , f2 	 −keqq ′

(
1

r2
+ 2h cosα

r3

)
r̂2 , (S-1.92)

respectively. As h → 0 both angles ψ1 and ψ2 tend to zero, and r̂1 and r̂2 tend both
to r̂, thus the r component of the total force acting on the dipole is

Fr = lim
h→0
q ′→∞
2hq ′=p

( f1 + f2) = −ke qq ′ 4h cosα

r3
= −2ke qp cosα

r3
, (S-1.93)

in agreement with the first of (S-1.81). Note that
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r̂ lim
h→0
q ′→∞
2hq ′=p

( f1 + f2) = lim
h→0
q ′→∞
2hq ′=p

(
r̂1 f1 + r̂2 f2

)
, (S-1.94)

in fact the right-hand side of (S-1.94) has also a component perpendicular to r that
we are going to evaluate. We have

sinψ1 = h sinα

r1
	 h sinα

(
1

r
− h cosα

r2

)
,

sinψ2 = −h sinα

r2
	 −h sinα

(
1

r
+ h cosα

r2

)
, (S-1.95)

thus the component ofF perpendicular to r is, disregarding the terms in h2 and higher,

F⊥ = lim
h→0
q ′→∞
2hq ′=p

( f1 sinψ1 + f2 sinψ2) = ke
qp sinα

r3
, (S-1.96)

in agreement with the second of (S-1.81). Note that

f1 sinψ1 	 keqq
′
(
1

r2
− 2h cosα

r3

)
h sinα

(
1

r
− h cosα

r2

)
	 ke

qp sinα

2r3
.

(S-1.97)
As h → 0 and ψ1 → 0, the angle γ approaches α, and the limit of the torque of

f1 on the dipole is

τ1 = − lim
h→0
q ′→∞
2hq ′=p

h f1 sin γ = − lim
h→0
q ′→∞
2hq ′=p

ke
qq ′h sin γ

r2 + h2 + 2rh cosα
= −ke qp sinα

2r2
,

(S-1.98)
analogously, the limit of the torque of f2 is

τ2 = −ke qp sinα

2r2
, (S-1.99)

and the total torque on the dipole is

τ = τ1 + τ2 = −ke qp sinα

r2
, (S-1.100)

in agreement with (S-1.83).
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S-1.11 Electric Field of a Charged Hemispherical Surface

Fig. S-1.12

We start from the electric field generated by a ring
of radius a and linear charge density λ in a generic
point P on its axis, at a distance x from the center
O of the ring. With reference to Fig. S-1.12, the
infinitesimal ring arc d� of charge λ d� generates
a field dE in P . The magnitude of dE is

dE = ke
λ d�

a2 + x2
. (S-1.101)

The field dE has a component dEx parallel to the
ring axis, and a component dE⊥ perpendicular to the axis. We need only the parallel
component

dEx = cos θ dE = ke
λ d�

a2 + x2
x√

a2 + x2
= ke

λx d�(
a2 + x2

)3/2 , (S-1.102)

because the perpendicular component cancels out because of symmetry when we
integrate over the whole ring. When we integrate, θ and r do not depend on the
position of d�, and the total field in P is

Ex = ke
λx(

a2 + x2
)3/2

2πa∫
0

d� = ke
2πaλx(

a2 + x2
)3/2

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

4πε0

2πaλx(
a2 + x2

)3/2 SI

2πaλx(
a2 + x2

)3/2 Gaussian,
(S-1.103)

which can be rewritten

E = x̂ ke
Q x(

a2 + x2
)3/2 , (S-1.104)

where Q = 2πaλ is the total charge of the ring.
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Fig. S-1.13

The charged hemispherical surface can be
divided into infinitesimal strips between “paral-
lels” of colatitude θ and θ + dθ with respect to
the symmetry axis of the hemisphere, as in Fig.
S-1.13. Each infinitesimal strip is equivalent to
a charged ring of radius R sin θ and total charge
dQ = σ2πR2 sin θ dθ. The curvature center of the
hemisphere is located on the axis of the rings, at a
distance x = R cos θ from the center of each ring.
Thus, the contribution of each strip to the field at
the center is

dE = ke
σ2πR2 sin θ dθ R cos θ(
R2 sin2 θ + R2 cos2 θ

)3/2
= ke

σ2πR3 cos θ sin θ dθ

R3
= ke σ2π cos θ sin θ dθ , (S-1.105)

and the total field is

E = ke σ2π

π/2∫
0

cos θ sin θ dθ = ke πσ , (S-1.106)

independent of the radius R.

S-1.12 The Electric Field of an Array of Charged Wires (1)

(a) At distances |y| � a our wire array is equivalent to an infinite charged plane with
surface charge density σ = λ/a, thus the electric field is

E = ±2π keσ ŷ = ±2πke λ
a

ŷ =

⎧⎪⎪⎨
⎪⎪⎩
± λ

2ε0a
ŷ , (SI),

±2πλ

a
ŷ , (Gaussian),

(S-1.107)

where we have the plus sign for y > 0 and the minus sign for y < 0. If we set ϕ = 0
on the y = 0 plane we have

ϕ(y) = −E |y| = −2πke λ
a
|y| =

⎧⎪⎪⎨
⎪⎪⎩
− λ

2ε0a
|y| , (SI),

−2πλ

a
|y| , (Gaussian).

(S-1.108)
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(b) At distances r � a from a wire (but r ≥ rw, where rw is the radius of the wire,
which we assumed to be negligible) we can neglect the contribution of the other
wires to the electric field, thus

E(r) = 2ke
λ

r
r̂ =

⎧⎪⎪⎨
⎪⎪⎩

λ

2πε0r
r̂ , (SI),

2λ

r
r̂ , (Gaussian),

(S-1.109)

and the potential is

ϕ(r) = −2keλ ln

(
r

r0

)
=

⎧⎪⎪⎨
⎪⎪⎩
− λ

2πε0
ln

(
r

r0

)
, (SI),

−2λ ln

(
r

r0

)
, (Gaussian),

(S-1.110)

where r0 is an arbitrary constant, corresponding to the distance from the wire at
which we set ϕ(r0) = 0. If we choose a particular wire as reference, so that it is
located at x = 0, close to the nth wire we have r = √

ξ2 + y2, with ξ = x − na.
(c) Differentiating (1.17) we obtain

∂ϕ

∂x
= −C 2k sin kx

2(cosh ky − cos kx)
,

∂2ϕ

∂x2
= −C k2 cos kx cosh ky − k2 cos2 kx − k2 sin2 kx

(cosh ky − cos kx)2

= −C k2 cos kx cosh ky − k2

(cosh ky − cos kx)2
, (S-1.111)

∂ϕ

∂y
= −C 2k sinh ky

2(cosh ky − cos kx)
,

∂2ϕ

∂y2
= −C k2 cosh2 kx − k2 cosh ky cos 2kx − k2 sinh2 ky

(cosh ky − cos kx)2

= C
k2 cos kx cosh ky − k2

(cosh ky − cos kx)2
, (S-1.112)

thus ∇2ϕ = ∂2ϕ/∂x2 + ∂2ϕ/∂y2 = 0. From the periodicity of the wire array we
obtain

k = 2π

a
. (S-1.113)

At the limit |y| → ∞ we have cosh ky → ek|y|/2, which is dominant compared to
cos kx . Thus

lim|y|→∞ϕ(x, y) = −Ck|y| , (S-1.114)
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comparing to (S-1.110) we obtain

C = 2πkeλ

ka
= keλ =

⎧⎨
⎩

λ

4πε0
, (SI)

λ , (Gaussian).
(S-1.115)

Now we investigate the behavior at the limits x → 0 and y → 0. From the Taylor
series for the cos and cosh functions we have

lim
x→0

cos kx = 1− k2x2

2
, lim

y→0
cosh ky = 1+ k2y2

2
, (S-1.116)

thus

lim
x,y→0

ϕ(x, y) = − lim
x,y→0

C ln[2(cosh ky − cos kx)]

= −C ln

(
k2y2

2
+ k2x2

2

)
= −C ln(k2r2) = −2C ln(kr)

= −2C ln

(
2π

a
r

)
=

⎧⎪⎪⎨
⎪⎪⎩
− λ

2πε0
ln

(
r
2π

a

)
, (SI),

−2λ ln

(
r
2π

a

)
, (Gaussian),

(S-1.117)

which coincides with (S-1.110) if we set the arbitrary constant r0 = 1/k = a/(2π).

S-1.13 The Electric Field of an Array of Charged Wires (2)

(a) Using the chain rule we find

∂

∂x
= ∂ζ

∂x

∂

∂ζ
+ ∂ζ̄

∂x

∂

∂ζ̄
= 1

2

[
∂

∂ζ
+ ∂

∂ζ̄

]
, (S-1.118)

and
∂

∂y
= ∂ζ

∂y

∂

∂ζ
+ ∂ζ̄

∂y

∂

∂ζ̄
= 1

2

[
∂

∂ζ
− ∂

∂ζ̄

]
. (S-1.119)

Thus we have for the two-dimensional Laplace operator

∂2

∂x2
+ ∂2

∂y2
= 1

4

[
∂

∂ζ
+ ∂

∂ζ̄

]2

− 1

4

[
∂

∂ζ
− ∂

∂ζ̄

]2

= ∂

∂ζ

∂

∂ζ̄
. (S-1.120)
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(b) First we see that the general solution of the equation

∂

∂ζ

∂

∂ζ̄
F(ζ, ζ̄) = 0 , (S-1.121)

is
F(ζ, ζ̄) = g(ζ)+ h(ζ̄) (S-1.122)

with g and h arbitrary functions.1

We are interested in real solutions of the Laplacian in the x, y variables which
can be expressed in terms of the real and of the imaginary parts of a function f (ζ)

(or equivalently of f (ζ̄) = f̄ (ζ) )

fR = Re [ f (ζ)] = [ f (ζ)+ f (ζ̄)]
2

, fI = Im [ f (ζ)] = [ f (ζ)− f (ζ̄)]
2 i

.

(S-1.123)
In mathematical terms fR and fI are called conjugate harmonic functions. Any linear
combination with real coefficients of fR and fI is a solution of (S-1.121).

For the specific case under consideration, using the trigonometric relationships
given in the text we find

cosh (ky)− cos (kx) = −2 sin
(
k
x + iy

2

)
sin

(
−k x − iy

2

)

= 2 sin (kζ) sin (kζ̄) = 2
∣∣ sin (kζ)]∣∣2 . (S-1.124)

Then

ln [2 (cosh ky − cos kx)] = ln
[
4| sin (kζ)]|2] = 2Re

{
log[2 sin(kζ)]

}
,

(S-1.125)
where log denotes the logarithm in the complex plane: log ζ = ln |ζ| + iφ where we
have used the polar representation ζ = |ζ| eiφ.
(c) The imaginary part is given by the phase φ of sin (kζ). Using the definition of
sin (kζ) and its polar representation we find

φ = arctan

[
sinh(ky/2) cos (kx/2)

cosh (ky/2) sin(kx/2)

]
. (S-1.126)

The plot of the contour lines of ln
[
4| sin (kζ/2)|2] (dashed lines) and of φ (solid

lines) in Fig. S-1.14 shows that these lines are orthogonal.

1 It may be interesting to note that a similar procedure is used in the case of a 1–D wave equation to
show that the general solutions is of the form f (x + vt)+ g(x − vt) with v the wave propagation
velocity.
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This orthogonality property can be proved by computing the gradients of the the
real part [ f (ζ)+ f (ζ̄)]/2 and of the imaginary part [ f (ζ)− f (ζ̄)]/(2i) of a generic
function of complex variable f (ζ) and showing that their scalar product vanishes.
Using (S-1.118) and (S-1.119) we obtain

{
x̂

[
∂ f (ζ)

∂ζ
+ ∂ f (ζ̄)

∂ζ̄

]
+ i ŷ

[
∂ f (ζ)

∂ζ
− ∂ f (ζ̄)

∂ζ̄

]}
·

{
−i x̂

[
∂ f (ζ)

∂ζ
− ∂ f (ζ̄)

∂ζ̄

]
+ ŷ

[
∂ f (ζ)

∂ζ
+ ∂ f (ζ̄)

∂ζ̄

]}
= 0. (S-1.127)

The correspondence between the curves of constant imaginary part and the field lines
of the electric field E can be shown directly from (S-1.127) by recognizing that the
first term in braces is simply proportional to E and the second term in braces to the
gradient of the imaginary part. Thus (S-1.127) can be read as

E ·∇ Im [ f (ζ)] = 0 , (S-1.128)

which implies that Im[ f (ζ)] is constant along the field lines of the electric field.
This property shows that the complex variable approach in 2D electrostatics pro-

vides us directly with both the curves of constant potential and the field lines of the
electric field.

Fig. S-1.14 .
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S-1.14 Mean Value Property and the Force on a Spherical
Charge

(a)Letϕ = ϕ(r, θ,φ) be the electrostatic potential in spherical coordinates, and ϕ(r)
its average over a spherical surface S of radius r centered at the origin, defined as

ϕ(r) = 1

4πr2

∫
S

ϕ(r, θ,φ) dS = 1

4πr2

∫
S

ϕ(r, θ,ϕ)r2 dΩ = 1

4π

∫
S

ϕ(r, θ,φ) dΩ .

(S-1.129)
Note that we are allowed to take r out of the integral because the integration is
performed at constant r . Differentiating ϕ(r) with respect to r leads to

dϕ

dr
= 1

4π

∫
S

(
∂ϕ

∂r

)
dΩ = 1

4π

∫
S

(∇ϕ)r dΩ , (S-1.130)

where we used (∇ϕ)r = ∂rϕ, valid in spherical coordinates. Multiplying and divid-
ing by r2, reinserting dS = r2dΩ and introducing the vector dS = r̂ dS we obtain

dϕ

dr
= 1

4πr2

∫
S

∇ϕ · dS . (S-1.131)

Now we apply the divergence theorem in order to convert the surface integral into a
volume integral,

∫
S

∇ϕ · dS =
∫
vol

∇ · (∇ϕ) d3r ′ =
∫
vol

∇2ϕ d3r ′ = 0 , (S-1.132)

where the last equality follows immediately from∇2ϕ = 0.We have thus shown that
dϕ/dr = 0, i.e., that ϕ does not depend on r . Thus we are free to evaluate its value
for r → 0 so that ϕ→ ϕ(0). Setting r = 0 in the l.h.s. of (S-1.129) yields

ϕ(0) = 1

4π

∫
S

ϕ(r, θ,φ) dΩ , (S-1.133)

which demonstrates the mean value property.
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Fig. S-1.15

(b) Let r be the position vector of the center of the charged
sphere, O ′′, in an arbitrary coordinate system, as shown in
Fig. S-1.15. The energy of the sphere in the external electric
field is given by the following integral, evaluated over the
volume of the sphere,

U (r) =
∫
vol

ρ(|r′ − r|) ϕ(r′) d3r ′ (S-1.134)

where d3r ′ is the infinitesimal volume element of the sphere, r′ its position vector in
our coordinate system, and the charge density ρ depends only on

∣∣r′ − r
∣∣ = r ′′ ≡ ∣∣r′′∣∣

because of the assumed spherical symmetry. Thus, using r′′ as integration variable,
we can write

U (r) =
∫
vol

ρ(r ′′) ϕ(r + r′′) d3r ′′ . (S-1.135)

Introducing spherical coordinates (r ′′, θ′′,φ′′) with origin at the center of the sphere
(O′′) we rewrite the integral as

U (r) =
a∫

0

dr ′′ r
′′2ρ(r ′′)

∫
dΩ ϕ(r + r′′) . (S-1.136)

The second integral is, apart from a 1/4π factor, the angular average of ϕ over the
sphere of radius r ′′, which, according to the mean value property, equals the value
in r ′′ = 0:

∫
dΩ ϕ(r + r′′) = 4πϕ(r) . (S-1.137)

Since this is independent of r′′ we can take it outside of the first integral of (S-1.136).
Thus, it remains to calculate

a∫
0

dr ′′ r
′′2ρ(r ′′) = 1

4π
Q , (S-1.138)

where Q is the total charge of the sphere. Thus the potential energy of the sphere in
the external field is

U (r) = 4πϕ(r)
1

4π
Q = Q ϕ(r) , (S-1.139)

and the force acting on the sphere is

F = −∇U (r) = −Q ∇ϕ(r) = Q E(r) , (S-1.140)
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where E(r) is the “external” electric field evaluated at the center of the sphere.
This result shows that an extended body, carrying a spherically-symmetric charge

distribution and interacting with an external electric field, behaves like a point-like
particle located at its center carrying the same total charge. This, combined with the
more familiar property that the electric field generated by a spherically-symmetric
charge distribution is equivalent (outside the distribution) to the field generated by
a point-like particle carrying the same total charge and located at its center, allows
to treat rigid charge distributions with spherical symmetry as models for point-like
charges, removing the singularities of the field and potential bound to point-like
charges.



Chapter S-2
Solutions for Chapter 2

S-2.1 Metal Sphere in an External Field

(a) The total electric field inside a conductor must be zero in static conditions. Thus,
in the presence of an external field E0, the surface charge distribution of our sphere
must generate a field Ein = −E0 at its inside. As we found in Problem 1.1, a rigid
displacement −δ of the electron sphere (or “electron sea”) with respect to the ion
lattice gives origin to the internal uniform field (S-1.1)

Ein = −ke 4π
3

�0 δ , (S-2.1)

where �0 = ene is the charge density of the “electron sphere”. The magnitude of the
displacement δ is thus

δ = 3E0

4πke�0
. (S-2.2)

For a rough numerical estimate for ne, we can assume that each atom contributes a
single conduction electron (Z = 1). If M is the atomic mass of our atoms, M grams
of metal contain NA 	 6.0× 1023 atoms (Avogadro constant), and occupy a volume
of M/�m cm3, where �m is the mass density. Typical values for a metal are M ∼ 60
and �m ∼ 8 g/cm3, leading to

ne ∼ NA �m

M
∼ 1022 cm−3 , and �0 = ene ∼ 5× 1012 statC/cm3 . (S-2.3)

In SI units we have ne ∼ 1029 m−3 and �0 ∼ 1.6× 10−10 C/m3. Substituting into
(S-2.2) and assuming E0 = 1000 V/m (0.003 statV/cm), we finally obtain

δ ∼ 10−15 cm . (S-2.4)
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This value for δ is smaller by orders of magnitude than the spacing between the
atoms in a crystalline lattice (∼10−8 cm), therefore it makes sense to consider the
charge as distributed on the surface. Formally, this is equivalent to take the limits
δ → 0 and �0 →∞, keeping constant the product

σ0 = �0 δ = 3E0

4πke
. (S-2.5)

(b) According to Problem 1.1, the field generated by the charge distribution of the
metal sphere outside its volume equals the field of an electric dipole p = Q δ, where
Q = (4π/3)R3ene, located at the center of the sphere. Replacing δ by its value of
(S-2.2) we have for the dipole moment

p = R3

ke
E0 . (S-2.6)

The field outside the sphere (r > R) is the sum of E0 and the field generated by p

E = E0 + [3 (E0 · r̂) r̂ − E0]
(
R

r

)3

. (S-2.7)

(c) The external field at the surface of the sphere is obtained by replacing r by R in
(S-2.7)

Esurf = E0 + 3 (E0 · r̂) r̂ − E0 = 3 (E0 · r̂) r̂ , (S-2.8)

which is perpendicular to the surface, as expected. The surface charge density is

σ = 1

4πke
Esurf · r̂ = ke

3

4π
E0 cos θ = σ0 cos θ , (S-2.9)

where σ0 = 3keE0/(4π), and θ is the angle between r̂ and E0.

S-2.2 Electrostatic Energy with Image Charges

In all cases, the conducting (half-)planes divide the whole space into two regions:
one free of charges (A), and one containing electrical charges (B), as shown in Fig.
S-2.1. Since the charge distribution is finite, the electric potentialϕ equals zero at the
boundaries of both regions, i.e., on the conducting surfaces and at infinity. We can

Fig. S-2.1

thus use the uniqueness theorem for Poisson’s equa-
tion. The potential ϕ (and therefore the electric field
E) is uniformly equal to zero in region A. The poten-
tial problem in region B is solved if we find an image
charge distribution, located in region A, that repli-
cates the boundary conditions of region B. The poten-
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tial and the electric field (and thus the forces on the real charges) in region B are the
same as if the image charges were real.
(a) We introduce a reference frame with the x axis perpendicular to the conducting
plane, and passing through the charge. The origin, and the y and z axes, lie on the
plane. The charge is thus located at (x = a, y = 0, z = 0), and the potential problem
for x > 0 is solved by placing an image charge q ′ = −q at (x = −a, y = 0, z = 0).
The force on the real charge is F = −ke q2/(4a2). The electrostatic energy Ues of
the system equals the work W done by the field when the real charge q moves from
x = a to x = +∞. Simultaneously, the image charge will move from x = −a to
x = −∞, but no additional work is needed for this, since what actually moves is the
surface charge on the conducting plane, which is constantly at zero potential. Thus
we have

Ues = W =
∞∫
a

F dx = −ke q
2

4

∞∫
a

dx

x2
= −ke q

2

4a
. (S-2.10)

This is half the electrostatic energyUreal of a system comprising two real charges, q
and −q, at a distance 2a from each other. The 1⁄2factor is due to the fact that, if two
real charges move to infinity in opposite directions, the work done by the field is

Wreal =
+∞∫
+a

F dx −
−∞∫
−a

(−F) dx = 2

+∞∫
+a

Fx dx = −ke q
2

2a
, (S-2.11)

since the force acting on−q is the opposite of the force acting on q, andUreal = Wreal.
The 1⁄2 factor can also be explained by evaluating the electrostatic energies for

our system, and for the system of the two real charges. In both cases, because of
the cylindrical symmetry around the x axis, the electrostatic field is a function of
the longitudinal coordinate x and of the radial distance r = √

y2 + z2 only, i.e.,
E = E(x, r). In the case of the two real charges we have

Ureal = 1

8πke

∫
d3r E2 = 1

8πke

∞∫
−∞

dx

∞∫
0

2πr dr E2(x, r)

= 2
1

8πke

∞∫
0

dx

∞∫
0

2πr dr E2(x, r) , (S-2.12)

since E(x, r) = −E(−x, r), so that E2(x, r) = E2(−x, r). In the case of the charge
in front of a conducting plane we have
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Ues = 1

8πke

∞∫
0

dx

∞∫
0

2πr dr E2(x, r) , (S-2.13)

becauseE = 0 for x < 0 (in region A), while the field is the same as in the “real” case
for x > 0. ThusUes = Ureal/2. The electrostatic energy includes both the interaction
energy between the charges, Uint, and the “self-energy”, Uself , of each charge. For
the “real” system we have

Ureal = Uself (q)+Uself (−q)+Uint(q,−q) = 2Uself (q)+Uint(q,−q) , (S-2.14)

sinceUself(−q) = Uself(q). For the charge in front of the conducting plane we have

Ues = Uself(q)+Uint(q, plane) , (S-2.15)

since there is only one real charge. Actually, the self-energyUself approaches infinity
if we let the charge radius approach 0, but this issue is not really relevant here.
In any case, the divergence may be treated by assuming an arbitrarily small, but
non-zero radius for the charge. Since Ues = Ureal/2, we also have Uint(q, plane) =
Uint(q,−q)/2.
(b) Again, we choose a reference frame with the x axis perpendicular to the conduct-
ing plane, so that q has coordinates (a, d/2, 0) and−q has coordinates (a,−d/2, 0)
(Fig. S-2.2). The potential problem for the x > 0 half-space is solved by placing an
image charge−q at (−a, d/2, 0), and an image charge q at (−a,−d/2, 0). Accord-
ing to the arguments at the end of point (a), the electrostatic energyUes of our system
is one half of the energy Ureal of a system of four charges, all of them real, at the
same locations. We can evaluateUreal by inserting the four charges one by one, each
interacting only with the previously inserted charges,

Ureal = ke

(
−2 q2

d
− 2

q2

2a
+ 2

q2

√
d2 + 4a2

)
. (S-2.16)

Fig. S-2.2

The same result is obtained by evaluating the work
of the electric forces when the two real charges are
moved to infinite distance from the plane, and infi-
nite distance from each other. This can be done in
two steps. First we move the charge at (a, d/2, 0),
then the charge at (a,−d/2, 0). When we move the
first charge, three forces are acting on it: F1, due to
its own image, which is simultaneously moving to
−∞, and F2 and F3, due to the second real charge
and to its image, at distances r2 and r3, respectively.
The total work on the first charge is thus
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W = W1 +W2 +W3

=
∞∫
a

F1 · dr +
∞∫
a

F2 · dr +
∞∫
a

F3 · dr , (S-2.17)

where r is the position vector of the first charge, and the first integral is the same as
the integral of (S-2.10) and equals−ke q2/(4a). The second integral can be rewritten,
in terms of the angle θ of Fig. S-2.3,

W2 = −ke
∞∫
a

q2

r22
sin θ dx

= −ke q2

π/2∫
0

cos2 θ

d2
sin θ

d

cos2 θ
dθ

= −ke q
2

d

π/2∫
0

sin θ dθ

= −ke q
2

d
, (S-2.18)

Fig. S-2.3

where we have used the facts that r2 = d/ cos θ and
dx = (d/ cos2 θ) dθ. The third integral of (S-2.17)
can be treated analogously, in terms of the angle ψ
of Fig. S-2.3,

W3 = ke

∞∫
a

q2

r23
sinψ dx

= ke
q2

d

π/2∫
ψ0

sinψ dψ

= ke
q2

√
4a2 + d2

, (S-2.19)

where ψ0 is the value of ψ when q is at x = a, i.e., ψ0 = arccos(d/
√
4a2 + d2).

Thus, the work done by the electric field when the first charge is moved to infinity is

W = ke

(
− q2

4a
− q2

d
+ q2

√
4a2 + d2

)
. (S-2.20)
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We must still move the second real charge to infinity, this is done in the presence of
its own image charge only, and the work is −ke q2/(4a). We finally have

Ues = W − ke
q2

4a
= ke

(
− q2

2a
− q2

d
+ q2

√
4a2 + d2

)
, (S-2.21)

i.e., one half of the value of Ureal of (S-2.16), as expected.

Fig. S-2.4

(c) We choose a reference frame with the half
planes (x = 0, y � 0) and (y = 0, x � 0) coincid-
ing with the two conducting half-planes. Thus, the
real charge q is located at (x = a, y = b, z = 0)
(Fig. S-2.4). Ifwe add two image charges q ′1 = q ′2 =−q at (−a, b, 0) and (a,−b, 0), respectively, and an
image charge q ′3 = q at (−a,−b, 0), the potential
is zero on the x = 0 and y = 0 planes, and at infin-
ity. This solves the potential problem in the dihedral
angle where the real charge is located. Following the discussions of points (a) and
(b), the electrostatic energy of this system is one quarter of the energy of a system
comprising four charges, all of them real, in the same locations, since the energy
density is zero in three quarters of the whole space.

Ues = 1

4
ke

(−q2

a
− q2

b
+ q2

√
b2 + a2

)
. (S-2.22)

Alternatively, we can calculate the work done by the electric field when the real
charge is moved from (a, b, 0) to (∞,∞, 0).

S-2.3 Fields Generated by Surface Charge Densities

(a)Weuse cylindrical coordinates (r,φ, z) with the origin O on the conducting plane,
and the z axis perpendicular to the plane and passing through the real charge q. The
real charge is located at (0,φ, z), and the image charge at (0,φ,−a), φ being irrel-
evant when r = 0. The electric field on the conducting plane is perpendicular to the

Fig. S-2.5

plane, and depends only on r . At a generic point
P ≡ (r,φ, 0) on the plane the magnitude of the
field Ereal generated by the real charge is

E real = ke
q

b2
= ke

q

a2 + r2
. (S-2.23)

The field generated at P by the image charge,
Eim, has the same magnitude, the same z com-
ponent, but opposite r component of Ereal, as in
Fig. S-2.5. The total electric field in P is thus
perpendicular to the plane and has magnitude
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E(r) = 2E real
z (r) = −2ke q

a2 + r2
a√

(a2 + r2)
= −2ke q a

(a2 + r2)3/2
. (S-2.24)

The surface charge density is thus

σ(r) = 1

4πke
E(r) = − 1

2π

q a

(a2 + r2)3/2
, (S-2.25)

and the annulus between r and r + dr on the conducting plain has a charge

dqind = σ 2πr dr = qar dr

(a2 + r2)3/2

= − 1

2π

q

a2
cos3θ 2πa2 tan θ

dθ

cos2 θ
= −q sin θ dθ , (S-2.26)

since r = a tan θ. The total induced charge on the conducting plane is

qind =
π/2∫
0

dqind = −q
π/2∫
0

sin θ dθ = −q . (S-2.27)

Fig. S-2.6

(b) In the problem of a real charge q located on the
z axis, at z = a, in front of a conducting plane, the
only real charges are q and the surface charge distri-
bution σ on the plane.What we observe is no field in
the half-space z < 0, while in the half-space z > 0
we observe a field equivalent to the field of q, plus
the field of an image charge−q located on the z axis
at z = −a (Fig. S-2.6). The field generated by the
surface charge distribution alone is thus equivalent
to the field of a charge−q located at z = +a in the half-space z − 0, and to the field
of a charge −q located at z = −a in the half-space z > 0. In the half space z < 0,
the field of the surface charge distribution and the field or the real charge cancel each
other. The discontinuity of the field at z = 0 is due to the presence of a finite surface
charge density on the conducting plane, which implies an infinite volume charge
density.
(c) Let us introduce a spherical coordinate system (r, θ,φ) into Problem 2.4, with the
origin O at the center of the conducting sphere and the z axis on the line through O
and the real charge q (Fig. S-2.7). The electric potential outside the sphere, r � a, is
obtained from (S-2.31) by replacing a by r , and q ′ and d ′ by their values of (S-2.37).
We have
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ϕ(r, θ) = ke

⎡
⎢⎢⎣ q√

r2 + d2 − 2dr cos θ
−

q
a

d√
r2 + a4

d2
− 2r

a2

d
cos θ

⎤
⎥⎥⎦ ,(S-2.28)

Fig. S-2.7

independent of φ. The electric field at r = a+, on
the outer surface of the sphere, is

E⊥(a+, θ) = − ∂r V (r, θ)
∣∣
r=a , (S-2.29)

and the surface charge density on the sphere is

σ(θ) = 1

4πke
E⊥(a+, θ) . (S-2.30)

The actual evaluation does not pose particular dif-
ficulties, but is rather involved, and we neglect it here. But we can use the same
arguments as in point (b). The only real charges of the problem are the real charge
q, and the surface charge distribution of the sphere. There is no net field inside the
sphere, and the field for r > 0 is equivalent to the field of q, plus the field of an image
charge−q a/d located at z = a2/d. Thus, the surface charge distribution alone gen-
erates a field equivalent to a charge−q located at z = d inside the sphere, and a field
equivalent to the field of the image charge −q a/d, located at z = a2/d, outside the
sphere.

S-2.4 A Point Charge in Front of a Conducting Sphere

(a) We have a conducting grounded sphere of radius a, and an electric charge q
located at a distance d > a from its center O . Again, the whole space is divided
into two regions: the inside (A) and the outside (B) of the sphere. The electrostatic
potential is uniformly equal to zero in region A because the sphere is grounded. We
try to solve the potential problem in region B by locating an image charge q ′ inside the
sphere, on the line through O and q, at a distance d ′ from the center O . The problem
is solved if we can find values for q ′ and d ′ such that the electric potential ϕ is zero

Fig. S-2.8

everywhere on the surface of the sphere. This would
replicate the boundary conditions for region B, with
ϕ = 0 both on the surface of the sphere and at infin-
ity, and only the real charge q in between. Let us
evaluate the potential ϕ(P) at a generic point P of
the sphere surface, such that the line segment OP
forms an angle θwith the line segmentOq, as shown
in Fig. S-2.8. We must have
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0 = ϕ(P) = ke

(
q

r
+ q ′

r ′

)

= ke

(
q√

a2 + d2 − 2ad cos θ

+ q ′√
a2 + d ′2 − 2ad ′ cos θ

)
, (S-2.31)

where r is the distance from P to q, r ′ the distance from P to q ′, and we have used
the cosine rule. We see that the sign of q ′ must be the opposite of the sign of q. If we
take the square of (S-2.31) we have

q2(a2 + d ′2 − 2ad ′ cos θ) = q ′2(a2 + d2 − 2ad cos θ) , (S-2.32)

which must hold for any θ. We must thus have separately

q2(a2 + d ′2) = q ′2(a2 + d2) , and (S-2.33)

2q2ad ′ cos θ = 2q ′2ad cos θ . (S-2.34)

Equation (S-2.34) leads to

q ′2 = q2 d
′

d
, q ′ = −q

√
d ′

d
, (S-2.35)

which can be inserted into (S-2.33), leading to

dd ′2− (a2 + d ′2)d ′ + a2d = 0 , (S-2.36)

which has the two solutions d ′ = d and d ′ = a2/d. The first solution is not acceptable
because it is larger than the radius of the sphere a (it actually corresponds to the trivial
solution of superposing a charge−q to the chargeq). Thuswe are leftwithd ′ = a2/d,
which can be substituted into (S-2.35), leading to our final solution

q ′ = q
a

d
, d ′ = a2

d
. (S-2.37)

If the sphere is isolated and has a net charge Q, the problem in region B is solved
by placing an image charge q ′ at d ′, as above, and a further point charge q ′′ = Q − q ′
in O , so that the potential is uniform over the sphere surface, and the total charge of
the sphere is Q. The case Q = 0 corresponds to an uncharged, isolated sphere.
(b) The total force f on q equals the sum of the forces exerted on q by the image
charge q ′ located in d ′, q ′′ = −q ′ and Q, both located in O . Thus f = f ′ + f ′′ + f ′′′,
with
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f ′ = ke
qq ′

(d − d ′)2
= −ke q2ad

(d2 − a2)2
, f ′′ = ke

q2

d3
, f ′′′ = ke

qQ

d2
.(S-2.38)

with f ′′ = f ′′′ = 0 if the sphere is grounded.
(c) The electrostatic energy U of the system equals the work of the electric field if
the real charge q is moved to infinity. When q is at a distance x from O we evaluate
the force on it by simply replacing d by x in (S-2.38). The work is thus the sum of
the three terms

W1 =
∞∫
d

f ′ dx = ke

[
q2a

2(x2 − a2)

]∞
d

= −ke q2a

2(d2 − a2)
,

W2 =
∞∫
d

f ′′ dx = −ke
[
q2a

2x2

]∞
d

= ke
q2a

2d2
,

W3 =
∞∫
d

f ′′′ dx = ke
qQ

d
. (S-2.39)

Thus we have U = W1 for the grounded sphere, U = W1 +W2 for the isolated
chargeless sphere, and U = W1 +W2 +W3 for the isolated charged sphere.

It is interesting to compare this result for the energy of the isolated chargeless
sphere with the electrostatic energy U real of a system comprising three real charges
q, q ′, and −q ′, located in d, d ′ and O , respectively:

U real = ke
∑
i< j

qiq j

ri j
= ke

(
qq ′

d − d ′
− qq ′

d
− q ′2

d ′

)

= ke

(
− q2a

d2 − a2
+ q2a

d2
− q2

d

)
. (S-2.40)

We see that U is obtained from Ureal by halving the interaction energies of the real
charge with the two image charges, and neglecting the interaction energy between
the two image charges.

S-2.5 Dipoles and Spheres

(a) We consider the case of the grounded sphere first, so that its potential is zero. We
can treat the dipole as a system of two point charges ±q, separated by a distance 2h
as in Fig. S-2.9. Eventually, we shall let q approach∞, and h approach zero, with
the product p = 2hq remaining constant. Following Problem 2.4, the two charges
induce two images
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± q ′ = ∓q a√
d2 + h2

, (S-2.41)

respectively, each at a distance

d ′ = a2√
d2 + h2

(S-2.42)

Fig. S-2.9

from the center of the sphere O , each lying on
the straight line passing through O and the cor-
responding real charge. Since we are interested
in the limit h → 0 (thus, h � d), we can use the
approximations

± q ′ 	 ∓q a

d
, and d ′ = a2

d
.(S-2.43)

The two image charges are separated by a dis-
tance

2h′ = 2h
d ′

d
= h

(a
d

)2
, (S-2.44)

so that the moment of the image dipole is

p′ = 2q ′h′ = −2qh
(a
d

)3 = −p
(a
d

)3
. (S-2.45)

The image dipole is antiparallel to the real dipole, i.e., the two dipoles lie on parallel
straight lines, but point in opposite directions. The sum of the image charges, which
equals the total induced charge on the sphere surface, is zero. Therefore this solution
is valid also for an isolated uncharged sphere.

Fig. S-2.10

(b) Also in this case, we consider the grounded
sphere first. Again, the dipole can be treated as a
system of two charges ±q, separated by a distance
h = p/q. This time the charge +q is at distance
d from the center of the sphere O , while −q is at
distance d + h (Fig. S-2.10).
Thus, the images q ′ of +q, and q ′′ of −q, have diff-
erent absolute values, and are located at different
distances from O , d ′ and d ′′, respectively. We have
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q ′ = −q a
d
= − p

h

a

d
, d ′ = a2

d
, (S-2.46)

q ′′ = +q a

d + h
= + p

h

a

d + h
, d ′′ = a2

d + h
.

The absolute values of q ′ and q ′′ remain different from each other also at the limits
h → 0, q →∞, so that a net image charge q ′′′ is superposed to the image dipole

q ′′′ = lim
h→0

(q ′ + q ′′) = lim
h→0

−p
a

h

h

d(d + h)
= −p

a

d2
. (S-2.47)

Themoment of the image electric dipole can be calculated as the limit of the absolute
value of q ′ times (d ′ − d ′′)

p′ = lim
h→0

|q ′| (d ′ − d ′′) = lim
h→0

p

h

a

d

a2h

d(d + h)
= p

(a
d

)3
, (S-2.48)

the same result is obtained by evaluating the limit of q ′′(d ′ − d ′′). Thus the real
dipole p and the image dipole p′ lie on the same straight line and point in the same
direction. The image dipole is located at a distance a2/d from O .

Since a net charge q ′′′ is needed to have zero potential on the surface of the
sphere, this solution is valid only in the case of a grounded sphere. The solution for
an isolated uncharged sphere requires an image charge−q ′′′ = +pa/d2 at the center
of the sphere, so that the total image charge is zero and the surface of the sphere is
equipotential.
(c)We start from the case of the grounded sphere, and use a Cartesian reference frame
with the origin located at the center of the sphere, O , the x axis passing through the
dipole p, and the y axis lying in the plane of the dipole. We denote by θ the angle
between the electric dipole p and the x axis, as in Fig. S-2.11. We can decompose
the dipole into the vector sum of its x and y components

px = p cos θ x̂ , and py = p sin θ ŷ . (S-2.49)

Fig. S-2.11

Both components generate images located on the
x axis at a distanced ′ = a2/d fromO . According
to (a) and (b), py and py generate the images

p′y = −
(a
d

)3
p sin θ ŷ

p′x =
(a
d

)3
p cos θ x̂ , (S-2.50)
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resulting in an image dipole p′, of modulus p′ = p (a/d)3, forming an angle−θ with
the x axis, and superposed to a net charge q ′′′ = +p cos θ (a/d2), since now it is the
“tail” of px which points toward O . In the case of an isolated uncharged sphere, we
must add a point charge −q ′′′ in O , so that the net charge of the sphere is zero.

S-2.6 Coulomb’s Experiment

(a) The zeroth-order solution is obtained by neglecting the induction effects, con-
sidering the charges as uniformly distributed over the surfaces of the two spheres.
Thus, at zeroth order, the force between the two spheres equals the force between
two point charges, each equal to Q, located at their centers. In order to evaluate
higher-order solutions, it is convenient to introduce the dimensionless parameter
α = (a/r) < 1, where a is the radius of the two spheres, and r the distance between
their centers. The solution of order n is obtained by locating inside each sphere
a point charge q of the same order of magnitude as Q at its center, plus increas-
ingly smaller point charges q ′, q ′′, . . . , q(n) at appropriate positions, with orders of
magnitude |q ′| ∼ αQ, |q ′′| ∼ α2Q, . . . , |q(n)| ∼ αnQ. The charges must obey the
normalization condition q + q ′ + q ′′ + · · · + q(n) = Q.

Fig. S-2.12 .

At the first order, the point charge q at the center of each sphere induces an image
charge q ′ = −αq inside the other sphere, located at a distance a′ = a2/r = rα2

from its center (see Problem 2.4), as shown in Fig. S-2.12. Thus, by solving the
simultaneous equations q ′ = −αq, and q + q ′ = Q, we obtain for the values of the
two charges

q = 1

1− α
Q , q ′ = − α

1− α
Q . (S-2.51)
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Fig. S-2.13 .

At the second order, the first-order charge q ′ inside each sphere induces an image
charge q ′′ inside the other sphere, located a distance a′′ from its center, as shown in
Fig. S-2.13. Since the distance of q ′ from the center of the other sphere is r − a′ =
r (1− α2), we have

q ′′ = −q ′ a

r − a′
= −q ′ α

1− α2
, a′′ = a2

r − a′
= r

α2

1− α2
. (S-2.52)

Combining the above equation for q ′′ with equations q ′ = −αq and q + q ′ + q ′′ =
Q, we finally obtain

q = Q
1− α2

1− α+ α3
, q ′ = −Q

α (1− α2)

1− α+ α3
, q ′′ = Q

α2

1− α+ α3
.(S-2.53)

Higher order approximations are obtained by iterating the procedure. Thus we
obtain a sequence of image charges q, q ′, q ′′, q ′′′, . . . inside each sphere. At each
iteration, the new image charge is of the order of α times the charge added at the
previous iteration. Therefore, the smaller the value of α = a/r , the sooner one may
truncate the sequence obtaining a good approximation.

(b) We obtain the first order approximation of the force between the two spheres
by considering only the charges of (S-2.51) for each sphere. To this approximation,
the force between the spheres is the sum of four terms. The first term is the force
between the two zeroth-order charges q, at a distance r from each other. The second
and third terms are the forces between the zeroth order charge q of one sphere and
the first-order charge q ′ of the other. The distance between these charges is r − a′ =
r (1− α2). The fourth term is the force between the two first-order charges q ′, at a
distance r − 2a′ = r (1− 2α2) from each other. Summing up all these contributions
we obtain
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F = ke
Q2

r2
1

(1− α)2

[
1− 2α

(1− α2)2
+

(
α

1− 2α2

)2
]

. (S-2.54)

From the Taylor expansion, valid for x < 1,

1

(1− x)2
= 1+ 2x + 3x2 + 4x3 + O(x4) , (S-2.55)

we obtain, to the fourth order,

1

(1− α2)2
= 1+ 2α2 + 3α4 + O(α6), (S-2.56)

and

1

(1− 2α2)2
= 1+ 4α2 + 12α4 + O(x6) , (S-2.57)

so that

F = ke
Q2

r2
(
1+ 2α+ 3α2 + 4α3 + · · · ) (1− 2α+ α2 − 4α3 + · · · )

= ke
Q2

r2
[
1− 4α3 + O(α4)

]
, (S-2.58)

since all the terms of order α and α2 vanish. The first non vanishing correction to
the “Coulomb” force is thus at the third order in a/r ,

F = ke
Q2

r2

(
1− 4

a3

r3

)
. (S-2.59)

This result can be interpreted in terms of multipole expansions of the charge distri-
butions of the spheres. The first two multipole moments of the charge distribution
of each sphere are a monopole equal to the total charge Q, and an electric dipole
p = −q ′a′r̂ = −(αQ)(α2r) r̂ = −α3Qr r̂, with r̂ pointing toward the center of the
opposite sphere. The contribution of the monopole moments to the total force is
Fmm = ke Q2/r2. Now we need the force exerted by the monopole terms of each
sphere on the dipole term of the other. The monopole of, say, the left sphere gen-
erates a field E(0) = ke Q/r2 at the center of the right sphere. We can consider the
dipole moment of the right sphere as the limit for h → 0 of two charges,−q ′ located
at r − h from the center of the left sphere, and q ′ located at r , with q ′h = |p|. The
force between the left monopole and the right dipole is thus
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Fmd = lim
h→0

ke Qq ′
[
− 1

(r − h)2
+ 1

r2

]
	 lim

h→0
ke Qq ′

(
− 1

r2
− 2h

r3
+ 1

r2

)

= − lim
h→0

ke Qq ′
2h

r3
= −2 ke Qp

r3
= −2 ke α3 Q

2

r3
, (S-2.60)

where we have used the first-order Taylor expansion of (r − h)−2. Adding the force
between the right monopole and the left dipole, the total force is thus

F = Fmm + 2Fmd = ke
Q2

r2

(
1− 4

a3

r3

)
, (S-2.61)

in agreement with (S-2.59). The same result can be obtained by applying the formula
for the force between a point charge and an electric dipole, F = (p · ∇)E. See also
Problem 1.10 on this subject.

From (S-2.59) we find that a ratio a/r 	 0.13 is enough to reduce the systematic
deviation from the pure inverse-square law below 1%.

S-2.7 A Solution Looking for a Problem

(a) The total electric potential in a point of position vector r is the sum of the dipole
potential and of the potential of the external uniform electric field,

ϕ(r) = ke
p · r
r3

− Ez = ke
p cos θ

r2
− Er cos θ , (S-2.62)

where θ is the angle between r and the z axis. Note that it is not possible to take
the reference point for the electrostatic potential at infinity, since the potential of
our uniform electric field diverges for z →±∞. Thus we have chosen ϕ = 0 on the
xy plane, which is an equipotential surface both for the dipole and for the uniform
electric field. Now we look for a possible further equipotential surface on which
ϕ = 0. On this surface we must have

ϕ = ke
p cos θ

r2
− Er cos θ = 0 , (S-2.63)

and, in addition to the solution θ = π/2, corresponding to the xy plane, we have the
θ-independent solution

r = k1/3e

( p

E

)1/3 ≡ R , (S-2.64)

corresponding to a sphere of radius R. Note that the two equipotential surfaces
intersect each other on the circumference x2 + y2 = R2 on the z = 0 plane. This is
possible because the electric field of the dipole on the intersection circumference is
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Edip = ke
3(p · r̂) r̂ − p

r3
= −ke p

R3
= −E , (S-2.65)

so that the total field on the circumference is zero, i.e., the only field that can be
perpendicular to both equipotential surfaces.
(b)Wemust find a solution for the potentialϕ that satisfies the conditionϕ = 0 at the
surface of the conducting sphere, i.e. ϕ(|r| = a) = 0, and such that at large distance
from the conductor the field is E0.

Fig. S-2.14

According to point (a), the field outside the sphere
must equal E0 plus the field of an electric dipole pi, par-
allel to E0 and located at the center of the sphere. The
moment of the dipole is obtained by substituting R = a
into (S-2.64),

pi = ke
−1a3 E0 = 3

4πke
VaE0 , (S-2.66)

where Va is the volume of the sphere. The potential for
r � a is thus

ϕ = ke
pi · r
r3

− E0z , (S-2.67)

while ϕ = 0 for � a. The total charge induced on the
sphere is zero, so that the solution is the same for a
grounded and for an isolated, uncharged sphere. The solu-

tion is identical to the one obtained in Problem2.1 via a different (heuristic) approach.
(c)For the dipole at the center of a spherical conducting cavity, the boundary condition
is ϕ = 0 at r = b. The polarization charges on the inner surface must generate a
uniform field Ei parallel to p0 and, according to (S-2.64), of intensity

Ei = ke
p0
b3
= ke

4π p0
3Vb

= ke
p0
b3

. (S-2.68)

As in the preceding case, the total induced charge is zero and thus it does not matter
whether the shell is grounded, or isolated and uncharged.
(d) We can think of the dipole as a system of two point charges ±q, respectively
located at z = ±d, with p = 2qd, as in Fig. S-2.14. According to the method of the
image charges, the charge +q modifies the charge distribution of the inner surface
of the shell, so that it generates a field inside the sphere, equivalent to the field of
an image charge q ′ = −qb/d, located at z = d ′ = b2/d. Also the presence of the
charge −q affects the surface charge distribution, so that the total field inside the
shell is the sum of the fields of the two real charges, plus the field of two image
charges ∓qb/d located at z = ±b2/d, respectively. Letting d → 0 and q →∞,
keeping the product 2qd = p constant, the field of the real charges approaches the
field of a dipole p = pẑ located at the center of the shell, while the field of the image
charges approaches a uniform field. Let us evaluate the field of the image charges at
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the center of the shell:

Ec = 2ke
qb

d

(
d

b2

)2

= ke
2qd

b3
= ke

p

b3
, (S-2.69)

in agreement with the result of point (c). The method of the image charges can also
be used to obtain the result of point (b).

S-2.8 Electrically Connected Spheres

(a)To the zeroth order in a/d and b/d, we assume the surface charges to be uniformly
distributed. The electrostatic potential generated by each sphere outside its volume
is thus equal to the potential of a point charge located at the center of the sphere. Let
us denote by Qa and Qb the charges on each sphere, with Qa + Qb = Q. The charge
on the wire is negligible because we have assumed that its capacitance is negligible.
The electrostatic potentials of the spheres with respect to infinity are

Va 	 ke
Qa

a
, Vb 	 ke

Qb

b
, (S-2.70)

respectively. Since the spheres are electrically connected, Va = Vb ≡ V . Solving for
the charges we obtain

Qa 	 Q
a

a + b
, Qb 	 Q

b

a + b
, (S-2.71)

so that Qa > Qb.
(b) From the results of point (a) it follows

V 	 ke
Q

a + b
, C 	 a + b

ke
. (S-2.72)

(c) The electric fields at the sphere surfaces are

Ea 	 ke
Qa

a2
= ke

Q

a(a + b)
, Eb 	 ke

Qb

b2
= ke

Q

b(a + b)
, (S-2.73)

with Eb > Ea . At the limit b→ 0 we have Ea → keQ/a2, while Eb →∞.

Fig. S-2.15

(d) We proceed as in Problem 2.6.
To zeroth order, we consider the
field of each sphere outside its vol-
ume as due to a point charge at the
sphere center. We denote by qa and
qb the values of these point charges.
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To the first orders in a/d and b/d, we consider that each zeroth-order charge induces
an image charge inside the other sphere, with values

q ′a = −qb
a

d
, q ′b = −qa

b

d
, (S-2.74)

at distances a2/d and b2/d from the centers, respectively (Fig. S-2.15). At each
successive order, we add the images of the images added at the previous order. This
leads to image charges of higher and higher orders in a/d and b/d.

Up to the first order, we thus have four point charges with the condition qa + qb +
q ′a + q ′b = Q. A further condition is that the potentials at the sphere surfaces are

Va 	 ke
qa
a

, Vb 	 ke
qb
b

, (S-2.75)

since, at the surface of each sphere, the potentials due to the external zeroth-order
charge and to the internal first-order charge cancel each other. Finally, we must have
Va = Vb, because the spheres are connected by the wire, so that

qa 	 Q

1+ b/a − 2b/d
, qb 	 Q

1+ a/b − 2a/d
. (S-2.76)

S-2.9 A Charge Inside a Conducting Shell

(a) Let us first recall Problem

Fig. S-2.16

2.4, now with a point charge Q at
a distance a from the center O of
a conducting, grounded sphere, of
radius R < a.We introduce a spher-
ical coordinate system, with the ori-
gin in O . We shall need only the
radial coordinate r .

We have seen that the boundary conditions for r � R are replicated by locating an
image charge Q′ = Q (a/R) inside the sphere, at a distance a′ = R2/a from O , on
the line joining O and Q. In the present case we are dealing with the reverse problem,
andwecanobtain the solution in the region r � R by reversing the roles of the real and
image charges. The real charge q is now inside the cavity of a spherical conducting,
grounded shell of internal radius R, at a distance d < R from the center O . The
boundary conditions inside the cavity are replicated by locating an external image
charge q ′ = q (R/d) at a distance d ′ = R2/d from O, on the straight line through O
and q, as in Fig. S-2.16. Thus, the electric potential inside the cavity equals the sum
of the potentials of q and q ′. The potential ϕ in the region R � r � R′ is constant
because here we are inside a conductor in static conditions, and equal to zero because
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the shell is grounded. We have ϕ ≡ 0 also for r � R′, because ϕ = 0 both on the
spherical surface at r = R, and at infinity, and there are no charges in between.
(b) The force between q and the shell equals the Coulomb force between q and its
image charge q ′, and is attractive

F = ke
qq ′

(d ′ − d)2
= −ke q2Rd

(R2 − d2)2
. (S-2.77)

(c)Let us consider a spherical surface of radius R′′, centered inO , with R < R′′ < R′.
The flux of the electric field through this closed surface is zero, because the field
is zero everywhere inside a conductor. The total charge inside the sphere must thus
be zero according to Gauss’s law. This implies that the charge induced on the inner
surface of the shell is −q, as may be verified directly by calculating the surface
charge and integrating over the whole surface.
(d) The electric potential must still be constant for R � r � R′, but it is no longer
constrained to be zero. The electric potential in the region r � R is still equivalent to
the potential generated by the charges q and q ′ of point (a), plus a constant quantity
ϕ0 to be determined. The electric field in the region R � r � R′ is still zero, so that
the potential is constant and equal to ϕ0. Since the total charge on the shell must
be zero, we must distribute a charge q over its external surface, of radius R′, to
compensate the charge −q distributed over the internal surface, of radius R. Since
the real charge q, and the charge−q distributed over the surface of radius R generate
a constant potential for r � R, the charge q must be distributed uniformly over the
external surface in order to keep the total potential constant in the region R � r � R′.

The potential in the region r � R′ is equivalent to the potential generated by a
point charge q located in O . Thus we have ϕ(r) = keq/r for r � R′, if we choose
ϕ(∞) = 0. Thus ϕ0 = ϕ(R′) = keq/R′, and ϕ(r) = ϕ0 for R � r � R′. For r � R
we have

ϕ(r) = ke

(
q

rq
+ q ′

rq ′

)
+ ϕ0, (S-2.78)

where rq is the distance of the point from the real charge q, and rq ′ is the distance
of the point from the image charge q ′. The field inside the cavity is the same for a
grounded or for an isolated shell.

S-2.10 A Charged Wire in Front of a Cylindrical Conductor

(a) We have r = √
(x + a)2 + y2 and r ′ = √

(x − a)2 + y2, x and y being the coor-
dinates of Q. Thus, squaring the equation r/r ′ = K we get
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(x + a)2 + y2

(x − a)2 + y2
= K 2

x2 + 2ax + a2 + y2 = K 2x2 − 2K 2ax + K 2a2 + K 2y2

−(x2 + y2)(K 2 − 1)+ 2ax(K 2 + 1) = a2(K 2 − 1)

x2 + y2 − 2
K 2 + 1

K 2 − 1
ax = a2 . (S-2.79)

On the other hand, the equation of a circumference centered at (x0, 0) and radius R
is

(x − x0)
2 + y2 = R2

x2 + y2 − 2x0x = R2 − x20 . (S-2.80)

Comparing (S-2.80) to (S-2.79) we see that the curves defined by the equation r/r ′ =
K are circumferences centered at

x0(K ) = K 2 + 1

K 2 − 1
a , y0 = 0 , (S-2.81)

of radius

R(K ) = 2K

|K 2 − 1| a . (S-2.82)

Note that

x0

(
1

K

)
= −x0(K ) , and R

(
1

K

)
= R(K ) . (S-2.83)

Thus, we may restrict ourselves to K > 1, so that x0(K ) > a > 0, and omit the
absolute-value sign in the expression for R(K ). The circumferences corresponding
to 0 < K < 1 are obtained by reflection across the y axis of the circumferences
corresponding to 1/K .
(b) According to Gauss’s law, the electrostatic field and potential generated by an
infinite straight wire with linear charge density λ are

E(r) = 2ke
λ

r
=

⎧⎪⎪⎨
⎪⎪⎩

λ

2πε0r
,

2λ

r
,

ϕ(r) = −2ke λ ln

(
r

r0

)
=

⎧⎪⎪⎨
⎪⎪⎩
− λ

2πε0
ln

(
r

r0

)
, (SI),

−2λ ln

(
r

r0

)
, (Gaussian),

(S-2.84)
where r is the distance from the wire and r0 an arbitrary constant, corresponding to
the distance at which we pose ϕ = 0. The potential generated by two parallel wires
of charge densities λ and −λ, respectively, is

ϕ = −2keλ ln

(
r

r0

)
+ 2keλ ln

(
r ′

r ′0

)
= 2keλ ln

(
r ′

r

)
+ 2keλ ln

(
r0
r ′0

)
, (S-2.85)
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where r ′0 is a second arbitrary constant, analogous to r0. The term ln(r0)/r ′0) is
actually a single arbitrary constant, which we can set equal to zero. With this choice
the electrostatic potential is zero on the x = 0 plane of a Cartesian reference frame
where the two wires lie on the straight lines (x = −a, y = 0) and (x = +a, y = 0).
The equation for the equipotential surfaces in this reference frame is

2keλ ln

(
r ′

r

)
= ϕ , (S-2.86)

which leads to

r

r ′
= e−ϕ/(2keλ) =

⎧⎨
⎩
e−2πε0ϕ/λ , (SI),

e−ϕ/(2λ) . (Gaussian).
(S-2.87)

Thus we can substitute K = e−ϕ/(2keλ) into (S-2.81) and (S-2.82). We see that the
equipotential surfaces are infinite cylindrical surfaces whose axes have the equations

x0(ϕ) = e−ϕ/(keλ) + 1

e−ϕ/keλ) − 1
, y0 = 0 , (S-2.88)

and their radii are

R(ϕ) = 2 e−ϕ/(2keλ)

|e−ϕ/(keλ) − 1| a . (S-2.89)

Bymultiplying the numerators anddenominators of the above expressions by eϕ/(2keλ)

we finally obtain

x0(ϕ) = e−2ϕ/(2keλ) + eϕ/(2keλ)

e−ϕ(2keλ) − eϕ/(2keλ)
a = −a coth

(
ϕ

2keλ

)
(S-2.90)

Fig. S-2.17

and

R(ϕ) = 2

|e−ϕ/(2keλ) − eϕ/(2keλ)| a =
∣∣∣∣ a

sinh (ϕ/(2keλ))

∣∣∣∣ .

(S-2.91)
If the negative wire is located on the (x = −a, y = 0)

straight line, the ϕ > 0 equipotential cylinders are located
in the x < 0 half space (r < r ′ in Fig. 2.8, and the ϕ < 0
equipotentials in the x > 0 half space.
(c) We can solve the problem by locating an image wire with
charge density λ′ = −λ inside the cylinder (Fig. S-2.17). In
Fig. 2.8, let the real wire intersect the xy plane at P ≡ (−a, 0), and the image wire
at P ′ ≡ (a, 0). The surface of the conducting cylinder intersects the xy plane on one
of the circumferences r/r ′ = K . This is always possible as far as d > R. With these
locations of the real and image wires the potential of the cylinder surface is constant
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and equal to a certain value ϕ0. Given R and d, we can find the values of a and d ′
by first defining the dimensionless constant ϕ′ = ϕ0/(2keλ), and then solving the
simultaneous equations

2a + d ′ = d , a + d ′ = x0 = a cothϕ′ ,
a

sinhϕ′
= R . (S-2.92)

From the first equation we obtain a = (d − d ′)/2, which we substitute into the other
two equations

d + d ′

2
= d − d ′

2
cothϕ′ ,

d − d ′

2
= R sinhϕ′ , (S-2.93)

and the latter equation leads to

sinhϕ′ = d − d ′

2R
, (S-2.94)

independent of λ. From the relations

cosh2 x − sinh2 x = 1 , and coth x = cosh x

sinh x
,

we obtain
cothϕ′ =

√
4R2 + (d − d ′)2

d − d ′
, (S-2.95)

which, substituted into the first of (S-2.92) leads to

d + d ′

2
= d − d ′

2

√
4R2 + (d − d ′)2

d − d ′
. (S-2.96)

Disregarding the trivial solution d ′ = d (corresponding to two superposed wires of
linear charge density λ and −λ, generating zero field in the whole space), we have

d ′ = R2

d
, a = d2 + R2

2d
, ϕ′ = arccosh

(
d2 + 3R2

d2 + R2

)
. (S-2.97)

Fig. S-2.18

Alternatively, we may proceed analogously to
the well-known problem of the potential of a point
charge in front of a grounded, conducting sphere
(Problem 2.4).

Figure S-2.18 shows the intersection with the xy
plane of the conducting cylinder of radius R, the real
charged wire at distance d from the cylinder axis,
and the image wire at distance d ′ from the axis. We
have translational symmetry perpendicularly to the
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figure. The potential ϕ generated by the real wire of linear charge density λ, and by
the image wire of linear of linear charge density λ′ must be constant over the cylinder
surface. The potential at a generic point P of the surface is

ϕ = −2keλ ln r − 2keλ
′ ln r ′ = const (S-2.98)

where r is the distance of P from the real wire and r ′ the distance of P from the
image wire. dividing by −2ke we obtain

λ ln r + λ ln r ′ = const , (S-2.99)

which can be rewritten by expressing r and r ′ in terms of d, d ′, R and the angle θ
between r and the radius joining P to the intersection of the cylinder axis with the
xy plane, O , and applying the law of cosines,

λ ln
(√

d2 + R2 − 2Rd cos θ
)
+ λ′ ln

(√
d ′2 + R2 − 2Rd ′ cos θ

)
= const .

(S-2.100)
Differentiating with respect to θ we obtain

λRd sin θ

d2 + R2 − 2Rd cos θ
= − λ′Rd ′ sin θ

d ′2 + R2 − 2Rd ′ cos θ
, (S-2.101)

implying that λ and λ′ must have opposite signs. Dividing both sides by R sin θ we
obtain, after some algebra,

λd
(
d ′2 + R2 − 2Rd ′ cos θ

) = −λ′d ′
(
d2 + R2 − 2Rd cos θ

)
λ
(
dd ′2 + dR2 − 2Rdd ′ cos θ

) = −λ′
(
d ′d2 + d ′R2 − 2Rdd ′ cos θ

)
, (S-2.102)

which requires λ′ = −λ in order to make the equation independent of θ, and, disre-
garding the trivial solution d ′ = d, we finally obtain

d ′ = R2

d
. (S-2.103)

S-2.11 Hemispherical Conducting Surfaces

(a) We choose a cylindrical coordinate system (r,φ, z)

Fig. S-2.19

with the symmetry axis of the problem as z axis, so that
the point charge is located in (a sin θ,φ, a cos θ), with
φ a given fixed angle, as in Fig. S-2.19. The conduc-
tor surface, comprising the hemispherical boss and the
plane part, is equipotential with ϕ = 0. If the conduc-
tor surface were simply plane, with no boss, the problem
would be solved by locating an image charge q1 = −q
in (a sin θ,φ,−a cos θ), as in Fig. S-2.19. On the other
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hand, if the conductor were a grounded spherical surface of radius R, the problem
would be solved by locating an image charge q2 = −q(R/a) in (a′ sin θ,φ, a′ cos θ),
with a′ = R2/a. The real charge q, with the two image charges q1 and q2, gives ori-
gin to a potential ϕ(r) = ϕq(r)+ ϕq1(r)+ ϕq2(r) which is different from zero both
on the plane surface, where it equals ϕq2(r), since ϕq(r)+ ϕq1(r) = 0 on the plane,
and on the hemispherical surface, where it equals ϕq1(r). The problem is solved by
adding a third image charge q3 = q(R/a) at (a′ sin θ,φ,−a′ cos θ), so that the pairs
{q, q1} and {q2, q3} generate a potential ϕ = 0 on the plane surface, and the pairs
{q, q2} and {q1, q3} generate a potential ϕ = 0 on the spherical (and hemispherical!)
surface. According to Gauss’s law, the total charge induced on the conductor equals
the sum of the image charges

qind = q1 + q2 + q3 = −q +
(
− R

a
q

)
+

(
R

a
q

)
= −q . (S-2.104)

Fig. S-2.20

Note that, since the electric field generated by the
real charge plus the three image charges is always
perpendicular to the conductor surface, it must be
zero on the circumference (R,φ, 0), here withφ any,
where the hemisphere joins the plane.
(b) Now the real charge q is located at
(b sin θ,φ, b cos θ) inside the hemispherical cav-
ity of radius R > b in the conductor, as in
Fig. S-2.20. The solution is analogous to the
solution of point (a): we locate three image
charges in the conductor, outside of the cavity,
namely, q1 = −q in (b sin θ,φ,−b cos θ), q2 =

−(R/b)q in (b′ sin θ,φ, b′ cos θ), with b′ = R2/b > R, and q3 = −q2 = (R/b)q
in (b′ sin θ,φ,−b′ cos θ) (Fig. S-2.21).

S-2.12 The Force Between the Plates of a Capacitor

Fig. S-2.21

We present this simple problem in order to point out,
and prevent, two typical recurrent errors. The first error
regards the electrostatic pressure at the surface of a
conductor, the second the derivation of the force from
the energy of a system.
(a) Let us consider the electrostatic pressure first. If Q
is the charge of the capacitor, and S the surface of its
plates, the surface charge density (which is located on
the inner surfaces only!) is ±σ = ±Q/S. Within our
approximations, the electric field is uniform between
the two charged surfaces, E = 4πkeσ, and zero every-
where else. This leads to an electrostatic pressure
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P = 1

2
σ E = 2π ke σ2 . (S-2.105)

Here, the typical mistake is to forget the 1⁄2 factor and to write P
w= σE (the “w” on

the “=” sign stands for wrong!). In fact, only one half of the electric field is due to
the charge on the other plate. The force F is attractive because the two plates have
opposite charges, and we can write

F = −PS = −2πke Q2

S2
S = −2πke Q2

S
. (S-2.106)

Thus the force depends on Q only, and is independent of the distance h between the
plates. Equation (S-2.106) is valid both for an isolated capacitor, and for a capacitor
connected to a voltage source maintaining a fixed potential difference V . But, in
the latter case, the charge is no longer constant, and it is convenient to replace Q
by the product CV , remembering that the capacity of a parallel-plate capacitor is
C = S/(4πkeh). Thus

F = −2πke (CV )2

S
= − V 2S

8πkeh2
. (S-2.107)

(b) In the case of an isolated capacitor, the force between the plates can also be
evaluated as minus the derivative of the electrostatic energyUes of the capacitor with
respect to the distance between the plates, h. It is convenient to writeUes as a function
of the charge Q, which is constant for an isolated capacitor,

Ues = Q2

2C
= 2πke

Q2h

2S
, (S-2.108)

so that the force between the plates is

F = −∂hU es = −2πke Q
2

S
, (S-2.109)

in agreement with (S-2.106).
If the capacitor is connected to a voltage source, the potential differenceV between

the plates is the constant quantity. Thus, it ismore convenient towriteUes as a function
of V

Ues = 1

2
CV 2 = 1

8πke

V 2S

h
. (S-2.110)

At this point, it is tempting, but wrong, to evaluate the force between the plates as
minus the derivative of Ues with respect to h. We would get

F
w= − ∂hUes = + 1

8πke

V 2S

h2
, (S-2.111)
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and, if the “+” sign were correct, now the force would be repulsive, although equal
in magnitude to (S-2.107)! Of course, this cannot be true, since the plates have
opposite charges and attract each other. The error is that the force equals minus the
gradient of the potential energy of an isolated system, which now includes also the
voltage source. And the voltage source has to do some work to keep the potential
difference of the capacitor constant while the capacity is changing. Let us consider
an infinitesimal variation of the plate separation, dh which leads to an infinitesimal
variation of the capacity, dC . The voltage source must move a charge dQ = V dC
across the potential difference V , in order to keep V constant. The source thus does
a work

dW = V dQ = V 2dC , (S-2.112)

and its internal energy (whatever its nature: mechanical, chemical, …) must change
by the amount

dUsource = −dW = −V 2dC . (S-2.113)

Since at the same time the electrostatic energy of the capacitor changes by 1⁄2 V 2dC ,
the variation of the total energy of the isolated system, dUtot , is

dUtot = dUsource + dUes = −V 2dC + V 2

2
dC = −V 2

2
dC = −dUes . (S-2.114)

Thus, the force is

F = −∂hUtot = +∂hUes = − V 2S

8πkeh2
, (S-2.115)

in agreement with (S-2.107).

S-2.13 Electrostatic Pressure on a Conducting Sphere

(a) The surface charge is σ = Q/S, where S = 4πa2 is the surface of the sphere.
The electric field at the surface is E = 4πkeσ, so that the pressure is

P = 1

2
σE = 2πkeσ

2 = ke
Q2

8πa4
. (S-2.116)

(b) According to Gauss’s law, the electric field of the sphere is

E(r) =
⎧⎨
⎩

0 , r < a ,

ke
Q

r2
, r > a ,

(S-2.117)
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and thus the electrostatic energy is

Ues =
∫

1

8πke
E2(r) d3r =

∞∫
a

ke
8π

(
Q

r2

)2

4πr2 dr = ke
Q2

2a
. (S-2.118)

The derivative of Ues with respect to a, which has the dimensions of a force, can be
interpreted as the integral of the electrostatic pressure over the surface of the sphere.
Since the pressure is uniform for symmetry reasons, we can write

P = 1

4πa2

(
−dUes

da

)
= 1

4πa2
keQ2

2a2
= ke

Q2

8πa4
, (S-2.119)

in agreement with (S-2.116).

Fig. S-2.22

(c) This problem is equivalent to locating a charge Q
on the sphere, such that the potential difference between
the sphere and infinity is V . The problem can also be
seen as a spherical capacitor with internal radius a and
external radius b, potential difference V , at the limit of b
approaching infinity (Fig. S-2.22). The capacity is

C = lim
b→∞

1

ke

ab

b − a
= a

ke
, (S-2.120)

while the electric potential inside the capacitor is

ϕ(r) =
⎧⎨
⎩
V (r < a)

V
a

r
(r > a)

(S-2.121)

so that the charge on the sphere of radius a is Q = aV/ke. By substituting Q in
(S-2.116) we obtain

P = V 2

8πkea2
. (S-2.122)

Alternatively, we can write the electrostatic energy (S-2.118) as a function of V ,

Ues = 1

2
CV 2 = aV 2

2ke
, (S-2.123)
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and remember from Problem 2.12 that, if the radius a is increased by da at constant
voltage, the electrostatic energy of our “capacitor” changes by dUes , and, simulta-
neously, the voltage source does a work dW = 2dUes, so that the variation of the
“total” energy is

dUtot = dUes − dW = −dUes , (S-2.124)

and the pressure is

P = 1

4πa2

(
−dUtot

da

)
= 1

4πa2

(
dUes

da

)
= V 2

8πkea2
, (S-2.125)

in agreement with (S-2.122).

S-2.14 Conducting Prolate Ellipsoid

(a) Let us consider a line segment of length 2c, of uniform linear electric charge
density λ, so that the total charge of the segment is Q = 2cλ. We start using a
system of cylindrical coordinates (r,φ, z), such that the end points of the segment
have coordinates (0,φ,±c), the value of φ being irrelevant when r = 0. The electric
potential ϕ(P) of a generic point P , of coordinates (r,φ, z), is

ϕ(P) = ke

+c∫
−c

λ dz′

s
= keλ

+c∫
−c

dz′√
(z − z′)2 + r2

, (S-2.126)

Fig. S-2.23

where s is the distance from P to the point
of the charged segment of coordinate z′, as
shown in Fig. S-2.23. The indefinite integral
is ∫

dz′√
(z − z′)2 + r2

= − ln
[
2
√

(z − z′)2 + r2 + 2z − 2z′
]

+ C , (S-2.127)
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as can be checked by evaluating the derivative, leading to

ϕ(P) = keλ ln

[√
(z + c)2 + r2 + z + c√
(z − c)2 + r2 + z − c

]
= ke

Q

2c
ln

(
s1 + z + c

s2 + z − c

)
, (S-2.128)

where s1 =
√

(z + c)2 + r2 and s2 =
√

(z − c)2 + r2 are the distances of P from the
end points of the charged line segment, as shown in Fig. S-2.23. We now introduce
the elliptic coordinates u and v

u = s1 + s2
2c

, v = s1 − s2
2c

, (S-2.129)

so that
s1 = c(u + v) , s2 = c(u − v) ,

and

uv = s21 − s22
4

= z

c
. (S-2.130)

Because of (S-2.129), we have u ≥ 1, and −1 ≤ v ≤ 1. The surfaces u = const are
confocal ellipsoids of revolution, and the surfaces v = const are confocal hyper-
boloids of revolution, as shown in Fig. S-2.24. The surface u = 1 is the degenerate
case of an ellipsoid with major radius a = c and minor radius b = 0, coinciding
with segment (−c, c). The surface v = 0 is the degenerate case of the plane z = 0,
while v = ±1 correspond to the degenerate cases of hyperboloids collapsed to the
half-lines (c,+∞) and (−c,−∞). In terms of u and v, Eq. (S-2.128) becomes

ϕ(P) = ke
Q

2c
ln

[
c(u + v)+ cuv + c

c(u − v)+ cuv − c

]
= ke

Q

2c
ln

[
(u + 1)(v + 1)

(u − 1)(v + 1)

]

= ke
Q

2c
ln

(
u + 1

u − 1

)
, (S-2.131)

Thus, the electric potential depends only on the elliptical coordinate u, and is
constant on the ellipsoidal surfaces u = const. The surfaces v = const are perpen-
dicular to the equipotential surfaces u = const, so that the intersections of the surfaces
v = const with the planes φ = const (confocal hyperbolae) are the field lines of the
electric field. If we let u approach infinity, i.e., for s1 + s2 � c, we have s1 	 s2 and
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Fig. S-2.24

Fig. S-2.25

u + 1

u − 1
	 1+ 2

u
,

ln

(
1+ 2

u

)
	 2

u
, (S-2.132)

and

lim
u→∞ϕ(P) = ke

Q

2c

2

u

= ke
Q

cu
	 ke

Q

s1
,

(S-2.133)

since s1 	 s2. This is what expected
for a point charge. In other words,
the ellipsoidal equipotential surfaces
approach spheres as u →∞.
(b) For a prolate ellipsoid of revolu-
tion of major and minor radii a and
b, respectively, the distance between
the center O and a focal point, c, is
(Fig. S-2.25)

c =
√
a2 − b2 . (S-2.134)

At each point of the surface of the ellipsoidwe have s1 + s2 = 2a, so that the equation
of the surface in elliptic coordinates is u = a/c. A uniformly charged line segment
with end points at (0,φ,−c) and (0,φ, c), and linear charge density λ = Q/(2c),
generates a constant electric potential ϕ(a, b) on the surface of the ellipsoid

ϕ(a, b) = ke
Q

2c
ln

(
u + 1

u − 1

)
= ke

Q

2
√
a2 − b2

ln

(
a +√a2 − b2

a −√a2 − b2

)
. (S-2.135)

On the other hand, the potential generated by the charged segment at infinity is zero,
and there are no charges between the surface of the ellipsoid and infinity. The flux
of the electric field through any closed surface containing the ellipsoid is Q. Thus,
the potential, and the electric field, generated by the charged segment outside the
surface of the ellipsoid equal the potential, and the electric field, generated by the
conducting ellipsoid carrying a charge Q, and this solves the problem. The capacity
of the ellipsoid is thus
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C = Q

ϕ(a, b)
= 2

√
a2 − b2

ke

[
ln

(
a +√a2 − b2

a −√a2 − b2

)]−1
. (S-2.136)

The denominator of the argument of the logarithm can be rationalized, leading to

a +√a2 − b2

a −√a2 − b2
=

(
a +√a2 − b2

)2

a − a2 + b2
=

(
a +√a2 − b2

b
,

)2

(S-2.137)

and the capacity of the prolate ellipsoid can be rewritten

C =
√
a2 − b2

ke

[
ln

(
a +√a2 − b2

b

)]−1
. (S-2.138)

The plates of a confocal ellipsoidal capacitor are the surfaces of two prolate ellipsoids
of revolution, sharing the same focal points located at±c on the z axis, and of major
radii a1 and a2, respectively, with a1 < a2. According to (S-2.134) and (S-2.135) the
potential on the two plates are

ϕ1,2 = ke
Q

2c
ln

(
a1,2 + c

a1,2 − c

)
(S-2.139)

so that the capacity is

C = Q

ϕ1 − ϕ2
= 2c

ke ln

(
a1 + c

a1 − c

a2 − c

a2 + c

) = 2c

ke ln

(
a1a2 − c2 + c (a2 − a1)

a1a2 − c2 − c (a2 − a1)

) .

(S-2.140)
(c) A straight wire of length h and diameter 2b, with h � b, can be approximated
by an ellipsoid prolate in the extreme, with major radius a = h/2 and minor radius
b, with, of course, b � a. From

√
a2 − b2 	 a − b2

a
valid for b � a , (S-2.141)

and (S-2.138) we have

C wire 	 a

2ke ln(2a/b)
= h

ke ln(h/b)
. (S-2.142)
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S-2.15 A Non-coaxial Cylindrical Capacitor

Let us assume a charge +Q on the inner cylinder and a charge −Q on the outer
cylinder, corresponding to linear charge denisities ±λ = ±Q/h, respectively. The
two cylindrical plates are equipotential surfaces with no charge between them and,
within our approximations, according to Gauss’s theorem the field is zero both inside
the smaller cylinder of radius R1 and outside the larger cylinder of radius R2. For
solving the problem in the region between the two cylindrical shells we can locate an
image infinite straight-line wire of linear charge density+λ inside the smaller cylin-
der and an image infinite straight-line wire of linear charge density −λ outside the
larger cylinder, as shown in Fig. S-2.26, so that the two cylindrical plates correspond
to equipotential surfaces. In fact, in Problem 2.10 we saw that two infinite parallel
straight wires of linear charge densities−λ and λ, respectively, parallel to the z axis
of a Cartesian reference frame, and intersecting the z = 0 plane at (x = −a, y = 0)
and (x = +a, y = 0) generate cylindrical equipotential surfaces of axes

x(ϕ) = a coth

(
ϕ

2keλ

)
, y(ϕ) = 0 , (S-2.143)

and radii
R(ϕ) = a

|sinh [ϕ/ (2keλ)]| , (S-2.144)

Fig. S-2.26

where ϕ is the electrostatic potential
characterizing the surface. With our
choice for the signs of λ the poten-
tial is positive for x > 0 and negative
for x < 0. In Fig. S-2.26 we know λ,
the radii R1 and R2 of the two cylin-
drical equipotential surfaces and the
distance c between their axes, and we
must determine the quantities ϕ1, ϕ2

and a. Then the capacity will be

C = hλ

ϕ1 − ϕ2
= h

2ke
(
ϕ′1 − ϕ′2

) ,

(S-2.145)
where, for convenience, we have introduced the two dimensionless quantities ϕ′1 =
ϕ1/(2keλ) andϕ′2 = ϕ2/(2keλ). After substitutingϕ′1 andϕ′2 also into (S-2.143) and
(S-2.144) we must solve the system of three equations
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a

sinhϕ′1
= R1 , (S-2.146)

a

sinhϕ′2
= R2 , (S-2.147)

a
(
cothϕ′1 − cothϕ′2

) = c , (S-2.148)

in the three unknowns ϕ′1, ϕ′2 and a. We can solve the system by substitution. From
(S-2.146) and Sect. A.3 of the Appendix we have

sinhϕ′1 =
a

R1
, coshϕ′1 =

√
a2

R2
1

+ 1 , cothϕ′1 =
√

R2
1

a2
+ 1 , (S-2.149)

analogously we have from (S-2.147)

sinhϕ′2 =
a

R2
, coshϕ′2 =

√
a2

R2
2

+ 1 , cothϕ′2 =
√

R2
2

a2
+ 1 , (S-2.150)

substituting the hyperbolic cotangents into (S-2.148) we obtain

c = a

⎛
⎝

√
R2
1

a2
+ 1−

√
R2
2

a2
+ 1

⎞
⎠ =

√
R2
1 + a2 −

√
R2
2 + a2 , (S-2.151)

now we move the second square root to the left side and square both members of the
equality in order to get rid of one root

R2
1 + a2 =

(
c +

√
R2
2 + a2

)2

= c2 + R2
2 + a2 + 2c

√
R2
2 + a2 , (S-2.152)

and we square one more time in order to get rid of the last square root

(
R2
2 − R2

1 + c2
)2 = 4c2R2

2 + 4c2a2 ,(
R2
2 − R2

1 + c2
)2 − 4c2R2

2 = 4c2a2 , (S-2.153)

from which we finally obtain

a =
√(

R2
2 − R2

1 + c2
)2 − 4c2R2

2

2c
. (S-2.154)

From (S-2.144) we obtain for ϕ′1
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ϕ′1 = arsinh
a

R1
= arsinh

√(
R2
2 − R2

1 + c2
)2 − 4c2R2

2

2cR1

= ln

⎡
⎣

√(
R2
2 − R2

1 + c2
)2 − 4c2R2

2

2cR1
+ R2

2 − R2
1 − c2

2cR1

⎤
⎦ (S-2.155)

where we have used (A.21) of the Appendix. Analogously we obtain for ϕ′2

ϕ′2 = arsinh
a

R2
= arsinh

√(
R2
2 − R2

1 + c2
)2 − 4c2R2

2

2cR2

= ln

⎡
⎣

√(
R2
2 − R2

1 + c2
)2 − 4c2R2

2

2cR2
+ R2

2 − R2
1 + c2

2cR2

⎤
⎦ (S-2.156)

Thus we have for the potential difference between the plates

ϕ′1 − ϕ′2 = ln

⎡
⎣ R2

R1

⎛
⎝

√(
R2
2 − R2

1 + c2
)2 − 4c2R2

2 + R2
2 − R2

1 − c2√(
R2
2 − R2

1 + c2
)2 − 4c2R2

2 + R2
2 − R2

1 + c2

⎞
⎠

⎤
⎦ ,

(S-2.157)
we can rationalize the denominator by multiplying numerator and denominator by[√(

R2
2 − R2

1 + c2
)2 − 4c2R2

2 − (R2
2 − R2

1 + c2)

]
, obtaining

ϕ′1 − ϕ′2 = ln

⎡
⎣

√(
R2
2 − R2

1 + c2
)2 − 4c2R2

2 + R2
2 + R2

1 − c2

2R1R2

⎤
⎦ . (S-2.158)

The capacity is thus

C = h

2ke ln

{[√(
R2
2 − R2

1 + c2
)2 − 4c2R2

2 + R2
2 + R2

1 − c2
]

/(2R1R2)

} .

(S-2.159)
Note that the limit for c→ 0 is

lim
c→0

C = h

2ke ln (R2/R1)
, (S-2.160)

as expected for a coaxial cylindrical capacitor. The other limit of interest is when the
two cylindrical surfaces tend to be tangent to each other, i.e., c→ (R2 − R1). We
have
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lim
c→(R2−R1)

a = 0 , lim
c→(R2−R1)

ϕ′1 = lim
c→(R2−R1)

ϕ′2 = 0 , lim
c→(R2−R1)

C = ∞ ,

(S-2.161)
as we could expect from the analogy with a parallel-plate capacitor, whose capacity,
C = S/(4πked), where S is the surface of the plates and d their separation, tends
to infinity as d tends to zero. Further, the distance between the two image charged
wires, 2a, tends to zero as c→ (R2 − R1), while λ and −λ are constant, thus the
potential tends to zero everywhere because (r+ − r−) → 0, r+ being the distance of
the point where we evaluate the potential from the positive wire, and r− its distance
from the negative wire.

S-2.16 Induced Charge Density on a Conducting Plane

(a) Let us consider a cylindrical coordinate system

Fig. S-2.27

(ρ,φ, z) with the z axis perpendicular to the con-
ducting plane, the origin on the plane and passing
through the point charge q, as shown in Fig. S-2.27.
Weknow that the electrostatic potential in the z < 0
half space is uniformly zero, while the problem of
the potential in the z > 0 half-space is solved by
locating an image charge q ′ = −q on the z axis at
z = −h. In fact, if we assume to remove the con-
ducting plane and to locate a real charge −q at
z = −h, the potential is zero on the z = 0 plane.

Thus the electric field E is uniformly zero in the z < 0 half space and equal to the
vector sum of the fields generated by q and its image q ′ in the z > 0 half-space As
a closed surface for applying Gauss’s law we consider a sphere of radius R centered
at the origin O of our coordinate system at the limit R →∞. We know that the flux
of the electric field through any closed surface S is

Φ(E) =
∮
S

E · dS = 4πke Q , (S-2.162)

Fig. S-2.28

where Q is the total electric charge
inside the closed surface. In the case of
our sphere the contribution to the flux
of the surface located in the z < 0 half
space is zero because the electric field
is zero. At the limit R →∞ on the
part of the spherical surface located in
the z > 0 half space we have an elec-
tric dipole field because the distance
2h between q and q ′ is constant, thus
2h � R. Thus the electric field on the surface tends to zero as 1/R3 while the surface
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tends to infinity as R2. As a result Φ(E) tends to zero. The charges enclosed by the
sphere are the real charge q and the charge induced on the conducting plane, which
thus must be −q.

Fig. S-2.29

(b) The electric field E at a point P located on the
z = 0+ plane at a distance ρ from the origin is the
vector sum of the field E1 generated by q and the
field E2 “generated” by its image q ′, as shown in
Fig. S-2.28. For the magnitudes of E1 and E2 we
have

E1 = E2 = ke
q

r2
= ke

q cos2 θ

h2
, (S-2.163)

where r2 = h2 + ρ2 and θ = arctan(ρ/h), so that
r = h/ cos θ. The ρ components ofE1 andE2 can-
cel each other, only thr z components are left and
the resulting field is

E(P) = −ẑ 2ke
q cos3 θ

h2
. (S-2.164)

The surface charge density on the conducting plane at P is thus

σ(P) = Ez

4πke
= −q cos3 θ

2πh2
. (S-2.165)

Let us consider a small surface element dS around P (Fig. S-2.29), it carries an
induced charge

dQ = σ(P) dS = −q cos3 θ dS

2πh2
. (S-2.166)

On the other hand dS subtends a solid angle dΩ from q given by

dΩ = dS

r2
cos θ = dS

cos2 θ

h2
cos θ = dS

cos3 θ

h2
. (S-2.167)

Fig. S-2.30

Thus the charge on the surface element dS
is

dQ = −q dΩ

2π
. (S-2.168)

Any area S lying on the conducting plane,
whatever its size or shape, can be decom-
posed into a large number of small surface
elements, each of which carries a charge
proportional to the solid angle it subtends
fromq, thus the charge carried by thewhole
area is −q Ω/(2π), where Ω is the total
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solid angle subtended by the area, see Fig. S-2.30. The whole plane subtends a solid
angle 2π from q, thus the whole plane carries an induced charge −q, in agreement
with the result of point (a).

S-2.17 Charge Density on a Metal Sphere in Front of a
Point Charge

(a) We know from Problem 2.4 that the

Fig. S-2.31

problem of the potential outside the con-
ducting sphere is solved by locating an
image charge q ′ = −qa/h inside the
sphere at a distance a2/h from the center O
of the sphere, on the line passing through
O and the real charge q. We choose the line
passing through O and q as the z axis of a
spherical coordinate systemwith the origin
at O , as shown in Fig. S-2.31. The electric
potential at any point P outside the sphere
is thus

ϕ(P) = keq

(
1

r1
− a

h

1

r2

)
, (S-2.169)

where r1 and r2 are the distances of P from the real charge q and from the image
charge q ′, respectively. Now let us denote by r the distance of P from O , and by θ the
angle between r and the z axis, so that r and θ are the radial and polar coordinates,
respectively, of P . Using the law of cosines we can rewrite (S-2.169) as

ϕ(r, θ) = keq

⎛
⎝ 1√

r2 + h2 − 2rh cos θ
− a

h

1√
r2 + (

a2/h
)2 − 2r(a2/h) cos θ

⎞
⎠

= keq

(
1√

r2 + h2 − 2rh cos θ
− 1√

h2r2/a2 + a2 − 2rh cos θ

)
,

(S-2.170)

independent of φ because of the rotational symmetry around z. We have ϕ(a, θ) = 0
independently of θ, as expected. The electric field immediately outside of the sphere
has the only component Er (a+, θ) given by

Er (a
+, θ) = − ∂ϕ(r, θ)

∂r

∣∣∣∣
r=a+

= −keq h2 − a2

a
(
h2 + a2 − 2ah cos θ

)3/2 . (S-2.171)
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The surface charge density is

σ(θ) = Er (a+, θ)

4πke
= − q

4π

h2 − a2

a
(
h2 + a2 − 2ah cos θ

)3/2 , (S-2.172)

Fig. S-2.32

(b) The part of the sphere visible from
q ranges from θ = 0 to the points on the
sphere surface where the rays starting from
q are tangent to the sphere. This corre-
sponds to a maximum value for theta θv =
arccos(a/h), as shown in Fig. S-2.32. The
induced charge on the visible part of the
sphere is thus

Qv =
θv∫

0

σ(θ) 2πa2 sin θ dθ

= −qa
(
h2 − a2

)
2

arccos a/h∫
0

sin θ dθ(
h2 + a2 − 2ah cos θ

)3/2

= −qa
(
h2 − a2

)
2

1

2ah

h2−a2∫
h2+a2−2ah

dx

x3/2
, (S-2.173)

where we have substituted x = (h2 + a2 − 2ah cos θ), so that dx = 2ah sin θ dθ.

Qv = q
(
h2 − a2

)
4h

[
− 2√

x

] h2−a2

(h−a)2

= −q h
2 − a2

2h

(
1

h − a
− 1√

h2 − a2

)

= − q

2h

(
h + a −

√
h2 − a2

)
= − q

2h

√
h + a

(√
h + a −√h − a

)
.

(S-2.174)

The charge on the rest of the sphere is

Qr = −q a

h
− Qv = −q a

h
+ q

2h

√
h + a

(√
h + a −√h − a

)

= − q

2h

√
h − a

(√
h + a −√h − a

)
, (S-2.175)

and the ratio of the induced charge seen from q to the rest of the induced charge is



208 S-2 Solutions for Chapter 2

Qv

Qr
=

√
h + a

h − a
. (S-2.176)

(c) If the sphere is isolated and uncharged the problem of the potential outside the
sphere is solved by locating a second image charge q ′′ = −q ′ = qa/h at the center
of the sphere. This corresponds to an additional uniform charge density over the
sphere surface σ′′ = q ′′/(4πa2), and the total charge density is

σ(θ) = q
a

h

1

4πa2
− q

4π

h2 − a2

a
(
h2 + a2 − 2ah cos θ

)3/2
= q

4πha
− q

4π

h2 − a2

a
(
h2 + a2 − 2ah cos θ

)3/2 . (S-2.177)



Chapter S-3
Solutions for Chapter 3

S-3.1 An Artificial Dielectric

(a) According to (S-2.6) of Problem 2.1, a metal sphere in a uniform external field
E acquires a dipole moment

p = a3

ke
E = 3

4πke
V E , (S-3.1)

where V = 4⁄3πa3 is the volume of the sphere. The polarization of our suspension
is

P = n p = 3n

4πke
V E . (S-3.2)

InSI unitswehaveP = ε0 χE, andχ = 3 f , while inGaussian unitswehaveP = χE,
and χ = 3 f/(4π). In both cases f = nV is the fraction of the volume occupied by
the spheres. Since the minimum distance between the centers of two spheres is 2a,
we have

f ≤ 4πa3

3

1

8a3
= π

6
, (S-3.3)

leading to χ ≤ π/2 in SI units, and χ ≤ 1/8 in Gaussian units.
(b) The average distance � between two sphere centers is of the order of n−1/3. The
electric field of a dipole at a distance � is of the order of

Edip 	 ke
p

�3
	 ke

a3

ke
E n = a3E n. (S-3.4)

Thus, the condition Edip � E requires n � 1/a3.
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S-3.2 Charge in Front of a Dielectric Half-Space

Fig. S-3.1

We denote by A the z < 0, vacuum, half-
space, containing the real charge q, and by
B the z > 0, dielectric, half-space, contain-
ing no free charge. We shall treat the two half
spaces separately, making educated guesses,
in order to apply the uniqueness theorem for
the Poisson equation.We use cylindrical coor-
dinates (r,φ, z), with the real charge located
at (0,φ,−d). All our formulas will be inde-
pendent of the azimuthal coordinate φ, which

is not determined, and not relevant, when r = 0.
(a) We treat the field in the half-space A assuming vacuum in the whole space,
including the half-space B. As ansatz, we locate an image charge q ′, of value to be
determined, at (0, 0,+d), in the half space that we are not considering, as in Fig.
S-3.1. Now we evaluate the electric field E(−) in a generic point P ≡ (r,φ, 0−) of
the plane z = 0−. The distance between P and q is

√
d2 + r2 and forms an angle

θ = arccos(d/
√
d2 + r2) with the z axis. Also the distance between P and q ′ will

be
√
d2 + r2. The field at P , E(−), is the vector sum of the fields E due to the real

charge q, and E′ do to the image charge q ′. The components of E(−), perpendicular
and parallel to the z = 0 plane are, respectively

E (−)
⊥ = ke

q

d2 + r2
cos θ − ke

q ′

d2 + r2
cos θ = ke

d

(d2 + r2)3/2
(q − q ′)

E (−)
‖ = ke

q

d2 + r2
sin θ + ke

q ′

d2 + r2
sin θ = ke

r

(d2 + r2)3/2
(q + q ′) . (S-3.5)

Fig. S-3.2

We treat the half-space B assuming that
thewhole space, including the half-space
A, is filled by a dielectricmediumof rela-
tive permittivity εr .We are not allowed to
introduce charges or alter anything in B,
but, as an educated guess, we replace the
real charge q, located in the half-space A
thatwe are not treating, by a charge q ′′, of
value to be determined (Fig. S-3.2). We
evaluate the field E(+) at the same point
P as before, but on the z = 0+ plane.
The components of E(+) perpendicular
and parallel to the z = 0 plane are
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E (+)
⊥ = ke

εr

q ′′

d2 + r2
cos θ = ke

εr

d

(d2 + r2)3/2
q ′′

E (+)
‖ = ke

εr

q ′′

d2 + r2
sin θ = ke

εr

r

(d2 + r2)3/2
q ′′ . (S-3.6)

If our educated guesses are correct, the dielectric boundary conditions must hold at
z = 0. This implies E (−)

⊥ = εrE
(+)
⊥ and E (−)

‖ = E (+)
‖ , corresponding to the equations

q − q ′ = q ′′ , and q + q ′ = q ′′

εr
, (S-3.7)

with solutions

q ′ = −εr − 1

εr + 1
q , and q ′′ = 2εr

εr + 1
q . (S-3.8)

We can easily check that, at the limit εr → 1 (vacuum in the whole space), we have
q ′ → 0 and q ′′ → q, i.e., in the whole space we have the field of charge q only. At
the limit εr →∞ (dielectric→ conductor limit) we have q ′ → −q and q ′′ → 2q,
i.e., the field of the real charge q and its image−q in the half-space A, and zero field
in the half space B, as at point (a) of Problem 2.2. The finite value of q ′′ is irrelevant
for the field in the half-space B, because of the infinite value of εr.

Note: Alternatively, we can write Eqs. (S-3.6) without εr in the denominators, thus
including the dielectric bound charge into q ′′. This leads to the equations

q − q ′ = εr q
′′ , and q + q ′ = q ′′ (S-3.9)

with solutions

q ′ = −εr − 1

εr + 1
q , and q ′′ = 2

εr + 1
q . (S-3.10)

(b) The polarization charge density on the z = 0 plane, σb(r), is

σb(r) = − 1

4πke
(E (−)

⊥ − E (+)
⊥ ) = − 1

4π

d

(d2 + r2)3/2

(
q − q ′ − q ′′

εr

)

= − 1

2π

d

(d2 + r2)3/2
εr − 1

εr + 1
q = 1

2π

d

(d2 + r2)3/2
q ′ . (S-3.11)

The total polarization charge on the z = 0 plane is

qp =
∞∫
0

σb(r) 2πr dr = −εr − 1

εr + 1
q

π/2∫
0

cos θ dθ = q ′, (S-3.12)

wherewe have substituted cos θ = d/
√
d2 + r2, r = d/ cos θ and dr = d dθ/ cos2 θ.
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(c) The polarization charge of the z = 0 plane generates an electric field equal to the
field of a charge q ′ = −q (εr − 1)/(εr + 1) located at (0, 0,+d) in the half space
z < 0, and equal to the field of a charge q ′ located at (0, 0,−d) in the half space
z > 0.

S-3.3 An Electrically Polarized Sphere

(a) Since the polarization P of the sphere is uniform, we have no volume bound-
charge density, according to �b = ∇ · P. If we choose a spherical coordinate system
(r, θ,φ) with the azimuthal axis parallel to P, as shown in Fig. S-3.3, we see that the
surface bound-charge density of the sphere is σb = P cos θ, according to σb = P · n̂.
Thus, in principle, we can evaluate the electric field everywhere in space as the
field generated by the bound-charge distribution on the sphere surface. However,
it is easier to consider the polarized sphere as the superposition of two uniformly
charged sphere, both of radius a, one of volume charge density �, and one of volume
charge density −�. The centers of the two spheres are separated by a small distance
, as in Fig. 1.1 of Problem 1.1. Thus, two initially superposed infinitesimal volume
elements d3r of the two spheres, of charge ±� d3r , respectively, give origin to an
infinitesimal electrical dipole moment dp = δ� d3r after the displacement.

Fig. S-3.3

This corresponds to a polarization dp/d3r =
� δ,wemust haveP = � δ, and are interested in the
limit |δ| → 0, ρ→∞, with � δ = P = constant.
Now we can follow the solution of Problem 1.1.
According to (S-1.1), the electric field inside the
sphere is uniform and equals

Ein = −4πke
3

� δ = −4πke
3

P . (S-3.13)

The problem of the field outside the sphere is solved at point (b) of Problem 1.1,
we have

Eext(r) = ke
3r̂ (p · r̂)− p

r3
, (S-3.14)

where p = P(4πa3/3) is the total dipole moment of the sphere (Fig. S-3.4).
The external displacement field is simply Dext = Eext (Gaussian), and Dext =

ε0Eext (SI). The internal displacement field is

Din =

⎧⎪⎨
⎪⎩

ε0Ein + P = −ε0
P
3ε0

+ P = 2

3
P , SI

Ein + 4πP = −4π

3
P + 4πP = 8π

3
P , Gaussian.

(S-3.15)
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Fig. S-3.4

(b) The problem can be solved by the superposi-
tion principle. The hole of radius b can be regarded
as a sphere of uniform electrical polarization −P
superposed to the sphere of radius a and polariza-
tion P (Fig.S-3.4). The sphere of radius b gener-
ates a field.

E(b)
in =

4πke
3

P (S-3.16)

at its interior. Thus, the total field inside the spherical hole is E(a+b)
in = 0. The filed

inside the spherical shell b < r < a is the sum of the uniform field (S-3.13) and the
field generated by an electric dipole of moment p(b) located at the center O , with

p(b) = −4πb3

3
P . (S-3.17)

Finally, the external field (r > a) equals the field generated by a single dipole p(a+b)
located in O with

p(a+b) = 4π
(
a3 − b3

)
3

P . (S-3.18)

S-3.4 Dielectric Sphere in an External Field

(a) As an educated guess let us assume that the

Fig. S-3.5

external field induces a uniform electric polar-
ization P in the sphere. We have seen in Prob-
lem 3.3 that a sphere of uniform electric polar-
ization P generates a uniform electric field Epol =
−(4πke/3)P at its interior. The difference is that
in the present case P is not permanent but it is
induced by the local electric field, i.e. it is given
by

P = εr − 1

4πke
Ediel , (S-3.19)

where Ediel is the field inside the dielectric sphere, which is the sum of the external
and the induced fields:

Ediel = E0 + Epol . (S-3.20)

We thus have
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Ediel = E0 − 4πke
3

P = E0 − εr − 1

3
Ediel , (S-3.21)

which can be solved for Ediel:

Ediel = 3

εr + 2
E0 . (S-3.22)

Since εr > 1, the field inside the dielectric sphere is smaller than E0.
The electric field outside the sphere Eout will be given by the sum of E0 and the

field of a dipole

p = 4πa3

3
P = a3

ke

εr − 1

εr + 2
E0 (S-3.23)

located at the center of the of the sphere. Thus

Eout = E0 + ke
3(p · r̂)r̂ − p

r3
= E0 + a3

3r3
εr − 1

εr + 2
[3(E0 · r̂)r̂ − E0] . (S-3.24)

It is instructive, and useful for the following, to check that the above solution
satisfies the boundary conditions at the surface of the sphere. Let us then restart the
problem by assuming that the field Ediel inside the sphere (r < a) is uniform and
parallel to the external field E0, and that the field Eout outside the sphere (r > a)
is the sum of the external field and that of a dipole p located at the center of the
sphere and also parallel to E0. Thus we can write Ediel = αE0 and p = ηE0, with the
constants α and η to be determined by the boundary conditions at r = a. Choosing
a spherical coordinate system with the origin O at the center of the sphere, and the
polar axis z parallel to E0, we have

Ediel
r = αE0 cos θ Eout

r = E0 cos θ + keηE0
2 cos θ

r3

Ediel
θ = αE0 sin θ Eout

θ = E0 sin θ − keηE0
sin θ

r3

Ediel
φ = 0 Eout

φ = 0 . (S-3.25)

The boundary conditions at the surface of the sphere are εrEdiel
⊥ = Eout

⊥ and Ediel
‖ =

Eout
‖ which yields in spherical coordinates

εrE
diel
r (r = a−) = Eout

r (r = a+) Ediel
θ (r = a−) = Eout

θ (r = a+) . (S-3.26)

Using (S-3.25) and deleting the common factors we obtain

εrα = 1+ 2ke
a3

η , α = 1− ke
a3

η , (S-3.27)
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which are solved for α and η as

α = 3/(εr + 2) , η = a3

ke

εr − 1

εr − 2
, (S-3.28)

so that we eventually recover (S-3.22) and (S-3.23).
(b) We make an educated guess analogous to the one of the previous point, i.e., that
the field inside the cavity, Ecav, is uniform and parallel to Ed, and that the field in
the dielectric medium, Ediel, is the sum of Ed and the field of an electric dipole pc,
located at the center of the cavity and parallel to Ed. Thus we can write

Ecav = α Ed , pc = ηEd ; (S-3.29)

where, again, α and η are constants to be determined by the boundary conditions.
Using again spherical coordinates with the origin at the center of the spherical cavity
and the z axis parallel to Ed, the expressions analogous to (S-3.25) are

Ecav
r = αEd cos θ Emed

r = Ed cos θ + ke ηEd
2 cos θ

r3

Ecav
θ = αEd sin θ Emed

θ = Ed sin θ − keηEd
sin θ

r3

Ecav
φ = 0 Emed

φ = 0 , (S-3.30)

with the boundary conditions

Ecav
r (r = a−) = εrE

med
r (r = a+) Ecav

θ (r = a−) = Emed
θ (r = a+) . (S-3.31)

The values for α and η may thus be easily obtained by solving a linear system of
two equations as in point a). However, we can imemdiately obtain the solution by
noticing that (S-3.30) and (S-3.31) are identical to (S-3.25) and (S-3.26) but for
the replacements Ed ↔ E0, Ecav ↔ Ediel, Emed ↔ Eout, and εr ↔ 1/εr . Thus, the
solutions forEcav andpc are obtained from those forEdiel andp, (S-3.22) and (S-3.23),
by substituting Ed for E0 and 1/εr for εr:

Ecav = 3

1/εr + 2
Ed = 3εr

1+ 2εr
Ed , (S-3.32)

pc = a3

3ke

1/εr − 1

1/εr + 2
Ed = a3

3ke

1− εr

1+ 2εr
Ed . (S-3.33)

Thus Ecav > Ed, i.e. the field inside the cavity is stronger than that outside it, and pc

is antiparallel to Ed.
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S-3.5 Refraction of the Electric Field at a Dielectric
Boundary

(a) First, we note that the electric field E0 out-

Fig. S-3.6

side the dielectric slab equals the field that we
would have in vacuum in the absence of the slab.
Neglecting the boundary effects, the bound sur-
face charge densities of slab are analogous to the
surface charge densities of a parallel-plate capac-
itor. These generate a uniform electric field inside
the capacitor, but no field outside. Thus, the elec-
tric field inside the slab is the sum of E0 and the
field generated by the surface polarization charge
densities. If we denote by E′ the internal electric field, the boundary conditions at
the dielectric surfaces are

E0⊥ = εr E
′
⊥ , E0‖ = E ′‖ , (S-3.34)

where the subscripts⊥ and ‖ denote the field components perpendicular and parallel
to the interface surface, respectively. In terms of the angles θ and θ′ of Fig. S-3.6

Fig. S-3.7

we have

E0 cos θ = εrE
′ cos θ′

E0 sin θ = E ′ sin θ′ . (S-3.35)

If we divide the second of (S-3.35) by the first we
obtain

1

εr
tan θ′ = tan θ , (S-3.36)

and, since εr > 1, we have θ′ > θ (Fig. S-3.7).
(b) From Gauss’s law we obtain

σb = 1

4πke
(Eo,⊥ − E ′⊥) = 1

4πke
E0 cos θ

(
1− 1

εr

)
. (S-3.37)

(c) The electrostatic energy density inside the slab is

ues = εr

8πke
E′2 = εr

8πke
, (E ′2⊥ + E ′2‖ ) = εr

8πke
E2
0

(
cos2 θ

ε2r
+ sin2 θ

)

= 1

8πkeεr
E2
0

[
(ε2r − 1) sin2 θ + 1

]
, (S-3.38)
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so that ues increases with increasing θ, and we expect a torque τ tending to rotate the
slab toward the angle of minimum energy, i.e., θ = 0. Neglecting boundary effects,
the total electrostatic energy of the slab isUes = Vues, where V is the volume of the
slab, and the torque exerted by the electric field is

τ = −∂Ues

∂θ
= − 1

8πkeεr
E2
0V

(
ε2r − 1

)
sin 2θ < 0 . (S-3.39)

S-3.6 Contact Force Between a Conductor and a Dielectric

(a) Neglecting boundary effects at the edges of the

Fig. S-3.8

slab, the electric field is parallel to the x axis in all the regions
of interest because of symmetry reasons. Thus, we can omit
the vector notation, and we shall use positive numbers for
vectors whose unit vector is x̂, negative numbers otherwise.

According to Gauss’s law, a uniformly charged plane with
surface charge density σa generates uniform fields at both
its sides, of intensities Ea = ±σa/2ε0, respectively. In our
problem we have three charged parallel plane surfaces: we
denote by σ1 the surface charge density on the left surface of
the slab, by σ2 charge the density on its right surface, and by
σb the bound surface charge density of the dielectric material
on its surface, as shown in Fig. S-3.8. Since the total free

charge on the slab is Q, we have

σ1 + σ2 = Q

S
= σtot . (S-3.40)

At any point in space the total electric field is the sum of the fields generated by
the three surface charges. Now, the electric field must be zero inside the conducting
slab. Thus the sum of all surface charge densities (including both free and bound
charges) at the left of the slab must equal the sum of all surface charge densities at
the right, so that their respective fields cancel out inside the slab. This conclusion
holds both when the slab is in contact with the dielectric, and when there is a vacuum
gap between them. Thus, we have

σ1 = σ2 + σb . (S-3.41)

The electric field Ed inside the dielectric medium is Ed = 4πke (σ2 + σb). This
implies for the dielectric polarization of the medium P

P = εr − 1

4πke
Ed = (εr − 1) σ1 . (S-3.42)



218 S-3 Solutions for Chapter 3

Since we also have σb = −P · x̂ = −P , we obtain the additional relation

σb = −(εr − 1) (σ2 + σb) , (S-3.43)

that leads to

σb = −εr − 1

εr
σ2 . (S-3.44)

From (S-3.40), (S-3.41) and (S-3.44) we finally obtain

σ1 = 1

εr + 1
σtot , σ2 = εr

εr + 1
σtot , σb = −εr − 1

εr + 1
σtot . (S-3.45)

The magnitudes of the electric field at the left of the slab E1, and of the electric field
inside the dielectric medium Ed, can be evaluated from Gauss’s law, recalling that
the field is zero inside the slab. We have

E1 = −4πke σ1 = − 4πke
εr + 1

σtot and Ed = 4πke (σ2 + σb) = −E1 . (S-3.46)

In the case of a vacuum gap between the conducting slab and the dielectric medium,
as shown in Fig. S-3.9, the field E2 in the gap is

E2 = 4πke σ2 = 4πke
εr

εr + 1
σtot = −εrE1 . (S-3.47)

The values of E1 and Ed are not affected by the presence of the vacuum gap.
As an alternative approach we can assume, following Problem 3.2, that the free

charge layers σ1 and σ2 induce image charge layers σ′1 and σ′2 in the dielectric,

σ′1 = −
εr − 1

εr + 1
σ1 , σ′2 = −

εr − 1

εr + 1
σ2 , (S-3.48)

with the image planes located in position symmetrical with respect to the dielectric
surface. Due to Gauss’s law the bound surface charge density is the sum of the image
charge densities,

σp = σ′1 + σ′2 = −
εr − 1

εr + 1

Q

S
. (S-3.49)
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Fig. S-3.9

The free charge densities can be now found by requiring
the field to vanish inside the slab: omitting a commonmul-
tiplying factor we have

0 = σ1 − σ2 − σ′1 − σ′2 = 2
εrσ1 − σ2

εr + 1
, (S-3.50)

from which we obtain εrσ1 = σ2, and we eventually
recover the free and bound surface charge densities of
(S-3.45).
(b) In order to evaluate the electrostatic force acting on the
conducting slab, we first assume the presence of a small
vacuum gap of width ξ between the slab and the dielectric

medium, as shown in Fig. S-3.9.
We can evaluate the total electrostatic force F acting on the conducting slab in

three equivalent ways:

(i) We can evaluate the variation of the total electrostatic energy Ues when the slab
is displaced by an infinitesimal amount dx toward the right, thus decreasing the
gap. In this case Ues increases by E2

1 Sdx/(8πke) at the left of the slab, because
the width of region “filled” by the field E1 increases by dx , and correspondingly
decreases by E2

2 Sdx/(8πke) at its right. Thus, dUes = (E2
1 − E2

2) Sdx/(8πke),
from which we obtain the force per unit surface

F = −dUes

dx
= S

8πke
(E2

1 − E2
2) =

S

8πke
(ε2r − 1)

(
4πke
εr + 1

)2 (Q

S

)2

= 2πke
εr − 1

εr + 1

Q2

S
. (S-3.51)

We have F > 0, meaning that the slab is attracted by the dielectric medium.
(ii) We can multiply the charge of the slab Q by the local field, i.e., by the field

generated by all charges excluding the charges of the slab. In our case the local
field is the field Ep generated by the bound surface charge density σb. We have

Ep = −2πke σb = 2πke
εr − 1

εr + 1
σtot , and F = 2πke

εr − 1

εr + 1

Q2

S
. (S-3.52)

(iii) We can evaluate the force on the slab by summing the forces F1 on its left and
F2 on its right surface. These are obtained by multiplying the respective charges
Q1 = Sσ1 and Q2 = Sσ2 by the average fields at the surfaces
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F = F1 + F2 = Q1
E1

2
+ Q2

E2

2
= − Q

εr + 1

2πke
εr + 1

σtot + εrQ

εr + 1

εr2πke
εr + 1

σtot

= 2πke
ε2r − 1

(εr + 1)2
Q2

S
= 2πke

εr − 1

εr + 1

Q2

S
. (S-3.53)

The force F is independent of ξ, thus the above result should be valid also at the limit
ξ → 0, i.e., when there is contact between the metal slab and the dielectric. One may
argue, however, that in these conditions the field at x = 0+, i.e., at the right of the
slab, is given by Ed = −E1, so that following the approach (iii) one would write

F = F1 + F2
?= Q1

E1

2
+ Q2

Ed

2
= Q1

E1

2
+ Q2

E2

2
. (S-3.54)

This discrepancy comes out because actually the

Fig. S-3.10

Fig. S-3.11

average field on the free charges located on the right
surface of the slab is not Ed/2, which is the average
field across the two merging layers of free and bound
charges; however, the force on the slab must be calcu-
lated by taking the average field on free charges only.
To illustrate this issue, let us assume for a moment the
free charges at the slab surfaces to be distributed in a
layer of small but finite width, so that we can localize
exactly where free charges are without merging them
with bound charges. In particular, let the free surface
charge layer have thickness �2 and volume charge den-
sity �2(x) such that

0∫
−�2

�2 dx = σ2 , (S-3.55)

as shown in Fig. S-3.10. The electric field is still
directed along the x axis for symmetry reasons.
Gauss’s law in one dimension gives ∂x E = 4πke�.
Since E(−�2) = 0 (as deep into the conductor the
field should vanish) we have for the electric field in
the −�2 � x � 0 region

E(x) = 4πke

x∫
−�2

�2(x
′) dx ′ . (S-3.56)

The total force on the free charges only can thus be evaluated as
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F2 = S

0∫
−�2

E(x) �2(x) dx = S

4πke

0∫
−�2

E(x) ∂x E(x) dx = S

8πke

0∫
−�2

∂x E
2(x) dx

= S

8πke
E2
2 =

S(4πkeσ2)
2

8πke
= 2πke Sσ2

2 , (S-3.57)

the electric field at x = 0− is E2, as shown in Fig. S-3.11, and the resulting electro-
static pressure is p2 = F2/S = 2πke σ2

2, independent of the particular distribution
�2(x), and in agreement with the previous result (S-3.53). However, the electric field
at x = 0+ is Ed because of the presence of the surface bound charge.2

Fig. S-3.12

(c) If the dielectric medium is actually a slab limited at
x = w, as shown in Fig. S-3.12, a further bound surface
charge density −σb, opposite to the density σb at x = 0,
appears at its x = w surface. This charge distribution is iden-
tical to that of a plane capacitor, so that the bound charges
generate no field outside the dielectric slab. As trivial con-
sequences the surface charge densities on the conducting
slab are σ1 = −σ2 = Q/2S, the field inside the dielectric is
E1/εr = Q/(2ε0εrS), and there is no force between the slab
and the dielectric. Moreover, this result is independent of w,
and therefore should be valid also in the limit w →∞.

The apparent contradiction with the results of points (a)
and (b) is that, in two attempts to approximate real conditions by objects of infinite
size, we are assuming different boundary conditions at infinity. To discuss this issue
let us look again at Fig. 3.5, showing the slabof chargeQ located in front of a dielectric
hemisphere of radius R. At the limit R →∞, the field in the dielectric half-space
approaches the field that we would have if the dielectric medium filled the whole
space, and the surface S had surface charge density σ′′ = 2εrσ/(εr + 1), see Problem
3.2. Thus, the field, the polarization, and the polarization surface charge density all
approach zero at the hemispherical surface. Part (b) of Fig. 3.5 is an enlargement
of the area enclosed in the dashed rectangle of part (a) of the same figure, and the
vanishing charge density on the hemisphere surface does not contribute to the field
in this area, according to the result of Problem 1.11. This motivates the boundary
condition assumed in points (a) and (b). In contrast, in point (c) the bound surface
charge density does not vanish at infinity and generates a uniform field, which in
vacuum cancels out the field generated by the dielectric surface at x = 0.

2 We might assume that also the polarization charge fills a layer of small, but finite width �d at the
surface of the dielectric. However, this would only imply that the field becomes Ed at x � �d, and
would not affect our conclusions on the forces on the conductor.
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S-3.7 A Conducting Sphere Between Two Dielectrics

(a) We use a spherical coordinate system

Fig. S-3.13

(r, θ,φ) with the origin O at the center of the
sphere, and the zenith direction perpendicu-
lar to the plane separating the two dielectric
media, as shown in Fig. S-3.13. The electric
field inside the conducting sphere is zero. The
electric field outside the sphere, E(r, θ,φ), is
independent of φ because of the symmetry of
our problem. Since the sphere is conducting,
the electric field E(R+, θ,φ) must be perpen-
dicular to its surface, and its only nonzero com-
ponent is Er . If we write Maxwell’s equation ∇ × E = 0 in spherical coordinates
over the spherical surface r = R+ (see Table A.1 of the Appendix), we see that the
r and θ components of the curl are automatically zero because Eφ = 0, Eθ = 0, and
all derivatives with respect to φ are zero. The condition that also the φ component of
the curl must be zero is

∂θEr = ∂r (r Eθ) = Eθ + r∂r Eθ . (S-3.58)

The right-hand side of (S-3.58) is zero because Eθ(R−) = Eθ(R+) = 0, implying
that also ∂r Eθ(R) = 0. Thus, ∂θEr (R+) = 0, and Er (R+) does not depend on θ
(and, consequently, on the dielectric medium). If we denote by σtot the sum of the
free surface charge density σf and the bound charge density σb, the relation

σtot = E(R+, θ,φ)

4πke
= E(R+)

4πke
(S-3.59)

shows that σtot is constant over the whole surface of the sphere. Thus the electric field
in the whole space outside the sphere equals the field of a point charge Qtot located
in O , with Qtot = Q + Qb , where Qb is the total polarization (bound) charge:

E(r, θ,φ) = E(r) = 4π ke σtot
R2

r2
r̂ , r > R , (S-3.60)

since the field depends on r only. The polarization charge densities on the surfaces
of the two dielectrics in contact with the sphere are, respectively,

σb1 = n̂ · P1 = −εr1 − 1

4πke
E(R) = −(εr1 − 1) σtot

σb2 = n̂ · P2 = −εr2 − 1

4πke
E(R) = −(εr2 − 1) σtot (S-3.61)
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where the unit vector n̂ points toward the center of the sphere. The free surface
charge densities in the regions in contact with the two dielectrics, σf1 and σf2, are,
respectively,

σf1 = σtot − σb1 = εr1σtot

σf2 = σtot − σb2 = εr2σtot . (S-3.62)

Since 2πR2(σf1 + σf2) = Q, we finally obtain (Fig. S-3.14).

σtot = Q

2πR2(εr1 + εr2)
E(r) = 2ke

Q

(εr1 + εr2) r2
r̂

σf1 = εr1 Q

2πR2(εr1 + εr2)
σf2 = εr2 Q

2πR2(εr1 + εr2)

σb1 = − (εr1 − 1) Q

2πR2(εr1 + εr2)
σb2 = − (εr2 − 1) Q

2πR2(εr1 + εr2)
. (S-3.63)

Fig. S-3.14

(b) The electrostatic pressures on the two
hemispherical surfaces equal the electrostatic
energy densities in the corresponding dielec-
tric media, and are, respectively,

Pfi = 2πke
εri

σ2
fi =

2πke
εri

[
εri Q

2πR2(εr1 + εr2)

]2

= ke
εri Q2

2πR4(εr1 + εr2)2
(S-3.64)

with i = 1, 2. ThusP1 > P2 because εr1 > εr2,
and the pressure pushes the sphere towards the medium of higher permittivity. The
force on the sphere surface element dS = R2 sin θ dθ dφ is dF = r̂Pfi dS, with i = 1
if θ > π/2, and i = 2 if θ < π/2. The total force acting on the upper hemisphere
(θ < π/2) is thus

F2 = ẑ

2π∫
0

dφ

π/2∫
0

dθ R2 sin θ cos θ ke
εr2 Q2

2π(εr1 + εr2)2R4

= ẑ πR2ke
εr2Q2

2π(εr1 + εr2)2R4
= ẑ πR2 P2 = ẑ ke

εr2Q2

2 (εr1 + εr2)2R2
, (S-3.65)

directed upwards, since the force components perpendicular to the z axis cancel out.
Note that F2 simply equals Pf2 times the section of the sphere πR2. The total force
acting on the lower hemisphere (θ > π/2) is, analogously,
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F1 = −ẑ ke
εr1 Q2

2 (εr1 + εr2)2R2
. (S-3.66)

The total electrostatic force acting on the conducting sphere is thus

Ftot = F1 + F2 = −ẑ ke
(εr1 − εr2) Q2

2 (εr1 + εr2)2 R2
. (S-3.67)

If the sphere is at equilibrium when half of its volume is submerged, Ftot plus the
sphere weight must balance Archimedes’ buoyant force

ke
(εr1 − εr2) Q2

2 (εr1 + εr2)2 R2
= g

2πR3

3
(�1 + �2 − 2 �) , (S-3.68)

where g is the gravitational acceleration. Thus, at equilibrium, the electric charge on
the sphere must be

Q =
√
4πR5 (εr1 + εr2)2 ( �1 + �2 − 2 �) g

3 ke (εr1 − εr2)
. (S-3.69)

S-3.8 Measuring the Dielectric Constant of a Liquid

The partially filled capacitor is equivalent to two capacitors connected in parallel,
one with vacuum between the plates, and the other filled by the dielectric liquid.
The two capacitors have the same internal and external radii, a and b, but different
lengths, �− h and h, respectively. The total capacitance is

C = �− h

2ke ln(b/a)
+ εrh

2ke ln(b/a)
= �+ (εr − 1) h

2ke ln(b/a)
, (S-3.70)

and the electrostatic energy of the capacitor is

Ues = 1
2 CV 2 = �+ (εr − 1) h

4ke ln(b/a)
V 2 . (S-3.71)

If the liquid raises by an amount dh the capacity increases by

dC = (εr − 1) dh

2ke ln(b/a)
, (S-3.72)

and, if the potential difference V across the capacitor plates is kept constant, the
electrostatic energy of the capacitor increases by an amount
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dUes = 1
2V

2dC = (εr − 1) dh

4ke ln(b/a)
V 2 . (S-3.73)

Simultaneously the voltage source does a work

dW = V dQ = V 2dC = (εr − 1) dh

2ke ln(b/a)
V 2 , (S-3.74)

because the charge of the capacitor must increase by dQ = V dC in order to keep
the potential difference across the plates constant, and this implies moving a charge
dQ from one plate to the other. The energy of the voltage source changes by

dUsource = − (εr − 1) dh

2ke ln(b/a)
V 2 = −2 dUes . (S-3.75)

We must still evaluate the increase in gravitational potential energy of the liquid.
When the liquid raises bydh an infinitesimal annular cylinder ofmass dm = � π(b2 −
a2) dh is added at its top, and the gravitational energy increases by

dUg = g � π(b2 − a2) h dh . (S-3.76)

The total energy variation is thus

dUtot = dUes + dUsource + dUg = −dUes + dUg

= − (εr − 1) dh

4ke ln(b/a)
V 2 + g � π(b2 − a2) h dh , (S-3.77)

and the total force is

F = −∂Utot

∂h
= εr − 1

4ke ln(b/a)
V 2 − g � π(b2 − a2) h . (S-3.78)

At equilibrium we have F = 0, which corresponds to

h = (εr − 1) V 2

4πke g �(a2 − b2) ln(b/a)
and εr = 1+ 4πke g �(a2 − b2) ln(b/a)

V 2
h .

(S-3.79)
For the electric susceptibility χ, we have in SI units χ = εr − 1, and

χ = g � (a2 − b2) ln(b/a)

ε0V 2
h , (S-3.80)

while in Gaussian units we have χ = (εr − 1)/4π, and

χ = g � (a2 − b2) ln(b/a)

V 2
h . (S-3.81)
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S-3.9 A Conducting Cylinder in a Dielectric Liquid

(a) We choose a cylindrical coordinate system (r,φ, z) with the longitudinal axis z
superposed to the axis of the conducting cylinder, and the origin O at the height
of the boundary surface between the dielectric liquid and the vacuum above it
(Fig. S-3.15). The azimuthal angle φ is irrelevant for the present problem. The elec-
tric field E(r,φ, z) is perpendicular to the surface of the cylinder, thus we have
E(r,φ, z) ≡ [Er (r, z), 0, 0]. The field is continuous at the dielectric-vacuum bound-
ary surface, since it is parallel to it. We thus have Er (r, z) = Er (r), independently of
z. Let us denote by σ1 and σ2 the free-charge surface densities on the cylinder lateral
surface for z > 0 and z < 0, respectively. Quantities σ1 and σ2 are related to the

Fig. S-3.15

electric field at the cylinder surface, Er (a), to εr and
Q by

σ1 = Er (a)

4πke
, σ2 = εrEr (a)

4πke
,

Q = 2πa [σ1h + σ2(L − h)] . (S-3.82)

We thus have

Er (a) = Q
2ke

a[h + εr(L − h)]
= Q

2ke
a[εrL − (εr − 1) h] . (S-3.83)

(b) The electric field Er (r) in the region a < r < b can be evaluated by applying
Gauss’s law to a closed cylindrical surface of radius r and height �� L , coaxial to
the conducting cylinder. Neglecting the boundary effects, the flux of the electric field
through the bases of the Gaussian surface is zero, and we have

2πr �Er (r) = 4πkeQint ,

Er (r) = 2keQint

r �
, (S-3.84)

where Q tot is the total charge inside the Gaussian surface, including both free and
polarization charges. If we let r approach a keeping � constant, Qint remains constant
and we have

lim
r→a

Er = 2keQint

a �
= Er (a) , so that Er (r) = Er (a)

a

r
(S-3.85)

and, inserting (S-3.83),

Er (r) = 2keQ

r [εrL − (εr − 1) h] . (S-3.86)
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(c) The electrostatic energy of the system is

Ues 	 1

8πke

⎡
⎣εr

L−h∫
0

dz

b∫
a

E2
r (r) 2πr dr +

L∫
L−h

dz

b∫
a

E2
r (r) 2πr dr

⎤
⎦

= 1

8πke

[
2keQ

[εrL − (εr − 1) h]
]2

⎧⎨
⎩

[
εr(L − h)+ h

] b∫
a

2π

r
dr

⎫⎬
⎭

= ke

[
Q

[εrL − (εr − 1) h]
]2 [

εr(L − h)+ h
]
ln

(
b

a

)

= ke
Q2 ln(b/a)

εrL − (εr − 1) h
, (S-3.87)

i.e., the electrostatic energy of two cylindrical capacitors connected in parallel, with
total charge Q. Both capacitors have internal radius a and external radius b, one has
length L − h and is filled with the dielectric material, the other has length h and
vacuum between the plates. The electrostatic force, directed along z, is

Fes = −dUes

dh
= −ke (εr − 1) ln(b/a) Q2

[εrL − (εr − 1) h]2 < 0 . (S-3.88)

The electrostatic forces tends to decrease h, i.e., to sink the cylinder into the liquid.
(d) The sum of the gravitational and buoyant (due to Archimedes’ principle) forces
on the cylinder is

Fg = −Mg + �g(L − h) πa2 , (S-3.89)

and the cylinder is in equilibrium when Fes + Fg = 0, i.e., when

�g(L − h) πa2 − Mg = ke
(εr − 1) ln(b/a) Q2

[εrL − (εr − 1) h]2 . (S-3.90)

Given L , h and εr , we have equilibrium for

Q = [εrL − (εr − 1) h]
√

�g(L − h) πa2 − Mg

ke(εr − 1) ln(b/a)
. (S-3.91)
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S-3.10 A Dielectric Slab in Contact with a Charged
Conductor

(a) Within our approximations, the

Fig. S-3.16

electric fields are perpendicular to the
conducting surface. We choose a Carte-
sian reference frame with the origin on
the conductor surface and the x axis per-
pendicular the surface, as in Fig. S-3.16,
so that the only nonzero component of the
electric fields is their x component. We

denote by E1 the electric field field inside the dielectric slab, and by E2 the electric
field in vacuum, while the field will is zero inside the conductor.

The fields E1 and E2 can be evaluated by applying equation∇ · (εrE) = 4πke �f to
two Gaussian “pillboxes”, crossing the x = 0 and the x = h surfaces,

Fig. S-3.17

respectively, as in Fig. S-3.17.We see that
εrE is discontinuous at x = 0 surface, and
continuous at x = h:

εrE1 = 4πke σ ,

E2 = εrE1 , (S-3.92)

which lead to

E1 = 4πke
εr

σ , E2 = 4πke σ . (S-3.93)

(b) We denote by σb− and σb+ the surface polarization charge densities at x = 0
and x = h, respectively. These quantities can be calculated by applying Gauss’s law
∇ · E = 4πke(�f + �b) to the two “pillboxes” of Fig. S-3.17, and obtaining

E1 = 4πke(σ + σb−) , E2 − E1 = 4πke σb+ , (S-3.94)

introducing (S-3.92) into (S-3.94) we finally have

σb+ = −σb− =
(
1− 1

εr

)
σ = εr − 1

εr
σ . (S-3.95)

(c) In the vacuum region between the conductor and the dielectric slab the field is
E = 4πke σ = E2, independent of s. The electric field inside the dielectric slab, and
above the slab, are E1 and E2, respectively, as in the case of s = 0, thus independently
of s (Fig. S-3.18).
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Fig. S-3.18

Thenet electrostatic force on the slab is
zero, independently of s, since the forces
on the upper and lower surfaces of the slab
are exactly opposite. Further, if we evalu-
ate the electrostatic energy of the system
as the volume integral of εrE2/(8πke), we
see that also this quantity is independent
of s, within our approximations.

S-3.11 A Transversally Polarized Cylinder

We choose a cylindrical coordinate system (r,φ, z), with the cylinder axis as z axis,
and the reference plane (the plane from which the angle φ is measured) parallel to P.
We have translational symmetry along z, so that, mathematically, the problem is two-
dimensional. The surface charge polarization density of the cylinder is σ(φ) = P · n̂,
where n̂ is the outgoing unit vector perpendicular to the cylinder surface, thus

σ(φ) = P cosφ . (S-3.96)

Fig. S-3.19

Fig. S-3.20

As suggested in the hint, our transversally polar-
ized cylinder can be considered as the limit for h → 0
and �→∞ of two partially overlapping cylinders,
of volume charge density ±�, respectively. The two
cylinder axes are the straight lines x = ±h/2, both out
of paper in Fig. S-3.19. The product �h is constant,
and equals the polarization P of the original cylinder.

The electrostatic potential ϕext± (A), generated by
each charged cylinder at an external point A ≡
(r,φ, z), equals the potential of an infinite line charge
of linear charge density λ± = ±πa2�, located on the
cylinder axis,

ϕext
± (A) = ∓2keπa2� ln

(
r±
R±

)
, (S-3.97)

where

r± 	 r ∓ h

2
cosφ (S-3.98)

are the distances of A from the axes of the two cylin-
ders, see Fig. S-3.20. Quantities R± are two arbitrary
constants, such that ϕext± (r±,φ, z) = 0 on the cylin-
drical surfaces r± = R±. It is convenient to choose
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R+ = R−, so that ln(R+/R−) = 0 will cancel out in the following computations,
leaving the potential equal to zero at r = ∞. The electrostatic potential generated
by both cylinders is thus

ϕext(A) = ϕext
+ (A)+ ϕext

− (A) = 2keπa
2� ln

(
r−
r+

)
+ 2keπa

2� ln

(
R+
R−

)

	 2keπa
2� ln

[
r + (h/2) cosφ

r − (h/2) cosφ

]
= 2keπa

2� ln

[
1+ (h/2r) cosφ

1− (h/2r) cosφ

]

= 2keπa
2�

[
ln

(
1+ h

2r
cosφ

)
− ln

(
1− h

2r
cosφ

)]

	 2keπa
2�

h

r
cosφ = 2keπa

2 P cosφ

r
= 2keπa

2 P · r̂
r

, (S-3.99)

where r̂ is the unit vector of the cylindrical coordinate r . Thus, the potential of our
cylindrical electric dipole (see Problem 3.13 for a cylindrical electric quadrupole)
decreases as r−1, while the potential of the ordinary electric dipole decreases as r−2.
In Cartesian coordinates we have

ϕext(x, y, z) = 2keπa
2 Px

x2 + y2
, (S-3.100)

where the x and y axes are the ones shown in Fig. S-3.19.
The external electric field is obtained by evaluating Eext = −∇ϕext. The cylindri-

cal components are, from Table A.1 of the Appendix,

Eext
r = −∂rϕ

ext = 2keπa
2 P cosφ

r2
,

Eext
φ = −1

r
∂φϕ

ext = 2keπa
2 P sin φ

r2
,

Eext
z = −∂zϕ

ext = 0 , (S-3.101)

the field decreases proportionally to r−2, while the field of the usual electric dipole
decreases as r−3. The Cartesian components of the field are

Fig. S-3.21

Eext
x = −∂xϕ

ext = 2keπa
2P

x2 − y2

(x2 + y2)2
,

Eext
y = −∂yϕ

ext = 2keπa
2P

2xy

(x2 + y2)2
,

Eext
z = −∂zϕ

ext = 0 . (S-3.102)
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The electric field generated by each cylinder at its interior is, according toGauss’s law,
Eint± = ±2πke� r±, where r± is the distance from the respective axis, see Fig. S-3.21.
The two contributions sum up to a uniform internal field

Eint(A) = 2πke� (r+ − r−) = −2πke� h x̂ = −2πke P . (S-3.103)

The electrostatic potential inside the cylinder, in Cartesian and cylindrical coordi-
nates, is thus

ϕint = 2πke x + C = 2πke r cosφ+ C , (S-3.104)

where C is an arbitrary constant. Since the potential most be continuous, we must
have, in cylindrical coordinates,

ϕint(a,φ, z) = ϕext(a,φ, z) , (S-3.105)

which is verified if we choose C = 0.

S-3.12 Force Between a Parallel-Plate Capacitor
and a Dielectric Slab

(a) Since the dielectric-vacuum interface

Fig. S-3.22

at the x position is far from the boundaries,
the electric field inside the capacitor can be
assumed to be perpendicular to the plate
surfaces, hence parallel to the interface.
Thus the electric field is continuous across
the interface, and, referring to Fig. S-3.22,
we have E1 = E2 = E. Now, let ±σ1 and
±σ2 be the free electric charge densities on
the capacitor plates in front of the dielectric

medium and in front of vacuum, respectively. The relation σi = Di = εi Ei = εi E
(with i = 1, 2, and ε1 = ε0 εr, ε2 = ε0) leads to σ1 = εr σ2. In addition, we know
that the total charges on the plates are ±Q, respectively, which yields

bx σ1 + b(a − x) σ2 = Q , (S-3.106)

since±σ1 and±σ2 cover areas equal tobx andb(a − x), respectively.By substituting
σ1 = εr σ2, we obtain

σ2 = Q

b[(εr − 1) x + a] , (S-3.107)

and
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E = E1 = E2 = 4πkeQ

b[(εr − 1) x + a] =

⎧⎪⎪⎨
⎪⎪⎩

Q

ε0b[(εr − 1) x + a] , SI

4πQ

b[(εr − 1) x + a] , Gaussian.

(S-3.108)
In order to calculate the energy Ues of the system we can integrate over the whole
space the generalized “energy density” u = εrE2/8πke. Ifwe neglect the field outside
the capacitor, the integral can be split into the two contributions from region 1 of
volume xbh filled by the dielectric and the empty region 2 of volume (a − x)bh.
Thus we obtain

Ues =
∫

εr

8πke
E2 d3r = E2

8πke
[εrhbx + hb(a − x)]

= E2

8πke
hb [(εr − 1)x + a] . (S-3.109)

If we now insert (S-3.108) for E we obtain

Ues = 2πkehQ2

b [(εr − 1)+ a]
=

⎧⎪⎪⎨
⎪⎪⎩

hQ2

2ε0 b [(εr − 1) x + a]
, SI

2πhQ2

b [(εr − 1)+ a]
, Gaussian.

(S-3.110)

Alternatively, the capacitor can be considered as equivalent to two capacitors,
C1 and C2, connected in parallel. Its capacity is thus C = C1 + C2. Both capacitors
have separation h, C1 is filled with the dielectric material of relative permittivity εr
and its plates have surface bx , while the plates of C2 have surface b (a − x) and are
separated by vacuum. Thus we have

C1 = εr

4πke

bx

h
, C2 = 1

4πke

b (a − x)

h
, C = C1 + C2 = b [(εr − 1)x + a]

4πkeh
.

(S-3.111)
The electrostatic energy of the capacitor can be written as

Ues = Q2

2C
= 2πkehQ2

b [(εr − 1)x + a]
, (S-3.112)

in agreement with (S-3.110). Note that Ues decreases with increasing penetration
depth x . Since the capacitor and the slab constitute a closed system, the force acting
on the dielectric slab can be evaluated as
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F = −∂Ues

∂x
= 2πkehQ2(εr − 1)

b [(εr − 1) x + a]2
=

⎧⎪⎪⎨
⎪⎪⎩

hQ2(εr − 1)

2ε0b [(εr − 1) x + a]2
, SI

2πhQ2(εr − 1)

b [(εr − 1) x + a]2
, Gaussian,

(S-3.113)

Fig. S-3.23

the slab is pulled into the capacitor since
F > 0.
(b) In the case of the capacitor connected
to a battery forcing a constant poten-
tial difference V between the plates (Fig.
S-3.23), the electric field is E = V/h
and does not depend on x . Thus, if the
slab penetrates by a further amount dx ,
the dielectric medium fills the further volume dτ1 = hb dx of Fig. S-3.24, whose
contribution to the integral giving the total energy increases from E2/(8πke) dτ1
to εr E2/(8πke) dτ1 . Simultaneously, the dielectric medium frees the volume dτ2 (of
identical value as dτ1) at its external end,
where we assume the field to be negligi-
ble. Thus dτ2 does not contribute to the
variation of electrostatic energy. In all
the remaining space the field is unchang-
ed, thus the electrostatic energy variation
is Fig. S-3.24

dUes = (εr − 1) E2

8πke
dτ1 = (εr − 1)

V 2b

8πkeh
dx .

(S-3.114)
Of course the same result can be obtained by writing the electrostatic energy as

Ues = 1

2
CV 2 = b [(εr − 1)x + a] V 2

8πke h
, (S-3.115)

since now V , not Q, is constant. Differentiation with respect to x leads immediately
to Eq. (S-3.114), which can also be written as dUes = V 2 dC , where

dC = b(εr − 1)

4πke h
dx . (S-3.116)

Note that nowUes increaseswith increasing penetration depth x . However, the capaci-
tor and the slab no longer constitute a closed system, due to the presence of the battery.
The closed system is thus slab + capacitor + battery. When the capacity increases by
an amount dC , the charge on the plates increases by dQ = V dC in order to keep V
constant. The battery must perform a work
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dW = V dQ = bV 2(εr − 1)

4πke h
dx = 2 dUes (S-3.117)

at the expense of its internal energy in order to carry the charge dQ across a voltage
drop V . Thus, when the slab penetrates by a further amount dx , the electrostatic
energy of the capacitor increases by dUes, but the total energy of the closed system
changes by dUtot = −dW + dUes = −dUes. Hence the force acting on the slab is
given by

F = −∂Utot

∂x
= +∂Ues

∂x
= bV 2(εr − 1)

8πke h
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε0bV 2(εr − 1)

2h
, SI

bV 2(εr − 1)

8π h
. Gaussian,

(S-3.118)
We have again F > 0, and the slab is still pulled into the capacitor.

Fig. S-3.25

(c) According to our assump-
tions the electric field lines in
the central part of the capaci-
tor (far from the borders) are
straight line segments perpen-
dicular to the capacitor plates.
The field lines are thus perpen-

dicular also to the x axis, as shown in Fig. S-3.25. The x component of the electric
field being zero, there cannot be a local pulling force on the dielectric slab in this
central region. But close to the capacitor borders the field lines start to bend, and
outside the capacitor they are curved as approximately shown in Fig. S-3.25. Thus
they have x components which exert forces on the surface polarization charges of
the slab. The resultant of all these forces pulls the slab into the capacitor.

Alternatively, the force can be calculated by observing that the electric field
induces a volume polarization P in the dielectric slab, and the induced dipoles at
the border and outside the capacitor are subject to a non-uniform electric field. This
leads to a force density fv = (P ·∇) E, to be integrated over the slab volume. The
two computations lead to the same result.

It is interesting to note that while neglecting the border effects leads to a correct
evaluation of the pulling force, it masks the location where the force is applied.
However, our assumption on the border effects affects also our evaluation of the
energy variation, because we are assuming that the field is negligible at the far end
of the dielectric slab outside the capacitor.
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S-3.13 A Cylindrical Quadrupole

Let us denote by rn , n = 1, . . . , 4, the distance

Fig. S-3.26

of P fromwire n. Wire n has the linear charge
density (−1)nλ and generates in P the elec-
trostatic potential

ϕn(rn) = (−1)n2keλ ln

(
rn
Rn

)
, (S-3.119)

where the Rn are arbitrary constants such that
ϕn(Rn) = 0. It is convenient to choose R1 =
R2 = R3 = R4 = R0 so that the Rn cancel out
in our final expressions. With this choice the total potential ϕ =∑4

n=1 ϕn is zero at
infinity and on the two y = ±x planes. The potential in P is thus

ϕ(r,φ) = 2keλ
4∑

n=1
(−1)n ln

(
rn
R0

)
= 2keλ

4∑
n=1

(−1)n (ln rn − ln R0)

= 2keλ
4∑

n=1
(−1)n ln rn = keλ

4∑
n=1

(−1)n ln r2n , (S-3.120)

where we have used 2 ln x = ln x2, since, in the following, it is more convenient to
use r2n than rn . For the sake of clarity Fig. S-3.26 shows only the distances r1 and r2.
According to the cosine law we have

r21 = r2 + a2 − 2ar cosφ , r22 = r2 + a2 − 2ar cosα = r2 + a2 − 2ar sin φ ,

(S-3.121)
analogously we have

r23 = r2 + a2 + 2ar cosφ , r24 = r2 + a2 + 2ar sin φ . (S-3.122)

(a) For the far field, r � a, it is convenient to rewrite (S-3.121) and (S-3.122) in the
form

r21 = r2
(
1+ a2

r2
− 2

a

r
cosφ

)
, r22 = r2

(
1+ a2

r2
− 2

a

r
sin φ

)
,

r23 = r2
(
1+ a2

r2
+ 2

a

r
cosφ

)
, r24 = r2

(
1+ a2

r2
+ 2

a

r
sin φ

)
. (S-3.123)
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Equation (S-3.120) thus becomes, remembering that ln(xy) = ln x + ln y, so that all
terms ln r2 cancel out,

ϕ(r,φ) = keλ

[
− ln

(
1+ a2

r2
− 2

a

r
cosφ

)
+ ln

(
1+ a2

r2
− 2

a

r
sin φ

)

− ln

(
1+ a2

r2
+ 2

a

r
cosφ

)
+ ln

(
1+ a2

r2
+ 2

a

r
sin φ

)]

= keλ

{
ln

[(
1+ a2

r2
− 2

a

r
sin φ

)(
1+ a2

r2
+ 2

a

r
sin φ

)]

− ln

[(
1+ a2

r2
− 2

a

r
cosφ

)(
1+ a2

r2
+ 2

a

r
cosφ

)]}
. (S-3.124)

Now we expand the products inside the square brackets, disregarding the terms in
(a/r)4, obtaining

ϕ(r, φ) = keλ

[
ln

(
1+ 2

a2

r2
− 4

a2

r2
sin2 φ

)
− ln

(
1+ 2

a2

r2
− 4

a2

r2
cos2 φ

)]
. (S-3.125)

Now, since a � r , we can use the approximation ln x 	 1+ x , which leads to

ϕ(r,φ) = 4keλ
a2

r2
(
cos2 φ− sin2 φ

) = ke
4a2λ cos(2φ)

r2
. (S-3.126)

Fig. S-3.27

For the electric field in P ≡ (r,φ) we
obtain

Er = −∂φ

∂r
= ke

8a2λ cos(2φ)

r3
,

(S-3.127)

Eφ = −1

r

∂ϕ

∂φ
= ke

8a2λ sin(2φ)

r3
.

(S-3.128)
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(b) The electrostatic potential generated by the four wires close to the z axis (r � a)
is still given by (S-3.120). Fig. S-3.27 shows the distance r1 of P from wire 1.
Quantities r21 , . . . , r

2
4 are still given by (S-3.121) and (S-3.122), but now, since we

are considering r � a, it is convenient to rewrite them as

r21 = a2
(
1+ r2

a2
− 2

r

a
cosφ

)
, r22 = a2

(
1+ r2

a2
− 2

r

a
sin φ

)
,

r23 = a2
(
1+ r2

a2
+ 2

r

a
cosφ

)
, r24 = a2

(
1+ r2

a2
+ 2

r

a
sin φ

)
. (S-3.129)

Inserting (S-3.129) into (S-3.120), and proceeding analogously to point (a), we obtain

ϕ(r,φ) 	 ke
4λr2 cos(2φ)

a2
. (S-3.130)

Formally, with respect to point (a) variables a and r are simply swapped in all
formulae. For the electric field at r � a we have thus

Er = −∂φ

∂r
= ke

8λr cos(2φ)

a2
, Eφ = −1

r

∂ϕ

∂φ
= ke

8λr sin(2φ)

a2
. (S-3.131)

Figure S-3.28 shows the field lines of the cylindrical quadrupole, while Fig. S-3.29
shows the intersections of the equipotential surfaces with the z = 0 plane.

Fig. S-3.28 . Fig. S-3.29 .



Chapter S-4
Solutions for Chapter 4

S-4.1 The Tolman-Stewart Experiment

(a)The equation of motion for the “free” (conduction) electrons in a metal is, accord-
ing to the Drude model,

m
d〈v〉
dt

= F− mη 〈v〉 , (S-4.1)

where 〈v〉 is the “average” electron velocity, F is the external force on the electrons,
and mη 〈v〉 is a phenomenological friction force. In a steady state (d 〈v〉 /dt = 0) in
the presence of an external electric field E, so that F = −eE, the electrons have a
constant average velocity

〈v〉 = − e

mη
E . (S-4.2)

The current density is J = −e ne〈v〉, where ne is the volume density of free electrons.
From this we obtain the microscopic form of Ohm’s law

J = nee2

mη
E ≡ σ E . (S-4.3)

The value of the damping frequency η for copper is

η = nee2

mσ
= 8.5× 1028(1.6× 10−19)2

9.1× 10−31 × 107
	 2.4× 1014 s−1 , (S-4.4)

(m = me = 9.1× 10−31 kg).
At t = 0 the electron tangential velocity is v0 = aω. For t > 0, due to the absence

of external forces the solution of Eq. (S-4.1) is
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v = v0 e
−ηt . (S-4.5)

The total current is thus given by

I = I0 e
−ηt , I0 = −(enev0) S , (S-4.6)

and the decay time is τ = 1/η 	 4× 10−15 s.
(b) The total charge flown in the ring is

Q =
∞∫
0

I (t) dt = I0
η
= −m

e
σSv0 . (S-4.7)

Thus, measuring σ, S, v0 and Q the value of e/m can be obtained. In the original
experiment, Tolman and Stewart were able tomeasure Q using a ballistic galvanome-
ter in a circuit coupled with a rotating coil.

S-4.2 Charge Relaxation in a Conducting Sphere

(a) For symmetry reasons the electric field is radial, and it is convenient to use
a spherical coordinate system (r, θ,φ) with the origin located at the center of the
sphere. Coordinates θ and φ are irrelevant for this problem. Let us denote by q(r, t)
the electric charge contained inside the sphere r < a, at time t � 0. If we apply
Gauss’s law to the surface of our sphere we obtain

E(r, t) = ke
q(r, t)

r2
. (S-4.8)

According to the continuity equation, the flux of the current density J = σE through
our spherical surface equals the time derivative of q(r, t):

∮
J · dS = 4πr2 J (r, t) = 4πr2σE(r, t) = −∂t q(r, t). (S-4.9)

By substituting (S-4.8) into (S-4.9) we obtain

∂t q(r, t) = −4πke σ q(r, t), (S-4.10)

with solution

q(r, t) = q(r, 0) e−t/τ , where τ = 1

4πke σ
. (S-4.11)



S-4 Solutions for Chapter 241

Since at t = 0 the charge density �(r, t) is uniform all over the volume of the sphere
of radius a, we have

�(r, 0) = �0 = Q
3

4πa3
, r < a , so that q(r, 0) = Q

r3

a3
. (S-4.12)

Thus, according to (S-4.11), the density �(r, t) remains uniform over the sphere
volume (independent of r ) at any time t > 0

�(r, t) = �(t) = �0 e
−t/τ . (S-4.13)

The surface charge density qs(t) (we have already used the Greek letter σ for the
conductivity) can also be evaluated from the continuity equation, since

∂t qs(t) = +J (a, t) = σE(a, t) = ke σ
Q

a2
e−t/τ = Q

4πa2τ
e−t/τ , (S-4.14)

so that, asymptotically,

qs(∞) =
∞∫
0

∂t qs dt = Q

4πa2τ

∞∫
0

e−t/τdt = Q

4πa2
. (S-4.15)

The equation for the time evolution of the electric field inside the sphere (r < a) is

E(r, t) = ke
q(r, t)

r2
= ke Q

r

a3
e−t/τ , r < a , (S-4.16)

while the electric field is independent of time outside the sphere

E(r, t) = E(r) = ke
Q

r2
, r > a . (S-4.17)

The time constant τ = 1/(4πkeσ) is extremely short in a good conductor. For copper
we have (in SI units) σ 	 6× 107 Ω−1m−1 at room temperature, thus

τ = εθ

σ
	 8.854× 10−12

6× 107
s ∼ 1.4× 10−19 s = 0.14 as (S-4.18)

(1 as = 1 attosecond = 10−18 s: attenmeans eighteen in Danish). This extremely short
value should be not surprising, since there is no need for the electrons to travel dis-
tances even of the order of the atomic spacing within the relaxation time; a very small
collective displacement of the electrons is sufficient to reach equilibrium conditions
(see also Problem 2.1). This very short relaxation time shows that, experimentally,
it is very difficult to achieve the initial conditions of the problem.
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(b) We can easily evaluate the variation of electrostatic energy �Ues during the
charge relaxation by noticing that the electric field E(r, t) is constant outside the
conducting sphere (r > a). The electric field inside the sphere decays from the initial
profile E(r, 0) = (Q/4πεθ)(r/a3) to E(r,∞) = 0. Thus, using the “energy density”
ues = E2/(8πke) we can write

�Ues = − 1

8πke

∫

sphere

E2(r, 0) d3x = − 1

8πke

(
k2eQ

2

a3

) a∫
0

r2 4π r2 dr

= − ke
10

Q2

a
. (S-4.19)

(c) The time derivative of the electrostatic energy can be written as

∂tUes = 1

8πke
∂t

∞∫
0

E2(r, t) 4πr2 dr = 1

8πke

a∫
0

∂t E
2(r, t) 4πr2dr

= 1

8πke

a∫
0

(
−2

τ

)
E2(r, t ) 4πr2dr = − 1

4πkeτ

a∫
0

k2eQ
2 r

2

a6
e−2t/τ4πr2dr

= − ke
5τ

Q2

a
e−2t/τ = −4πk2eσQ

2

5a
e−2t/τ , (S-4.20)

where we used (S-4.16) and (S-4.17). The power loss due to Joule heating is

Pd =
∞∫
0

J · E 4πr2dr =
a∫

0

σE2(r, t) 4πr2dr

= 4πk2eσQ
2

5a
e−2t/τ , (S-4.21)

since J = σE for r < a, and J = 0 for r > a. Thus Pd = −∂tUes, and all the elec-
trostatic energy lost by the sphere during the relaxation process is turned into Joule
heat.

S-4.3 A Coaxial Resistor

(a) We use a cylindrical coordinate system (r,φ, z), with the z axis coinciding with
the common axis of the cylindrical plates. The material between the plates can be
considered as a series of infinitesimal cylindrical-shell resistors, each of internal and
external radii r and r + dr and of height h. The resistance of the cylindrical shell
between r and r + dr is
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dR = ρ
dr

S(r)
= ρ

dr

2πrh
, (S-4.22)

since dr is the “length” of our resistor, and S(r) = 2πr its “cross-sectional area”.
The resistance of the material is thus

R = ρ

2πh

b∫
a

dr

r
= ρ

ln(b/a)

2πh
. (S-4.23)

(b) The capacity of a cylindrical capacitor of radii a and b, and length h, is

C0 = h

2ke ln(b/a)
, (S-4.24)

assuming that the space between the plates is filled with vacuum. Thus, in our case
we have

R = ρ

4πke C0
. (S-4.25)

Equation (S-4.25) is actually of much more

Fig. S-4.1

general validity, and is a very good approxi-
mation for evaluating the resistance between
two electrodes of high conductivity and cal-
culable capacity immersed in a medium
of known resistivity. As an example, con-
sider two highly-conducting square plates
immersed in anohmicmedium, and connected
to a voltage source by insulated cables, as in
Fig. S-4.1. The current that flows, for instance,
from the left plate, can be written

I =
∫

J · dS = 1

ρ

∫
E · dS , (S-4.26)

where the flux is calculated through a surface enclosing the electrode, except for the
area through which the current enters it, like the cylindrical closed surface of Fig.
S-4.1. In most cases the contribution of the excluded area to the flux ofE is negligible
in an electrostatic problem, while, according to Gauss’s law, we have

∮
E · dS = 4πke Q (S-4.27)

where Q is the charge on the electrode that would produce the field E. Within the
approximation of considering the last integral of (S-4.26) as equal to the integral
through the whole closed surface, we have
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I = 4πke
ρ

Q . (S-4.28)

On the other hand, if we consider the two electrodes as the plates of a capacitor of
capacitance C0 we have

Q = C0V , (S-4.29)

where V is the potential difference between them. We thus have

I = 4πke
ρ

C0V = V

R
, (S-4.30)

from which (S-4.25) follows.

S-4.4 Electrical Resistance Between Two Submerged
Spheres (1)

(a) We start by evaluating the capacitance C0 of the two spheres in vacuum, with the
same geometry of the problem. Let the sphere of radius a carry a charge Q, and the
sphere of radius b a charge−Q. With our assumptions a � x and b � x the electric
potentials ϕa and ϕb of the two spheres are given approximately by

ϕa 	 keQ

(
1

a
− 1

x

)
and ϕb 	 keQ

(
−1

b
+ 1

x

)
, (S-4.31)

where we have assumed the potential ϕ to be zero at infinity, and have neglected the
induction effects between the two spheres, discussed in Problem 2.6. The capacitance
of the two spheres can thus be approximated as

C0 = Q

ϕa − ϕb
	 1

ke

(
1

a
+ 1

b
− 2

x

)−1
, (S-4.32)

and, according to (S-4.25), the resistance between them is

R = ρ

4πkeC0
	 ρ

4π

(
1

a
+ 1

b
− 2

x

)
, (S-4.33)

which can be further approximated to

R 	 ρ

4π

(
1

a
+ 1

b

)
, (S-4.34)

independent of the distance between x between the centers of the spheres.
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(b) In this case the resistance between the spheres is twice the value found at point
(a), since at point (a) we can introduce a horizontal plane passing through the centers
of the spheres, which divides the fluid into two equivalent halves, each of resistance
2R, so that, in parallel, they are equivalent to a resistance R. In the present case the
upper half is replaced by vacuum, so that only the resistance 2R of the lower half
remains. This problem is of interest in connection with electrical circuits that use the
ground as a return path. In this case ρ is the resistivity of the earth (of course, the
assumption thatρ is uniform is a very rough approximation). In practical applications,
the resistivity of the earth in the neighborhood of the electrodes can be decreased by
moistening the ground around them.

S-4.5 Electrical Resistance Between Two Submerged
Spheres (2)

(a) According to (S-4.32) of Problem 4.4, and remembering that now the medium
has a relative dielectric permittivity εr, the charge of each sphere is

Q 	 εr C0V = εr

ke

(
2

a
− 2

�

)−1
V = εr

ke

�

�− a

a

2
V

	 εr a

2ke

(
1+ a

�

)
V 	 εr a

2ke
V , (S-4.35)

where the last two terms are the first and the zeroth order approximations in a/�.
(b) According to (S-4.33) and (S-4.34) we have

R 	 ρ

4π

(
2

a
− 2

�

)
	 ρ

2πa
, (S-4.36)

again to the zeroth order in a/�. The current I is thus

I = V

R
= 2π a

ρ
V . (S-4.37)

This result can be checked by

Fig. S-4.2

introducing a cylindrical coor-
dinate system (r,φ, z)with the
z axis through the centers of
the two spheres and the ori-
gin O so that the sphere cen-
ters are at (0,φ,−�/2) and
(0,φ,+�/2), respectively, and
evaluating the flux of the cur-
rent density J through the
plane z = 0 (Fig. S-4.2).



246 S-4 Solutions for Chapter

I =
∫

J · dS

= 1

ρ

∞∫
0

Ez(r) 2πr dr , (S-4.38)

where

Ez(r) = 2keQ

εr

�/2

[(�/2)2 + r2]3/2 , (S-4.39)

so that

I = keQ

ρεr

∞∫
0

�r

[(�/2)2 + r2]3/2 dr =
4πke
ρεr

Q = 2πa

ρ
V . (S-4.40)

(c) Having a system equivalent to a capacitor in parallel with a resistor, we expect an
exponential decay of the charge Q, with a time constant τ = RC . The time constant is
independent of the geometry of the problem because the capacitanceC of the system
is εr C0, whereC0 is the capacitance when the medium is replaced by vacuum, while,
according to (S-4.25), the resistance is R = ρ/(4πkeC0), so that

τ = RC = εrρ

4πke
. (S-4.41)

This relations holds for any “leaky capacitor”, if the discharge occurs only through
leakage. In the present case we obtain from the continuity equation.

dQ

dt
= −I = −4πke

εrρ
Q, Q(t) = Q(0) e−t/τ , τ = εrρ

4πke
. (S-4.42)

Fig. S-4.3

(d) To the first order in a/� the
electrostatic induction effects
can be described by regard-
ing the electric field outside
the two spheres as due to
two charges ±Q located at
the centers of the spheres, and
two charges ±q = ±(a/�) Q
located at distances d = a2/�
from the centers, on the line
connecting the two centers, each toward the other sphere, as in the figure (Fig. S-4.3).
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Thus, to the first order, the potential of each sphere is 	 ±ke Q/(εr a), since the
contribution of the charge ∓Q on the other sphere is canceled by the image charge
±q present in the sphere. We have Q 	 εr aV/(2ke), while the absolute value of the
total charge on each sphere is Q + q = Q (1+ a/�). The capacitance of the system
is thus

C = Q

V
= εr a

2ke

(
1+ a

�

)
. (S-4.43)

The same result is obtained from (S-4.32) of Problem 4.4

C = εr C0 = εr

ke

(
2

a
− 2

�

)−1
= εr a

2ke

�

�− a
	 εr a

2ke

(
1+ a

�

)
, (S-4.44)

where the image charges have been disregarded, but the effect of the charge on each
sphere on the potential of the other has been taken into account.

According to (S-4.33) the resistance now becomes

R = ρ

4πkeC0
= ρ

2πa

l − a

a
, (S-4.45)

so that the time constant τ = RC = εr ρ/(4πke) is unchanged.

S-4.6 Effects of Non-uniform Resistivity

(a) We use a cylindrical coordinate system (r,φ, z), with the z axis along the com-
mon axis of the two cylinders, and the origin O on the surface separating the two

Fig. S-4.4

cylinders as in Fig. S-4.4. We denote the volume charge den-
sity byqv , since theGreek letter ρ is already used to denote the
resistivities. In a steady state we must have ∂t qv = 0 every-
where, otherwise the volume charge density would increase,
or decrease, indefinitely. Thus, according to the continuity
equation, we have also

∇ · J = −∂t qv = 0 . (S-4.46)

On the other hand, from ∇ · E = 4πke qv and J = E/ρ we
obtain

0 = ∇ · J = 1

ρ
∇ · E = 4πke

ρ
qv , (S-4.47)

showing that also the volume charge density qv must be zero
everywhere inside a conductor in stationary conditions. This
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does not exclude the presence of surface charge densities on the surfaces delimiting
a conductor.

If we assume that h � a, it follows from ∇ · J = 0 and ∇ × E = 0 that J is
uniform inside the cylinders, pointing downwards along the z direction. Since E and
J are proportional to each other inside each cylinder, it follows that also E is uniform
inside each cylinder. The current density J must be continuous through the surface
separating the two cylinders, otherwise charge would accumulate indefinitely on
the surface. Thus, J is uniform throughout the whole conductor, and the current is
I = Jπa2.

The resistances R1,2 of the two cylinders are, respectively,

R1,2 = ρ1,2
h

πa2
, (S-4.48)

leading to a total resistance R of the system

R = R1 + R2 = (ρ1 + ρ2)
h

πa2
. (S-4.49)

The current, and the current density, flowing in the system are

I = V

R
= πa2V

h (ρ1 + ρ2)
, J = V

h (ρ1 + ρ2)
. (S-4.50)

Since we have the same current density in two conductors of different resistivities,
and E = ρJ, the electric fields in the two conductors must be different, namely

E1 = ρ1 J = ρ1V

h (ρ1 + ρ2)
, E2 = ρ2 J = ρ2V

h (ρ1 + ρ2)
. (S-4.51)

(b) The surface charge density on the surface separating the two cylinders can be
evaluated from Gauss’s law

σ = 1

4πke
(E2 − E1) = 1

4πke

(ρ2 − ρ1) V

h (ρ1 + ρ2)
. (S-4.52)

Assuming that the electric field is zero above the upper base and below the lower
base of the conductor, the surface charge densities at the two bases are also obtained
from Gauss’s law as

σ1 = E1

4πke
= 1

4πke

ρ1V

h (ρ1 + ρ2)
, σ2 = − E2

4πke
= − 1

4πke

ρ2V

h (ρ1 + ρ2)
.

(S-4.53)
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S-4.7 Charge Decay in a Lossy Spherical Capacitor

(a) We use a spherical coordinate system (r, θ,φ), with the origin O at the center
of the capacitor. We have E = 0 for r < a and r > b. For symmetry reasons, the
electric field E is radial and depends on r and t only in the spherical shell a < r < b.
The flux of εrE through a spherical Gaussian surface centered in O and of radius r
is independent of r and equals

εr

∮
E(r, t) · dS = 4πke Q(t) , (S-4.54)

where Q(t) is the free charge contained in the Gaussian surface, i.e, the free surface
charge of the conducting sphere of radius a. Thus we have

E(r, t) = ke
εr

Q(t)

r2
rc . (S-4.55)

In addition to the free charge, our system contains surface polarization charges at
r = a and r = b, of values ∓Q (εr − 1)/εr , respectively. No volume polarization
charge is present, because

∇ · P = εr − 1

4πke
∇ · E(r, t) = 0 . (S-4.56)

The electric field E(r, t), in the presence of an electrical conductivity σ, gives origin
to a current density J

J = σE = σ
ke
εr

Q(t)

r2
r̂ , (S-4.57)

so that we have a total charge flux rate (electric current) through our Gaussian surface

I = dq

dt
=

∮
J · dS = 4πσke

εr
Q(t) . (S-4.58)

The charge crossing the Gaussian surface is subtracted from the free charge on the
internal conducting sphere, so that

dQ(t)

dt
= −4πσke

εr
Q(t) , (S-4.59)

leading to

Q(t) = Q0 e
−t/τ , with τ = εr

4πσke
, (S-4.60)

and the decay constant is independent of the sizes of the capacitor, in agreement with
(S-4.41).



250 S-4 Solutions for Chapter

(b) The power dissipated over the volume of the capacitor is

Pd =
∫

J · E d3x = σ

∫
E2 d3x = σ

∫ b

a

[
ke
εr

Q(t)

r2

]2

4πr2 dr

= 4π σ k2e
ε2r

Q2
0 e
−2t/τ

b∫
a

dr

r2
= 4π σ k2e (b − a)

ε2r ab
Q2

0 e
−2t/τ . (S-4.61)

The electrostatic energy of the capacitor is

Ues = 1

2

Q2(t)

C
= ke (b − a)

2εr ab
Q2

0 e
−2t/τ , (S-4.62)

so that

dUes

dt
= −ke(b − a)

τ εr ab
Q2

0 e
−2t/τ = −4πσk2e (b − a)

ε2r ab
Q2

0 e
−2t/τ = −Pd . (S-4.63)

Thus, the electrostatic energy of the capacitor is dissipated into Joule heating.

S-4.8 Dielectric-Barrier Discharge

(a) We denote by E1 and E2 the electric fields in the gas and in the dielectric layers,
respectively. Since the voltage drop between the plates is V , we must have

E1d1 + E2d2 = V . (S-4.64)

In the absence of free surface charges the normal component of εrE is continuous
through the surface separating the two layers, so that

E1 = εrE2 . (S-4.65)

Combining (S-4.64) and (S-4.65) we obtain

E1 = εrV

εrd1 + d2
, E2 = V

εrd1 + d2
. (S-4.66)

(b) In steady-state conditions the current density in the gas, J, must be zero, otherwise
the free charge on the surface separating the gas and the dielectric material would
increase steadily. Since the current density is J = E1/ρ, we must have E1 = 0. On
the other hand (S-4.64) still holds, so that E2 = V/d2.

The free charge density on the surface separating the layers is
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σ = 1

4πke
(εrE2 − E1) = εr

4πke
E2 = εr

4πke

V

d2
. (S-4.67)

(c) The continuity equation for σ and J is

∂tσ = J = E1

ρ
. (S-4.68)

From (S-4.67), now with E1 = 0 (discharge conditions), we have

E1 = εrE2 − 4πkeσ , (S-4.69)

which, combined with (S-4.64), leads to

E1 = εr

(
V

d2
− d1

d2
E1

)
− 4πkeσ , i.e., E1 = εrV

εrd1 + d2
− 4πked2

εrd1 + d2
σ .

(S-4.70)
Equation (S-4.70), substituted into (S-4.68), gives

∂tσ = − 4πked2
ρ(εrd1 + d2)

σ + εrV

ρ (εrd1 + d2)
. (S-4.71)

with solution

σ = εrV

4πked2

(
1− e−t/τ

)
, where τ = ρ (εrd1 + d2)

4πked2
. (S-4.72)

This problem shows the concept of the “dielectric-barrier discharge” (DBD). This
scheme,where the dielectric layer acts as a current limiter, is used in various electrical
discharge devices, for example in plasma TV displays, where the discharge acts as
an ultraviolet micro-source to activate the phosphors in each pixel of the screen.

S-4.9 Charge Distribution in a Long Cylindrical Conductor

(a)Aswe saw in point (a) of Problem 4.6, the volume charge density qv is zero every-
where inside our conducting cylinder, while E and J are uniform. The presence of an
electric field requires the presence of a charge distribution generating it, and, since
there cannot be volume charge densities inside a conductor in steady conditions, the

Fig. S-4.5

charges generating the fields must be
distributed on the conductor surfaces.
Consider the thin cylindrical conductor
shown in Fig. S-4.5, of radius a and
length 2h, with h � a, connected to a
voltage source V0. In this case, neglect-
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ing boundary effects, the surface charge densities σB and −σB on the two bases are
sufficient to generate the uniform electric field E inside the conductor. This leads
also to a uniform current density J = E/ρ. Neglecting the boundary effects we have

E = V0

2h
, σB = E

4πke
= V0

8πkeh
. (S-4.73)

Fig. S-4.6

But here we are dealing with the opposite case, when the
potential difference V0 is applied to the bases of a very
elongated cylinder, with h � a. Without loss of general-
ity, we assume the potential to be+V0/2 at the upper base,
and −V0/2 at the lower base. With this geometry, the sur-
face charge densities ±σB on the two bases alone cannot
generate a uniform electric field inside the whole conduc-
tor. We need another charge density σL , not necessarily
uniform, distributed on the lateral surface of the cylinder.
In order to treat the problem, we introduce a cylindrical
coordinate system (r,φ, z), with the z axis coinciding with
the axis of the cylinder, the origin O being located so that
the upper and lower bases are at z = ±h, respectively (this
is not apparent from Fig. S-4.6 for practical reasons).

Because of symmetry reasons, σL cannot depend on φ.
And it cannot be constant along the lateral surface, oth-
erwise, neglecting the boundary effects, it would generate
no field inside the conductor. Thus, σL must be a function
of z, and z only. As an educated guess, we assume that σL

is proportional to z, so that we have

σL(z) = γz , (S-4.74)

with γ a constant. This choice leads to σL(0) = 0 at z = 0, and |σL | increasing, with
opposite signs toward the upper and lower bases. Let us evaluate the electric potential
in a point P ≡ (r, 0, z), with r � h, not necessarily inside the conductor. The choice
of φ = 0 does not affect the generality of the approach because of the rotational sym-
metry around the z axis. The contribution of the charge element dq = γ z′a dφ dz′,
located on the lateral surface of the conductor at (a,φ, z′), to the potential V (r, 0, z)
is

dV = ke
dq

s
,

where s is the distance between the points (a,φ, z′) and (r, 0, z). The distance s can
be evaluated by the cosine formula,
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s =
√

(z′ − z)2 + a2 + r2 − 2ar cosφ

=
√

(z′ − z)2 + a2
(
1+ r2

a2
− 2

r

a
cosφ

)

=
√

(z′ − z2)+ a2 f (r,φ) , (S-4.75)

where we have defined

f (r,φ) =
(
1+ r2

a2
− 2

r

a
cosφ

)
. (S-4.76)

We thus have

dV = keaγz′
dφ dz′√

(z′ − z)2 + a2 f (r,φ)
, (S-4.77)

and the electric potential in P is

V (P) = keaγ

2π∫
0

dφ

h∫
−h

z′dz′√
(z′ − z)2 + a2 f (r,φ)

. (S-4.78)

In order to evaluate the integral we introduce a new variable ζ = z′ − z, so that

V (P) = ke aγ

2π∫
0

dφ

h−z∫
−h−z

(z + ζ) dζ√
ζ2 + a2 f (r,φ)

. (S-4.79)

The indefinite integrals needed in the formula are

∫
dζ√

ζ2 + b
= ln

(
2ζ + 2

√
ζ2 + b

)
, and

∫
ζ dζ√
ζ2 + b

=
√

ζ2 + b . (S-4.80)

We can split V (P) into the sum of two terms V (P) = V1(P)+ V2(P), where

V1(P) = ke aγz

2π∫
0

dφ

h−z∫
−h−z

dζ√
ζ2 + a2 f (r,φ)

= ke aγz

2π∫
0

dφ ln

[
h − z +√

(h − z)2 + a2 f (r,φ)

−h − z +√
(h + z)2 + a2 f (r,φ)

]
(S-4.81)
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and

V2(P) = ke aγ

2π∫
0

dφ

h−z∫
−h−z

ζ dζ√
ζ2 + a2 f (r,φ)

= ke aγ

2π∫
0

dφ
[√

(h − z)2 + a2 f (r,φ)−
√

(h + z)2 + a2 f (r,φ)
]

.

(S-4.82)

The square roots appearing in the integrals can be approximated as

√
(h ± z)2 + a2 f (r,φ) 	 h ± z + a2

2 (h ± z)
f (r,φ) (S-4.83)

up to the second order in a/h and r/h. The second order is needed only in the
denominator of the argument of the logarithm appearing in (S-4.81), where the first
order cancels out with −h − z. Thus, V1(P) can be approximated as

V1(P) 	 ke aγz

2π∫
0

dφ ln

{
2(h − z)

a2 f (r,φ)/[2(h + z)]
}

= 2πke aγz

2π∫
0

dφ ln

[
4(h2 − z2)

a2 f (r,φ)

]
	 2πke acz

2π∫
0

dφ ln

[
4h2

a2 f (r,φ)

]
,

(S-4.84)

while the approximation for V2(P) is

V2(P) 	 −ke aγ

2π∫
0

2z dφ = −4πke acz . (S-4.85)

The two contributions sum up to
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V (P) = V1(P)+ V2(P) 	 2πke aγz

⎧⎪⎨
⎪⎩

2π∫
0

dφ ln

[
4h2

a2 f (r,φ)

]
− 2

⎫⎪⎬
⎪⎭

= 2πke aγz

⎧⎪⎨
⎪⎩2π ln

(
h2

a2

)
+

2π∫
0

dφ ln

[
4

f (r,φ)

]
− 2

⎫⎪⎬
⎪⎭

= 2πke aγz

⎧⎪⎨
⎪⎩4π ln

(
h

a

)
+

2π∫
0

dφ ln

[
4

f (r,φ)

]
− 2

⎫⎪⎬
⎪⎭ . (S-4.86)

If h is sufficiently large, the first terms in braces is dominant, and we have

V (r, z) 	 8π2ke aγ ln

(
h

a

)
z , (S-4.87)

thus independent of r , within our approximations, as expected. Since we have
assumed V (r, h) = V0/2, we must have

V0

2
= 8π2ke aγ ln

(
h

a

)
h , (S-4.88)

which leads to

γ = V0

16π2keah ln(h/a)
and σL(z) = V0

16π2keah ln(h/a)
z . (S-4.89)

S-4.10 An Infinite Resistor Ladder

Fig. S-4.7

Let us denote by RL

the resistance mea-
sured between the ter-
minals A and B. If
a further unit of three
resistors is added to the
left of the ladder, as in
Fig. S-4.7, the “new”

resistance measured between terminals A′ and B ′ must equal the “old” resistance
RL . The “old” resistor ladder at the right of terminals A and B can be replaced by
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the equivalent resistance RL , leading to the configuration
of Fig. S-4.8. We see that the resistance between termi-
nals A′ and B ′ is the solution of

Fig. S-4.8

RL = 2R + RRL

R + RL

RRL + R2
L = 2R2 + 2RRL + RRL

R2
L − 2RRL − 2R2 = 0 , (S-4.90)

and, disregarding the negative solution, we have

RL = R
(
1+√3

)
. (S-4.91)



Chapter S-5
Solutions for Chapter 5

S-5.1 The Rowland Experiment

(a) Neglecting the boundary effects, the electric field E0 in the regions between the
disk and the plates is uniform, perpendicular to the disk surfaces, and its magnitude
is E0 = V0/h in both regions. In both regions, the field directed outwards form the
disk, according to the polarity of the source shown in Fig. 5.1. The charge densities
of the lower and upper surfaces of the disk, σ, are equal in modulus and sign, because
the field must be zero inside the disk. Thus we have σ = E0/(4πke) = V0/(4πkeh).
In SI units we haveσ = ε0V0/h, with ε0 = 8.85× 10−12, V0 = 104 V, h = 5× 10−3
m, resulting in σ = 1.77× 10−5 C/m2. In Gaussian units we have σ = V0/(4πh),
with V0 = 33.3 statV and h = 0.5 cm, resulting in σ = 5.3 statC/cm2.

Fig. S-5.1

(b) We evaluate the magnetic field
Bc at the center of the disk by divid-
ing its upper and lower surfaces into
annuli of radius r (with 0 < r <

a) and width dr . On each syrface,
each annulus carries a charge dq =
σdS = 2πσr dr . Due to the rotation
of the disk, each annulus is equiva-
lent to a coil with a current intensity
dI = ω dq/(2π), that generates at its center a magnetic field dBc = (2πkm dI/r) ω̂,
perpendicular to the disk plane (Fig.S-5.1). The total field at the center of the disk
is thus given by the integral
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Bc = 2

a∫
0

2πkm
dI

r
= 4πkmσω

a∫
0

r dr

r

= 4πkmωσa =

⎧⎪⎨
⎪⎩

μ0ω σa 	 1.4× 10−9 T SI

4π

c
ω σa 	 1.4× 10−5 G Gaussian,

(S-5.1)

where the factor of 2 in front of the first integral is due to contribution of both the
upper and the lower surfaces of the disk to the magnetic field.

The magnetic field component Br , parallel to the disk surface and close to it, can
be evaluated by applyingAmpère’s law to the closed rectangular pathC shown in Fig.
S-5.2. The path is placed at a distance r from the rotation axis,with the sides parallel to
the disk surfaces having length �� r , so that Br is approximately constant along the
sides. The contribution of the vertical paths to the line integral cancel each other, thus

Fig. S-5.2

4πkm Ic =
∮
c

B · dl 	 2Br� ,

(S-5.2)
where Ic is the current flowing
through the rectangular loop
C , and the antisymmetry of Br

with respect to the midplane
has been used. The rotation of

the disk leads to a surface current density K = σv = σωr φ̂, resulting in a total cur-
rent flowing through the rectangular loop Ic = 2K� = 2σωr�. Thus, according to
(S-5.2),

Br (r) = 2πkm Ic
�

= 2πkm
�

2σωr� = 4πkmσωr . (S-5.3)

The maximum value of Br (r) occurs at r = a, where Br (a) = Bc (Fig. S-5.1).
(c) The deviation angle of the needle is given by tan θ = B/B⊕, hence

θ 	 B

B⊕
= 2.8× 10−5 rad = 1.6× 10−3 deg . (S-5.4)

The expected angle is very small, and its measurement requires exceptional care.
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S-5.2 Pinch Effect in a Cylindrical Wire

(a) We use a cylindri

Fig. S-5.3

cal coordinate system
(r,φ, z) with the z axis
along the axis of the
cylinder (Fig. S-5.3). The
vectors J and v are along
z. If we assume J > 0
we have v < 0 since J =

−ne e v. Themagnetic fieldB is azimuthal for symmetry reasons. Its only component
Bφ(r) can easily be evaluated by applying Ampère’s circuital law to a circular closed
path coaxial with the cylinder axis, as shown in figure. We have

2πr Bφ = 4π2r2km J =
⎧⎨
⎩

μ0 πr2 J , SI

4π2r2

c
J , Gaussian,

(S-5.5)

so that
Bφ = 2πkm J r = −2πkm neev r , (S-5.6)

and Bφ > 0, since v < 0. Thus the field lines of B are oriented counterclockwise
with respect to the z axis.

The magnetic force Fm = −ebm(v × B) is radial and directed towards the z axis

Fm = −2πkmbmnee2v2 =

⎧⎪⎪⎨
⎪⎪⎩
−μ0 nee2v2

2
r , SI

−2πnee2v2

c2
r , Gaussian.

(S-5.7)

Thus themagnetic force pulls the charge carriers toward the axis of thewire, indepen-
dently of their sign. A beam of charged particles always gives origin to a magnetic
field that tends to “pinch” the beam, i.e., to shrink it toward its axis. However, if
the beam is propagating in vacuum, the Coulomb repulsion between the charged
particles is dominant. In our case, or in the case of a plasma, the medium is globally
neutral, and, initially, the positive and negative charge densities are uniform over the
medium, so that the pinch effect can be observed, at least in principle.
(b) The Lorentz force is FL = −e (E+ bm v × B). At equilibrium the r component
of FL must be zero in the presence of conduction electrons (see Problem 1.9), so that
the electrons flow only along the z axis. Thus the r component of the electric field,
Er , must be

Er = −bmvB = 2π kmbmnee v2r , (S-5.8)
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while Ez = J/σ, where σ is the conductivity of the material. According to Gauss’s
law, a charge density �, uniform over the cylinder volume, generates a field E =
2π ke � r, and the required field Er is generated by the charge density

� = kmbm
ke

nee v2 = nee
v2

c2
, (S-5.9)

independent of the system of units. On the other hand, the global charge density is
� = e (Zni − ne), so that

ne = Zni
1− v2/c2

. (S-5.10)

Thus, the electron density is uniform over the wire volume, but it exceeds the value
ne0 = Zni, corresponding to � = 0. This means that the number density of the elec-
trons is increased by a factor (1− v2/c2)−1, and � is negative, inside the wire. The
“missing” positive charge is uniformly distributed over the surface of the conductor.
(c) For electrons in a usual Ohmic conductor we have v 	 1 cm/s = 10−2 m/s,
corresponding to (v/c)2 	 10−21, and the resulting “pinch” effect is so small that
it cannot be observed. On the other hand, the effect may be strong in high density
particle beams or plasma columns, where v is not negligible with respect to c.

In order to get further insight into the size of the effect, let us consider an Ohmic
cylindrical conductor (wire) of radius a. We assume that the electron density is
increased in a central cylindrical region of radius a − d, where npinche = Zni/(1−
v2/c2), and the volume charge density is

�pinch = e (Zni − npinche ) = −e Zni v2

c2
1

1− v2/c2
< 0 , (S-5.11)

while the cylindrical shell between r = a − d and r = a is depleted of conduction
electrons, so that its charge density �surf is �surf = eZni. The thickness d of the
depleted cylindrical shell can be estimated by the constraint of charge conservation.

Fig. S-5.4

Aslice ofwire of length �must beglobally neutral, thus, assum-
ing d � a, we must have

π(a − d)2� �pinch = −2πad� �surf

π(a − d2) e Zni
v2

c2
1

1− v2/c2
= 2πadeZ ni

(a2 − 2ad + d2)
v2

c2
1

1− v2/c2
= 2ad , (S-5.12)

and, since v � c and d � a, we can approximate

a2
v2

c2
	 2ad , so that d 	 a

2

v2

c2
. (S-5.13)
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Remembering that v2/c2 is of the order of 10−21, we see that a value of d of the order
of the crystal lattice spacing (	 10−10 m) would require a wire of radius a 	 1011 m,
a remarkably large radius! (Fig. S-5.4).

S-5.3 A Magnetic Dipole in Front of a Magnetic Half-Space

(a) Analogously to Problem (3.2), we treat the vacuum half-space and the medium-
filled half-space separately, with separate educated guesses for the magnetic field
in each half-space. This in order to exploit the uniqueness theorem for the Poisson

Fig. S-5.5

equation (5.5). Our guess
for half-space 1 (x < 0) is
that the field is same as
if the magnetic medium
were removed from half-
space 2 (thus, vacuum
in the whole space), and
replaced by with respect
to the x = 0 plane, at x =

d. Our guess for half-space 2 (x > 0) is that the field is the same as if the magnetic
medium filled the whole space, and the magnetic dipole m were replaced by a differ-
ent magnetic dipole m′′, placed at the same location (Fig.S-5.5). Thus we look for
values of m′ and m′′ originating a magnetic field B1 in half-space 1, and a magnetic
field B2 in half-space 2, satisfying the interface conditions at x = 0

B1⊥(x = 0−) = B2⊥(x = 0+) , B1‖(x = 0−) = 1

μr
B2‖(x = 0+) ,(S-5.14)

The subscripts ‖ and ⊥ stand for parallel and perpendicular to the x = 0 plane,
respectively. Thus, at a generic point P ≡ (0, y, z) of the x = 0 plane, we must have

Bx (0
−, y, z) = Bx (0

+, y, z)

By(0
−, y, z) = 1

μr
By(0

+, y, z)

Bz(0
−, y, z) = 1

μr
Bz(0

+, y, z) . (S-5.15)

The field generated by a magnetic dipole m in a medium of relative magnetic per-
mittivity μr is

B(r) = km
bm

μr
3 (m · r̂) r̂ −m

r3
(S-5.16)
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where r is the distance vector directed from m to the point where we evaluate the
field, and r̂ = r/r is the unit vector along r. Note that, differently from Problem

Fig. S-5.6

(3.2), here we do not
have cylindrical symme-
try around the x axis,
because the real magnetic
dipole m is not lying
on x . It is convenient
to introduce the angles
θ = arcsin(d/r) and φ =
arctan(z/y) (Fig. S-5.6),
and write the Cartesian
components of B separately

Bx = km
bm

μr
3m cos θ sin θ

r3

By = km
bm

μr
3m cos2 θ cosφ− m

r3

Bz = km
bm

μr
3m cos2 θ sin φ

r3
, (S-5.17)

where r = √
d2 + y2 + z2. If we replace (S-5.17) into (S-5.15) and divide by

(km/bm) the boundary conditions become

3m cos θ sin θ

r3
− 3m ′ cos θ sin θ

r3
= μr

3m ′′ cos θ sin θ

r3

3m cos2 θ cosφ− m

r3
+ 3m ′ cos2 θ cosφ− m ′

r3
= 3m ′′ cos2 θ cosφ− m ′′

r3

3m cos2 θ sin φ

r3
+ 3m ′ cos2 θ sin φ

r3
= 3m ′′ cos2 θ sin φ

r3
, (S-5.18)

which can be further simplified into

m−m′ = μr m′′

m+m′ = m′′ (S-5.19)

leading to the solution

m′ = −μr − 1

μr + 1
m , m′′ = 2

μr + 1
m . (S-5.20)
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What is actually happening is that the magnetization M of the medium in the half-
space 2 generates a surfacemagnetization currentKm(0, y, z) = −M(0, y, z) · x̂/bm
on the interface plane x = 0, according to (5.17). This magnetization-current distri-
bution generates, in each half-space, the samemagnetic field that would be generated
by a magnetic dipole m′ located on the x axis in the other half-space, at a distance d
from the interface. The field due to Km adds to the field of the real dipole m, so that
an effective dipole m′′ = m+m′ is “seen” in half-space 2, and two dipoles, m and
m′, are “seen” in half-space 1.
(b) The force exerted by the magnetic half-space on m equals the force that would
be exerted on m by a real magnetic dipole m′ located at x = +d. The force between
two magnetic dipoles at a distance r from each other is

f = − km
bm

∇
[

m ·m′ − 3 (m · r̂)(m′ · r̂)
r3

]
, (S-5.21)

with, in our case, r̂ = x̂, r = 2d, and m · r̂ = m′r̂ = 0, so that the force on m is

f = − km
bm

3m2

r4

(
μr − 1

μr + 1

)
x̂ = km

bm

3m2

16 d4

(
μr − 1

μr + 1

)
x̂ . (S-5.22)

The force is repulsive (antiparallel to x̂) for μr < 1 (diamagnetic material), and
attractive (parallel to x̂) for μr > 1 (paramagnetic material). At the limit μr → 0 we
have a perfect diamagnetic material (superconductor), and m′ → m, the two dipoles
are parallel and the force is repulsive, as expected. In this casem′′ = 0, so thatH = 0
in the half-space 2, where, however, μr = 0 so that B = μ0μrH = 0. The situation
is opposite to that of a perfect conductor in electrostatics, where an electric dipole
would induce an opposite image dipole, and the force would be attractive.

At the limit of μr →∞ (perfect ferromagnetic material), we have m′ → −m,
corresponding to an attractive force, while m′′ → 0 and H → 0 inside the material.
This situation is analogous to the case of a conductor in electrostatics. Notice that B
is finite inside the material (since μrm′′ → 2m) and given by

B = km
bm

μr
3 r̂ (r̂ ·m′′)−m′′

4πr3
→ 2

3 r̂ (r̂ ·m)−m
4πr3

, (x > 0) , (S-5.23)

so that the paramagnetic material doubles the value of the magnetic field in vacuum
in the limit μr →∞.
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S-5.4 Magnetic Levitation

(a) The radial component Br of the magnetic field close to the z axis can be eval-
uated by applying Gauss’s law ∇ · B = 0 to a small closed cylinder of radius r ,
coaxial with the z axis, and with the bases at z and z +�z, as shown in Fig. S-5.7.
The flux of B through the total surface of the cylinder must be zero, thus we have

Fig. S-5.7

0 =
∮

closed
cylinder

B · dS (S-5.24)

= 2πr�zBr (r)+ πr2
[
Bz(z +�z)− Bz(z)

]
,

leading to

Br = −r
[
Bz(z +�z)− Bz(z)

]
2�z

	 − B0

2L
r (S-5.25)

(b) According to Table 5.1, the force exerted by an external magnetic field B on a
magnetic dipole m is f = (m ·∇) B. If we assume that the dipole is moving in a
region free of electric current densities, so that ∇ × B = 0, the work done on the
dipole when it performs an infinitesimal displacement dr ≡ (dx, dy, dz) is3

dW = f · dr = [
(m ·∇) B

] · dr = m · dB . (S-5.27)

For a permanent magnetic dipole this leads to the well known expression for the
potential energy of a dipole located at r

U (r) = −m · B(r) . (S-5.28)

Here, however, the magnetic dipole is not permanent. Rather, we have an induced
dipole m = αB. Thus we have

3 We have

dW = [
(m ·∇) B

] · dr =
∑
i, j

mi ∂i B j dx j =
∑
i, j

mi ∂ j Bi dx j =
∑
i

mi dBi = m · dB ,

(S-5.26)
where, as usual, x1,2,3 = x, y, z, and ∂1,2,3 = ∂x , ∂y, ∂z . We have used the property ∂i B j = ∂ j Bi ,
trivial for i = j , while the condition ∇ × B = 0 implies ∂i B j − ∂ j Bi = 0 also for i = j .
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U (r2)−U (r1) = −
r2∫

r1

m · dB = −α

r2∫
r1

B · dB = −α

2

r2∫
r1

dB2 (S-5.29)

= α

2

[
B2(r1)− B2(r2)

] = 1

2

[
m(r1) · B(r1)−m(r2) · B(r2)

]
.

and the potential energy for the induced dipole at r is written

U (r) = −1

2
m(r) · B(r) . (S-5.30)

For the present problem, this leads to

U (r) = −1

2
m(r) · B(r) = −1

2 αB2(r) = −1

2

αB2
0

L2

(
z2 + r2

4

)
. (S-5.31)

(c) The potential energy U has a minimum in the origin (r = 0, z = 0) if α < 0
(diamagnetic particle). The force is

f = −∇U = −1
2 |α|

2B2
0

L2

(
z ẑ+ r

4
r
)

. (S-5.32)

Thus, we have a harmonic force both for radial and axial displacements, with corre-
sponding oscillation frequencies

ωz =
√
|α|B2

0

ML2
, ωr = 1

2

√
|α|B2

0

ML2
. (S-5.33)

S-5.5 Uniformly Magnetized Cylinder

(a) The volume magnetization current (bound current)

Fig. S-5.8

density Jm is zero all over the cylinder volume because
the cylinder magnetization M is uniform, and Jm = ∇ ×
M/bm. For the surface magnetization current density Km

we have Km = M× n̂/bm, where n̂ is the unit vector per-
pendicular to the cylinder lateral surface, and bm is the
system dependent constant defined in (5.1). Since M and
n̂ are perpendicular to each other, we have Km = |Km| =
|M|/bm (Fig. S-5.8).
(b)Themagnetized cylinder is equivalent to a solenoidwith
nI = Km, where n is the number of coils per unit length,
and I is the electric current circulating in each coil. Thus,
at the h � R limit, the magnetic field is uniformly zero
outside the cylinder, and it is uniform and equal to
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B = 4πkm
bm

nI = 4πkm
bm

Km = 4πkm
bm

M =
{

μ0M , SI

4πM , Gaussian,
(S-5.34)

inside. The auxiliary magnetic field H is zero both inside and outside the cylinder
because

Hin =
⎧⎨
⎩

Bin

μ0
−M = 0 , SI

Bin − 4πM = 0 , Gaussian.
Hout =

⎧⎨
⎩

Bout

μ0
= 0 , SI

Bout = 0 , Gaussian.
(S-5.35)

(c) At the “flat cylinder ” limit, R � h, the cylinder is equivalent to a single coil of
radius R carrying a current I = hKm = hM/bm. Thus we have for the field at its
center

B0 = 2πkm
I

R
=

⎧⎪⎪⎨
⎪⎪⎩

μ0 I

2R
= μ0Mh

2R
, SI

2π I

cR
= 2πMh

cR
, Gaussian,

(S-5.36)

and B0 approaches zero as h/r → 0.
(d)The equivalent magnetic charge density is defined as �m = −∇ ·M, thus �m ≡ 0
inside the cylinder volume, while the two bases of the cylinder carry surfacemagnetic
charge densities σm = M · n̂ = ±M . Therefore our flat magnetized cylinder is the
“magnetostatic” equivalent of an electrostatic parallel-plate capacitor. The equiva-
lent magnetic charge “generates” the auxiliary magnetic field H, which is uniform,
and equal to H = −σm = −M , inside the volume of the flat cylinder, and zero out-
side. Thus B = μ0(H + M) is zero everywhere, more realistically zero far from the
boundaries.

S-5.6 Charged Particle in Crossed Electric and Magnetic
Fields

(a) We choose a Cartesian laboratory frame of reference xyz with the y axis parallel
to the electric field E, the z axis parallel to the magnetic field B, and the origin O
located so that the particle is initially at rest in O . The Lorentz force on the particle

f = q [E+ bmv × B]

has no z component, and the motion of the particle occurs in the xy plane. The
equations of motion are thus
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mẍ = bmqB ẏ ,

mÿ = −bmqB ẋ + qE . (S-5.37)

It is convenient to introduce two new variables x ′, and y′, such that

x = x ′ + v0 t , y = y′ , (S-5.38)

where v0 is a constant velocity, which we shall determine in order to simplify the
equations of motion. The initial conditions for the primed variables are

x ′(0) = 0 , ẋ ′(0) = −v0 ,

y′(0) = 0 , ẏ′(0) = −0 . (S-5.39)

Differentiating (S-5.38) with respect to time we obtain

ẋ = v0 + ẋ ′ , ẍ = ẍ ′ ,
ẏ = ẏ′ , ÿ = ÿ′ , (S-5.40)

which we substitute into (S-5.37), thus obtaining the following equations for the time
evolution of the primed variables

m ẍ ′ = bmqB ẏ′ ,
m ÿ′ = −bmqB v0 − bmqB ẋ ′ + qE . (S-5.41)

Now we choose the constant velocity v0 to be

v0 = E

bmB
=

⎧⎪⎪⎨
⎪⎪⎩

E

B
, SI,

E

B
c , Gaussian ,

(S-5.42)

independently of the charge and mass of the particle, so that the terms qE and
−bmqB v0 cancel each other in the second of (S-5.41). The equations reduce to

ẍ ′ = bm
qB

m
ẏ′ ,

ÿ′ = −bm qB

m
ẋ ′ , (S-5.43)

which are the equations of a uniform circular motion with angular velocity ω =
−bmqB/m = −ωc, the cyclotron frequency. The rotation is clockwise if q > 0,
counterclockwise if q < 0. Since, according to (S-5.39), ẋ ′(0) = −v0 and ẏ′(0) = 0,
the radius of the circular path is
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r = mv0

bmqB
= mE

b2mqB
2

. (S-5.44)

The time evolution of the primed variables is thus

x ′ = x ′0 + r cos(ωt + φ) = r sin(ωt) = − mE

b2mqB
2
sin

(
bmqB

m
t

)
, (S-5.45)

y′ = y′0 + r sin(ωt + φ) = r − r cos(ωt) = mE

b2mqB
2

[
1− cos

(
bmqB

m
t

)]
,

where we have chosen the constants φ = −π/2, x ′0 = 0, and y′0 = −r , in order to
reproduce the initial conditions. The time evolution of the unprimed variables is

x = E

bmB
t − mE

b2mqB
2
sin

(
bmqB

m
t

)
,

y = mE

b2mqB
2

[
1− cos

(
bmqB

m
t

)]
, (S-5.46)

and the observed motion is a cycloid, as shown in Fig. S-5.9 for a positive charge.

Fig. S-5.9 .

(b) The components of the particle velocity are

ẋ = E

bmB
− E

bmB
cos

(
bmqB

m
t

)
, ẏ = E

bmB
sin

(
bmqB

m
t

)
, (S-5.47)

thus the kinetic energy is

K = m

2

(
ẋ2 + ẏ2

) = m

(
E

bmB

)2 [
1− cos

(
bmqB

m
t

)]
, (S-5.48)

and oscillates between 0 and Kmax = 2mE2/ (bmB)2 at the cyclotron frequency. The
magnetic field exerts a force perpendicular to the particle velocity and does no work,
while the electric field does a work
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W↑ = 2rqE = 2
mE

b2mqB
2
qE = 2m

(
E

qmB

)2

= Kmax (S-5.49)

when the y coordinate of the particle moves from 0 to 2r , and a work W↓ = −W↑
when the particle moves from y = 2r to y = 0.
(c) From the results of point (a), we know that the motion of the electron will
be a cycloid starting from the negative plate, and reaching a maximum distance
2r = 2mE/(b2mqB

2) from it, where E = V/h. The condition for the electron not
reaching the positive plate is thus

2mE

b2mqB
2
= 2mV

b2mhqB
2

< h , corresponding to B >
1

bmh

√
2meV

e
, (S-5.50)

where me is the electron mass, and e the absolute value of the electron charge.

S-5.7 Cylindrical Conductor with an Off-Centered Cavity

We shall use three different coordinate systems

Fig. S-5.10

(Fig. S-5.10):

1. a Cartesian coordinate system with the z axis
coinciding with the axis of the cylindrical con-
ductor, and the x passing through the axis of
the cavity;

2. a cylindrical coordinate system (r,φ, z) shar-
ing the z axis with the Cartesian system, and
φ = 0 on the xz plane;

3. a cylindrical coordinate system (ρ,ψ, z′) with
the z′ axis coincidingwith the axis of the cavity,
and ψ = 0 on the xz plane.

According to the superposition principle, a current density J flowing uniformly
through the conducting cross section of the wire in the positive z direction is equiv-
alent to a uniform current density J, flowing through the whole circular section of
radius a, superposed to a current density −J, flowing in the negative z direction
through the the cavity. Given the current I , we have

J = I

π(a2 − b2)
, (S-5.51)

since there is no net current density flowing through the cavity. In the coordinate
system 2, the current flowing in the positive z direction (+J) through the whole
section generates an azimuthal magnetic field



270 S-5 Solutions for Chapter 5

B+ = 2πkm Jr φ̂ for r ≤ a , B+ = km
2

r
πa2 J φ̂ for r ≥ a , (S-5.52)

note that the fieldB+ outside thewire is equivalent to the field generated by an infinite
straight wire superposed to the z axis, carrying a current I ′ = I a2/(a2 − b2) > I .
In reference frame 3 the current −J flowing in the cavity generates an azimuthal
magnetic field

B− = −2πkm Jρ ψ̂ for ρ ≤ b , B− = −km 2

ρ
πb2 J ψ̂ for ρ ≥ b , (S-5.53)

again, the field B− outside the cavity is equivalent to the field generated by an
infinite wire superposed to the z′ axis, carrying a current I ′′ = −I b2/(a2 − b2). The
cylindrical coordinates of references [2] and [3] can be transformed into theCartesian
coordinates of reference through the relations

r =
√
x2 + y2

φ̂ = −x̂ sin φ+ ŷ cosφ = −x̂
y√

x2 + y2
+ ŷ

x√
x2 + y2

ρ =
√

(x − h)2 + y2

ψ̂ = −x̂ sinψ + ŷ cosψ = −x̂
y√

(x − h)2 + y2
+ ŷ

x − h√
(x − h)2 + y2

(S-5.54)

The field everywhere in the space is obtained by superposing the values of B+ and
B−. We have three regions

1. r < a, ρ < b, i.e., the region inside the cavity. Here we have

B(x, y) = 2πkm J [−x̂y + ŷx + x̂y − ŷ(x − h)]

= 2πkm Jh ŷ =

⎧⎪⎨
⎪⎩

μ0

2
Jh ŷ , SI

2π

c
Jh ŷ , Gaussian,

(S-5.55)

the field in the cavity is uniform and directed perpendicular to the plain containing
the z and z′ axes.

2. r < a, ρ > b, i.e., inside the conductor, excluding the cavity. Here we have the
field B+ = 2πkm J (−x̂y + ŷx) plus the field of a straight wire coinciding with
the z′ axis carrying a current I ′′.

3. r > a, ρ > b, i.e., the region outside the wire. Here we have the superposition
generated by a wire along the z axis, carrying a current I ′, and a wire along the
z′ axis, carrying a current I ′′.
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S-5.8 Conducting Cylinder in a Magnetic Field

(a) We us a cylindrical coordinate system (r,φ, z), with the z axis along the cylinder
axis. The centrifugal force, Fc, and the magnetic force, Fm, are both directed along
r̂ and depend on r only:

Fc = meω
2r , Fm = −ev × B0 = −eωB0r ,

|Fc|
|Fm| =

meω

eB0
	 7.2× 10−5 .

(S-5.56)
The magnetic force is dominant, and we shall neglect the centrifugal force in the
following.
(b) In static conditions the magnetic force must be compensated by an electric field
E

E = −v × B0 = −ωB0r . (S-5.57)

The existence of this electric field implies a uniform charge density

ρ = 1

4πke
∇ · E = E(r)

2πker
= − ωB0

2πke
. (S-5.58)

Since the cylinder carries no net charge, its lateral surfacemust have a charge density.

σ = −πa2hρ

2πah
= −aρ

2
= ωaB0

4πke
. (S-5.59)

Fig. S-5.11

(c) The volume charge density ρ is associated to a volume
rotational current density J(r) due to the cylinder rotation

J(r) = ρωrφ̂ = −ω2r B0

2πke
φ̂ . (S-5.60)

The contribution of J(r) to the magnetic field on the
cylinder axis, BJ , can be evaluated by dividing the cylin-
der into infinitesimal coaxial cylindrical shells between
r and r + dr (Fig. S-5.11). Each shell is equivalent to a
solenoid of radius r and product nI = J (r) dr , contribut-
ing dBJ = 4πkm J (r) dr to the field at its inside. The total

contribution of J (r) at a distance r from the axis is thus

BJ (r) = 4πkm

a∫
r

J (r ′) dr ′ = −4πkm ω2B0

2πke

a∫
r

r ′ dr ′

= −4πkm ω2B0

2πke

[
r ′2

2

]a

r

= −km
ke

ω2B0(a
2 − r2) . (S-5.61)
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Now we must add the contribution BK of the surface current density K = σωa

BK = 4πkmσωa = 4πkmωa
ωaB0

4πke
= km

ke
ω2a2B0 (S-5.62)

and the total magnetic field B1(r) due to the rotational currents is

B1(r) = BJ (r)+ BK = km
ke

ω2B0 r
2 , (S-5.63)

which is zero on the axis and reaches its maximum value at r = a−. We thus have

B1(a−)

B0
= km

ke
ω2a2 = ω2a2

c2
	 (2.1× 10−7)2 � 1 . (S-5.64)

S-5.9 Rotating Cylindrical Capacitor

(a) We use cylindrical coordinates (r,φ, z) with

Fig. S-5.12

the z axis coinciding with capacitor axis
(Fig. S-5.12). We assume ω = ω ẑ, with ω =
2π/T > 0. The surface currents due to the capac-
itor rotation are thus

K = σv = Q

2πah
ωa = Q

hT
, (S-5.65)

where σ = Q/(2πah) is the surface charge den-
sity, on the inner shell, and−K on the outer shell,
independently of a and b. Thus the two cylindri-
cal shells are equivalent to two solenoids with nI
products nI = ±K , respectively. The outer shell
gives origin to a magnetic field Bb = −4πkmK ẑ
in the region r < b, and to no field in the region

r > b. The inner shell gives origin to a field Ba = −Bb in the region r < a, and to
no field in the region r > b. The total field B = Ba + Bb is thus

B =
⎧⎨
⎩
−4πkmK ẑ = −4πkm Q

hT
ẑ , a < r < b ,

0 , r < a , r > b.
(S-5.66)

(b) The electric field is zero for r < a and r > b, while it is E(r) = r̂ 2keQ/(hr) for
a < r < b, and the force between the two shells is attractive. The electrostatic force
per unit area on, for instance, the external shell is thus
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f (e)
s = σb

E(b)

2
= −r̂

Q

2πbh

2keQ

hb
= −r̂

keQ2

πb2h2
, (S-5.67)

where σb is the surface charge density on the shell. The magnetic force per unit area
on the same shell is

f (m)
s = 1

2
σb v × B = r̂

1

2

Q

2πbh

2πb

T
4πkm

Q

hT
= r̂ 2πkm

Q2

h2T 2
, (S-5.68)

directed opposite to the electrostatic force. The ratio f (m)
s / f (e)

s on the outer shell is

f (m)
s

f (e)
s

= 2πkm
Q2

h2T 2

πb2h2

keQ2
= 1

2

km
ke

(
2πb

T

)2

= 1

2

v2
b

c2
(S-5.69)

where vb = 2πb/T is the tangential velocity of the outer shell. The ratio (S-5.69) is
thus negligibly small in all practical cases.

S-5.10 Magnetized Spheres

(a) The quickest way to obtain the solution is to exploit the analogy of the mag-
netostatic equations ∇ ×H = 0, ∇ · B = 0 with the electrostatic ones ∇ × E = 0,
∇ · D = 0 (see also Problem 5.3), along with the definitions (3.4) and (5.19). The
spatial distribution of M is the same as that of P in Problem (3.3), and the boundary
conditions for H are the same as for E. Thus from (S-3.13) we immediately obtain
that inside the sphere (r < R) the field H is uniform with constant value H(int), given
by

H(int) =

⎧⎪⎪⎨
⎪⎪⎩
−M

3
, SI ,

−4πM
3

, Gaussian .

(S-5.70)

Using (5.19) we obtain for the magnetic field inside the sphere

B(int) = 8π

3

km
bm

M =

⎧⎪⎪⎨
⎪⎪⎩

2μ0M
3

, SI ,

8πM
3

, Gaussian .

(S-5.71)

Outside the sphere the field is that of a magnetic dipole m = M(4πR3/3) located at
the center of the sphere (r = 0).
(b) Analogously to Problem 3.4 for a dielectric sphere in an external electric field,
we assume that the induced magnetization M = χmH is uniform and parallel to B0.
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The total field will be the sum of the external field B0 ≡ [μ0]H0 (with [μ0] replaced
by unity for Gaussian units) and of that generated by the magnetization. Thus, inside
the sphere H is uniform and has the value H(int) given by

H(int) =

⎧⎪⎪⎨
⎪⎪⎩

H0 − M
3
= H0 − χm

3
H(int) , SI ,

H0 − 4πM
3

= H0 − 4πχm

3
H(int) , Gaussian .

(S-5.72)

Solving for H(int) and finally using B(int) = [μ0]μrH(int) we obtain

H(int) = 3

μr + 2
H0 , B(int) = 3μr

μr + 2
B0 , (S-5.73)

independently of the system of units; it may be interesting to compare the result with
(S-3.22) for the dielectric sphere. The magnetization is given by M = χmH(int).

In the case of a perfectly diamagnetic sphere (a superconducting sphere) we have
μr = 0 and B(int) = 0, and the magnetization is

M = 3χm

2
H0 = − 3

8π

bm
km

B0 . (S-5.74)

Actually, inside the sphere the external field is completely screened by the surface
magnetization currents Km corresponding to the magnetization (S-5.74), namely

Km = 1

bm
M× r̂ = 1

bm
M sin θ φ̂ , (S-5.75)

in spherical coordinates (r, θ,φ) with the polar axis parallel to M.
It is instructive to double check the above solution by verifying the boundary

conditions at the surface of the sphere, analogously to the dielecric case of Solution
S-3.4. We choose a spherical coordinate system (r, θ,φ) with the zenith direction z
parallel to the external magnetic field B0, and the origin at the center of the sphere

Fig. S-5.13

O , as shown in Fig. S-5.13. As an educated guess,
we look for a solution where (i) the magnetic field
inside the sphere, B(int), is uniform and propor-
tional to B0, and, accordingly, (ii) the magnetiza-
tion M of the sphere, proportional to B(int), is uni-
form, and (iii) the total external field, B(ext), is the
superposition of the applied external field B0 and
of the field B(mag), generated by the sphere magne-
tization. Thus,B(mag) will be the field generated by
a magnetic dipole m = αB0 located at the center
of the sphere, with α a constant to be determined.
Summing up, we are looking for a solution
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B(int) = ψB0 ,

B(ext) = B0 + B(mag) , (S-5.76)

with ψ a further constant to be determined. B(mag) and its spherical components are

B(mag) = αB0
km
bm

[(
3

ẑ · r
r5

)
r − ẑ

r3

]
, (S-5.77)

B(mag)
r = αB0

km
bm

2 cos θ

r3
, (S-5.78)

B(mag)
θ = αB0

km
bm

sin θ

r3
, (S-5.79)

B(mag)
φ = 0 , (S-5.80)

where km/bm = μ0/(4π) in SI units, and km/bm = 1 inGaussian units. The constants
α and ψ are determined from the boundary conditions on B and B/μr at the surface
of the sphere

B(int)
⊥ (R, θ) = B(ext)

⊥ (R, θ) ,
B(int)
‖ (R, θ)

μr
= B(ext)

‖ (R, θ) , (S-5.81)

which lead to

ψB0 cos θ = B0 cos θ + B(mag)
r (R, θ) = B0 cos θ

(
1+ α

km
bm

2

R3

)
, (S-5.82)

ψ
B0

μr
sin θ = B0 sin θ − B(mag)

θ (R, θ) = B0 sin θ

(
1− α

km
bm

1

R3

)
. (S-5.83)

Dividing (S-5.82) by B0 cos θ, and (S-5.83) by B0 sin θ, we obtain

ψ = 1+ α
km
bm

2

R3
,

ψ

μr
= 1− α

km
bm

1

R3
, (S-5.84)

with solutions

ψ = 3μr

μr + 2
, α = R3 bm

km

(
μr − 1

μr + 2

)
=

⎧⎪⎪⎨
⎪⎪⎩

4πR3

μ0

(
μr − 1

μr + 2

)
, SI,

R3

(
μr − 1

μr + 2

)
, Gaussian,

(S-5.85)
which eventually lead to

B(int) = 3μr

μr + 2
B0 , m = 4πR3

3
M = R3 bm

km

(
μr − 1

μr + 2

)
B0 . (S-5.86)
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S-5.11 A Transversally Magnetized Cylinder

(a) This problem can be solved either by using the fictitious density of magnetic
charge �m = ∇ ·M, or, equivalently, the analogywith an electrically polarized cylin-
der (Problem 3.11). This approach consists in modeling the magnetized cylinder as
the superposition of two cylinders of equal radius a and opposite charge densities
±�e (or ±�m), with parallel axes displaced by δ in the y direction, so that P = �e δ
(or M = �m δ). Then we consider the limit δ → 0 and �e →∞ (or �m →∞), with
the product �e δ = P (or �m δ = M) constant. The field can thus be calculated by the
superposition of the fields of the two charged cylinders, obtaining for the two cases

E = −2πkeP =
⎧⎨
⎩
− P
2ε0

,

−2πP ,

H =
⎧⎨
⎩
−M

2
, (SI),

−2πM , (Gaussian).
(S-5.87)

Fig. S-5.14

The field B is then obtained as

B =
⎧⎨
⎩

μ0(H+M) = +μ0
M
2

, (SI ),

H+ 4πM = +2πM , (Gaussian.)
(S-5.88)

(b) The magnetization of a material is equiva-
lent to a distribution of volume current density
JM = ∇ ×M/bm and, at the surfaces of dis-
continuity, of surface current density KM =
M× n̂/bm, where n̂ is the unit vector perpendicular the surface of discontinuity, the
cylinder lateral surface in our case, see Fig. S-5.14. Since in our case the magneti-
zation is uniform we have ∇ ×M = 0, and the transversally magnetized cylinder
is equivalent to a surface current distribution KM = −ẑ K0 cosφ, with K0 = M/bm,
as shown in Fig. S-5.14. Thus, in the absence of the magnetized material, one can
produce a field B0 = B0 ŷ in the transverse (y) direction by distributing a current
K(φ) = −ẑ K0 cosφ over the cylinder lateral surface. Note: this surface current dis-
tribution is equivalent to the superposition of two cylinders of radius a, with parallel
axes displaced by a small quantity h in the x direction, carrying uniform volume cur-
rent densities of equal magnitude but opposite sign J± = ±ẑ J0, such that J0h = K0,
as shown in Fig. S-5.15a. We then take the limit h → 0, J0 →∞ with the product
J0 h = K0 constant. The cylinders carrying the positive and negative current densities
give origin to the following magnetic fields at their insides

B+ = 2πkmr+ × J , B− = −2πkmr− × J = −2πkm(r+ − h)× J , (S-5.89)

where r+ and r− are the vector distances of the field point from the axes of the
cylinders carrying the currents along ẑ and −ẑ, respectively. We have used r− =
r+ − h, see Fig. S-5.15b. The total internal field is thus



S-5 Solutions for Chapter 5 277

Fig. S-5.15 .

B0 = B+ + B− = 2πkmh× J = ŷ 2πkmK0

= ŷ 2πkm
M

bm
=

⎧⎨
⎩

μ0
M
2

, (SI),

2πM , (Gaussian).
(S-5.90)

S-5.12 A Rotating Charged Spherical Shell

(a) We use a spherical coordinate system (r, θ,φ) with ω along the polar axis z and
the origin at the center of the sphere. The rotation of the sphere with uniform surface
charge density σ generates an azimuthal surface current density

K = σv = σaω sin θ φ̂ . (S-5.91)

This surface current distribution current is analogous to that of the magnetization
current distribution (5.17) for the magnetized sphere of point (a) of Problem 5.10,

Km = 1

bm
M× r̂ = 1

bm
M sin θ φ̂ . (S-5.92)

Thus, the magnetic field generated by K of the rotating charged sphere is the same as
that generated by Km of the magnetized sphere, given by (S-5.71), with the replace-
ment M = bmσaω, namely

B = 8π

3
kmσaω =

⎧⎪⎪⎨
⎪⎪⎩

2

3
μ0σaω , (SI),

8π

3c
σaω , (Gaussian),

(S-5.93)
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Also the field outside the shell is the same as the the field generated by the uniformly
magnetized sphere of Problem 5.10 with the above substitution for M. Thus it is the
field of a magnetic dipole

m = 4π

3
a3M = bm

4π

3
a4σω , (S-5.94)

located at the center of the spherical shell.

Fig. S-5.16

(b)The solution of this problem is a little tricky as far as
the choice of the coordinate system is concerned. The
“natural” choice of a spherical coordinate system with
the polar axis z along ω would lead to both the point
where we evaluate the vector potential and the point
of the shell surface over which we integrate to have
varying θ and φ coordinates. If we want to evaluate the
vector potential A in a generic point P , no matter if
inside or outside the spherical shell, it is more conve-
nient to choose a spherical coordinate system (r, θ,φ)

with the polar axis z passing through the center of the rotating shell O and through
P , with the origin in O , as shown in Fig. S-5.16. Simultaneously we use a Cartesian
coordinate system with the origin and the z axis in common with the spherical sys-
tem, and the angular velocity ω lying in the xz plane. The angular velocity forms an
angle α with the z axis and has Cartesian coordinates

ω ≡ (ω sinα, 0,ω cosα) . (S-5.95)

The position vector of P has spherical coordinates r ≡ (r, 0, 0), where the value of
φ is, obviously, arbitrary. Equation (5.6) for the vector potential can be rewritten

A(r) = km

∫
S

K(r′)
|r − r′| dS

′ = km

π∫
0

dθ′ sin θ′
2π∫
0

dφ′
K(r′)
|r − r′| a

2 , (S-5.96)

integrated over the shell surface, K being the surface current density. The position
vector of the infinitesimal surface element dS′ ≡ a2 sin θ′dθ′dφ′ is r′ and has spher-
ical coordinates r′ ≡ (a, θ′,φ′) and Cartesian coordinates

r′ ≡ (a sin θ′ cosφ′, a sin θ′ sin φ′, a cos θ′) . (S-5.97)

According to the cosine law we have

∣∣r − r′
∣∣ = √

a2 + r2 − 2ra cos θ′ , (S-5.98)

further we have for the surface current density in Cartesian coordinates
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K(r′) = σω × r′

≡ σaω
(− cosα sin θ′ cosφ′, cosα sin θ′ cosφ′ − sinα cos θ′, sinα sin θ′ sin φ′

)
.

(S-5.99)

Thus the integral (S-5.96) is split into three Cartesian components of which both
the x and the z components, as well as the first term of the y component, are zero
because, with our choice of the coordinates,

∣∣r − r′
∣∣ is independent of φ′ and

2π∫
0

sin φ′dφ′ =
2π∫
0

cosφ′dφ′ = 0 . (S-5.100)

Thus we are left with

A(r) = −ŷ km2πσa3ω sinα

π∫
0

cos θ′ sin θ′√
a2 + r2 − 2ar cos θ′

dθ′ . (S-5.101)

We can perform the substitution ξ = cos θ′, dξ = − sin θ′dθ′, and, remembering that

∫
ξ dξ√
a + b ξ

= −2(2a − b ξ)

3b2
√
a + b ξ (S-5.102)

we have

1∫
−1

ξ dξ√
a2 + r2 − 2arξ

=
[
4a2 + 4r2 + 4arξ

12 a2r2
√
a2 + r2 − 2arξ

]+1
−1

=

⎧⎪⎪⎨
⎪⎪⎩
−2

3

r

a2
, if r < a ,

−2

3

a

r2
, if r > a .

(S-5.103)

Note that
∣∣∣√a2 + r2 − 2ar

∣∣∣ equals (a − r) if r < a and (r − a) if r > a. Noting

further that
− ŷ ωr sinα = ω × r , (S-5.104)

Equation (S-5.101) for the vector potential finally turns into

A(r) =

⎧⎪⎪⎨
⎪⎪⎩
km

4π

3
σa ω × r , if r ≤ a ,

km
4π

3r3
σa4ω × r , if r ≥ a ,

(S-5.105)
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which are independent of the choice of the reference frame. Note thatA is continuous
at r = a. The magnetic field inside the sphere is uniform and equals

B = ∇ × A = km
4π

3
σa ∇ × (ω × r) = km

8π

3
σa ω =

⎧⎪⎪⎨
⎪⎪⎩

2

3
μ0σaω , (SI),

8π

3c
σaω , (Gaussian),

(S-5.106)
in agreement with (S-5.93). Remembering that the vector potential of a magnetic
dipole m is

A = km
bm

m× r
r3

=

⎧⎪⎨
⎪⎩

μ0

4π

m× r
r3

, (SI),

m× r
r3

, (Gaussian),
, (S-5.107)

we see that the magnetic field outside the sphere is the field of a magnetic dipole of
value

m = bm
4π

3
a4σω , (S-5.108)

located at the center of the sphere, in agreement with (S-5.94).

S-5.13 Magnetic Field of a Polygonal Loop

(a) According to the Biot-Savart law given in Table 5.1

Fig. S-5.17

the contribution dB to themagnetic field of an infinites-
imal vector element d� of a circuit carrying an electric
current I in a point at a vector distance r from d� is

dB = km I
d�× r
r3

. (S-5.109)

All the sides of our polygon lie on the same plane,
as does the distance r of the center O of the poligon
from any point of the loop. Thus all the contributions
dB are perpendicular to the plane and parallel to one
another. Each side of the polygon contributes by the
same amount to the magnetic field B at O , thus we can
evaluate the contribution of a single side and multiply

the result by n. Figure S-5.17 shows the special case of one side of a square loop,
but the procedure is valid for any n. With the notation of Fig. S-5.17 the numerator
of (S-5.109) is

d�× r = ẑ r sin β d� , (S-5.110)
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where ẑ is the unit vector out of page. The magnitude of r is r = b/ cosα, where b
is the apothem of the polygon b = a cos(π/n). The magnitude of d� is

d� = d(b tanα) = a cos(π/n)
dα

cos2 α
. (S-5.111)

Thus, noting from the figure that sin β appearing in (S-5.110) equals cosα, we have
for the magnitude of the total magnetic field B at O

B = km nI

π/n∫
−π/n

cos3 α

a3 cos3(π/n)

a cos(π/n)

cosα
a cos(π/n)

dα

cos2 α
cosα

= km nI
1

a cos(π/n)

π/n∫
−π/n

cosα dα = km
2nI

a
tan(π/n) , (S-5.112)

valid for n ≥ 3, since the triangle is the simplest polygon which can exist in the
Euclidean plane.
(b) At the limit n →∞ we have

lim
n→∞ km

2nI

a
tan(π/n) = lim

n→∞ km
2nI

a

π

n
= km

2π I

a
=

⎧⎪⎪⎨
⎪⎪⎩

μ0 I

2a
, (SI),

2I

ca
, (Gaussian),

(S-5.113)
which is the magnetic field at the center of a circular loop or radius a carrying a
current I .

S-5.14 Helmholtz Coils

(a) In our coordinate system the centers of the two coils are located at z = −b and
z = +b, respectively. The magnetic field at a generic point z on the axis is thus

B(z) = ẑ 2πkm I

{
a2[

a2 + (z + b)2
]3/2 + a2[

a2 + (z − b)2
]3/2

}
, (S-5.114)

where 2πkm = μ0/2 in SI units and 2πkm = 2π/c in Gaussian units. We introduce
the dimensionless variables ζ = z/a and β = b/a, obtaining for the magnitude of B

B(ζ) = 2π km I

a

{
1[

1+ (ζ + β)2
]3/2 + 1[

1+ (ζ − β)2
]3/2

}
, (S-5.115)
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which is an even function of ζ, thus all its odd order derivatives at ζ = 0 are zero.
The function itself, at ζ = 0, is

B(0) = 4π km I

a

1(
1+ β2

)3/2 . (S-5.116)

The first derivative of (S-5.115) with respect to ζ is

∂B

∂ζ
= −6π km I

a

{
ζ + β[

1+ (ζ + β)2
]5/2 + ζ − β[

1+ (ζ − β)2
]5/2

}
, (S-5.117)

which, as expected, is zero for ζ = 0. The second derivative is

∂2B

∂ζ2
= −6π km I

a

{
1− 4(ζ + β)2[
1+ (ζ + β)2

]7/2 + 1− 4(ζ − β)2[
1+ (ζ − β)2

]7/2
}

(S-5.118)

and, for ζ = 0, we have

∂2B

∂ζ2

∣∣∣∣
ζ=0

= 6π km I

a

(
8β2 − 2

)
(
1+ β2

)7/2 . (S-5.119)

Thus, if we choose β = 1/2, corresponding to b = a/2, the second derivative of B
is zero at ζ = 0, while also the first and third derivatives are zero because they are
odd-order derivatives of an even function of ζ. If we expand the magnetic field into
a Taylor series around ζ = 0 we obtain

B(ζ) = 4π km I

a

(
4

5

)3/2

+ 1

4!
∂4B

∂ζ4
ζ4 + · · · . (S-5.120)

A plot of B versus ζ is shown in Fig. S-5.18, where the two vertical bars at ζ = ±0.5
represente the positions of the two coils.

Fig. S-5.18 .
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Helmholtz coils are commonly used for generating nearly uniform magnetic fields
or to compensate the Earth’s magnetic field in experiments where the absence of
magnetic fields is required.

Fig. S-5.19

(b) Because of symmetry our magnetic field has only
the longitudinal component Bz and the radial com-
ponent Br , both independent of φ. We introduce the
further dimensionless variable ρ = r/a. We consider
a small closed cylindrical surface of radius ρ and
height dζ, coaxial with the system, as shown in Fig.
S-5.19. The flux Φ of the magnetic field through the
surface must be zero because of Maxwell’s equation
∇ · B = 0. This corresponds to

0 	 2πρ dζ Br + πρ2Bz(ζ + dζ)− πρ2Bz(ζ)

	 2πρ dζ Br + πρ2
∂Bz

∂ζ
dζ , (S-5.121)

which leads to

Br (ρ, ζ) 	 −ρ

2

∂Bz

∂ζ
= 3π km ρ I

a

{
ζ + β[

1+ (ζ + β)2
]5/2 + ζ − β[

1+ (ζ − β)2
]5/2

}
,

(S-5.122)
where we have substituted (S-5.117) for ∂Bz/∂ζ, (S-5.122) is valid for ρ� 1. If
we expand Br (ρ, ζ) into a power series of ζ around ζ = 0 we note that (S-5.122) is
an odd function of ζ, thus only odd powers of ζ will appear in the expansion. The
first derivative of (S-5.122) is proportional to (S-5.118) which, with our choice of β,
vanishes at ζ = 0. Thus we have

Br (ρ, ζ) 	 1

3!
∂3Br (ρ, ζ)

∂ζ3

∣∣∣∣
ρ=0, ζ=0

ρ ζ3 . (S-5.123)



Chapter S-6
Solutions for Chapter 6

S-6.1 A Square Wave Generator

(a) The motion is periodic, and we choose the origin of time, t = 0, at an instant
when the coil surface is completely in the x � 0 half of the xy plane. With this
choice, the flux of themagnetic field through the coil,Φ(t), increases with timewhen
2nπ < ωt < (2n + 1) π, with n any integer, and equalsΦ(t) = B(ωt mod 2π) a2/2.
Here, x mod y stands for the remainder of the division of x by y with an integer

Fig. S-6.1

Fig. S-6.2

quotient. When (2n + 1) π < ωt <
(2n + 2) π, the flux decreases
with time and equals Φ(t) =
B

[
2π − (ωt mod 2π)

]
a2/2. The

electromotive force in the coil, E(t),
is thus

E(t) = −bm dΦ(t)

dt
(S-6.1)

= −bm Ba2ω

2
sign[π − (ωt mod 2π)] ,

where sign(x) = x/|x | is the sign
function. Thus, E reverses its sign
whenever ωt = nπ, with n any inte-
ger. The current circulating in the
coil is I = E/R, and, as shown in
Fig. S-6.1, both E and I are square
waves of period T = 2π/ω, and
amplitudes
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E0 = bm
Bωa2

2
, I0 = bm

Bωa2

2R
. (S-6.2)

(b) The external torque applied to the coil in order to keep its angular velocity
constant must balance the torque exerted by the magnetic forces. The magnetic
force on a current-carrying circuit element d� is df = bm I d�× B, and is different
from zero only in the x < 0 half plane. The corresponding torque dτ = r × df =
b2m Ir × (d�× B), where r is the distance of the coil element d� from the z axis, is
always equal to zero on the circumference arc of the coil because the three vectors
of the triple product are mutually perpendicular here. Thus, dτ is different from
zero only on the half of the straight part of the coil inside the magnetic field, where
d� = dr. Here we have dτ = −b2m I0r B dr ẑ, as shown in Fig. S-6.2, and the total
torque on the coil, τ , is

τ =
∫

dτ = −b2m ω
B2a2

2R
ẑ

a∫
0

r dr = −b2m ω
B2a4

4R
ẑ , (S-6.3)

corresponding to a power dissipation

Pdiss = −τ · ω = b2m ω2 B2a4

4R
= RI 20 , (S-6.4)

that equals the power dissipated by Joule heating. The power dissipation is constant
in time, neglecting the “abrupt” transient phases at t = nπ/ω, where I instantly
changes sign. Thus, the external torque must provide the power dissipated by Joule
heating.
(c) If we take the coil self-inductance L into account, the equation for the current in
the coil becomes

E(t)− L
d I

dt
= RI , (S-6.5)

where E(t) is the electromotive force (S-6.1), due to the flux change of the external
field only. However “small” L may be, its contribution is not negligible because, if I
were an ideal square wave, its derivative dI/dt would diverge whenever t = nπ/ω
(instantaneous transition between −I0 and +I0). The general solution of (S-6.5) is,
taking into account that E(t) is constant over each half-period,

I = E
R
+ K e−t/t0 , (S-6.6)
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Fig. S-6.3

where t0 = L/R is the characteristic
time of the loop, and K is a con-
stant to be determined from the ini-
tial conditions. If L is small enough,
we can assume that at time t = 0−
we haveE(t) = +E0 and I (t) = +I0.
At time t = 0, E(t) switches instan-
taneously from +E0 to −E0, and the
constant K is determined by the ini-
tial condition I (0) = I (0−) = I0 =
E0/R, leading to K = 2E0/R. Thus,

for 0 < t < π/ω,
I (t) = I0 (2e−t/t0 − 1) . (S-6.7)

At t = (π/ω)−wehaveE(t) = −E0 andwe can assume that I (t) = −I0. At t = π/ω
E(t) switches instantaneously from−E0 to+E0, and, for π/ω < t < 2π/ω, we have

I (t) = −I0 (2e−(t−π/ω)/t0 − 1) , (S-6.8)

and so on for the successive periods.

Fig. S-6.4

The self-inductance of the coil
prevents the current from switch-
ing instantaneously between +I0 and
−I0: the change occurs following an
exponential with characteristic time
t0 = L/R. The behavior described by
(S-6.7) and (S-6.8) is valid only if
t0 � T = 2π/ω, as in Fig. S-6.3, rep-
resenting the case of t0 = 0.04 T . If t0
is not negligible with respect to T , the
current oscillates between two values
+IM and −IM , with IM < I0. Let us consider the time interval 0 ≤ t ≤ π/ω. We
must have I (0) = IM and I (π/ω) = −IM . Replacing I by (S-6.6), we obtain

IM = I0
1− e−T/2t0

1+ e−T/2t0
. (S-6.9)

The plot of I (t) can no longer be approximated by a square wave, as shown in Fig.
S-6.4 for the case t0 = 0.25 T .
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S-6.2 A Coil Moving in an Inhomogeneous Magnetic Field

(a) With our assumptions, the flux of the magnetic field through the coil can be
approximated as

ΦB(t) = ΦB[z(t)] 	 πa2B0
z(t)

L
= πa2B0

z0 + vt

L
, (S-6.10)

where z0 is the position of the center of the coil at t = 0. The rate of change of this
magnetic flux is associated to an electromotive force E, and to a current I = E/R
circulating in the coil

E = RI = −bm dΦ

dt
= −bm πa2B0

v

L
. (S-6.11)

(b) The power dissipated by Joule heating is

P = RI 2 = E2

R
= b2m

(πa2B0 v)2

L2R
. (S-6.12)

Thus, in order to keep the coil in motion at constant speed, one must exert an external
force fext on the coil, whose work compensates the dissipated power. We have

fext · v = P = b2m
(πa2B0 v)2

L2R
, (S-6.13)

and the coil is submitted to a frictional force proportional to its velocity

ffrict = −fext = −b2m
(πa2B0)

2

L2R
v . (S-6.14)

(c) The force ffrict is actually the net force obtained by integrating the force dffrict =
bm I d� × B acting on each coil element d�:

ffrict = bm I
∮
coil

d�× B . (S-6.15)

Fig. S-6.5

The contribution of the z component of B
is a radial force tending to shrink the coil if
∂tΦ > 0, or to widen it if ∂tΦ < 0, accord-
ing toLenz’s law; the case represented inFig.
S-6.5 corresponds to the latter case. Thus fext,
directed along z, is due only to the radial
component Br of B. The component Br is
not given by the problem, but, as we saw at
answer (a) of Problem 5.4, it can be evalu-

ated by applying Gauss’s law to a closed cylindrical surface of radius r and height
�z. According to (S-5.25)
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Br 	 − B0

2L
r , thus dffrict = bm I d�

B0 a

2L
ẑ , (S-6.16)

and by substituting (S-6.11) and integrating over the coil we obtain

ffrict = ẑ bm I
∮
coil

d�
B0 a

2L
= −ẑ bm

(
bmπa2B0

v

L

)(
2πa

B0 a

2L

)
= −ẑ b2m

(πa2B0)
2

L2R
v ,

(S-6.17)
in agreement with (S-6.14).

S-6.3 A Circuit with “Free-Falling” Parts

(a) We choose the x axis oriented downwards, with the origin at the location of the
upper horizontal bar, as in Fig. S-6.6. The current I in the rectangular circuit is

I = E
R
= −bm 1

R

dΦ(B)

dt
= −bm Ba

R

dx

dt
= −bm Bav

R
, (S-6.18)

where x is the position of the falling bar, and v = ẋ its velocity. The velocity is
positive, and the current I is negative, i.e., it circulates clockwise, in agreement with
Lenz’s law. The magnetic force on the falling bar is fB = bmBaI x̂, antiparallel to
the gravitational force mg, and the equation of motion is

m
dv

dt
= mg + bmBaI = mg − b2m

(Ba)2

R
v. (S-6.19)

Fig. S-6.6

The solution of (S-6.19), with the initial condition v(0) = 0,
is

v(t) = vt
(
1− e−t/τ

)
(S-6.20)

where

τ = mR

(bmBa)2
and vt = gτ = mRg

(bmBa)2
. (S-6.21)

As t →∞, the falling bar approaches the terminal velocity
vt .
(b) When v = vt , the power dissipated in the circuit by Joule
heating is

PJ = RI 2t =
(bmBavt )

2

R
=

(
mg

bmBa

)2

R , (S-6.22)
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where It = −bmBavt/R is the “terminal current”. On the other hand, the work done
by the force of gravity per unit time is

PG = m g · vt = mg
mgR

(bmBa)2
= PJ , (S-6.23)

in agreement with energy conservation for the bar moving at constant velocity.

Fig. S-6.7

(c)When both horizontal bars are falling, we denote by x1 the
position of the upper bar, and by x2 the position of the lower
bar, as in Fig S-6.7, with v1 = ẋ1 and v2 = ẋ2. The current I
circulating in the circuit is

I = E
R
= −bm 1

R

dΦ(B)

dt
= −bm Ba

R

d

dt
(x2 − x1)

= −bm Ba

R
(v2 − v1), (S-6.24)

circulating counterclockwise (I > 0) if v1 > v2, and clock-
wise (I < 0) if v1 < v2. The magnetic forces acting on the
two falling bars are fB1 = −bmBaI x̂ and fB2 = bmBaI x̂,
respectively. Independently of the sign of I , we have fB1 =
−fB2 , so that the net magnetic force on the system comprising
the two falling bars is zero. The equations of motion are thus

m
dv1
dt
= mg + b2m

(Ba)2

R
(v2 − v1) (S-6.25)

m
dv2
dt
= mg − b2m

(Ba)2

R
(v2 − v1) , (S-6.26)

with the initial conditions v1(0) = v0 and v2(0) = 0. The sum of equations (S-6.25)
and (S-6.26) is

d

dt
(v1 + v2) = 2g , with solution

v1 + v2

2
= v0

2
+ gt , (S-6.27)

meaning that the center of mass of the two horizontal bars follows a free fall, inde-
pendent of the magnetic field B. On the other hand, the difference of Eqs. (S-6.25)
and (S-6.26) is

d

dt
(v1 − v2) = −2

τ
(v1 − v2) , with solution v1 − v2 = v0 e

−2t/τ , (S-6.28)

where τ = mR/(bmBa)2. For the velocities of the two horizontal bars we obtain
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v1 = v0

2

(
1+ e−2t/τ

)+ gt , v2 = v0

2

(
1− e−2t/τ

)+ gt . (S-6.29)

At the steady state limit (t � τ ) we have
lim
t→∞ v1 = lim

t→∞ v2 = v0

2
+ gt and lim

t→∞ I = 0 , (S-6.30)

since, for v1 = v2, the flux of B through the loop is constant.

S-6.4 The Tethered Satellite

(a) To within our approximations, we can assume that the magnetic field is constant
over the satellite orbit, and equal to the field at the Earth’s equator, Beq 	 3.2×
10−5 T. The field is parallel to the axis of the satellite orbit, and constant over the
tether length. The electromotive force E on the tether equals the line integral of the
magnetic force along the wire,

E = bm

∫
tether

d� · v(r)× Beq = bm

R⊕+h−�∫
R⊕+h

dr ωr Beq , (S-6.31)

where ω = v/r is the angular velocity of the satellite. To within our approximations
we can also assume that also v(r) 	 v(R⊕) 	 8 000m/s is constant over the wire
length, and obtain

E 	 bmv �Beq =

⎧⎪⎨
⎪⎩
8 000× 1 000× 3.2× 10−5 	 250V , SI,

1

c
× 8× 105 × 105 × 0.32 	 0.85 statV , Gaussian.

(S-6.32)
(b) Neglecting the resistance of the ionosphere, the current I circulating in the wire,
and the corresponding power dissipated by Joule heating Pdiss are, respectively,

I = E
R
= bm

v �Beq

R
, and Pdiss = RI 2 = b2m

v2�2B2
eq

R
. (S-6.33)

The power dissipated in the tether by Joule heating must equal minus the work done
by the magnetic force on the wire. This can be easily verified, since the magnetic
force acting on the wire is

F = bm I� r̂ × Beq = −b2m
B2
eq�

2

R
v , (S-6.34)

and the corresponding work rate is
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P = F · v = −b2m
B2
eq�

2

R
v2 = −Pdiss . (S-6.35)

If we assume that the tether is a copper wire (conductivity σ 	 107 Ω−1m−1 SI,
σ 	 9× 1016 s−1 Gaussian) of cross sectionA=1cm2, themagnitude of themagnetic
drag force on the system is

Fdrag = b2m
B2
eq�

2

�/(σA)
v =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(3.2× 10−5)2 × 1000

1/(107 × 10−4) × 8 000 	 8.2N , SI

1

c2
(0.32)2 × 105

1/(9× 1016)
× 8× 105 	 8.2× 105 dyn , Gaussian.

(S-6.36)

This problem gives an elementary description of the principle of the “Tethered
Satellite System”, investigated in someSpaceShuttlemissions as a possible generator
of electric power for orbiting systems.

S-6.5 Eddy Currents in a Solenoid

(a) We choose a cylindrical coordinate system (r,φ, z), with the solenoid axis as z
axis. A time-dependent current generates a time-dependent magnetic field, which, in
turn, induces a time-dependent contribution to the electric field. The induced electric
field is associated to a displacement current density, and, in a conductor, also to a
conduction current density J = σE. Both current densities, in turn, affect the mag-
netic field. According to our symmetry assumptions, the only non-zero component
of the magnetic field is Bz , and the only non-zero component of the electric field is
Eφ, therefore the only non-zero component of the conduction current density is Jφ.
Both Bz and Eφ depend only on r . In principle, we must solve, for r < R, the two
following simultaneous equations, obtained from the two Maxwell equations (6.1)
and (6.5) writing the curls in cylindrical coordinates (see Table A.1 of the Appendix),

1

r
∂r (r Eφ) = −bm ∂t Bz , (S-6.37)

−∂r Bz = 4πkm σEφ + km
ke

∂t Eφ . (S-6.38)

Solving the simultaneous differential equations (S-6.37) and (S-6.38) is somewhat
involved. However, if the angular frequency ω of the driving current is low enough,
the slowly varying current approximation (SVCA) provides a sufficiently accurate
solution of the problem.

In the SVCA,firstwe neglect the displacement current compared to the conduction
current, i.e., we neglect the last term on the right-hand side of (S-6.38). Then, we
start by calculating B as in the static case. Neglecting boundary effects, a DC current
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I would generate a uniform magnetic field B = ẑ 4πkm μrnI inside our solenoid,
and B ≡ 0 outside. Thus, inside the solenoid, we would have B = ẑ μ0 μrnI in SI
units, and B = ẑ 4πμrnI/c in Gaussian units. If we replace I by I0 cosωt we obtain

B(0) = ẑ 4πkm μrnI0 cosωt , (S-6.39)

which we assume as our zeroth-order approximation for the field inside the solenoid.
In the next step of SVCA, we evaluate the first order correction by calculating the
electric field E(1)induced by (S-6.39), and its associated current densities. These

Fig. S-6.8

current densities, in turn, contribute to the first order
correction to the magnetic field. A posteriori, our
procedure will be justified if the first order correc-
tion to the magnetic field, B(1), is much smaller
than B(0). And so on for the successive correction
orders. According to Faraday’s law of induction,B(0)

induces an electromotive force

E(1)(r) = −bm dΦ(B(0))

dt
(S-6.40)

on a circle of radius r < R, coaxial to the solenoid
(Fig. S-6.8). This corresponds to an azimuthal electric field E(1) of magnitude

E(1)(r) = kmbm 2πμrrnI0 ω sinωt φ̂ =

⎧⎪⎨
⎪⎩

μ0μr

2
rnI0ω sinωtφ̂ , SI,

1

c2
2πμrrnI0 ω sinωt φ̂ , Gaussian.

(S-6.41)
(b) Due to the conductivity σ of the solenoid core, the electric field E(1)(r) originates
an azimuthal current density J(1)(r) = σE(1)(r) (eddy currents) in the material. The
corresponding Joule dissipation heats up the material. The energy turned into heat
per unit volume at each instant t is

J(1)(r) · E(1)(r) = σ
[
E (1)(r)

]2 = σ (kmbm 2πμrrnI0 ω sinωt)2 , (S-6.42)

with a time average

〈
J(1)(r) · E(1)(r)

〉 = 2σ(kmbm πμrrnI0 ω)2 . (S-6.43)

The total dissipated power is found by integrating (S-6.43) over the volume of the
cylindrical core
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Pd =
∫

cylinder

〈
J(1)(r) · E(1)(r)

〉
d3x = 2σ (kmbm πμrnI0 ω)2

R∫
0

r2� 2πrdr

= σπ�
(
kmbm πμrnI0 ωR2

)2 =
⎧⎪⎪⎨
⎪⎪⎩

σμ2
0μ

2
r

16
πn2 I 20 ω2�R4 , SI,

1

c4
π3σμ2

r n
2 I 20 ω2�R4 , Gaussian.

(S-6.44)

(c) The induced current density J(1)(r) = σE(1)(r) generates a magnetic fieldB(1)(r)
in the cylindrical volume enclosed by the surface of radius r . Each infinitesimal
cylindrical shell between r and r + dr behaves like a solenoid or radius r (Fig.
S-6.9), generating a magnetic field whose value is obtained by replacing the product
nI by the product J (1)(r) dr . Thus, the contribution to the magnetic field in r of the
infinitesimal shell is

Fig. S-6.9

dB(1)
int (r) = ẑ 4πkmμrσE

(1)(r) . (S-6.45)

Also all infinitesimal cylindrical shells between r ′
and r ′ + dr ′, with r < r ′ < R, contribute to the field
in r , and the resulting first-order correction to the
field in r is

B(1)(r) =
R∫

r

dB(1)
int (r) = 4πkmμrσ

R∫
r

E(1)(r ′) dr ′ .

(S-6.46)
If we replace (S-6.41) into (S-6.46) we obtain

B(1)(r) = 8π2k2mbmμ2r σnI0ω sinωt

R∫
r

r ′ dr ′ = ẑ 4π2k2mbm μ2r σnI0 (R2 − r2) ω sinωt

=

⎧⎪⎪⎨
⎪⎪⎩

ẑ
1

4
μ20 μ2r σnI0 (R2 − r2) ω sinωt , SI,

ẑ
4π2

c3
μ2r σnI0 (R2 − r2) ω sinωt , Gaussian.

(S-6.47)

Thus, B(1)(r) is maximum for r = 0, where all infinitesimal cylindrical shells con-
tribute, and zero for r = R. Our treatment is justified if B(1)(0)� B(0) for all r < R
and for all t , i.e., if 〈

B(1)(0)
〉

〈
B(0)

〉 = π kmbm μrσω R2 � 1 , (S-6.48)
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where the angle brackets denote the average over time. This gives the condition on
ω

ω � 1

π kmbm μrσR2
=

⎧⎪⎪⎨
⎪⎪⎩

4

μ0 μrσR2
, SI,

c2

πμrσR2
, Gaussian.

(S-6.49)

Thus, for materials with a high value of the product μrσ, the frequency must be
very low. For instance, iron has a relative magnetic permeability μr 	 5 000, and a
conductivity σ 	 107 Ω−1m−1 in SI units. Assuming a solenoid with R = 1cm, we
obtain the following condition on the frequency ν of the driving current

ν = ω

2π
� 4

8π2 × 10−7 × 5× 103 × 107 × 10−4
	 0.10Hz , (S-6.50)

which is a very low value. Iron is a goodmaterial as the core of an electromagnet, due
to its high magnetic permeability, but a poor material as the core of a transformer or
of an inductor, due to its high conductivity, which gives origin to high eddy-current
losses. On the other hand, manganese-zinc ferrite (a ceramic compound containing
iron oxides combined with zinc and manganese compounds) also has a relative
magnetic permeability μr 	 5000, but a much lower conductivity, σ 	 5 Ω−1m−1.
The condition on the frequency of the driving current is thus

ν � 4

8π2 × 10−7 × 5× 103 × 5× 10−4
	 2× 105 Hz , (S-6.51)

and ferrite is used in electronics industry tomake cores for inductors and transformers,
and in various microwave components.

It is also instructive to compare the energy dissipated per cycle, Udiss = (2π/

ω)Pdiss, to the total magnetic energy stored in the solenoid,

UM =
〈
bm

(
B(0)

)2
2kmμr

〉
πR2� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈(
B(0)

)2
2μ0μr

〉
πR2� , SI,

〈(
B(0)

)2
8πμr

〉
πR2� , Gaussian.

(S-6.52)

The ratio is

Udiss

UM
	 π

4
kmbm μrσωR2. (S-6.53)

Thus, the condition (S-6.49) is also equivalent to the requirement that the energy loss
per cycle due to Joule heating is small compared to the total stored magnetic energy.
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S-6.6 Feynman’s “Paradox”

(a) Themutual inductance M between the charged ring and the superconducting ring
is, assuming a � R (see Problem 6.12),

M = 4πkmbm
πa2

2R
. (S-6.54)

Thus,when a current I (t) is circulating in the smaller ring of radiusa, themagnetic
flux through the charged ring is

ΦI = MI (t) = 4πkmbm
πa2

2R
I (t) . (S-6.55)

If ΦI is time-dependent, it gives origin to an induced electric field EI , whose line-
integral around the charged ring is

∮
EI · d� = −bm dΦI

dt
= −4πkmb2m

πa2

2R
∂t I (t) . (S-6.56)

Due to the symmetry of our problem, field EI is azimuthal on the xy plane, and
independent of φ. Its magnitude on the charged ring is thus

EI = 1

2πR

∮
EI · d� = −kmb2m

πa2

R2
∂t I (t) , (S-6.57)

and the force exerted on an infinitesimal element d� of the charged ring is

df = EIλ d� = −φ̂ kmb
2
m

πa2

R2
λ d� ∂t I (t) , (S-6.58)

corresponding to a torque dτ about the center of the ring

dτ = r × df = −ẑ kmb2m
πa2

R
λ d� ∂t I (t) . (S-6.59)

The total torque on the charged ring is thus

τ =
∫

dτ = −ẑ kmb2m
πa2

R
λ 2πR ∂t I (t) = −ẑ kmb2m

πa2

R
Q ∂t I (t) , (S-6.60)

where Q = 2πRλ is the total charge of the ring. The equation of motion for the
charged ring is thus

mR2 dω

dt
= τ = −kmb2m

πa2

R
Q ∂t I (t) , (S-6.61)
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where mR2 is the moment of inertia of the ring. The solution for ω(t) is

ω(t) = −kmb2m
πa2

mR3
Q

t∫
0

∂t I (t
′) dt ′ = kmb

2
m

πa2

mR3
Q

[
I0 − I (t)

]
, (S-6.62)

and the final angular velocity is

ωf = kmb
2
m

πa2

mR3
Q I0 =

⎧⎪⎪⎨
⎪⎪⎩

μ0a2Q

4mR3
I0 , SI,

πa2Q

c3mR3
I0 , Gaussian,

(S-6.63)

corresponding to a final angular momentum

L f = mR2ωf = kmb
2
m

πa2Q

R
I0 =

⎧⎪⎪⎨
⎪⎪⎩

μ0a2Q

R
I0 , SI,

πa2Q

c3R
I0 , Gaussian,

(S-6.64)

independent of the mass m of the ring.
(b) The rotating charged ring is equivalent to a circular loop carrying a current
Irot = Qω/2π. Thus, after the current in the small ring is switched off, there is still
a magnetic field due to the rotation of the charged ring. The final magnetic field at
the center of the rings is

Bc = ẑ
km
2

Irot
R
= ẑ

km
4π

Qωf

R

= ẑ
k2mb

2
ma

2Q2

4mR4
I0 =

⎧⎪⎪⎨
⎪⎪⎩

ẑ
μ2
0a

2Q2

64π2mR4
I0 , SI,

ẑ
a2Q2

4c4mR4
I0 , Gaussian,

(S-6.65)

parallel to the initial field B0 = ẑ km I0/(2a), in agreement with Lenz’s law. We
further have

πa2Bc = MIrot , (S-6.66)

where M is the mutual inductance of the rings (S-6.54).
(c) As seen above at point (b), the rotating charged ring generates a magnetic field all
over the space. This field modifies the magnetic flux through the rotating ring itself,
giving origin to self-induction. Let L be the “self-inductance” of the rotating ring.
The magnetic flux generated by the rotating ring through itself is

Φrot = 1

bm
L Irot = 1

bm
L Qω

2π
. (S-6.67)
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Correspondingly, (S-6.56) for the line integral of the electric field around the charged
ring is modified as follows:

∮
EI · d� = −bm

(
dΦI

dt
+ dΦrot

dt

)
= −4π2kmb2ma

2

2R
∂t I −L Q

2π

dω

dt
. (S-6.68)

The torque on the ring becomes

τ = −ẑ
(
kmb2mπa2Q

R
∂t I +L Q2a2

2π

dω

dt

)
, (S-6.69)

and the equation of motion (S-6.61) becomes

mR2 dω

dt
= −kmb2mπa2Q

R
∂t I −L Q2a2

2π

dω

dt
,

or (
mR2 +L Q2a2

2π

)
dω

dt
= −kmb2mπa2Q

R
∂t I , (S-6.70)

which is equivalent to (S-6.61) if we replace the mass of the charged ring by an
effective value

meff = m +L Q2a2

2πR2
. (S-6.71)

Thus we obtain for the dependence of ω on I (t)

ω(t) = kmb
2
m

πa2Q

meff R3

[
I0 − I (t)

]
, (S-6.72)

and for its final value

ωf = kmb
2
m

πa2Q

meff R3
I0 , (S-6.73)

corresponding to a final angular momentum

L f = mR2ωf = kmb
2
m

πa2Q

R +La2Q2/(2πmR)
I0

=

⎧⎪⎪⎨
⎪⎪⎩

μ0

4π

πa2Q

R +La2Q2/(2πmR)
I0 , SI,

1

c3
πa2Q

R +La2Q2/(2πmR)
I0 , Gaussian.

(S-6.74)

The final magnetic flux through the charged ring is
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Φf = 1

bm
L Qωf

2π
= kmbm

La2Q2

2mR3 +LQ2a2R/π
I0 , (S-6.75)

and the approximations of point (a) are valid only if

Φf � Φ0 = 4πkmbm
πa2

2R
I0 , or

LQ2

4π2mR2 + 2πLQ2a2
� 1. (S-6.76)

S-6.7 Induced Electric Currents in the Ocean

Fig. S-6.10

(a) We choose a Cartesian coordinate system with the y
axis parallel to the velocity v of the fluid and the z axis
parallel to the magnetic field, as shown in Fig. S-6.10.
Due to themotion of the fluid, the charge carriers (mainly
the Na+ and Cl− ions of the dissolved salt) are subject
to a force per unit charge equal to bm v × B, parallel to
the x axis. This is equivalent to an electric field Eeq ≡
bm v × B. The induced current density is thus

J = σ Eeq = bm σv × B. (S-6.77)

(b) Inserting the typical values given in the text into (S-6.77) we obtain

J 	
⎧⎨
⎩
4× 1× 5× 10−5 = 2× 10−4 A/m2 , SI,

3.6× 1010 × 100

c
× 0.5 = 60 statA/cm2 , Gaussian.

(S-6.78)

(c)Weevaluate the force on a fluid element of cylindrical shape, with area of the bases
δS and height |δ�|, where � is parallel to J and to the x axis. The current intensity
in the cylinder is I = JδS, and the force acting on it is thus δF = bm Iδ�× B =
−bmBJ δSδ� ŷ = −bmBJ δV ŷ, where δV is the volume of the cylinder. The mass
of the cylinder is δm = ρ δV, with ρ = 103 kg/m3 (1g/cm3 in Gaussian units), for
water. Both v and δF are parallel to the y direction, and the equation of motion can
be written in scalar form

δm
dv

dt
= δF . (S-6.79)

Replacing the values of δm and δF we obtain
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ρ δV dv

dt
= −bmBJ δV ,

ρ
dv

dt
= −b2mB2σv , (S-6.80)

where we have divided both sides by δV and replaced J by its expression (S-6.77).
The solution is a decreasing exponential v = v0e−t/τ with a time constant

τ = ρ

σb2mB
2
	 1011 s 	 3× 103 yr . (S-6.81)

S-6.8 A Magnetized Sphere as Unipolar Motor

(a) We recall from Problem 5.10 that the magnetic field inside
a uniformly magnetized sphere is uniform and equals

Fig. S-6.11

B = 8π

3

km
bm

M =

⎧⎪⎪⎨
⎪⎪⎩

2μ0

3
M , SI,

8π

3
M , Gaussian.

(S-6.82)

Outside of the sphere we have the same magnetic field
that would be generated by a magnetic dipole of moment
m = M 4πa3/3, located at the center of the sphere. When an
electric current I flows in the circuit, the magnetic force on
an element d� of the “meridian” wire BP is df = Id�× B, directed out of paper in
Fig. S-6.11. Since the component of B perpendicular to d� is continuous across the
surface of the sphere, there is no ambiguity. The torque dτ on the wire element d� is

dτ = r × df = Ir × (d�× B) = ẑ I a sin θ a dθ B cos θ

= ẑ I a2B cos θ sin θ dθ , (S-6.83)

where r is the distance of d� form the rotation axis of the sphere (r = a sin θ), and
we have used a dθ = d�. The total torque on the meridian wire BP is thus

τ =
∫

dτ = ẑ I a2B

π/2∫
0

sin θ cos θ dθ = ẑ
1

2
I a2B , (S-6.84)
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while the torque on the current-carrying portion AB of the “equatorial” wire is zero,
because the magnetic force is radial, as shown in Fig. S-6.12. Thus, (S-6.84) is the
total torque on the sphere.

(b) When the sphere rotates, the total electromotive

Fig. S-6.12

Fig. S-6.13

forceEtot in the circuit is the sumof the electromotive
force of the voltage source and the electromotive
force Erot due to the rotation of the of the wires

Etot = V + Erot = V − bm
dΦ

dt
, (S-6.85)

whereΦ is the flux of the magnetic field through any
surface bounded by the closed path ABPCDE A
in Fig. S-6.13. Lines PC , CD, DE and E A are
coplanar lines, lying on a plane containing also the
rotation axis OP of the sphere and the meridian arc
PA, while AB is an equatorial arc, and BP a merid-
ian arc, both lying on the surface of the sphere. The
flux of B through any surface bounded by the closed
path ABPCDE A is the same, because ∇ · B = 0.
For simplicity, we choose a surface comprising two
parts:

1. the planar surface PCDE A, its perimeter being
closed by the arc AP , through which the flux is
zero, and

2. the spherical polar triangle PAB shaded in Fig.
S-6.13.

The flux through PAB can be easily calculated remembering that the flux ofB through
any closed surface is zero. Consider the closed surface formed by PAB and the three
circular sectors OAP , OBP and OAB. The flux through OAP and OBP is zero,
thus the flux ΦPAB through PAB and the flux ΦOAB through OAB must be equal
(ΦOAB must be taken with the minus sign when evaluating its contribution to the flux
through the total closed surface, since the magnetic field enters through OAB and
exits through PAB), and we have

ΦPAB = ΦOAB = 1

2
Ba2φ , (S-6.86)

where φ is the angle ̂AOB. We thus have

Etot = V − bm
dΦ

dt
= V − bm

Ba2

2

dφ

dt
= V − bm

Ba2

2
ω , (S-6.87)
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and the current flowing in the circuit is

I = Etot

R
= 1

R

(
V − bm

Ba2

2
ω

)
. (S-6.88)

The torque on the sphere is zero when I = 0, thus the terminal angular velocity of
the sphere is

ωt = 2V

bmBa2
=

⎧⎪⎪⎨
⎪⎪⎩

2V

Ba2
, SI,

2V

Ba2
c , Gaussian,

(S-6.89)

independent of the moment of inertia of the sphere I and of the resistance R of the
circuit. The equation of motion for the sphere is

I dω

dt
= τ = 1

2
Ba2 I = Ba2

2R

(
V − bm

Ba2

2
ω

)
, (S-6.90)

which can be rewritten

I dω

dt
+ bm

(Ba2)2

4R
ω = Ba2V

2R
. (S-6.91)

Assuming that the sphere is at rest at t = 0, the solution is

ω(t) = ωt
(
1− e−t/τ

)
, (S-6.92)

where ωt is given by (S-6.89), and

τ = 4IR
bm(Ba2)2

. (S-6.93)

S-6.9 Induction Heating

(a) We split the total current density J appearing in the Maxwell equation for ∇ × B
into the sum of the free current density Jf , and the magnetization current density Jm

∇ × B = 4πkm(Jf + Jm)+ km
ke

∂tE . (S-6.94)
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In a homogeneous medium the magnetization current density is

Jm = 1

bm
∇ ×M = μr − 1

4πkm μr
∇ × B , (S-6.95)

and (S-6.94) can be rewritten

∇ × B = 4πkm Jf + μr − 1

μr
∇ × B , (S-6.96)

from which we obtain
∇ × B = 4πkm μr Jf . (S-6.97)

Now we evaluate the curl of (S-6.97), recalling (A.12) of the Appendix,

∇ × (∇ × B) = −∇2B+∇(∇ · B) = 4πkmμr ∇ × Jf , (S-6.98)

then, we recall that ∇ · B = 0 and that Jf = σE, obtaining

−∇2B = 4πkmμrσ ∇ × E . (S-6.99)

According to Maxwell’s equation ∇ × E = −bm ∂tB we finally have

∇2B = 4πkmbm μr σ ∂tB , or ∂tB = α∇2B , (S-6.100)

where

α = 1

4πkmbm μrσ
=

⎧⎪⎪⎨
⎪⎪⎩

1

μ0μrσ
, SI,

c2

4πμrσ
, Gaussian.

(S-6.101)

(b) The tangential component of the auxiliary vector H must be continuous through
the x = 0 plane, thus, the tangential component of B/μr must be continuous. In the
vacuum half-space (x < 0) we have B = ŷ B0 cos(ωt), correspondingly, the field at
x = 0+ (just inside our medium) is

B(0+, t) = ŷ μrB0 cos(ωt) . (S-6.102)

In one dimension, (6.6) is rewritten

∂t B = α
∂2B

∂x2
, (S-6.103)
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and, as an educatedguess,we look for a solutionof the form B(x, t) = Re
[
B̃(x) e−iωt

]
.

The differential equation for the time-independent function B̃(x) is

− iω B̃ = α
∂2 B̃

∂x2
, (S-6.104)

and we look for an exponential solution of the form B̃(x) = B̃(0) eγx , with B̃(0) and
γ two constants to be determined. The boundary condition gives B̃(0) = μrB0, and,
by substituting into (S-6.104), we have

− iω μrB0 e
γx = αγ2μrB0 e

γx , or αγ2 = −iω , (S-6.105)

which leads to

γ = ±
√
−i ω

α
= ±1− i√

2

√
ω

α
= ±(1− i)

1

�s
(S-6.106)

where (1− i)/
√
2 = √−i, and the quantity

�s =
√
2α

ω
=

√
2

4πkmbmμrσω
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
2

μ0μrσω
, SI,

√
c2

2πμrσω
, Gaussian,

(S-6.107)

is a length. We disregard the positive value of γ, which would lead to a magnetic field
exponentially increasing with depth into the material, and obtain

B = ŷRe
[
μrB0 e

−(1−i)x/�s−iωt] = ŷ μrB0 e
−x/�s cos

(
x

�s
− ωt

)
. (S-6.108)

Thus the magnetic field decreases exponentially with depth into the material, with a
decay constant �s. A slab of our material can be considered as semi-infinite if its depth
is much larger than �s.
(c) The electric field E(x) inside the material can be evaluated from Maxwell’s equa-

tion ∇ × E = −bm ∂tB. Assuming E(x, t) = Re
[
Ẽ(x) e−iωt

]
we have

(∇ × E)y = −∂xRe
[
Ẽz(x) e

−iωt
]

,

∂t B = Re
[−iωμrB0 e

−(1−i)x/�s−iωt] , (S-6.109)
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thus E(x, t) = ẑRe
[
Ẽz(x) e−iωt

]
, with ∂x Ẽ z = −i bmωμrB0 e−(1−i)x/�s . Integrating

with respect to x we obtain

Ẽz = i

1− i
bmωμr�sB0 e

−(1−i)x/�s = −1− i

2
bmωμr�sB0 e

−(1−i)x/�s . (S-6.110)

The dissipated power per unit volume, due to the free currents only, is thus

〈Jf · E〉 = σ

2

∣∣∣Ẽz

∣∣∣2 = σ

4
b2m μ2

rω
2�2s B

2
0 e
−2x/�s = σ

4
b2m

2μ2
r ω

2B2
0

4πkmbmμrσω
e−2x/�s

= bm
μrωB2

0

8πkm
e−2x/�s =

⎧⎪⎪⎨
⎪⎪⎩

μrωB2
0

2μ0
e−2x/�s , SI,

μrωB2
0

32π2
e−2x/�s , Gaussian,

(S-6.111)

where we have substituted (S-6.107) for �s in the fraction. The total dissipated power
per unit surface of the slab is

∞∫
0

〈Jf · E〉 dx = bm
μrωB2

0

16πkm
�s = B2

0

16π

√
bmμrω

2kmσ
. (S-6.112)

One might wonder if there is also a contribution of the magnetization volume and
surface current densities, Jm and Km, to the dissipated power. In the presence of the
magnetic field (S-6.108), our medium of relative magnetic permeability μr acquires
a magnetization M

M = bm
4πkm

μr − 1

μr
B = ŷ

bm
4πkm

(μr − 1)Re
[
B0 e

−(1−i)x/�s−iωt] , (S-6.113)

corresponding to a volume magnetization current density

Jm = 1

bm
∇ ×M . (S-6.114)

Taking the symmetry of the problem into account, and introducing the complex ampli-

tudes J̃m and J̃m z such that Jm = Re
(

J̃m e−iωt
)
= ẑRe

(
J̃m z e−iωt

)
, we have

J̃m z = μr − 1

4πkmμr
∂x B̃ = −μr − 1

4πkm

1− i

�s
B0 e

−(1−i)x/�s . (S-6.115)
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The corresponding dissipated power per unit volume is

〈Jm · E〉 = 1

2
Re

(
J̃m z Ẽ

∗
z

)
= bm (μr − 1)

μrωB2
0

8πkm
e−2x/�s = (μr − 1) 〈Jf · E〉 ,

(S-6.116)
and the total dissipated power per unit surface is

∞∫
0

〈Jm · E〉 dx = (μr − 1)

∞∫
0

〈Jf · E〉 dx = bm (μr − 1)
μrωB2

0

16πkm
�s . (S-6.117)

However, we also have a surface magnetization current density Km flowing on the
x = 0 plane, given by

Km = 1

bm
M(0+)× n̂ = ẑ

μr − 1

4πkm
Re

(
B0 e

−iωt) = ẑ Km z cos(ωt) , (S-6.118)

where n̂ = −x̂ is the outward-pointing unit vector on the x = 0 boundary plane. This
surface current density corresponds to a “dissipated” power per unit surface

〈Km(t) · E(0, t)〉 = 1

2
Re

[
Km z Ẽz(0)

]
= −bm(μr − 1)

μrωB2
0

16πkm
�s , (S-6.119)

which cancels out the contribution (S-6.117). Thus, the total dissipated power in the
medium is due to the free current only, and given by (S-6.112). Note that the parallel
component of the electric field must be continuous at the boundary between two
media, so that Ez(0, t) appearing in (S-6.119) is a well defined quantity.

S-6.10 A Magnetized Cylinder as DC Generator

(a) We can consider the magnetic field as due to the azimuthal magnetization surface
current densityKm , flowing on the lateral surface of the cylinder.We haveKm = M×
n̂/bm, where n̂ is the outward unit vector normal to the surface. Thus, the magnetized
cylinder is equivalent to a solenoid of the same sizes, with n turns per unit length,
current I per turn, and the product nI = Km. Far from the two bases we have an
approximately uniform field B0, independent of the radius and height of the cylinder,

B0 	 4πkmKm ẑ

= 4π
km
bm

M =
{

μ0M , SI,

4πM , Gaussian.
(S-6.120)



S-6 Solutions for Chapter 6 307

Fig. S-6.14

Fig. S-6.15

The field at, for instance, the upper base, can be eval-
uated by considering an “extended” cylinder, obtained
by joining an identical, coaxial cylinder, at the base we
are considering, as shown in Fig. S-6.14. The total field
at the base is now due to both cylinders, and, being far
from both bases of the extended cylinder, its value is
B0 	 4π(km/bm) M. Both cylinders contribute to this
field, and, for symmetry reasons, the z components Bz

of both contributions are equal, while the radial compo-
nents cancel each other. The dashed lines of Fig. S-6.14
represent three B field lines for each cylinder, one along
the axis and two off-axis. Thus, the z component of the
field generated by the single cylinder at its base is

Bz = 2π
km
bm

M = B0

2
. (S-6.121)

(b)WeapplyFaraday’s lawof induction to thefluxof the
magnetic field through the closed path AEFGBCDA,
represented by the thick line in Fig. S-6.15. Points A,
E , F , G, and B are fixed in the laboratory frame, while
pointsC and D rotate with the magnetized cylinder. We
have

E = −bm dΦ

dt
, (S-6.122)

where E is the electromotive force around the closed
path, measured by the voltmeter V , and Φ is the flux
of the magnetic field through any surface bounded by
the closed path. We choose a surface consisting of three
parts:

1. the plane surface bounded by the path AEFGBH A, fixed in the laboratory frame,
through which the flux of B is zero;

2. the surface bounded by the path BCDHB, lying on the lateral surface of the
cylinder; and

3. the circular sector AHD on the upper base, where points A and H are fixed, while
point D is rotating.

The flux of B through the two surfaces BCDH and AHD can be calculated analo-
gously to the flux through the polar spherical triangle PAB of Fig. S-6.13, Problem
6.8. We consider the closed surface comprising, in addition to BCDH and AHD, the
circular sector OBC and the two rectangles COAD and BOAH . The flux must be
zero through the total closed surface, and is zero through the two rectangles because
B is parallel to their surfaces. Thus we have
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ΦAHD +ΦBCDH +ΦOBC = 0 , (S-6.123)

and

ΦAHD +ΦBCDH = −ΦOBC = 1

2
B0 a

2φ , (S-6.124)

where φ is the angle ̂BOC = ̂H AD, and the sign accounts for the fact that the
magnetic field is entering the closed surface through OBC . The electromotive force
is

E = −bm dΦ

dt
= −bm 1

2
B0 a

2 dφ

dt
= 2πkmMa2ω =

⎧⎪⎨
⎪⎩

μ0

2
Ma2ω , SI,

2π

c
Ma2ω , Gaussian.

(S-6.125)
The same result can be obtained by evaluating the electromotive forceE as the integral
of bm(v × B) · d� along the path AOB

E = bm

O∫
A

(v × B) · d�+ bm

B∫
O

(v × B) · d� = bm

a∫
O

ωr B0 dr

= bm
1

2
B0a

2ω = 2πkmMa2ω , (S-6.126)

since v = 0 along the path AO , which lies on the rotation axis of the cylider.

S-6.11 The Faraday Disk and a Self-sustained Dynamo

(a) The magnetic force on the each charge carrier of the rotating disk is q bmv × B,
whereq is the charge of the carrier (−e for the electrons), and v = ω × r is the velocity
of a charge-carrier at a distance r from the rotation axis, at rest relative to the disk.
At equilibrium, carriers must be at rest relative to the disk, and the magnetic force
must be compensated by a static electric field E such that E+ bm v × B = 0. This
corresponds to an electric potential drop V between the center and the circumference
of the disk

V = ϕ(a)− ϕ(0) = −
a∫

0

E · dr = bm

a∫
0

ωr B dr = bm ωB
a2

2
. (S-6.127)

The rotating disk is thus a voltage source, known as a Faraday disk.
(b) In the presence of the brush contacts at pointsO and A of Fig. 6.9, the electromotive
force E of he circuit equals the voltage drop V of (S-6.127). The total current I
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circulating in the circuit is thus

I = E
R
= bm

ωBa2

2R
. (S-6.128)

Fig. S-6.16

The power dissipated in the circuit by Joule
heating is Pd = I 2R = E2/R, and there must an
external a torque τ ext providing a mechanical
power Pm = τ ext · ω = Pd in order to maintain
a rotation at constant angular velocity. Thus,

τ ext = ẑ b2m
ωB2a4

4R
. (S-6.129)

Alternatively, the external torque must compen-
sate the torque of the magnetic forces on the disk.
Since the current exits the disk through the brush
contact A, it is difficult to make assumptions on the symmetry of the current den-
sity distribution. However, the problem can be tackled as follows. The torque on an
infinitesimal volume element, r dφ dr dz in cylindrical coordinates (Fig. S-6.16), is
dτ = bm r × (J× B) r dφ dr dz, and the total magnetic torque on the disk is obtained
by integrating dτ over the disk volume

τB = bm

a∫
0

dr

h∫
0

dz

2π∫
0

r dφ r × (J× B) . (S-6.130)

The triple vector product in (S-6.130) can be rewritten

r × (J× B) = J (r · B)− B (r · J) = −ẑ Br Jr , (S-6.131)

since (r · B) = 0 because r and B are orthogonal to each other, and Jr is the r com-
ponent of J. We further have

h∫
0

dz

2π∫
0

r dφ Jr = I , (S-6.132)

independently of r , since the double integral is the flux of J through a lateral cylindrical
surface of radius r and height h, as shown in Fig. S-6.17. Thus we have for the torque
exerted by the magnetic forces on the disk

τB = −ẑ bm BI

a∫
0

r dr , (S-6.133)
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and finally, substituting (S-6.128) for I ,

τ b = −ẑ bm BI
a2

2
= −ẑ b2m

ωB2a4

4R
= −τ ext . (S-6.134)

Fig. S-6.17

(c) If the disk acts as the current source for
the solenoid we must have

B = 4πkm nI = 4πkmbm n
ωBa2

2R
,(S-6.135)

from which we obtain

ω = 2R

4πkmbm na2
=

⎧⎪⎪⎨
⎪⎪⎩

2R

μ0na2
, SI,

Rc2

2πna2
, Gaussian,

(S-6.136)
independently of the intensity of the magnetic field B.

S-6.12 Mutual Induction Between Circular Loops

(a) We can assume the magnetic field generated by the current I circulating in loop
B to be uniform and equal to B0 ẑ = ẑ 2πkm I/b all over the surface of loop A, since
a � b. The angle between the axis of loop A and the z axis is θ = ωt , and the flux of
the magnetic field through the surface of loop A is

Φ = B0 πa2 cosωt = 2πkm I

b
πa2 cosωt = 2π2a2km I

b
cosωt . (S-6.137)

Thus, according to Faraday’s law of induction, there is an induced electromotive force
E on loop A

E = −dΦ

dt
= 2π2a2km I

b
ω sinωt , (S-6.138)

and the current circulating in loop A is

IA = 2π2a2km I

Rb
ω sinωt . (S-6.139)
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(b) The power dissipated into Joule heating is

Pdiss = RI 2A =
4π4a4ω2k2m I

2

Rb2
sin2 ωt . (S-6.140)

(c) The torque acting on loop A is τ = m× B0, where m = n̂ IAπa2 is the magnetic
moment of loop A, and n̂ is the unit vector perpendicular to its surface, directed so
that its tip sees IA circulating counterclockwise. Thus

τ = 2π2a2km I

Rb
ω sinωt πa2

2πkm I

b
sinωt = 4π4a4ωk2m I

2

Rb2
sin2ωt , (S-6.141)

and the corresponding mechanical power is

Pmech = τ · ω = 4π4a4ω2k2m I
2

Rb2
sin2ωt = Pdiss , (S-6.142)

and all the mechanical power needed to keep loop A rotating at constant angular
velocity is turned into Joule heating.
(d) The flux through the surface of loop B of the magnetic field generated by the
current I circulating in loop A is

ΦB = MAB I , (S-6.143)

where MAB is the coefficient of mutual induction between loop A and loop B. We
know that MAB = MBA, and from (S-6.137) we have

MAB = MBA = 2π2a2km
b

cosωt , (S-6.144)

thus

ΦB = 2π2a2km I

b
cosωt , (S-6.145)

and

E = −dΦ

dt
= 2π2a2km I

b
ω sinωt , (S-6.146)

as (S-6.137) and (S-6.138) .
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S-6.13 Mutual Induction Between a Solenoid
and an Internal Loop

(a) Neglecting boundary effects, the magnetic field inside the solenoid is uniform,
parallel to the solenoid axis z, and equal to

B = 4πkmnI ẑ . (S-6.147)

Thus, its flux through the surface S of the rotating coil is

Φa(t) = B · S(t) = 4πkmnIπa
2 cosωt = 4π2a2kmnI cosωt = Msl(t) I ,

(S-6.148)
where

Msl(t) = 4π2a2kmn cosωt (S-6.149)

is the coefficient of mutual inductance between solenoid and loop, time dependent
because the loop is rotating. The coefficient of mutual inductance is symmetric,Msl =
Mls, i.e., the inductance by the solenoid on the loop equals the inductance by the loop
on the solenoid, we shall use this property for the answer to point (c).
(b) The electromotive force acquired by the loop equals the rate of change of the
magnetic flux through it,

E = −dΦ

dt
= 4π2a2kmnIω sinωt , (S-6.150)

and the current circulating in the loop is

Ia = 4π2a2kmnIω

R
sinωt . (S-6.151)

The loop dissipates a power Pdiss due to Joule heating

Pdiss = RI 2a =
(4π2a2kmnIω)2

R
sin2 ωt . (S-6.152)

This power must be provided by the work of the torque τ applied to the loop in order
to keep it in rotation at constant angular velocity. The time-averaged power is

〈Pdiss〉 = (4π2a2kmnIω)2

2R
, (S-6.153)

since
〈
sin2 ωt

〉 = 1/2.
(c) The magnetic field generated by a magnetic dipole m is identical to the field
generated by a current-carrying loop of radius a and current Il such that bmπa2 Il = m,
at distances r � a from the center of the loop.The result of point (a) is valid, in
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particular, in the case a � b. In this case we can replace the magnetic dipole by a
loop, and use the symmetry property of the mutual-inductance coefficient. The flux
Φs generated by the dipole through the solenoid is thus

Φs = Mls(t) Il = 4π2a2kmnIl cosωt = 4π
km
bm

n m cosωt . (S-6.154)

S-6.14 Skin Effect and Eddy Inductance in an Ohmic Wire

Assuming a very long, straight cylindrical wire, the problemhas cylindrical symmetry.
We choose a cylindrical coordinate system (r,φ, z) with the z axis along the axis of
the wire, and expect that the electric field inside the wire can be written as

E = ẑ E(r, t) = ẑRe
[
Ẽ(r) eiωt

]
, (S-6.155)

where Ẽ(r) is the static complex amplitude associated to the electric field. We start
from the two Maxwell equations

∇ × E = −bm ∂tB , ∇ × B = 4πkm J+ 1

bmc2
∂tE , (S-6.156)

where we have assumed εr = 1 and μr = 1 inside copper. If we substitute J = σE
into the second of (S-6.156) we obtain

∇ × B = 4πkmσE+ 1

bmc2
∂tE = 4πkmσE+ ẑ

ω

bmc2
Re

[
iẼ(r) eiωt

]

=

⎧⎪⎨
⎪⎩

μ0σE+ ẑ
ω

c2
Re

[
iẼ(r) eiωt

]
, SI,

4πσ

c
E+ ẑ

ω

c
Re

[
iẼ(r)eiωt

]
, Gaussian.

(S-6.157)

In SI units, the conductivity of copper is σ = 5.96× 107 Ω−1m−1, and the product
μ0σc2 is

μ0 σc2 = 6.77× 1018 s−1 . (S-6.158)

Alternatively, inGaussian units, the conductivity of copper isσ = 5.39× 1017 s−1 and
the product 4πσ is 6.77× 1018 s−1. Thus the displacement current ∂tD is negligible
compared to the conduction current J for frequencies ν = ω/(2π)� 1018 Hz, i.e., up
to the ultraviolet. In other words, the displacement current can be neglected compared
to the conduction current for all practical purposes in good conductors, and we can
rewrite the second of (S-6.156) simply as ∇ × B = 4πkm σ E. Evaluating the curl of
both sides of the first of (S-6.156) we have
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∇ × (∇ × E) = −bm∂t (∇ × B) = −4πkmbmσ ∂tE , (S-6.159)

which, remembering that

∇ × (∇ × E) = ∇(∇ · E)−∇2E , (S-6.160)

and assuming ∇ · E = 0, turns into a diffusion equation for the electric field E

∇2E = 4πkmbmσ ∂tE . (S-6.161)

Introducing our assumption (S-6.155), we have the following equation in cylindrical
coordinates for the complex amplitude Ẽ(r),

∇2 Ẽ(r) = 1

r
∂r [r ∂r Ẽ(r)] = iω 4πkmbm σ Ẽ(r) (S-6.162)

or
1

r
∂r [r ∂r Ẽ(r)] = i

2

δ2
Ẽ(r) , (S-6.163)

where we have introduced the skin depth

δ =
√

1

2π kmbmσω
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2

μ0σω
, SI,

c√
2πσω

, Gaussian.

(S-6.164)

Equation (S-6.163), multiplied by r2, is Bessel’s differential equation with n = 0.
However, in this context, we prefer to find the approximate solutions for the two
limiting cases δ � r0 and δ � r0, where r0 is the radius of the wire. For the weak
skin effect, i.e., for δ � r0, we write the solution of (S-6.163) as a Taylor series

Ẽ(r) = E0

∞∑
n=0

an
(r

δ

)n
(S-6.165)

which, substituted into the left-hand side of (S-6.163) gives

1

r
∂r [r ∂r Ẽ(r)] = 1

r
∂r

[
r E0

∞∑
n=0

ann rn−1

δn

]
= 1

r
E0 ∂r

∞∑
n=0

annrn

δn

= 1

r
E0

∞∑
n=0

ann2rn−1

δn
= E0

∞∑
n=0

ann2rn−2

δn
, (S-6.166)

while the right-hand side is
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i
2

δ2
Ẽ(r) = 2i E0

∞∑
n=0

anrn

δn+2
. (S-6.167)

Comparing the coefficients of the same powers of r in (S-6.166) and (S-6.167) we
obtain the recurrence relation

an+2 = 2i

(n + 2)2
an , (S-6.168)

which leads to

a2n = i n

2n(n!)2 and a2n+1 = 0 , (S-6.169)

for all n ≥ 0 and n ∈ N. We thus have

Ẽ(r) = E0

∞∑
n=0

i n

2n(n!)2
(r

δ

)2n

= E0

[
1+ i

2

r2

δ2
− 1

16

r4

δ4
− i

48

r6

δ6
+ · · · + i n

2n(n!)2
r2n

δ2n
+ · · ·

]
. (S-6.170)

The complex amplitude I associated to the total current through the wire is

I =
r0∫

0

J2πr dr = 2πσ

r0∫
0

Ẽ(r) r dr

= 2πσE0

r0∫
0

[
1+ i

2

r2

δ2
− 1

16

r4

δ4
− i

48

r6

δ6
+ · · · + i n

2n(n!)2
r2n

δ2n
+ · · ·

]
r dr

= 2πσE0

[
r20
2
+ i

8

r40
δ2
− 1

96

r60
δ4
− i

2304

r80
δ6
+ · · · + i n

2n(n!)2(2n + 2)

r2n+20

δ2n

]

= πr20σE0

[
1+ i

4

r20
δ2
− 1

48

r40
δ4
− i

1152

r60
δ6
+ · · · + i n

2n(n + 1)!n!
r2n0
δ2n

+ · · ·
]

.

(S-6.171)

We can define the impedance per unit length of the wire, Z� = R� + iωL� (where R�

is the resistance per unit length, and L� the self-inductance per unit length), as the
ratio of the electric field at the wire surface to the total current through the wire, i.e.,
as
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Z� = 1

πr20σ

[
1+ i

2

(r0
δ

)2 − 1

16

(r0
δ

)4 − i

48

(r0
δ

)6 + · · ·
]

︸ ︷︷ ︸
A

×
[
1+ i

4

(r0
δ

)2 − 1

48

(r0
δ

)4 − i

1152

(r0
δ

)6 + · · ·
]−1

︸ ︷︷ ︸
B−1

, (S-6.172)

where A and B are Taylor expansions in even powers of r0/δ � 1, which we have
truncated at the 6th order. The first four expansion coefficients of B−1,i.e., 1, b1, b2,
and b3 ,

B−1 =
[
1+ b1

(r0
δ

)2 + b2
(r0

δ

)4 + b3
(r0

δ

)6 + · · ·
]

, (S-6.173)

can be evaluated by requiring that the product BB−1 equals 1 with a remainder of the
order of (r0/δ)8, i.e.,

1 = BB−1 	
[
1+ i

4

(r0
δ

)2 − 1

48

(r0
δ

)4 − i

1152

(r0
δ

)6 + · · ·
]

×
[
1+ b1

(r0
δ

)2 + b2
(r0

δ

)4 + b3
(r0

δ

)6 + · · ·
]

(S-6.174)

leading to

b1 = − i

4
, b2 = − 1

24
, and b3 = 7i

1152
(S-6.175)

Thus we have for Z�

Z� 	 1

πr20σ

[
1+ i

2

(r0
δ

)2 − 1

16

(r0
δ

)4 − i

48

(r0
δ

)6 + · · ·
]

×
[
1− i

4

(r0
δ

)2 − 1

24

(r0
δ

)4 + 7i

1152

(r0
δ

)6 + · · ·
]

	 1

πr20σ

[
1+ i

4

(r0
δ

)2 + 1

48

(r0
δ

)4 − i
23

1152

(r0
δ

)6 + · · ·
]

. (S-6.176)

The zeroth-order term of the expansion,

R(0)
� = 1

πr20σ
, (S-6.177)

is simply the direct-current resistance per unit length of the wire. The third term
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R(1)
� = r20

48πσδ4
= k2mb

2
mπr20σω2

12
=

⎧⎪⎪⎨
⎪⎪⎩

μ2
0πr

2
0σω2

192
, SI,

πr20σω2

12c4
, Gaussian

(S-6.178)

is the lowest order contribution of the weak skin effect to the resistance increase. The
second-order term of the expansion can be interpreted as

i

4πr20σ

(r0
δ

)2 = iωL(0)
� , (S-6.179)

leading to

L(0)
� = 1

4πσωr20

(r0
δ

)2 = 1

2
kmbm =

⎧⎪⎨
⎪⎩

μ0

8π
, SI,

1

2c2
, Gaussian,

(S-6.180)

Fig. S-6.18

which is the DC self-inductance per unit length of a
straight cylindrical wire, while the sixth-order term is
the lowest order contribution of the weak skin-effect to
the self-inductance of the cylindrical wire. Thus, at the
low-frequency limit, the current depends on the radial
coordinate, but no true skin effect is observed. Accord-
ing to (S-6.171), the current is actually stronger on the
axis of the wire than at its surface. Things are different
at the high-frequency limit.

For a strong skin effect, i.e., for δ � a, the electric
field is significantly different from zero only close to the wire surface. Thus, it is
convenient to introduce the variable x = a − r , shown in Fig. S-6.18. We can assume
r 	 a in (S-6.163), and we further have ∂r = −∂x , leading to

∂2
x Ẽ = i

2

δ2
Ẽ . (S-6.181)

Substituting Ẽ = E0 eαx , we have

α = ±
√
i
2

δ2
= ±1+ i

δ
, (S-6.182)

and the solution corresponding to a field decreasing for increasing x (increasing depth
into the wire) is

Ẽ 	 E0 e
−x/δ e−ix/δ = E0 e

−(a−r)/δ e−i(a−r)/δ , (S-6.183)
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where E0 eiωt is the electric field at the wire surface. The complex amplitude corre-
sponding to the total current current through the wire is thus

I =
a∫

0

J 2πr dr = 2πσ

a∫
0

Ẽ(r) r dr = 2πσE0

a∫
0

e−(a−r)/δ e−i(a−r)/δ eiωt r dr

= 2πσE0e
−a(1+i)/δ+iωt

a∫
0

er(1+i)/δr dr . (S-6.184)

Remembering that ∫
x eaxdx = eax

(
x

a
− 1

a2

)
, (S-6.185)

and neglecting terms in δ2, we obtain finally

I = πaδσ(1− i) E0 . (S-6.186)

The impedance per unit length of the wire, Z�, can again be defined as

Z� = R� + iX� = E0

I
= 1

πaδσ(1− i)
= 1

2πaδσ
+ i

2πaδσ
, (S-6.187)

so that the magnitudes of the resistance per unit length R�, and of the reactance per
unit length X�, are equal at the high frequency limit:

R� = X� = 1

2πaδσ
. (S-6.188)

The value of R� shows that the current actually flows through a thin annulus close
to the surface (the “skin” of the wire), of width δ and approximate area 2πaδ. The
reactance per unit length can be considered as due to a self-inductance per unit length
L�, according to X� = ωL�, with

L� = 1

2πaδσω
=

√
kmbm

2πa2σω
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
μ0

8π2a2σω
, SI,

√
1

2πc2a2σω
, Gaussian.

(S-6.189)
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S-6.15 Magnetic Pressure and Pinch Effect for a Surface
Current

(a) We use a cylindrical coordinate system (r,φ, z), with the cylinder axis as z axis.
The field lines of B are circles around the z axis because of symmetry. Thus, Bφ(r) is
the only nonzero component of B. According to Ampère’s law we have

Bφ(r) =
⎧⎨
⎩

0 , r < a ,

2km
I

r
= 4πkm K

a

r
, r > a .

(S-6.190)

(b) First approach (heuristic). The current dI flowing in an infinitesimal surface strip
parallel to z, of width a dφ, is dI = Ka dφ. The force df exerted by an azimuthal
magnetic field B ≡ (0, Bφ, 0) on an infinitesimal strip portion of length dz is

df = bm dz dI ẑ× B = −bmKaBφ dφ dz r̂ , (S-6.191)

directed towards the axis, i.e., so to shrink the conducting surface (pinch effect). How-
ever, here wemust remember that Bφ(r) is discontinuous at the cylinder surface, being
zero inside. Therefore, we replace the value of Bφ in (S-6.191) by its “average” value
B aver

φ = [Bφ(a+)− Bφ(a−)]/2 = 2πkm K (the point is the same as for the calculation
of electrostatic pressure on a surface charge layer). Thus, the absolute value of the
force acting on an infinitesimal area dS = a dφ dz is

|d f | = 2πkmbmK
2 dS =

⎧⎪⎨
⎪⎩

μ0

2
K 2 dS , SI

2π

c2
K 2 dS , Gaussian ,

(S-6.192)

and the magnetic pressure on the surface is

P = |d f |
dS

= 2πkmbmK
2 = kmbm

I 2

2πa2
=

⎧⎪⎪⎨
⎪⎪⎩

μ0 I 2

2(2πa)2
, SI

1

c2
I 2

2πa2
, Gaussian.

(S-6.193)

Secondmethod (rigorous). Themagnetic force per infinitesimal volume d3r , where
a current density J is flowing in the presence of a magnetic field B, is

d3f = bm J× B d3r . (S-6.194)

Due to the symmetry of our problem, the term (B ·∇) B appearing in (6.7) is
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(B ·∇) B =
(
Bφ

1

r
∂φ

)
B = 0 , (S-6.195)

where we have used the gradient components in cylindrical coordinates of Table A.1,
and the fact that the only nonzero component of B, i.e., Bφ, is independent of φ. The

Fig. S-6.19

infinitesimal volume element in cylindrical coordinates is
d3r = r dr dφ dz, thus

d3f = −r̂
bm

8πkm

[
∂r B

2
φ(r)

]
r dr dφ dz . (S-6.196)

Now we integrate (S-6.196) with respect to dr between
r = a − ε and a + ε, obtaining the force d2f acting on
the small shaded volume of Fig. S-6.19, delimited by
the two cylindrical surfaces r = a − ε and r = a + ε,
with infinitesimal azimuthal aperture dφ, and longitudinal
length dz. Integrating by parts we have

a+ε∫
a−ε

[
∂r B

2
φ(r)

]
r dr = [

r B2
φ(r)

]a+ε

a−ε
−

a+ε∫
a−ε

B2
φ(r) dr , (S-6.197)

At the limit ε→ 0, the first term on the right-hand side equals B2
φ(a

+), because
B2

φ(r) = 0 for r < a. At the same limit ε → 0, the integral on the right-hand side
approaches zero because, according to the mean-value theorem, it equals 2εB2

φ(r̄),
with r̄ some value in the range (a − ε, a + ε). We thus have

d2f = −r̂
bm

8πkm
B2

φ(a
+) a dφ dz . (S-6.198)

where a dφ dz is the infinitesimal surface element onwhich d2f is acting. The pressure
is thus

P = bm
8πkm

B2
φ(a

+) = bm
8πkm

(4πkm K )2 = 2πbmkmK
2, (S-6.199)

in agreement with (S-6.193). Now we prove (6.7):

4πkm(J× B)i = [(∇ × B)× B]i = εi jk

(
ε jlm

∂Bm

∂xl

)
Bk = εi jkε jlm

∂Bm

∂xl
Bk

= (δklδim − δkmδil) Bk
∂Bm

∂xl
= Bk

∂Bi

∂xk
− Bk

∂Bk

∂xi

= (B×∇)Bi − 1

2

∂(Bk Bk)

∂xi
= (B×∇)Bi − 1

2
∇i B

2 , (S-6.200)
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where the subscripts i, j, k, l,m range from 1 to 3, and x1,2,3 = x, y, z, respectively.
The symbol εi jk is the Levi-Civita symbol, defined by εi jk = 1 if (i, j, k) is a cyclic
permutation of (1, 2, 3), εi, j,k = −1 if (i, j, k) is an anticyclic permutation of (1, 2, 3),
and εi, j,k = 0 if at least two of the subscripts (i, j, k) are equal.
(c)Themagnetic energy�UM stored in the infinite layer between z and z +�z equals
the volume integral

�UM =
∫

layer

uM d3r =
∫

layer

bm
8πkm

B2(r) d3r

= 2π �z

∞∫
a

bm
8πkm

B2
φ(r) r dr , (S-6.201)

which, involving the integral
∫∞
a r−1dr , is infinite. However, if the radius of the cylin-

der increases by da, the integrand does not change for r > a + da, while the integra-

Fig. S-6.20

tion volume decreases (Fig. S-6.20). Corre-
spondingly, the (infinite) value of the integral
decreases by the finite value

d(�UM) = −�z
bm

8πkm
B2

φ(a
+) 2πa da .

(S-6.202)

Thus, an expansion of the current carrying
surface leads to a decrease of the magnetic
energy. If the system were isolated, the force
df acting on the surface element dS = a dφ dz
would be directed radially outwards, leading

to an expansion of the cylinder. However, the system is not isolated, because a cur-
rent source is required to keep the current surface density K constant. An increase
of the radius da leads to a decrease of the magnetic flux in the layer equal to
d(�Φ) = Bφ(a+)�z da (see figure), which, in turn, implies the appearance of an
electromotive force �E. In fact, in order to keep K constant during the time interval
dt in which the cylinder radius increases by da, the source must provide to the layer
the energy d(�Usource), that compensates the work d(�W ) = �E I dt done by the
electromotive force �E = −bm d(�Φ)/dt , so that

d(�Usource) = −bm I d(�Φ) = 2πbmaK Bφ(a
+)�z da

= bm 2πa
1

4πkm
B2

φ(a
+)�z da = −2d(�Um) . (S-6.203)

Thus, the total energy balance for the layer is given by

d(�Utot) = d(�Usource)+ d(�Um) = −d(�Um) , (S-6.204)
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and the force per unit surface is

P = − 1

2πa�z

d(�Utot)

da
= + 1

2πa�z

d(�Um)

da
, (S-6.205)

in agreement with (S-6.193).

S-6.16 Magnetic Pressure on a Solenoid

(a) The magnetic force df on an infinitesimal coil arc of length d�, carrying a current
I , is (Fig. S-6.21)

df = bm I d�× B . (S-6.206)

Thus, the force dF on the surface element dS = d�× dz of the solenoid, of width d�,
is

dF = bm I Bn d�× dz = bm I Bn dS , (S-6.207)

since the surface element comprises ndz coil arcs, each of length d�. The force dF is
directed towards the exterior of the solenoid, and the solenoid tends to expand radially.

The magnetic field B is discontinuous at the surface of the solenoid, due to the
presence of the electric current in the coils. At the limit of an infinitely long solenoid
we have

B = B0 = 4πkmnI ẑ =
⎧⎨
⎩

μ0nI ẑ , SI,

4π

c
nI ẑ , Gaussian,

(S-6.208)

Fig. S-6.21

inside, where ẑ is the unit vector along the solenoid axis, and
B = 0 outside. Thus we substitute the average value

B(a+)+ B(a−)

2
= B0

2
= 2πkm nI

for B in (S-6.207), obtaining
dF = 2πbmkm n2 I 2dS . (S-6.209)

The pressure P on the solenoid surface is obtained by dividing dF by dS, thus

P = dF

dS
= 2πbmkm n2 I 2 = bmB2

0

8πkm
=

⎧⎪⎪⎨
⎪⎪⎩

μ0

2
n2 I 2 = B2

0

2μ0
, SI,

2πn2 I 2 = B2
0

8π
, Gaussian.

(S-6.210)
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(b)Themagnetic energy of the solenoid can bewritten in terms of themagnetic energy
density uM associated to the magnetic field B0

uM = bm
8πkm

B2
0 =

⎧⎪⎪⎨
⎪⎪⎩

B2
0

2μ0
, SI,

B2
0

8π
, Gaussian.

(S-6.211)

Neglecting the boundary effects, we obtain the total magnetic energy of the solenoid
UM by multiplying uM by the solenoid volume

UM = πa2h uM = a2hbmB2
0

8km
= 2π2a2hbmkmn

2 I 2 , (S-6.212)

thus, if the solenoid radius a increases by da the energy UM increases by

dUM = 4π2ahbmkmn
2 I 2 da , (S-6.213)

while B0, given by (S-6.208), and thus uM, remain constant. This implies an increase
in the flux Φ of B0 through each coil of the solenoid

dΦ = 2πaB0 da = 8π2kma nI da , (S-6.214)

corresponding to a total electromotive force (the solenoid comprises hn coils)

E = −bm dΦ

dt
= −bmkm 8π2ahn2 I 2

da

dt
(S-6.215)

that must be compensated by the current source in order to keep I constant. The work
dWsource done by the current source is thus

dWsource = −EI dt = bmkm 8π2an2hI 2 da . (S-6.216)

Thus the total energy of the system solenoid+current source changes by

dUtot = dUM − dWsource = −4π2ahbmkmn
2 I 2 da . (S-6.217)

The pressure on the solenoid surface is P = −dUtot/dV , where V = πa2h is the
volume of the solenoid. Thus

P = −dUtot

dV
= − 1

2πah

dUtot

da
= 2πbmkm n2 I 2 , (S-6.218)

in agreement with (S-6.210).
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S-6.17 A Homopolar Motor

Fig. S-6.22

The motor is schematized in the diagram of Fig. S-6.22,
that displays only one “half” of the circuit because of the
symmetry of the problem. We use cylindrical coordinates
(r,φ, z) with the origin O at the center of the cylindrical
magnet, of radius b and length l. The z axis coincides with
the axes of the magnet and of the cell, which here is rep-
resented by the voltage source V . The circuit ACDEF is
closed by brush contacts (white arrows in the figure) to
the magnet at points A ≡ (0,φ, l/2) and F ≡ (b,φ, 0), so
that the current I can flow through the conducting magnet.
The circuit is free to rotate around the z axis. Let a > b
and h be the horizontal and vertical sizes of the circuit,
respectively. We denote by B = B(r,φ, z) the magnetic
field generated by the magnet, independent of φ, and with
Bφ ≡ 0. Some field lines of B are sketched in Fig. S-6.22.
The magnetic field on the z = 0 plane is parallel to the z
axis, directed upwards for r < b, and downwards for r > b. For simplicity, we approx-
imateB(r,φ, 0) = B0 ẑ for r < b, with B0 independent of r , even if this approximation
is valid only for l � b.

Fig. S-6.23

Fig. S-6.24

The voltage source drives a current I through the cir-
cuit. When the circuit is at rest we simply have I = V/R,
but, when the circuit rotates, we must take into account
the motion of the circuit in the presence of the magnetic
field. Since the magnetic field B lies on the plane of the
circuit, the force df = I d�× B on an infinitesimal seg-
ment of the circuit d� is perpendicular to the plane of
the circuit (out of paper in the case represented in Fig.
S-6.23). The corresponding infinitesimal torque relative
to the z axis is thus

dτ = r × df = bm I r × (d�× B) , (S-6.219)

where r is the distance of d� from the z axis. The torque
dτ is always parallel (or antiparallel) to ẑ, independently
of the circuit element d� we are considering. For the vec-
tor product d�× B we have

d�× B = −φ̂ B d� sin θ = −φ̂ B d� cosψ

= −φ̂ B · n̂ d�, (S-6.220)

where θ is the angle between d� and B, n̂ is the unit
vector perpendicular to d�, and ψ = θ − π/2 is the angle
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between B and n̂, as shown in Fig. S-6.24. Since r̂ is perpendicular to φ̂ (unit vectors
of the corresponding cylindrical coordinates), we have for the total torque acting on
the circuit

τ = bm I

F∫
A

r × (d�× B) = −ẑ bm I

F∫
A

B · n̂ r d� . (S-6.221)

The last integral of (S-6.221) can calculated, within our approximations, if we first
demonstrate that the line integral of B · n̂ r around the closed path OCDEO of Fig.
S-6.22 is zero, i.e., that

∮
B · n̂ r d� =

F∫
A

B · n̂ r d�+
O∫

F

B · n̂ r d�+
A∫

O

B · n̂ r d� = 0 . (S-6.222)

First, we note that the integral along the whole OC path is zero, both because r is
zero, and because B is parallel to d�, thus perpendicular to n̂. Thus, the integral of
(S-6.222) becomes

∮
B · n̂ r d� =

D∫
C

B · n̂ r dr −
E∫

D

B · n̂ r dz −
O∫

E

B · n̂ r dr

=
D∫

C

B · n̂ r dr +
D∫

E

B · n̂ r dz +
E∫

O

B · n̂ r dr , (S-6.223)

since d� = dr along CD, d� = −dz along DE , and d� = −dr along EO .

Fig. S-6.25

As a next step, we generate a cylinder by rotating the
CDEO path around thez axis, as in Fig. S-6.25. The out-
going flux of the magnetic field B through the total surface of
the cylinder is

∫
upper
base

B · n̂ dS +
∫

lateral
surface

B · n̂ dS +
∫

lower
base

B · n̂ dS = 0 ,

(S-6.224)
since ∇ · B = 0. Equation (S-6.224) can be rewritten
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0 =
a∫

0

B(r,φ, h) · n̂ 2πr dr +
h∫

0

B(a,φ, z) · n̂ 2πr dz

+
a∫

0

B(r,φ, 0) · n̂ 2πr dr = 2π
∮

B · n̂ r d� , (S-6.225)

which demonstrates (S-6.222). For the last integral appearing in (S-6.221) we thus
have

F∫
A

B · n̂ r d� = −
O∫

F

B · n̂ r d� =
b∫

0

B0 r dr = B0 b2

2
, (S-6.226)

wherewe have remembered that the line integrals are zero on the z axis, that d� = −dr
on the FO line, and that, within our approximations, B · n̂ = −B0, independently of
r , on the FO line. The torque on the rotating circuit is

τ = −ẑ bm I

F∫
A

B · n̂ r d� = −ẑ bm I
1

R

(
V + bm ω

B0 b2

2

)
. (S-6.227)

This is why sliding contacts are needed in a homopolar motor. If the line segment
FO were rotating with the rest of the circuit, the total torque on the complete circuit
around the z axis would be zero, because the torque acting on FO would compensate
the torque on the rest of the circuit.

If we denote by I the moment of inertia of the rotating circuit, the equation of
motion is

I dω

dt
= τ = −bm I

B0 b2

2
− ηω , (S-6.228)

where we have assumed the presence of a frictional torque τ fr = −ηω proportional
to the angular velocity. The current I is determined by the voltage source and by the
electromotive force E, due to the rotation of the circuit in the presence of the magnetic
field B,

E = bm

F∫
C

(ω × r)× B · d� = bm

F∫
C

ωr φ̂× B · d� = −bm ω

F∫
C

r φ̂ · d�× B

= bm ω

F∫
C

r B · n̂ d� = bm ω
B0 b2

2
, (S-6.229)

where we have used (S-6.220) and (S-6.226) in the last two steps. The current is thus
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I = 1

R

(
V + bm ω

B0 b2

2

)
, (S-6.230)

and the equation of motion is

I dω

dt
= −bm 1

R

(
V + bm ω

B0 b2

2

)
B0 b2

2
− ηω

= −bm V B0 b2

2R
− ω

(
b2m

B2
0 b

4

4R
+ η

)
, (S-6.231)

with solution

ω = − 2bmV B0 b2

b2mB
2
0 b

4 + 4Rη

(
1− e−t/T

)
, where T = 4RI

b2mB
2
0 b

4 + 4Rη
. (S-6.232)

If we assume negligible frictional torque, i.e., η � b2mB
2
0b

4/(4R), (S-6.232) reduces
to

ω = − 2V

bmB0 b2
(
1− e−t/T

)
, where T = 4RI

b2mB
2
0 b

4
, (S-6.233)

however, inserting “reasonable values” into (S-6.233), such as V = 1.5V, B0 =
100Gauss = 10−2 T and b = 0.5 cm we obtain for the steady state solution

ω0 = − 2V

bmB0 b2
	 −1 200 rad/s , i.e., ν0 	 190 s−1 , (S-6.234)

which is indeed a very fast rotation! In the absence of friction, the steady state is
reached when V + E = 0, so that I = 0 and there is no torque acting on the circuit.
The final steady-state kinetic energy of the rotating circuit in these conditions is

Kss = 1

2
Iω2

0 =
1

2
I 4V 2

b2mB
2
0 b

4
= 2V 2I

b2mB
2
0 b

4
. (S-6.235)

The current flowing in the circuit is

I (t) = 1

R

(
V + bmB0b2ω

2

)
= V

R
e−t/T , (S-6.236)

and the total energy provided by the voltage source is

U =
∞∫
0

V I dt = V 2

R

∞∫
0

e−t/T dt = V 2

R
T = 4V 2I

b2mB
2
0 b

4
= 2Kss , (S-6.237)
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or twice the final kinetic energy. An amount equal to Kss is dissipated into Joule heat.
More realistically, we must take the frictional torque into account. For instance, the
steady-state angular velocity is reduced by a factor 10 if we assume 4Rη = 9 bm B0 b2.
This, assuming R = 1Ω , means

η 	 6× 10−5 Nms . (S-6.238)

In the presence of friction the steady-state angular velocity is

ωf = − 2bmV B0 b2

b2mB
2
0 b

4 + 4Rη
, (S-6.239)

and the power dissipated by friction is

Pfr = τfr ωf = ηω2
f = η

(
2bmV B0 b2

b2mB
2
0 b

4 + 4Rη

)2

. (S-6.240)

The voltage source drives a current

If = V

R

(
1− b2mB

2
0b

4

b2mB
2
0b

4 + 4Rη

)
= 4V η

b2mB
2
0b

4 + 4Rη
, (S-6.241)

and provides a power

Psource = V If = 4V 2η

b2mB
2
0b

4 + 4Rη
. (S-6.242)

The power dissipated into Joule heat is

PJ = RI 2f = R

(
4V η

b2mB
2
0b

4 + 4Rη

)2

, (S-6.243)

and we can easily check that
PJ + Pfr = Psource . (S-6.244)

S-6.18 A Magnetic Cylinder Sliding Inside a Solenoid

(a) Within our assumptions the partially filled solenoid can be considered as a series
of two shorter solenoids of inductance L1 and L2, respectively. If both solenoids can
be assumed to be long with respect to their radii (which seems acceptable as far as
both Z � b and (a − Z) � b), the inductances are given by (see Table 5.1)

L1 = μr4πkmbmn
2Z S , L2 = 4πkmbmn

2(a − Z) S , (S-6.245)
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since both solenoids have cross section S = π b2 and n turns per unit length, but
different relative magnetic permittivities (μr and 1) and lengths (Z and a − Z ). The
total inductance is

L tot = L1 + L2

= 4πkmbmn
2S [(μr − 1) Z + a] =

⎧⎪⎨
⎪⎩

μ0 n
2S [(μr − 1) Z + a] , SI,

4π

c2
n2S [(μr − 1) Z + a] , Gaussian.

(S-6.246)

The magnetic energy stored in the solenoid is

U = 1

2
L I 2 = 2πkmbm n2S [(μr − 1) Z + a] I 20 . (S-6.247)

With increasing Z the energy increases if μr > 1 (paramagnetic material) and
decreases if μr < 1 (diamagnetic material).

To evaluate the force acting on the cylinder we evaluate the variation of the energy
of the system for an infinitesimal virtual variation dZ of the penetration depth. The
magnetic corresponding energy variation is

dU = 2πkmbm n2S(μr − 1) I 20 dZ . (S-6.248)

To obtain the total energy variation of the system we must add to (S-6.248) the energy
lost or absorbed by the current generator in order to keep I constant. A displacement
dZ of the cylinder corresponds to a variation of the flux of the magnetic field through
the solenoid

dΦ = ndZ S(B1 − B2) = ndZ S(μr − 1)4πkmnI0 = 4πkmn
2 S(μr − 1) I0 dZ ,

(S-6.249)
where n dZ is the number of turns through which the field changes from B2 to B1.
If the displacement is performed within a duratio dt , according to Faraday’s law the
change of flux generates an electromotive force

E = −bm dΦ

dt
= −bm 4πkmn2 S(μr − 1) I0 dZ

dt
. (S-6.250)

This electromotive force must be compensated by the current source in order to keep
the current constant. Thus during the time interval dt the source performs a work

dW = −E I0 dt = 4πkmbmn
2 S(μr − 1) I 20 dZ = 2 dU , (S-6.251)

at the expense of its internal energy. Thus the energy variation of the whole system is

dUtot = dU − dW = −dU . (S-6.252)
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The force acting on the cylinder can thus be evaluated as

F = −dUtot

dZ
= +dU

dZ
= 2πkmbm n2S(μr − 1) I 20 =

⎧⎪⎨
⎪⎩

ε0

2
n2S (μr − 1) I 20 , SI,

2π

c2
n2S (μr − 1) I 20 , Gaussian.

(S-6.253)
Thus F > 0 if μr > 1, and F < 0 if μr < 1. A paramagnetic cylinder is pulled into
the solenoid, while a diamagnetic cylinder is pushed out.

Fig. S-6.26

(b)Using expressions (S-6.245) for the
contributions of the filled and empty
regions of the solenoid to its global
inductance implies assuming that the
magnetic field B is uniform in both
regions. However, the two regions have
different magnetic fields, and this is
in contrast with the boundary condi-
tions at at the cylinder-vacuum inter-
face, where Bz should be continuous.

Thus there must actually be a transition region T inside our solenoid (dashed box
in Fig. S-6.26) where the z component of B continuously changes from its value
B1 = 4πkm μrnI0 in the cylinder to its value B2 = 4πkmnI0 in vacuum. Actually, the
transition extends in both directions, but we can reasonably assume that the field at
the left of the transition region is practically B1, and at the right of T is practically
B2. Note that (although not strictly relevant to our problem) the field lines display
a refraction angle at the cylinder-vacuum interface because the radial (in cylindical
coordinates with the cylinder axis as polar axis) component Hr , not Br is continuous;
also note that ∂z Bz is discontinous.

When the cylinder penetrates by a further dZ into the solenoid, the transition
region shifts globally to the right by an amount dZ . Thus, during this displacement,
the volumewith fieldB1 increases by an amount SdZ , surrounded by n dZ turns of the
coil, while the volume with field B2 decreases by the same amount. Thus the energy
of the system changes by

dU = 2πkmbm n2S(μr − 1) I 20 dZ , (S-6.254)

identical to (S-6.248). The presence of the transition region simply adds a constant
value to the energy (S-6.247), which is lost in differentiation. It is important to note
that, analogously to the solution of Problem 3.12, here we are assuming that for a
long cylinder a displacement of its left end outside the solenoid (Fig. S-6.26), which
“frees” from the magnetic material a volume SdZ , yields a negligible variation in the
total magnetic energy. Of course, since the strength of the magnetic field decreases
with distance from the end of the solenoid, this assumption is consistent with both
Z � b and (a − Z)� b so that the end of the cylinder is sufficiently far away from the
solenoid.On a physical ground, the validity of this approximation ismore questionable
for a paramagnetic material than for a diamagnetic one. In fact, a ferromagnetic
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material of very high relative magnetic permeability μr would channel the field lines
inside the cylinder, so that the decrease in the strength of B with distance would be
slower than in the case of a diamagnetic material which acts to expel the field lines.

In general, the mechanical force on the cylinder will result from the magnetic
field B acting on the magnetization currents which flow on its surface and, because
of symmetry, are directed in the azimuthal (φ) direction and are either positive or
negative (i.e., either parallel or anti-parallel to the current flowing in the solenoid
loops) for μr > 1 and μr < 1, respectively. This is the origin of the different sign of
the force for paramagnetic and diamagnetic materials. Clearly a force along z cannot
be originated by the z components of B. Thus the force must be due to the radial
components of B, which are found at the ends of the cylinder.

S-6.19 Conducting Cylindrical Shell in a Magnetic Field

(a) Under the assumption of slowly-varying currents and fields we can evaluate the
induced electric field E1 from the approximate equation ∇ × E 	 −bm∂tB0. We also
assume that the problem has cylindrical symmetry around the shell axis. This is
not necessarily true from the assumption of a “uniform” magnetic field. A magnetic
field uniform over the whole space implies rotational symmetry around any axis
parallel to the field, leading to inconsistencies for the induced electric field. But we
can assume, for instance, that our uniform magnetic field is generated by a large long
solenoid coaxialwith the conducting shell, so that there is a privileged axis of rotational
symmetry. Under these assumptions the electric field is azimuthal, and, considering a
circular path C of radius r < a coaxial with the shell, enclosing a surface Σ , we have

∮
C

E1 · d� 	 −bm ∂

∂t

∫
Σ

B0 · dS , (S-6.255)

leading to

2πr E1φ 	 −bmπr2
∂

∂t
(B cosωt) , (S-6.256)

and, finally,

E1φ 	 1

2
bmωrB sinωt . (S-6.257)

Assuming that both conditions h � a and h � δω hold for the shell thickness h,
where δω is the collisional skin depth at frequency ω, the current density inside the
shell can be considered uniform, J1 	 σE1(a). Thus the resulting magnetic field B1

equals the field generated by a solenoid with the product nI = J1h, and we have
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B1 	 ẑ 4πkm J1h = ẑ 2πkmbm σωahB sinωt =

⎧⎪⎨
⎪⎩

ẑ
μ0

2
σωahB sinωt , SI,

ẑ
2π

c2
σωahB sinωt , Gaussian.

(S-6.258)
The condition B1 � B0 implies

σωah

2ε0c2
� 1 (SI),

2πσωah

c2
� 1 (Gaussian), (S-6.259)

where we have used the identity μ0 = 1/(ε0c2) for the SI units.
A conductivity of 1 −1m−1 in SI units corresponds to 9× 109 s−1 in Gaussian units.

Thus, in Gaussian units, we have σ 	 5.4× 1017 s−1. We have ω = 2π × 50 Hz 	
314 rad/s. The condition for B1 � B0 in SI units is

ah � 2ε0c2

σω
	 8.5× 10−5 m2 , (S-6.260)

analogously we have in Gaussian units

ah � c2

2πσω
	 0.85 cm2 . (S-6.261)

The displacement current is negligible if J = σE � ∂t E/(4πke) 	 ωE/(4πke), or

ω � 4πkeσ =
⎧⎨
⎩

σ

ε0
(SI)

4πσ (Gaussian)

⎫⎬
⎭ 	 6.8× 1018 rad/s , (S-6.262)

condition well verified in our case (ω = 314).
(b) The field B1 is discontinuous through the shell surface, since it is zero outside the
shell. This originates a discontinuity of the Poynting vector. We have

S(a−) = r̂
1

km
E1 (B0 + B1) , S(a+) = r̂

1

km
E1B0 . (S-6.263)

The difference between the entering and the exiting energy flux per unit length through
the shell wall is

�Φ(S) = 2πa
[
S(a−)− S(a+)

] = 2πa

km
E1(a)B1(a

−)

= 2πa

km
E1(a) (km J1h) = 2πahE1(a)J1 , (S-6.264)

which equals the power dissipated per unit length of the shell by Joule heating. We
have used (S-6.258).
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(c) We use complex notation with B̃0 = Be−iωt . If we denote by B̃t the total magnetic
field inside the shell, we have B̃t = B̃0 +�B̃, where �B̃ is the magnetic field gen-
erated by the current induced in the shell walls. For the induced electric field Ẽφ and
the current density J̃ in the shell walls we have

Ẽφ = −1

2
bmr

∂ B̃t

∂t
= i

2
bmωr B̃t , and J̃ = σ Ẽφ(a) . (S-6.265)

Combining we obtain

B̃t = B̃0 + 4πkmh J̃ = B̃0 + 4πkmhσ Ẽφ(a) = B̃0 + i 2πkmbmahωσ B̃t ,

(S-6.266)
from which

B̃t = B̃0

1− i 2πkmbmahωσ
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B̃0

1− iμ0ahωσ/2
, SI,

B̃0

1− i 2πkmbmahωσ/c2
, Gaussian.

(S-6.267)

At the slowly-varying fields limit we obtain

B̃t 	 B̃0 (1+ i 2πkmbmahωσ) , (S-6.268)

and, in real notation

�B = Re
(
i 2πkmbmahωσBe−iωt) = 2πkmbmahωσB sinωt , (S-6.269)

in agreement with (S-6.258).

S-6.20 Electromagnetic Inertia of a Rotating Charged Ring

(a) The rotating ring with rigid charge distribution is equivalent to a circular loop
carrying a current I = ω Q/2π. Thus the self-induced flux of the magnetic field
through the loop is Φself = cL I . The time-dependence of ω = ω(t) gives origin to
an induced electric field Ei = Ei(r) φ̂, azimuthal because of symmetry. According to
Faraday’s law we have on the ring (z = 0, r = a)

∮
Ei · d� = 2πaEi(a) = −1

c

d

dt
Φself = LQ

2π
ω̇ , (S-6.270)

which leads to

Ei(a) = − LQ

(2π)2a
ω̇ = − αQ

(2π)2c2
ω̇ . (S-6.271)
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(b) The force exerted by the induced electric field on a ring element of length d� and
charge dq = Q d�/(2πa) is

d f = Ei(a) dq = Ei(a)
Q

2πa
d� . (S-6.272)

Thus the torque exerted by the induced electric field on the whole ring is

τ E = ẑ
∮

a d f = ẑ
∮

Ei(a)
Q

2π
d� = Ei(a) Qa ẑ

= − αQ2a

(2π)2c2
ω̇ ẑ = − LQ2

(2π)2
ω̇ . (S-6.273)

The equation of motion for the ring is thus

Iω̇ = τ ext + τ E , (S-6.274)

which we can rewrite as

I′ω̇ ≡ (I+ IEM) ω̇ =
(
I+ LQ2

(2π)2

)
ω̇ = τ ext (S-6.275)

where IEM can be considered as a contributiobn of electromagnetic nature to the
moment of inertia of the ring. This electromagnetic contribution can be written as

IEM = α

4π2

Q2

ac2
a2 ≡ mEM a2 , (S-6.276)

where mEM is some sort of “electromagnetic mass” of the ring.
(c) The power provided by the induced electric field is

PE = τ E · ω = − LQ2

(2π)2
ω ω̇ . (S-6.277)

The magnetic energy of the ring is

Umag = 1

2
L I 2 = L

2

(
ωQ

2π

)2

, (S-6.278)

thus we have
dUmag

dt
= L

(
Q

2π

)2

ω ω̇ = −PE , (S-6.279)

showing that the work done by the induced electric field is stored as magnetic energy
of the system.
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S-6.21 A Bar Sliding in a Magnetic Field

(a) Let us denote by x(t) the position of the moving bar and by v = dx/dt its velocity.
At a generic time t the flux of the magnetic field through the rectangular circuit
comprising the two bars and the portions of wires between them isΦB0(t) = B0hx(t),
thus the electromotive force around the circuit is

E = −dΦB0

dt
= −B0hv , (S-6.280)

and the current flowing in the circuit is

I = E
R
= − B0hv

R
. (S-6.281)

The moving bar is subject to the magnetic force

F = B0hI = − B2
0h

2

R
v , (S-6.282)

and its equation of motion is

m
dv

dt
= − B2

0h
2

R
v , (S-6.283)

with solution for the bar velocity

v(t) = v0 e
−t/τ , where τ = mR

B2
0h

2
. (S-6.284)

The position of the bar at time t is thus

x(t) = x0 +
t∫

0

v0 e
−t ′/τdt ′ = x0 + v0τ

(
1− e−t/τ

)
, (S-6.285)

and the maximum distance from the origin that the bar will reach is

x(∞) = x0 + v0τ . (S-6.286)

(b) Taking the self-inductance of the circuit into account the electromotive force is

RI = E = −dΦB0

dt
− L

dI

dt
= −B0hv − L

dI

dt
, (S-6.287)

which forms a system of equations with the equation of motion
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m
dv

dt
= B0hI . (S-6.288)

From (S-6.288) we obtain for I and dI/dt

I = m

B0h

dv

dt
,

dI

dt
= m

B0h

d2v

dt2
, (S-6.289)

which, substituted into (S-6.287), lead to the equation

Rm

B0h

dv

dt
= −B0hv − Lm

B0h

d2v

dt2
, (S-6.290)

which can be rewritten as

d2v

dt2
+ R

L

dv

dt
+ B2

0h
2

Lm
v = 0 . (S-6.291)

This equation is analogous to the equation of a damped harmonic oscillator with

undamped frequency ω0 =
√
B2
0h

2/(Lm) and viscous damping coefficient γ = R/L .
Equation (S-6.291) is a linear, homogeneous second-order differential equation with
constant coefficients, thus its general solution has the form v(t) = A1eα1t + A2eα2t ,
where A1 and A2 are constants to be determined from the initial conditions. Thus,
differently from point a), where one initial condition, in our case the initial velocity
v0, was sufficient to determine the problem, here we need a second condition, for
instance the initial acceleration a0 of the bar, in order to determine the two constants
A1 and A2. Given v0 and a0. we must solve the system of equations

A1 + A2 = v0 , (S-6.292)

α1A1 + α2A2 = a0 (S-6.293)

with solutions
A1 = α2v0 − a0

α2 − α1
, A2 = a0 − α1v0

α2 − α1
. (S-6.294)

The exponents α1,2 are the roots of the characteristic polinomial

α2 + R

L
α+ B2

0h
2

Lm
= 0 , (S-6.295)

namely

α1,2 =
−R ∓

√
R2 − 4LB2

0h
2/m

2L
. (S-6.296)

We have three possible cases:
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i. R > 2B0h
√
L/m, the argument of the square root is positive and we have an

overdamped decay of v, i.e., v decays without oscillating. At the limit L → 0
we have

lim
L→0

√
R2 − 4LB2

0h
2/m = R − 2LB2

0h
2

Rm
, (S-6.297)

thus

lim
L→0

α1 = −∞ , lim
L→0

α2 = − B2
0h

2

Rm
, (S-6.298)

lim
L→0

A1 = 0 , lim
L→0

A2 = v0 . (S-6.299)

At this limit τ1 = 1/α1 tends to zero,whichmeans immediate decay, and, accord-
ing to (S-6.299), also the coefficient A1 tends to zero. As a result, if the initial
acceleration a0 = α2v0 it rapidly jumps to this value (and for L = 0 it is dis-
continuous). On the other hand the limits for A2 and α2 are in agreement with
(S-6.284).

ii. R = 2B0h
√
L/m, we have α1 = α2 = −R/(2L) and v is critically damped,

this corresponds to the quickest decay.
iii. R < 2B0h

√
L/m, the square root is imaginary and v is underdamped, it oscil-

lates with a slightly different frequency than in the undamped case, with the
oscillation amplitude gradually decreasing to zero.

S-6.22 Magnetic Levitation of a Superconducting Ring

(a) When an electric current I flows in the coil of radius R the magnetic field along
its axis is

B(z) = ẑ 2πkm I
R2

(
R2 + z2

)3/2 =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẑ I
μ0R2

2
(
R2 + z2

)3/2 , (SI),

ẑ I
2π R2

c
(
R2 + z2

)3/2 , (Gaussian),
(S-6.300)

where z = 0 corresponds to the center of the loop. The flux of B through the super-
conducting ring of radius r � R, coaxial with the loop at a height z above the loop
plane, can be approximated as

Φ(z) 	 πr2B(z) = I 2π2r2km
R2

(
R2 + z2

)3/2 , (S-6.301)
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Fig. S-6.27 .

Thus the coefficient of mutual inductance between the coil and the ring is

M(z) = Φ(z)

I
= 2π2r2km

R2

(
R2 + z2

)3/2 = M0
R3

(
R2 + z2

)3/2
= M0

1(
1+ ζ2

)3/2 , (S-6.302)

where we have introduced the dimensionless variable ζ = z/R, while M0 = 2π2r2

km/R is the mutual inductance at ζ = z = 0, i.e., when coil and ring are coplanar.
The plot of M(ζ) is shown in Fig. S-6.27.
(b) The magnetic flux through the superconducting ring must remain constant, thus,
since it was zero for t < 0, it must remain zero at any time t ≥ 0. When the ring
is at height z the coil induces a magnetic flux M(z) Ic/bm through it, which must
be canceled by the magnetic field generated by the current I (z) circulating in the
superconducting ring. Thus we must have

Lr I (z) = −M(z) Ic , leading to I (z) = −M(z)

Lr
Ic . (S-6.303)

When the ring is at a height z the magnetic energy of the system coil+ring is

UM(z) = 1

2
Lc I

2
c +

1

2
Lr I

2(z)+ M(z) Ic I (z) = 1

2
Lc I

2
c +

1

2

M2(z)

Lr
I 2c −

M2(z)

Lr
I 20

= 1

2
Lc I

2
c −

1

2

M2(z)

Lr
I 2c , (S-6.304)

where we have substituted the second of (S-6.303) for I (z). If the height of the ring is
increased by an infinitesimal amount dz the magnetic energy of the system increases
by an amount

dUM = − I 2c
Lr

M(z)
dM

dz
dz , (S-6.305)
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here, and in the following, remember that dM/dz < 0 for z > 0. In the meantime the
current source must perform work in order to keep the current Ic flowing in the coil
constant. The contribution of the superconducting ring to the magnetic flux through
the coil changes by

dΦ = 1

bm
d [M(z)I (z)] = − 1

bm
d

[
M2(z)

Lr
Ic

]
= − 2

bm

Ic
Lr

M(z)
dM

dz
dz ,

(S-6.306)
which, assuming that the change occurs in a time dt , corresponds to an electromotive
force

E = −bm dΦ

dt
= 2

Ic
Lr

M(z)
dM

dz

dz

dt
, (S-6.307)

whichmust be compensatedby anopposite electromotive force providedby the current
source. During the time dt the current source thus performs a work

dW = −E Ic dt = −2 I 20
Lr

M(z)
dM

dz
dz = 2dUM , (S-6.308)

at the expenses of its internal energy. Thus, when the height of the superconducting
ring increases by dz, the total “potential” energy of the system, including the current
source, changes by

dUpot = −dUM + mg dz , (S-6.309)

where we have taken also the gravitational potential energy of the ring, mg dz,
into account. We can thus define an “effective” potential energy of the system
coil+ring+source

Upot = 1

2

M2(z)

Lr
I 2c + mgz , (S-6.310)

where we have neglected the term Lc I 2c /2 of (S-6.304) because it is constant. If we
measure the energy in units of mgR and the current circulating in the coil Ic in units
I0 defined as

I0 =
√
Lr R3mg

π2r2km
, (S-6.311)

which is the current for which the effective potential energy equals mgR at ζ = 0,
(S-6.310) can be rewritten as

Upot(ζ) = α2

(
1+ ζ2

)3 + ζ , (S-6.312)
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Fig. S-6.28

whereα = Ic/I0. This function is plot-
ted in Fig. S-6.28 for four different val-
ues of α, namely α = 0.7, 1, 1.5, 2.
FromFig. S-6.28we see that at t = 0+,
when Ic is already circulating in the
coil but the ring is still at rest, the ring
cannot be located exactly at ζ = 0 if
we want it to start moving. In fact the
net force acting on the ring at ζ = 0 is
−mg, directed downwards. Therefore
the ring must be located at a position
ζ0 = z0/R immediately higher then the
position of the relative maximum of
Upot(ζ), which tends asymptotically to
ζ = 0 for increasing Ic. At t = 0+ we
have no kinetic energy, and the total
energy of the ring is

U (ζ0) = α2

(
1+ ζ20

)3 + ζ0 , (S-6.313)

while when the ring reaches its maximum height ζmax = zmax/R, again with no kinetic
energy, the total energy is

U (ζmax) = α2

(
1+ ζ2max

)3 + ζmax . (S-6.314)

Thus energy conservation leads to

ζmax = α2

(
1+ ζ20

)3 − α2

(
1+ ζ2max

)3 + ζ0 	 α2

(
1+ ζ20

)3 + ζ0 , (S-6.315)

where we have neglected M2 (ζmax) with respect to M2 (ζ0).
The maximum and minimum of Upot(ζ) occur for ζ values such that

0 = ∂Upot

∂ζ
= − 6α2ζ(

1+ ζ2
)4 + 1 , or

(
1+ ζ2

)4 − 6α2ζ = 0 . (S-6.316)

We see from Fig. S-6.28 that there must be a limit value αmin under which the
maximum and minimum of the potential no longer exist. Physically, this corre-
sponds to the current for which the magnitude of the magnetic force is every-
where smaller than, or equal to, mg, so that the ring cannot raise. Fig. S-6.29
shows the plots of the second of (S-6.316) for three different values of α. We
see that (S-6.316) has two real roots, corresponding to the maximum and mini-
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mum of Upot, for α > αmin, maximum and minimum coalesce for α = αmin, and
there are no real roots for α < αmin. It is possible to evaluate αmin by considering
that, when maximum and minimum coalesce, we have an inflection point, there-
fore also the derivative of (S-6.316) must be zero. Thus we must solve the system







Fig. S-6.29

{(
1+ ζ2

)4 = 6α2
minζ

8
(
1+ ζ2

)3
ζ = 6α2

min

(S-6.317)

for αmin and ζ (the point of inflection). We
multiply the secondof (S-6.317) by ζ, so that
the right-hand sides are equal, and equate the
left-hand sides, obtaining

(
1+ ζ2

)4 = 8
(
1+ ζ2

)3
ζ2 , (S-6.318)

or

1+ ζ2 = 8ζ2 , hence ζ = 1√
7

,

(S-6.319)
for the coordinate of the inflection point. We substitute this value into, for instance,
the first of (S-6.317) obtaining

αmin =
√(

1+ ζ2
)4

6 ζ
= (8/7)2√

6/
√
7
= 0.867327 . (S-6.320)

Thus we must assume α > αmin, and the smallest root of (S-6.316), corresponding to
the maximum of Upot, is the lower limit for ζ0 = z0/R. We see from the plot that, for
α of the order of 1 or higher, we can reasonably assume that ζ0 � 1, obtaining

ζ0 >
1

6α2
(S-6.321)

as a reasonable lower limit for ζ0.
(c) The ring oscillates between ζ = ζ0 and ζ = ζmax. The profile of the potential
well where the motion occurs is given by (S-6.312), plotted in Fig. S-6.28, thus the
oscillations are not harmonic.

S-6.23 Electromagnetic Brake with Energy Recovery

(a) Only the arm in contact with the external circuit contributes to the electromotive
force E, see Fig. S-6.30. We have
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E = bm

∮
(v × B0) · d� = bm

a∫
0

ωr B0 dr = bm
B0 a2ω

2
, (S-6.322)

where v = ω × r is the velocity of the point of the arm at distance r from the center
of rotation. The electromotive force E is positive if ω is parallel to B0, negative if
antiparallel. Figure S-6.30 shows the case of ω and B0 parallel.

Fig. S-6.30

(b) The magnetic force is exerted only on the rotor arm where
the current I is flowing, i.e., again on the arm in contactwith the
circuit. The force acting on an element of the arm of infinites-
imal length d� is

df = bm Id�× B0 , (S-6.323)

where d� is pointing in the direction of the current I . Thus, df
is perpendicular to the arm. The associated torque τ is

τ = bm

∫
r × (Id�× B0) = −ẑ bm

a∫
0

r I B0 dr = −ẑ bm
B0 a2 I

2
, (S-6.324)

where ẑ is the unit vector perpendicular to the plane of the rotor and parallel to B0.
The torque is positive and induces a counterclockwise rotation if I is negative (i.e., if
it flows in clockwise direction), and vice versa.
(c) The current flowing in the circuit is

I = V0 + E
R

= 2V0 + bmB0a2ω

2R
, (S-6.325)

where V0 is positive if the voltage source is oriented as in Fig. 6.21, i.e., if it would
generate a current flowing counterclockwise.

The equation of motion for the rotor is

I dω

dt
= τ , (S-6.326)

where the torque τ is given by (S-6.324) and I by (S-6.325). We thus have

I dω

dt
= −2bmB0a2V0 + b2mB

2
0a

4ω

4R
= −b2mB

2
0a

4

4R

(
ω + 2V0

bmB0a2

)
, (S-6.327)

which leads to
dω

dt
+ b2mB

2
0a

4

4IR ω = −a2V0bmB0

2IR . (S-6.328)

The kinetic energy of the rotor is Iω2/2, and differentiating it with respect to time
we obtain
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d

dt

(Iω2

2

)
= Iω

dω

dt
= −ω

2bmB0a2V0 + b2mB
2
0a

4ω

4R

= −bmB0a2ω

2

bmB0a2ω + 2V0

2R
= −EI , (S-6.329)

where we have used (S-6.327), (S-6.322) and (S-6.325). Using the first of (S-6.325)
we have E = I R − V0 which, inserted into the last of (S-6.329) leads to

d

dt

(Iω2

2

)
= −RI 2 + V0 I . (S-6.330)

Since R > 0, term (−RI 2) is always negative and corresponds to the power dissipated
in the resistance by Joule heating. On the other hand, we are free to choose the sign
of V0 so that the battery either supplies power at the expense of its internal energy, or
absorbs power from the kinetic energy of the rotor, thus increasing its internal energy.
The first case occurs if V0 I > 0: the battery provides current flowing in the direction
needed to stop the rotor at the expense of its internal energy. The second case occurs
if V0 I < 0: the battery power has the same sign as the dissipated power, which means
that the kinetic energy of the rotor goes partly into Joule heating and partly to increase
the internal energy of the battery.
(d) The solution of (S-6.327) is

ω(t) = ω0e
−t/T + ω∞

(
1− e−t/T

)
, (S-6.331)

where

T = 4IR
a4b2mB

2
0

, ω∞ = − 2V0

a2bmB0
. (S-6.332)

If the battery is removed (V0 = 0) and the rotor has an initial angular velocity ω0, its
angular velocity decreases asymptotically (ω∞ = 0). In the presence of the battery
ω(t) reaches asymptotically the value ω∞, independently of its initial value ω0. This
corresponds to a stationary state where E+ V0 = 0 and no current flows in the circuit.
Note that the condition |V0| < E(ω0) ensures that |ω∞| < ω0, so that the final angular
velocity is smaller than its initial value.

ForV0 > 0, as inFig. 6.21, the battery voltage has the same sign asE and contributes
to brake the rotor at the expense of its internal energy (V0 I > 0). The angular velocity
must change sign in order to reach the asymptotic state inwhichE + V0 = 0, thus there
is an intermediate time t0 at which ω(t0) = 0, with t0 = T ln(1− ω0/ω∞). Opening
the circuit at t0 would make the rotor stop.

If V0 < 0, the sign of the battery voltage is opposite to the sign of E, the battery
absorbs energy, but it prevents the rotor from reaching zero angular velocity (ω∞ > 0).
Thus, the electromagnetic brake cannot both recover energy and completely stop the
rotor. (Note that the caseE(ω0)+ V0 < 0wouldnot bemeaningful for a brake, because
as soon as the circuit is closed the battery would accelerate the wheel!).
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(e) The battery power (either supplied or absorbed) is

V0 I = V 2
0 + V0E

R
= 2V 2

0 + bmB0a2V0ω(t)

2R

= 2V 2
0 + bmB0a2V0

[
ω0e−t/T + ω∞

(
1− e−t/T

)]
2R

= 2V 2
0 − 2V 2

0 + bmB0a2V0
[
ω0e−t/T + (2V0)/(a2bmB0)e−t/T )

]
2R

= bmB0a2V0ω0 + 2V 2
0

2R
e−t/T

= bmB0a2V0

2R
(ω0 − ω∞) e−t/T . (S-6.333)

The last equality shows again that if V0 < 0 then V0 I < 0 and the battery absorbs
energy for a total amount Uabs given by the integral

Uabs =
∞∫
0

V0 Idt = T
bmB0a2V0ω0 + 2V 2

0

2R

= 2I
a4b2mB

2
0

(
bmB0a

2V0ω0 + 2V 2
0

)
. (S-6.334)

The efficiency, i.e., the fraction of absorbed energy is

R = Uabs

Iω2
0/2

= −
(
V̂ + 2V̂ 2

)
= −2V̂

(
1+ V̂

)
, (S-6.335)

where V̂ = V0/E(ω0) = 2V0/
(
bmB0a2ω0

)
. Maximum efficiency ofR = 1/2 = 50%

is obtained for V̂ = −1/2.

S-6.24 A High Frequency Capacitor

(a) In the following we express all fields in complex notation, omitting the common
time dependence factor e−iωt .

To the lowest order, the total charges ±Q0 on the two plates are obtained from by
the continuity equation

dQ0

dt
= −I , (S-6.336)

which, using dQ0/dt = −iωQ0, yields
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Q0 = i
I0
ω

. (S-6.337)

Since the surface density is assumed to be uniform we have

σ0 = Q0

πa2
= i

I0
πa2ω

, (S-6.338)

and the electric field between the plates is

E0 = 4πkeσ0 = i
4ke I0
a2ω

. (S-6.339)

(b) For symmetry reasons the magnetic field is azimuthal, B = B(r, t) φ̂. The lowest
order term is obtained from the equation cs(∇ × B1)z = ∂t E0 where s = 1 and s = 2
in c.g.s. and SI units, respectively. Using the expression of the curl in cylindrical
coordinates (Table A.1), we have

1

r
∂r (r B1) = − iω

cs
E0 . (S-6.340)

Integrating this equation with respect to r leads to

r B1(r) = − iω

cs
E0

r∫
0

r ′dr ′ = − iωr2

2cs
E0 , (S-6.341)

from which we finally obtain

B1 = iωr

2a2cs
E0 . (S-6.342)

Of course (S-6.342) can be also quickly obtained using Stokes’ theorem to obtain,
after a trivial integration along a B-field line (i.e., a circle of radius r ), 2πr B1cs =
−iωπr2E0.
(c) The lowest order correction to the electric field is obtained from the equation
c2−s(∇ × E1)φ = −∂tB1. Assuming E1 = E1(r) ẑ and using Table A.1 again we
obtain −c2−s∂r E1 = iωB1. Inserting (S-6.342) and integrating with respect to r we
find

E1(r) = E1(0)− ω2r2

4c2
E0 . (S-6.343)

This same expression can be obtained using Stokes’ theorem applied to a rectangle
parallel to the z-axis and extending from r = 0 to r = a.

The correction E1 implies a correction σ1 = E1/4πke to the surface charge density
and, in turn, to the total charge:
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Q1 =
a∫

0

σ1(r) 2πr dr . (S-6.344)

The conditiondQ/dt = −I ,withQ = Q0 + Q1, imposesQ1 = 0becauseof (S-6.336).
Thus, since E1 = 4πkeσ1, we have

0 =
a∫

0

[
E1(0)− ω2r2

4c2
E0

]
2πr dr , (S-6.345)

which yields

E1(0) = ω2a2

8c2
E0 . (S-6.346)

Thus, up to second order in (ωa/c)2 we have

E(r) 	 E0

(
1+ 1

2

ω2a2

4c2

)
− ω2r2

4c2
E0 . (S-6.347)

We thus see that imposing the total current through the capacitor to be I0 leads to
a “renormalization” of the field on the axis at each order of iteration. On the other
hand considering the capacitor in series with an ideal current source may appear less
problematic than considering an ideal voltage source since the voltage difference
between the two plates cannot be defined because the field is not uniform in the
capacitor. That said, in the following we assume to fix the voltage difference on the
axis (r = 0), i.e. between the two points in which the plates are in contact with the
external circuit; this is also the choice in Feynman’s book [1]. See also Jackson’s
book ([2], Sect. 6.9) for a discussion about input currents and voltage in passive linear
circuit elements.
(d) Assuming that E(r = 0) = E0 imposes E1(0) = 0, so that the solution for the
electric field up to the first order of approximation is

E(r) 	 E0

(
1− ω2r2

4c2

)
. (S-6.348)

This corresponds to the first and second terms of the series (6.8). Now it is sufficient
to show that, if we assume that the nth term of the electric field En is

En = E0
(−1)n
(n!)2

(ωr

2c

)2n
, (S-6.349)

then the following (n + 1)th term in the SVCA expansion has the same expression
but for the replacement n → n + 1.
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The (n + 1)th term for the B-field expansion is obtained from cs(∇ × Bn+1)z =
∂t En which yields

1

r
∂r (r Bn+1) = − iω

cs
En = −E0

(−1)n
(n!)2

iω2n+1

22nc2n+s
r2n . (S-6.350)

Multyplying both sides by r and integrating yields

r Bn+1 = −E0
(−1)n
(n!)2

(
iω2n+1

22nc2n+s
r2n+2

2n + 2

)
, (S-6.351)

or equivalently

Bn+1 = −E0
(−1)n

(n!)2(n + 1)

iω2n+1r2n+1

22n+1c2n+s
, (S-6.352)

Now, the (n + 1)th E-field terms can be found from c2−s(∇ × En+1)φ = −∂t Bn+1,
i.e.

∂r En+1 = − iωBn+1
c2−s

= E0
(−1)n+1

(n!)2(n + 1)

ω2n+2r2n+1

22n+1c2n+2
. (S-6.353)

Integrating again with the condition En+1(0) = 0 yields

En+1 = E0
(−1)n+1

(n!)2(n + 1)

ω2n+2
22n+1c2n+2

r2n+2
2n + 2

(S-6.354)

= E0
(−1)n+1

(n!)2(n + 1)2
ω2n+2r2n+2
22n+2c2n+2 = E0

(−1)n+1
((n + 1)!)2

(ωr

2c

)2(n+1)
, (S-6.355)

which corresponds to the (n + 1)th term in (6.8). This proves that the series represents
the full SVCA solution, which converges to an exact solution of Maxwell’s equations
described by the Bessel function J0(ωr/2c) (see Fig. S-13.16 for a plot of J0(x), and
the discussion by Feynman for the relation to a cylindrical resonant cavity.)
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Chapter S-7
Solutions for Chapter 7

S-7.1 Coupled RLC Oscillators (1)

(a) Assuming the two currents I1 and I2 to flow clockwise, and applying Kirchoff’s
mesh rule to the two loops of the circuit, we have

L
dI1
dt
+ Q1

C1
+ Q0

C0
= 0 , L

dI2
dt
+ Q2

C1
− Q0

C0
= 0 , (S-7.1)

where Q1 is the charge of the left capacitor, Q2 the charge of the right capacitor, and
Q0 the charge of capacitor C0. Charge conservation in the two loops implies

dQ1

dt
= I1 ,

dQ2

dt
= I2 , (S-7.2)

while Kirchhoff’s junction rule, applied either to junction A or to junction B, leads to

dQ0

dt
= I1 − I2 . (S-7.3)

Differentiating (S-7.1), substituting (S-7.2) and (S-7.3), and dividing by L , we obtain

d2 I1
dt2

= − 1

LC1
I1 − 1

LC0
(I1 − I2), or

d2 I1
dt2

= −ω2
1 I1 − ω2

0(I1 − I2)

d2 I2
dt2

= − 1

LC1
I2 − 1

LC0
(I2 − I1), or

d2 I2
dt2

= −ω2
1 I2 − ω2

0(I2 − I1) , (S-7.4)

where we have introduced the quantities ω0 = 1/
√
LC0 and ω1 = 1/

√
LC1. By sub-

stituting I1 = A1e−iωt and I2 = A2e−iωt from (7.2) into (S-7.4), we obtain
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(ω2
1 + ω2

0 − ω2) A1 − ω2
0 A2 = 0

−ω2
0 A1 + (ω2

1 + ω2
0 − ω2) A2 = 0 . (S-7.5)

Non-trivial solutions for this system exist only if the determinant

D = D(ω) = (ω2
1 + ω2

0 − ω2)2 − ω4
0 = (ω2

1 − ω2)(ω2
1 + 2ω2

0 − ω2) (S-7.6)

equals zero. Thus, the frequencies of the normal modes of the circuit are the roots of
the equation D(ω) = 0, i.e.,

ω = ω1 ≡ Ω+ , ω =
√

ω2
1 + 2ω2

0 ≡ Ω− . (S-7.7)

Substituting these values forω into (S-7.5) we obtain that A1 = A2, i.e., I1(t) = I2(t),
for the mode of frequency Ω+, and that A1 = −A2, i.e., I1(t) = −I2(t), for the mode
of frequency Ω−.

The normal modes of this simple case, with only two degrees of freedom, can also
be evaluated, more simply, by taking the sum and the difference of (S-7.4), obtaining
the harmonic oscillator equations

d2 I±
dt2

= −Ω2
± I± . (S-7.8)

for the variables I± ≡ I1 ± I2, then the currents in the two meshes are I1 = (I+ +
I−)/2 and I2 = (I+ − I−)/2, respectively.

When the circuit is in the mode of frequency Ω+, no current flows through the AB
branch (capacitor C0), where the two currents cancel out because I1 = I2. Frequency
Ω+ is simply the resonant frequency of a single-loop LC circuit of inductance L and
capacitance C1, i.e., the frequency at which the impedance of the loop is zero

ZLC(ω) = ZL(ω)+ ZC1(ω) = −iωL − 1

iωC1
= 0 . (S-7.9)

Since ZLC(Ω+) = 0, the current flows “freely” through each loop.
For the mode of frequencyΩ−, we have I1 = −I2, and a current 2I1 flows through

the AB branch. The effective impedance of the circuit is the series of ZC0 = (iωC0)
−1

with the parallel of the two impedances ZLC ,

Z = ZC0 +
ZLC ZLC

ZLC + ZLC
= Z0 + ZLC

2
= − 1

iωC0
− 1

2

(
iωL + 1

iωC1

)
, (S-7.10)

which vanishes if

ω2 = 1

L

(
2

C1
+ 1

C0

)
= Ω2

− . (S-7.11)
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Fig. S-7.1

The circuit is equivalent to the two
coupled identical harmonic oscillators
of Fig. S-7.1. Each oscillator com-
prises a mass m, connected to a fixed
wall by a spring of Hooke’s constant
k1 = mω2

1. The two masses are con-
nected to each other by a third spring
of Hooke’s constant k0 = mω2

0. We
assume that all springs have their respective rest lengths when the two masses are
at their equilibrium positions. The equations of motions for the two masses are

m
d2x1
dt2

= −k1x1 − k0(x1 − x2), or
d2x1
dt2

= −ω2
1x1 − ω2

0(x1 − x2)

m
d2x2
dt2

= −k1x2 − k0(x2 − x1), or
d2x2
dt2

= −ω2
1x2 − ω2

0(x2 − x1) , (S-7.12)

where x1 and x2 are the displacements of the two masses from their equilibrium
positions. Equations (S-7.12) for x1 and x2 are formally equivalent to Eqs. (S-7.4)
for I1 and I2, and thus have the same solutions. For the mode at frequency Ω+, the
two masses oscillate in phase (x1 = x2), central spring (k0) has always its rest length,
and does not exert forces on the two masses. Thus, frequency Ω+ is the characteristic
frequency each single harmonic oscillator. For the mode at frequency Ω−, we have
x1 = −x2 and the two masses oscillate with opposite phases.
(b) The presence of a nonzero resistance R in series with each inductor changes Eq.
(S-7.1) into

L
dI1
dt
+ RI1 + Q1

C1
+ Q0

C0
= 0 , L

dI2
dt
+ RI2 + Q2

C1
− Q0

C0
= 0 ,(S-7.13)

By differentiating the equations and proceeding as for (S-7.8) we obtain

d2 I±
dt2

= −Ω2
± I± − γ

dI±
dt

, (S-7.14)

with γ = R/L . These are the equations of two damped oscillators. The amplitudes of
the normal modes vary in time as exp(−iΩ±t − γt), decaying with a time constant
τ = γ−1. The damping rate of the normal modes can also be found by looking for
solutions in the form I1,2 = A1,2 e−iωt , but allowing A1,2 andω to have imaginary parts.
For the equivalent mechanical system, the same equations are obtained by inserting
frictional forces fi = −mγdxi/dt in the equations of motion (S-7.12).
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(c) Inserting the voltage source, Eqs. (S-7.13) are modified as follows:

L
dI1
dt
+ RI1 + Q1

C1
+ Q0

C0
= V0 e

−iωt , L
dI2
dt
+ RI2 + Q2

C1
− Q0

C0
= 0 , (S-7.15)

and, by proceeding as for (S-7.8) and (S-7.14), we have

d2 I±
dt2

= −Ω2
± I± − γ

dI±
dt
− iωV0

L
e−iωt , (S-7.16)

which are the equations of two forced oscillators with a driving term−(iωV0/L)e−iωt .
Resonances are observed when ω = Ω+ and for ω = Ω+, i.e., when the driving fre-
quency equals one of the frequencies of the normal modes.

S-7.2 Coupled RLC Oscillators (2)

(a) Proceeding as in Solution S-7.1, we assume I1 and I2 to flow clockwise. Applying
Kirchoff’s mesh rule to both meshes of the circuit we obtain

L
dI1
dt
+ Q1

C
+ L0

(
dI1
dt
− dI2

dt

)
= 0 , L

dI2
dt
+ Q2

C
− L0

(
dI1
dt
− dI2

dt

)
= 0 ,

(S-7.17)
again with I1 = dQ1/dt and I2 = dQ2/dt . Differentiating (S-7.17) with respect to t
we obtain

(L + L0)
d2 I1
dt2

+ I1
C
− L0

d2 I2
dt2

= 0

(L + L0)
d2 I2
dt2

+ I2
C
− L0

d2 I1
dt2

= 0 . (S-7.18)

The sum and difference of the two equations of (S-7.18) give the following equations
for the new variables I± ≡ I1 ± I2

d2 I+
dt2

= − I+
LC

≡ −Ω2
+ I+ ,

d2 I−
dt2

= − I−
(L + 2L0)C

≡ −Ω2
− I− , (S-7.19)

which show that I± are the normal oscillation modes of the circuit, and Ω± the
corresponding frequencies.
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(b) Inserting R = 0, Eqs. (S-7.17) turn into

L
dI1
dt
+ RI1 + Q1

C
+ L0

(
dI1
dt
− dI2

dt

)
+ R(I1 − I2) = 0

L
dI2
dt
+ RI2 + Q2

C
− L0

(
dI1
dt
− dI2

dt

)
− R(I1 − I2) = 0 . (S-7.20)

Performing again the sum and difference of the two equations we obtain

d2 I+
dt2

= −γ+
dI+
dt
−Ω2

+ I+ ,
d2 I−
dt2

= −γ−
dI−
dt
−Ω2

− I− , (S-7.21)

with γ+ = R/L , and γ− = 3R/(L + 2L0). These are the equations for two damped
oscillators, with different damping rates γ±.

S-7.3 Coupled RLC Oscillators (3)

(a) Let us denote by Q1 and Q2 the charges of the capacitors on the AB and on the
DE branches, respectively. According to Kirchhoff’s mesh rule we have, for the three
meshes of the circuit,

L
dI1
dt
= −Q1

C
, L

dI2
dt
= Q1

C
− Q2

C
, L

dI3
dt
= Q2

C
, (S-7.22)

and, according to Kirchoff’s junction rule applied to the A and D junctions,

dQ1

dt
= I1 − I2 ,

dQ2

dt
= I2 − I3 . (S-7.23)

Differentiating Eqs. (S-7.22) with respect to t , and substituting dQ1/dt and dQ2/dt
from (S-7.23), we obtain

d2 I1
dt2

= 1

LC
(−I1 + I2) ,

d2 I2
dt2

= 1

LC
(I1 − 2I2 + I3) , (S-7.24)

d2 I3
dt2

= 1

LC
(I2 − I3) .

Fig. S-7.2

Mathematically, the circuit is equivalent to a
mechanical system comprising three identical masses
m, coupled by two identical springs of Hooke’s con-
stant k, as shown in Fig. S-7.2. If we denote by x1, x2,
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and x3 the displacement of each mass from its rest position, the equations of motion
for the three masses are

d2x1
dt2

= k

m
(x2 − x1) ,

d2x2
dt2

= − k

m
(x2 − x1)+ k

m
(x2 − x3) , (S-7.25)

d2x3
dt2

= − k

m
(x2 − x3) ,

which are identical to (S-7.25), after substituting I j → x j , with j = 1, 2, 3, and
1/(LC) → k/m.
(b) The frequencies of the normal modes can be found by looking for solutions of
(S-7.25) in the form

I j (t) = A j e
−iωt . (S-7.26)

After substituting (S-7.26) and ω2
0 = 1/(LC) into (S-7.25), and dividing by the com-

mon exponential factor, we obtain the system of linear equations in matrix form

⎛
⎜⎝

(ω2
0 − ω2) −ω2

0 0

−ω2
0 (2ω2

0 − ω2) −ω2
0

0 −ω2
0 (ω2

0 − ω2)

⎞
⎟⎠

⎛
⎜⎝

A1

A2

A3

⎞
⎟⎠ = 0 (S-7.27)

which has non-trivial solutions only if the determinant of the matrix is zero, i.e., if

(
ω2
0 − ω2

) [(
2ω2

0 − ω2
) (

ω2
0 − ω2

)− ω4
0

]− ω4
0

(
ω2
0 − ω2

) = 0 . (S-7.28)

Equation (S-7.28) is a cubic equation in ω2, in the following we shall consider only
the corresponding nonnegative values of ω. A first solution is ω = ω0 = Ω1. If we
substitute ω = Ω1 into (S-7.27) we obtain A1 = −A3, and A2 = 0, corresponding to
zero current in the central mesh, and I1 and I2 oscillating with opposite phases. For
the mechanical system of Fig. S-7.2, this solution corresponds to the central mass at
rest, while the left and right masses oscillate with opposite phases.

Dividing (S-7.28) by (ω2
0 − ω2) we obtain the equation

− 3ω2
0ω

2 + ω4 = 0 , (S-7.29)

which has the two solutions ω = √3ω0 = Ω2 and ω = 0 = Ω3. The mode of zero
frequency (Ω3) corresponds to a DC current I = I1 = I2 = I3 flowing freely through
the inductors, while I1 and I2 cancel out in branch AB, and I2 and I3 cancel out in
branch DE . For themechanical system, this solution correspond to a pure translational
motions of the three masses.

Substituting Ω2 into (S-7.27) we obtain
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A2 = −2A1 , A3 = A1 , (S-7.30)

i.e., I1 and I3 have the same amplitude and oscillate in phase, while I2 oscillates with
double amplitude and opposite phase. The two external masses of Fig. S-7.2 oscillate
in phase, at constant distance from each other, while the central mass oscillates with
opposite phase and double amplitude, so that the center of mass is at rest.

The three quantities

J0 = I1 + I2 + I3 , J1 = I1 − I3 , J2 = I1 − 2I2 + I3 , (S-7.31)

corresponding to the three normal modes of the circuits, oscillate at the frequencies
Ω0 = 0, Ω1, and Ω2, respectively.
(c) Taking the finite resistances into account, (S-7.22) become

dI1
dt
+ RI1 = −Q1

C
,

dI2
dt
+ RI2 = Q1

C
− Q2

C
,

dI3
dt
+ RI3 = Q2

C
, (S-7.32)

which give for the normal modes

d2J0

dt2
+ R

L

dJ0

dt
= 0 ,

d2J1

dt2
+ R

L

dJ1

dt
+Ω2

1 J1 = 0 , (S-7.33)

d2J2

dt2
+ R

L

dJ2

dt
+Ω2

2 J2 = 0 .

The solution for J0 describes a non-oscillating, exponentially decreasing current
J0 = C0 e−γt , with decay rate γ = R/L . The last two equations describe damped
oscillating currents J1,2 = C1,2 exp(−iΩ̃1,2t − γt), with

Ω̃1,2 =
√

ω2
1,2 −

γ2

4
, (S-7.34)

where we have assumed Ω1,2 > γ/2.

S-7.4 The LC Ladder Network

(a) Let Qn be the charge on the nth capacitor. Kirchoff’s junction rule at junction D
of Fig. 7.4 implies

dQn

dt
= In−1 − In , (S-7.35)

while Kirchhoff’s mesh rule applied to mesh DEFG implies
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Qn

C
− Qn+1

C
= L

dIn
dt

. (S-7.36)

Now we differentiate (S-7.36) with respect to time, and insert (S-7.35) for the deriva-
tives of Qn , obtaining

d2 In
dt2

= ω2
0 (In−1 − 2In + In+1) , where ω2

0 =
1

LC
. (S-7.37)

Fig. S-7.3 .

The equivalent mechanical system is a linear sequence of N identical masses m,
each pair of consecutive masses being bound to each other by a spring of Hooke’s
constant κ (we use the Greek letter κ here because we shall need the letter k for the
wavevector later on), as shown in Fig. S-7.3. We denote by xn the displacement of
each mass from its equilibrium position, i.e., its position when all springs have their
rest length. Thus, the equation of motion of the nth mass is

m
d2xn
dt2

= −κ (xn − xn−1)+ κ (xn+1 − xn) , (S-7.38)

which, divided by m, and after introducing ω2
0 = κ/m becomes

d2xn
dt2

= ω2
0 (xn−1 − 2xn + xn+1) , (S-7.39)

mathematically equivalent to (S-7.37). This equation can be generalized to the case
of a mechanical system where transverse displacements are allowed, in addition to
the longitudinal displacements. If the masses can move in three dimensions, and we
denote by rn the displacement of the nth mass from its equilibrium position, the
equation of motion is written

d2rn
dt2

= ω2
0 (rn−1 − 2rn + rn+1) , (S-7.40)

which is separable into three one-dimensional equations, each identical to (S-7.37).
(b) First, we note that, without loss of generality, we can assume the wavevector k
appearing in Eq. (7.3) to be positive (k > 0), so that (7.3) represents a wave traveling
from left to right. Changing the sign of k simply gives a wave of the same frequency
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propagating in the opposite direction, whose dispersion relation is the same as for the
forward-propagating wave, because of the inversion symmetry of the problem.

Inserting (7.3) in (S-7.37), and dividing both sides by Ce−iωt we obtain

− ω2 eikna = ω2
0

[
eik(n+1)a − 2eikna + eik(n−1)a

]
, (S-7.41)

where, again, we have substituted ω2
0 = 1/LC . Dividing both sides by eikna we obtain

ω2 = ω2
0

(
2− eika − e−ika

) = 2ω2
0 (1− cos ka) = 4ω2

0 sin
2(ka/2) , (S-7.42)

Fig. S-7.4

or, performing the square root,

ω = 2ω0

∣∣∣∣sin
(
ka

2

)∣∣∣∣ . (S-7.43)

The dispersion relation (S-7.43) is shown in Fig.
S-7.4 for 0 < k ≤ π/a, this range being sufficient
to describe all waves propagating in the system. In
fact, although (S-7.43) seems to imply that ω(k)
is a periodic function of k, with period 2π/a, the
wavevectors k and k ′ = k + 2πs/a, with s any inte-

ger, actually represent the same wave, since

eik
′na = ei(k+2πs/a)na = eiknae2πisn = eikna , (S-7.44)

sn being an integer. This is why it is sufficient to consider the range 0 < k ≤ π/a.

Fig. S-7.5

The existence of a maximumwave
vector and of a cut-off frequency is
related to the discrete periodic nature
of the network, which imposes a min-
imum sampling rate a. The value
kmax = π/a corresponds to λmin =
2π/kmax = 2a, and waves with a
smaller wavelength cannot exist. In
these waves, the current intensity
value is repeated every twomeshes of
the network, as shown in Fig. S-7.5.
A wave with a smaller period cannot
exist because of the geometry of the
network. One can also note that the
direction of wave propagation cannot be determined by observing the wave profile a
two instants t1 and t1 + π/ω (half a period later, upper and lower parts of Fig. S-7.5).
This is consistent with the group velocity vg(k max) = (∂kω)(k max) = 0. The maximum
wavevector corresponds to a high cut-off frequencyω max = 2ω0. Since higher frequen-
cies cannot be transmitted, the LC network is a low-pass filter.
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(c) The general monochromatic solution of frequency ω is a standing wave, i.e., the
sum of two waves, one propagating from left to right and the other form right to left

In(t) = Aeikna−iωt + Be−ikna−iωt , (S-7.45)

whereω and k are related by the dispersion relation (S-7.43). Because of our boundary
conditions we must have

x0(t) = 0⇒ A + B = 0 ; xN (t) = 0⇒ AeikNa + Be−ikNa = 0. (S-7.46)

This gives the condition eikNa − e−ikNa = 2i sin(kNa) = 0, i.e., k = πl/Na with
l = 1, 2, 3, . . . , N − 1, N . We have N allowed wavevectors kl and frequencies
ωl = ω(kl). Note that kmin = π/Na corresponds to λmax = 2π/kmin = 2Na, this is a
standing wave of wavelength twice the length of the system.
(d) We obtain the limit to a continuous by letting a → 0 and n →∞ with na = x =
constant so that

lim
a→0

In+1(t)− 2In(t)+ In−1(t)
a2

= lim
a→0

I (x + a, t)− 2I (x, t)+ I (x − a, t)

a2

= ∂2
x I (x, t) . (S-7.47)

At this limit we can define a capacity per unit length C�, and an inductance per unit
length L�, of the circuit, such that the capacitance and inductance of a circuit segment
of length �x are, respectively,

C = C��x and L = L��x . (S-7.48)

If we further introduce the quantity

v =
√

1

L�C�

, (S-7.49)

which has the dimensions of a velocity, (S-7.37) is written for the continuous system

∂2
t I (x, t) = lim

a→0

v2

a2
[I (x + a, t)− 2I (x, t)+ I (x − a, t)]

= v2 ∂2
x I (x, t) . (S-7.50)

This is the equation for a wave propagating with velocity v, independent of the wave
frequencyω. At the limit of a continuous system there is no dispersion. This is the case
of ideal transmission lines, like parallel wires and coaxial cables with no resistance.
See Problem 7.6 for the case of a realistic transmission linewith resistive losseswhere,
however, dispersion can be eliminated.
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S-7.5 The CL Ladder Network

(a) We have the same electric potential on the lower horizontal branch of each mesh,
and we assume it to be zero. The voltage drop across the nth capacitor is

Vn−1 − Vn = Qn

C
. (S-7.51)

The current in the nth inductor is In − In+1, corresponding to a voltage drop across
the inductor L (dIn/dt − dIn+1/dt). Thus we have

Vn−1 = L

(
dIn−1
dt

− dIn
dt

)
, Vn = L

(
dIn
dt
− dIn+1

dt

)
, (S-7.52)

which, inserted into (S-7.51), give

L

(
dIn−1
dt

− 2
dIn
dt
+ dIn+1

dt

)
= Qn

C
. (S-7.53)

Differentiating (S-7.53) with respect to time, and using dQn

dt = In , we obtain

L

(
d2 In−1
dt2

− 2
d2 In
dt2

+ d2 In+1
dt2

)
= In

C
, (S-7.54)

which is Eq. (7.4).
(b) By substituting In = Aeikna−iωt and In±1 = Aeik(n±1)a−iωt into (S-7.54), defining
ω2
0 = (LC)−1, and dividing both sides by L A eikna−iωt , we obtain

− ω2
(
eika − 2+ e−ika

) = ω2
0 . (S-7.55)

The left-hand side can be rewritten

−ω2
(
eika − 2+ e−ika

)
= −ω2 [2 cos(ka)− 2] = −2ω2 [cos(ka)− 1]

= −2ω2
[
cos(ka)− cos2

(
ka

2

)
− sin2

(
ka

2

)]

= −2ω2
[
cos2

(
ka

2

)
− sin2

(
ka

2

)
− cos2

(
ka

2

)
− sin2

(
ka

2

)]

= 4ω2 sin2
(
ka

2

)
. (S-7.56)
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Fig. S-7.6

Substituting into (S-7.55) we have

ω2 = ω2
0

4 sin2(ka/2)
, (S-7.57)

or
ω = ω0

2| sin(ka/2)| . (S-7.58)

Figure S-7.6 shows the plot of the dispersion
relation. Compare this behavior with the dis-
persion relation shown in Fig. S-7.4 for an LC
network, where capacitors and inductors are
swapped with respect to the present case (Prob-
lem 7.4). In the LC network 2ω0 is an upper
cut-off frequency. Here, in the CL network, we have a lower cut-off frequency ω0/2,
and the CL ladder network acts as a low-pass filter.

S-7.6 A Non-dispersive Transmission Line

(a) The voltage drop from x to x + dx is

V (x, t)− V (x + dx, t) = ∂t I (x, t)L + I (x, t)R , (S-7.59)

which yields, after replacing R by R�dx and L by L�dx ,

∂x V = −L�∂t I − R� I . (S-7.60)

The charge associated to the capacitance per unit length is Q = Q(x, t) = CV (x, t)
and charge conservation yields

∂t Q(x, t) = I (x − dx, t)− I (x, t)− IL(x, t) , (S-7.61)

with the leakage current given by

IL = IL(x, t) = V (x, t)/Rp = V (x, t)G�dx . (S-7.62)

We thus obtain, by eliminating Q and replacing C by C�dx ,

C�∂t V = −∂x I − G�V . (S-7.63)

Now we eliminate V by calculating
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∂2
x I = −C�∂t∂x V − G�∂x V

= +L�C�∂
2
t I + C�R�∂t I + G�L�∂t I + G�R� I , (S-7.64)

which yields Eq. (7.6).
(b) By substituting (7.7) in (7.6) we obtain

− k2 + ω2

v2
0

= −iω(R�C� + L�G�)+ R�G� , (S-7.65)

where v2
0 = (L�C�)

−1. Thus, the wavevector k is a complex number. Writing k =
kr + iki we obtain

k2r − k2i =
ω2

v2
0

− R�G� , (S-7.66)

2kr ki = ω(R�C� + L�G�) . (S-7.67)

The wave is thus evanescent, i.e.

I (x, t) = I0e
−ki xeikr x−iωt , (S-7.68)

where the acceptable values for ki are positive. Since in general kr = kr (ω) if R� = 0
or G� = 0, resistive effects make the line to be dispersive, so that a wavepacket is
distorted along its propagation.
(c) If we assume that k2i = R�G� in Eq. (S-7.66), then kr = ω/v0, which means that
the propagation is non-dispersive: the phase velocity vp = ω/kr = v0 is independent
on frequency. In addition, since ki does not depend onω the evancescence length (k−1i )
is also frequency-independent. By substituing ki = (R�G�)

1/2 and kr = ω(L�C�)
1/2

in Eq. (S-7.67) we obtain the condition

2(R�G�)
1/2(L�C�)

1/2 = R�C� + L�G� . (S-7.69)

Taking the square of both sides and rearranging the terms yields (R�C� − L�G�)
2 = 0

which brings the simple, equivalent condition

R�C� = L�G� . (S-7.70)

This is the condition for a non-dispersive or distortionless transmission line due to
O. Heaviside.

If the input current at one side of the line, say x = 0, is given by

I (0, t) = I0(t) =
∫

Ĩ0(ω)e−iωtdω , (S-7.71)

where Ĩ0(ω) is the Fourier transform, then the current along the line will be given by
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I (x, t) =
∫

Ĩ0(ω)eikr x−iωte−ki xdω = e−ki x
∫

Ĩ0(ω)e−iω(t−x/v0)dω

= e−ki x I0(t − x/v0) , (S-7.72)

since ki is independent on ω. This is equivalent to state that the general solution of
Eq. (7.6) with the condition (S-7.70) has the form (7.8) with v = v0 and κ = ki .

The same conclusion may be obtained by direct substitution of (7.8) into Eq. (7.6).
The partial derivatives are given by

∂t I = −ve−κx f ′(x − vt) ,

∂2t I = v2e−κx f ′′(x − vt) ,

∂x I = −κe−κx f (x − vt)+ e−κx f ′(x − vt) ,

∂2x I = κ2e−κx f (x − vt)− 2κe−κx f ′(x − vt)+ e−κx f ′′(x − vt) , (S-7.73)

where f ′(x) = d f (x)/dx and f ′′(x) = d2 f (x)/dx2. Thus Eq.(7.6) becomes

(κ2 − R�G�) f + (v(R�C� + L�G�)− 2κ) f ′ + (1− L�C�v
2) f ′′ = 0 .(S-7.74)

For this equation to be true for arbitrary f , the coefficients of f , f ′ and f ′′ must be
all zero. Thus

κ2 = R�G� , 2κ = v(R�C� + L�G�) , v2 = (L�C�)
−1 , (S-7.75)

which bring again the conditions on the line parameters found above.

S-7.7 An “Alternate” LC Ladder Network

(a) Let Qn be the charge of the capacitor at the right of mesh n. Applying Kirchoff’s
mesh rule to the even and odd meshes of the ladder network we have, respectively,

− Q2n−1
C

+ L2
dI2n
dt

+ Q2n

C
= 0 , −Q2n

C
+ L1

dI2n+1
dt

+ Q2n+1
C

= 0 ,

(S-7.76)
while Kirchhoff’s junction rule gives

dQ2n−1
dt

= I2n−1 − I2n ,
dQ2n

dt
= I2n − I2n+1 . (S-7.77)

Differentiating (S-7.76) with respect to time, and inserting (S-7.77), we obtain
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L2
d2 I2n
dt2

= 1

C

(
dQ2n−1

dt
− d2Q2n

dt2

)
= 1

C
(I2n−1 − 2I2n + I2n+1)

L1
d2 I2n+1
dt2

= 1

C

(
dQ2n

dt
− d2Q2n+1

dt2

)
= 1

C
(I2n − 2I2n+1 + I2n+2) , (S-7.78)

identical to (7.9).

Fig. S-7.7 .

Amechanical equivalent to our network is the one-dimensional sequence ofmasses
and springs shown in Fig. S-7.7, where the masses have, alternately, the values M and
m, while all springs are identical, with Hooke’s constant κ. If we denote by x2n+1 the
positions of the odd masses M , and by and x2n the positions of even masses m, the
equations of motion for the system are

m
d2x2n
dt2

= −κ(x2n − x2n+1)+ κ(x2n−1 − x2n) = κ(x2n−1 − 2x2n + x2n+1)

M
d2x2n+1
dt2

= −κ(x2n+1 − x2n+2)+ κ(x2n − x2n+1) = κ(x2n − 2x2n+1 + x2n+2) ,

(S-7.79)

which, after the substitutionsm → L2,M → L1, x → I , and κ→ 1/C , are identical
to (S-7.78).
(b) Substituting (7.10) into (S-7.78), and dividing both sides by e−iωt , we obtain

−ω2L2 Ie e
i(2n) ka = 1

C

(
Io e

i(2n−1) ka − 2Ie e
i(2n) ka + Io e

i(2n+1) ka)

−ω2L2 Io e
i(2n+1) ka = 1

C

(
Ie e

i(2n) ka − 2Io e
i(2n+1) ka + Ie e

i(2n+2) ka) . (S-7.80)

Now we define the two angular frequencies ωo = 1/
√
L1C and ωe = 1/

√
L2C , and

divide (S-7.80) by ei(2n) ka , obtaining

(2ω2
e − ω2) Ie − 2ω2

e cos(ka) Io = 0

2ω2
o cos(ka) Ie − (2ω2

o − ω2) Io = 0 . (S-7.81)

This system of linear equations has non-trivial solutions if and only if its determinant
is zero, i.e., if

(2ω2
e − ω2)(2ω2

o − ω2)− 4ω2
oω

2
e cos

2(ka) = 0 , (S-7.82)
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the solution of the above quadratic equation in ω2 is

ω2 = ω2
e + ω2

o ±
√(

ω2
e + ω2

o

)2 − 4ω2
oω

2
e sin

2(ka) . (S-7.83)

Both solutions are physically acceptable: the system allows for two types of propa-
gating waves, described by two different dispersion relations.

At the limit L2 � L1 (or m � M , for the equivalent mechanical system) we have
ω2
o � ω2

e , and (S-7.83) can be approximated as

ω2 	 ω2
e + ω2

o ± ω2
e

√
1+ 2

ω2
o

ω2
e

− 4
ω2
o

ω2
e

sin2(ka) (S-7.84)

where we have disregarded the fourth-order term ω4
o/ω

4
e inside the square root. If we

further use the approximation
√
1+ x 	 1+ x/2, valid for x � 1, (S-7.84) becomes

ω2 	 ω2
e + ω2

o ± ω2
e

{
1+ ω2

o

ω2
e

[
1− 2 sin2(ka)

]}
, (S-7.85)

corresponding to the two dispersion relations

ω 	
⎧⎨
⎩

√
2(ω2

e + ω2
o)− 2ω2

o sin
2(ka)√

2ωo sin(ka)
(S-7.86)

Fig. S-7.8

The lower branch can propagate for frequen-
cies between 0 and ω1 =

√
2ωo, while the upper

branch lies betweenω2 = ωe

√
2(1− ω2

o/ω
2
e ) and

ω3 =
√
2ωe. Thus, there is a gap of “forbidden”

frequencies between ω1 and ω2. Figure S-7.8
shows the exact solution (continuous lines), and
the approximate solution (dashed lines), still in
good agreement, for ω2

o/ω
2
e = 0.25.

Of course, the two branches are present also
in the case of the alternating mechanical oscilla-
tors, and provide a model for an effect known
in solid state physics. The vibrations of a lat-
tice formed by identical ions have a single branch
(Problem 7.4), with a dispersion relation similar
to the lower branch, which is named “acoustic

branch”. In an ionic crystal, formed by two ion species alternating on the sites of the
lattice, we observe also the upper branch, named “optical branch”.
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S-7.8 Resonances in an LC Ladder Network

(a) According to Problem 7.4, the current flowing in the nth mesh is

d2 In
dt2

= ω2
0(In+1 − 2In + In−1) . (S-7.87)

We are looking for a propagating wave solution, and define the phase

φ ≡ ka , (S-7.88)

where a is the length of a single mesh, to be substituted into (S-7.45), writing In(t) as

In(t) = Aeinφ−iωt . (S-7.89)

Substituting (S-7.89) into (S-7.87), and dividing by e−iωt , we get

− ω2einφ = ω2
0

[
ei(n+1)φ − 2einφ + ei(n−1)φ

]
, (S-7.90)

from which we obtain the dispersion relation

ω2 = ω2
0 (2− eiφ − e−iφ) = 2ω2

0 (1− cosφ) = 4ω2
0 sin

2(φ/2) , (S-7.91)

whose inverse is

sin

(
φ

2

)
= ω

2ω0
, or φ = 2 arcsin

(
ω

2ω0

)
, (S-7.92)

that shows that φ is a real number if ω < 2ω0.
Due to the presence of the current source, (S-7.89) holds if the current in the 0th

mesh is
I0(t) = Ise

−iωt , (S-7.93)

thus we must have A = Is, and the final expression for In(t) is

In(t) = Ise
inφ−iωt , (S-7.94)

where φ is given by (S-7.92)
(b) If ω > 2ω0 the current wave cannot propagate in the ladder. We look for a solution
of the form suggested by the hint. Substituting (7.12) into (S-7.87) we obtain

− ω2α−n = ω2
0

[
α−(n+1) − 2α−n + α−(n−1)] , (S-7.95)

which, multiplied by αn/ω2
0, turns into
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α2 +
(

ω2

ω2
0

− 2

)
α+ 1 = 0 . (S-7.96)

The solutions are

α = 1− ω2

2ω2
0

±
√(

1− ω2

2ω2
0

)2

− 1 . (S-7.97)

We must have |α| < 1 for an infinite ladder, otherwise the current would grow indef-
initely in successive meshes. Thus, we keep the solution with the plus sign, because
ω > 2ω0 implies that all solutions of (S-7.97) are negative, obtaining

In(t) = Is(−1)n|α|ne−iωt , |α| = ω2

2ω2
0

− 1−
√(

ω2

2ω2
0

− 1

)2

− 1 , (S-7.98)

that we can rewrite as

In(t) = Is e
−γn−iωt , where γ = iπ + ln |α| . (S-7.99)

(c) We consider the case of the propagating wave (ω < 2ω0) first. If the ladder com-
prises N meshes numbered as in Fig. 7.10, the boundary condition at the right end is
IN (t) ≡ 0 (mesh number N does not exist!). The most general solution is the sum of
two counterpropagating waves

In(t) = Aeinφ−iωt + Be−inφ−iωt . (S-7.100)

Imposing the conditions I0 = Is and IN = 0, we obtain

A + B = Is, AeiNφ + Be−iNφ = 0 , (S-7.101)

with solutions

A = + i

2
Is

e−iNφ

sin(Nφ)
, B = − i

2
Is

e+iNφ

sin(Nφ)
, (S-7.102)

where φ = φ(ω) depends on ω according to (S-7.92). We observe resonances when
sin(Nφ) = 0, i.e., for φ = mπ/N with m an integer. Remembering (S-7.88)

N = m
π

φ
= m

π

ka
= m

π

a

λ

2π
= m

1

a

λ

2
, (S-7.103)

and, multiplying both sides by a

L = Na = m
λ

2
, (S-7.104)
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where L is the total length of the ladder network. This corresponds to the case when
the frequency of the current source equals the frequency of one of the standing waves
allowed in the network, i.e., when the length of the ladder network is an integer
multiple of a half wavelength.

If ω > 2ω0, the general solution is given by

In(t) = Aαn
+e
−iωt + Bαn

−e
−iωt , (S-7.105)

where α± = α±(ω) are the two solutions of (S-7.97), now also the case |α| > 1 is
allowed, because |α|n cannot diverge if n is limited. The boundary conditions are

A + B = Is , AαN
+ + Bα+N

− = 0 , (S-7.106)

with solutions

A = +Is
αN−

αN− − αN+
, B = −Is

αN+
αN− − αN+

. (S-7.107)

The A and B coefficients diverge ifα− = α+ = 1, i.e., ifω = 2ω0. Thus, forω > 2ω0

there are no resonances, but the response of the system diverges as the frequency
approaches the cut-off value, i.e. as ω → 2ω0.

S-7.9 Cyclotron Resonances (1)

(a) The rotating electric field can be written as

E = E(t) = E0 (x̂ cosωt ± ŷ sinωt) , (S-7.108)

where the positive (negative) sign indicates counterclockwise (clockwise) rotation.
From the equation of motion

m
dv

dt
= q

(
E+ v

c
× B

)
, (S-7.109)

we see that dvz/dt = 0, thus, if we assume that vz(0) = 0, the motion occurs in the
(x, y) plane. The equations of motion along the x and y axes are

dvx
dt

= +qvy
B0

mc
+ qE0

m
cosωt

dvy

dt
= −qvx

B0

mc
± qE0

m
sinωt . (S-7.110)

In principle, we can differentiate both equations with respect to time, and then sub-
stitute the expressions for dvx,y/dt , thus obtaining two uncoupled second-order dif-
ferential equations for a driven harmonic oscillator.
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But we prefer a a more “elegant” approach, introducing the complex variable
ζ = vx + ivy . The velocity is thus represented by a complex vector in the (Reζ, Imζ)
plane. Adding the second of (S-7.110), multiplied by i, to the first, we obtain

dζ

dt
= −iωc ζ + qE0

m
e±iωt , (S-7.111)

where ωc = qB0/mc is the cyclotron (or Larmor) frequency. The solution of the
associated homogeneous equation is

ζ(t) = A e−iωct , (S-7.112)

where A is an arbitrary complex constant. Equation (S-7.112) describes the motion in
the absence of the electric field, when the velocity rotates clockwise with frequencyωc

in the ζ plane. We then search for a particular integral of the inhomogeneous equation
in the form

ζ = ζ0 e
±iωt ,

and find, by direct substitution,

ζ0 = −i qE0

m (ωc ± ω)
. (S-7.113)

Thus the general solution of (S-7.111) is

ζ(t) = A e−iωct − i
qE0

m (ωc ± ω)
e±iωt . (S-7.114)

Assumingωc > 0,weobserve a resonance atω = ωc only if thefield rotates clockwise.
In this case the electric field accelerates the particle along the direction of its “natural”
motion.
(b) At resonance (ω = ωc), we search for a non-periodic solution of the type

ζ(t) = ζR(t) e−iωt , (S-7.115)

which, substituted into (S-7.111), gives

(
dζR
dt

)
e−iωt − iω ζR e

−iωt = −iωc ζR e
−iωt + qE0

m
e−iωt , (S-7.116)

and since ωc = ω

(
dζR
dt

)
= qE0

m
. (S-7.117)

The solution of (S-7.117) is
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ζR(t) = ζ(0)+ qE0

m
t , (S-7.118)

which gives

ζ(t) =
[
ζ(0)+ qE0

m
t

]
e−iωt . (S-7.119)

The trajectory is a spiral, with the radial velocity increasing linearly with time.
(c) Introducing a viscous force fv = −mγv, we obtain the following equation for ζ

dζ

dt
= −iωc ζ − γζ + qE0

m
e−iωt . (S-7.120)

The solution has the form of (S-7.114) with ωc replaced by (ωc − iγ), i.e.,

ζ = −i qE0

m(ωc − ω − iγ)
e−iωt + A e−iωct−γt , (S-7.121)

where the second term undergoes an exponential decay, and any memory of the initial
conditions is lost after a transient phase, while the periodic part of the solution does
not diverge at resonance, due to the presence of iγ in the denominator. Thus, the
steady-state solution at resonance is

ζR = qE0

mγ
e−iωt . (S-7.122)

The average dissipated power is the time average of the instantaneous dissipated power
over a period

P = 〈f · v〉 = 〈qE · v〉. (S-7.123)

The components of the particle velocity in the steady state are

vx = Re(ζ) = qE0γ

m
[
(ωc − ω)2 + γ2

] cosωt − qE0 (ωc − ω)

m
[
(ωc − ω)2 + γ2

] sinωt ,

vy = Im(ζ) = − qE0γ

m
[
(ωc − ω)2 + γ2

] sinωt − qE0 (ωc − ω)

m
[
(ωc − ω)2 + γ2

] cosωt .

(S-7.124)

Thus, inserting (S-7.124) and the relations

Ex = E0 cosωt , Ey = −E0 sinωt , 〈cos2 ωt〉 = 〈sin2 ωt〉 = 1

2
,

〈cosωt sinωt〉 = 0 ,
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into (S-7.123), we obtain for the average power dissipated

P = q2E2
0γ

m
[
(ωc − ω)2 + γ2

] . (S-7.125)

At resonance

P = q2E2
0

mγ
. (S-7.126)

S-7.10 Cyclotron Resonances (2)

(a) The equations of motion are

dvx
dt

= +ωcvy + qE0

m
cosωt ,

dvy

dt
= −ωcvx , (S-7.127)

whereωc = qB0/m. By differentiating (S-7.127)with respect to time, and substituting
the values for v̇x and v̇y from (S-7.127) itself, we obtain the two equations

d2vx
dt2

= +ωc
dvy

dt
− qE0ω

m
sinωt = −ω2

cvx −
qE0ω

m
sinωt ,

d2vy

dt2
= −ωc

dvx
dt

= −ω2
cvy − qE0ωc

m
cosωt , (S-7.128)

each of which describes the velocity of a driven harmonic oscillator. The steady state
solutions are

vx = qE0ω

m (ω2 − ω2
c )

sinωt , vy = qE0ωc

m (ω2 − ω2
c )

cosωt . (S-7.129)

We observe a resonance if ω = |ωc|, independently on the signs of q and B0. With
respect to Problem 7.9, where a rotating electric field was assumed, here a resonance
is always found because the linearly oscillating electric field can be decomposed
into two counter-rotating fields of the same amplitude, of which one will excite the
resonance.
(b) In the presence of a frictional force f = −mγv the equations of motion become

dvx
dt

= +ωcvy − γvx + qE0

m
cosωt ,

dvy

dt
= −ωcvx − γvy , (S-7.130)

and cannot be uncoupled by the procedure of point (a). Analogously to Problem 7.9,
we introduce the complex quantity ζ = vx + ivy , obtaining the single equation
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dζ

dt
= −iωcζ − γζ + qE0

2m

(
eiωt + e−iωt

)
, (S-7.131)

where we have used Euler’s formula for the cosine. Differently from Problem 7.9,
now we search for a steady-state solution of the form

ζ = Ae−iωt + Beiωt , (S-7.132)

where A and B are two complex constants to be determined. By direct substitution
into (S-7.131) we have

−iωAe−iωt + iωBeiωt = −(iωc + γ)Ae−iωt − (iωc + γ)Beiωt + qE0
2m

(
eiωt + e−iωt

)
,

which is separable into two equations relative, respectively, to the terms rotating
clockwise and counterclockwise in the complex plane

− iωA = −(iωc + γ)A + qE0

2m
, iωB = −(iωc + γ)B + qE0

2m
. (S-7.133)

The solutions for A and B are

A = qE0

2m[i(ωc − ω)+ γ] =
qE0γ

2m[(ωc − ω)2 + γ2] − i
qE0(ωc − ω)

2m[(ωc − ω)2 + γ2]
B = qE0

2m[i(ωc + ω)+ γ] =
qE0γ

2m[(ωc + ω)2 + γ2] − i
qE0(ωc + ω)

2m[(ωc + ω)2 + γ2] ,

(S-7.134)

from which we obtain the stationary-state velocity components of the particle

vx = [Re(A)+ Re(B)] cosωt + [Im(A)− Im(B)] sinωt

vy = [Im(A)+ Im(B)] cosωt − [Re(A)− Re(B)] sinωt . (S-7.135)

The average absorbed power is

P = 〈qv · E〉 = 〈qvx Ex 〉 = q[Re(A)+ Re(B)]E0
1

2

= q2E2
0γ

4m[(ωc − ω)2 + γ2] +
q2E2

0γ

4m[(ωc + ω)2 + γ2] , (S-7.136)

since Ex = E0 cosωt , 〈cos2 ωt〉 = 1/2, and 〈cosωt sinωt〉 = 0. Thus, again we
observe a resonance atω = |ωc|, i.e whatever the signs of q and B0. Assuming γ � ωc

the power absorbed at resonance is

Pmax 	 q2E2
0

4mγ
. (S-7.137)
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S-7.11 A Quasi-Gaussian Wave Packet

We need to evaluate the inverse transform

f (x) = A

+∞∫
−∞

e−L2(k−k0)2eiφ(k)eikxdk

	
+∞∫
−∞

exp
[−L2(k − k0)

2 + iφ0 + iφ′0(k − k0)+

+ i

2
φ′′0(k − k0)

2 + i(k − k0)x + ik0x

]
dk , (S-7.138)

where, for brevity, we wrote x instead of (x − vt), and φ0, φ′0, … instead of φ(k0),
φ′(k0), … By using (7.1) we obtain

f (x) 	 Aeik0x+iφ0

+∞∫
−∞

exp

[
−L2(k − k0)

2

(
1− i

φ′′0
2L2

)
+ i(k − k0)(x + φ′0)

]
dk

= C exp

[
− (x + φ′0)2

4L2(1− iφ′′0/2L2)

]
, (S-7.139)

where C is a constant, whose value is not relevant for our purposes. By substituting

1

1− iφ′′0(2L2)
= 1+ iφ′′0/(2L2)

1+ φ′′20 /(4L4)
(S-7.140)

we obtain the wave packet profile as

f (x − vt) = C exp

{
− (x − vt + φ′0)2[1+ iφ′′0/(2L2)]

L2[1+ φ′′0
2
/(4L4)]

}
. (S-7.141)

We thus see that the packet is wider than the purely Gaussian case, since L2[1+
φ′′0

2
/(4L4)] > L2. In addition, the center of the packet is shifted from (x − vt) to

(x − vt + φ′0), and there is an aperiodic (anharmonic) modulation due to the factor
(iφ′′0/2L2) in the numerator of the exponent.
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S-7.12 A Wave Packet Traveling along a Weakly Dispersive
Line

(a)There is no dispersion if b = 0. In these conditions the signal propagates at velocity
v keeping its shape:

f (x − vt) = Ae−iω0(t−x/v)e−(t−x/v)2/τ 2
. (S-7.142)

(b) The phase velocity and the group velocity are, by definition,

vφ = ω

k
= v(1+ bk) , vg = ∂ω

∂k
= v(1+ 2bk) . (S-7.143)

We can write vφ and vg as functions of ω by first inverting (7.17), obtaining for
k = k(ω)

k =
√

1

(2b)2
+ ω

bv
− 1

2b
. (S-7.144)

Then we expand the square root to the second order in ω/v, obtaining

k 	 ω

v
− ω2b

v2
. (S-7.145)

The same result can also be obtained by an iterative procedure, by inserting the first
order value for k, i.e., k = ω/v, into the bracket at the right hand side of (7.17). Thus,
the phase and group velocities to the first order are, using (S-7.143),

vφ0 	 v + bω0 , vg0 	 v + 2bω0 . (S-7.146)

(c) The peak of the signal propagates at the group velocity, thus tx = x/vg0. The
spectral width of the wave packet may be estimated as�ω 	 1/τ , which corresponds
to a spread in the propagation velocity of its Fourier components

�v 	 v

(
2b

v
�ω

)
	 2b

τ
. (S-7.147)

Thus the spread of the wave packet in time and space can be estimated as

�t 	 ∂tx
∂vg

�v = tx
�v

vg
, �x 	 vg�t = 2bx

vgτ
. (S-7.148)
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(d) We approximate

k(ω) 	 k0 + k ′0(ω − ω0)+ 1

2
k ′′0 (ω − ω0)

2 , (S-7.149)

where

k ′0 =
∂k

∂ω

∣∣∣∣
ω0

	 1

v
− 2

ω0b

v2
	 1

vg
, k ′′0 =

∂2k

∂ω2

∣∣∣∣
ω0

	 −2 b

v2
. (S-7.150)

The spectrum of the wave packet (i.e., its Fourier transform) is

f̃ (ω) = √πτ Ae−[ω−ω0]2τ 2/4 . (S-7.151)

Since we are only interested in the behavior of the function, we evaluate the following
integral forgetting proportionality constants,

f (x, t) ∼
∫

exp

[
ik(ω)x − iωt − (ω − ω0)

2 τ 2

4

]
dω

∼
∫

exp

[
ik0x + ik ′0x(ω − ω0)+ i

k ′′0 x
2

(ω − ω0)
2 − (ω − ω0)

2τ 2

4

]
dω

∼ exp(ik0x − iω0t)

∫
exp

[
−i(t − k ′0x) ω′ +

(
−τ 2

4
+ i

k ′′0 x
2

)
ω′2

]
dω′

∼ exp

[
ik0x − iω0t − (t − k ′0x)2

τ 2 − 2ik ′′0 x

]
. (S-7.152)

The factor which describes the envelope of thewave packet (recalling that k ′0 = 1/vg0)
is

exp

[
− (t − x/vg)2

τ 2 − 2ik ′′0 x

]
= exp

[
−(t − x/vg)

2 τ 2 + 2ik ′′0 x
τ 4 + (2k ′′0 x)2

]

= exp

{
−(t − x/vg)

2 1+ 2ik ′′0 x/τ 2

τ 2[1+ (2k ′′0 x/τ )2]
}

.(S-7.153)

The temporal width of the wave packet increases during the propagation as

�t (x) = τ

√
1+

(
2k ′′0 x

τ

)2

. (S-7.154)



Chapter S-8
Solutions for Chapter 8

S-8.1 Poynting Vector(s) in an Ohmic Wire

For symmetry reasons, the magnetic field is azimuthal and depends only on the radial
coordinate r . Applying Ampère’s law to a circular path of radius r < a around the
wire axis yields.

2πr B = 4π

c
(πr2 J ) , (S-8.1)

which leads to

B = 2π

c
rσEφ̂ , (S-8.2)

where φ̂ is the azimuthal unit vector. Thus, the Poynting vector at a distance r from
the axis is

S = c

4π
E× B = −r

σ

2
E2 . (S-8.3)

Fig. S-8.1

The energy flux ΦS ≡ Φ(S) through the sur-
face of a cylinder of radius r < a and length
h and coaxial to the wire is thus (Fig. S-8.1)

ΦS =
∮

S · dA = −2πrhS(r)

= −πr2hσE2 , (S-8.4)

where dA is the vector surface element of the
cylinder. The energy flows inwards, and is

entirely dissipated into Joule heating inside the cylinder volume, as we can check
by calculating
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W =
∫

J · E dV = πr2h J E = πr2hσE2 , (S-8.5)

where the integral is extended to the volume the cylinder. The equality W = −ΦS

satisfies Poynting’s theorem since there is no variation in time of the EM energy.
Note that, in the approximation of an infinitely long wire, the electric field is

uniform also for r > a (in the case of a finite wire of length 2h � a, this is a good
approximation in the central region for r � h, see Problem 4.9), while the magnetic
field B = 2πJa2/rc. Within this approximation, S = −(a2σE2/2r)r̂ for r > a, so
that the energy flux is independent of r and it is still equal to minus the total dissipated
power:

ΦS = −2πrhS(r) = −πa2hσE2 (r > a) . (S-8.6)

(b) Wemust show that∇ · (S− S′) = 0, i.e., that S− S′ = ∇ × f , where f is a vector
function of the coordinates. Let us substitute E = −∇ϕ into (8.7)

S = c

4π
E× B = − c

4π
∇ϕ× B . (S-8.7)

Now from the vector identity

∇ × (ϕB) = ∇ϕ× B+ ϕ∇ × B = ∇ϕ× B+ ϕ

(
4π

c
J
)

(S-8.8)

we obtain

∇ϕ× B = ∇ × (ϕB)− ϕ

(
4π

c
J
)

, (S-8.9)

which can be substituted into (S-8.7), leading to

S = ϕJ− c

4π
∇ × (ϕB) . (S-8.10)

Thus, we are free to redefine the Poynting vector as

S′ = ϕJ, (S-8.11)

since
S− S′ = ∇ ×

(
− c

4π
ϕB

)
. (S-8.12)

We can show that S′ is equivalent to S by comput-
ing its flux through the same cylindrical surface
as above. Since S′ is parallel to the wire axis,
only the two base surfaces contribute to the flux
ΦS′ ≡ Φ(S′).
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ΦS′ = πa2[−S(z)+ S(z + h)]
= πa2 J [ϕ(z + h)− ϕ(z)] . (S-8.13)

Since ϕ = −Ez, we finally obtain

ΦS′ = πa2[−S(z)+ S(z + h)] = −πa2h J E , (S-8.14)

which gives again minus the total dissipated power.

S-8.2 Poynting Vector(s) in a Capacitor

(a)Themagnetic field has azimuthal symmetry, i.e.,B = B(r) φ̂, and can be evaluated
from the equation c∇ × B = ∂tE, which, with our assumption E = E0 t/τ , leads to

B(r) = r

2c
∂t E = r

2cτ
E0 . (S-8.15)

(b) The corresponding Poynting vector S is

S = c

4π
E ẑ× (B φ̂) = − r

8π
(E∂t E)

(
ẑ× φ̂

)
= −1

2
∂t

(
E2

8π

)
r . (S-8.16)

We evaluate the flux of S through the smallest closed cylindrical surface enclosing
our capacitor, shown in Fig. S-8.2. Since S is radial, only the lateral surface of the
cylinder contributes to the flux, and we have

Φ(S) = −2πahS(a) = −πa2h∂t

(
E2

8π

)
. (S-8.17)

Quantity (E2 + B2)/8π is the energy density as

Fig. S-8.2

sociated to the EM field, and, since in our case B
does not depend on time, is also the total EMenergy
density inside the capacitor. Thus, Φ(S) equals
minus the time derivative of the energy stored in
the capacitor. For a general dependence of Ez(t)
on time, B is also time-dependent, and the flux of S
equals the time derivative of the electrostatic energy

to the first order, within the slowly varying current approximation.
(c) The electric potential isϕ = −Ez. By substituting E = −∇ϕ into (8.7) we obtain

S = c

4π
(−∇ϕ)× B = − c

4π
[∇ × (ϕB)− ϕ∇ × B] . (S-8.18)
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Thus, the vector

S′ ≡ c

4π
ϕ∇ × B = 1

4π
ϕ ∂tE = S+ c

4π
∇ × (ϕB) (S-8.19)

equals S plus the curl of a vector function, and is thus another suitable Poynting vector.
Since S′ is perpendicular to the capacitor plates, its flux through our closed cylindrical
surface is (see Fig. S-8.2)

Φ(S′) = πa2
[
S′(z + h)− S′(z)

] = −πa2h

(
E∂t E

4π

)
= −πa2h∂t

(
E2

8π

)
, (S-8.20)

in agreement with (S-8.17).

S-8.3 Poynting’s Theorem in a Solenoid

(a) We take a cylindrical coordinate system with the z axis along the solenoid
axis. Inside an infinite solenoid the magnetic field is uniform and equals B = B ẑ =
(4π/c) nI ẑ. According to Faraday’s law of induction, the rate of change of B = B(t),
due to the time dependence of I = I (t), generates an electric field E associated to
the induced electromotive force. For symmetry reasons, the field lines of E are circles
coaxial to the solenoid, i.e., we have E = E(r) φ̂. Applying Faraday’s law to a circle
of radius r < a, coaxial to the solenoid, we have

2πr E(r) = −πr2
1

c
∂t B = −πr2

4πnI0
c2τ

, (S-8.21)

from which E(r) = −2πnI0r/(c2τ ).
(b) The Poynting vector inside the solenoid (r < a) is

S = c

4π
E× B = −2π (nI0)2 r t

(cτ )2
(φ̂× ẑ) = −2π (nI0)2t

(cτ )2
r . (S-8.22)

Thus, the flux of S = S(r) through the surface of a closed cylinder of radius r and
height h is nonzero only through the lateral surface, and we have

Φ(S) = 2πrh S · r̂ = −
(
2πnI0r

cτ

)2

ht . (S-8.23)

The magnetic energy enclosed by the cylinder surface is

UM = uMV = B2

8π
πr2h = 2π2r2h

(
nI0 t

cτ

)2

, (S-8.24)
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where V is the volume of the cylinder, thus

dUM

dt
= 4π2r2ht

(
nI0
cτ

)2

= −Φ(S) , (S-8.25)

according to Poynting’s theorem, since the electric field is constant in time, and
J · E = 0 for r < a, i.e. inside the solenoid.
(c) Outside the solenoid (r > a we have B = 0. Correspondingly, also S = 0 and
Φ(S) = 0. The rate of change of the magnetic energy is given by (S-8.25) with r = a,
and must equal the volume integral of J · E, which is the work done by the induced
field on the current flowing in the coils (notice that this is different from the electric
field driving the current and causing Joule heating inthe coils, see Problem 13.18).
In our representation, the current is distributed on the surface r = a, thus J d3r is
replaced by nI dS = nIa dφdz in the integral, and E is evaluated at r = a. We thus
obtain

∫
V

J · E d3r =
∫
S
n I E(a) dS = −2πah

(
nI0

t

τ

)(
2πnI0 a

c2τ

)

= −4πa2ht
(
nI0
cτ

)2

= − dUM

dt

∣∣∣∣
r=R

. (S-8.26)

S-8.4 Poynting Vector in a Capacitor with Moving Plates

(a)Weuse a cylindrical coordinate system (r,φ, z), with the z axis along the symmetry
axis of the capacitor, and the origin on the fixed plate. Thus, in the limit of our
approximations, the electric field is uniform and parallel to ẑ inside the capacitor,
whose capacitance is

C = πa2

4πh(t)
= a2

4 (h0 + vt)
. (S-8.27)

In the case of the isolated plates the charge is constant and equal to Q0, while the
voltage between the plates V and the electric field E between the plates are, respec-
tively,

V = Q0

C
= Q0

4 (h0 + vt)

a2
, E = V

h
= 4Q0

a2
. (S-8.28)

In the case of constant voltage between the plates, V = V0, the charge Q of the
capacitor and the electric field E are, respectively.

Q = CV0 = V0
a2

4 (h0 + vt)
, E = V0

h0 + vt
. (S-8.29)
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In the case of constant charge, the electrostatic force between the plates Fes is also
constant and equals

Fes = −Q
E

2
= −2Q2

0

a2
, (S-8.30)

while in the case of constant voltage we have

Fes = −Q
E

2
= −V 2

0
a2

8 (h0 + vt)2
, (S-8.31)

in both cases the minus signs means that the force is attractive. In both cases the
applied external force Fmech must cancel the electrostatic force, i.e., we must have
Fmech = −Fes, for the plates to move at constant velocity.
(b) The electrostatic energy can be written as

U = 1

2

Q2

C
= 1

2
CV 2 , (S-8.32)

so that at constant charge we have

U = Q2
0
2(h0 + vt)

a2
,

dU

dt
= 2vQ2

0

a2
> 0 , (S-8.33)

while at constant voltage we have

U = V 2
0

a2

8 (h0 + vt)
,

dU

dt
= − a2vV 2

0

8 (h0 + vt)2
< 0 . (S-8.34)

(c) At constant charge, the electric field E = E0 ẑ is also constant, with E0 =
Q0/(πa2), therefore the displacement current density JD = ∂tE/c is zero. Also the
conduction current density JC is zero between the plates (actually, there is a conduc-
tion current localized on the moving plate, we shall come back to this point below),
so that also the magnetic field B is zero between the plates.

At constant voltage, the electric field isE = ẑ V0/h(t) = ẑ V0/(h0 + vt), implying
the presence of a displacement current along ẑ. The magnetic field can be calculated
by taking the path integral of B over a circumference of radius r < a coaxial with,
and located between, the plates, which equals the flux of the displacement current
through the enclosed circle. Due to the cylindrical symmetry of the system, the only
nonzero component of B is azimuthal, B = B(r, t) φ̂, and calculating its path integral
over the circle of radius r corresponding to a field line we have for B = B(r, t)

2πr B = −πr2

c
∂t E = −πr2

c

V0 v

(h0 + vt)2
, (S-8.35)

so that
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B = − r

2c

V0 v

(h0 + vt)2
. (S-8.36)

(d) At constant charge we have B = 0, and the Poynting vector S = (c/4π)E× B is
also zero. In this case, (S-8.30) and (S-8.33) tell us that the rate of work done against
the electric force Wmech

Wmech = Fmech · v = −Fes · v = 2Q2
0v

a2
(S-8.37)

equals the rate of change the electrostatic energy dU/dt . This rate of work must
also equal minus the integral of J · E over the whole space, according to Poynting’s
theorem. We verify this at the end of this answer.

At constant voltage, the Poynting vector is radial, S = Sr̂, and, according to
(S-8.29) and (S-8.36), we have

S = − c

4π
Ez Bφ = V 2

0 v r

8π (h0 + vt)3
. (S-8.38)

Evaluating the flux of S through the minimum closed surface enclosing the capacitor,
of lateral surface 2πa (h0 + vt), we obtain

ΦS = 2πa(h0 + vt)
V 2
0 v a

8π (h0 + vt)3
= a2V 2

0 v

4 (h0 + vt)2
. (S-8.39)

Through (S-8.31) and (S-8.34) we can verify that

−ΦS = dU

dt
+ Fv . (S-8.40)

Note also that, in this case, ΦS equals the power absorbed by the voltage source. In
fact, the current flowing through the circuit is

I = dQ

dt
= − a2v

4 (h0 + vt)2
V0 , (S-8.41)

where we have inserted the first of (S-8.29), corresponding to a power absorption by
the source

W = −V0 I = a2v

4 (h0 + vt)2
V 2
0 = Φs . (S-8.42)
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We avoided so far to discuss the role of the conduction current circulating in the
plates [the following discussion will require some familiarity with the distributions
δ(x) and Θ(x), where Θ(x) is the Heaviside step function, defined by Θ(x) = 1 for
x > 0 and Θ(x) = 0 for x < 0; notice that dΘ(x)/dx = δ(x)]. Let us consider the
constant charge case. Since the upper plate has a charge Q0 distributed on the surface
z = −h0 + vt and moves with velocity v, there is actually a current density

JC = Q0

πa2
v δ(z − h0 − vt) . (S-8.43)

On the other hand, the electric field between the plates may be written as

E = −4Q0

a2
[Θ(z)−Θ(z − h0 − vt)] ẑ , (S-8.44)

whereΘ(z) is theHeaviside step function, defined byΘ(z) = 1 for z > 0 andΘ(z) =
0 for z < 0. This expression takes into account the fact that at each time t the field
exists only in the 0 < z < vt region, so it is actually a time-dependent field. Since
dΘ(z)/dz = δ(z), the displacement current is

JD = 1

c
∂tE = −4Q0v

a2c
δ(z − h0 − vt) ẑ = −4π

c
JC , (S-8.45)

so that the source term for the magnetic field (4π/c) JC + JD is zero. It also follows
that

JC · E = − 1

4π
(∂tE) · E = − 1

8π
∂t E

2 , (S-8.46)

which ensures energy conservation, since the work done on the current equals the rate
of change of the electrostatic energy. In detail, we have

∂t E
2 = (

4πσup
)2

∂tΘ(z − h0 − vt) = −v

(
4Q0

a2

)2

δ(z − h0 − vt) ,(S-8.47)

thus

∫
JC · E d3r = v (4πσ)2

8π

∫
δ(z − h0 − vt) d3r

= 2π2a2σ2v = 2vQ2
0

a2
= dU

dt
. (S-8.48)
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S-8.5 Radiation Pressure on a Perfect Mirror

(a) We consider the case of perpendicular incidence

Fig. S-8.3

first, and choose a Cartesian reference frame with
the x axis perpendicular to the mirror surface. The
incident plane wave packet has duration τ (with
τ � 2π/ω, the laser period), corresponding to a
length cτ , and propagates along x̂ (Fig. S-8.3). We
want to calculate how much momentum is trans-
ferred to an area A of the mirror surface during the
reflection of the whole wave packet. The momen-
tum transferred per unit time and area is the pressure
exerted by the radiation.

The momentum density of an EM field is S/c2,
where S = cE× B/4π is the Poynting vector. Thus the total momentum delivered by
the incident wave packet on the area A is

pi =
〈

Si

c2

〉
cτ A = x̂

I

c
τ A (S-8.49)

where the angle brackets denote the average over one cycle, Si is the Poynting vector
of the incident packet, and I = |〈Si〉| is the intensity of the incident pulse (the average
flux of energy per unit time and area), according to Poynting’s theorem of energy
conservation.

The reflected wave packet carries a total momentum, over the area A,

pr =
〈

Sr

c2

〉
cτ A = −x̂

I

c
τ A (S-8.50)

where Sr = −Si is the Poynting vector of the reflected packet. The momentum trans-
ferred to the mirror over the surface area A during the time interval τ is thus

�p = pi − pr = |�p| x̂ (S-8.51)

and the corresponding pressure is

Prad = |�p|
τ A

= 2
I

c
. (S-8.52)

Using a similar heuristic argument, it is quite straightforward to find the radiation
pressure for oblique incidence at an angle θ from the normal to the mirror surface. In
fact, in this case the momentum transferred to the mirror along the normal is

�p = pi − pr = 2x̂
I

c2
cτ A cos θ = 2x̂

I

c
τ A cos θ , (S-8.53)
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and the area of incidence is now A/ cos θ. Thus

Prad = |pi − pr | cos θ

τ A
= 2

I

c
τ A cos θ

cos θ

τ A
= 2

I

c
cos2 θ . (S-8.54)

(b) The mechanical force on a closed system of charges, currents and fields is given
by the following integral over the volume of the system

Fmech = dpmech

dt
=

∫
V

(
�E+ 1

c
J× B

)
d3r. (S-8.55)

From now on, we shall consider the case of perpendicular incidence only, and leave
the case of oblique incidence as a further exercise for the reader. In the present case,
� = 0 everywhere and only the magnetic term contributes. Thus, in plane geometry
the time-averaged force on a planar surface of area A is

〈Fmech〉 =
+∞∫
0

〈
1

c
J× B

〉
A dx (S-8.56)

and is directed along x̂ for symmetry reasons.
The current in a perfect mirror is localized on the surface, where the magnetic field

is discontinuous. Here we assume that the wave fields B and E are parallel to ẑ and ŷ,
respectively. Let Ei(x, t) = ŷEi cos(kx − ωt) be the incident electric field. The total
field E(x, t) is the sum of Ei and the field Er(x, t) = −ŷEi cos(−kx − ωt) of the
reflected wave, so that E(0, t) = 0. The total fields for x < 0 thus have the form of
standing waves

Ey(x, t) = 2Ei sin(kx) sinωt , (S-8.57)

Bz(x, t) = 2Ei cos(kx) cosωt . (S-8.58)

The discontinuity of Bz leads to a surface current Jy = Ky δ(x) where

Ky = − c

4π

[
Bz(0

+, t)− Bz(0
−, t)

] = c

4π
Bz(0

−, t) = c

2π
Ei cosωt ,(S-8.59)

where we have used Stokes’ theorem and Bz(0+, t) = 0. The force per unit surface,
i.e., the pressure, is given by the surface current multiplied by the mean value of the
field across the current layer (the argument is identical to the one used for calculating
the electrostatic pressure on a surface charge layer in electrostatics):
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Prad =
〈
Ky

1

2c

[
Bz(0

+, t)+ Bz(0
−, t)

]〉 = c

8π

〈
B2
z (0

−, t)
〉

= c

8π

(
1

2
4 |Ei|2

)
= 2

I

c
, (S-8.60)

since Bz(0−, t) = 2Ei cosωt , and I = (c/4π)
(|Ei|2/2

)
. This is equivalent to evaluate

the integral in (S-8.56) as

+∞∫
0−

Jy Bzdx = −
+∞∫
0−

(
c

4π
∂x Bz − 1

4π
∂t Ey

)
Bzdx = − c

4π

+∞∫
0−

1

2
∂x B

2
z dx

= c

8π
B2
z (0

−, t), (S-8.61)

where we used the fact that Ey = 0 and ∂t Ey = 0 for x ≥ 0−.
(c) The momentum conservation theorem (8.8) states that, for a closed system of
charges, currents and EM fields bounded by a closed surface S, the following balance
equation holds:

d

dt
(pmech + pEM)i =

∮
S

∑
j

Ti j n̂ j d
2r , (S-8.62)

where i, j = x, y, z, Ti j is the Maxwell stress tensor, and n̂ j is the j component of
the outward-pointing unit vector locally normal to S. Thus, the integral on the right-
hand side is the outward the flux of the vector T · n̂ through S. In (S-8.62), pmech is
the mechanical momentum of the system, while the momentum associated to the EM
field is

pEM =
∫
V

g d3r , (S-8.63)

where g = S/c2 is the momentum density (8.9), and the integral is evaluated over the
volume bounded by S.

In our case, we take the front surface A of the mirror and close it by adding a
surface extending deep in the mirror, where the fields are zero. Thus, the amount
of EM momentum which flows into the mirror (and “transformed” into mechanical
momentum) is given by the integral

∫
A

∑
j

Ti j n̂ jd
2r = A

∑
j

Ti j (0
−, t) n̂ j . (S-8.64)

The radiation pressure on the mirror is the time-averaged momentum flow per unit
area,
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Prad =
〈∑

j

T1 j (0
−, t) n̂ j

〉
= −〈T11(0−, t)〉, (S-8.65)

since, in our case, n̂ = (−1, 0, 0). Thus we actually need to evaluate T11(0, t) only:

T11(0, t) = − 1

8π
B2
z (0

−, t) . (S-8.66)

The radiation pressure is thus

Prad = −〈T11(0, t)〉 = 1

8π

〈
B2
z (0

−, t)
〉 = 1

4π
|Ei|2 = 2

I

c
. (S-8.67)

S-8.6 A Light Beam

(a) The divergence of the electric field in vacuum is zero. With our geometry, this
means that, since we have assumed Ey = 0, we have

0 = ∇ · E = ∂x Ex + ∂z Ez . (S-8.68)

From (S-8.68) and (8.14) we obtain

∂z Ez = −∂x Ex = 2E0
x

k0r20
e−r

2/r20 cos(k0z − ωt), (S-8.69)

which gives, by integrating with respect to z,

Ez = E0
2x

k0r20
e−r

2/r20 sin(k0z − ωt) . (S-8.70)

By proceeding analogously for B we find

Bz = B0
2y

k0r20
e−r

2/r20 sin(k0z − ωt) . (S-8.71)

The z-components have maxima near r = r0 and their amplitude is (as an order of
magnitude)

max(Ez, Bz) 	 1

k0r0
(E0, B0) . (S-8.72)

Thus the larger the pulse width r0 with respect to the wavelength λ0 = 2π/k0, the
lower the amplitude of the longitudinal components.
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(b) Let us verify if the longitudinal fields are consistent with Maxwell’s equations.
First, we check if ∂t Ez = c (∇ × B)z = c ∂x By :

∂x By = −B0
2x

r20
e−r

2/r20 cos(k0z − ωt) , (S-8.73)

∂t Ez = −E0ω
2x

k0r20
e−r

2/r20 cos(k0z − ωt) , (S-8.74)

thus (ω/k0)E0 = B0c must hold. Analogously we check if ∂t Bz = −c(∇ × E)z =
∂y Ex :

∂y Ex = −E0
2y

r20
e−r

2/r20 cos(k0z − ωt) , (S-8.75)

∂t Bz = −B0ω
2y

k0r20
e−r

2/r20 cos(k0z − ωt) , (S-8.76)

thus E0 = (ω/k0c)B0 must hold as well. Combining the two conditions we obtain

ω = k0c , E0 = B0/c , (S-8.77)

which are the same relations as for a plane monochromatic wave.
(c) The Poynting vector is

S = c

4π
E× B = c

4π

(−x̂Ez By − ŷEx Bz + ẑEx By
)

, (S-8.78)

and the averages of its components over one cycle are

〈
Sx

〉 = − c

4π

2x

kr20
E2
0 e
−2r2/r20 〈sin(kz − ωt) cos(kz − ωt)〉 = 0 , (S-8.79)

〈
Sy

〉 = − c

4π

2y

kr20
E2
0 e
−2r2/r20 〈cos(kz − ωt) sin(kz − ωt)〉 = 0 , (S-8.80)

〈
Sz

〉 = c

4π
E2
0 e
−2r2/r20 〈

cos2(kz − ωt)
〉 = c

8π
E2
0 e
−2r2/r20 . (S-8.81)

Thus, we can define the local intensity and the total power of the beam as

I (r) = 〈Sz〉 , P =
∞∫
0

I (r) 2πrdr . (S-8.82)
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(d) Since

∇2

(
Ex

By

)
= (∂2

x + ∂2
y)

(
Ex

By

)

=
[
4

r20

(
x2 + y2

r20
− 1

)
− k20

](
Ex

By

)
,

= −ω2

c2

[
1− 4

(k0r0)2

(
r2

r20
− 1

)](
Ex

By

)
(S-8.83)

it is evident that (∇2 + ω2/c2)(Ex , By) = 0 because of an “extra” term proportional
to∼ (k0r0)−2. Thus the expression (8.14) may be accurate only if r0 � 1/k = λ/2π,
i.e., if the beam is much wider than the (main) wavelength.

One may thus wonder why the longitudinal components Ez and Bz obtained from
the “wrong” Ex and By in (8.14) seemed to satisfyMaxwell’s equations. Actually this
is true only up to first order in (k0r0)−1. In fact, by noting that

∂t Bx = −c(∇ × E)x = c∂y Ez = 0 , (S-8.84)

∂t Ey = c(∇ × B)y = −c∂x Bz = 0 , (S-8.85)

one should consider additional components Ey and Bx with a maximum amplitude

max(Ey, Bx ) ∼ 1

(k0r0)2
(E0, B0) . (S-8.86)

This is consistent with (8.14) and the associated Ez , Bz being accurate up to the order
∼ (k0r0)−2.

It may have been apparent a priori that (8.14) is not a solution of Maxwell’s
equations since it is known that a beamwith finitewidth actually undergoes diffraction.
The width of a Gaussian beam doubles after a typical distance, called Rayleigh length,
rR = kr20 . This corresponds to an aperture angle

θd 	 r0
zR
= 1

kr0
	 λ

r0
. (S-8.87)

It might be interesting to note that this result may be inferred by the values for the lon-
gitudinal field components obtained at point (a). In fact, the beam may be obtained as
a linear superposition of plane waves of the same frequency but different wavevectors.
For a monochromatic plane wave, the electric and magnetic field are perpendicular
to the wavevector k. Thus, if as an estimate Ez/Ey ∼ 2/(k0r0) one infers that the
beam must be a superposition of plane waves with a typical ratio kx/kz ∼ 2/(k0r0)
which determines the typical angular spread of the wavevector spectrum, hence the
spreading angle of the beam.
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S-8.7 Intensity and Angular Momentum of a Light Beam

(a) First, we define the shorthand symbols C = cos(kz − ωt), S = sin(kz − ωt), and
E ′0 = ∂r E0(r), that we shall use throughout the solution of the problem. We have for
the intensity of the beam

I (r) ≡ Sz = c

4π
(Ex By − Ey Bx ) = c

4π
E2
0(r) [CC − (−SS)]

= c

4π
E2
0(r)

[
C2 + S2

] = c

4π
E2
0(r) . (S-8.88)

(b) The divergence of the fields in vacuummust be zero. For the electric field we have

0 = ∇ · E = ∂x Ex + ∂y Ey + ∂z Ez , (S-8.89)

thus
∂z Ez = −∂x Ex − ∂y Ey = − x

r
E ′0(r)C +

y

r
E ′0(r) S,

and, integrating with respect to z,

Ez = − 1

kr
E ′0(r) [x S + y C] . (S-8.90)

Analogously, we can evaluate Bz:

∂z Bz = −∂x Bx − ∂y By = − x

rc
E ′0(r) S −

y

rc
E ′0(r)C ,

Bz = + 1

krc
E ′0(r) [x C − y S] . (S-8.91)

(c) The x and y components of the Poynting vector are

Sx = c

4π
(Ey Bz − Ez By)

= c

4π

{
(−E0S)

[
E ′0
krc

(x C − y S)

]
−

[
− E ′0
kr

(x S + y C)

]
1

c
E0C

}

= c

4π

E0E ′0
kr

(−x SC + y S2 + x SC + y C2
) = c

4π
E0E

′
0
y

kr
. (S-8.92)

Sy = c

4π
(Ez Bx − Ex Bz)

= c

4π

{[
− E ′0
kr

(x S + y C)

]
1

c
E0S − (E0C)

[
E ′0
krc

(x C − y S)

]}

= c

4π

E0E ′0
kr

(−xS2 − y CS − x C2 + y CS
) = − c

4π
E0E

′
0
x

kr
. (S-8.93)
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Since we have

c

4π
E0(r)E

′
0(r) =

c

8π
∂r E

2
0(r) =

1

2
∂r I (r) , (S-8.94)

the Poynting vector can be written

S =
( y

2kr
∂r I (r), − x

2kr
∂r I (r), I (r)

)
. (S-8.95)

Assuming a Gaussian beam, we have E0(r) ∝ e−r2/r20 , and Sx,y ∝ Sz/(kr0) ∝ θd Sz ,
with θd the diffraction angle of (S-8.87).
(d) We have

�z = 1

c2
(x Sy − y Sx ) = −x2 − y2

2krc2
∂r I (r) = − r

2kc2
∂r I (r)

= − r

2cω
∂r I (r). (S-8.96)

We eventually obtain the total angular momentum by integrating the above expression
by parts,

Lz =
∞∫
0

�z(r) 2πr dr = −
∞∫
0

r

2cω
∂r I (r) 2πr dr

= 1

cω

∞∫
0

I (r) 2πr dr = W

cω
. (S-8.97)

S-8.8 Feynman’s Paradox Solved

(a) We use a cylindrical coordinate system (r,φ, z) with the

Fig. S-8.4

cylinder axis as z axis. The induced electric field Eind

has azimuthal symmetry, i.e. Eind = Eφ(r, t)φ̂, and can be
obtained from Faraday’s law by equating its line integral over
the circumference of radius r to the temporal derivative of the
magnetic field flux through the circle (Fig. S-8.4):

Eφ = − r

2c
∂t Bext(t) . (S-8.98)

(Weassumed the slowlyvarying current approximation,whose
validity is ensured by the t f � a/c condition.)
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On an infinitesimal surface element of the cylindrical surface dS = adφdz the
induced electric field exerts a force

df = φ̂ d f = φ̂ σEφ(r = a) dS = −φ̂σ
a

2c
∂t B ext(t) dS , (S-8.99)

where σ = Q/(2πa) is the surface charge density. The corresponding mechanical
torque is dτ = ẑ a d f . By integrating over the whole surface of the cylinder we obtain
for the total torque

τ = −πa3hσ

c
∂tB ext(t) . (S-8.100)

The equation of motion for the rotation of the cylinder is

I dω

dt
= τ = −πa3hσ

c
∂tB ext(t) , (S-8.101)

which has the solution (the total time derivative being trivially equivalent to the partial
derivative when applied to B ext(t))

ω(t) = −πa3h

Ic σ
[
Bext(t)− Bext(0)

] = −a2Q

2Ic
[
Bext(t)− Bext(0)

]
. (S-8.102)

The angular momentum Lc(t) = Iω(t). The final values are dependent only on the
initial value of Bext and not on its temporal profile, i.e.

ω(t f ) = − a2

2Ic Q B0 . (S-8.103)

(b) The rotation of the charged cylinder leads to a surface current K at r = a,

K = σv = σaω φ̂ . (S-8.104)

Such current generates an uniformmagnetic field Bind inside the long cylinder (equiv-
alent to a solenoid where nI = K ),

Bind = 4π

c
K ẑ = 4π

c
σaω . (S-8.105)

We now proceed as in point a) but adding the induced field Bind to the external field
Bext:
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I dω

dt
= τ = −πa3hσ

c
∂t (B ext(t)+ Bind(t))

= −a2Q

2c
∂t

(
B ext(t)+ 4π

c
σaω

)

= −a2Q

2c
∂tB ext(t)− a2Q2

hc2
dω

dt
, (S-8.106)

which can be rewritten as

I′ dω
dt
= τ = −πa3hσ

c
∂tB ext(t) , (S-8.107)

I′ = I+ a2Q2

hc2
. (S-8.108)

Equation (S-8.107) is identical toEq. (S-8.101) but for the replacementI→ I′, which
means that the effects of the rotation-induced magnetic field Bind are equivalent to an
additional inertia of the cylinder. The final velocity becomes

ω′(t f ) = − a2

2I′c Q B0 . (S-8.109)

Notice that the total magnetic field does not vanish inside the cylinder at t = t f , being
equal to the induced field

Btot(t f ) = Bind(t f ) = 4π

c
σaω′(t f ) . (S-8.110)

(c) For a magnetic field B = Bz ẑ and a configuration with cylindrical symmetry the
density of EM angular momentum in Eq. (8.18) becomes

� ≡ r × g = − 1

4π
r Er Bz ẑ . (S-8.111)

The contribution of the induced electric field Eφ vanishes in the vector product. How-
ever, the angular momentum is not zero because of the radial electrostatic field inside
the cylinder, which is easily found from Gauss’s theorem:

Er (r) =
⎧⎨
⎩

2λ

r
= −2Q

hr
(r < a)

0 (r > a)

. (S-8.112)

Thus, � = 0 inside the cylinder (r < a). The total EM angular momentum is thus
given by
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LEM = 1

4π
Bz

a∫
0

r
2λ

r
2πrh dr = 1

2
Bzλha

2ẑ = Qa2

2
B . (S-8.113)

Notice that B represents the total field inside the cylinder and that the equation for
LEM is valid at any time. Now, Eq. (S-8.102) can be rewritten (using the total field) as

Iω(t)+ a2Q

2c
Bext(t) = a2Q

2c
Bext(0) , (S-8.114)

which is equivalent to

Lc(t)+ LEM(t) = LEM(0) , (S-8.115)

thus showing the conservation of the total angular momentum of the system, since
Lc(0) = 0. The “paradox” thus consists in ignoring that a static EM field can con-
tain a finite angular momentum. Similar considerations hold for Problem6.6 where,
however, the EM angular momentum is more difficult to calculate.4

S-8.9 Magnetic Monopoles

(a) We build a magnetic dipole m by locating two magnetic charges (magnetic
monopoles) +qm and −qm at a distance h from each other, so that m = qmh. The
magnetic field at distances r � h can be evaluated from (8.19), using the same approx-
imations as for the field of an electric dipole, obtaining

Bdip = α
(m · r̂) r̂ −m

r3
. (S-8.116)

On the other hand, the field of a usual magnetic dipole m = I S, consisting of a small
circular loop of surface S carrying a current I , with the head of S pointing so that it
“sees” I circulating counterclockwise, is

Bdip = km
(m · r̂) r̂ −m

r3
. (S-8.117)

Comparing the formulas, we obtain α = km, i.e., α = μ0/4π = 1/4πεθc2 in SI units,
and α = 1/c in Gaussian units.

The magnetic force an electric charge qe, moving with velocity v in the presence
of a magnetic field B, is fL = qe bm v × B. The force exerted by a magnetic field B

4 The present version of Feynman’s “paradox” is taken from J. Belcher and K. McDonald (http://
cosmology.princeton.edu/~mcdonald/examples/feynman_cylinder.pdf) who further discuss subtle
aspects of this problem.

http://cosmology.princeton.edu/~mcdonald/examples/feynman_cylinder.pdf
http://cosmology.princeton.edu/~mcdonald/examples/feynman_cylinder.pdf
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on a magnetic monopole of charge qm is fm = qm B. Thus the physical dimensions of
the magnetic charge qm are

[qm] = [qe bm v] =
{ [qe v] , SI

[qe] , Gaussian
(S-8.118)

i.e., the same physical dimensions as an electric charge in Gaussian units, and the
dimensions of an electric charge times a velocity in SI units.
(b) In analogy with the equation ∇ · E = 4πke ρe, where ρe is the volume density of
electric charge, Maxwell’s equation ∇ · B = 0 is modified as

∇ · B = 4πkm ρm =
⎧⎨
⎩

μ0 ρm SI

4π

c
ρm Gaussian,

(S-8.119)

where ρm is the volume density of magnetic charge. Equation (S-8.119) can be proved
by first observing that, in the presence of magnetic charges, Gauss’s law for the
magnetic field is ∮

B · dS = 4πkm Qm = 4πkm

∫
ρm d3x , (S-8.120)

where the flux of B is evaluated through any closed surface, and Qm is the netmagnetic
charge inside the surface, then applying the divergence theorem.

The conservation of magnetic charge is expressed by the continuity equation

∇ · Jm = −∂tρm . (S-8.121)

Maxwell’s equation for ∇ × E (describing Faraday’s law of induction) must be com-
pleted in order to take the magnetic current density into account, by writing

∇ × E = η Jm − bm ∂tB . (S-8.122)

The constant η can be determined, for instance, by applying the divergence operator
to both sides of the equation, remembering the divergence of the curl of any vector
field is always zero,

0 = ∇ · (∇ × E) = η∇ · Jm − bm ∂t∇ · B = η ∇ · Jm − 4πkm ∂tρm , (S-8.123)

from which η = −4πkm follows. We thus obtain

∇ × E = −4πkmJm − bm∂tB =
⎧⎨
⎩
−μ0Jm − ∂tB , SI

−4π

c
Jm − 1

c
B , Gaussian.

(S-8.124)
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(c) We choose a cylindrical reference frame (r,φ, z) with the z axis coinciding with
the axis of the beam. Because of the cylindrical symmetry of our magnetic charge dis-
tribution, the only non-zero component of the magnetic field is Br . Applying Gauss’s
law to a cylindrical surface coaxial with the beam we obtain

Br =

⎧⎪⎨
⎪⎩
2πkmnqmr , r � a

2πkmnqma2

r
, r � a .

(S-8.125)

The electric field E is solenoidal and can be obtained by applying Kelvin-Stokes
theorem to a circular path of radius r coaxial with the beam

∮
E · d� = 2πr Eφ =

∫
∇ × E · dS =

⎧⎨
⎩
−πr24πkmnqmv , r � a

−πr24πkmnqm
a2

r
v , r � a ,

(S-8.126)
leading finally to

Eφ =
⎧⎨
⎩
2πkmnqmvr if r ≤ a

2πkmnqmva2

r
if r ≥ a .

(S-8.127)

Thus, for instance for r � a, we have

Eφ =

⎧⎪⎨
⎪⎩

μ0nqmvr

2
, SI

2πnqmvr

c
, Gaussian.

(S-8.128)

S-8.10 An Interstellar Light Sail

(a) The energy of an electromagnetic field filling the volume V is

U =
∫
V

(
E2

8π
+ B2

8π

)
d3r , (S-8.129)

and its momentum is

p =
∫
V

(
1

4πc
E× B

)
d3r . (S-8.130)

Approximating the wave packet to a plane wave we have
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B = E , E× B = x̂ EB , (S-8.131)

where x̂ is the unit vector in the propagation direction of the wave. Thus

U =
∫
V

E2

4π
d3r , p =

∫
V

E2

4πc
d3r = x̂

U

c
. (S-8.132)

(b) We use energy and momentum conservation, denoting byUi and pi the energy and
momentum of the wave packet before reflection from the mirror, respectively, and by
Uf and pf the same quantities after reflection. We have

Ui = 1

2
Mv2 +Uf , (S-8.133)

pi = Mv + pf . (S-8.134)

Since we are dealing with a one-dimensional motion, we can use the magnitudes of
momenta and velocities, remembering that pf is antiparallel to pi, while v is parallel.
Thus (S-8.134) is rewritten

pi = Mv − pf . (S-8.135)

Inserting the second of (S-8.132) we obtain

Uf = Mvc −Ui , (S-8.136)

which can be substituted into (S-8.133) leading to

v2 + 2cv − 4Ui

M
= 0 , (S-8.137)

with solutions

v = −c ±
√
c2 + 4Ui

M
, (S-8.138)

of which only the solution with the + sign is acceptable. Thus we have, at the first
order in Ui/Mc2,

v = c

√
1+ 4Ui

Mc2
− c 	 c

(
1+ 2Ui

Mc2

)
− c = 2Ui

Mc
. (S-8.139)

It is also possible to treat the relativistic case, using the conservation of four-
momentum

Pi + Pmir
i = Pf + Pmir

f , (S-8.140)
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where Pi and Pf are the four-momenta of the wave packet before and after reflection,
respectively, and Pmir

i and Pmir
f are the initial and final four-momenta of the mirror.

We have

Ui

c
+ Mc = Uf

c
+ γMc , (S-8.141)

pi = γMv − pf , (S-8.142)

where γ = 1/
√
1− v2/c2 . According to the second of (S-8.132) we have pi = Ui/c

and pf = Uf/c, which, substituted into (S-8.142) lead to

Uf

c
= γMv − Ui

c
. (S-8.143)

Substituting Uf/c into (S-8.141) we obtain

γ(c + v)− Mc2 + 2Ui

Mc
= 0 , (S-8.144)

dividing by γ we have

c + v = Mc2 + 2Ui

Mc

√
1− v2

c2
, (S-8.145)

and squaring left and right hand sides we obtain the quadratic equation for v

(
2+ 4Ui

Mc2
+ 4U 2

i

M2c4

)
v2 + 2cv −

(
4Ui

M
+ 4U 2

i

M2c2

)
= 0 . (S-8.146)

We are interested in the positive solution

v = c
1+Ui/(Mc2)

1+Ui/(Mc2)+ Mc2/(2Ui)
	 2Ui

Mc
(S-8.147)

at the limit Ui � Mc2, in agreement with (S-8.139).
(c) The energy required to accelerate the sail up to v = 0.3 c can be evaluated from
(S-8.139). For v = 0.3 c we have that

v = 2Ui

Mc
leads to Ui = Mcv

2
= 0.3Mc2

2
, (S-8.148)

inserting M = 10 g we obtain

Ui 	 0.3

2
× 10−2 kg× (

3× 108
)2

m2/s2 = 1.35× 1014 J . (S-8.149)

If W is the power of the laser beam, the time t required to provide the energy Ui is
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t = Ui

W
= 1.35× 1014 J

1019 W
= 1.35× 104 s . (S-8.150)

In the non-relativistic approximation during the time t the sail travels a distance

�a = 1

2
at2 = 1

2
vt 	 1

2
0.3× 108

m

s
× 1.35× 104 s 	 6× 1011 m. (S-8.151)

The Rayleigh length �R for a (quasi-) monochromatic beam of wavelength λ andwaist
surface S is

�R 	 S

λ
. (S-8.152)

If we require that the laser beam is not larger than the sail at t we need a wavelength
such that �a = �R for a beam waist of surface S = L2/2. Thus we must have

λ = L2/2

�a
= 8 m2

6× 1011 m
= 1.3× 10−11 m . (S-8.153)

At the moment no laser operating at such a small wavelength has been developed, this
is one of the many difficulties of the project.

S-8.11 Radiation Pressure at Oblique Incidence

From the energy-momentum conservation theorem of Maxwell’s equation we know
that the wavepacket delivers a flow of energy per unit surface I ≡ |S| where S =
(c/4π) E× B is the Poynting vector, while the density of electromagnetic momen-
tum is g = S/c2. Thus, the incident wavepacket of intensity I , cross-sectional
area A and duration τ contains a total momentum pi = (I/c2)(Acτ ) n̂i where
n̂i = (cos θi , sin θi ) is the direction of incidence. Under the assumption of a quasi-
monochromatic field (so that n̂i = ki/k, with k = ω/c) the reflected wavepacket has
the same shape as the incident one, and since its intensity is RI , its total momentum is
pr = R(I/c2)(Acτ ) n̂r with n̂r = (− cos θi , sin θi ) according to the law of reflection.
Thus, the amount of momentum �p delivered to the medium is

�p = pi − pr = I

c
Aτ

(
(1+ R) cos θi , (1− R) sin θi

)
. (S-8.154)

The total force exerted per unit surface is obtained dividing �p by the wavepacket
duration τ and the area over which the wavepacket impinges, which is equal to
A/ cos θi ,

P = (P⊥, P‖) = �p
cτ (A/ cos θi )

. (S-8.155)
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so that

P⊥ = (1+ R)
I

c
cos2 θi , (S-8.156)

P‖ = (1− R)
I

c
sin θi cos θi . (S-8.157)

This result is independent of A and τ and thus it is appropriate to describe the limit of
a plane, monochromatic wave. The flow of parallel momentum P‖ is non-vanishing
only in the presence of absorption (R < 1) and for oblique incidence (θi = 0).

Both (S-8.156) and (S-8.157) can also be derived by evaluating the electromagnetic
momentumflux through the surface,with the help of Fresnel formulas for the reflection
coefficient and Maxwell stress tensor to compute the flux: see Reference [1].

S-8.12 A Square Law Detector

(a) The radiation pressure P of a circularly polarized plane wave with electric field
components of amplitude Ey = Ez = E is independent of time and is obtained from
(S-8.156) of Solution S-8.11 by substituting R = 1 and cos θi = 1:

P = 1

2π
E2 . (S-8.158)

The equation of motion of the mirror can be written as

M
d2ξ

dt2
+ κξ = 1

2π
D2E2 , (S-8.159)

where ξ is the mirror displacement and κ the spring constant. It leads to

ξ = 1

2π

E2

κ
= 1

2π

E2

ω2
0M

. (S-8.160)

where ω2
0 = κ/M .

(b) We can choose the additional plane wave to be polarized in the y direction. Then,
neglecting an irrelevant initial phase difference, the radiation pressure is now given
by

P = 1

2π

[(
E cosωt + E1 cosω1t

)2 + E2 sin2 ωt
]

= 1

2π

[
E2 + 2EE1 cosωt cosω1t + E2

1 cos
2 ω1t

]
, (S-8.161)

i.e.,
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P = 1

2π

{
E2 + E2

1

2
+ EE1

[
cos(ω − ω1)t + cos(ω + ω1)t

]+ E2
1

2
cos 2ω1t

}
,

(S-8.162)
The equation of motion of the mirror is linear and thus we can consider the different
frequency terms in (S-8.162) separately. The terms proportional to EE1 give the
following oscillatory displacements

ξ−(t) = EE1

2πM(ω2
0 − (ω − ω1)2)

cos (ω − ω1)t 	 EE1

2πMω2
0

cos(ω − ω1)t,

(S-8.163)

ξ+(t) = EE1

2πM(ω2
0 − (ω + ω1)2)

cos(ω + ω1)t , (S-8.164)

while the term proportional to E2
1 gives

ξ2(t) = E2
1

4πM
(
ω2
0 − 4ω2

1

) cos 2ω1t . (S-8.165)

For the chosen frequency inequalities ξ− >> ξ+.
(c) The displacements ξ±(t) depends linearly on the amplitude of the small field E1

while ξ2 has a quadratic dependence. In addition the displacement ξ−(t) corresponds
to a low frequency oscillation while ξ2 oscillates at a frequency larger than ω0, thus
the denominator in the expression of ξ−(t) is much smaller than the denominator of
ξ2(t).

In conclusion the presence of the larger plane wave converts the frequency of the
detector response to the smaller wave while it increases its amplitude.

S-8.13 Poynting Vector for a Rotating Charged Spherical
Shell

(a) We denote by Q = 4πa2σ the total electric charge of the rotating spherical shell.
The electric and magnetic fields are, in Gaussian units,

E(r) =

⎧⎪⎨
⎪⎩
0 ,

Q

r2
r̂ ,

B(r) =

⎧⎪⎪⎨
⎪⎪⎩

8π

3c
σaω , r < a ,

3(m · r)r
r5

− m
r3

, r > a ,

(S-8.166)

where we have used the results of Solution S-5.12 and

m = 4π

3c
a4σω = Qa2

3c
ω . (S-8.167)
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The Poynting vector S = cE× B/(4π) is thus zero inside the shell, since E = 0 for
r < a, while we have for r > a

S = − c

4π

(
Q

r2
r̂
)
×

(
Qa2

3cr3
ω

)
= − Q2a2

12πr5
r̂ × ω = Q2a2

12πr5
sin θ ω φ̂ ,

(S-8.168)
for the last expression we have used a (r, θ,φ) spherical coordinate system with the
origin at the center of the spherical shell and the polar axis parallel to ω, as shown in
Fig. S-8.13 We have (see Table A.1 of the Appendix)

∇ · S = 1

r sin θ

∂

∂φ

(
Q2a2

12πr5
sin θ ω

)
= 0 , (S-8.169)

and, in particular, there is no energy flux along r .

Fig. S-8.5

(b) The momentum density of the electromagnetic field is

g = S
c2
= Q2a2

12πc2r5
sin θ ω φ̂ . (S-8.170)

The distance of the point (r, θ,φ) from the polar axis is
r sin θ, see Fig. S-8.5, thus the angular momentum density
L with respect to the polar axis is

L = ẑ gr sin θ = Q2a2

12πc2r4
sin2 θ ω , (S-8.171)

where ẑ is the unit vector along the polar axis. The
total angular momentum L of the electromagnetic field is
obtained by integrating (S-8.171) over the whole volume
outside the spherical shell

L =
∫
ext

L d3r = Qa2ω

12πc2

∞∫
a

r2 dr
1

r4

π∫
0

dθ

2π∫
0

sin θ dφ sin2 θ

= Q2a2ω

12πc2
1

a
2π

4

3
= 2Q2a ω

9c2
, (S-8.172)

where we have used

∫
sin3 θ dθ = 1

3
cos3 θ − cos θ ,

π∫
0

sin3 θ dθ = 4

3
. (S-8.173)
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Equation (S-8.172) corresponds to an electromagnetic contribution to the moment of
inertia of the spherical shell

Iem = 2Q2a

9c2
. (S-8.174)

(c) Let us consider an infinitesimal surface element a2 sin θ dθ dφ of the spherical
shell. It carries a charge dQ = σ a2 sin θ dθ dφ, corresponding to an electromagnetic
contribution to the canonical momentum

dpem = σ a2 sin θ dθ dφ
A(a, θ, φ)

c
= 1

c
σ a2 sin θ dθ dφ

4π

3
σa ω × a

= φ̂
4π

3c
σ2a4ω sin2 θ dθ dφ (S-8.175)

where we have used the vector potential A for r = a given by (S-5.105). Our surface
element distance from the polar axis is a sin θ, thus its contribution to the electromag-
netic part of the canonical angular momentum is

dLem = ẑ
4π

3c
σ2a5ω sin3 θ dθ dφ , (S-8.176)

and the total electromagnetic angular momentum is obtained by integrating over the
shell surface

Lem = ẑ
4π

3c
σ2a5ω

2π∫
0

dφ

π∫
0

dθ sin3 θ = ẑ
2Q2a ω

9c2
, (S-8.177)

in agreement with (S-8.172).We have used 4πa2σ = Q. A general proof of the equiv-
alence between (S-8.172) and (S-8.177) is given under general stationary conditions
using vector calculus identities in [2].
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Chapter S-9
Solutions for Chapter 9

S-9.1 The Fields of a Current-Carrying Wire

(a) In the S reference frame the wire generates an azimuthal magnetic field B =
Bφ(r)φ̂. In cylindrical coordinateswehave Bφ = Bφ(r) = (2I/rc). TheLorentz force
on the charge q is

F = q
v

c
× B = r̂ Fr = −r̂ qBφ(r)

v

c
= −r̂

2q Iv

rc2
. (S-9.1)

Fig. S-9.1

The S′ frame moves with velocity v with respect
to S. Applying the Lorentz transformations, in
S′ the force on q is F′ = r̂ F ′r = r̂ γFr (where
γ = √

1− β2, and β = v/c with v = |v|), see
Fig S-9.1. Since q is at rest in S′, the force F′ is
due to the electric fieldE′ only, withE′ = r̂ E ′r =
r̂ F ′r/q. This corresponds to the transformation
E′⊥ = r̂ E ′r = −r̂ γβBφ or, in vector form,

E′⊥ = γ (β × B) , (S-9.2)

where the subscript “⊥” refers to the direction
perpendicular to v. At the limit |v| � c (for
whichF = F′) we getE′⊥ 	 β × B, which is cor-
rect up tofirst order inβ = v/c, andmaybe called

the “Galilei” transformation of the field. The electric field5

5 In general, the complete transformation is E′⊥(r′, t) = γβ × B[r(r′, t ′), t (r′, t ′)], where r =
r(r′, t ′) and t = t (r′, t ′), according to the Lorentz transformations of the coordinates. Since in
cylindrical coordinates Bφ depends on r only, and for the coordinates in the plane transverse to the
boost velocity r′⊥ = r⊥, in the present case we have the trivial transformation r ′ = r .

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
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403

https://doi.org/10.1007/978-3-031-22235-1


404 S-9 Solutions for Chapter 9

E ′r = −γβBφ(r
′) = −2γβ I/(r ′c) (S-9.3)

is generated by a uniform linear charge density λ′ = −βγ I/c on the wire, as can be
easily verified by applying Gauss’s law. Thus the wire is negatively charged in S′.6

Since the force is purely magnetic in S and purely electric in S′, at this point we
cannot say much about the magnetic field in S′.
(b) We know that J = (ρc, J) is a four-vector. The cross-section W of the wire is
invariant for aLorentz boost along thewire axis, thus the linear charge densityλ = Wρ
and the electric current I = WJ transform like ρ and J. Therefore the linear charge
density of the wire in S′ is

λ′ = γ

(
λ− β

I

c

)
= −γβ

I

c
, (S-9.4)

which, according to Gauss’s law, generates the radial electric field E ′r = 2λ′/r , in
agreement with our result of point a). We also obtain the current intensity in S’,

I ′ = γ(I − βcλ) = γ I , (S-9.5)

which generates the magnetic field B ′φ = 2I ′/(r ′c) = γBφ.
The same results can be obtained through the transformation of the four-potential

(φ, A). In S, we have obviously φ = 0, since there is no net charge, while the vector
potential A satisfies the equation

∇2A = −4π

c
J (S-9.6)

Thus, A is parallel to the wire and its only non-zero component is Az , which can be
evaluated from the equation

∇2Az = −4π

c
I δ(r) . (S-9.7)

This is mathematically identical to the Poisson equation for the electrostatic potential
of a uniformly charged wire, thus the solution is

Az = −2I

c
ln

( r
a

)
, (S-9.8)

6 It might seem that the law of charge conservation is violated in the transformation from S to S′.
Actually, this a consequence of the somewhat “pathological” nature of currents which are not closed
in a loop, as in the case of an infinite wire. In fact, strictly speaking, the infinite current-carrying
wire is not a steady system, since charges of opposite sign are accumulating at the two “ends” of
the wire, i.e., at z = ±∞. If we introduce “return” currents to close the loop in S, e.g., if we assume
the wire to be the inner conductor of a coaxial cable, or if we add a second wire carrying the current
−I at some distance, we find that the return currents would appear as opposite charge densities in
S′, as required by charge conservation.
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where a is an arbitrary constant. It is straightforward to verify that Bφ = −∂r Az .
The scalar potential in S′ is

φ′ = γ(φ− βAz) = −γβAz = −2γβ I

c
ln

( r
a

)
,= −2λ′ ln

( r
a

)
, (S-9.9)

where λ′ = −βγ I/c. The electric field is evaluated from E′ = −∇φ′, obtaining the
same result of point (a). For the vector potential in S′, trivially A′z = γ(Az − βφ) =
γAz from which we get B ′φ = γBφ again.

These results are in agreement with the explicit formulas for the transformation of
the EM field (9.3), which, in our case, lead to E′ = γβ × B and B′ = γB.
(c)Let us first consider the linear charge densities of both ions (λi = ZeniW ) and elec-
trons (λe = −eneW ) in S, where ni and ne are the ion and electron volume densities,
respectively. Since there is no net charge on the wire in S, we have λi = −λe.

Let us evaluate the charge densities λ′i and λ′e in S′ from relativistic kinematics.
In S, a wire segment of length �L carries an ion charge �Q = λi�L . In S′, the
segment has the same charge as in S (the charge is a Lorentz invariant), but the length
undergoes a Lorentz contraction,�L ′ = �L/γ. Thuswe have a higher charge density
λ′i = �Q/�L ′ = γλi. This is a quite general result: in a frame where a fluid moves
at velocity v, the fluid has a higher density (by a factor γ) than in its rest frame.

On the other hand, the electrons are not at rest in S: they move along the wire
with a velocity ve < 0 such that I = −eneveW = λeve = −λive. Thus, their density
is already higher by a factor γe = 1/

√
1− v2

e/c
2 than the density λe 0 in the rest frame

of the electrons: we have λe 0 = λe/γe. In S′, the electrons drift with a velocity v′e

v′e =
ve − v

1− vev/c2
, (S-9.10)

according to Lorentz transformations. Thus, the electron density in S′ is

λ′e = γ′eλe 0 = γ′e
γe

λe , (S-9.11)

where γ′e = 1/
√
1− v′2e /c2. The expression for γ′ can be put in a more convenient

form by some algebra:



406 S-9 Solutions for Chapter 9

γ′e =
1√√√√√1− (ve − v)2

c2
(
1− vev

c2

)2

=

√√√√√√√
(
1− vev

c2

)2

(
1− vev

c2

)2 − (ve − v)2

c2

=
(
1− vev

c2

) 1√
1− 2

vev

c2
+ v2

ev
2

c4
− v2

e

c2
+ 2

vev

c2
− v2

c2

=
(
1− vev

c2

) 1√(
1− v2

e

c2

)(
1− v2

c2

)

=
(
1− vev

c2

)
γeγ . (S-9.12)

We thus obtain for the total charge density in S′

λ′ = λ′i + λ′e = λi

(
γ − γ′e

γe

)
= λiγ

(
1− 1+ vev

c2

)
= λiγ

vev

c2

= −γv
I

c2
, (S-9.13)

as previously found on the basis of Lorentz transformations for the forces, charge and
current densities, and EM fields.

It might be interesting to remark that there is an issue of charge conservation
already in the S frame. The wire is electrically neutral, thus its ion and electron charge
densities are exactly equal and opposite when it is disconnected from any voltage or
current source, and in the absence of external fields. Now assume that we drive a
steady current I through the wire, keeping the conduction electrons in motion with a
velocity ve along the wire axis. If the wire is still electrically neutral, as we assumed,
the absolute values of the charge densities of ions and electrons must still be equal
and opposite. However, while the charge density of the ions, at rest, has not changed,
the charge density of the moving electrons undergoes a “relativistic increase” by a
factor γe. If the total charge density does not change (the wire must still be neutral),
some electrons must have left the wire.7 We can explain where the missing electrons
have gone only by recalling that the wire is not “open”, but must be part of a closed
current loop, with specific boundary conditions and how the circuit is closed.

7 Of course, the effect is negligibly small for ordinary conduction in metals, for which the typical
electron velocities ve are of the order of 10−10 c. On the other hand, this issue if very important for
relativistic hydrodynamics, i.e., for contexts where fluids move at velocities close to c.
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S-9.2 The Fields of a Plane Capacitor

(a) We choose a Cartesian coordinate system with the y axis perpendicular to the
plates, so that the lower plate is at y = 0 and the upper plate at y = h, and the x axis
parallel to v, so that v = βc x̂. The only non-vanishing component of the EM field in
S is Ey = 4πσ. By applying a Lorentz transformation we find for the fields in S′

E ′y = γEy = 4πγσ , B ′z = −βγEy = −4πβγσ . (S-9.14)

(b) In S′ the electric field E ′y is generated by the surface charge densities ±σ′ =
±E ′y/4π = ±γσ on the capacitor plates. Similarly, the magnetic field B ′z is generated
by the two surface current densities ±K′ = ±K ′x x̂ with K ′x = cB ′z/(4π) = −βγσc,
flowing on the two capacitor plates.

These results are in agreement with the Lorentz transformation of the four-vector

Kμ = (cσ, K) . (S-9.15)

We can check that Kμ is actually a four-vector, by imagining two volume four-current
densities Jμ = (cρ,±J) distributed over the two thin layers, |y| < δ/2 and |h − y| <
δ/2, around the capacitor plates, such that σ = ρδ andK = Jδ. Since δ is invariant for
transformations with velocity parallel to J, it follows that also Kμ ≡ Jμδ transforms
as a four-vector:

σ′ = γ(σ − βKx/c) = γσ , K ′x = γ(Kx − βcσ) = −βγσc . (S-9.16)

(c) In S there is a perpendicular force per unit surface p = σEy/2 = 2πσ2 on the
internal surfaces of the plates, such that the plates attract each other. In S′, the force per
unit surface is the sum of two terms of electrostatic and magnetic nature, respectively,

p′ = 1

2
σ′E ′y +

1

2
K ′x B

′
z = 2πσ2γ2 − 2πσ2β2γ2 = 2πσ2γ2(1− β2) = 2πσ2

= p . (S-9.17)

The invariance of p is also proven from the equivalent expression

p′ = 1

8π
E
′2
y −

1

8π
B
′2
z =

1

8π
(E

′2 − B
′2) , (S-9.18)

which is a Lorentz invariant.
In S, the total force is F = pA. In S′, due to the Lorentz contraction of lengths,

A′ = (L/γ) L = A/γ, so that F ′ = p′A′ = pA/γ = F/γ.
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S-9.3 The Fields of a Solenoid

(a) We choose a Cartesian reference frame with the solenoid axis as z axis, and the
x axis such that v = vx x̂. In addition, we shall also use a cylindrical reference frame
sharing the z axis with the Cartesian frame, and with the azimuthal coordinate φ such
that the φ = 0 plane coincides with the xz plane. In S, the magnetic field inside the
solenoid is longitudinal and uniform, B = B ẑ, with B = 4πnI/c, and the force on q
is F = q v × B/c = −qβB ŷ.

In the S′ frame the charge q is at rest, thus the force on it must be due to an electric
field only. According to the Lorentz transformations of the fields we have

E ′x = Ex = 0 , B ′x = Bx = 0 ,

E ′y = γ(Ey − βBz) = −γβB , B ′y = γ(By + βEz) = 0 ,

E ′z = γ(Ez + βBy) = 0 , B ′z = γ(Bz − βEy) = γB , (S-9.19)

and the force on q is thus F′ = qE ′y ŷ = −qγβ Bz ŷ = γF.

(b) Since we are assuming β � 1, we have γ = 1/
√
1− β2 = 1+ β2/2+ · · · 	 1

up to the first order inβ, andwe can neglect the relativistic contraction of lengths. Thus
the cross-section of the solenoid remains circular in S′ to within our approximations.
The electric field outside the solenoid is zero (we discuss this point further below),
thus the electric field component perpendicular to the solenoid winding surface is
discontinuous, implying the presence of surface charge density σ′. We have from
Gauss’s theorem

σ′ = E ′⊥
4π

= E ′y
4π

sin φ = −β
B

4π
sin φ = −βn

I

c
sin φ , (S-9.20)

where the subscript ⊥ means perpendicular to the solenoid winding surface.
This result is in agreement with the transformation laws for the four-vector Kμ =

(cσ, K), where K is the surface current density on the walls of the solenoid (see
Problem 9.2). In S we have K = nI φ̂ = nI (−x̂ sin φ+ ŷ cosφ), and in S′

σ′ = γ

(
σ − β

Kx

c

)
	 −β

Kx

c
= βn

I

c
sin φ . (S-9.21)

Fig. S-9.2

A surface charge density varying as sin φ
on the lateral surface of an infinite cylinder
generates a uniform electrostatic field inside
the cylinder, as seen in the solution of Prob-
lem 3.11. But there we also saw that surface
charge density generates a “two-dimensional
dipole” field outside the cylinder. This might
seem in contradiction with the fact that, since
the external EM field is zero in the S frame,
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it must be zero in S′ as well. But there are not only static fields in S′, because the
transverse motion of the solenoid generates a time-dependent magnetic field, which,
in turn, is related to a non-conservative electric field and to boundary conditions which
are different from the static case.We start by noting that an electric field that is uniform
(and nonzero) inside the solenoid, and zero outside, is not conservative. Let us choose
a rectangular path C of sides a and b crossing the solenoid winding as in Fig. S-9.2.
The path C is at rest in S′, while the solenoid moves toward the left with velocity
−v. At t = 0 the upper side of length a is tangent to the winding at its central point,
and a is sufficiently small for the enclosed winding arc to be well approximated by a
straight line segment. We also have b � a. The field E′ is not conservative because
the line integral of E′ along C does not vanish:

∮
C

E′ · d� = E ′‖ a = E ′y a cosφ . (S-9.22)

This is consistent with the fact that the flux of B′ through the rectangle enclosed by the
path C is time-dependent. The winding arc enclosed by the rectangle moves towards
the lower side of length a with velocity v cosφ, and the flux ofB′ through the rectangle
is

ΦC(B′) =
∫
C

B′ · dS = B ′a[b − (v cosφ) t] , (S-9.23)

corresponding to a line integral

− 1

c

dΦC(B′)
dt

= v

c
B ′a cosφ = E ′y a cosφ , (S-9.24)

in agreement with (S-9.22).

S-9.4 The Four-Potential of a Plane Wave

(a) The fields of the plane wave may be written in complex notation as

E = ŷ E0 e
ikx−iωt , B = ẑ B0 e

ikx−iωt , (S-9.25)

with E0 = B0. A vector potential of the form A = ŷ A0 eikx−iωt generates an electric
field along ŷ and a magnetic field along ẑ given by

E = −1

c
∂tA−∇ϕ , B = ∇ × A . (S-9.26)

In the absence of electric charges we have ϕ ≡ 0, and we obtain from (S-9.26)



410 S-9 Solutions for Chapter 9

A0 = − ic

ω
E0 , A0 = − i

k
B0 , (S-9.27)

which are equivalent since ω = kc. The vector potential A = ŷ A0 eikx−iωt obviously
satisfies the wave equation in vacuum, and also respects the Lorenz gauge condition.
(b)TheLorentz transformations from S to S′ giveω′ = γω (transverseDoppler effect),
and k ′x = kx = k, k ′y = −ω′v/c2 = −γβ kx . The nonzero components of the fields in
S′ are E ′y = Ey , E ′x = γβBz , and B ′z = γBz . We may thus write

E′ = (x̂ γβ + ŷ)E0 e
i(k ′x x ′+k ′y y′−ω′t ′) , B′ = ẑ γB0e

i(k ′x x ′+k ′y y′−ω′t ′) , (S-9.28)

The polarization is linear and directed along the unit vector ε = βx̂ + ŷ/γ.
(c) Assuming ϕ′ = 0, we have in S′

E′ = −1

c
∂′tA

′ , B′ = ∇′ × A′ , (S-9.29)

which are both satisfied if we choose

A′ = − c

ω′
E′ =

(
x̂ β + ŷ

1

γ

)
A0 e

i(k ′x x ′+k ′y y′−ω′t ′) , (S-9.30)

being ω′ = γω.
(d) The Lorentz transformation from s to S′ for the four-potential Aμ = (ϕ, A) =
(0, 0, Ay, 0) gives

Ā′μ = (−γβ Ay, 0, γAy, 0) ≡ (ϕ̄′, 0, Ā′y, 0) . (S-9.31)

The fields derived from this four-potential are

Ē ′x = −∂′x ϕ̄
′ = −ik ′x ϕ̄′ = ikcγβAy = γβ(iωAy) = γβEy = E ′x , (S-9.32)

Ē ′y = −
1

c
∂′t Ā

′
y − ∂′yϕ̄

′ = i
ω′

c
Ā′y − ik ′yϕ̄

′ = i
(
γ

ω

c

)
γAy − i(−γβk)(−γβc)Ay

= i
ω

c
γ2

(
1− β2

)
Ay = Ey = E ′y , (S-9.33)

B̄ ′z = ∂′x Ā
′
y = ik ′x Ā

′
y = ikγAy = γBz = B ′z , (S-9.34)

in agreement with the results of point (c).
(e) The expressions A′μ = (0, A′) and Ā′μ = (ϕ̄′, Ā′) are two possible choices for the
four-potential. Thus they must differ at most by a gauge transformation, i.e., there
must be a scalar function f = f (x ′, t ′) such that

A′ = Ā′ +∇′ f , ϕ′ = ϕ̄′ − 1

c
∂′t f . (S-9.35)
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Since ϕ′ = 0 we find ∂′t f/c = ϕ̄′, i.e.,

f = c

ω′
ϕ̄′ = − ic

ω′
γβAy , (S-9.36)

Now, since

∇′ f = (x̂ ik ′x + ŷ ik ′y) f =
(
x̂β − ŷγβ2

)
Ay , (S-9.37)

we also have that

Ā′ +∇′ f = [
x̂β + ŷ

(
γ − γβ2

)]
Ay =

(
x̂β + ŷ

1

γ

)
Ay = A′ . (S-9.38)

S-9.5 The Force on a Magnetic Monopole

(a) In the reference frame S′, where the magnetic monopole is at rest (v′ = 0), the
magnetic field is

B′ = −γ
v

c
× E , (S-9.39)

thus the force on themonopole isF′ = qmB′. On the other handwemust haveF′ = γF,
since F is perpendicular to v, so that in the laboratory frame S we have

F = qm
γ

B′ = −qm v

c
× E , (S-9.40)

which proves (9.8).
(b) The equation of motion for a magnetic monopole in the presence of a uniform
electric field E = ẑ E alone is identical to the equation of motion at for a an electric
charge in the presence of a uniform magnetic field B = ẑ B, after replacing−qmE by
qB. The solution is a helicoidal motion, with a constant drift velocity parallel toE, and
a constant angular velocity ωm = ẑ qmE/mc. (Notice that, for a magnetic monopole,
the angular velocity vector is parallel to E, while it is antiparallel to B in the case of
an electric charge.)

In the case of crossed electric and magnetic fields, the condition E > B ensures
that there is a reference frame S′ where the magnetic field vanishes. In fact, taking a
Lorentz boost with β = (E× B)/E2 we have

B′ = γ(B− β × E) = γ

(
B+ E2B− (E · B)E

E2

)
= 0 , (S-9.41)

since E · B = 0. Thus, in the boosted frame there is only the electric field
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E′ = γ(E+ β × B) = γ

(
E− B2

E2
E
)
= E

γ
, (S-9.42)

since γ = 1/
√
1− β2 = 1/

√
1− B2/E2. Thus themotion in S′ is a circular orbit with

angular frequency ω′ = (qmE/γc). By transforming back to the laboratory frame S
we add a drift velocity −cβ, and the trajectory in S is a cycloid.

S-9.6 Reflection from a Moving Mirror

(a) As an ansatz, we write the total electromagnetic field as the sum of the fields
of the incident wave and the fields of a reflected wave of the same frequency and
polarization, but opposite direction

E(x, t) = ŷ Ey(x, t), B = ẑ Bz(x, t) ,

Ey(x, t) = Re
(
Ei e

ikx−iωt + Er e
−ikx−iωt) , (S-9.43)

Bz(x, t) = Re
(
Ei e

ikx−iωt − Er e
−ikx−iωt) . (S-9.44)

The amplitude of the reflected wave Er must be determined by the boundary condition
at the mirror surface x = 0. We may already know that the electric field component

Fig. S-9.3

parallel to the bounding surface between two media
is continuous across the surface, i.e., that E‖(0−) =
E‖(0+). However, here we prefer to derive this result in
detail, because this will help the discussion of the reflec-
tion at the surface of a moving mirror, which we shall
consider in the following. Evaluating the line integral of
E over a closed rectangular loop across the boundary,
as in Fig. S-9.3, yields

∮
E · d� = [Ey(a, t)− Ey(−a, t)]b

= −1

c

dΦ(B)

dt
= −b

c

0∫
−a

∂t Bz dx

= iωb

c

0∫
−a

Bz dx = iω

c
B̄z ab , (S-9.45)

where B̄z is the mean value of Bz in the (−a, a) interval. If Bz is finite, the “rightmost
RHS” of (S-9.45) vanishes at the limit a → 0, and Ey(0+, t) = Ey(0−, t).

For a perfect mirror we must have Ey(0+, t) = 0, and the boundary condition
implies that also Ey(0−, t) = 0. Thus we obtain
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Ey(0, t) = (Ei + Er) e
−iωt = 0, Er = −Ei. (S-9.46)

The total electric field for x � 0 is thus a standing wave

Ey = Ei
(
eikx−iωt − e−ikx−iωt

) = 2iEy sin(kx) e
−iωt , (S-9.47)

with nodes where sin kx = 0 and maximum amplitude 2Ei. Recalling that ω/k = c,
the magnetic field of the wave is

Bz = 2Ei cos(kx) e
−iωt . (S-9.48)

Thus, Bz is discontinuous at the x = 0 surface. This implies the presence of a surface
current density K = ŷ Ky(t) at x = 0, corresponding to a volume current density
J = K δ(x) = ŷ Ky(t) δ(x). By evaluating the line integral of B over a closed path
crossing the mirror surface we find the boundary condition

Bz(0
+, t)− Bz(0

−, t) = 4π

c
Ky(t), (S-9.49)

and the surface current density on the surface of a perfect mirror is

Ky(t) = − c

4π
Bz(0

−, t) = −cEi

2π
e−iωt . (S-9.50)

(b) Let β = v/c (in what follows v, and, consequently, β, may have both positive or
negative values, depending on whether the wave and the mirror velocity are parallel
or antiparallel, respectively). We know that (ω/c, k) is a four-vector, and that k is
parallel to v. Thus the frequency of the incident wave in S′ is

ω′i = γ(ω − k · v) = γω(1− β) , (S-9.51)

where k = ω/c has been used. The magnitude of the incident wave vector in S′ is
k ′i = ω′i/c. If v > 0 (v < 0) we have ω′i < ω (ω′i > ω).

The Lorentz transformations give the following amplitudes for the fields in S′

E ′i y = γ
(
Ei y − βBi z

) = γ(1− β) Ei , (S-9.52)

B ′i z = γ
(
Bi z − βEi y

) = γ(1− β) Ei , (S-9.53)

since Bi z = Ei y . In the S′ frame the reflected wave has frequency ω′r = ω′i , and field
amplitudes E ′r y = −E ′i y , B ′r z = B ′i z .
(c) The frequency ωr of the reflected wave in the laboratory frame S can be evaluated
by applying the inverse transformation from S′ to S
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ωr = γ(ω′r + kr · v) = γ(ω′r − krv) = γω′r(1− β) = ωγ2(1− β)2

= ω
1− β

1+ β
. (S-9.54)

The electric andmagnetic field amplitudes of the reflected wave in S′ are E ′r = −E ′i =−γ(1− β)Ei and B ′r = B ′i = γ(1− β)Ei. We thus have in S

Er y = γ
(
E ′r y + βB ′r z

) = −γ(1− β) E ′i = −γ2(1− β)2Ei = −1− β

1+ β
Ei ,

(S-9.55)

Br z = γ
(
B ′r z + βE ′r y

) = γ(1− β) E ′i = γ2(1− β)2Ei = 1− β

1+ β
Ei . (S-9.56)

If β < 0 we have |Er| > |Ei|: in S the reflected wave has a higher amplitude than the
incident wave.

Fig. S-9.4

(d)The complete expressions for the fields in S are

Ey(x, t) = Ei e
ikx−iωt − 1− β

1+ β
Ei e

−ikrx−iωr t ,

(S-9.57)

Bz(x, t) = Ei e
ikx−iωt + 1− β

1+ β
Ei e

−ikrx−iωr t ,

(S-9.58)

thus, also Ey has a finite value at the mirror surface
x(t) = vt , and is therefore discontinuous:

Ey[x(t), t] = 2β

1+ β
Ei e

−i(1−β)ωt , (S-9.59)

Bz[x(t), t] = 2

1+ β
Ei e

−i(1−β)ωt . (S-9.60)

This can be seen by considering again the line integral of the electric field E along a
closed rectangular path of sides 2a and b, at rest in S. We assume that the left vertical
side of the path is on the x = A line, that at time t the mirror surface cuts the two
horizontal sides, as in Fig. S-9.4, and that a � λ, where λ is the wavelength in S. The
flux of the magnetic field through the rectangular path at time t is thus

Φ(t) 	 Bz[x(t), t][x(t)− A] b = Bz[x(t), t)] (vt − A) b, (S-9.61)
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so that

− 1

c

dΦ(t)

dt
	 −1

c

[
∂t Bz[x(t), t] (vt − A) b + Bz[x(t), t] vb

]
. (S-9.62)

At the limit a → 0, A→ vt , the first term of the right-hand side vanishes, and we are
left with

− 1

c

dΦ(t)

dt
	 −1

c
Bz[x(t), t] vb = −Bz[x(t), t]β b . (S-9.63)

On the other hand, the line integral of E along the closed rectangular path of Fig.
S-9.4 is

∮
E · d� = −Ey[x(t), t] b = − 2β

1+ β
bEi e

−i(1−β)ωt = −Bz[x(t), t]β b .

(S-9.64)

S-9.7 Oblique Incidence on a Moving Mirror

(a) We choose a Cartesian reference frame S where v is parallel to the x axis, the
mirror surface lies on the yz plane and the wave vector ki of the incident wave lies in
the xy plane. The Lorentz transformations to the frame S′ give

k ′ix = γ
(
kix − ω

v

c2

)
= γ

ω

c
(cos θi − β) , (S-9.65)

k ′iy = kiy , (S-9.66)

ω′i = γ(ωi − kxv) = γωi(1− β cos θi) , (S-9.67)

tan θ′i =
k ′iy
k ′ix
= kix tan θi

γ(ωi/c)(cos θi − β)
= kix sin θi

γkix (cos θi − β)
= sin θi

γ(cos θi − β)
,

(S-9.68)

where, as usual, β = v/c and γ = 1/
√
1− β2. In S′ the reflection angle θ′r equals the

incidence angle θ′i , thus

k ′rx = −k ′ix , k ′ry = k ′iy , ω′r = ω′i . (S-9.69)

(b) By performing the Lorentz transformations back to the laboratory frame S we
obtain
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kry = kiy , (S-9.70)

krx = γ
(
k ′rx + ω′

v

c2

)
= −γ2

[
kix

(
1+ β2)− 2ωi

β

c

]

= −2γ2 ω

c

[(
1+ β2) cos θi − 2β

]
, (S-9.71)

ωr = γ(ω′r + k ′rxv) = γ2
[
ω

(
1+ β2

)− 2kixv
] = γ2 ω

c

(
1+ β2 − 2 β cos θi

)
,

(S-9.72)

from which

tan θr ≡ −kry
krx
= sin θi

γ2
[
2β − (

1+ β2
)
cos θi

] , (S-9.73)

For cos θi = v/c = β the denominator of the “rightmost right-hand side” of
(S-9.68) is zero, and the incidence angle θ′i in S′ is a right angle. This means that,
in S′, the incident wave propagates parallel to the mirror surface, without hitting the
mirror, and no reflection occurs. For incidence angles such that cos θi > β, all the
above formulas are meaningless, since they would imply k ′ix < 0, i.e., that the wave
is incident on the other side of the mirror.

S-9.8 Pulse Modification by a Moving Mirror

(a) The number of oscillations in the wave packet is a relativistic invariant, and the
Lorentz transformations are linear in the EM fields. Thus, in the reference frame S′,
where the mirror is at rest, the incident wave packet is still square and comprises the
same number of oscillations. On the other hand, as already seen in Problem 9.6, the
frequency ω′i and the amplitude E ′i are

ω′i = γ(1− β) ωi , E ′i = γ(1− β)Ei , (S-9.74)

where β = v/c. In S′, the reflected packet has the same shape, duration, and frequency
of the incident packet, but opposite amplitude and direction.

E ′r = −E ′i , ω′r = ω′i , τ ′r = τ ′i = N
2π

ω′i
= N

2π

γ(1− β)ωi
= τi

γ(1− β)
.

(S-9.75)
Back-transforming to S (see also Problem 9.6) we have

Er = −1− β

1+ β
Ei , ωr = γ(1− β) ω′r = γ2(1− β2) ωi = 1− β

1+ β
ωi (S-9.76)

The duration of the reflected wave packet is thus
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τr = N
2π

ωr
= N

2π

ω

1+ β

1− β
= 1+ β

1− β
τi . (S-9.77)

If β > 0, i.e., if the mirror velocity is parallel to the packet propagation direction,
the reflected packet has a longer duration than the incident packet, while the reflected
packet is shorter if themirror velocity is antiparallel. (b)The energy per unit surface of
each packet is given by its intensity I times its duration τ . The intensity is proportional
to the square of the electric field amplitude, thus the relation between the reflected
and incident intensities is

Ir =
(
1− β

1+ β

)2

Ii , (S-9.78)

and the relation between the energies per unit surface of the whole reflected and
incident packets is

Ur = Irτr =
(
1− β

1+ β

)2

Ii
1+ β

1− β
τi = 1− β

1+ β
Iiτi = 1− β

1+ β
Ui . (S-9.79)

We see thatUr = Ui, hence some work per unit surface is needed in order to keep the
mirror moving at constant velocity, namely

W = Ur −Ui = − 2β

1+ β
Ui . (S-9.80)

Thus a mirror with β < 0, i.e., moving in the direction opposite to the incident wave
packet, transfers some energy to the packet.
(c) As a first step, we determine the distribution of the current density J. Since all the
fields are null inside the mirror, i.e., for x > x(t) = vt , the current must be localized

Fig. S-9.5

on the mirror surface, J(x, t) = K(t) δ(x −
vt). We can evaluate the surface current den-
sity K(t) on the mirror surface by considering
the fields close to the surface. By calculating
the line integral of B over a closed rectangular
path, fixed in S, of sides b, parallel to B and
to the mirror surface, and 2a, perpendicular
to, and crossing the mirror surface, as in Fig.
S-9.5, we obtain

∮
path

B · d� = 4π

c
Φ(J)+ 1

c

dΦ(E)

dt
, (S-9.81)
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whereΦ(J) andΦ(E) are the fluxes through the surface delimited by the path Jv and
E, respectively. At the limit a → 0 and A→ vt , we have

∮
path

B · d� 	 B(vt) b , Φ(J) = K (t) b , (S-9.82)

dΦ(E)

dt
	 ∂t E(vt) (vt − A) b + E(vt) bv 	 E(vt) bv . (S-9.83)

From the knowledge of E and B at the mirror surface (Problem 9.6) we obtain

K (t) = c

4π

[
B(vt)− v

c
E(vt)

]
= c

4π

(
1− β2

) 2Ei

1+ β
e−i(1−β)ωt

= cEi

2π
(1− β)e−i(1−β)ωt . (S-9.84)

Thus, K and E are in phase. In order to evaluate the total mechanical work per unit
surface on the mirror, we first switch back to the real quantities

K (t) = cEi

2π
(1− β) cos[(1− β)ωt] , (S-9.85)

E(vt) = 2β

1+ β
Ei cos[(1− β)ωt] , (S-9.86)

and evaluate the integral over the mirror depth

∞∫
vt

J · E dx = 1

2
K (t)E(vt) = cE2

i

2π

β(1− β)

1+ β
cos2[(1− β)ωt] . (S-9.87)

We have inserted the factor 1/2 to account for the discontinuity of E at x = vt (see
also Problem 2.12). Equation (S-9.87) gives the mechanical power per unit surface
exerted on the mirror. To find the mechanical work, (S-9.87) must be integrated over
the time interval for which K (t) = 0, i.e., for the time needed by the wave packet to
undergo a complete reflection. If the front of the wave packet reaches the mirror at
t = 0, the end of the packet will leave the mirror at t = τ/(1− β), which is different
from the pulse duration τ because the mirror moves while the wave train is reflected.
We thus need the integral

τ/(1−β)∫
0

cos2[(1− β)ωt] dt = 1

ω(1− β)

ωτ∫
0

cos2 x dx = πN

(1− β) ω
, (S-9.88)
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since ωτ = 2πN , and the integral of cos2 x over one period equals π. We thus obtain

W =
∫

1

2
K (t)E(vt) dt = cE2

i

2π

β(1− β)

1+ β

πN

(1− β) ω
= cE2

i

4π

β

1+ β
τ (S-9.89)

= 2Iiτ
β

1+ β
= 2β

1+ β
Ui , (S-9.90)

in agreement with (S-9.80).
The work W divided by the reflection time gives the mechanical power per unit

surface

P = W
1− β

τ
= 2β(1− β)

1+ β
Ii = 2(1− β)

1+ β
Ii

v

c
, (S-9.91)

whichmust be equal to the the pressure exerted on themovingmirror times its velocity
v. We thus obtain that the radiation pressure on a moving mirror is

Prad = P
v
= 2Ii

c

1− β

1+ β
, (S-9.92)

a result which can also be obtained in different ways (see Problems 13.7 and 13.8).

S-9.9 Boundary Conditions on a Moving Mirror

(a)Wecan assume thewave to be linearly polarized along y, without loss of generality.
We choose the origin of the frame S′, where the mirror is at rest, so that the mirror
surface is on the x ′ = 0 plane. In S′ the total fields at the mirror surface are

E′s(t
′) = ŷ′E ′s(t

′) ≡ 0 ,

B′s(t
′) = ẑ′B ′s(t

′) e−iω
′
i t
′ = −ẑ′ 2E ′i e

−iω′i t ′ , (S-9.93)

respectively, where

E ′i = γ(1− β) Ei , ω′i = γ(1− β) ωi , (S-9.94)

are the amplitude and frequency of the incident wave in S′, as seen in Problem 9.6.
Notice that E′ is continuous at x ′ = 0, while B′ is not. By transforming the field
amplitudes at the mirror surface back to S we obtain
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Es = γ(E ′s + βB ′s) = γβB ′s = −2γ2β(1− β)Ei ,

Bs = γ(B ′s − βE ′s) = γB ′s = −2γ2(1− β)Ei , (S-9.95)

where β = v/c and γ = 1/
√
1− β2. Thus, in general, in S we have both Es = 0 and

Bs = 0, while the fields are zero inside the mirror.
(b) The EM fields are related to the vector potential by

E = −1

c
∂tA , B = ∇ × A. (S-9.96)

Thus, the only nonzero component of the vector potential is Ay , and we have

Es = −1

c
∂t Ay , Bs = ∂x Ay . (S-9.97)

The total derivative of A appearing in (9.9) can be rewritten

dA

dt

∣∣∣∣
x=x(t)

= [
∂t Ay + v ∂x Ay

]
x=x(t) = cEs − vBs = c (Es − βBs) = 0 ,

(S-9.98)
according to (S-9.95). Thus the Eqs. (S-9.93) and (S-9.95) imply dA/dt = 0 on the
mirror surface in S.
(c) The total vector potential in S is the sum of the vector potentials of the incident
and the reflected waves,

A(x, t) = ŷ
[
Ai e

ikix−iωit + Are
−ikrx−iωr t

] = ŷ
[
Ai e

iki(x−ct) + Ar e
−ikr(x+ct)] , (S-9.99)

where Ai = icEi/ωi, ki = ωi/c, and kr = ωr/c. The boundary condition gives

0 = Ay(vt, t) = Ai e
−iki(c−v)t + Ar e

−ikr(c+v)t . (S-9.100)

This equation is satisfied if

Ar = −Ai ,
kr
ki
= ωr

ωi
= c − v

c + v
= 1− β

1+ β
. (S-9.101)

For the total electric field we find

Ey = −1

c
∂t Ay = i

ωi

c
Ai e

ikix−iωit − i
ωr

c
Ar e

−ikrx−iωr t

= Ei e
ikix−iωit − 1− β

1+ β
Ei e

−ikrx−iωr t . (S-9.102)
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S-9.10 Lorentz Transformations on a Coaxial Cable

(a) We choose the symmetry axis of the

Fig. S-9.6

coaxial cable as x axis of the laboratory
reference frame S, as shown in Fig. S-9.6.
We integrate the four-current of the inner
conductor Jα = (c�, J) over the yz plane,
obtaining the quantity Gα = (cλ, I). This
quantity transforms like a four-vector under
boosts along the x axis, because surfaces
parallel to the yz plane are invariant under
such transformations.

Now we consider a reference frame S′
that moves at a constant velocity V relative

to S, with V parallel to the x axis. In S′ we have, according to the Lorentz transfor-
mations,

λ′ = γ

(
λ− V I

c2

)
, I ′ = γ (I − Vλ) , (S-9.103)

where, as usual, γ = 1/
√
1− V 2/c2 . Thus the conditions λ′ = 0 and I ′ = 0 can be

achieved at the velocities

Vλ = λc2

I
, and VI = I

λ
, (S-9.104)

respectively. These velocities identify two different reference frames, that we denote
by S′ and S′′, which cannot exist simultaneously. Equations (S-9.104) and the condi-
tion V < c imply that the reference frame S′, where λ′ = 0, can exist only if I/λ > c,
while the reference frame S′′, where I ′′ = 0 (for the sake of clarity, from here on we
denote quantities measured in S′′ by double primes), can exist only if I/λ < c. In the
two frames we have

γ′ = I√
I 2 − λ2c2

, λ′ = 0 , I ′ = γ′
(
I 2 − λ2c2

I

)
=

√
I 2 − λ2c2 ,

(S-9.105)

γ′′ = λc√
λ2c2 − I 2

, I ′′ = 0 , λ′′ = γ′′
(

λ2c2 − I 2

λc2

)
=
√

λ2c2 − I 2

c
.

(S-9.106)

The same results can be obtained more easily by noting that I 2 − λ2c2 is a Lorentz
invariant.
(b) Due to the symmetry of the problem, it is more convenient to use a cylindrical
coordinate system (r,φ, x), with x as polar axis. In the laboratory reference frame S
we have
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E = 2λ

r
r̂ , B = 2I

cr
φ̂ . (S-9.107)

In S′ we have r ′ = r , θ′ = θ, in S′′ we have r ′′ = r , θ′′ = θ.
In S′, moving with velocity Vλ = λc2/I and existing if I/λ > c, the field as eval-

uated from the Lorentz transformations are

E ′r = γ′(Er − Vλ

c
Bφ) = γ′

(
2λ

r
− λ

I

2I

r

)
= 0 , (S-9.108)

B ′φ = γ′
(
Bφ − Vλ

c
Er

)
= γ′

(
2I

cr
− λc

I

2λ

r

)
= γ′

2I

cr

I 2 − λ2c2

I 2
= Bφ

γ′
.

(S-9.109)

alternatively we obtain, evaluating the fields from the sources,

E ′r =
2λ′

r
= 0 (S-9.110)

B ′φ =
2I ′

cr
= 2

√
I 2 − λ2c2

cr
= 2I

γ′cr
= Bφ

γ′
, (S-9.111)

In S′′, moving with velocity VI = I/λ and existing if I/λ < c, the Lorentz trans-
formations lead to

E ′′r = γ′′
(
Er − VI

c
Bφ

)
= γ′′

(
2λ

r
− I

λc

2I

cr

)
= γ′

2λ

r

λ2c2 − I 2

λ2c2
= Er

γ′′
,

(S-9.112)

B ′′φ = γ′′
(
Bφ − VI

c
Er

)
= γ′′

(
2I

cr
− I

cλ

2λ

r

)
= 0 , (S-9.113)

alternatively we obtain, evaluating the fields from the sources,

E ′′r =
2λ′′

r
= 2

√
λ2c2 − I 2

rc
= 2

rc

λc

γ′′
= Er

γ′′
, (S-9.114)

B ′′φ =
2I ′′

cr
= 0 . (S-9.115)

The same results can be obtained by noting that E2 − B2 is a Lorentz invariant.
Thus, for instance, in the frame S′′, where I ′′, and therefore B′′, are zero, we must
have

E ′′2 = E2 − B2 , (S-9.116)

from which we obtain
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E ′′ =
√
E2 − B2 =

√
4λ2

r2
− 4I 2

c2r2
= 2

r

√
λ2 − I 2

c2
= 2

cr

√
λ2c2 − I 2

= 2

cr

λc

γ′′
= E

γ′′
, (S-9.117)

where we have used

√
λ2c2 − I 2 = λc

γ′′
= cr

2

√
E2 − B2 . (S-9.118)

(c) In the laboratory reference frame S the surface electrostatic force on the inner
conductor is

Pes(a) = 1

2
σE(a+) = 1

2

λ

2πa

2λ

a
= λ2

2πa2
= 1

8π
E2(a+) , (S-9.119)

and points outwards. We have used σ = λ/(2πa). The surface magnetic force is

Pmag(a) = 1

2c
K × B(a+) · r = − 1

2c

I

2πa

2I

ca
= − I 2

2πc2a2
= 1

8π
B2(a+) ,

(S-9.120)
where we have used K = x̂ I/(2πa), K being the surface current density. This force
points inwards, and the total force per unit surface is thus

P(a) = Pes(a)+ Pmag(a) = λ2

2πa2
− I 2

2πc2a2
= 1

2πc2a2
(
λ2c2 − I 2

)
,

(S-9.121)
which is a Lorentz invariant. An analogous procedure for the external conductor leads
to

P(b) = − 1

2πc2b2
(
λ2c2 − I 2

)
. (S-9.122)

Thus the internal and external conductors repel each other because of the magnetic
force, and attract each other because of the electric force. If λc > I attraction is
dominant, the internal conductor tends to expand, and the external conductor tends to
shrink. If λc < I repulsion is dominant
(d) In the laboratory reference frame S the total density of electric and magnetic
density in the a < r < b region is

u = E2

8π
+ B2

8π
= λ2

2πr2
+ I 2

2πc2r2
= 1

2πr2

(
λ2 + I 2

c2

)
. (S-9.123)

The density of electromagnetic momentum in the same region is

g = 1

4πc
E× B = λI

πc2r2
x̂ . (S-9.124)
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In S′, where λ′ and E′ are zero, we have

u′ = 1

8π
B ′2 . (S-9.125)

In S′′, where I ′′ and B′′ are zero, we have

u′′ = 1

8π
E ′′2 , (S-9.126)

while both g′ and g′′ are zero.

S-9.11 Lorentz Transformations on a Rectangular Metal
Pipe

(a) Applying the Lorentz transformations to the four-vector (ρc, J) we obtain

J ′x = γ Jx = ±γ J , J ′y = Jy = ±J , ρ′ = −γ
V

c2
Jx = ∓γ

V

c2
J , (S-9.127)

for the current density the plus sign applies to the left and upper walls, the minus
sign applies to the right and lower walls of Fig. 9.8. For the charge density the plus
sign applies to the lower, the minus sign to the upper wall. Thus the current density
is unchanged on the left and right walls, while it increases by a factor γ on the upper
and lower walls, where also a charge density appears.

Applying the transformations for the electromagnetic field we obtain

B ′z = γBz = γB0 , E ′y = γ
V

c
Bz = γ

V

c
B0 , (S-9.128)

The fields are zero outside the pipe. In S′ the cross section of the pipe has sides
a′ = a/γ and b′ = b. The vertical walls have thickness h′ = h/γ and the horizontal
walls have unchanged thickness h.
(b) Calculating the energy and electromagnetic momentum densities in S and in S′
we obtain

u = B2
z

8π
, u′ = B ′z

2

8π
+ E ′y

2

8π
= γ2 B

2
0

8π

(
1+ V 2

c2

)
, (S-9.129)

g = c

4π
E× B = 0 , g′ = c

4π
E′ × B′ = γ2 c

4π

V

c
B2
0 x̂′ . (S-9.130)
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Fig. S-9.7

(c) The discontinuity condition for the
magnetic field at the upper wall is
obtained by applying Ampére’s cir-
cuital law to the rectangular loop L1

of Fig. S-9.7. The long side of L1 has
length � and is parallel to the z′ axis, its
short side, which tends to zero at our
limit, is parallel to the y′ axis. We have

(
B ′z − Bout

)
� = 4π

c
J ′�h (S-9.131)

B ′z − Bout = 4π

c
γ Jh = B ′z ,

Therefore Bout = 0. The discontinuity condition for B at the right wall is obtained
by applying Ampére’s circuital law to the rectangular loop L2 of Fig. S-9.7. The long
side of L2 has length � and is parallel to the z′ axis, the short side is parallel to the x ′
axis, and tends to zero at our limit. We have

(
Bout − B ′z

)
� = −4π

c
J�h′ + 1

c

∂Φ(E′)
∂t

= −�B0

γ
+ 1

c

∂

∂t

(
�X ′E ′

)

= −�B0

γ
− 1

c
�V

(
γ
V

c
B0

)
= −�B0

γ
− γ�

V 2

c2
B0 = �B0

γ
− γ�

(
1− 1

γ2

)
B0

= −�B0

γ
− γ�B0 + �B0

γ
= −�B ′z , (S-9.132)

and Bout is again zero. Here Φ(E′) is the flux of the electric field through L2. The
flux is not constant because L2 is considered as at rest in S′, while the pipe is moving
with velocity−V x̂′. The discontinuity conditions for B′ at the left and lower wall are
obtained analogously.

For the condition on E′ at the right wall of the rectangular pipe we evaluate its line
integral around Loop L3 of Fig. S-9.7. We have;

∮
E′ · ds = �

(
E ′ − Eout

) = −1

c

dΦ(B′)
dt

= 1

c
V �B ′ = �

V

c
γB0 = �E ′ ,

(S-9.133)

Fig. S-9.8

and Eout is zero. Here Φ(B′) is the flux of the
magnetic fiels through the loop L3. Again, the flux
changes in time because L3 is at rest in S′ while
the pipe is moving.

For the condition on E′ at the upper wall we
apply Gauss’s theorem to a shallow cylindrical
closed surface of base surface A crossing the upper
wall, as shown in Fig. S-9.8. We have
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A(Eout − E ′) = 4πρ′Ah = −4πAhγ
V

c2
J

= −γB0A
V

c
= −E ′A , (S-9.134)

and Eout is zero. The discontinuity conditions on E′ at the right and lower walls are
obtained analogously.

Fig. S-9.9

(d) Inside each wall the current density is uni-
form, so that ∇′ · J′ = ∂ρ′/∂t ′ = 0, as it must
be in stationary conditions. At the edges the sit-
uation is slightly more complex. As an example
consider the cuboid-shaped closed surface A of
Fig. S-9.9, which wraps a portion of the upper
left edge of length �. The entering and exiting
charge fluxes due to the current densities are

ΦQ,in = J�
h

γ
, and ΦQ,out = J ′�h = γ J�h , (S-9.135)

respectively. Thus we have

ΦQ,out −ΦQ,in = J�h
γ2 − 1

γ
= J�h

β2

γ
(
1− β2

) = γ J�h
V 2

c2
, (S-9.136)

where we have used β = V/c. Thus the charge QA inside the closed surface A is not
constant, and we have

∂QA

∂t ′
= −γ J�h

V 2

c2
. (S-9.137)

This is apparent inconsistency is due to the fact that the closed surface A is at rest in
S′, while the pipe is moving with velocity −V x̂′. According to (S-9.127) the upper
wall of the pipe has a negative charge density ρ′ = −γ JV/c2 which is entering A
through its right face. This leads to a charge chamge rate

∂QA

∂t ′
= −V �hρ′ = −V �hγ J

V

c2
= −γ J�h

V 2

c2
, (S-9.138)

in agreement with (S-9.137).
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S-9.12 Force on an Ohmic Wire

(a) Here we use a cylindrical coordinate system (r,φ, z) with the wire axis as z axis.
The electric field E0 is continuous through the wire surface, thus the current density
inside the wire is J = σE0 and the current flowing in the wire is I = πa2 J . The power
per unit length dissipated in the wire by Joule heating is

Pd = πa2 J · E = πa2σE2
0 . (S-9.139)

The magnetic field BJ has only the φ̂ component BJφ because of symmetry, with

BJφ(r) = 2I

rc
= 2πa2 J

rc
= 2πa2σ

rc
E0 . (S-9.140)

The Poynting vector at the wire surface is

S(a) = c

4π
E× BJ (a) = −r̂

aσ

2
E2
0 . (S-9.141)

The flux per unit length of the Poynting vector through the wire surface is

Φ(S) = −S(a) 2πa = −πa2σE2
0 = −Pd . (S-9.142)

(b) In the laboratory frame we use a Cartesian coordinate system (x, y, z) with the
axis of the wire as z axis, and S′ moving along the x axis, thus V = x̂ V . We have, at
the first order in β = V/c, E′ 	 E′0 and B′ 	 −(V/c)× E0 + BJ ≡ B′0 + BJ . Note
that here BJ is written as a function of the transformed coordinates (x ′ 	 x − V t ,
y′ = y, z′ = z), so that r =

√
(x ′ + V t ′)2 + y′2. Further, we have J′ = J and ρ′ = 0

because J is perpendicular to V.
(c) The force per unit length acting on the wire is

F′ = J′ × B′0 πa2 	 −I E0V , where I = πa2 J , (S-9.143)

we have neglected the term in J′ × BJ which gives origin to a “shrinking” force on
the wire with zero vector average value. Equation (S-9.143) is in agreement with the
transformation of the four-force per unit volume exerted by the external field on the
wire. In the laboratory frame S we have

fμ =
(

J · E0

c
, 0, 0, 0

)
. (S-9.144)

In the moving frame S′ we have, at the first order in β

f ′μ 	
(

J · E0

c
,−V (J · E0) , 0, 0

)
. (S-9.145)
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We obtain F ′ bymultiplying f ′1 by the cross section πa2 of the wire, which is invariant
at the limit β � 1. In fact the cross section of the wire lies in the xy plane, V is
parallel to the x axis, thus we have dy′ = dy while, in principle, dx ′ is affected by
length contraction, which, however, is zero at the first order in β. Note that the norm
of the four-vector fμ is invariant only at the first order in β.

The thermal rest energy of the wire increases with time because of Joule heating,
and this increases the inertia of the wire. This is why a force is needed in S′, where
the wire is in uniform motion.



Chapter S-10
Solutions for Chapter 10

S-10.1 Cyclotron Radiation

(a) The electric dipole moment p = −er rotates in the xy plane with frequency ωL,
which is also the frequency of the emitted radiation. The dipole approximation is valid
if the dimensions of the radiating source aremuch smaller than the emittedwavelength
λ. Here this corresponds to the condition 2rL = 2v/ωL � λ = 2πc/ωL, always true
for non-relativistic velocities.

The rotating dipole can bewritten asp = p0 (x̂ cosωLt + ŷ sinωLt). For the electric
field of the dipole radiation observed in a direction of unit vector n̂, we have E ∝
−(p× n̂)× n̂. If n̂ = ẑ, then E ∝ x̂ cosωLt + ŷ sinωLt (circular polarization); if
n̂ = x̂ or n̂ = ŷ, we vave E ∝ −ŷ sinωLt and E ∝ −x̂ cosωLt , respectively (linear
polarization).

Since r̈ = v × ωL (where ωL = ẑ ωL), the radiated power can be written as

Prad = 2

3

|er̈|2
c3

= 2

3

e2v2ω2
L

c3
. (S-10.1)

(b)Weassume that the energy loss due to radiation is small enough to cause a variation
of the orbit radius �rc � rc during a single period, so that, during a single period,
the motion is still approximately circular. Thus the magnitude of the electron velocity
v = v(t) can be written as v 	 ωLr , where r = r(t) is the radius of the orbit at time
t . The electron energy is

U = mev
2

2
= meω

2
Lr

2

2
, (S-10.2)

and the equation for the energy loss, dU/dt = −Prad, becomes

d

dt

(
meω

2
Lr

2

2

)
= − 2

3c3
(
e2ω4

Lr
2
) = −2reme ω4

L

3c
r2 , (S-10.3)
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where re = e2/(me c2) is the classical electron radius. Substituting the relation
d(r2)/dt = 2r dr/dt into (S-10.3) we obtain

dr

dt
= −2reω2

L

3c
r ≡ − r

τ
, with τ = 3c

2reω2
L

= 3mec3

2e2ω2
L

, (S-10.4)

whose solution is

r(t) = r(0) e−t/τ , (S-10.5)

and the trajectory of the electron is a spiral with a decay time τ . Inserting the expres-
sions for re and ωL we have

τ = 3

2

m3
ec

5

e4B2
0

= 5.2× 105

B2
0

s (S-10.6)

where the magnetic field B0 is in G. The condition τ � ω−1L implies

3

2

m3
ec

5

e4B2
0

� mec

eB0
, or B0 � 3

2

m2
ec

4

e3
= 9.2× 1013 G , (S-10.7)

a condition well verified in all experimental conditions: such high fields can be found
only on neutron stars! (see Problem 10.5)
(c) We insert a frictional force ffr = −meη v into the equation of motion, obtaining

me
dv

dt
= −e

c
v × B0 − meη v . (S-10.8)

This corresponds to the following two coupled equations for the the x and y compo-
nents the electron velocity

v̇x = −ωLvy − ηvx , v̇y = ωLvx − ηvy . (S-10.9)

An elegant method to solve these equations is to combine the x and y coordinates of
the electron into a single complex variable R = x + iy, and the velocity components
into the complex variable V = vx + ivy . The two Eqs. (S-10.9) are thus combined
into the single complex equation

V̇ = (iωL − η)V , with solution V = V (0) eiωL t−ηt = v0 e
iωL t−ηt . (S-10.10)

For the electron position we have

R =
∫

V dt + C = v0

iωL − η
eiωL t−ηt + C = − (η + iωL) v0

ω2
L + η2

eiωL t−ηt + C ,

(S-10.11)



S-10 Solutions for Chapter 10 431

whereC is a complex constant dependingonour choice of the origin of the coordinates.
We choose C = 0, and rewrite (S-10.11) as

R = − v0√
ω2

L + η2
(cosφ+ i sin φ) eiωL t−ηt = − v0√

ω2
L + η2

ei(ωL t+φ)−ηt ,

(S-10.12)
where

cosφ = η√
ω2

L + η2
, sin φ = ωL√

ω2
L + η2

, φ = arctan

(
ωL

η

)
. (S-10.13)

Going back to the real quantities we have

vx = Re(V ) = v0 e
−ηt cosωLt , (S-10.14)

vy = Im(V ) = v0 e
−ηt sinωLt , (S-10.15)

x = Re(R) = − v0√
ω2

L + η2
e−ηt cos(ωLt + φ) , (S-10.16)

y = Im(R) = − v0√
ω2

L + η2
e−ηt sin(ωLt + φ) . (S-10.17)

Thus, the velocity rotateswith frequencyωL,while itsmagnitude decays exponentially,
|v(t)| = v0 e−ηt . For the radius of the trajectory we have

r(t) = |R(t)| = v0√
ω2

L + η2
e−ηt . (S-10.18)

Thus, choosing η = 1/τ , the motion with frictional force is identical to the motion
with radiative power loss, and

ffr · v = −meηv2 = −mev
2

τ
= −mev

2 2e
2ω2

L

3mec3
= −2e2v2ω2

L

3c3
= −Prad . (S-10.19)

A drawback of this approach is that the frictional coefficient inserted here is not
universal but is dependent on the force on the electron (in this case, via the dependence
on ωL ). See Problem 10.12 for a more general approach to radiation friction.

S-10.2 Atomic Collapse

(a) An electron describing a circular orbit of radius a0 (Bohr radius) around a proton
corresponds to a counterrotating electric dipole p(t) of magnitude p0 = ea0. The
angular velocity of the orbit ω can be evaluated by considering that the centripetal
acceleration is due to the Coulomb force,
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ω2a0 = 1

me

e2

a20
, (S-10.20)

from which we obtain

ω =
√

e2

mea30
= 4.1× 1016 rad/s . (S-10.21)

Actually, the strongest emission from the hydrogen atom occurs at a frequency smaller
by about one order of magnitude.

Since p is perpendicular to ω, we have p̈ = (p× ω)× ω and |p̈|2 = (
ω2 p0

)2
(the

same result can be obtained by considering the rotating dipole as the superposition of
two perpendicularly oscillating dipoles). Thus the radiated power is

Prad = 2

3c3
|p̈|2 = 2

3

ω4e2a20
c3

= 2

3

e2r2e c

a40
, (S-10.22)

where re is the classical electron radius.
(b) We assume that, due to the emission of radiation, the electron loses its energy
according to dU/dt = −Prad, where U = K + V is the total electron energy, K and
V being the kinetic and potential energy, respectively. If the energy lost per period is
small with respect to the total energy, we may assume that the electron the orbit is
almost circular during a period, with the radius slowly decreasing with time, r = r(t)
with ṙ/r � ω.

Since the velocity is v = rω, the total energy can be written as a function of a:

U = K + V = mev
2

2
− e2

r
= − e2

2r
. (S-10.23)

Therefore

dU

dt
	 −e2

2

d

d

(
1

r

)
= e2

2r2
dr

dt
. (S-10.24)

Since

Prad = 2

3

e2r2e c

r4
(S-10.25)

the equation dU/dt = −Prad can be written as

e2

2r2
dr

dt
= −2

3

e2r2e c

r4
⇒ r2

dr

dt
= −4

3
r2e c ⇒ 1

3

dr3

dt
= 4

3
r2e c (S-10.26)

The solution, assuming r(0) = a0, is
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r3 = a30 − 4r2e c t , (S-10.27)

giving for the time need by the electron to fall on the nucleus

τ = a30
4r2e c

	 1.6× 10−11 s . (S-10.28)

This is a well-known result, showing that a classical “Keplerian” atom is not stable. It
is however interesting to notice that the value of τ is of the same order of magnitude
of the lifetime of the first excited state, i.e., of the time by which the excited state
decays to the ground state emitting radiation.

S-10.3 Radiative Damping of the Elastically Bound
Electron

(a) The solution of (10.5) with the given initial conditions and η = 0 is

r = s0 cosω0t . (S-10.29)

The corresponding average radiated power in the dipole approximation is

Prad = 2

3c3
〈−e|r̈|2〉 = 2e2

3c3
ω4
0s

2
0

〈
cos2 ω0t

〉 = e2

3c3
ω4
0s

2
0 . (S-10.30)

The radiated power is emitted at the expense of the energy of the oscillating electron.
Thus, the total mechanical energy of the electron must decrease in time, and the
harmonic-oscillator solution of (S-10.29) cannot be exact. Assuming that the energy
of the oscillator decays very slowly, i.e., with a decay constant τ � ω−10 , we can
approximate (S-10.29) as

r 	 s(t) cosω0t . (S-10.31)

where s(t) is a decreasing function of time to be determined. Consequently, we must
replace s0 by s(t) also in Eq. (S-10.30) for the actual average radiated power.
(b) At time t , the total energy of the oscillating electron is U (t) = meω

2
0s

2(t). The
time decay constant τ is defined as

τ = U (t)

Prad(t)
= 3mec3

2e2ω2
0

= 3c

2reω2
0

, (S-10.32)

and is thus independent of t . Since the classical electron radius is re 	 2.82× 10−15 m,
the condition τ > 2π/ω0 leads to
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ω0 <
3

4π

c

re
	 3× 1022 rad/s . (S-10.33)

For a comparison, estimating ω0 as the frequency of the 1S←2P Lyman-alpha emis-
sion line of the hydrogen atom, we have ω0 	 3× 1016 rad/s.
(c) We look for a solution of the form r = Re(s0 e−iωt ), with complex ω. Substituting
this into (10.5), the characteristic equation becomes

ω2 + iηω + ω2
0 = 0 , (S-10.34)

whose solution is

ω = −iη
2
±

√
ω2
0 −

η2

4
	 −iη

2
± ω0 , (S-10.35)

where we have neglected the terms of the order (η/ω0)
2 and higher. Thus, the approx-

imated solution for the electron position is

r 	 s0 e−ηt/2 cosω0t . (S-10.36)

Actually, this approximation gives an initial velocity ṙ(0) = −η s0/2 instead of zero.
However, this discrepancy can be neglected if η � ω0. The maximum speed reached
by the electron is vmax 	 ω0s0, and ηs0/2� ω0s0.

The time-dependent total energy of the electron and average radiated power are

U (t) 	 me

2
ω2
0s

2
0 e
−ηt , and Prad(t) 	 e2

3c3
ω4
0s

2
0 e
−ηt . (S-10.37)

The condition dU/dt = −Prad leads to

η = 2reω2
0

3c
= 1

τ
. (S-10.38)

S-10.4 Radiation Emitted by Orbiting Charges

(a) Let us denote by r1 and r2 the location vectors of the two charges with respect to
the center of their common circular orbit. In polar coordinates we have

r1 ≡ [R,φ1(t)] , and r2 ≡ [R,φ2(t)] . (S-10.39)

Defining �φ = φ2 − φ1 and choosing an appropriate origin of time, the equations of
motion in polar coordinates are

r1 ≡
(
R,ωt − �φ

2

)
, and r2 ≡

(
R,ωt + �φ

2

)
. (S-10.40)
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In Cartesian coordinates we have

r1 ≡ [x1(t), y1(t)] , and r2 ≡ [x2(t), y2(t)] , (S-10.41)

with, respectively,

x1(t) = R cos

(
ωt − �φ

2

)
, y1(t) = R sin

(
ωt − �φ

2

)
, (S-10.42)

x2(t) = R cos

(
ωt + �φ

2

)
, y2(t) = R sin

(
ωt + �φ

2

)
. (S-10.43)

The dipole moment of the system is p = q(r1 + r2), with Cartesian components

px = qR

[
cos

(
ωt − �φ

2

)
+ cos

(
ωt + �φ

2

)]
= 2qR cos

(
�φ

2

)
cosωt ,

(S-10.44)

py = qR

[
sin

(
ωt − �φ

2

)
+ sin

(
ωt + �φ

2

)]
= 2qR cos

(
�φ

2

)
sinωt ,

(S-10.45)

i.e., p has constant magnitude p = 2qR cos(�φ/2), and rotates in the z = 0 plane
with angular frequency ω.
(b) In the dipole approximation, the electric field of the radiation emitted along a
direction of unit vector the n̂ is parallel to the vector

(p× n̂)× n̂ = p⊥ . (S-10.46)

Since for a dipole rotating in the z = 0 plane

(p× x̂)× x̂ is parallel to ŷ , and (p× ŷ)× ŷ is parallel to x̂ , (S-10.47)

the polarization of the radiation observed in the x̂ (ŷ) direction is linear and along ŷ
(x̂). For radiation observed the ẑ direction

(p× ẑ)× ẑ is parallel to p , (S-10.48)

and the observed polarization is circular.
The total radiated power is

Prad = 2

3c3
|p̈|2 = 4q2R2ω4

3c3
cos2

(
�φ

2

)
, (S-10.49)

which obviously vanishes when p = 0, i.e, for �φ = π (charges on opposite ends of
a rotating diameter), and has a maximum for �φ = 0 (superposed charges).
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(c) In this case charges are superposed to each other every half turn. We choose the
coordinates and the time origin so that the charges are superposed at t = 0 we have
r1 = r2 = (R, 0). Thus the trajectories can be written as

r1 = r2 = R , φ1(t) = ωt , φ2(t) = −ωt , (S-10.50)

in polar coordinates, and as

x1(t) = R cosωt , y1(t) = R sinωt ,

x2(t) = R cosωt , y2(t) = −R sinωt , (S-10.51)

in Cartesian coordinates. The total dipole moment is thus p = (2qR cosωt) x̂. No
radiation is emitted along x , while the radiation emitted along all other directions is
linearly polarized. The total average radiated power is

Prad = 2

3c3
|p̈|2 = 4q2R2ω4

3c3
. (S-10.52)

(d) With an appropriate choice of the time origin the equations of motion of the three
charges can be written, in polar coordinates, as

r1 = r2 = r3 = R , φ1(t) = ωt ,

φ2(t) = ωt +�φ2 , φ3(t) = ωt +�φ3 , (S-10.53)

and, in Cartesian coordinates,

xi = R cosφi (t) , yi = R sin φi (t) , (i = 1, 2, 3) . (S-10.54)

The electric dipolemoment vanishes if the three charges are on the vertices of a rotating
equilateral triangle (�φ2 = −�φ3 = 2π/3), and has its maximum value when the
three charges are overlapped (�φ2 = �φ3 = 0).
(e) The magnetic dipole moment for a point charge q, traveling at angular velocity ω
on a circular orbit of radius R, is defined by

m = 1

2c

∫
r × J d3x = qR2ω

2c
, (S-10.55)

and is constant (notice that m is proportional to the angular momentum of the orbit-
ing charge). Thus the magnetic dipole does not contribute to radiation, because the
radiation fields are proportional to m̈.

This problem explains why a circular coil carrying a constant current does not
radiate, although we may consider the current as produced by charges moving on
circular orbits, and thus subject to acceleration.
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S-10.5 Spin-Down Rate and Magnetic Field of a Pulsar

(a) Due to the nonzero angle α between the magnetic moment and the rotation axis
of the pulsar, the component of m perpendicular to ω rotates with frequency ω. Thus
the Pulsar thus emits magnetic dipole radiation of frequency ω. The total power is

P = 2

3c3
|m̈⊥|2 = 2

3

m2
⊥ω4

c3
, (S-10.56)

where m⊥ = m sinα.
(b) The mechanical energy is U = Iω2/2 where I = 2MR2/5 	 1.1× 1043 g cm2

is the moment of inertia of the pulsar, assuming a uniform mass distribution over the
volume of a sphere of radius R. Assuming that the energy loss is due to radiation
emission only, we can write

dU

dt
= d

dt

(
Iω2

2

)
= Iωω̇ = −P , (S-10.57)

and, substituting (S-10.56), we have

Iωω̇ = −2

3

m2
⊥ω4

c3
⇒ ω̇

ω3
= −2m2

⊥
3I c3

. (S-10.58)

By integrating over time from 0 to t we obtain

1

2ω2(t)
− 1

2ω2(0)
= 2m2

⊥
3I c3

t , (S-10.59)

and thus

ω(t) = ω(0)√
1+ t

τ

, where τ = 3I c3

4m2
⊥ω2(0)

. (S-10.60)

(c)Wecan rewrite ω̇/ω3 as ω̇/ω3 = −T Ṫ /4π2,where T = 2π/ω is the rotation period
of the pulsar, and Ṫ = −2πω̇/ω2. Thus we can obtain the magnetic dipole moment
m = m⊥ of the pulsar as a function of the experimentally measured parameters from
(S-10.58):

m =
√
3I c3

8π2
T Ṫ 	 3.3× 1036

√
T Ṫ erg/G , (S-10.61)
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where T is in seconds. The magnetic field immediately outside of the pulsar surface
is the field of a magnetic dipole located at the pulsar center:

B = 3(r̂ ·m) r̂ −m
r3

, (S-10.62)

and thus Bmax = 2m/R3. Thus we obtain the practical formula

Bmax 	 6.6× 1021
√
T Ṫ G , (S-10.63)

Inserting the experimental values for T and Ṫ we obtain

Bmax ≈ (9.6± 0.25)× 1016 G . (S-10.64)

S-10.6 A Bent Dipole Antenna

(a) If we divide the antenna into a series of infinitesimal resistors, each of length dz
and resistance dR = (R/a) dz, we can write the dissipated power as

Pdiss =
∫
〈I 2〉 dR =

+a∫
−a

I 20
2

(
1− |z|

a

)2 R

a
dz = I 20 R

3
. (S-10.65)

(b) The linear charge density on the antenna q� can be obtained from the continuity
equation ∂t q� = −∂z I , obtaining

q� = ± iI0
aω

e−iωt , (S-10.66)

where the signs + and − apply to z > 0 and z < 0, respectively. The linear charge
density is uniform (independent of z) on each half of the antenna. For symmetry
reasons, the only non-vanishing component of the electric dipole p is along z and it
is given by

pz =
+a∫
−a

z q� dz = 2

+a∫
0

iI0
aω

e−iωt z dz = iI0 a

ω
e−iωt . (S-10.67)
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(c) The average radiated power, in the dipole approximation, is

Prad = 1

3c3
〈| p̈z|2〉 = I 20 a

2ω2

6c3
= 2π2a2 I 20

3cλ2
, (S-10.68)

where λ = 2πc/ω is the radiation wavelength. Thus

Prad
Pdiss

= 2π2a2

cλ2R
, (S-10.69)

where we recall that R has the dimensions of the inverse of a velocity in Gaussian
units.
(d) The angular distribution of the radiated power is proportional to sin2 θ where θ is
the angle between the observation direction and p. Thus the emitted radiation intensity
is zero along the z axis and maximum for observation in the xy plane.
(e) The bent antenna has a linear charge density±(i I0/aω)e−iωt on its horizontal and
vertical arms, respectively. Thus the electric dipole moment has two components

px =
a∫

0

iI0
aω

e−iωt x dx = iI0a

2ω
e−iωt , (S-10.70)

pz = −
0∫

−a

iI0
aω

e−iωt z dz = iI0a

2ω
e−iωt . (S-10.71)

Since the components are perpendicular to each other, the cycle-averaged radiated
power can be calculated as the sum of the powers from each dipole:

Prad = 1

3c3
〈| p̈x |2 + | p̈z|2〉 = 1

12c3
(I0ωa)2 , (S-10.72)

which is one half of the value for the linear antenna, while the dissipated power Pdiss
does not change.

The electric dipole of the bent antenna lies along the diagonal direction, which
thus corresponds to the direction of zero emitted intensity. The intensity is maximum
in the plane perpendicular to the dipole.

S-10.7 A Receiving Circular Antenna

(a) We choose a Cartesian reference frame such that the wave is propagating in
the z direction, its electric field E is along the x axis, and its magnetic field B
is along the y axis. The current I flowing in the antenna is I = Ecirc/R, where
Ecirc = −(1/c) dΦ(B)/dt is the electromotive force, andΦ(B) is the flux ofB through
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the circle delimited by the antenna. Since we have assumed λ � a, B is practically
uniform over the whole surface of the circle, and Φ(B) 	 πa2B · n̂, where n̂ is unit
vector perpendicular to the circle surface. Thus the circular antenna must lie on the
xz plane in order to maximize Φ(B). With a proper choice of the time origin the
magnetic field on the circle surface can be written as B 	 ŷ B0 cosωt , and

Ecirc = πa2
ω

c
E0 sin(ωt) , (S-10.73)

since B0 = E0 in Gaussian units.
(b) The electromotive force on a linear antenna parallel to the x axis is practically
Elin = �E0 cos(ωt + φ), where � is rhe length of the antenna and φ is a phase angle.
The ratio of the average electromotive force of the circular antenna to the average
electromotive force of the linear antenna is thus

〈Ecirc〉
〈Elin〉 	

〈Ecirc〉
E0�

= πa2ω

�c
= 2π2 a

2

�λ
. (S-10.74)

In the range 102 cm < λ < 103 cm, and with our assumptions � 	 50 cm and a 	
25 cm, this ratio varies between 2.5 and 0.25. The circular antenna is more convenient
for shorter wavelengths.
(c) The radiation emission from the circular antenna is dominated by the magnetic
dipole term. The dipole moment of the antenna is

m = 1

c
Iπa2 n̂ , (S-10.75)

whereI is the current circulating in the antenna due to the electromotive force induced
by the incident wave. The corresponding time-averaged radiated power is

Prad = 2

3c3
〈|m̈|2〉 = 2

3c5
(πa2)2ω4

〈I2
〉

= (πa2)4ω6

3c7R2
E2
0 . (S-10.76)

In Gaussian units, the intensity of the incoming wave is I = cE2
0/4π, and (S-10.76)

can be rewritten

Prad = 4π(πa2)4ω6

3c8R2
I = 2(2π)7(πa2)4

3c2R2λ6
I . (S-10.77)

The factor multiplying I ,

σscatt = 2(2π)7(πa2)4

3c2R2λ6
, (S-10.78)
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has the dimensions of a surface (R has the dimensions of an inverse velocity in
Gaussian units), and is the radiative scattering cross section for our circular antenna,
in the magnetic dipole approximation.

The time-averaged power dissipated by Joule heating is Pdiss = R〈I2〉, so that

Prad
Pdiss

= 2

3c5R
(πa2)2ω4 = 2(2π)4(πa2)2

3Rcλ4
. (S-10.79)

S-10.8 Polarization of Scattered Radiation

(a) We choose a Cartesian reference frame with the origin located on the scattering
particle, and the z axis parallel to the wave vector of k the incident wave. In order to
have complete rotational symmetry around the z axis it is convenient to assume that
the incident wave is circularly polarized. The electric field of the incoming wave can
thus be written

Ei = E0(x̂ ± iŷ) eikz−iωt . (S-10.80)

Thus, the dipole moment of the scatterer is p = αEi = αE0(x̂ ± iŷ) eikz−iωt .
Because of the rotational symmetry of the

Fig. S-10.1

problem around the z axis, it is sufficient to con-
sider the scattered radiationwith thewave vector
kd lying in the yz plane and forming an angle θ
with the z axis, as shown in Fig. S-10.1. Disre-
garding a proportionality factor depending on α
and θ, the electric field Ed of the scattered radi-
ation can be written

Ed ∝ −(p× n̂)× n̂

∝ −[(x̂ ± iŷ)× n̂] × n̂ , (S-10.81)

where n̂ = (0, sin θ, cos θ) is the unit vector parallel to kd. Now, recalling that

(x̂ ± iŷ)× n̂ = (±i cos θ,− cos θ, sin θ) , (S-10.82)[
(x̂ ± iŷ)× n̂

]× n̂ = (−1,∓i cos2 θ,±i sin θ cos θ) , (S-10.83)

we find that

Ed ∝
(
1, ±i cos2 θ, ∓i sin θ cos θ

)
. (S-10.84)
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Since an observer would measure the polarization of the scattered radiation with
respect to the direction n̂, we calculate the components of the field in the rotated
coordinate system (x ′, y′, z′), rotated by an angle θ around the x axis, so that x ′ = x
and z′ is along n̂:

E ′d x = Ed x ∝ 1 , (S-10.85)

E ′d y = Ed y cos θ − Ed z sin θ ∝ ±Ii cos
3 θ ± i sin2 θ cos θ

= ±i cos θ
(
cos2 θ + sin2 θ

)
= ±i cos θ , (S-10.86)

E ′d z = Ed y sin θ + Ed z cos θ ∝ ±i sin θ cos2 θ ∓ i sin θ cos2 θ = 0 . (S-10.87)

The last equality is a check that the radiation field is transverse. We thus obtain

Ed ∝ x̂′ ± i cos θ ŷ′ , (S-10.88)

which gives the dependence of the polarization on the scattering angle θ. In addition,
the angular distribution or the radiated power is given by

dPscatt
dΩ

∝ |Ed|2 ∝ 1+ cos2 θ . (S-10.89)

(b) The radiation from most sources (sunlight is a typical example) is usually inco-
herent. This means that its phase and electric field direction change randomly at time
intervals not much longer than the oscillation period. Thus, the radiation is effectively
unpolarized at direct observation, in the sense that it is not possible to measure a
definite polarization because of its fast variations. However, (S-10.88) shows that,
independently of the source polarization, the radiation scattered at 90◦ (cos θ = 0) is
always linearly polarized (in the direction perpendicular to both the wave vector of
the incoming light and the observation direction). Hence, incoherent radiation that has
undergone scattering (as the blue light from the sky) tends to be polarized, even if the
radiation from the primary source (in this case the sun) is unpolarized. Ameasurement
of the polarization might help, then, to localize the position of the Sun on a cloudy
day.

S-10.9 Polarization Effects on Thomson Scattering

(a) Equation (10.7) leads to the following two equations for the velocity components
of the electron, vx and vy ,

mev̇x = −eE0 cos θ cos(kz − ωt) , mev̇y = −eE0 sin θ sin(kz − ωt) ,

(S-10.90)
where me is the electron mass. We search for a steady-state solution of the form
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vx = V0x sin(kz − ωt) , vy = V0y cos(kz − ωt) , (S-10.91)

with V0x and V0y two real constants to be determined. Substituting into (S-10.90) we
obtain

V0x = eE0 cos θ

meω
, V0y = −eE0 sin θ

meω
. (S-10.92)

The second derivative of the electric dipole moment of the electron with respect to
time is

p̈ = −ev̇ = −e2E0

me

[
(x̂ cos θ cos(kz − ωt)+ ŷ sin θ sin(kz − ωt)

]
, (S-10.93)

and the electron radiates at frequency ω. The polarization for scattered radiation
propagating in a generic direction of unit vector n̂ direction is parallel to the projection
of the dipole moment onto the plane perpendicular to n̂, i.e., to p⊥ = (p̈× n̂)× n̂.
Thus, we observe linear polarization parallel to ŷ for the radiation emitted along x̂,
and linear polarization parallel to x̂ for the radiation emitted along ŷ, and elliptical
polarization for the radiation emitted along ẑ.

If 0 < θ < π/4, so that sin θ < cos θ, we choose the observation-direction unit
vector n̂ = (sinψ, 0, cosψ), lying in the xz plane, and forming an angle ψ with the z
axis, as shown in Fig. S-10.2, where ki is the wave vector of the incident wave. Now

Fig. S-10.2

we choose a Cartesian reference frame x ′, y′, z′,
with y′ ≡ y and z′ along n̂, so that the scattered
radiation of interest is propagating along z′. If we
perform an orthogonal projection onto the x ′y′
plane of an ellipse lying on the xy plane, of half
axes cos θ parallel to x , and sin θ parallel to y, we
obtain an ellipse of half-axes cos θ cosψ along
x ′, and sin θ along y′. Thus we observe a cir-
cular polarization if cos θ cosψ = sin θ, i.e., if
cosψ = tan θ. Analogously, if π/4 < θ < π/2,
so that sin θ > cos θ, we choose the observation-
direction unit vector n̂ = (0, sinψ, cosψ), lying
in the yz plane, and we observe circular polar-

ization if sin θ cosψ = cos θ, i.e., if cosψ = cot θ .
(b) The average total scattered power is

P = 2

3c3
〈|p̈|2〉 = 2e4

3m2
ec

3

〈|E|2〉 , (S-10.94)

where

〈|E|2〉 = 〈
E2
x + E2

y

〉 = 1

2
E2
0

(
cos2 θ + sin2 θ

) = 1

2
E2
0 . (S-10.95)
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Thus, the total scattered power is independent of θ and can be written as

P = e4E2
0

3m2
ec

3
= cE2

0

3
r2e =

4π

3
r2e I , (S-10.96)

where

re = e2

mec2
, and I = cE2

0

4π
,

are the classical electron radius and the intensity of the incident wave, respectively.
(c) The magnetic field of the wave is

B = E0
[−x̂ sin θ sin(kz − ωt)+ ŷ cos θ cos(kz − ωt)

]
. (S-10.97)

The only non-vanishing component of v × B is in the ẑ direction, and the magnetic
force on the electron can be written as

Fz = −e

c
(v × B)z = −e

c
(vx By − vy Bx )

= − e2E2
0

2cmeω
(cos2 θ − sin2 θ) sin(2kz − 2ωt) , (S-10.98)

this quantity vanishes for θ = π/4, when cos θ = sin θ, i.e., for circular polarization.
(d) The magnetic force Fz drives dipole oscillations along the z axis at frequency
2ω. Thus, in addition to the scattered radiation of frequency ω discussed at points (a)
and (b), we observe also scattered radiation of frequency 2ω, angularly distributed
as sin2 ψ around the z axis. Since the dipole oscillating at 2ω is perpendicular to the
dipole oscillating at ω, we can simply add the corresponding scattered powers. Now
we want to evaluate the power emitted at frequency 2ω.

The equation ofmotion for the electron along the z axis is (we put cos2 θ − sin2 θ =
cos 2θ)

mev̇z = Fz = − e2E2
0

2cmeω
cos 2θ sin(2kz − 2ωt) . (S-10.99)

Once more, we search for a steady-state solution of the form

vz = V0z cos(2kz − 2ωt) , (S-10.100)

with V0z a constant. Substituting into (S-10.99) we obtain

V0z = − e2E2
0

4cm2
eω

2
cos(2θ) (S-10.101)

and

v̇z = − e2E2
0

2cm2
eω

cos(2θ) sin(2kz − 2ωt) . (S-10.102)
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The total average power emitted by the dipole oscillating at 2ω is

P2ω = 2

3c3
〈|p̈2ω|2

〉 = 2

3c3
〈|ev̇z|2

〉 = e6E4
0

12c5m4
eω

2
cos2(2θ)

= 4π

3

e2E2
0

4c2m2
eω

2
cos2(2θ)r2e I

= 4π

3

V0z

c
cos2(2θ)r2e I . (S-10.103)

S-10.10 Scattering and Interference

(a) With a proper choice of the time origin, the electric field of the incident plane
wave at x = ±d/2 can be written as

Ei

(
±d

2
, t

)
= E0 e

±ikd/2−iωt ẑ , (S-10.104)

and the phase difference between the two scatterers is

φ+ − φ− = kd . (S-10.105)

We denote by r± the optical paths between the observation point P and the scatterers
located at (±d/2, 0, 0), as shown in Fig. 10.5. The difference between the two optical
paths is

�r = (r+ − r−) 	 −d sin θ , (S-10.106)

where θ is the angle between the y axis and the line joining the origin to P , as shown
in Fig. 10.5. The approximation is valid for L � d. The phase difference between the
two scattered waves in P is obtained by combining (S-10.105) and (S-10.106),

�φ = kd(1− sin θ) . (S-10.107)

(b) If we neglect the difference between the magnitudes of the scattered fields E+ and
E− in P , E± being the field of the wave scattered at (±d/2, 0, 0), the total scattered
intensity Is in P is proportional to

Is ∝ |E+ + E−|2 ∝ |E+|2
∣∣eikd(1−sin θ)/2 + e−ikd(1−sin θ)/2

∣∣2
∝ 1

r2
cos2

[
kd

2
(1− sin θ)

]
. (S-10.108)

Since r cos θ = L , we can also write
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Is ∝ cos2 θ

L2
cos2

[
kd

2
(1− sin θ)

]
. (S-10.109)

We denote by u = (kd/2)(1− sin θ) the argument of the second cos2 appearing in
(S-10.109). For −π/2 � θ � π/2 the variable u varies continuously and monotoni-
cally from kd to 0. If kd � 1 (i.e., if d � λ/2π), then cos2 u 	 1 e Is(θ) ∼ cos2 θ, as
if a single scatterer was present. If kd < π/2 the function cos2 u has no zeros, meaning
that interference fringes are not observed if the distance between the scatterers is less
than λ/4. If

π

2
<

kd

2
< (n + 1)

π

2
,

with n an integer number and n � 1, the function cos2 u has n zeros, and one observes
n scattered-intensity minima and n + 1 maxima as θ varies from−π/2 to+π/2. The
intensity of the maxima is modulated by the function cos2 θ.

S-10.11 Optical Beats Generating a “Lighthouse Effect”

(a)On the z = 0 plane the electric fieldsE± emitted by the two dipoles are parallel to ẑ
(perpendicular to the plane), and their amplitudes are independent of φ. Since for each
dipole E± ∝ −ω2±p0, the field amplitudes are E+ 	 E−, equal to each other up to the
first order in δω/ω0. The difference between the optical paths from the two dipoles
to P is δr 	 d sin φ = (πc/ω0) sin φ, which yields a phase difference of π sin φ. The
total field may be thus written as

E = E0 cos[(ω0 + δω/2)t + π sin φ/2] + E0 cos[(ω0 − δω/2)t − π sin φ/2]
= 2E0 cos(ω0t) cos(δωt + π sin φ) . (S-10.110)

(b) The EM energy flux in the radiation zone is given by Poynting’s vector S, which
is proportional to the square modulus of the electric field. Thus

S ∝ 4 cos2(ω0t) cos
2(δωt + π sin φ). (S-10.111)

Using the “fast”, or “instantaneous”, detector, only the factor cos2(ω0t) is averaged,
and the measured signal is proportional to

〈S〉 ∝ 2 cos2(δωt + π sin φ) , since
〈
cos2(ω0t)

〉 = 1

2
. (S-10.112)

At time t , the direction of maximum flux intensity is determined by the condition

δωt + π sin φ =
{
0
π

, (S-10.113)
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which means that the direction of maximum flux φmax rotates in the z = 0 plane,
similarly to a lighthouse beam, according to

φmax(t) = arcsin

(
−δω

π
t

)
. (S-10.114)

Fig. S-10.3

If the EM flux is measured with the “slow” detector,
i.e., averaging over times longer than 2π/δω, both
cos2 terms of (S-10.111) are averaged to 1/2, and the
total flux is the sum of the two independent fluxes
from the two dipoles.
(c)Now the observation point P is on the x = 0 plane,
at a distance r from the origin, as in Fig. S-10.3. The
angle between the z axis and r is θ.Within our approx-
imations, the intensities of the two electric fields E+
and E− in P are equal and proportional to sin θ. Thus

the two separate intensities are dependent on θ, while they are independent of φ on
the z = 0 plane. The amplitude of the Poynting vector is proportional to

S ∝ 2 sin2 θ cos2(ω0t) cos
2(δωt + π sin θ) . (S-10.115)

Thus the “fast” detector stillmeasures a rotationof the directionofmaximumemission,
but the intensity is modulated by a sin2 θ factor.

S-10.12 Radiation Friction Force

(a) We insert (10.11) for Frad into (10.9), obtaining

t+T∫
t

Frad(t) · v(t) dt = meτ

t+T∫
t

d2v(t)

dt2
· v(t)dt

= meτ

[
dv(t)

dt
· v(t)

]t+T

t

− meτ

t+T∫
t

∣∣∣∣dv(t)

dt

∣∣∣∣
2

dt , (S-10.116)

where we have used integration by parts in the second line. The first term vanishes
since the motion is periodic8:

[
dv(t)

dt
· v(t)

]t+T

t

= 1

2

[
d

dt
v2(t + T )− d

dt
v2(t)

]
= 0 . (S-10.117)

8 Actually it is not strictly necessary for the motion to be periodic, it is sufficient that dv2(t)/dt
vanishes at the initial and final instants of the time interval considered.
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We thus obtain

t+T∫
t

Frad(t) · v(t) dt = −meτ

∫ t+T

t

∣∣∣∣dvdt
∣∣∣∣
2

dt . (S-10.118)

Substituting Larmor’s formula (10.10) into the right-hand side of (10.9) we obtain

−
t∫

0

Prad(t
′) dt ′ = −

t∫
0

2e2

3c2

∣∣∣∣ dvdt ′
∣∣∣∣
2

dt ′ , (S-10.119)

and (10.9) is verified if we choose

τ = 2e2

3mec2
. (S-10.120)

Apart from the 2/3 factor, τ is the time needed by light to travel a distance equal to
the classical electron radius re = 2.82× 10−13 cm, and we have τ ∼ 10−23 s.
(b) After substituting (10.12) into (10.8), we search for a steady-state solution of the
form v(t) = v0 e−iωt , and find

v0 = − i eE0

meω(1+ iωτ )
. (S-10.121)

Analogously, the steady-state solution of (10.13) is

v0 = − i eE0

meω
(
1+ i

η

ω

) . (S-10.122)

The two solutions are identical if we choose η = ω2τ . The same result can be obtained
by a direct comparison of Frad to the frictional force −meηv.

Equation (10.8) represents the first attempt to derive an expression for the “radiation
friction” or “radiation reaction” force which is deeply related to the back-action of
the electron on itself, since the electron interacts with the electric field it generates
(self-force9. However (10.8) is considered unsatisfactory for for two reasons: (i) it
increases the order of the equation of motion, and, consequently, one needs a further
initial condition for the acceleration; and (ii) it has unphysical “runaway” solutions in
the absence of an external field, such as a(t) = a0 et/τ with a = dv/dt . This problem
has a long and still open history. Additional discussion may be found in textbooks
and in the literature, also in very recent works related to highly relativistic electrons
in ultraintense laser fields (for which the radiation friction effect becomes important).



S-10 Solutions for Chapter 10 449

S-10.13 Radiation of an Electron Falling on a Proton

(a) The initial conditions imply that the motion occurs on the straight half-line joining
the proton to the initial position of the electron. The equation of conservation of
mechanical energy is

mev
2

2
− e2

r
= 0 , (S-10.123)

whereme is the electronmass and e the elementary charge. From (S-10.123) we obtain

v = −
√

2e2

mer
= −c

√
2re
r

, (S-10.124)

where re = e2/(mec2) is the classical electron radius.
Thus the condition for non-relativistic motion is no longer valid for r close to re, so

that re is a rough approximation of r1. The condition v < c/
√
10 leads to r1 = 20re.

(b) The dipole moment is p = −er , its second derivative with respect to time is thus
proportional to the electron acceleration,

p̈ = −er̈ = −e
(
− e2

mer2

)
= e3

mer2
, (S-10.125)

and the radiated power as a function of r is

P = 2

3c3
| p̈|2 = 2e6

3m2
er

4c3
= 2e2r2e c

3r4
. (S-10.126)

(c) The energy lost by radiation Ur(r) when the electron is at distance r from the
proton is obtaimed by integrating (S-10.126) over the path

Ur(r) =
t (r)∫
∞

P dt =
r∫

∞
P(r ′)

dr ′

|v(r ′)| =
2e2r2e c

3

r∫
∞

1

r ′4

(
1

c

√
r ′

2re

)
dr ′

= 2e2r3/2e

3
√
2

r∫
∞

r ′−7/2 dr ′ = 2
√
2 e2r3/2e

15 r5/2
. (S-10.127)

The condition Ur(r)� K (r) = e2/r is thus verified for

r � re

(
2
√
2

15

)2/3

= 0.329 re . (S-10.128)
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If we choose Ur(r2) = K (r2)/10 we have r2 	 1.04 re. Since r2 < r1, an accurate
estimate of the radiative energy loss requires a relativistic treatment of the electron
motion.

S-10.14 Scattering by a Perfectly Conducting Sphere (1)

(a) Since the radius of the sphere, a, is much smaller than the radiation wavelength,
λ, we can consider the electric field of the incident wave as uniform over the whole
volumeof the sphere.As shown in Problems 1.1 and 2.1, the “electron sea” is displaced
by an amount δ with respect to the ion lattice in order to keep the total electric field
equal to zero inside the sphere. According to (S-2.2) we have

δ = −ŷ
3

4π�0
E0 cos(ωt) , (S-10.129)

where �0 is the volume charge density of the ion lattice. This corresponds to a volume
polarization P

P = −ρδ = ŷ
3

4π
E0 cos(ωt) , (S-10.130)

and to a total dipole moment of the conducting sphere

p = 4π

3
a3 P = E0 a

3 = ŷ a3E0 cos(ωt) . (S-10.131)

The scattered, time-averaged power is thus

W (el)
scatt =

1

3c3
|p̈|2 = ω4a6

3c3
E2
0 . (S-10.132)

The intensity of the incident wave is I = (c/8π)E2
0 , so we obtain for the scattering

cross section

σ(el)
scatt =

W (el)
scatt

I
= 8π

3

ω4a6

c4
= 128π4(πa2)

(a
λ

)4
. (S-10.133)

(b) Due to the condition a � λ, also the magnetic field of the wave can be considered
as uniform over the sphere volume

B(t) = ẑ B0 cos(ωt) = ẑ E0 cos(ωt) . (S-10.134)

Analogously to what seen above for the electric polarization, the sphere must acquire
also a uniform magnetization M in order to cancel the magnetic field of the wave at
its interior. According to (S-5.74) of Problem 5.10, we must have
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M(t) = −ẑ
3

8π
B0 cos(ωt) = −ẑ

3

8π
E0 cos(ωt) , (S-10.135)

corresponding to a magnetic dipole moment of the sphere

m = 4πa3

3
M = −ẑ

a3

2
E0 cos(ωt) , (S-10.136)

Thus the power scattered by the magnetic dipole is one fourth of the electric dipole
contribution:

W (magn)
scatt = 1

3c3
|m̈|2 = ω4a6

12c3
E2
0 . (S-10.137)

The total cross section is thus 5/4 times the value due to the electric dipole only:

σ
(el,magn)
scatt = 160π4(πa2)

(a
λ

)4
. (S-10.138)

A discussion on how the magnetic dipole term contributes to the angular distribution
of the scattered radiation can be found in Reference [2].

S-10.15 Scattering by a Perfectly Conducting Sphere (2)

According to (S-10.131) and (S-10.136) of Solution S-10.14 the electric and mag-
netic dipole moments induced by the impinging wave on the conducting sphere are,
respectively,

ps = a3Ei , and ms = −a3Bi

2
= −1

2
ps × n̂ . (S-10.139)

The ratio of their magnitudes is thus ps/ms = 2.

Fig. S-10.4

(a) The electric field of the scattered radia-
tion in the far-field region is

Erad = 1

rc2
(
p̈s × r̂ + m̈s

)× r̂ ,

(S-10.140)
and for a monochromatic wave of frequency
ω we have

Erad = − ω2

rc2
(
ps × r̂ +ms

)× r̂ . (S-10.141)
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For the radiation scattered in the xy plane we have, in Cartesian coordinates, r̂ ≡
(cos θ, sin θ, 0). If the wave is linearly polarized along y, as in Fig. S-10.4, we have

ps × r̂ +ms = (ps cos θ + ms) ẑ = ps

(
cos θ − 1

2

)
ẑ (S-10.142)

and
∣∣ ẑ× r̂

∣∣ = 1. In the figure ps⊥ is the component of the induced electric dipole
perpendicular to the direction of propagation of the scattered radiation. Thus

|Erad|2 ∝
(
cos θ − 1

2

)2

. (S-10.143)

We have zero intensity for cos θ = 1/2, i.e., θ = π/3, and maximum intensity for
θ = π, i.e., for backward scattering.

Fig. S-10.5

In the case of z polarization, as in Fig.
S-10.5, we have

(
ps × r̂

)× r̂ = −ps ,

ms × r̂ = ẑms sin(θ + π/2)

= ẑ
1

2
ps cos θ .

(S-10.144)

In the figure ms⊥ is the component of the
inducedmagnetic dipole perpendicular to

the direction of propagation of the scattered radiation. Thus

|Erad|2 ∝
(
1− 1

2
cos θ

)2

. (S-10.145)

We still havemaximum intensity for backscattering,whilewe haveminimum intensity
for forward scattering (θ = 0), which, however, does not correspond to zero intensity.
(b) For unpolarized light there are no privileged directions for the wave fields (as
far as the measurement is time-averaged), thus the distribution of scattered light will
have cylindrical symmetry. We have an incoherent superposition of radiation with y
and z polarizations, resulting in in the total intensity being the sum of the intensities
(S-10.143) and (S-10.145)

|Erad|2 ∝ 5

4

(
1+ cos2 θ

)− 2 cos θ . (S-10.146)



Chapter S-11
Solutions for Chapter 11

S-11.1 Wave Propagation in a Conductor at High and Low
Frequencies

(a)We determine the conductivity of the metal by searching for a steady-state solution
in complex form, v = ṽ e−iωt , of (11.10) in the presence of an oscillating electric field
E(r, t) = Ẽ e−iωt . We find

ṽ = − ie

me(ω + iη)
Ẽ , (S-11.1)

corresponding to a current density

J̃ = −ene ṽ = ie2ne
meω(ω + iη)

Ẽ = iω2
p

4π(ω + iη)
Ẽ ≡ σ(ω) Ẽ , (S-11.2)

where ωp is the plasma frequency of the metal. At the limits of high frequencies
ω � η, and of low frequencies ω � η, we have

σ(ω) 	

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

iω2
p

4πω
, for ω � η ,

ω2
p

4πη
, for ω � η .

(S-11.3)

The DC conductivity is thus σDC = σ(0) = ω2
p/4πη. In a metal, typically we have

ωp ∼ 1016 s−1, since ne ∼ 1023 cm−3 and η ∼ 1013 s−1. It is thus a very good
approximation to assume σ to be purely imaginary for optical frequencies, i.e., for
ω ∼ 1015 s−1, and to be purely real and equal to σDC (i.e. independent of frequency)
for microwaves and longer wavelengths.
(b) Assuming plane geometry and monochromatic waves, in the absence of sources
at x = +∞, the electric field of the wave for x > 0 can be written as (in complex
notation)
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E(x, t) = Et e
ikx−iωt , (S-11.4)

where the wave vector k is determined by the general dispersion relation (11.4) in
a medium where the refractive index n = n(ω) or, equivalently, the permittivity ε =
ε(ω) = n2 are known. For an incident wave of amplitude Ei, the electric field at the
surface is given by the Fresnel formula

Et = 2

1+ n
Ei . (S-11.5)

The permittivity ε(ω) is related to the complex conductivity of the medium by (11.3).
Inserting (S-11.3) for σ(ω), if ω � η we have ε 	 1− ω2

p/ω
2, and k2 is real, so that

the wave is propagating. For k2 < 0, i.e., forωp > ω, we have ikx = −|k|x = −x/�p,

with �p = c/
√

ω2
p − ω2, and the wave is evanescent:

E(x, t) = Et e
−x/�p−iωt (S-11.6)

(the solution ∝ ex/�p has been disregarded as unphysical because it is divergent for
x →∞). For a metal, the condition ω < ωp implies that the metal is reflecting for
frequencies in the optical range, while it becomes transparent for ultraviolet frequen-
cies.

If ω � η, we have that also σDC � η, so that ε 	 4πiσDC/ω is an imaginary
number. In this case, since k = ±(1+ i)/�c with �c = √ωσDC/2c, the evanescent
solution is

E(x, t) = Et e
−x/�c−ix/�c−iωt . (S-11.7)

(c) The net flux of energy through the surface is given by the time average of the x-
component of the Poynting vectorS = (c/4π)E× B at x = 0.We obtain themagnetic
field of thewave from the relation∂tB = −c∇ × E. Thus the complexfield amplitudes
for x � 0 can be written as

Ẽy = Et e
ik0nx , B̃z = nEte

ik0nx , (S-11.8)

where k0 = ω/c. Thus we need to evaluate

〈Sx (0)〉 = 1

2

c

4π
Re

[
Ẽy(0)B̃

∗
z (0)

]
= c

8π
|Et|2Re(n) . (S-11.9)

At the limit ω � η, n is purely imaginary, as found above, and 〈Sx (0)〉 = 0, and
there is no energy dissipated into the metal (it can be easily shown that the reflection
coefficient obtained from the Fresnel formulas has unity modulus, i.e., all the incident
energy is reflected). At the limit ω � η we obtain

〈Sx (0)〉 = c

8π
|Et|2

√
2πσDC

ω
	 c

16π
|Ei|2

√
ω

2πσDC
, (S-11.10)
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where in the latter expression |1+ n|2 	 |n|2 = 2(2πσDC/ω) has been assumed.
The energy dissipated per unit volume is

〈J · E〉 = 1

2
Re

(
σ Ẽy Ẽy

∗) = |Et|2
2

Re
(
σeik0nxe−ik0n

∗x)

= |Et|2
2

Re(σ) exp[−2k0Im(n)x] . (S-11.11)

If σ is imaginary then there is no dissipation, consistently with what found above. In
the ω � η regime, the total energy dissipated per unit surface is given by the integral

∞∫
0

〈J · E〉 dx = |Et|2
2

σDC

2k0Im(n)
= |Et|2

2

σDC

2ωc
√
2πσDC/ω

= c

8π
|Et|2

√
2πσ DC

ω
, (S-11.12)

which is equal to the EM energy flux of (S-11.10).

S-11.2 Energy Densities in a Free Electron Gas

(a) We use the complex representation for all fields, A(x, t) = Re ( Ãeikx−iωt ), where
A is the considered field. For the electric field of the wave we have Ẽ = E0, where E0

can be considered as a real quantity. The equation ofmotion for an electron, neglecting
the nonlinear magnetic term, is

me
d2r
dt2

= me
dv

dt
= −eE , (S-11.13)

which has the steady-state solution for the electron velocity and position

ṽ = − ie

meω
E0 , r̃ = e

meω2
E0 . (S-11.14)

The polarization density is

P̃ = −ener̃ = − nee2

meω2
E0 = − 1

4π

ω2
p

ω2
E0 ≡ χ(ω) E0 , (S-11.15)

corresponding to a dielectric permittivity of the medium

ε(ω) = 1+ 4πχ(ω) = 1− ω2
p

ω2
. (S-11.16)
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Using (11.4), the dispersion relation is obtained as

ω2 = k2c2

ε(ω)
= ω2

p + k2c2 . (S-11.17)

The phase and group velocities are

vϕ = ω

k
= c√

1− ω2
p

ω2

, vg = ∂ω

∂k
= c

√
1− ω2

p

ω2
, (S-11.18)

so that both vϕ and vg are real if ω > ωp, and vϕvg = c2. Finally, using the equation
c∇ × E = −∂tB. i.e., ikcẼ = iωB̃, we obtain E0 = (vϕ/c)B0.
(b) From the definition of the EM energy density

uEM =
〈
1

8π
(E2 + B2)

〉
= 1

16π
(E2

0 + B2
0 ) =

1

16π
E2
0

(
1+ c2

v2
ϕ

)

= 1

16π
E2
0

(
2− ω2

p

ω2

)
. (S-11.19)

(c) From the definition of the kinetic energy density

uK =
〈
ne

me

2
v2

〉
= ne

me

2

1

2

∣∣∣∣ eE0

meω

∣∣∣∣
2

= 1

4

nee2

meω2
E2
0

= 1

16π
E2
0

ω2
p

ω2
. (S-11.20)

Thus

u = uEM + uK = 1

8π
E2
0 , (S-11.21)

independently of ne.
(d) In our case (11.11) can be rewritten

vg E
2
t = c(E0

2 − E2
r ) . (S-11.22)

Using Fresnel formulas as functions of the phase velocity vϕ = c/n, with n = √εr,
we obtain

Er = vϕ − c

vϕ + c
E0 , Et = 2vϕ

vϕ + c
E0 , (S-11.23)

leading to
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4vgv
2
ϕ = 4c2vϕ , (S-11.24)

which is equivalent to vgvϕ = c2.

S-11.3 Longitudinal Waves

(a) We obtain from Maxwell’s equations, assuming B = 0,

0 = ∇ × B = 1

c
(4πJ+ ∂tE) = 1

c
(4π ∂tP + ∂tE) = 1

c
∂t (4π P + E) .

(S-11.25)
where P is the polarization density of the medium and J = ∂tP the associated polar-
ization current. Assuming all fields to have an harmonic dependence∼ e−iωt , we have
P = χ(ω)E with χ = [εr(ω)− 1]/(4π). Now, using (11.12), we can write

0 = −iω(4π P + E) = −iω { [
εr(ω)− 1

]
E+ E

} = −iω εr(ω) E , (S-11.26)

implying εr(ω) = 0.
(b) The total charge and current densities in the medium can be obtained fromE using
the equations

ρ = 1

4π
∇ · E , J = − 1

4π
∂tE , (S-11.27)

which also imply the continuity equation 4π ∂tρ = −∇ · J. For E given by (11.12)
we obtain

ρ = ik

4π
E0 e

ikx−iωt , J = x̂
iω

4π
E0 e

ikx−iωt . (S-11.28)

(c) Assuming electrons moving with negligible friction, the equation of motion for
the single electron is

me
d2r
dt2

= −meω
2
0 r − eE , (S-11.29)

whereme is the electronmass, and r is the distance of the electron from its equilibrium
position. For a monochromatic field E = E0 e−iωt the stationary solution is

r = eE

me(ω2 − ω2
0)

. (S-11.30)

The polarization density of the medium is

P = −ene r = − nee2

me(ω2 − ω2
0)

E ≡ χ(ω)E , (S-11.31)
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where ne is the number of electrons per unit volume, and

χ(ω) = − ne e2

me(ω2 − ω2
0)
= −

(
1

4π

)
ω2
p

ω2 − ω2
0

, (S-11.32)

is the dielectric susceptibility of the medium, and ωp =
√
4πnee2/me is its plasma

frequency. The dielectric permittivity is thus

εr(ω) = 1+ 4πχ(ω) = 1− ω2
p

ω2 − ω2
0

, (S-11.33)

and the longitudinal-wave condition εr(ω) = 0 leads to

ω =
√

ω2
p + ω2

0 . (S-11.34)

It is important to notice that the wavevector k is not determined by this equation; it
may have any value, and the phase velocity may thus be arbitrary (lower or greater
than c). Longitudinal waves in condensed matter physics are also called polaritons.
In a free electron medium where ω0 = 0 (a simple metal, a ionized gas or a plasma),
we have ω = ωp; in this case the waves are called plasma waves or plasmons.

S-11.4 Transmission and Reflection by a Thin Conducting
Foil

(a) Since the problem of determining the transmission and reflection coefficient is
linear, and the medium is isotropic, the choice of polarization is arbitrary. For defi-
niteness, we assume linear polarization, with the electric field E of the incoming wave
parallel to the y axis, and the magnetic B parallel to the z axis.

Fig. S-11.1

We apply Stokes’s theorem to a closed rectangular
path C , delimiting a surface area A, twice: once for E
and once forB. In both cases the base of the path extends
from x = −h/2 to x = +h/2,while the height, of length
�, is parallel to the y axis for the electric fieldE, as shown
in Fig. S-11.1, and to the z axis for the magnetic field B.
For the electric field we have

∮
C

E · dl =
[
E

(
+h

2

)
− E

(
−h

2

)]
� (S-11.35)

= +i ω

c

∫
A

B · dA = i
ω

c
B̄ �h , (S-11.36)
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where B̄ is the amplitude of B at some point of the surface A, according to the mean
value theorem. Since B is limited, at the limit h → 0 we have B̄h → 0, and the first
of (11.13) is proved. For the magnetic field we have

∮
C

B · dl =
[
B

(
+h

2

)
− B

(
−h

2

)]
� =

∫
A

(
4π

c
J− i

ω

c
E
)
· dA

=
∫
A

4π

c
K δ(x) dx dz − i

∫
A

ω

c
E · dA

= 4π

c
�K̄ +−iω

c
Ē �h , (S-11.37)

where, in the second line, we have replaced J by K δ(x), and, in the third line, K̄
is a value assumed by K somewhere on the segment of length �. Since, again, Ē is
limited, the product Ē �h → 0 as h → 0, and the second of (11.13) is proved.
(b)Themost general expression for the field is the sumof the incident and the reflected
wave for x < 0, and the transmitted wave only for x > 0:

E(x, t) =
{
Ei eikx−iωt + Er e−ikx−iωt , x < 0 ,

Et eikx−iωt , x > 0 .
(S-11.38)

The amplitudes Er and Et must be determined as functions of Ei and other parameters,
by imposing (11.13) as boundary conditions. Noticing that K = σdE(0) = σdEt and
that c∂x E(x, t) = −∂t B(x, t), we have

Et − Ei − Er = 0, Et − Ei + Er = −4πσd

c
Et , (S-11.39)

so that, writing 2πσd/c = η as a shorthand, we have

Er = − η

1+ η
Ei , Et = 1

1+ η
Ei . (S-11.40)

(c)At the limit ν � ω the conductivity is given by σ = nee2/meν and is a real number
(Ohmic conductor). The mechanical power P is the cycle average of J · E integrated
over the volume of the foil, thus we obtain (per unit surface)

P = 1

2

∣∣E(0)2
∣∣ d = 1

2

σd

(1+ η)2
E2
i =

c

4π

η

(1+ η)2
E2
i , (S-11.41)

(notice that Ei can be taken as a real quantity).
At the limit ν � ω the conductivity is σ = inee2/meω = iω2

p/4πω and is thus
imaginary, corresponding to a real permittivity ε = 1− ω2

p/ω
2. Accordingly, J and E

have opposite phase, and 〈J · E〉 = 0, as can be directly verified.
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(d) The energy flux through the foil is given by the difference between the values of
the Poynting flux at the two surfaces (herewe switch back to real fields for simplicity),

S(0+)− S(0−) = c

4π

[
E(0+)B(0+)− E(0−)B(0−)

]
. (S-11.42)

Inserting the boundary conditions we may write

E(0+)B(0+)− E(0−)B(0−) = E(0)
[
B(0+)− B(0−)

] = −E(0)
4π

c
Jd , (S-11.43)

so that

S(0+)− S(0−) = −J E(0)d = −K E(0) , (S-11.44)

i.e., the energy flux through the foil equals the mechanical power dissipated in the foil
(all quantities have been defined per unit surface).

Alternatively, we may compute the energy flux directly and compare it to the
mechanical power. For the cycle-averaged Poynting vector at the two surfaces we
have

〈
S(0+)

〉 = c

4π

〈
E2(0+)

〉 = 2π

c
|Et|2 = 2π

c

1

|1+ η|2 E
2
i , (S-11.45)

〈
S(0−)

〉 = ε0c
2
〈
E(0−)B(0−)

〉 = 2π

c
Re

[
(Ei + Er)(E

∗
i − E∗r )

]

= 2π

c

1

|1+ η|2 Re
(
2η∗ + 1

)
E2
i . (S-11.46)

If ν � ω, then η is purely imaginary and S(0−) = S(0+): there is no net energy flux
inside the foil, consistently with the vanishing of the mechanical power.

If ν � ω, then η is real and the net flux of energy is

〈
S(0+)

〉− 〈
S(0−)

〉 = 2π

c

1− (2η + 1)

(1+ η)2
E2
i = −

c

4π

η

(1+ η)2
E2
i ,(S-11.47)

which is equal to minus the absorbed power (S-11.41).

S-11.5 Anti-reflection Coating

(a) In the absence of sources at x = +∞, the general solution can be written as
(omitting the common time dependence e−iωt )
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E =
⎧⎨
⎩

Ei eikx + Er e−ikx (x < 0),
E+ ein1kx + E− e−in1kx (0 < x < d) ,

Et ein2kx (x > d) ,

(S-11.48)

where k = ω/c, Ei is the amplitude of the incident wave, Er the amplitude of the
wave reflected at x = 0, E+ and E− the amplitudes of the waves propagating along
+x̂ and −x̂, respectively, in the 0 < x < d layer, and Et the amplitude of the wave
propagating along +x̂ in the x > d half-space. The subscripts of the electric fields E
in (S-11.48) are in agreement with the subscripts of the wave vectors k in Fig. 11.3.
(b) The matching conditions require the electric field and its derivative with respect
to x (which is proportional to the magnetic field) to be continuous at the planes x = 0
and x = d. We thus obtain

Ei + Er = E+ + E− , (S-11.49)

Ei − Er = n1(E+ − E−) , (S-11.50)

E+ e+in1kd + E− e−in1kd = Et e
in2kd , (S-11.51)

n1
(
E+ e+in1kd − E− e−in1kd

) = n2Et e
in2kd . (S-11.52)

(c) Since we require that there is no reflected wave in vacuum, Er must be zero.
Posing Er = 0 in (S-11.49)–(S-11.52), the latter can be regarded as an homogeneous
linear system in Ei , E+, E− and Et- Such system has non-trivial solutions only if its
determinant is zero, i.e. if

e2in1kd = n1 + n2
n1 − n2

n1 − 1

n1 + 1
. (S-11.53)

In the case of a layer of thickness d with vacuum at both sides, n2 = 1 and the right-
hand side of (S-11.53) equals unity, thus e2in1kd = 1. This implies 2n1kd = 2mπ, with
m any integer. Thus, there is no reflectedwavewhen the layer thickness is d = mλ/2n1
(since k = 2π/λ), i.e. when the “optical depth” nd equals an half-integer number of
wavelengths.
(d) In the general case, the left-hand side of (S-11.53) is a complex number ofmodulus
1, while the right-hand side is always real number if n1 and n2 are real as we assumed.
Thus, we have solutions only if e2in1kd = ±1. The case e2in1kd = +1 is the case of
n2 = 1, considered above at the end of point c). In the second case e2in1kd = −1 we
have the condition

2n1kd = (2m + 1)π ,
n1 + n2
n1 − n2

n1 − 1

n1 + 1
= −1 , (S-11.54)

the second equation implying n2 = √n1. The thickness of the layer must be

d = (2m + 1)
λ

4n1
, (S-11.55)
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with m, again, any integer. The smallest possible thickness is d = λ/(4n1), corre-
sponding to m = 0. This shows that, with a suitable choice of materials and of layer
thickness, we can produce an “anti-reflection” coating on an optical element (such as
a window or lens) from which we do not want any reflection to occur.

S-11.6 Birefringence and Waveplates

(a) The incident wave can be considered as the superposition of two waves having,
respectively, P and S polarization, i.e., one having the electric field lying in the xy
plane, and the other parallel to z. The difference between the refractive indices for P
and S polarization, np and ns, gives origin to two different refraction angles, θt,p and
θt,s, according to Snell’s law. With our assumptions, the refraction angles are

sin θt,p = sin θi

np
= sin(θt − α) , sin θt,s = sin θi

ns
= sin(θt + α) , (S-11.56)

at the limit α � 1 we can approximate sinα 	 α and cosα 	 1, obtaining

sin(θt ± α) = sin θt cosα± cos θt sinα 	 sin θt ± α cos θt . (S-11.57)

The refractive indices are np = n̄+ δn, and ns = n̄− δn, respectively, with δn� n̄.
For P polarization we have, up to the first order in δn/n̄,

sin θt − α cos θt = sin θi

n̄+ δn
	 sin θi

n̄

(
1− δn

n̄

)
, (S-11.58)

and, analogously, for S polarization we have

sin θt,s 	 sin θi

n̄

(
1+ δn

n̄

)
. (S-11.59)

The above results lead to

n̄ = sin θi

sin θt
, and α = 2

sin θi

cos θt

δn

n̄2
= 2 δn

sin2 θt

cos θt sin θi
. (S-11.60)

(b) In order to have exiting circularly polarized light, the exiting P- and S-polarized
components must be phase-shifted by δφ = π/2. This can obtained making use of
the difference between the two optical path lengths, np d and ns d. The condition for
circularly polarized light is thus

δφ = k 2δn d = 4π δn d
λ

.= π

2
, (S-11.61)
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i.e. d = λ/(8δn). This is called a quarter-wave plate. If δφ = π instead, i.e., if d =
λ/(4δn), there is a relative change of sign between the two components, which leads
to a polarization rotation of π/2; this is an half-wave plate.

S-11.7 Magnetic Birefringence and Faraday Effect

(a) Neglecting the effect of the magnetic field of the wave, much smaller than the
external field B0, the equation of motion for the electrons is

me
d2r
dt2

= −eE− e
v

c
× B0 − meω

2
0r . (S-11.62)

The electric field of the circularly polarized EM wave can be written, in complex
notation, as

E± = E(x̂ ± iŷ) eikz−iωt , (S-11.63)

where the plus and minus signs correspond to left-handed (clockwise) and right-
handed (counter-clockwise) circular polarizations, respectively.We look for solutions
of (S-11.62) of the form

r± = r±(x̂ ± iŷ) eikz−iωt , v± = v±(x̂ ± iŷ) eikz−iωt , (S-11.64)

with v± = −iωr±. The vector product v± × B0 is

v± × B0 = v±B0 (x̂ ± iŷ)× ẑ = v±B0(−ŷ± i x̂) = ±iv±B0 (x̂ ± iŷ) , (S-11.65)

thus (S-11.62) leads to the equation for r±

(ω2
0 − ω2) r± = − e

me
E ∓ ie

v±
mec

B0 = − e

me
E ∓ ωωcr± , (S-11.66)

where ωc = eB0/mec is the cyclotron frequency. The solution for r± is

r± = eE

me
(
ω2 − ω2

0 ∓ ωωc
) . (S-11.67)

Thus,we have a different polarization of themediumP±, and a corresponding different
dielectric susceptibility χ±, for each each circular-polarization state of the EM wave,

P± = −ener± ≡ χ±E± . (S-11.68)

In turn, this gives two different dielectric constants ε± = 1+ 4πχ±
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ε± = 1− ω2
p

ω2 − ω2
0 ∓ ωωc

, (S-11.69)

where ωp =
√
4πe2ne/me is the plasma frequency of the medium. The propagation

of the wave requires ε± > 0, i.e., ω > ωco±, where the two cutoff frequencies ωco±
depend on the polarization of the wave

ωco± =
√

ω2
0 + ω2

p +
ω2
c

4
± ωc

2
. (S-11.70)

The magnetized medium is thus birefringent. For waves of frequency in the range
ωco− < ω < ωco+, only one state of circular polarization can propagate in themedium,
while we have an evanescent wave for the opposite polarization. The two resonant
frequencies ωres±, defined by χ(ωres±)→∞, also depend on polarization:

ωres± =
√

ω2
0 +

ω2
c

4
± ωc

2
. (S-11.71)

Notice that in the case ω0 = 0, i.e., for a magnetized free-electron medium, there is a
single resonance at ω = ωc, for only one circular polarization (see Problem 7.9).

The knowledge of the permittivity (or, equivalently, of the refraction index) for the
two independent states of circular polarization is sufficient to study the propagation
of a transverse wave of arbitrary polarization, since the latter can be always expressed
as a linear superposition of circularly polarized states. Notice that if we had searched
for linearly polarized solutions, we would have found amixing of polarization vectors
directed along x̂ and ŷ, i.e. the permittivity would have been a matrix instead of
a number. It can be shown that such matrix can be diagonalized, with circularly
polarized states as eigenvectors and (S-11.69) as eigenvalues.
(b) The linearly polarized wave can be considered as a superposition of the two states
of circular polarization, so that at z = 0 the electric field of the wave can be written

E(z = 0, t) = x̂ E e−iωt = E

2

[
(x̂ + iŷ)+ (x̂ − iŷ)

]
e−iωt . (S-11.72)

The two circularly polarized components travel at different phase velocities v± =
c/n±, where n± = √ε± is the refractive index associated to each polarization state.
At z = �, the electric field of the wave is

E(z = �, t) = E

2

[
(x̂ + iŷ) eik+� + (x̂ − iŷ) e−ik−�

]
e−iωt , (S-11.73)

where k± = ω/v± = (ω/c)n±. To first order in ωc/ω, we can write n± 	 n0 ± δn,
where n0 = n(ωc = 0) and

δn = ωωcω
2
p

2n0(ω2 − ω2
0)

2
. (S-11.74)
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Thus, the wave vectors for the two polarizations can be written k± 	 k0 ± δk, where
k0 = (ω/c)n0 and δk = (ω/c) δn. The electric field at z = � can be rewritten as

E(z = �, t) = E

2

[
(x̂ + i ŷ) ei δk � + (x̂ − iŷ) e−i δk �

]
eik0�−iωt

∝ x̂ cos(δk �)− ŷ sin(δk �) . (S-11.75)

The polarization has thus rotated by an angle φ = δk �, proportional to the intensity
of the magnetic field.

S-11.8 Whistler Waves

The dielectric permittivity of a magnetized free electron gas for circularly polarized
transverse waves, propagating along the magnetic field, is (see Problem 11.7)

ε = ε±(ω) = 1− ω2
p

ω(ω ∓ ωc)
, (S-11.76)

where ωp =
√
4πe2ne/me is the plasma frequency of the medium, ωc = eB0/mec is

the cyclotron (Larmor) frequency, and the plus and minus signs refer to left-handed
(counterclockwise) and right-handed (clockwise) circular polarizations, respectively.
Since, in general, the dispersion relation is ω2 = k2c2/ε(ω), (11.16) implies that
ε = c2/αω. For ω � ωc and ω � ω2

p/ωc, (S-11.76) reduces to

ε± 	 ±
ω2
p

ωωc
. (S-11.77)

Wave propagation requires ε > 0. Thus, only left-handed polarized waves can prop-
agate in the presence of a dispersion relation given by (11.16), with α = c2ωc/ω

2
p.

Assuming the values of ne and B0 given in the text, we estimateωp 	 5.6× 106 s−1
andωc 	 8.8× 106 s−1.A typical frequency forwhich (S-11.77) holds isω ∼ 105 s−1.
(b) First, we notice that, in general, (11.16) implies vg = ∂kω = 2αk = 2ω/k = 2vϕ.
Thus, the phase velocity depends on frequency as

vϕ = ω

k
= √αω =

√
ωcω

ω2
p

c � c . (S-11.78)

For ω = 105, and the above values of ωp and ωc, we obtain vϕ 	 0.03c.
(c) With a spectral range from ω1 to 2ω1, the frequency components travel with
velocities differing by a factor up to 2, so that the wave packet generated by the
lightning will spread out and increase its length during its propagation. The higher
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frequencies travel faster, and are thus received earlier by the observer, than the slower
frequencies. This is the origin of name “whistlers”.

In order to estimate the spread of the packet after a distance L = 109 cm,we assume
that the center of the wave packet travels with a group velocity vg 	 0.06 c, reaching
a distance L after a time τ = L/vg = 0.56 s. The “extreme” frequencies ω1 and
ω2 will have group velocities v1 	 0.04 c and v2 	 0.08 c, respectively, and the pulse
durationmay be roughly estimated as the difference�τ = τ1 − τ2 = L/v1 − L/v2 	
(0.83− 0.42) s = 0.41 s, provided that the duration at the emission is much shorter
than �τ . This rough estimate neglects the deformation of the wave packet due to the
strong dispersion.

S-11.9 Wave Propagation in a “Pair” Plasma

Actually, it is convenient to calculate the dispersion relation in the presence of an
external magnetic field B0 first, then, the answer to point (a) is simply obtained as a
special case with B0 = 0. We assume B0 = B0 ẑ and a wave linearly polarized along
x̂ in a Cartesian reference frame xyz. The differential equations for the velocities of
positrons, v+, and electrons, v−, are respectively

dvx±
dt

= ± e

mec
(Ex + vy±B0) ,

dvy±
dt

= ∓ e

mec
(vx±B0) , (S-11.79)

where we have assumed vz± = 0. Differentiating the first of (S-11.79) once more with
respect to t , and substituting the second of (S-11.79) for dvy±/dt , we obtain

d2vx±
dt2

= ∓iω e

me
Ex ± eB0

mec

dvy±
dt

= ∓iω e

me
Ex + ω2

cvx± , (S-11.80)

where ωc =
√
eB0/mec is the cyclotron frequency. Substituting Ex = E0 e−iωt we

obtain

vx± = ∓iω e

me(ω2
c − ω2)

E0 . (S-11.81)

Analogously, for vy± we have

vy± = ±eB0

me
vx∓ = −iω e

me
E0 , (S-11.82)

which has the same value for both electrons and positrons. The components of the
current density are thus
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Jx = n0 e (vx+ − vx−) = − 2iωn0e2

me(ω2
c − ω2)

E0 ,

Jy = n0 e (vy+ − vy−) = 0 . (S-11.83)

The dielectric permittivity of the pair plasma, ε(ω), is obtained from the usual defini-
tions J = σE = −iωχE and is

ε(ω) = 1− 2ω2
p

ω2 − ω2
c

. (S-11.84)

The same result can be obtained for circular polarization, both for left-handed and
right-handed waves, confirming that there is no magnetically induced birefringence
in a pair plasma. This is different from the case of a medium containing free electrons
only, considered in Problem 11.7.

For case (a), where B0 = 0, we set ωc = 0, and obtain a cut-off frequency at
ω = 2ωp.

For case (b), there is a resonance at ω = ωc, while wave propagation is forbidden

for frequencies in the range ωc < ω <
√

ω2
c + 2ω2

p.

S-11.10 Surface Waves

(a) In a dielectric medium described by ε = ε(ω), a monochromatic EM field of
frequency ω satisfies the Helmoltz equation. Thus we have for the magnetic field

(
∇2 + ε

ω2

c2

)
Bz = 0 . (S-11.85)

Substituting (11.17) for Bz into the Helmholtz equation, we obtain

q2 − k2 + ω2

c2
ε = 0 . (S-11.86)

(b) From the equation c∇ × B = 4πJ+ ∂tE and the definition of ε we obtain
(for monochromatic waves in complex notation) c∇ × B = −iωε E. By substituting
(11.17) for B we obtain

− iωε E = (x̂∂y − ŷ∂x )Bzc = (ikx̂ − qŷ)Bzc , (S-11.87)

which gives for the electric field

E = −(kx̂ + iqŷ)
c

εω
Bz . (S-11.88)
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(c) From the definition of S = cE× B/(4π)we find that S has components both along
x and along y, given by

Sx = c

4π
Ey Bz = qcB2

0

4πεω
e2qx cos(ky − ωt) sin(ky − ωt) , (S-11.89)

Sy = − c

4π
Ex Bz = kcB2

0

4πεω
e2qx cos2(ky − ωt). (S-11.90)

However, averaging over one oscillation periodweobtain 〈Sx 〉 = 0, thus the net energy
flux is in the y-direction only, since 〈Sy〉 = 0.
(d)The tangential component of themagnetic field at the interface between twomedia
must be continuous. Thus, from Bz(0−) = Bz(0+) we get B1 = B2.
(e) Also the tangential component of the electric must be continuous at the interface,
thus Ey(0−) = Ey(0+). Using the results of points (b) and (d) we obtain

q1
ε1
= −q2

ε2
. (S-11.91)

Since both q1 > 0 and q2 > 0, ε1 and ε2 must have opposite signs.
(f) Using the relationship (q1/ε1)2 = (q2/ε2)2 and the result of point (a) we obtain

ε22

(
k2 − ω2

c2
ε1

)
= ε21

(
k2 − ω2

c2
ε2

)
, (S-11.92)

from which it follows that

ω2 = k2c2
ε22 − ε21

ε22ε1 − ε21ε2
= k2c2

ε2 + ε1

ε2ε1
. (S-11.93)

Sincewave can propagate only if k2 > 0, and ε1ε2 < 0,we get the additional condition
ε1 + ε2 < 0.
(g) Since ε2 < −ε1 = −1must hold, wemay choose a metal, or a free electron gas, or
an ideal plasma…, for which ε2 = 1− ω2

p/ω
2, and a frequency such thatω < ωp/

√
2.

The above described EMmodes are surface waves (also named surface plasmons).
These waves propagate along the surface of a conductor and are evanescent along the
perpendicular direction, so that the EM energy is confined in a narrow layer, thinner
than the wavelength in vacuum. Surface waves are a building block of plasmonics, a
discipline oriented to develop optical and electronic devices on a nanometric scale.9

9 See e.g. W. L. Barnes et al, “Surface plasmon subwavelength optics”, Nature 424, 824 (2003); E.
Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions”, Science 311,
189 (2006).
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S-11.11 Mie Resonance and a “Plasmonic Metamaterial”

(a) The incident field can be written, in complex notation, as

Ei = Ei(x, t) = E0 e
ikx−iωt . (S-11.94)

Since a � λ, the electric field can be considered as uniform over the volume of the
sphere, thus Ei 	 E0 e−iωt , assuming the center of the sphere to be located at x = 0.
Now we introduce a spherical coordinate system (r, θ,φ) with the origin at the center
of the sphere, and the zenith direction parallel to Ei. At the surface of the sphere,
r = a, we have the usual boundary conditions at the interface between two media

E⊥(a+, θ)− E⊥(a−, θ) = 4πσ(θ) , E‖(a+, θ)− E‖(a−, θ) = 0 , (S-11.95)

where σ(θ) is the surface charge density on the sphere, independent of φ within our
approximations. The problem is thus analogous to the case of a dielectric sphere in a
static uniform external field, treated in Problem 3.4. We can extend the results for the
internal field and polarization to the case of an oscillating field as follows

Eint = 3E0

εr(ω)+ 2
, P = χEint = 3(εr(ω)− 1)

4π(εr(ω)+ 2)
E0 . (S-11.96)

The difference with the electrostatic case is that now εr depends on frequency, and
is not necessarily positive and greater than one, so that the internal field Eint can be
greater than the external applied field E0. A resonance appears when the real part of
the denominator vanishes. Setting η = 0 for simplicity, the resonance condition is

εr(ω)+ 2 = 3− ω2
p

ω2 − ω2
0

= 0 , (S-11.97)

which yields

ω2 = ω2
0 +

ω2
p

3
. (S-11.98)

The physical meaning of the resonance is particularly clear for ω0 = 0, e.g., for a
metallic (nano)sphere in a high-frequency (optical) field. In this case the resonance
frequency is

ω = ωp√
3

, (S-11.99)

that is the natural frequency of the collective “Mie oscillations” of the electron sphere
treated in Problem 1.5, also known as the lowest-order surface plasmon of the sphere.
The resonance thus corresponds to the excitation of this oscillation mode.
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(b) The macroscopic polarization is given by the dipole moment of each nanosphere,
psphere = PV , with V = (4π/3)a3 the volume of the sphere, times the number of
nanospheres per unit volume, ns:

Pmacro = nspsphere = −
3nsVω2

p

3ω2 − ω2
p

E0. (S-11.100)

This is equivalent to a macroscopic dielectric function

εr(ω) = 1− 3nsVω2
p

3ω2 − ω2
p

. (S-11.101)

Wave propagation requires εr to be positive, i.e.,

ω <
ωp√
3
, ω >

ωp√
3

√
1+ 3nsV . (S-11.102)

This is a simple example of an artificial “metamaterial”, where the plasmonic prop-
erties of the nanostructures composing the material determine the optical response.

S-11.12 Wave Incident at Brewster’s Angle

(a) The magnetic field B must be continuous through the vacuum-medium interface,
thus Bt = Bi = B0 = E0, where the subscripts i and t stand for incident and trans-
mitted, respectively. On the other hand, the amplitude of the transmitted electric field
is Et = Bt/n = E0/n.
(b) The Poynting vector in vacuum, i.e. for x < 0, is, averaged over one period,∣∣S̄∣∣ = cEi Bi/(4π) = cE2

0/(4π) (we use bars to denote time-averaged quantities). In
the medium, i.e. for x > 0, we have

∣∣S̄∣∣ = cEt Bt/(4π) = cE2
0/(4πn). The disconti-

nuity of the energy flux through the interface is due to the difference between the x
components of the Poynting vector

�ΦE = S̄x (0
+)− S̄x (0

−) = S̄(0+) cos θt − S̄(0−) cos θi

= 1

n
S̄(0−) cos(θB − π/2)− S̄(0−) cos θB = S̄(0−)

(
− sin θB

n
− cos θB

)
,

(S-11.103)

where θi = θB and θi + θt = π/2. Angle θi is the incidence angle, equal to Brewster’s
angle θB , while θt is the transmission angle, see Fig. 11.8. According to Snell’s law
we have
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sin θB

n
= sin θt = cos θi = − cos θB , (S-11.104)

which leads to �ΦE = 0. On the other hand, the y component of S is discontinuous.
(c) The surface charge density σ can be obtained from Gauss’s law

σ = Ex (0+)− Ex (0−)

4π
= E0 sin θi − Et sin θt

4π
= E0 sin θi

4π

(
1− 1

n2

)
,

(S-11.105)
where

Ex (0
−) = −E0 sin θi and Ex (0

+) = −Et sin θt = E0

n
sin θi

n
= −E0

sin θi

n2
.

(S-11.106)
(d) The difference between the electromagnetic momentum fluxes through the inter-
face can be evaluated from Maxwell’s stress tensor

�ΦP = T̄xx (0
+)− T̄xx (0

−) = − 1

8π

[
E2
x (0

+)− E2
x (0

−)
]

= 1

8π
E2
0 sin

2 θi

(
1− sin2 θi

n4

)
. (S-11.107)

since Ey and Bz are continuous at the interface. Thus the pressure is of “electrostatic”
nature

�ΦP = 1

2
σ
(
Ex (0

+)+ Ex (0
−)

)
. (S-11.108)

Fig. S-11.2

(e) Because of the law of reversibility of the optical
paths and of the symmetry of our problem (see Fig.
S-11.2) there is no reflection also at x = d. Thus the
fields of the wave exiting at x = d equal the fields of
the wave entering at x = 0, except for a phase shift
ϕ. Taking into account the continuity of B = Bz ẑ,
we have

Bz = E0
c

eik sin θB y−iωt ×
⎧⎨
⎩
eik cos θB x (x < 0)
eink cos θt x (0 < x < d)

eik cos θB x+iϕ (x > d)

(S-11.109)

where k = ω/c is the wave vector in vacuum. The
phase shift is due to the condition Bz(x = d−) =
Bz(x = d+), thus we have

ϕ = kd(n cos θt − cos θB) . (S-11.110)

In this case the global force on the dielectric medium is zero.
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S-11.13 Electromagnetic Wave in a Conducting Medium

(a) According to (11.3) we have

εr = 1+ i
4πσ

ω
, (S-11.111)

which can easily be obtained from the general relation εr = 1+ 4πχ combined with
the two relationsJ = σE andJ = ∂tP applied to anoscillatingmonochromatic electric
field E = ŷ E0 e−iωt , where, for simplicity and without loss of generality, we have
assumed a linear polarization parallel to the y axis. For the refractive index we have
n = √εr , and, at the limit σ � ω,

n =
√
1+ i

4πσ

ω
	

√
i
4πσ

ω
= 1+ i√

2

√
4πσ

ω
= (1+ i)

√
2πσ

ω
, (S-11.112)

thus we have n0 = √2πσ/ω.
Alternatively, still assuming a linear polarization parallel to the y axis, we can use

the classical free-electron model, evaluating the stationary solution of the equation of
motion

ÿ = − e

me
E0 e

−iωt − η ẏ , which is y = e

me(ω2 + iωη)
E0 e

−iωt . (S-11.113)

At the limit η � ω we have

y = −i e

meωη
E0 e

−iωt , and ẏ = e

meη
E0 e

−iωt . (S-11.114)

Assuming ne electrons per unit volume, we have for the current density

J = σ E0 e
−iωt = −e ne ẏ = nee2

meη
E0 e

−iωt = ω2
p

4πη
E0 e

−iωt , and σ = ω2
p

4πη
,

(S-11.115)
where ωp =

√
4πnee2/me is the plasma frequency. For the polarization per unit vol-

ume we have

P = χ E0 e
−iωt = −neey = i

nee2

meωη
E0 e

−iωt , (S-11.116)

from which we obtain

χ = i
nee2

meωη
= i

ω2
p

4πωη
= i

σ

ω
, (S-11.117)

in agreement with (S-11.111) and εr = 1+ 4πχ.
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(b) For simplicity we assume again a linear polariztion parallel to the y axis. The
electromagnetic fields for x ≥ 0 are, in complex notation,

Ey = Et e
iknx−iωt , Bz = nEt e

iknx−iωt , (S-11.118)

where k = ω/c. The energy flux is

〈Sx (0)〉 =
〈 c

4π
E× B

〉
= 1

2
Re

( c

4π
Ey(0)B

∗
z (0)

)
= c

8π
|Et |2 Re(n)

= c

8π
|Et |2

√
2πσ

ω
= c

4

√
σ

2πω
| Et |2 . (S-11.119)

The power dissipated by Joule heating per unit volume is

Wv = 〈Jy E∗y〉 = 〈σEyE
∗
y〉 =

1

2
Re

(
σ
∣∣Ey

∣∣2) = σ

2
|Et |2 e−2k Im(n) x . (S-11.120)

The power dissipated per unit surface is obtained by integrating Wv in dx from zero
to inifinity

Ws =
∞∫
0

Wv dx = σ

2
|Et |2

∞∫
0

e−2k Im(n) xdx = σ

4k Im(n)
|Et |2

= c

4

√
σ

2πω
|Et |2 = 〈Sx (0)〉 . (S-11.121)

S-11.14 Wave Reflection at the Ionosphere

(a) If ω < ωp, then εr < 0 and the refractive index n = √εr is a purely imaginary
number. In this case there is total reflection (dissipation is neglected) at any angle of
incidence. This is a consequence of the dispersion relationω2 = k2c2/εr wherewe can
write the square of the wavevector k as k2 = k2x + k2z with x and z the horizontal and
vertical directions, respectively. Since kx is real (because the parallel component of k
must be conserved at the interface between the air and the ionized gas) the condition
εr < 0 implies k2z < 0, i.e., kz is purely imaginary and the wave is evanescent in the
gas layer.

If ω > ωp, total reflection may still occur at large enough values of the incidence
angle θ. In fact, being kx = (ω/c) sin θ, the dispersion relation can be rewritten as

k2z =
ω2

c2
εr − k2x =

ω2

c2
− ω2

p

c2
− ω2

c2
sin2 θ = ω2 cos2 θ − ω2

p

c2
, (S-11.122)
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so that, at incidences such that cos θ < ωp/ω, we have k2z < 0. This is equivalent to
consider Snell’s law (11.5), according to which the limit angle for total reflection is
sin θlim = n.

In our problem the signal must be incident at an angle θ = arctan[L/(2h)] on the
ionosphere in order to reach the receiver R. The larger the value of L the larger the
angle θ, thus total reflection of high frequencies is favored by large values of L . This
effect might compensate the reduction of the signal with increasing distance.
(b) The electric field emitted by the dipole antenna lies in the plane of incidence,
thus we must take the Fresnel coefficient RP(θ) for the ratio of the electric field of
the reflected wave to the electric field of the incident wave for P-polarization, given
by the first of (11.8) (remember that in Fresnel’s formulas the refractive index is, in
general, a complex number, so that the formula can be used for any value of ω/ωp).
The ratio of the reflected power to the incident power is RP(θ) = |Er/Ei |2. Thus we
have for the intensity reaching the receiver located at a distance L

I (L) = 3

4π
Pa

sin2 θ

r2
Rp(θ) , (S-11.123)

where Pa is the total emitted power, and r = 2
√
L2/4+ h2 = L/ sin θ is the distance

traveled by the radio signal (because of specular reflection, for the receiver the signal is
identical to that received from a virtual source located at height 2h above the emitter).
(c) An electron density ne = 1012 m−3 corresponds to a plasma frequency ωp =
6.3× 109 Hz, thus 2πc/ωp 	 0.3 m. Consistently, radio waves with wavelenghts
above this value are typically used for ionosphere-assisted transmission.

The effect of the magnetic field is relevant at frequencies close to the cyclotron
frequency ωc, for which resonance occurs. We have

ωc = eB

mec
	 1.8× 106 Hz , (S-11.124)

corresponding to wavelengths of the order of 2πc/ωc 	 103 m. Thus the related
effects, like an anisotropy of the refractive index and cyclotron resonance (Problem
11.7) are observed only for waves “long” compared to “standard” radio waves.

S-11.15 Waves in a Dipole Chain

Since a � 2πc/ω we can use (S-3.23) of Problem 3.4 for the induced dipole of the
nth sphere

pn = a3
εr − 1

εr + 2
En ≡ αEn , (S-11.125)

whereEn is the external field at x = nd, i.e., the field generated by the spheres different
from the nth sphere. Since the distance between the particles is much less than 2πc/ω,
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the field generated by a particle on the two neighboring ones will be given by the static
expression of the dipole field. By considering only the left and right nearest neighbors,
we can write the field at x = nd as

En = 3(pn−1 · x̂) x̂ − pn−1
d3

+ 3(pn+1 · x̂) x̂ − pn+1
d3

, (S-11.126)

so that

pn = αEn = α

d3
[3(pn−1 · x̂) x̂ − pn−1 + 3(pn+1 · x̂)x̂ − pn+1]

=

⎧⎪⎨
⎪⎩

2α

d3
(pn−1 + pn+1) (pn ‖ x̂)

− α

d3
(pn−1 + pn+1) (pn ⊥ x̂)

(S-11.127)

By inserting the expression (11.21) for pn and dividing both sides by p eiknd−iωt (the
division is allowed because all dipoles are parallel to one another, independently of p
being parallel or perpendicular to x̂), we obtain the relation

1 = 2α

d3

{
2 cos kd (pn ‖ x̂)

− cos kd (pn ⊥ x̂)
(S-11.128)

Inserting εr = 1− ω2
p/ω

2 into the second of (S-11.125) we obtain

α = a3
ω2
p

3ω2 − ω2
p

, (S-11.129)

which, inserted into (S-11.128) leads to

ω2 = ω2
p

3

(
1− 2a3

d3

{
2 cos kd (pn ‖ x̂)

− cos kd (pn ⊥ x̂)

)
(S-11.130)

As typical for a discrete system (Problem 7.4) with inversion symmetry, the dispersion
relation needs to be analyzed for 0 < k < π/d only. We see that the slope of the
ω = ω(k) relation is the opposite between longitudinal waves (pn ‖ x̂) and transverse
waves (pn ⊥ x̂). For the latter, ∂ω/∂k < 0, which means that the group and phase
velocities are in opposite directions (like the “CL” newtork of Problem 7.5).



Chapter S-12
Solutions for Chapter 12

S-12.1 The Coaxial Cable

(a) Since the capacitance has been defined assuming static conditions and boundary
effects are negligible for an “infinite” wire, we evaluate the capacitance per unit length
of the cable,C, as for a cylindrical capacitor assuming the charge density to be constant
in time and uniformly distributed. For symmetry reasons the electrostatic field between
the two conductors is radial and independent of z and φ, and it is obtained easily from
Gauss’s law as

E = 2λ

r
r̂ , a < r < b . (S-12.1)

Thus, the potential drop between the two conductors is

V = −
b∫

a

Er (r) dr = −2λ ln

(
b

a

)
, (S-12.2)

so that we obtain

C = λ

|V | =
1

2 ln(b/a)
. (S-12.3)
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Fig. S-12.1

Similarly, a static current I uniformly dis-
tributed on the inner conductor generates a
magnetic field

B = Bφ(r) φ̂ = 2I

cr
φ̂ . (S-12.4)

The inductance per unit length of the cable
can be obtained by evaluating the flux of B
through a rectangle of width �z, lying on a
plane containing the z axis, and extending from r = a to r = b, as highlighted in
Fig. S-12.1. The flux is

Φ(B) =
b∫

a

Bφ(r)�z dr = 2I

c
ln

(
b

a

)
�z , (S-12.5)

corresponding to an inductance per unit length L

L = Φ(B)

I c�z
= 2

c2
ln

(
b

a

)
. (S-12.6)

The same result can be obtained by calculating the magnetic energy in a cable section
of length �z, and inductance �zL,

1

2
�zL I 2 ≡ �z

b∫
a

B2

8π
2πr dr = I 2

c2
ln

(
b

a

)
�z . (S-12.7)

(b) The coaxial cable is a continuous system with finite capacitance and inductance
per unit length, thus we know from Problem 7.4 that a current signal propagates along
the wire according to the wave equation (S-7.50), with velocity

v = 1√LC = c . (S-12.8)

The general solution for the propagating current signal is thus I (z, t) = I (z − vt),
and propagation occurs with no dispersion. The associated charge signal λ(z, t) is
related to I (z, t) by the continuity equation,

∂tλ(z, t) = −∂z I (z, t) = −I ′(z − ct) , (S-12.9)

where I ′ denotes the derivative of I with respect to its argument. Since ∂tλ(z − ct) =
−cλ′(z − ct), we obtain
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λ(z, t) = λ(z − ct) = 1

c
I (z − ct) . (S-12.10)

(c)A transverse electric fieldEmust be radial for symmetry reasons,E = Er (r, z, t) r̂.
ApplyingGauss’s law to a cylindrical surface of radius a < r < b, infinitesimal height
�z, and coaxial to the cable, we find Er = 2λ(z, t)/r . Again for symmetry reasons,
a transverse magnetic field must be azimuthal, B = Bφ(r, z, t) φ̂. Applying Stokes’
law to a circle of radius a < r < b, coaxial to the cable, we obtain Bφ = 2I (z, t)/rc.
The displacement current does not contribute to the flux through the circle, since
E is radial. Thus, the fields of have the same dependence on λ and I as the static
fields, the only difference being that here both λ = λ(z, t) and I = I (z, t) depend
on z and t . Notice that it is such peculiar character of the TEM configuration which
allows to use the capacitance and inductance calculated for static fields to obtain the
propagation velocity of electromagnetic signals along the cable, a result also true for
any transmission line in TEM mode.

We can check that the above fields constitute a solution to Maxwell’s equations by
verifying that

∇ × E = ∂z Er φ̂ = 2

r
∂zλ(z − ct) φ̂ = 2

r
λ′(z − ct) φ̂

= 2

rc
I ′(z − ct) φ̂ = − 2

rc2
∂t I (z − ct) φ̂

= −1

c
∂tB . (S-12.11)

(d) The source at z = 0 must do a work W (t) in order to drive the current between
the inner and outer conductors,

W (t) = V (0, t) I (0, t) = −2cλ2(0, t) ln

(
b

a

)
. (S-12.12)

The local flux of energy at any point (r,φ, z), with a < r < b and z > 0, is

S(r, z, t) = c

4π
E× B = ẑ

c

4π

2λ(z − ct)

r

2I (z − ct)

rc

= ẑ
c

πr2
λ2(z − ct) , (S-12.13)

corresponding to a total flow of energy at z

Φ(z, t) =
b∫

a

Sz 2πr dr = 2cλ2(z − ct) ln

(
b

a

)
= −W (z − ct) . (S-12.14)

This shows that the energy flow is sustained by the source.
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(e) The expressions for the fields, and for the capacitance and inductance per unit
length, are, in the presence of generic values of ε and μ,

Er = 2
λ

εr
, Bφ = 2μI

rc
, (S-12.15)

C = ε

2 ln(b/a)
, L = 2

c2
ln

(
b

a

)
, (S-12.16)

corresponding to a wave velocity v = c/
√

εμ < c. In general, however, both ε and μ
can depend on frequency, and the cable becomes a dispersive transmission line with
phase velocity vφ(ω) = c/

√
ε(ω) μ(ω).

S-12.2 Electric Power Transmission Line

(a) The continuity equation is ∂tλ = −∂z I . Writing λ in the form λ = λ0 eikz−iωt , we
obtain

− iωλ0 = −ik I0 , or λ0 = k

ω
I0 = I0

vϕ
, (S-12.17)

where vϕ is the phase velocity of the signal.
(b) The electric field E can be calculated by applying Gauss’s law to a cylindrical
surface coaxial to the wire, obtaining

Er (r, z, t) = 2λ(z, t)

r
. (S-12.18)

The magnetic field B can be obtained from the equation c∇ × B = 4πJ+ ∂tE. If we
choose a circle of radius r coaxial to the wire and apply Stokes’ theorem we have

∮
B · d� = 1

c

∫
(4πJ+ ∂tE) · dS . (S-12.19)

The ∂tE term is radial and thus does not contribute to the flux at the right-hand side,
so that

2πr Bφ = 4π
I

c
, and Bφ(r, z, t) = 2I (z, t)

rc
. (S-12.20)

The equations for Er (r,φ, z) and Bφ(r,φ, z) have the same form as in the static case
of a wire with constant and uniform charge density and current, respectively. We
also have |Er |/|Bφ| = c/vϕ. These are a typical properties of the TEM (transverse
electromagnetic) mode for the transmission lines. Maxwell’s equation c∇ × E =
−∂tB gives c∂z Er = −∂t Bϕ leads to
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ikλ0 = iω
I0
c2

⇒ k
I0
vϕ
= ω

I0
c2

⇒ ω

v2
ϕ

= ω

c2
⇒ vϕ = c , (S-12.21)

where we have used (S-12.17) and k = ω/vϕ.
In SI units we have

Er = λ

2πε0
, Bφ = μ0 I

2πr
,

|Er |
|Bφ| =

c2

vϕ
. (S-12.22)

Fig. S-12.2

Fig. S-12.3

(c) Consider a line on the midplane, at a distance h
from the plane containing the two wires, as in Figs.
S-12.2 and S-12.3. The distance of the line from each
wire is r = √

h2 + d2/4. The electric and magnetic
fields generated by the two wires sum up to

E = 2x̂
2I0
rc

sin θ e−iωt , (S-12.23)

B = 2ŷ
2I0
rc

sin θ e−iωt , (S-12.24)

with x̂ and ŷ the unit vectors parallel and perpendic-
ular to the plane containing the wires, respectively.

Since sin θ = d/(2r), we obtain

|Ex | = |By| = 2I0 d

r2c
. (S-12.25)

The corresponding expressions in SI units are

|Ex | = |By|c = I0 d

2πcε0r2
= μ0 I0 dc

2πr2
.(S-12.26)

Thus

|By| = 4π × 10−7 × 103 × 5

2π × (302 + 52/22)
T 	 10−6 T ,

(S-12.27)
and

|Ex | 	 3× 102 V/m . (S-12.28)

For a comparison, the average magnetic field at the Earth surface is ∼ 5× 10−5 T,
while the electric field is ∼ 1.5× 102 V/m. Possible screening effects by the Earth’s
surface have been neglected.
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S-12.3 TEM and TM Modes in an “Open” Waveguide

(a) Inserting (12.3) into the wave equation for B

(
∇2 − 1

c2
∂2
t

)
Bz = 0 , (S-12.29)

and recalling that ∂z Bz = 0, we obtain the following relation between kx , ky and ω

k2x + k2y −
ω2

c2
= 0 . (S-12.30)

(b) The electric field of the wave can be obtained from

∂tE = c∇ × B = c (x̂ ∂y − ŷ ∂x ) Bz,

−iωE = cB0
[−x̂ ky sin(ky y)− ŷ ikx cos(ky y)

]
eikx x−iωt , (S-12.31)

which leads to

Ex = −i kyc
ω

B0 sin(ky y) e
ikx x−iωt , (S-12.32)

Ey = kxc

ω
B0 cos(ky y) e

ikx x−iωt . (S-12.33)

(c) The parallel component E‖ of the electric field E must vanish at the boundary with
a perfectly conducting surface, thus we must have Ex (y = ±a/2) = 0. This implies
that sin(kya/2) = 0, and kya = 2mπ, with m ∈ N. By substitution into (S-12.30) we
obtain

ω2 = k2xc
2 +

(πc

a

)2
(2m)2 . (S-12.34)

The m = 0 mode corresponds to Ex = 0 and to Ey and Bz independent of y. The
fields are thus uniform over any cross-section of the waveguide parallel to the yz
plane, and we have ω = kxc. This is the TEMmode typical of transmission lines. The
m = 1 mode has frequency

ω =
√
k2xc

2 +
(
2πc

a

)2

>
2πc

a
≡ ω co , (S-12.35)

where ω co ≡ 2πc/a is the cut-off frequency.
(d) The energy flux is given by Poynting’s vector, parallel to the z = 0 plane,

S = c

4π
E× B = c

4π
(Ey Bz x̂ − Ex Bz ŷ) . (S-12.36)
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By averaging over one full cycle we find 〈Sy〉 = 0, i.e., there is no net energy flux
along y. Averaging Sx over one cycle we obtain

〈Sx 〉 = c2

8π

kx
ω

B2
0 cos

2(ky y) . (S-12.37)

The group velocity of the wave is

vg = ∂kω = kxc2√
k2x c

2 + ω2
co

= kxc2

ω
, (S-12.38)

thus we can also write

〈Sx 〉 = vg
B2
0

8π
cos2(ky y) . (S-12.39)

S-12.4 Square and Triangular Waveguides

(a) The electric field must satisfy the wave equation in vacuum

(
∇2 − 1

c2
∂2
t

)
E = 0 , (S-12.40)

and, substituting (12.4) for E, we obtain the time-independent Helmoltz’s equation
for the only nonzero component of the electric field, Ẽx ,

(
∂2
x + ∂2

y − k2z +
ω2

c2

)
Ẽx = 0 . (S-12.41)

In vacuum we must also have ∇ · E = 0, this condition is automatically satisfied if
we assume that Ẽx is independent of x , Ẽx = Ẽx (y), and (S-12.41) reduces to

(
∂2
y − k2z +

ω2

c2

)
Ẽx (y) = 0 . (S-12.42)

According to the boundary conditions, the parallel component of E must be zero at
the perfectly reflecting walls of the waveguide y = 0 and y = a. This condition is
satisfied if we assume

Ẽx (y) = E0x sin(ky y) , with ky = n
π

a
, n = 1, 2, 3, . . . , (S-12.43)

where E0x is an arbitrary, constant amplitude. The electric field of our x̂ polarized
wave can thus be written
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E = x̂ Ẽx (y) e
ikz z−iωt = x̂ E0x sin

(n π

a
y
)
eikz z−iωt . (S-12.44)

Substituting (S-12.43) for Ẽx into (S-12.42) leads to

(
−k2y − k2z +

ω2

c2

)
E0x = 0 , (S-12.45)

which, disregarding the trivial case E0x = 0, is true only if

k2y + k2z −
ω2

c2
= 0 , or kz =

√
ω2

c2
− k2y =

√
ω2

c2
− n2

π2

a2
. (S-12.46)

The wave can propagate only if kz is real, thus we must have

ω > n
πc

a
. (S-12.47)

The cutoff frequency ωa is the lowest value of ω at which wave propagation occurs.
Since we must have n � 1, we have ωa = πc/a. If we choose a frequency such that
πc/a < ω < 2πc/a, only the n = 1 mode can propagate in the guide.

The cross-section of the waveguide being square, the conditions for a ŷ polarized
TE wave are obtained by interchanging the roles of x and y in all the above formulae,
and the electric field is

E = ŷ E0y sin(kx x) e
ikz z−iωt = ŷ E0y sin

(m π

a
x
)
eikz z−iωt , (S-12.48)

with, again, E0y an arbitrary amplitude, m = 1, 2, 3, . . . and the same dispersion
relation as between ω and kz as above. Modes withm = n are degenerate, sharing the
same wavevector kz .

In general, a monochromatic TE wave propagating in the guide will be a superpo-
sition of the two polarizations. The electric field will be

E =
[
x̂ E0x sin

(nπ

a
y
)
+ ŷ E0y sin

(nπ

a
x
)]

eikz z−iωt . (S-12.49)

(b) In the case of the triangular waveguide, the parallel component of the electric
field E must be zero on the three x = 0, y = 0, and y = x planes. A field of the form
(S-12.49) already satisfies the boundary conditions at the x = 0 and y = 0 planes. The
additional condition at the y = x plane is E(x, x) · n̂ = 0, where n̂ = (−1, 1, 0)/√2
is the unit vector perpendicular to the y = x plane. Thus

E0x sin
(nπ

a
x
)
− E0y sin

(nπ

a
x
)
= 0 , (S-12.50)
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which is satisfied if E0y = E0x ≡ E0, so that we eventually obtain

E = E0

[
x̂ sin

(nπ

a
y
)
+ ŷ sin

(nπ

a
x
)]

eikz z−iωt . (S-12.51)

S-12.5 Waveguide Modes as an Interference Effect

(a) The electrostatic potential φ must be zero on the

Fig. S-12.4

two conducting planes at y = ±a, and the electric
fields at y = a− and y = −a+ must be perpendic-
ular to their surfaces (parallel to ŷ). The real dipole
p is located at the origin of our coordinate system,
thus, we need an image dipole equal to p, located
at (0, 2a, 0) and represented by p1 in Fig. S-12.4,
in order to fulfill these conditions at the generic
point A of the y = +a plane. Analogously, the real
dipole p requires a further image dipole p located
at (0,−2a, 0), represented by p−1 in Fig. S-12.4, in
order to fulfill the conditions at the y = −a conduct-
ing plane. But now the three dipoles p, p1, and p−1
together do not generate a potential equal to zero on
either plane.We can readjust the potential at y = +a
by adding a new image dipole equal to p, symmet-
rical to p−1, at (0, 4a, 0), represented by p2. But
this requires adding a further image dipole p−2, and
so on. Thus, the exact solution requires two infinite

sets of equal image dipoles, pn and p−n , with n = 1, 2, 3, . . ., located respectively at
(0, 2na, 0) and (0,−2na, 0). The resulting electrostatic potential between the plates
is finite because, for high n values, the contribution of ±nth dipole is proportional to
(2na)−2.
(b) In order to fulfill the boundary conditions, all the image dipoles must oscillate in
phase with the real dipole. Consider the radiation emitted by each dipole in the n̂ ≡
(sin θ, cos θ, 0) direction following we consider wavevectors lying in the z = 0 plane,
but our considerations apply to wavevectors lying in any plane containing the y axis,
due to the rotational symmetry of the problem. The optical path difference between the
waves emitted by two neighboring dipoles (real or images) is�� = 2a cos θ, as shown
in Fig. S-12.5 for the case of the real dipole p and the image p1. This corresponds to
a phase difference �ϕ = k��, and the condition for constructive interference is

k�� = 2ωa

c
cos θ = 2πm ,

θ = arccos
(
m

πc

ωa

)
, (S-12.52)



486 S-12 Solutions for Chapter 12

Fig. S-12.5

with m = 0, 1, 2, . . . . Due to the mirror symme-
try of the system for reflections through the y =
0 plane (actually, antisymmetry, since all dipoles
are inverted by the reflection), if an angle θ satis-
fies (S-12.52) for constructive interference, so does
π − θ. In other words, at large distance from the
oscillating dipole, each interference order m > 0
corresponds to the superposition of two waves with
wavevectors k± ≡ (sin θ,± cos θ, 0) ω/c, respec-
tively.

The m = 0 condition corresponds to θ = π/2,
and the waves travels along the x axis. For m > 0,
we can write

kx = ω

c
sin θ = ω

c

√
1− cos2 θ = ω

c

√
1−

(
m

πc

ωa

)2

=
√

ω2

c2
−

(
m

π

a

)2
, (S-12.53)

and kx is real only if ω > mπc/a. Thus, given a frequency ω, we observe only the
modes withm < ω a/(πc). Ifω < πc/a, corresponding to a wavelength λ > 2a, only
the mode m = 0 can propagate.
(c) Both magnetic fields must satisfy the wave equation

(c2∇2 − ∂2
t ) Bi = (c2∂2

x + c2∂2
y − ∂2

t ) Bi = 0 , i = 0, 1 , (S-12.54)

from which we obtain, denoting by k0 and k1 the respective wavevectors,

k20x c
2 = ω2 , k21x c

2 + k21y c
2 = ω2 . (S-12.55)

(d) Assuming electric fields of the form E = Ẽ e−iωt , where Ẽ depends on the space
coordinates only, Maxwell’s equation in vacuum, ∂tE = c∇ × B, gives

− iωE = c(x̂ ∂y Bz − ŷ ∂x Bz) . (S-12.56)

For the wave of type “0” we obtain

E0 = ŷ
k0xc

ω
B0 e

ik0x x−iωt = ŷ B0 e
ik0x x−iωt . (S-12.57)

For the wave of type “1” we obtain

E1 = ic

ω
B1

[
ŷ k1x cos(k1y y)− x̂ ik1y sin(k1y y)

]
eik1x x−iωt . (S-12.58)
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(e) The “type-0” wave has the three vectors E0, B and k perpendicular to one another,
analogously to a planewave in the free space (TEMmode). Further,E0 is perpendicular
to the two conducting surfaces, automatically satisfying the boundary conditions.
Thus, the frequency ω and the wavevector k = x̂ k0x , with k0x = ω/c, are subject to
no constraint.

On the other hand, the electric field of the “type-1” wave has a component Ex

parallel to the two conducting surfaces, in addition to the transverse Ey component
(the mode is TM rather than TEM). The boundary conditions at y = ±a require
that Ex (y = ±a) = 0. Thus we must have sin(±kya) = 0, or ky = mπ/a, with m =
1, 2, 3, . . ., leading to

kx =
√

ω2

c2
−

(
m

π

a

)2
. (S-12.59)

The m-th mode can propagate only if the corresponding kx is real, and has a lower
cut-off frequency ωco(m) = 2πmc/a.

A comparison to point (b) shows that the type-0 wave (TEM mode) corresponds
to the m = 0 interference order, while the type-1 waves (TM modes) correspond to
the > 0 interference orders. Actually, more precisely, we need not single dipoles,
but “dipole layers”, spread parallel to the z axis, in order to generate waves with
fields independent of z. If the real dipole of points (a) and (b) is parallel, rather than
perpendicular, to the conducting planes, the different boundary conditions would lead
to TE, rather than TM modes [1].

S-12.6 Propagation in an Optical Fiber

(a) The electric field (12.6) corresponds to the sum of two plane waves of the same
frequency and different wavevectors, k1 and k2, propagating in the medium. For both
waves the dispersion relation is ω = kc/n, where n = n(ω) is the refractive index of
the medium. Both waves impinge on the medium-vacuum interface at the angle θ,
and the condition for total reflection is, according to Snell’s law,

sin θ >
1

n
. (S-12.60)

(b) The internal reflections at the y = ±a/2 planes turn the wave of type “1” into a
wave of type “2”, and vice versa. Thus the field amplitudes of the two waves at the
interface are related by the amplitude reflection coefficient r

E2(x, y = +a/2, t) = rE1(x, y = +a/2, t) ,

E1(x, y = −a/2, t) = rE2(x, y = −a/2, t) . (S-12.61)
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For total reflection there is no transmission of energy through the y = ±a/2 planes,
thus the amplitudes of the incident and the reflected fields must be equal but for a
change of phase. For S-polarization (E parallel to the interface, as in our case) r is
written, according to the Fresnel equations,

r = n cos θ − i
√
n2 sin2 θ − 1

n cos θ + i
√
n2 sin2 θ − 1

, (S-12.62)

and, if n sin θ > 1, the square roots are real and |r| = 1. Thus we can write

r = eiδ = cos δ + i sin δ , tan
δ

2
= −

√
n2 sin2 θ − 1

n cos θ
. (S-12.63)

Substituting r = eiδ into (S-12.61)we obtain the following conditions at the y = ±a/2
planes

E2 e
−ikya/2 = E1 e

+ikya/2 eiδ , E1 e
−ikya/2 = E2 e

+ikya/2 eiδ . (S-12.64)

By calculating the determinant of the homogeneous system for E1 and E2 we obtain
the condition

1 = e2i(kya+δ) , (S-12.65)

true if

2kya + 2δ = 2mπ , m = 0, 1, 2, . . . . (S-12.66)

The implicit relation determining the allowed frequencies is

k2x =
ω2

c2
n2 − k2y > 0 . (S-12.67)

If n sin θ � 1 then δ 	 −2θ, and if θ → π/2 then

ky → (m + 1)
π

a
. (S-12.68)

(c) All the above results are valid also for P-polarization, where the electric field of
the wave lies in the xy plane. Only (S-12.62) must be replaced by

r‖ = eiδ‖ = −n2 cos θ + i
√
sin2 θ − n2

n2 cos θ + i
√
sin2 θ − n2

, (S-12.69)

corresponding to a different dependence of r and δ on θ.
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S-12.7 Wave Propagation in a Filled Waveguide

(a) The electric field E of a monochromatic EM wave of frequency ω propagating in
a medium of refractive index n = n(ω) satisfies Helmholtz’s equation

(
∇2 + n2(ω)

ω2

c2

)
E = 0 . (S-12.70)

We are considering a TE mode with E = ẑ Ez(y) eikx−iωt , thus we have

(
∂2
y − k2 + n2(ω)

ω2

c2

)
Ez(y) = 0 , (S-12.71)

whose general solution has the form s Ez(y) = A cos(qy)+ B sin(qy), with A and
B two arbitrary constants. The electric field being parallel to the conducting walls at
y = ±a/2, the boundary conditions are Ez(y = ±a/2) = 0, from which we obtain

Ez(y) = E0

{
cos(qn y) , n = 1, 3, 5 . . .

sin(qn y) , n = 2, 4, 6 . . .
, qn = n

π

a
, (S-12.72)

and (S-12.71) turns into

q2
n + k2 − n2(ω)

ω2

c2
= 0 . (S-12.73)

The wave can propagate only if k is real, i.e., if ω > qnc ≡ ωn .
In the case of a plasma

q2
n + k2 − ω2 − ω2

p

c2
= 0 , (S-12.74)

and the cut-off frequencies are

ω′n =
√
q2
n c

2 + ω2
p . (S-12.75)

(b) The incident wave must be in the n = 1 mode, and its electric field is

Ei = ẑ E0 cos(q1y) e
ik1x−iωt , (S-12.76)

where k1 =
√

ω2/c2 − q2
1 . The total electric field is the sum of the incident field Ei

and the reflected field Er for x < 0, while only the transmitted field Et is present in the
x > 0 region. The boundary condition at x = 0 is (Ei z + Er z)|x=0 = Et z|x=0, thus
all the waves must have the same dependence on t and y. The total field must thus be
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Ez =
{(

E0 eik1x + Er e−ik1x
)
cos(q1y) e−iωt , x < 0 ,

Et cos(q1y ) eiktx−iωt , x > 0 ,
(S-12.77)

where kt =
√
n(ω) ω2/c2 − q2

1 . The boundary condition on the electric field yields

E0 + Er = Et . (S-12.78)

In addition, the magnetic field must be also continuous at x = 0. From ∂tB = −c∇ ×
E we obtain

Bx = iπc

ωa
×

{(
E0 eik1x + Er e−ik1x

)
sin(q1y) e−iωt , x < 0 ,

Et sin(q1y) eiktx−iωt , x > 0 ,
(S-12.79)

By = − c

ω
×

{
k
(
E0 eik1x − Er e−ik1x

)
cos(q1y) e−iωt , x < 0 ,

ktEt cos(q1y) eiktx−iωt , x > 0 ,
(S-12.80)

We notice that the continuity of Bx is ensured by the condition E0 + Er = Et , while
the continuity of By yields

k1(E0 − Er) = ktEt . (S-12.81)

Eventually, we obtain

Er = k1 − kt
k1 + kt

E0 , Et = 2k1
k1 + kt

E0 , (S-12.82)

which are identical to Fresnel’s formulas for S-polarization. In fact, the field of the
incoming wave (S-12.76) can be written as

Ei = ẑ E0 cos(q1y) e
ik1x−iωt = ẑ

E0

2

(
eiq1 y + e−iq1 y

)
eik1x−iωt

= ẑ
E0

2
eik1x+iq1 y−iωt + ẑ

E0

2
eik1x−iq1 y−iωt , (S-12.83)

which is the superposition of two z-polarized plane waves of equal amplitude, and
wavevectors of equal magnitude, but opposite y component, k = x̂ k1 ± ŷ q1. Thus
both plane waves impinge on the vacuum-medium interface at the same incidence
angle |θ| = arctan(q1/k1).
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S-12.8 Schumann Resonances

(a) Substituting the electric field (12.9) into the periodic boundary conditions (12.8)
we obtain

eikx L = 1 , eiky L = 1 , (S-12.84)

solved by

kx = m
2π

L
, ky = n

2π

L
, m, n = 0, 1, 2, . . . (S-12.85)

where m and n are not allowed to be zero simultaneously, and L = 2πR⊕. Since the
wave equations gives us ω2 = k2c2, we have

ω2 =
(

c

R⊕

)2

(m2 + n2) . (S-12.86)

The lowest frequency corresponds to m = 1, n = 0 or m = 0, n = 1, and its value is

νmin = ωmin

2π
= ω10

2π
= c

2πR⊕
	 7.5 s−1 , (S-12.87)

corresponding to awavelengthλmax = 2πR⊕ 	 40 000 km, the length of a great circle
of the Earth. The experimentally observed value is νmin 	 8 s−1.
(b) An ohmic conductor can be considered as perfectly reflecting at a frequency ω
if its conductivity σ(ω), assumed to be real, fulfills the condition σ(ω)� ω/4πke,
where ke = 1 in Gaussian units, and ke = 1/(4πε0) in SI units. Heuristically, the
condition corresponds to the conduction current J being much larger than Maxwell’s
displacement current. Since ε0 = 8.854× 10−12 SI units, and σ/ω ≈ 0.6 s �−1m−1,
sea water can be considered as a perfect conductor in the frequency range of the
Schumann resonances. In Gaussian units, the low-frequency conductivity of sea water
is σ 	 4× 1010 s−1.

Adiscussion of Schumann resonances based on a “realistic” spherical geometry can
be found in Reference [2], Section 8.9 and Problem 8.7. Nevertheless, our simplified
approach reveals the essential point that the characteristic length L of the system,
whichdetermines themaximumwavelength for a standingwave (λ ≈ L), is theEarth’s
circumference, rather than the height of the ionosphere above the the Earth’s surface.

S-12.9 A One-Dimensional Cavity Fed by an Antenna (1)

(a) In the absence of the antenna our cavity has normal modes with wavelengths,
angular frequencies and wavevectors
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λm = 2a

m
, ωm = m

πc

a
, km = m

π

a
, (S-12.88)

Fig. S-12.6

with m ≥ 1 an integer, so that the cavity length a
is an integer number of half wavelengths. These
modes are steady-state solutions for the electromag-
netic field in the cavity, i.e., permanent oscillations if
perfectly conducting walls are assumed. The polar-
ization of these modes can be any superposition of
y and z. The amplitudes of the electric field E and
the magnetic field B for the mode with m = 1 are
shown in Fig. S-12.6. In the presence of the antenna
with driving current in the ŷ direction, the electric
and magnetic fields have only the Ey = Ey(x, t)
and Bz = Bz(x, t) components, respectively. Fur-
ther, we must have Ey(±a/2, t) ≡ 0 because the
cavity walls are perfectly conducting. The pres-
ence of the surface current K (t) on the x = 0 plane
implies that Bz has a jump discontinuity at x = 0,
see, for instance, Problems (8.5) and (11.4),

Bz(0
+, t)− Bz(0

−, t) = 4π

c
K (t) , (S-12.89)

Fig. S-12.7

as shown in Fig. S-12.7, while Ey is continu-
ous at x = 0. The general steady solutions for the
fields have the forms Ey(x, t) = Ey(x) e−iωt and
Bz(x, t) = Bz(x) e−iωt , from now on we shall omit
the time dependence factor e−iωt , common to all
fields. The solutions in the 0 < x < a/2 region can
be written as

Ey(x) = E+eikx + E−e−ikx , (x > 0) (S-12.90)

Bz(x) = E+eikx − E−e−ikx , (x > 0) (S-12.91)

where k = ω/c, and E+ and E− are constants to be
determined. Due to the boundary conditions at the
walls and at the antenna we can assume that Ey is an even function of x , while Bz is
an odd function, so that in the −a/2 < x < 0 region we have

Ey(x) = E+e−ikx + E−eikx , Bz(x) = −E+e−ikx + E−eikx . (x < 0)
(S-12.92)

The boundary conditions at the walls and at the antenna are

E+eika/2 + E−e−ika/2 = 0 , (S-12.93)

E+ − E− = 2π

c
K0 , (S-12.94)
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leading to the following values for E+ and E−

E± = ±π

c
K0

e∓ika/2

cos(ka/2)
. (S-12.95)

The singularities for ka/2 = (n + 1/2) π, with n ≥ 0 an integer, correspond to the
normal cavity modes of wavelengths λn = 2π/kn = a/(n + 1/2). These are the nor-
mal modes of (S-12.88) with m odd, with the difference that here Bz(x, t) is still an
odd function of x , but discontinuous at x = 0 according to (S-12.89) and as shown in
Fig. S-12.7. The singularities appear because these modes do not require the antenna
in order to oscillate, therefore, in the absence of losses, the power supplied by the
antenna is continuously added to the oscillation energy of the cavity The equivalents
of the free-cavity modes with m even cannot be excited by the antenna because their
electric fields are odd functions of x , thus with Ey(0, t) ≡ 0 at the location of the
antenna. In the presence of the antenna the electric field is symmetrized, see Fig.
S-12.8, but it remains zero at the location of the antenna.
(b) In order to evaluate the instantaneous power Ps fed by the antenna per unit surface
we first evaluate the real part of the electric field at x = 0 (note that, without loss of
generality, we can assume K0 to be real)

Ey(0, t) = Re

[
π

c

K0

cos(ka/2)
e−iωt

(
e−ika/2 − eika/2

)]
= π

c
K0

sin(ka/2)

cos(ka/2)
Re[−2ie−iωt ]

= −2π

c
K0 tan

(
ka

2

)
sinωt , (S-12.96)

and then evaluate the power per unit surface as

Ps(t) = K (t) Ey(0, t) = (K0 cosωt)

[
−2π

c
K0 tan

(
ka

2

)
sinωt

]

= −π

c
K 2

0 tan

(
ka

2

)
sin 2ωt . (S-12.97)

Fig. S-12.8

The generator exchanges energy with the field at a
2ω rate to sustain the non-normal modes. The time
average of the fed power is 〈Ps(t)〉 = 0 because there
is no dissipation in the system. Note that Ps(t) ≡ 0
for modes such that tan(ka/2) = 0, corresponding to
λ = a/j with j ≥ 1 an integer. These modes have
Ey(0, t) ≡ 0, thus a node at the locationof the antenna
and cannot absorb energy. The amplitudes of the elec-
tric and magnetic fields of the first of these modes,
corresponding to ka/2 = π, is shown in Fig. S-12.8.
Note that Ey(x) is a continuous and symmetric func-
tion of x , as required, but its derivative ∂Ey/∂x is
discontinuous at x = 0.
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S-12.10 A One-Dimensional Cavity Fed by an Antenna (2)

(a) Due to the symmetry of the problem it is sufficient to consider the fields for x ≥ 0.
For x > a/2, i.e., inside the right wall, we have, see, for instance, Problems (6.9),
(6.14) and (11.1),

Ey(x) = Ese
−(1−i)(x−a/2)/δ , Bz(x) = i+ 1

kδ
Ese

−(1−i)(x−a/2)/δ (x > a/2) ,

(S-12.98)
where Es is the electric field at the surface, to be determined from the continuity
conditions for Ey and Bz at x = a/2. The boundary condition at the antenna is still
(S-12.89), thus we have

E+eika/2 + E−e−ika/2 = Es , (S-12.99)

E+eika/2 − E−e−ika/2 = i+ 1

kδ
Es , (S-12.100)

E+ − E− = 2π

c
K0 . (S-12.101)

We first apply these equations to the case ka = π(2n + 1), corresponding to the
normal modes of the cavity. Since e±iπ(n+1/2) = ±(−1)ni, the system reduces to

(−1)ni E+ − (−1)niE− = Es , (S-12.102)

(−1)ni E+ + (−1)niE− = i+ 1

kδ
Es , (S-12.103)

E+ − E− = 2π

c
K0 , (S-12.104)

with solutions

E± = ±π

c
K0

(
1± i+ 1

kδ

)
. (S-12.105)

The electric field at x = 0 is

E(0) = 2π

c
K0

i+ 1

kδ
= 2(i+ 1)

(2n + 1)

K0

c

a

δ
, (S-12.106)

and the average power supplied by the antenna per unit surface is

〈Ps(t)〉 = 1

2
Re(K0E

∗
0 ) = −

π

c

K 2
0

kδ
= − 1

2n + 1

K 2
0

c

a

δ
. (S-12.107)
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(b) In the case of an arbitrary value of ω = kc, we have to solve the linear system of
three equations in the three unknowns E+, E− and Es given by (S-12.99)–(S-12.101).
The determinant is

� = −2(1+ i)

kδ
cos(ka/2)+ 2i sin(ka/2) , (S-12.108)

and applying Cramer’s rule we eventually obtain

E± = ± 2π

c�
K0

(
1+ i

kδ
∓ 1

)
e∓ika/2 , Es = −4πK0

c�
. (S-12.109)

Thus we have

Ey(0) = −2πi

c
K0

sin(ka/2)+ kδ 1+i
2 cos(ka/2)

cos(ka/2)− kδ 1+i
2 sin(ka/2)

. (S-12.110)

The average power supplied by the antenna per unit surface is thus

〈Ps(t)〉 = 1

2
Re(K0E

∗
0 ) =

π

c
K 2

0 Im

[
sin(ka/2)+ kδ 1+i

2 cos(ka/2)

cos(ka/2)− kδ 1+i
2 sin(ka/2)

]
(S-12.111)

= − π

2c
K 2

0
kδ

[cos(ka/2)+ (kδ/2) sin(ka/2)]2 + (kδ/2)2 sin2(ka/2)
,

and is non-vanishing and finite for all modes, including the normal modes, because
of dissipation inside the walls. For resonant modes with cos(ka/2) = 0 and
| sin(ka/2)| = 1,we obtain 〈Ps(t)〉 = (π/c) (K 2

0/kδ), which diverges for δ → 0 since
the resonance is not damped by dissipation at this limit. The behavior of (S-12.111)
for the first three resonances in the case of a cavity with a = 4 cm is shown for
δ = 6× 10−3 cm, a typical skin depth for Al in the microwave region, in Fig.
S-12.9. The three resomaces occur at λ1 = 2a = 8 cm, λ3 = 2a/3 = 2.6667 cm and
λ5 = 2a/5 = 1.6 cm, km = 2π/λm . Thus k1δ = 4.71× 10−3, k3δ = 1.41× 10−2 and
k5 = 2.36× 10−2. Note that, in reality, δ is frequency dependent. Figure S-12.10
shows the effect of a larger skin depth, namely δ = 1 mm, meaning a very poor con-
ductor. Broadenings and shifts of the resonances are clearly visible, particularly at
higher modes. Shifts and broadenings of resonances are very common phenomena in
physics, for instance they occur for the harmonic oscillator in the presence of losses.
For modes with sin(ka/2) = 0, we obtain 〈Ps(t)〉 = (πK 2

0/2c) kδ which is much
smaller than near resonance for good conductors since kδ � 1.
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Fig. S-12.9 Fig. S-12.10
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Chapter S-13
Solutions for Chapter 13

S-13.1 Electrically and Magnetically Polarized Cylinders

(a) Long cylinders. In the “magnetic case”, the parallel component of the auxiliary
field, H = B/[(μ0) μr] (here, and the following, the parentheses mean that μ0 appears
in SI units only, not in Gaussian units) is continuous at the lateral surface of the
cylinder. Thus the magnetic field inside the cylinder, Bi, is

Bi = μrB0 . (S-13.1)

The interface condition for the electric field is that the parallel component of E must
be continuous at the lateral surface, thus we have for the internal field

Ei = E0 . (S-13.2)

These results are consistent with the analogy between the equations for E in elec-
trostatics and H in magnetostatics and in the absence of free currents, i.e. ∇ × E = 0
and ∇ ×H = 0.
(b) Flat cylinders. In the “magnetic case ”, the perpendicular component of B is
continuous at the bases, thus we have

Bi = B0 . (S-13.3)

In the “electric case”, the perpendicular component of the auxiliary vector D must be
continuous at the interface, thus internal field is

Ei = 1

εr
E0 . (S-13.4)

These results are consistent with the analogy between the equations for B and for
D in electrostatics and in the absence of free charges, i.e. ∇ · B = 0 and ∇ · D = 0.
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(c) Let us assume (S-13.2) as zero-order solution for the case of the “long” dielectric
cylinder. According to (3.1) the cylinder acquires a uniform electric polarization

P = εr − 1

4πke
Ei = εr − 1

4πke
E0 , (S-13.5)

corresponding to two bound surface charge densities σb = P · n̂ = ±P at the cylinder
bases. When evaluating the field at the cylinder center, due to the condition a � h
the total bound charges on the two bases can be approximated by two point charges
±Q, with

Q = πa2P = a2(εr − 1)

4ke
E0 =

⎧⎨
⎩

πa2ε0 (εr − 1) E0 , SI,

a2(εr − 1)

4
εr E0 , Gaussian,

(S-13.6)

located at distances ±h/2. Thus, at the cylinder center we have an additional field

Eb 	 −2ke Q

(h/2)2
= −2 (εr − 1) E0

(a
h

)2
, (S-13.7)

corresponding to a second-order correction. The electric field up to the second order
in (a/h) is thus

E(2)
i = Ei + Eb = E0

[
1− 2(εr − 1)

(a
h

)2
]

. (S-13.8)

In the corresponding “magnetic case”, the formal analogy between H and E leads
to a second-order correction to the auxiliary field Hi at the cylinder center

Hb = −2(μr − 1) H0

(a
h

)2
, (S-13.9)

where H0 = B0/(μ0). Because of the formal analogy betweenH andE, the correction
to H at the center of the cylinder can be interpreted as due to the presence of fictitious
equivalent magnetic charges Qm = ±πa2M on the two cylinder bases. The fictitious
magnetic charge densities σm = ±M at the two bases are associated to the magneti-
zation M = χm H0, where χm is given by (5.22) in terms of μr. Each magnetic charge
gives origin to an auxiliary field

H =

⎧⎪⎪⎨
⎪⎪⎩

1

4π

Qm

r2
r̂ , SI,

1

c

Qm

r2
r̂ , Gaussian.

(S-13.10)
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Recalling that, in SI units, B = μ0(H+M), we obtain for the magnetic field at the
cylinder center

B = μ0(H0 +M)+ μ0Hb = μr H0 + μ0Hb ≡ Bi + Bb , (S-13.11)

and the second-order correction is

Bb = −2(μr − 1) B0

(a
h

)2
. (S-13.12)

In Gaussian units we have B = H+ 4πM, the second order correction remaining the
same as in (S-13.12).

Notice that it would have been wrong to write

Bb = (μ0)μrHb (wrong!) , (S-13.13)

as it would have been wrong to write

Eb 	 −2ke
εr

Q

(h/2)2
= −2 (εr − 1)

εr
E0

(a
h

)2
(wrong!) , (S-13.14)

instead of (S-13.7), because we are considering the fields generated by polarization
charges, and inserting μr or εr would mean taking the effects of the medium polariza-
tion into account twice.

Fig. S-13.1

Alternatively, we can recall that the zero-order
approximation of the cylinder magnetization is

M = χmHi = χm
Bi

(μ0) μr
= χm

B0

(μ0)
, (S-13.15)

again, μ0 appearing in SI units only. The magnetiza-
tion is associated to a surface magnetization current
density Km = M× n̂/bm on the lateral surface of the
cylinder

Km = χm

bm

B0

(μ0)
φ̂ , (S-13.16)

where φ̂ is the azimuthal unit vector of the cylindrical
coordinateswith the cylinder axis as longitudinal axis.
Thus, the cylinder is equivalent to a finite solenoid of
height h and radius a, with the product nI equal to a
Km. The magnetic field of a finite solenoid on its axis is
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BM = 2πkmnI (cosα1 − cosα2) = 2πkmKm (cosα1 − cosα2)

= 2πkm
χm

bm

B0

(μ0)
(cosα1 − cosα2) = (μr − 1)

B0

2
(cosα1 − cosα2) ,

(S-13.17)

where the angles α1 and α2 are shown in Fig. S-13.1. At the solenoid center we have

cosα1 = − cosα2 = h/2√
a2 + (h/2)2

	 1− 1

2

(
2a

h

)2

= 1− 2
(a
h

)2
, (S-13.18)

thus

BM 	 (μr − 1) B0

[
1− 2

(a
h

)2
]

. (S-13.19)

The total field at the cylinder center equals the external field B0 plus the field due to
the cylinder magnetization

B(0) = B0 + BM = μrB0 − 2μrB0

(a
h

)2 + 2B0

(a
h

)2

= μrB0 − 2(μr − 1)B0

(a
h

)2
, (S-13.20)

in agreement with (S-13.19).
The correction to the field at the center of the magnetic “flat” cylinder can be

evaluated as due to a circular loop of radius a carrying an electric current Is = Kmh:

Bb = 2πkm Is
a

= 2πkmKm
h

a
= 2π

km
bm

M
h

a
. (S-13.21)

At zeroth order we have

Hi 	 B0

(μ0) μr
, thus M 	 χm

B0

(μ0) μr
, (S-13.22)

and we get

Bb = μr − 1

2μr

a

h
B0 . (S-13.23)

The auxiliary field H is given by (5.19), thus we have, up to the second order

Hi + Hb = B0 + Bb

(μ0) μr
=

⎧⎨
⎩

B0 + Bb

μ0
− M = Hi + Bb

μ0
SI,

B0 + Bb − 4πM = Hi + Bb Gaussian.
(S-13.24)

Thus we have
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Hb = Bb

(μ0)
= μr − 1

2μr

a

h
H0 . (S-13.25)

Due to the formal analogy between H and E we have for the flat dielectric cylinder

Eb = εr − 1

2εr

a

h
E0 . (S-13.26)

S-13.2 Oscillations of a Triatomic Molecule

(a) The equations of motion for the two lateral masses are

mẍ1 = −k(x1 − xc + �) , mẍ2 = −k(x2 − xc − �) ; (S-13.27)

from (13.1) we obtain for the position of the central mass

xc = − m

M
(x1 + x2) , (S-13.28)

which, substituted into (S-13.27) after dividing by m, leads to a system of two equa-
tions of motion involving x1 and x2 only

ẍ1 = −k
(
1

m
+ 1

M

)
x1 − k

M
x2 − k

m
� , (S-13.29)

ẍ2 = −k
(
1

m
+ 1

M

)
x2 − k

M
x1 + k

m
� . (S-13.30)

Adding and subtracting these equations we obtain

ẍ1 + ẍ2 = −k
(
1

m
+ 2

M

)
(x1 + x2) = −k Mtot

mM
(x1 + x2) (S-13.31)

ẍ1 − ẍ2 = − k

m
(x1 − x2 + 2�) , (S-13.32)

where Mtot = M + 2m is the total mass of the molecule. Thus, introducing the new
variables

x+ = x1 + x2 and x− = x1 − x2 + 2� , (S-13.33)

we obtain the following equations for the normal longitudinal modes of the molecule

ẍ± = −ω2
±x± , where ω+ =

√
kMtot

mM
and ω− =

√
k

m
. (S-13.34)
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Frequencyω+ corresponds to an antisymmetricmotion of themasses: while the lateral
masses move, for instance, to the right by the same amount, the central mass moves
to the left, and vice versa, so that xcm = 0. Frequency ω− corresponds to a symmetric
motion: the lateral masses perform opposite oscillations, while the central mass does
not move.
(b) The electric dipole moment of the molecule is parallel to the molecular axis and
its magnitude is

p = −qx1 + 2qxc − qx2 = −q
(
1+ 2m

M

)
(x1 + x2) = −q Mtot

M
x+ . (S-13.35)

Thus, the dipole oscillates in the antisymetric mode at frequency ω+. The dipole
moment is zero when the molecule oscillates in the symmetric mode, and radiation
at frequency ω− is due only to quadrupole emission, which is weaker than dipole
emission.
(c) The initial conditions for x+ are

x+(0) = x1(0)+ x2(0) = d1 + d2, ẋ+(0) = 0 , (S-13.36)

thus for t > 0

x+(t) = (d1 + d2) cosω+t . (S-13.37)

The symmetric mode is also excited, but does not contribute to the dipole radiation.
The instantaneous radiated power is

P = 2

3c3
| p̈|2 = 2q2

3c3

(
Mtot

M

)2

ω2
+ (d1 + d2)

2 cos2 ω+t . (S-13.38)

S-13.3 Impedance of an Infinite Ladder Network

(a) Our infinite network is a sequence

Fig. S-13.2

of identical sections. As we did for Problem
4.10, we note that adding a further L-section
to the left of of Fig. 13.3 does not change the
impedance of the ladder network. Thus we
must have (see Fig. S-13.2)

Z0 = Z1 + Z2Z0

Z2 + Z0
, (S-13.39)

from which Z2
0 − Z1Z0 − Z1Z2 = 0 follows. The solution is
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Z0 = Z1

2
+

√
Z2
1

4
+ Z1Z2 , (S-13.40)

Fig. S-13.3

The other solution of the quadratic
equation has been discarded because
in the case of real, positive impedances
(the purely resistive case of Problem
4.10) it would give an unphysical neg-
ative value. Thus, a finite ladder of N
sections, terminated by an impedance
Z0 as shown in Fig. S-13.3, is equiva-
lent to the infinite ladder.

(b) In Fig. 13.3, current In flows through the Z1 impedance of the (n + 1)-th section,
thus, the voltage drop across the impedance, Vn − Vn+1, must equal In Z1. On the
other hand, In is input into the semi-infinite ladder network starting at node n, thus
we must have In = Vn/Z0. The two conditions give

Vn − Vn+1 = Vn

Z0
Z1 , (S-13.41)

so that we obtain for the ratio of the voltages at adjacent nodes

α ≡ Vn+1
Vn

= 1− Z1

Z0
. (S-13.42)

If V0(t) = V0 e−iωt is the input voltage, we have Vn = αnV0 e−iωt at the n-th node.
For a purely resistive network we have

Z0 ≡ R0 = R1

2
+

√
R2
1

4
+ R1R2 , (S-13.43)

which is a real number, and α = 1− R1/R0 < 1. At each successive node the signal
is damped by a factor α.
(c) For the LC network we have

Z0 = − iωL

2
+

√
−ω2L2

4
+ iωL

iωC
= − iωL

2
+

√
L

C
− ω2L2

4

=
√

4L2

4LC
− ω2L2

4
− iωL

2
= L

2

√
4

LC
− ω2 − iωL

2

= L

2

(√
ω2
co − ω2 − iω

)
, (S-13.44)

where ωco ≡ 2/
√
LC . Thus
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α = 1− Z1

Z0
= 1+ 2iωL

L
(√

ω2
co − ω2 − iω

) =
√

ω2
co − ω2 + iω√

ω2
co − ω2 − iω

. (S-13.45)

If ω < ωco, the square roots are real and α is the ratio of a complex number to its own
complex conjugate, therefore |α| = 1, and we can write α = eiφ with

tan

(
φ

2

)
= ω√

ω2
co − ω2

. (S-13.46)

Thus the voltage at node n is Vn = V0 einφ−iωt , and the signal propagates along the
network without damping. The above equation also gives the dispersion relation

ω = ωco

∣∣∣∣sin
(

φ

2

)∣∣∣∣ . (S-13.47)

This is analogous to the dispersion relation (S-7.43) found in Problem 7.4, when we
substitute φ for ka.

If ω > ωco, Z0 is a purely imaginary number,

Z0 = ±i
√

ω2 − ωco , (S-13.48)

and α is real

α = ±√
ω2 − ω2

co + ω

±√
ω2 − ω2

co − ω
. (S-13.49)

Fig. S-13.4

Inserting the negative root into (S-13.49)
leads to |α| < 1, and the signal is damped.
The positive root would lead to an unphysical
|α| > 1, implying an amplification of the signal
along the network, without an external energy
source.

Thus the LC network behaves as a low-pass
filter, since signals at frequencies ω > ωco are
attenuated by a factor |α|N after N nodes. The
dependence of the network transmission on fre-
quency approaches an ideal low-pass filter, for

which transmission is zero for ω > ωco, at high numbers of circuit sections N . Figure
S-13.4 shows |α| (solid line) and |α|2 (dashed line) as a functions of the signal fre-
quency ω.
(d) For the CL network (Problem 7.5) we proceed analogously to point c) for the LC
network, and obtain
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Z0 = i

2ωC
+

√
− 1

4ω2C2
+ ωL

ωC
= 1

2C

[√
1

ω2
co

− 1

ω2
+ i

ω

]
, (S-13.50)

and

α =
√

ω−2co − ω−2 − i/ω√
ω−2co − ω−2 + i/ω

. (S-13.51)

We have undamped propagation for |α| = 1, i.e., when ω > ωco. For ω < ωco the
signals are damped, and the network acts as a high-pass filter.

S-13.4 Discharge of a Cylindrical Capacitor

(a) We use cylindrical coordinates (r,φ, z). For symmetry reasons, assuming h � b,
the electric field between the capacitor plates is radial, and easily evaluated from
Gauss’s law as

Er = Er (r) = 2Q0

hr
, (Gaussian units). (S-13.52)

The potential difference V across the plates is

V =
∣∣∣∣∣∣

b∫
a

E · ds

∣∣∣∣∣∣ =
2Q0

h

b∫
a

dr

r
= 2Q0

h
ln(b/a) , (S-13.53)

and the capacity of our cylindrical capacitor is

C = Q0

V
= h

2 ln(b/a)
(S-13.54)

The initial electrostatic energy is Ues(0) = Q2
0/2C .

After the plates are connected through the resistor at t = 0, the system is an RC
circuit, and the capacitor charge at time t is

Q(t) = Q0 e
−t/τ , where τ = RC = Rh

2 ln(b/a)
(S-13.55)
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Fig. S-13.5

Assuming that the charge densities remain uni-
form over the plates during the discharge, the
absolute value of the charge of each plate between
its bottom, z = 0, and any height z < h (see Fig.
S-13.5 for the case of the inner plate of Fig. 13.4)
is

�Q(z, t) = Q(t)
z

h
. (S-13.56)

The decay of the charge implies a current flowing
over each plate, along the ẑ direction. Let Ia(z, t)
and Ib(z, t) be the currents in the inner and outer
plate, respectively, which can obtained from the
continuity equation: for the inner plate

Ia(z, t) = −d[�Q(z, t)]
dt

= Q(t)

τ

z

h
= Q0

τ

z

h
e−t/τ .

(S-13.57)

Since, in the assumption of uniform charge den-
sities, the charge on the outer plate is−�Q(z, t),
then Ib(z, t) = −Ia(z, t).

We can evaluate B in the a < r < b region from Maxwell’s equation

∇ × B = 4π

c
J+ 1

c
∂tE . (S-13.58)

The only nonzero component of J is along z and the only nonzero component of E is
along r , given by

E = r̂
2Q(t)

hr
, (S-13.59)

while B must be independent of φ because of the symmetry of our problem. Thus,
according to the curl components in cylindrical coordinates of Table A.1 of the
Appendix we have

(∇ × B)r = −∂z Bφ = 1

c
∂t Er , (∇ × B)z = 1

r
∂r (r Bφ) = 4π

c
Jz , (S-13.60)

and we see that the only nonzero component of B is Bφ, which can be evaluated from
either of (S-13.60).We choose the second of (S-13.60), and apply Stokes’ theorem to a
circleC of radius a < r < b, coaxial to the capacitor and located at height 0 < z < h,

∮
C

B(r, z, t) · d� = 2πr Bφ(r, z, t) = 4π

c
Ia(z, t) , (S-13.61)

Bφ(r, z, t) = 2

c

Ia(z, t)

r
= 2

chτ

z

r
Q0 e

−t/τ . (S-13.62)
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(b) The Poynting vector is

S = c

4π
E× B = ẑ

Q2
0

πh2τ

z

r2
e−2t/τ , a < r < b , (S-13.63)

and S = 0 if r < a or r > b. The flux of S through a plane perpendicular to z at height
0 < z < h is thus

ΦS(z, t) = Q2
0z

πh2τ
e−2t/τ

b∫
a

1

r2
2πr dr = 2Q2

0z ln(b/a)

h2τ
e−2t/τ . (S-13.64)

The electrostatic energy associated to the volume between the bottom of the capacitor
(z = 0) and height z at time t is

�Ues(z, t) = z

h

Q2(t)

2C
= z

h

Q2
0 e
−2t/τ

2C
= z

h

Q2
0 ln(b/a)

h
e−2t/τ , (S-13.65)

because the electric field does not depend on z. Thus we have

d [�Ues(z, t)]

dt
= −2�Ues(z, t)

τ
= −ΦS(z, t) . (S-13.66)

(c) The assumptions of slowly varying currents and of uniform charge density are
closely related. In fact, the capacitor can be viewed as a portion of a coaxial cable
along which charge and current signals are propagating in TEM mode, at velocity c.
In these conditions, the charge density can be assumed as uniform if the propagation
of the signals is “instantaneous” with respect to the duration of the discharge, i.e., if
the propagation time h/c � τ . This is equivalent to assuming that the wavelengths
corresponding to the frequency spectrum of the signal are much larger than h, so that
the field can be considered as uniform along z.

We can reach the same conclusion by checking that the electric field E1, generated
by the magnetic induction, is much smaller than the electrostatic field E0. From
Maxwell’s equation

∇ × E1 	 −1

c
∂tB , (S-13.67)

where the only nonzero component of B is Bφ, we obtain

∂z E1r = 1

c

2

chτ 2

z

r
Q0 e

−t/τ

E1r = Q0

c2hτ 2

z2

r
e−t/τ = 1

2

( z

cτ

)2
E0r . (S-13.68)

where E0r is from the second of (S-13.59). Thus E1r � E0r if h � cτ .
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S-13.5 Fields Generated by Spatially Periodic Surface
Sources

(a) In this case fields and potential are electrostatic. The potential ϕ = ϕ(x, y) is a
solution of the 2D Laplace’s equation

(∂2
x + ∂2

y)ϕ = 0 for y = 0, (S-13.69)

and, due to the symmetry of the source, must be an even function of y. We attempt
to find a solution by the method of separation of variables, i.e. we look for a solution
ϕ = X (x)Y (y), where X depends only on x and Y only on y. Equation (S-13.69)
becomes

X ′′(x)Y (y)+ X (x)Y ′′(y) = 0 , (S-13.70)

where the double primes denote the second derivatives. Dividing by X (x)Y (y) we
obtain

Y ′′(y)
Y (y)

= − X ′′(x)
X (x)

, (S-13.71)

which must hold for every x, y, implying that both sides of the equation must equal
some constant value, which, for convenience, we denote by α2,

Y ′′(y)
Y (y)

= α2 ,
X ′′(x)
X (x)

= −α2 , (S-13.72)

whose solutions are

Y (y) = Ay e
+αy + By e

−αy , and X (x) = Ax e
+iαx + Bx e

−iαx , (S-13.73)

where Ax , Ay , Bx , and By are constants to be determined. Discarding the solutions
that diverge for |y| → ∞, and fitting the x dependence to the dependence of σ, which
implies α = k, we obtain

ϕ = ϕ0 e
−k|y| cos(kx) , (S-13.74)

where ϕ0 is a constant to be determined. The nonzero components of the electric field
are

Ex = −∂xϕ = kϕ0 e
−k|y| sin(kx) ,

Ey = −∂yϕ = sgn(y) kϕ0 e
−k|y| cos(kx) . (S-13.75)

The component Ex is continuous at the y = 0 plane, as expected, since ∇ × E = 0.
We can obtain the relation between Ey at y = 0 and the surface charge density by
using Gauss’s law,
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Ey(x, y = 0+)− Ey(x, y = 0−) = 4πσ(x) , (S-13.76)

from which we obtain the value of ϕ0, namely ϕ0 = 2πσ0/k, and, finally

ϕ = 2πσ0

k
e−k|y| cos(kx) . (S-13.77)

(b) Here we have magnetostatic fields. Due to the analogy between the Poisson
equations for the vector potential ∇2A = −4πJ/c, and for the scalar potential
∇2ϕ = −4πρ, we can use (S-13.77) for obtaining the vector potential A as

A = ẑ A0 e
−k|y| cos(kx) , where A0 = 2πK0

kc
. (S-13.78)

The nonzero component of the magnetic field are

Bx = ∂y Az = − sgn(y) k A0 e
−k|y| cos(kx) = − sgn(y)

2πK0

c
e−k|y| cos(kx) ,

By = −∂x Az = k A0 e
−k|y| sin(kx) = 2πK0

c
e−k|y| sin(kx) . (S-13.79)

Thus, By is continuous at y = 0, as expected from ∇ · B = 0. Further we have

Bx (x, y = 0+)− Bx (x, y = 0−) = −4π

c
K0 cos(kx) , (S-13.80)

in agreement with Ampère’s law.
(c) Since σ = 0, also the scalar potential is zero, ϕ = 0. The inhomogeneous wave
equation for the vector potential A is, in the Lorentz gauge condition,

∇2A− 1

c2
∂2A
∂t2

= −4π

c
J = −ẑ

4π

c
δ(y) K0 e

−iωt cos(kx) . (S-13.81)

As an educated guess, we search for a solution of the form

A = ẑ A0 e
−q|y|−iωt cos(kx) , (S-13.82)

which, for y = 0 leads to

(
−k2 + q2 + ω2

c2

)
A = 0 , or q2 = k2 −

(ω

c

)2
. (S-13.83)

Thus, if ω < kc, q is real and A decays exponentially with |y|. If ω > kc, q is imag-
inary and the waves propagates, A being proportional to ei|q||y|−iωt . If we integrate
(S-13.81) in dy from −h to +h we obtain
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lim
h→0

+h∫
−h

(
∂2A
∂x2

+ ∂2A
∂y2

− 1

c2
∂2A
∂t2

)
dy = −ẑ

4π

c
K0 e

−iωt cos(kx) . (S-13.84)

Now, both ∂2A/∂x2 and ∂2A/∂t2 are continuous at y = 0 and don’t contribute to the
integral at the limit h → 0. Thus, the left-hand side of (S-13.84) is

lim
h→0

+h∫
−h

∂2A
∂y2

dy = lim
h→0

[
∂yA

]+h
−h = −ẑ A0 q cos(kx) lim

h→0

[
sgn(y) e−q|y|−iωt

]+h
−h

= −ẑ 2A0e
−iωt q cos(kx) , (S-13.85)

which must equal the right-hand side of (S-13.84), leading to

A0 = 2π

qc
K0 (S-13.86)

which, at the static limit ω → 0, q → k, equals (S-13.78).
The nonzero components of the magnetic field are

Bx = ∂y Az = − sgn(y)
2π

c
K0 e

−q|y|−iωt cos(kx) ,

By = −∂x Az = 2πk

qc
K0 e

−q|y|−iωt sinωt , (S-13.87)

which, at the static limitω → 0, q → k, equal (S-13.79). The electric field is obtained
from E = −∂tA/c = iωA/c, and its only nonzero component is

Ez = −2πiωK0

qc2
e−q|y|−iωt cos(kx) . (S-13.88)

(d) In this context, given a function f = f (x, t), we denote its time average by angle
brackets, and its space average by a bar, as follows

〈 f 〉 = ω

2π

+π/ω∫
−π/ω

f dt , f = k

2π

+π/k∫
−π/k

f dx . (S-13.89)

Thus we write the average power dissipated per unit time and unit surface on the
y = 0 plane as

〈
KzEz

〉 = 1

2
Re

[
K0

(
2πiω

qc
K0

)∗]
cos2(kx) = πω

4c
|K0|2 Re

(−i
q

)
. (S-13.90)
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If q is real we have
〈
KzEz

〉 = 0, consistently with the fields being evanescent for
|y| → ∞. There is no energy flow out of the y = 0 plane, and the work done by the
currents is zero on average. On the other hand, if q is imaginary, we have

〈
KzEz

〉 = −πω |K0|2
2|q|c , (S-13.91)

which equals minus the flux of electromagnetic energy out of the y = 0 plane. In fact,
the averaged Poynting vector is

〈
Sy

〉 = c

4π

〈
Ez Bx

〉 = 1

2

c

4π
Re

[
2πiωK0

2qc

(
sgn(y) q∗

2πK ∗0
q∗c

)]
cos2(kx)

= sgn(y)
πω |K0|2
4|q|c , (S-13.92)

where we have used Re(i/q) = 1/|q| (for imaginary q). The flux of energy out of the
y = 0 plane is thus 2

∣∣〈Sy 〉∣∣ = − 〈
KzEz

〉
.

S-13.6 Energy and Momentum Flow Close to a Perfect
Mirror

(a) The total electric field in front of the mirror is the sum of the fields of the incident
(Ei) and of the reflected (Er) waves, which have equal amplitude and frequency, but
opposite polarizations and wavevectors,

E = Ei + Er = ŷ Eε [cos(kx − ωt)− cos(−kx − ωt)]

− ẑ εEε [sin(kx − ωt)− sin(−kx − ωt)]

= ŷ Eε[cos(kx) cos(ωt)+ sin(kx) sin(ωt)− cos(kx) cos(ωt)+ sin(kx sin(ωt)]
− ẑ εEε[sin(kx) cos(ωt)− cos(kx) sin(ωt)+ sin(kx) cos(ωt)+ cos(kx) sin(ωt)]
= ŷ 2Eε sin(kx) sin(ωt)− ẑ 2εEε sin(kx) cos(ωt) , (S-13.93)

where Eε ≡ E0/
√
1+ ε2. We can obtain the magnetic field fromMaxwell’s equation

∂tB = −c∇ × E = ŷ c ∂x Ez − ẑ c ∂x Ey

= −ŷ 2εEε ck cos(kx) cos(ωt)− ẑ 2Eε ck cos(kx) sin(ωt) , (S-13.94)

which yields, after integration in dt ,

B = −ŷ 2εEε
ck

ω
cos(kx) sin(ωt)+ ẑ 2Eε

ck

ω
cos(kx) cos(ωt)

= −ŷ 2εEε cos(kx) sin(ωt)+ ẑ 2Eε cos(kx) cos(ωt) , (S-13.95)
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where we have used k = ω/c. The Poynting vector is

S = c

4π
E× B = x̂

c

4π

(
Ey Bz − Ez By

)

= x̂
cE2

ε

π

[
sin(kx) cos(kx) sin(ωt) cos(ωt)− ε2 sin(kx) cos(kx) cos(ωt) sin(ωt)

]

= x̂
cE2

ε

π
sin(kx) cos(kx) sin(ωt) cos(ωt)

(
1− ε2

)

= x̂
c

4π
E2

ε

(
1− ε2

)
sin(2kx) sin(2ωt) . (S-13.96)

ThusS = 0 if ε = 1, corresponding to circular polarization. In such a case,E is parallel
to B. In general, also when S = 0, we have 〈S〉 = 0, and there is no net energy flow.
(b) From the definition of Ti j we find

Fx = Txx = 1

8π
B2(0−) = 1

4π
E2

ε (cos
2 ωt + ε2 sin2 ωt)

= 2I

c

[
1+ 1− ε2

1+ ε2
cos 2ωt

]
. (S-13.97)

The oscillating (at 2ω) component vanishes for circular polarization. The average of
Fx is the radiation pressure on the mirror (Problem 9.8), which does not depend on
polarization.

S-13.7 Laser Cooling of a Mirror

(a)Aplanewave of intensity I exerts a radiation pressure 2I/c on a perfectly reflecting
surface. Thus the total force on the mirror, directed along the x axis of Fig. 13.5, is

F = 2A

c
(I1 − I2) . (S-13.98)

If I1 > I2 we have F > 0.
(b) The amplitudes of the electric fields of the two waves, in the mirror rest frame S′,
are

E ′1 = γ(E1 − βB1) = γ(1− β) E1 =
√
1− β

1+ β
E1 , (S-13.99)

E ′2 = γ(E2 + βB2) = γ(1+ β) E2 =
√
1+ β

1− β
E2 , (S-13.100)
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whereβ = v/c, γ = 1/
√
1− β2, and E1 = B1, E2 = B2 inGaussian units. The inten-

sity of a plane wave is I = (c/4π) |E× B| = cE2/4π, thus we have

I ′1 =
1− β

1+ β
I1 , I ′2 =

1+ β

1− β
I2 . (S-13.101)

Since we have assumed I1 = I2, the total force is

F ′ = 2A

c
(I ′1 − I ′2) =

2A

c

(1− β)2 − (1+ β)2

1− β2
= −8A βγ2 I

c
. (S-13.102)

(c) From the answer to point (b) we have F ′ < 0, the direction of the force is opposite
to the direction of v. At the limit v � c, the force in the laboratory frame is equal to
the force in the mirror frame, and we have

F 	 F′ 	 −8A I

c2
v , (S-13.103)

which is a viscous force. Under the action of this force, the mirror velocity will
decrease exponentially in time

v(t) = v(0) e−t/τ , where τ = Mc2

8AI
. (S-13.104)

This effect has some analogies with the “laser-cooling” techniques, used in order to
cool atoms down to temperatures of the order of 10−6 K. These include, for instance,
Doppler cooling and Sisyphus cooling. The cooling of a macroscopic mirror by radi-
ation pressure has also been studied [1] for possible applications in experiments of
optical interferometry of ultra-high precision, e.g., for the detection of gravitational
waves.

S-13.8 Radiation Pressure on a Thin Foil

(a) It is instructive to solve this problem by three different methods. For definiteness
we assume a linearly polarized incident wave, with electric field Ei = ŷ Ei eiki x−iωt ,
where ki = ω/c; generalization to arbitrary polarization is straightforward.

First method (heuristic): we assume the incident plane wave to be a square pulse of
arbitrary but finite duration τ , and thus length cτ . The momentum of the wave packet
impinging on the surface A of the foil is, neglecting boundary effects,

pi = 〈Si〉
c2

cτ A = x̂

〈|Ei|2
〉

4πc
τ A = x̂

E2
i

8πc
τ A = x̂

I

c
τ A , (S-13.105)
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where I = 〈|Si|〉 = c
〈|Ei|2

〉
/(4π) = cE2

i /(8π) is the intensity of the incident wave.
The reflected and transmitted wave packets have momenta

pr = 〈Sr〉
c2

cτ A = −x̂ R
E2
i

8πc
τ A = −x̂ R

I

c
τ A , (S-13.106)

pt = 〈St〉
c2

cτ A = +x̂ T
E2
i

8πc
τ A = +x̂ T

I

c
τ A , (S-13.107)

respectively, where R = |r|2, T = |t|2, and R + T = 1 because of energy conserva-
tion. The maount of momentum transfered from the incident wave packet to the foil
is

�p = pi − (pr + pt) , (S-13.108)

resulting in a pressure pushing the foil toward positive x values (because �p > 0)

Prad = |�p|
τ A

= [
1− (−R + T )

] I

c
= 2R

I

c
. (S-13.109)

Second method: we calculate the average force on the foil, parallel to x̂, directly
as

〈F〉 =
d∫

0

〈J× B〉 A dx , (S-13.110)

where we have assumed the left surface of the foil located at x = 0, and the right
surface located at x = d. For a very small thickness d we can write

A

d∫
0

〈J× B〉 dx = 1

2
Ad

〈
J (t)

[
B(0+)+ B(0−)

]〉

= − Ac

8π

〈[
B2(0+)− B2(0−)

]〉
, (S-13.111)

where we have substituted J (t) = − [
B(0+)− B(0−)

]
c/(4πd). Since we have

|B(0+)| = |Et| = |t Ei|, and |B(0−)| = ∣∣Ei − Er

∣∣ = ∣∣(1− r) Ei

∣∣, we can write the
radiation pressure on the foil as

Prad = 〈|F|〉
A

= − E2
i

16πc

(|t|2 − |1− r|2) = − I

2c

(|t|2 − |1− r|2) . (S-13.112)

Introducing the shorthand α = (ω2
pd)/(2ωc) in (13.5), so that η = iα, we have
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t = 1

1+ iα
, T = |t|2 = 1

1+ α2
, (S-13.113)

r = − iα

1+ iα
, R = |r|2 = α2

1+ α2
, (S-13.114)

|1− r|2 = 1+ 5α2 + 4α4

(1+ α2)2
, |t|2 − |1− r|2 = − 4α2

1+ α2
, (S-13.115)

and finally

Prad = I

2c2
4α2

1+ α2
= 2R

I

c
. (S-13.116)

Third method: we calculate the flow of EM momentum directly using Maxwell’s
stress tensor Ti j . The theorem of EM momentum conservation states that

dpi

dt
=

∮
S

Ti j n j dS (S-13.117)

(summation over the repeated index is implied), where n̂ is the unit vector normal
to the surface S which envelops the thin foil, and p is the total momentum (EM and
mechanical) of the foil. Since in a steady state the EM contribution is constant, the
RHS of (S-13.117) equals the variation of mechanical momentum, i.e., the force.

Taking into account that the electric field has only the component Ey and the
magnetic field only the component Bz , and that n̂ = ∓x̂ on the left (x = 0−) and right
(x = 0+) surfaces, respectively, the only relevant component of Ti j is Txx , and

dp
dt
= [

Txx (0
+)− Txx (0

−)
]
A . (S-13.118)

For Txx (0+) and Txx (0−) we have

Txx (0
+) = − 1

8π

〈
E2(0+)+ B2(0+)

〉 = − 1

4π

〈|Et|2(0+)
〉

= −T E2
i

8π
,

Txx (0
−) = − 1

8π

〈
E2(0−)+ B2(0−)

〉 = −
〈
E2
i

〉
8π

[|(1+ r)|2 + |(1− r)|2]

= − E2
i

16π

(
1+ |r|2 + rr∗ + 1+ |r|2 − rr∗

)

= −(1+ R)
E2
i

8π
. (S-13.119)

Thus
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dp
dt
= E2

i

8π
(−T + 1+ R) A = 2R

I

c
A , (S-13.120)

which yields (13.6) again.
(b)From theLorentz transformation of the fieldswe obtain the intensity of the incident
wave in the S′ frame, where the foil is at rest,

I ′ = 1− β

1+ β
I , (S-13.121)

and the force on the foil in S′ is F ′ = 2AI ′/c. Since for a force parallel to v we have
F = F ′, in the laboratory frame S we can write

F = F ′ = 2
1− β

1+ β

I

c
A . (S-13.122)

(c) The radiation pressure must be multiplied by a factor R = R(ω′) in the frame S′,
where the frequency is ω′ = √(1− β)/(1+ β) ω. Thus

F = 2
1− β

1+ β
R

(
ω′

) I

c
A , ω′ =

√
1− β

1+ β
ω . (S-13.123)

S-13.9 Thomson Scattering in the Presence of a Magnetic
Field

(a) We write the fields in the complex notation. Within our assumptions, the equation
of motion for the electron is

me
dv

dt
= −e

(
E+ v

c
× B0

)
, (S-13.124)

where −e and me are the charge and mass of the electron, respectively. The solution
has already been evaluated in Problem 7.10, and is

vx = ωc

ω2
c − ω2

e

me
Ei e

−iωt , vy = iω

ω2
c − ω2

e

me
Ei e

−iωt , (S-13.125)

and vz = 0.
(b) The cycle-averaged radiated power is

〈P〉 = e4

3m2
ec

3
|Ei|2 ω2

(
ω2
c − ω2

)2 (
ω2
c + ω2

)
, (S-13.126)
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which is maximum at the cyclotron resonance, ω = ωc. At the low-frequency limit
ω/ωc � 1 we have 〈P〉 ∝ ω2/ω2

c , while at the high-frequency limit ω/ωc � 1 the
power is independent of frequency (“white” spectrum).

The orbit of the electron is elliptical, consequently the angular distribution and
polarization of the scattered radiation are analogous towhat found for an electron in the
presence of an elliptically polarized wave, in the absence of external magnetic fields,
as discussed in Problem 10.9. According to (S-13.125) we have vx/vy = −iωc/ω. At
the limit ω � ωc we have

〈|vx |〉� 〈|vy|
〉
, the major axis of the elliptical orbit of the

electron is thus parallel to x̂, and the strongest radiation intensity is observed on the
yz plane. At the opposite limit, ω � ωc, we have

〈|vx |〉� 〈|vy|
〉
, the major axis of the

orbit is parallel to ŷ, and the strongest radiation intensity is observed on the xz plane.

S-13.10 Undulator Radiation

(a) According to Maxwell’s equation ∇ · B = 0, we must have

∂x Bx = −∂y By = −(∂yb) cos(kx) , (S-13.127)

which, after integration in dx , leads to

Bx = −(∂yb)
sin(kx)

k
, (S-13.128)

where we have set to zero the integration constant. In static conditions, and in the
absence of electric currents, we have ∇ × B = 0, thus we must also have

0 = ∂x By − ∂y Bx = −kb(y) sin(kx)+ (∂2
yb)

sin(kx)

k
, (S-13.129)

which, divided by sin(kx), reduces to

∂2
yb(y) = k2b(y) . (S-13.130)

The even solution (S-13.130) is

b(y) = B0 cosh(ky) , (S-13.131)

where B0 is a constant to be determined. Thus the two nonzero components of B are

Bx = −B0 sin(kx) sinh(ky) , By = B0 cos(kx) cosh(ky) , (S-13.132)

and on the z axis, where x = 0 and y = 0, we have
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B(0, 0, z) = ŷB0 . (S-13.133)

(b) The Lorentz transformations from the laboratory frame S to S′ give for the fields
in S′

B ′x = Bx [x(x ′, t ′), y′] = −B0 sinh(ky
′) sin[kγ(x ′ + vt ′)] , (S-13.134)

B ′y = γBy[x(x ′, t ′), y′] = γB0 cosh(ky
′) cos[kγ(x ′ + vt ′)] , (S-13.135)

E ′z = γvBy[x(x ′, t ′), y′] = γvB0 cosh(ky
′) cos[kγ(x ′ + vt ′)] .(S-13.136)

where γ = 1/
√
1− v2/c2. Since the boost is parallel to the x axis, we have y′ = y.

Disregarding the magnetic force in S′, the electron oscillates along ẑ′ under the
action of the electric field E ′ = E ′z(0, 0, t ′) = γvB0 cos(ω′t ′), whereω′ = kγv. Thus,
in S′, we observe aThomson scattering, and the electron emits electric-dipole radiation
of frequency ω′.
(d) Transforming back to S, the frequencies of the radiation emitted in the forward
(+) and backward (−) directions are

ω± = γ(1± β) ω′ = γ(1± β)kγv = kcγ2β(1± β) , (S-13.137)

where β = v/c.
In S′, the electron does not emit radiation along its direction of oscillation, i.e.,

along ẑ′. This corresponds to two “forbidden” wavevectors k′ ≡ (0, 0,ω′/c) and k′ ≡
(0, 0,−ω′/c). By a back transformation to S we obtain

kx = γ

(
k ′x ±

ω′

c
β

)
= ±γβ

ω′

c
, ky = 0 , kz = k ′z =

ω′

c
, (S-13.138)

thus, in S, we have no radiation emission at the angles ±θ in the xz plane such that

tan θ = kz
kx
= 1

γβ
. (S-13.139)

The “undulator radiation”, emitted by high-energy electrons injected along a periodi-
cally modulated magnetic field, is at the basis of free-electron lasers emitting coherent
radiation in the X-ray frequency range.



S-13 Solutions for Chapter 13 519

S-13.11 Electromagnetic Torque on a Conducting Sphere

(a) We can write the electric field of the wave as

E(z, t) = E0[x̂ cos(kz − ωt)− ŷ sin(kz − ωt)]
= Re[E0(x̂ + iŷ) ei(kz−ωt)] , (S-13.140)

where k = ω/c = 2π/λ. Since a � λ, we can consider the electric and magnetic
fields of the wave as uniform over the volume of the sphere, and neglect the magnetic
induction effects. Thus, the sphere can be considered as located in a uniform rotating
electric field

E0(t) = Re
(

Ẽ0 e
−iωt

)
, where Ẽ0 = E0(x̂ + iŷ) . (S-13.141)

In the presence of oscillating fields, the complex electric permittivity of a medium of
real conductivity σ is defined as

ε̃(ω) = 1+ 4πiσ

ω
. (S-13.142)

Thus, our problem is analogous to Problem 3.4, where we considered a dielectric
sphere in a uniform external electric field. The internal electric field and the dipole
moment of the sphere are

Ẽint = 3

ε̃+ 2
Ẽ0 = 3Ẽ0

3+ 4πiσ/ω
= − 3iωtd

1− 3iωtd
Ẽ0 , (S-13.143)

p̃ = PV = χẼintV = 3V

4π

ε̃− 1

ε̃+ 2
Ẽ0 = 3V

4π

4πiσ/ω

3+ 4πiσ/ω
Ẽ0 ,

= 3V

4π

4πiσ

3ω + 4πiσ
Ẽ0 = 3V

4π

i/td
3ω + i/td

Ẽ0 = 3V

4π

i

3ωtd + i
Ẽ0

= 3V

4π

1+ 3iωtd
(3ωtd)2 + 1

Ẽ0 (S-13.144)

where V = 4πa3/3 is the volume of the sphere, and td = 1/(4πσ). By writing the
complex numerator in terms of its modulus and argument we have

1+ 3iωtd =
√
1+ (3ωtd)2 e

iφ , where φ = arctan(3ωtd) , (S-13.145)

and, substituting into (S-13.144) we obtain

p̃ = 3V

4π

Ẽ0√
1+ (3ωtd)2

eiφ , (S-13.146)
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and, for the real quantity,

p = Re

[
3V

4π

E0√
1+ (3ωtd)2

(x̂ + iŷ) e−i(ωt−φ)

]

= 3V

4π

E0√
1+ (3ωtd)2

[x̂ cos(ωt − φ)+ ŷ sin(ωt − φ)] . (S-13.147)

Thus the dipole moment of the sphere rotates with a phase delay φ relative to the
electric field of the wave.
(b) The torque acting on an electric dipole p in the presence of an electric field E is
τ = p× E. In our case, the angle between p and E0 is constant in time and equal to
φ, thus the torque is

τ = ẑ |p||E0| sin φ = ẑ
3V

4π

E2
0√

1+ (3ωtd)2
sin φ . (S-13.148)

The same result can be obtained by evaluating

τ = 1

2
Re

(
p̃× Ẽ∗

)
= Re

[
3V

8π

E2
0 e

iφ√
1+ (3ωtd)2

(x̂ + iŷ)× (x̂ − iŷ)

]

= Re

[
3V

8π

E2
0 (cosφ+ i sin φ)√

1+ (3ωtd)2
(−2i ẑ)

]
= ẑ

3V

4π

E2
0√

1+ (3ωtd)2
sin φ .

(S-13.149)

S-13.12 Surface Waves in a Thin Foil

(a) As an educated guess, we search for solutions for the unknown quantities Ex , and
Bz of the form

Ex (x, y, t) = Ẽx (x) e
iky−iωt , Bz(x, y, t) = B̃z(x) e

iky−iωt , (S-13.150)

where Ẽx (x), and B̃z(x) are complex functions to be determined.According to (13.10),
Ey is symmetric (even) for reflection across the x = 0 plane. Since in vacuumwe have
∇ · E = ∂x Ex + ∂y Ey = 0, we obtain

∂x Ẽx = −ikE0 e
−q|x | , (S-13.151)

which, after integration in dx , leads to
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Ẽx (x) = sgn(x)
ik

q
E0 e

−q|x | =

⎧⎪⎪⎨
⎪⎪⎩
− ik

q
E0 e

qx , x < 0,

ik

q
E0 e

−qx , x > 0.
(S-13.152)

Thus, the Ex component is antisymmetric (odd) for reflection across the x = 0 plane.
Since our fields are independent of z, Maxwell’s equation ∇ × E = −∂tB/c reduces
to

− 1

c
∂t Bz = ∂x Ey − ∂y Ex = sgn(x)

(
k2

q
− q

)
E0 e

−q|x | ei(ky−ωt) , (S-13.153)

which, after integration in dt and division by −ei(ky−ωt)/c, leads to

B̃z = sgn(x)
ic

qω

(
q2 − k2

)
E0 e

−q|x | , (S-13.154)

thus B̃z , like Ẽx , is an odd function of x .

Fig. S-13.6

We can obtain the surface charge density σ(y, t) and the
surface current density K(y, t) on the foil from the boundary
conditions at the x = 0 plane. Figure S-13.6 shows the surface
current K and the magnetic field close to the foil.

σ(y, t) = 1

4π

[
Ex

(
x = 0+, y, t

)− Ex
(
x = 0−, y, t

)]

= i
2k

q
E0 e

i(ky−ωt) , (S-13.155)

Ky(y, t) = − c

4π

[
Bz

(
x = 0+, y, t

)− Bz
(
x = 0−, y, t

)]

− i
c2

2πqω

(
q2 − k2

)
E0 e

i(ky−ωt) , (S-13.156)

while the z component of K is zero because its presence would imply a nonzero y
component of B.
(b) The time-averaged Poynting vector can be written as

〈S〉 = c

4π
〈E× B〉 = c

8π

[
x̂Re(Ẽy B̃

∗
z )− ŷRe(Ẽx B̃

∗
z )

]
, (S-13.157)

where

Ẽy B̃
∗
z = − sgn(x)

ic

qω

(
q2 − k2

) |E0|2 e−2q|x |, (S-13.158)

Ẽx B̃
∗
z =

kc

q2ω

(
q2 − k2

) |E0|2 e−2q|x | . (S-13.159)
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We thus obtain 〈Sx 〉 = 0 because Ẽy B̃∗z , is purely imaginary, and the energy flow is
in the ŷ direction only:

〈S〉 = −ŷ
kc

8πq2ω

(
q2 − k2

) |E0|2 e−2q|x | . (S-13.160)

(c) Form Helmholtz’s equation, we obtain

q2 − k2 + ω2

c2
= 0 . (S-13.161)

(d) From (S-13.156) we can write, within our approximations,

J = K
�
= −ŷ i

c2

2πq�ω

(
q2 − k2

)
E0 e

i(ky−ωt) (S-13.162)

and, combining with (13.11), we obtain

−i c2

2πq�ω

(
q2 − k2

)
E0 e

i(ky−ωt) = 4πi
ω2
p

ω
E0 e

i(ky−ωt) ,

q2 − k2 = −8π2
ω2
p

c2
q� . (S-13.163)

where ωp =
√
4πnee2/Me is the plasma frequency of the foil material. The product

2ne�, appearing in the expression ω2
p� = 4πne�e2, is the surface number density of

the electrons in the foil, which is the relevant parameter in this problem.
(e) By comparing (S-13.161) and (S-13.163) we obtain

ω2 = 8π2ω2
p q� = Ωqc , where Ω = 8π2ω2

p�

c
. (S-13.164)

Solving (S-13.161) for q yields

cq2 +Ωq − k2c = 0 ⇒ q =
√

Ω2 + (2kc)2 −Ω

2c
, (S-13.165)

where the root sign has been chosen so to have q > 0, as required by the bound-
ary conditions, and in agreement with (13.10). Eventually, we obtain the dispersion
relation:

ω2 = c2k2 − c2q2 = 1

2

[
Ω

√
Ω2 + (2kc)2 −Ω2 − (2kc)2

]
. (S-13.166)
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S-13.13 The Fizeau Effect

(a) In the rest frame of the medium, S′, we have ω′/k ′ = c/n. The Lorentz transfor-
mations from the laboratory frame S to S′ lead to

ω′ = γ(ω − uk) 	 (ω − uk) , k′ = γ

(
k − uω

c2

)
	

(
k − uω

c2

)
, (S-13.167)

since γ 	 1 up to the first order in β = u/c. Dividing the two equations side by side
we obtain

c

n
= ω′

k ′
	 ω − uk

k − uω/c2
= vϕ − u

1− vϕu/c2
, (S-13.168)

where, in the last step, we have divided numerator and denominator by k, and substi-
tuted the phase velocity in the laboratory frame, vϕ = ω/k. Multiplying the first and
last term by 1− vϕu/c2 we obtain

c

n
− u

vϕ

cn
= vϕ − u ⇒ vϕ

(
1+ u

cn

)
= c

n
+ u ⇒ vϕ = c(c + nu)

cn+ u

⇒ vϕ = c
1+ nβ

n+ β
	 c

(
1

n
+ n2 − 1

n2
β

)
, (S-13.169)

where, in the last step, we have approximated the fraction by its first-degree Taylor
polynomial in β. The phase velocity in the laboratory frame S is thus

vϕ = c

n
+ u

(
1− 1

n2

)
. (S-13.170)

The experiment was performed in 1851, with light propagating in flowing water
parallel to the water velocity. Fizeau expected to measure a phase velocity equal
to the phase velocity of light in water, c/n, plus the flow velocity of water, u, i.e.,
vϕ = (c/n)+ u, while the experimental result was in agreementwith (S-13.170). This
found a satisfactory explanation only 54 years later, in 1905, when Einstein published
his theory of special relativity.
(b) Equation (S-13.170) takes into account the first-order correction to vϕ in β = u/c
for a non-dispersive medium. If the medium is dispersive according to a known law
n = n(ω), we must also take into account that the frequency ω′ observed in the rest-
frame of the medium is different from the radiation frequency ω in the laboratory
frame. We want to calculate the first-order correction to (S-13.170) in �ω = ω′ − ω.
We need to correct only the fist term of the right-hand side of (S-13.170), since the
second term is already first-order, and a correction to it would be second-order. The
first-order Doppler effect gives us

�ω = ω′ − ω 	 −ω
n(ω) u

c
, (S-13.171)
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since the light velocity in the medium is c/n(ω), an the medium is traveling away
from the light source. Thus we have

c

n(ω′)
	 c

n(ω)
+�ω ∂ω

(
c

n(ω)

)

= c

n(ω)
+

(
−ω

n(ω) u

c

)[
− c

n2(ω)
∂ωn(ω)

]

= c

n(ω)
+ ω

u

n(ω)
∂ωn(ω) , (S-13.172)

and the first-order expression for the phase velocity in the case of a dispersive medium
is

vϕ(ω) = c

n(ω)
+ u

[
1− 1

n2(ω)
+ ω

n(ω)
∂ωn(ω)

]
+ O(u2) . (S-13.173)

(c) The refractive index of the free electron medium is n(ω) = (1− ω2
p/ω

2)1/2, where
ωp is the plasma frequency. Thus we have inside the square brackets of (S-13.173)

1− 1

n2(ω)
= − 1

1− ω2
p/ω

2
= ω2

p

ω2 − ω2
p

, (S-13.174)

and

ω

n(ω)
∂ωn(ω) = − ω

(1− ω2
p/ω

2)1/2

1

(1− ω2
p/ω

2)3/2

ω2
p

ω3
= − ω2

p

ω2 − ω2
p

,

(S-13.175)
so that the two first-order corrections to vϕ(ω) cancel out, and the phase velocity is
independent of the flow velocity of the medium up to the second order in β.

S-13.14 Lorentz Transformations for Longitudinal Waves

(a) The Lorentz transformations for the wave frequency and wavevector are, in the
case of a boost along x̂,

ω′L = γ (ωL − VkL) , k ′L = γ

(
kL − VωL

c2

)
, (S-13.176)

where γ = 1/
√
1− V 2/c2. In the special case where the boost velocity equals the

phase velocity, V = vϕ = ωL/kL , we have ω′L = 0, and the fields are independent of
time (static) in S′. Further, recalling that kL = ωL/vϕ, we have
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k ′L =
1√

1− v2
ϕ/c2

(
ωL

vϕ
− vϕ ωL

c2

)
= 1√

1− v2
ϕ/c2

ωL

vϕ

(
1− v2

ϕ

c2

)

= ωL

vϕ

√
1− v2

ϕ/c2 = kL

γ
. (S-13.177)

If S′ moves with velocity x̂ V = x̂ vϕ relative to S, the fields in S′ are obtained from
(9.3) and are

E′ = E′(x ′) = x̂ E0 e
ik ′Lx ′ , B′ = 0 , (S-13.178)

i.e. E′ is constant in time. The charge and current densities in S′ can be obtained either
by Lorentz transformations or directly from the equations

ρ′ = 1

4π
∇′ · E′ = 1

4π
∂x ′E

′
x and 4πJ′ + ∂′tE

′ = 0 , (S-13.179)

which lead to

ρ′ = ik ′L
4π

E0 e
ik ′Lx ′ , J′ = 0 . (S-13.180)

(b) The Lorentz transformations for the case V = c2/vϕ = c2kL/ωL, and vϕ > c, lead
to the following values for k ′L and ω′L

k ′L = γ

(
kL − VωL

c2

)
= 0 ,

ω′L = γ

(
ωL − k2L c

2

ω

)
= γωL

(
1− V 2

c2

)
= ωL

γ
, (S-13.181)

which imply that the fields propagate in space with infinite phase velocity, oscillating
with uniform phase at frequency ω′L. The fields are

E′ = E′(t ′) = x̂ E0 e
−iω′t ′ , B′ = 0 , (S-13.182)

i.e. E′ is uniform in space. We also obtain ρ′ = 0, and J′ = J/γ.
(c) The Lorentz transformations of the wavevector and the frequency for a boost along
the y axis are

k ′Lx = kLx = kL ,

k ′Ly = γ

(
kLy − VωL

c2

)
= −γ

VωL

c2
,

ω′L = γ(ωL − VkLy) = γωL . (S-13.183)
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All fields and currents depend on space and time through a factor ei(k
′
Lx x

′+k ′Ly y′−ω′L t ′),
thus, the propagation direction forms an angle

θ′ = arctan(k ′Ly/k
′
Lx ) = − arctan(γV vϕ/c2) (S-13.184)

with the x ′ axis. The wave has field amplitudes

E ′x = γ

(
Ex + V

c
Bz

)
= γE0 , (S-13.185)

B ′z = γ

(
Bz − V

c2
Ex

)
= −γ

V

c2
E0 , (S-13.186)

all other field components being zero. Thus, in a frame moving transversally to the
propagation direction, the wave is no longer purely longitudinal and electrostatic.

S-13.15 Lorentz Transformations for a Transmission Cable

(a)The continuity equation for a linear charge density iswritten∂tλ = −∂z I . Inserting
the expressions for λ and I of (13.14) we obtain

− iωλ0 = −ik I0 , ⇒ I0 = ω

k
λ0 = vϕλ0 . (S-13.187)

(b) The dispersion relation is

ω = vϕ k = c

n
k = c√

ε
k , (S-13.188)

with

vϕ = c√
ε

and k = ω

vϕ
= ω

√
ε

c
. (S-13.189)

The electric field can be evaluated by applying Gauss’s law to a cylindrical surface
coaxial to the wire, of radius r and height h. Since the field is transverse, and we have
cylindrical symmetry around the wire, the only nonzero component of E is Er

E(r, z, t) = r̂
2λ

εr
= r̂ Er (r) e

ikz−iωt , where Er (r) = 2λ0

εr
. (S-13.190)

The magnetic field can be evaluated by applying Stokes’ theorem to a circle of radius
r , coaxial to the wire. Because of symmetry, the only nonzero component of B is the
azimuthal component Bφ
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B(r, z, t) = φ̂
2I

rc
= φ̂ Bφ(r) e

ikz−iωt , where Bφ(r) = 2I0
rc
= 2ωλ0

krc
,

(S-13.191)
that can be rewritten as

Bφ(r) = εω

kc
Er (r) = εvϕ

c
Er (r) = c

vϕ
Er (r) . (S-13.192)

(c) The wave frequency ω′ in the frame S′, moving at the phase velocity ẑ vϕ relative
to the laboratory frame S, is

ω′ = γ
(
ω − vϕk

) = 0 , (S-13.193)

where we have used the second of (S-13.189). Thus the fields are static in S′. For our
Lorentz boost we have

β = ẑ
vϕ

c
= ẑ√

ε
, γ = 1√

1− 1/ε
=

√
ε

ε− 1
, (S-13.194)

and the wave vector k ′ in S′ can be written

k ′ = γ
(
k − vϕ ω

c2

)
=

√
ε

ε− 1

(
ω
√

ε

c
− ω

c
√

ε

)
= ω

c

√
ε− 1 . (S-13.195)

The (z′, t ′)-dependence (actually, only z′-dependence) of our physical quantities in
S′ will thus be through a factor eik

′z′ . The amplitude of linear charge density in S′ is

λ′0 = γ
(
λ0 − vϕ

c2
I0
)
= γ

(
λ0 −

v2
ϕ

c2
λ0

)
= γ

(
1

γ

)2

λ0 = λ0

γ
. (S-13.196)

The amplitude of the current in S′ is

I ′0 = γ
(
I0 − vϕλ0

) = 0 . (S-13.197)

The field amplitudes transform according to (9.3), thus we have

E ′r = γ
(
Er − βBφ

) = γ

(
Er − vϕ

c

c

vϕ
Er

)
= 0 , (S-13.198)

B ′φ = γ

(
Bφ −

v2
ϕ

c2
Er

)
= γ

(
Bφ − vϕ

c

vϕ

c
Bφ

)
= Bφ

γ
. (S-13.199)

It might seem surprising that, in S′, we have λ′ = 0 and E ′r = 0, while I ′ = 0 and
B ′φ = 0. The reason is that we must take into account also the polarization charge of
the medium in contact with the wire, λp(z, t), the presence of a polarization current,
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Jp(r, z, t), and their Lorentz transformations. In the laboratory frame S we must have
λ(z, t)+ λp(z, t) = λ(z, t)/ε, thus

λp(z, t) = −ε− 1

ε
λ0 e

ikz−iωt = −λ0

γ2
eikz−iωt = λ

(p)
0 eikz−iωt , (S-13.200)

where λ
(p)
0 = −λ0/γ

2. The electric field (S-13.190) generates a polarization of the
medium

P(z, r, t) = r̂
ε− 1

4π
Er (r) e

ikz−iωt = r̂ Pr (r) e
ikz−iωt , (S-13.201)

where

Pr (r) = ε− 1

4π

2λ0

εr
= ε− 1

ε

λ0

2πr
= 1

γ2

λ0

2πr
. (S-13.202)

A time-dependent polarization is associated to a polarization current density

Jp = ∂tP = −r̂ iωPr (r) e
ikz−iωt = r̂ Jr (r) e

ikz−iωt (S-13.203)

where

Jr (r) = −iωPr (r) = −i ω

γ2

λ0

2πr
. (S-13.204)

Thus, Jp is radial in S. According to the first of (9.1), we have a polarization four-
current

J (p)
μ (r, z, t) =

[
c �

(p)
0 (r), r̂ Jr (r)

]
eikz−iωt , (S-13.205)

where, for instance

�
(p)
0 (r) =

⎧⎪⎨
⎪⎩

λ
(p)
0

πr20
, if r < r0

0 if r > r0

, so that λ
(p)
0 =

∞∫
0

�
(p)
0 (r) 2πr dr , (S-13.206)

and we are interested in the limit r0 → 0. We can thus write

J (p)
μ (r, z, t) = Gμ(r) e

ikz−iωt , where Gμ =
[
c �

(p)
0 , r̂ Jr (r)

]
. (S-13.207)

The four-vector Gμ transforms according to (9.2), thus we have in S′

G ′0 = γ (G0 − β ·G) = γG0 , (S-13.208)

since the spacelike component of Gμ, being radial, is perpendicular to β. The ampli-
tude of the linear polarization charge density in S′ is
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λ
(p)′
0 = γ

∞∫
0

G0

c
2πr dr = γλ

(p)
0 = −γ

λ0

γ2
= −λ0

γ
, (S-13.209)

which cancels (S-13.196), therefore we have E′ = 0. The radial component of Jp does
not contribute to the magnetic field, thus we are interested in

G ′‖ = γ
(
G‖ − βG0

) = −γβG0 = −γβ �
(p)
0 (r) c , (S-13.210)

which corresponds to a polarization current in S′ of amplitude

I (p)′
0 =

∫
∞

G ′‖ 2πr
′ dr ′ = −γvϕλ

(p)
0 = γvϕ

λ0

γ2
= I0

γ
(S-13.211)

in agreement with (S-13.199).

S-13.16 A Waveguide with a Moving End

(a) The electric field of the TE10 must be parallel to the two conducting planes, thus
it must vanish on them, and be of the form E(x, y, t) = ẑ E0 cos(πy/a) f (x, t). The
dispersion relation is

ω2 = ω2
co + k2c2 , where ωco = πc

a
(S-13.212)

is the cutoff frequency of the waveguide. In our terminated waveguide, the global
electric field is the superposition of the fields of the wave incident on the terminating
wall at x = 0, and of the reflected wave. Incident and reflected wave have equal
amplitudes, thus

E(x, y, t) = ẑ E0 cos
(πy

a

)
sin(kx) e−iωt , (S-13.213)

where the phase has been chosen so that E(0, y, t) = 0. The magnetic field can be
obtained from the relation ∂tB = −c∇ × E, and has the components

Bx = − ic

ω
∂y Ez = iπc

ωa
E0 sin

(πy

a

)
sin(kx) e−iωt , (S-13.214)

By = ic

ω
∂x Ez = −kc

ω
E0 cos

(πy

a

)
cos(kx) e−iωt . (S-13.215)

Note that Bx (0, y, t) = 0, as required.
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(b) In the frame S′ where the waveguide termination is at rest (v′ = 0), the incident
wave has frequency and wavevector

ω′i = γ(ω − βkc) , k ′i = γ(k − βω/c) , (S-13.216)

where β = v/c. Since we assumed β < kc/ω, we have k ′i > 0 (note that ω′i > 0 any-
way because k < ω/c). In S′ the reflected wave has frequency and wavevector

ω′r = ω′i , k ′r = −k ′i . (S-13.217)

By transforming back into the laboratory frame S we obtain

ωr = γ(ω′r + βk ′r c) = γ2
[
(1+ β2) ω − 2βkc

]
, (S-13.218)

kr = γ
(
−k + β

ω

c

)
= γ2

[
−(1+ β2) k + 2β

ω

c

]
, (S-13.219)

As a check, at the limit a →∞ we have ωco → 0 and k → ω/c, and we obtain
(S-9.54) of Problem 9.6 for the frequency reflected by a moving mirror. With some
algebraic manipulations we obtain

ω2
r − c2k2r = γ4

{[
(1+ β2) ω − 2βkc

]2 − c2
[
−(1+ β2) k + 2β

ω

c

]2}

= γ4 [(1+ β2) ω − 2βkc + (1+ β2) kc − 2βω
]×

× [
(1+ β2) ω − 2βkc − (1+ β2) kc + 2βω

]
= γ2

[
(1− β)2ω + (1− β)2kc

] [
(1+ β)2ω + (1+ β)2kc

]
= (ω + kc)(ω − kc) = ω2 − k2c2 . (S-13.220)

(c) If v > kc2/ω, in S′ we have k ′i < 0, the incident wave propagates parallel to −x̂′,
and cannot reach the waveguide termination. In these conditions there is no reflected
wave. The condition is equivalent to v > vg , the group velocity in the waveguide.

S-13.17 A “Relativistically” Strong Electromagnetic Wave

(a) The equations of motion for px , py , and pz in the presence of the electromagnetic
fields of the wave are
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dpx
dt

= −eEx + e

c
vz By , (S-13.221)

dpy
dt

= −eEy − e

c
vz Bx , (S-13.222)

dpz
dt

= −e

c
vx By + e

c
vy Bz . (S-13.223)

In general the magnetic contribution is not negligible, since vz is not necessarily much
smaller than c. However, if we assume vz = 0, the magnetic force vanishes. In these
conditions the solutions of (S-13.221)–(S-13.222) are

dpx
dt

= −eE0 cosωt ,
dpy
dt

= −eE0 sinωt , (S-13.224)

px = −eE0

ω
sinωt , py = +eE0

ω
cosωt . (S-13.225)

Inserting these solutions into (S-13.223) we have

dpz
dt

= e

meγ
(−px By + py Bx ) =

= e

meγ

eE2
0

ωc
(− sinωt cosωt + cosωt sinωt) = 0 , (S-13.226)

so that a pz is constant in time. Either assuming vz = 0 as initial condition or by a
proper change of reference frame, vz = 0 is a self-consistent assumption.
(b) Since p2 = p2x + p2y = (eE0/ω)2 does not depend on time, the Lorentz factor

γ = √
1+ p2/(mec)2 =

√
1+ [eE0/(meωc)]2 is a constant. This implies

dp
dt
= me

d(γv)

dt
= γme

dv

dt
. (S-13.227)

The equations of motion have the same form as in the non-relativistic case if we make
the replacement me → γme. The relativistic behavior can be obtained by attributing
an “effective mass” γme, dependent on the wave intensity, to the electron.
(c) Accordingly, the refractive index for the relativistic case can be simply
obtained by replacing me → meγ into the non-relativistic expression, so that ωp =√

(4πnee2/me) → ωp/
√

γ. We thus obtain

n2(ω) = 1− 4πnee2

meγω2
= 1− ω2

p

γω2
. (S-13.228)

(d) The dispersion relation corresponding to n2(ω) in (S-13.228) is

ω2 = k2c2 + ω2
p

γ
. (S-13.229)
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The cutoff frequency is ωco = ωp/
√

γ and depends on the wave amplitude. Since γ >

1, a plasma can be opaque to a low-intensity wave for which ωp > ω, but transparent
to a high-intensity wave of the same frequency if γ > ωp/ω.

It should be stressed, however, that the concept of a refractive index dependent on
the wave intensity deserves some care. What we have discussed above is just a special
case of “relativistically induced transparency”, applying to a plane, monochromatic,
infinite wave. In the case of a real light beam, of finite duration and extension, different
parts of the beam can have different amplitudes, and thus can have different phase
velocities, resulting in a complicated nonlinear dispersion.10 However, (S-13.229) can
be of help to a qualitative discussion of some important nonlinear effects observed
for a relativistically strong wave. An important example is the propagation of a strong
beamof finitewidth, forwhich the effective refractive index is higher at the boundaries
(where the intensity is lower and γ is smaller) than on the beam axis. This can com-
pensate diffraction, analogously to what occurs in an optical fiber (see Problem 12.6),
and can cause self-focusing.

S-13.18 Electric Current in a Solenoid

(a) This problem originated from the question: “can the electric field in a solenoid
have circular field lines, as seems to be required for driving the current in each turn of
the coil?” The answer is obviously no in static conditions, since ∇ × E must be zero.
But a uniform field is sufficient to drive the current, since the coil of a real solenoid
does not consist of single circular circular loops perpendicular to the axis (each loop
would require its own current source, in this case!) The winding of a real solenoid is
actually a helix, of small, but nonzero pitch. The current is driven by the component
of E parallel to the wire, equal to (assuming E = E ẑ)

E‖ = E sin θ 	 E
a

πb
. (S-13.230)

The perpendicular component E⊥ is compensated by the electrostatic fields generated
by the surface charge distribution of the wire, analogously to Problem 3.11. Thus, the
current density and intensity in the wire are

J = σE‖ 	 σE
a

πb
, I = Jπa2 	 σa3

b
E . (S-13.231)

Neglecting boundary effects, the current generates a uniform field B(int) = ẑ Bz , with

10 In some cases, nonlinearity effects can compensate dispersion for particular wavepacket shapes,
these special solutions can propagate without changing their envelope shape, and are known as
solitons.
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Bz = 4πnI

c
= 4π I

2ac
	 2π a2σ

bc
E , (S-13.232)

inside the solenoid, since n = 1/(2a) is the number of turns per unit length. The
field outside the solenoid, B(ext), is generated by the total current I flowing parallel
to ẑ. Thus in the external central region 0 < r � h, |z| � h, the field is azimuthal,
B(ext) = φ̂ Bφ, with

Bφ 	 2I

cr
= 2πJa2

cr
	 2σa3

bcr
E , b < r � h , |z| � h , (S-13.233)

where the z origin is located at the center of the solenoid.
(b) In the external central region 0 < r � h, |z| � h, the fields Ez and Bφ are asso-
ciated to a a Poynting vector

S = c

4π
E× B = −r̂

c

4π
Ez Bφ = −r̂

σa3

2πbr
E2 , (S-13.234)

with an entering flux through the lateral surface of a coaxial cylinder of length �

Φin = 2πr�
σa3

2πbr
E2 = σa3�

b
E2 . (S-13.235)

The power dissipated by Joule heating in a solenoid portion of length � is obtained
by multiplying the power dissipated in a single turn

Wturn = I 2R =
(

σa3

b
E

)2 2πb

πa2σ
= 2σa4

b
E2 , (S-13.236)

by the number of turns �/(2a)

W (�) = 2σa4

b
E2 �

2a
= σa3�

b
E2 , (S-13.237)

in agreement with Poynting’s theorem.

S-13.19 An Optomechanical Cavity

(a) In the following we omit the vector notation for the electric fields, since the results
are independent of the polarization. The general expression for the electric field of a
monochromatic plane wave propagating along x is, in complex notation,

E(x, t) = E(x)e−iωt = (
E1e

+ikx + E2e
−ikx) e−iωt , (S-13.238)
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where k = ω/c. The boundary conditions at the two perfectly conducting walls are
E(±d/2) = 0, thus we must have

E1e
+ikd/2 + E2e

−ikd/2 = 0 , E1e
−ikd/2 + E2e

+ikd/2 = 0 . (S-13.239)

This system of two equations has nontrivial solutions for E1 and E2 only if the
determinant is zero,

eikd − e−ikd = 2i sin(kd) = 0, (S-13.240)

from which we obtain

kd = nπ (n = 1, 2, 3, . . .) ω = kc = n
πc

d
, (S-13.241)

E2 = −E1e
inπ = (−1)n+1E1 . (S-13.242)

Thus, the electric field of the n-th mode is

En(x) = E0

2

[
einπx/d + (−1)n+1e−inπx/d

]
. (S-13.243)

The magnetic field can be obtained from ∂tB = −∇ × E:

Bn(x) = E0

2

[
einπx/d − (−1)n+1e−inπx/d

]
. (S-13.244)

(b) The field is thus the superposition of two plane monochromatic waves of equal
frequency ω and amplitude E0/2, propagating in opposite directions. The radiation
pressure on each reflecting wall is thus the pressure exerted by a normally incident
wave of intensity I = c|E0/2|2/8π, evaluated in Problem 8.5,

P = 2I

c
= |E0|2

16π
. (S-13.245)

(c) The energy per unit surface inside the cavity is independent of time and can be
evaluated as

U =
+d/2∫
−d/2

1

8π

(∣∣E2
∣∣+ ∣∣B2

∣∣) dx . (S-13.246)

We have
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∣∣E2
∣∣ = |E0|2

2

[
1+ (−1)n+1 cos

(
2nπx

d

)]
, (S-13.247)

∣∣B2
∣∣ = |E0|2

2

[
1− (−1)n+1 cos

(
2nπx

d

)]
. (S-13.248)

Integrating over x , the oscillating terms of both expressions average to zero, and we
finally have

U = |E0|2d
16π

π = Pd . (S-13.249)

(d) At mechanical equilibrium, the force due to the radiation pressure on the walls
must balance the recoil force of the springs. Assuming that each wall is displaced by
δ from its equilibrium position in the absence of fields, we have

PS = K δ = MΩ2δ , (S-13.250)

where Ω = √K/M is the free oscillation frequency of the walls. Thus

MΩ2δ

S
= P = |E0|2

16π
, (S-13.251)

from which we obtain δ = α
∣∣E2

0

∣∣ where

α = S

16πMΩ2
= S

16πK
. (S-13.252)

The length of the cavity is now d + 2δ, and the resonance condition is

d + 2δ = n
λn

2
= n

πc

ωn
, (n = 1, 2, . . .) , (S-13.253)

where the mode frequencies are

ωn = 2πc

λn
= nπc

d + 2α|E0|2 . (S-13.254)

This is a simple classical example of a resonant cavity where the frequency and
amplitude of the wave depend on each other (and on the cavity length), the link being
due to radiation pressure effects; this is called an optomechanical cavity [4].
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S-13.20 Radiation Pressure on an Absorbing Medium

We assume the incident wave to be linearly polarized parallel to ŷ for definiteness
(the generalization to a different polarization is straightforward). The electric field of
the wave is thus E(x, t) = ŷ Ey(x, t), with

Ey(x, t) =
{
Re

(
Ei eikx−iωt + Er e−ikx−iωt

)
, (x < 0) ,

Re
(
Eteiknx−iωt

)
, (x > 0) ,

(S-13.255)

where Ei = √8π Ii/c, and

Er = 1− n
1+ n

Ei , Et = 2

1+ n
Ei (S-13.256)

(Fresnel formulas at normal incidence). Themagnetic field of thewave can be obtained
from ∂tB = −∇ × E, we have B(x, t) = ẑ Bz(x, t), with

Bz(x, t) =
{
Re

(
Ei eikx−iωt − Er e−ikx−iωt

)
, (x < 0) ,

Re
(
nEt eiknx−iωt

)
, (x > 0) .

(S-13.257)

The field for x > 0 is exponentially decaying, since

Et e
ik(n1+in2)x−iωt = Et e

ikn1−iωt e−kn2x , (S-13.258)

the decay length being (kn2)−1 = λ/(2πn2)� λ/n1, where λ = 2πc/ω is the wave-
length in vacuum.

The cycle-averaged value of the Poynting vector at the x = 0 plane gives the flux of
electromagnetic energy entering the medium. Since the field decays with increasing
x , there is no net flux of energy for x →∞, and all the energy entering the medium
is eventually absorbed. Using (S-13.255) and (S-13.257) we find

〈Sx (0+)〉 =
〈 c

4π
Ey(0

+, t)Bz(0
+, t)

〉
= 1

2

c

4π
Re(Etn∗E∗t ) =

c

8π
|Et|2Re(n∗)

= c

8π
n1|Et|2 = c

8π
n1

4

|1+ n|2 |Ei|2 = 4n1
|1+ n|2 Ii ≡ AIi . (S-13.259)

The reflection coefficient R = |Er/Ei|2 = |1− n|2/|1+ n|2. Thus

1− R = 1−
∣∣∣∣1− n
1+ n

∣∣∣∣
2

= 2(n+ n∗)
|1+ n|2 = 4Re(n)

|1+ n|2 =
4n1

|1+ n|2 = A .(S-13.260)

(b)The pressure on themedium is the flow of electromagnetic momentum through the
x = 0 surface. Such flow is given, in the present conditions, by Prad = −〈Txx (x = 0)〉
where Ti j is Maxwell stress tensor (see Problem 8.5). Since
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Txx (0, t) = T11(0, t) = − 1

8π

(
E2(0, t)+ B2(0, t)

)
(S-13.261)

we obtain

〈T11(0, t)〉 = − 1

16π
|Et |2

(
1+ |n|2

)
= − 1

4π
|Ei|2 1+ |n|2

|1+ n|2 =
1

4π
|Ei|2 |1+ n|2 − 2Re(n)

|1+ n|2

= − 1

8π
|Ei|2

(
2− 4n1

|1+ n|2
)
= − Ii

c
(1+ R) ≡ −Prad. (S-13.262)

The same result can also be obtained by calculating the total average force per unit
surface exerted on the medium by the electromagnetic field

PEM =
+∞∫
0

〈(J× B)x 〉 dx , (S-13.263)

since the electric term gives no contribution. The current density J inside the medium
can be obtained from the equation J = (c∇ × B− ∂tE)/4π, obtaining

Jy = Re

(
− ikcn

4π

n
c
Et e

−iknx−iωt + iω

4π
Et e

−iknx−iωt
)

= Re

(
iω

4π

(
1− n2

)
Et e

−iknx−iωt
)

. (S-13.264)

A further way to obtain this result is recalling the relation between conductivity and
dielectric permittivity for complex fields, i.e.,

σ(ω) = − iω

4π
[εr (ω)− 1] = − iω

4π

[
n2(ω)− 1

]
. (S-13.265)

We thus have

〈
Jy Bz

〉 = 1

2

ω

4π
Re

{[
i
(
1− n2

)
Et e

(−ikn1−n2)x] [n∗E∗t e(+ikn1−n2)x]}

= 1

8π
|Et|2Re

[
i
(
1− n2

)
n∗

]
e−2n2x . (S-13.266)

Now

Re
[
i
(
1− n2

)
n∗

] = Re
[(
1− n21 + n22 − 2in1n2

)
(in1 + n2)

] = n2
(
1+ n21 + n22

)
= n2

(
1+ |n|2) , (S-13.267)

thus, by substituting in (S-13.263) and comparing to (S-13.262) we obtain
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PEM =
∞∫
0

〈
Jy Bz

〉
dx = 1

2

1

4π
|Et|2n2

(
1+ |n|2)

∞∫
0

e−2n2xdx

= 1

2π
|Ei|2 1+ |n|

2

1− |n|2 n2
1

2n2
= Prad . (S-13.268)

S-13.21 Radiation and Scattering from a Linear Molecule

(a) At the initial time t = 0, we assume the center of mass of the molecule to be at
rest at the origin of our Cartesian coordinate system. The center of mass will remain
at rest, since the net force acting on the molecule is zero. However, the field E0 exerts
a torque τ 0 = p0 × E0, and the molecule rotates around the z axis. The equation of
motion is Iθ̈ = τ 0, or

Iθ̈ = −p0E0 sin θ , (S-13.269)

where θ = θ(t) is the angle between p0 and the x axis. The potential energy of the
molecule is

V (θ) = −p0 · E0 + C = −ppE0 cos θ + C , (S-13.270)

where C is an arbitrary constant. The molecule has two equilibrium positions, at
θ = 0 (stable), and θ = π (unstable), respectively. For small oscillations around the
stable equilibrium position we can approximate sin θ 	 θ, and (S-13.269) turns into
the equation for the harmonic oscillator

θ̈ 	 − p0E0

I θ ≡ −ω2
0θ , where ω2

0 =
E0 p0
I . (S-13.271)

Thus, if the molecule starts at rest at a small initial angle θ(0) = θ0, we have θ(t) 	
θ0 cosω0t . The potential energy of the molecule can be approximated as

V (θ) 	 −p0E0

(
1− θ2

2

)
+ C = 1

2
p0E0 θ2 = 1

2
Iω2

0 θ2 , (S-13.272)

where we have chosen C = p0E0, in order to have V (0) = 0. The kinetic energy of
the molecule is

K (θ̇) = 1

2
Iθ̇2 . (S-13.273)

(b) In our coordinate system the instantaneous dipole moment has components

px = p0 cos θ 	 p0 , py = p0 sin θ 	 p0θ0 cos(ω0t) , (S-13.274)
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so that, for small oscillations, the radiation emitted by the molecule is equivalent to
the radiation of an electric dipole parallel to ŷ, and of frequency ω0. The radiation
is linearly polarized, and the angular distribution of the emitted power is ∼ cos2 α,
where α is the observation angle relative to E0. Thus, the radiated power per unit solid
angle is maximum in the xz plane and vanishes in the ŷ direction. The time-averaged
total emitted power is

Prad = 1

3c3
|p̈|2 = 1

3c3
ω4
0 p

2
0θ

2
0 . (S-13.275)

We assume that the decay time is much longer than the oscillation period, so that
we can write

θ(t) 	 θs(t) cosω0t , (S-13.276)

with θs(0) = θ0, and θs(t) decaying in time so slowly that it is practically constant
over a single oscillation. In these conditions the total energy of the molecule during
a single oscillation period can be written

U (t) = K (θ̇)+ V (θ) 	 1

2
Iω2

0 θ2s (t) . (S-13.277)

The rate of energy loss due to the emitted radiation is

dU

dt
= ω2

0Iθs
dθs
dt
= −Prad(θs) , (S-13.278)

from which we obtain

dθs
dt
= − 1

3c3
ω2
0 p

2
0

I θs . (S-13.279)

Thus the oscillation amplitude decays exponentially in time

θs(t) = θ0 e
−t/τ , with τ = 3Ic3

ω2
0 p

2
0

. (S-13.280)

(c) Since kd � 1, the electric field of the wave can be considered as uniform over
the molecule, and we can write E1(0, t) 	 E1e−iωt in complex notation. The torque
exerted by the wave is τ1 = p0 × E1. The complete equation of motion for the
molecule is thus

Iθ̈ = −p0E0 sin θ − p0E1 cos θ e−iωt , (S-13.281)

which, at the limit of small oscillations (sin θ 	 θ, cos θ 	 1) becomes
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θ̈ = −ω2
0 θ − ω2

1 e
−iωt , with ω2

1 =
E1 p0
I = ω2

0
E1

E0
. (S-13.282)

The general solution of (S-13.282) is the sum of the homogeneous solution considered
at point (a), which describes free oscillations, and of a particular solution of the
complete equation. A particular solution can be found in the form θ(t) = θf e−iωt ,
which, substituted into (S-13.282), gives

θf = ω2
1

ω2 − ω2
0

. (S-13.283)

For simplicity, we neglected the possible presence of friction in (S-13.271). However,
in principle a friction term such as−θ̇/τ should appear because of the energy loss by
radiation. In the presence of the plane wave the friction term is relevant only close to
the ω = ω0 resonance, because τ−1 � ω0.
(d) After a transition time of the order of τ possible initial oscillations at ω0 are
damped, and the the molecule reaches a steady state where it oscillates at frequency
ω. Assuming, as in (b), small-amplitude oscillations, we have an oscillating dipole
component py 	 p0 θf e−iωt . The scattered power is

Pscatt = 1

3c3
| p̈y|2 = p20

3c3
ω4ω4

1

(ω2 − ω2
0)

2
= p40E

2
1

3I2c3
ω4

(ω2 − ω2
0)

2
. (S-13.284)

The intensity of the wave is I = (c/4π)E2
1 , thus the scattering cross section is

σscatt = Pscatt
I

= 4π p40
3I2c4

ω4

(ω2 − ω2
0)

2
. (S-13.285)

An order-of-magnitude estimate for a simple molecule such as H2 can be performed
by noticing that p0 ∼ ed and I ∼ md, with m ∼ mp the mass of the nuclei, so that
(p40/I2c4) ∼ (e2/mpc2)2.

S-13.22 Radiation Drag Force

(a) The electric field of the wave in complex notation is

E = ŷRe
(
E0 e

ikx−iωt) . (S-13.286)

Neglecting the magnetic field, the particle oscillates in the ŷ direction without chang-
ing its x and z coordinates. Thus, assuming the particle to be initially located at the ori-
gin of our Cartesian system, and looking for a solution of the form v = Re(v0 e −iωt ),
we obtain by substitution into (13.21):
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v0 = ŷ
iq

m(ω + iν)
E0 . (S-13.287)

(b) The power developed by the electromagnetic force is qE · v. Thus

Pabs = 〈qE · v〉 = q

2
Re

(
E0v

∗
0

) = q2

2m

ν

ω2 + ν2
|E0|2. (S-13.288)

(c) The electric dipole moment of the particle is p = qr. Using Larmor’s formula for
the radiated power we obtain

Prad = 2

3c3
〈
p̈2

〉 = 2q2

3c3
〈
r̈2

〉 = q4

3m2c3
ω2

ω2 + ν2
|E0|2. (S-13.289)

Assuming Prad = Pabs, we obtain

ν = 2q2ω2

3mc3
. (S-13.290)

(d) We must evaluate

Fx =
〈q
c
vy Bz

〉
, (S-13.291)

where for vy we use the result of (a), while the amplitude of the magnetic field is
B0 = E0. Thus we have

Fx = q

2c
Re

(
v0E

∗
0

) = Pabs
c

. (S-13.292)

Thus, the ratio between the energy and the momentum absorbed by the particle from
the electromagnetic field equals c.
(e)The radiation froma cluster smaller than onewavelength is coherent and thus scales
as N 2, so does the total force. The clustermass scales as N , thus the acceleration scales
as N 2/N = N . In other terms, a cluster of many particles may be accelerated much
more efficiently than a single particle: the higher the number of particles (within
the limits of our approximations), the stronger the acceleration. This is the basis of
a concept of “coherent” acceleration using electromagnetic waves, formulated by
Veksler [3].
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S-13.23 A Coaxial Cable with a Faraday Generator

(a) Let us consider a cylinder of radius r and height h, with a < r < b, internal to and
coaxial with the conducting toroid, as shown in Fig. S-13.7. The flux of the current
density J through the lateral surface of the cylinder is

I =
∫

lat. surf.

J · dS = 2πrh Jr , (S-13.293)

where we have used the symmetry of our problem. From (S-13.293) we obtain

J(r) = I

2πhr
r̂ . (S-13.294)

Fig. S-13.7

We have assumed that the current I is parallel
to the z axis in the outer shield of the coax-
ial cable, and antiparallel in the inner conduc-
tor. Obviously, changing the sign of I would
change the sign of J. Here and in what follows
the values of B and ω are positive if they are
parallel to the ẑ unit vector, I is positive if the
current is parallel to ẑ in the outer shield, J
and E are positive if parallel to r̂.
(b) The potential difference between the outer
and inner lateral surfaces of the toroid is

V = −
b∫

a

E(r) dr = −
b∫

a

ηJr (r) dr

= − η I

2πh

b∫
a

dr

r
= − η I

2πh
ln

(
b

a

)
, (S-13.295)

and the corresponding resistance is

R =
∣∣∣∣VI

∣∣∣∣ = η

2πh
ln

(
b

a

)
. (S-13.296)

(c) The surface charge densities on the lateral surfaces of the toroid can be evaluated
fromGauss’s law, remembering thet the electric field is zero for both r < a and r > b,
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σa = 1

4πke

[
E(a+)− E(a−)

] = η I

8π2keha
=

⎧⎪⎪⎨
⎪⎪⎩

ε0η I

2πha
, (SI),

η I

8π2ha
, (Gaussian),

(S-13.297)

σb = 1

4πke

[
E(b+)− E(b−)

] = − η I

8π2kehb
=

⎧⎪⎪⎨
⎪⎪⎩
− ε0η I

2πhb
, (SI),

− η I

8π2hb
, (Gaussian).

(S-13.298)

Note that the inner and outer lateral surfaces carry the same total charge, with opposite
sign: Qa = −Qb = η I/(4πke) . For the volume charge density ρ inside the toroid we
have

ρ = 1

4πke
∇ · E = 1

4πke
∇ · (ηJ) = 1

4πke
η ∇ · J = 0 . (S-13.299)

Alternatively, Eqs. (S-13.297)–(S-13.298) can be considered as a consequence of
(S-13.299), since we can write the electric field as

E = r̂
η I

2πhr
H(r − a) H(b − r) , where H(x) =

{
0 if x ≤ 0 ,

1 if x > 0 ,

(S-13.300)
is the Heaviside step function. The derivative of H(x) is the Dirac delta function δ(x),
so that, for instance, for r close to a we have

ρ(r) = 1

4πke
∇ · E = η I

8π2keha
δ(r − a) , (S-13.301)

which corresponds to the surface charge density of (S-13.297). We have used Table
A.1 for the divergence in cylindrical coordinates.
(d) The rotation about the z axis preserves the cylindrical symmetry of the problem. In
stationary conditions we still have∇ · J = 0, and (S-13.293) and (S-13.294) still hold,
independently of the presence of the magnetic field B. The simultaneous presence of
B and rotation adds a new contribution to the Lorentz force acting on the single charge
carrier q due to the local azimuthal velocity V(r) = ω × r, namely

fB = bmqV(r)× B = ±bmqωB r =

⎧⎪⎨
⎪⎩
±qωB r , (SI),

±qωB r
c

, (Gaussian),
(S-13.302)

where the + sign holds if ω and B are parallel, the − sign if they are antiparallel.
On the other hand, the only nonzero component of the electric field is Er , so that
E = Er r̂ , because of the symmetry of the problem and of the condition ∇ × E = 0,
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B being constant in time. Remembering that the resistivity η is the ratio of the total
Lorentz force per unit charge to the current density, we have

Jr = Er ± bmωBr

η
, (S-13.303)

which leads to

Er = ηJr ∓ bmωBr = η
I

2πhr
∓ bmωBr . (S-13.304)

If ω and B are parallel, the magnetic contribution to the Lorentz force is parallel to E,
and a smaller electric field is sufficient to maintain the electric current. If ω and B are
antiparallel, a larger electric field is needed to compensate the magnetic contribution.
The volume charge density is, remembering that in stationary conditions ∇ · J = 0,

ρ(r) = 1

4πke
∇ · E = 1

4πke
∇ · (∓bmωBr) = ∓ 1

4πke

1

r

∂

∂r

(
bmωBr2

)

= ∓bmωB

2πke
=

⎧⎪⎨
⎪⎩
∓2ε0ωB , (SI),

∓ ωB

2πc
, (Gaussian),

(S-13.305)

where, again, we have used Table A.1. The upper sign holds if the vectors ω and B
are parallel, the lower sign if they are antiparallel. The surface charge densities on the
lateral surfaces of the toroid are

σa = 1

4πke

[
E(a+)− E(a−)

] = η I

8π2keha
∓ bmωBa

4πke
=

⎧⎪⎪⎨
⎪⎪⎩

ε0η I

2πha
∓ ε0ωBa , (SI),

η I

8π2ha
∓ ωBa

4πc
, (Gaussian),

(S-13.306)

σb = 1

4πke

[
E(b+)− E(b−)

] = − η I

8π2kehb
± bmωBn

4πke
=

⎧⎪⎪⎨
⎪⎪⎩
− ε0η I

2πhb
± ε0ωBb , (SI),

− η I

8π2hb
± ωBb

4πc
, (Gaussian).

(S-13.307)

The presence of a nonzero volume charge density ρ in the rotating toroid implies
the presence of an azimuthal component of the current density Jφ(r) = ρ(r)V(r). In
principle this current contributes to the total magnetic field, however this contribution
is negligible for realistic rotation velocities. Further, Jφ does not contribute to the
torque exerted by the magnetic forces on the toroid, see next point.
(e)The torque τ exerted by themagnetic field on the toroid involves only the azimuthal
component of the force per unit volume, i.e.,
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fvφ = bm(J× B)φ = −bm Jr (r)Bz = −bm I B

2πhr
, (S-13.308)

independently of the azimuthal component of J. The total torque τ = τ ẑ is obtained
by integrating themoment of the force per unit volume fv with respect to the symmetry
axis of our system over the toroid volume

τ =
∫

r × fv r dφ dr dz = ẑ

b∫
a

r fvφ 2πhr dr

= −ẑ
bm I B

2πh

b∫
a

2πhr dr = −ẑ
bm I B

2

(
b2 − a2

)
. (S-13.309)

Themechanical power needed to keep the toroid in rotation at constant angular velocity
is

Pm = −τ · ω = bm I Bω

2

(
b2 − a2

)
. (S-13.310)

(f) The power dissipated by Joule heating in the rotating toroid is

Pd =
∫

ηJ 2
r r dφ dr dz =

b∫
a

ηJ 2
r 2πhrdr =

η I 2

2πh
ln

(
b

a

)
= RI 2 , (S-13.311)

as we could expect. Requiring Pd = Pm we obtain

I = bmBω

2R

(
b2 − a2

) =
⎧⎪⎪⎨
⎪⎪⎩

Bω

2R

(
b2 − a2

)
, (SI),

Bω

2Rc

(
b2 − a2

)
, (Gaussian),

, (S-13.312)

meaning that the electromotive force in the toroid is E = bmBω
(
b2 − a2

)
/2. Note

that

E = bm

b∫
a

V× B · dr = bm

b∫
a

(r × ω)× B · dr = bm
Bω

(
b2 − a2

)
2

. (S-13.313)

S-13.24 Reflection and Transmission from a Moving
Transparent Medium

(a) In the following we use signed wave vectors, k > 0 denoting a wave propagating
parallel to the x axis and k < 0 a wave propagating antiparallel to the x axis.
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Introducing the quantities β = V/c and γ = 1/
√
1− β2, and applying the Lorentz

transformations to the incident-wave four-vector we obtain for S′

ω′i = γ(1− β) ωi , k ′i = γ(1− β) ki = ω′i/c , (S-13.314)

where ki = ω/c is the wave vector in S.
The reflected wave in S′ has frequency ω′r = ω′i and wave vector k ′r = −k ′i . Trans-

forming back to the laboratory reference frame S we obtain

ωr = γ (1− β) ω′r =
1− β

1+ β
ωi , k ′r = γ (1− β) k ′r = −

1− β

1+ β
ki . (S-13.315)

The phase velocity of the reflected wave is

vr = ωr

kr
= −ωi

ki
= −c, (S-13.316)

where the minus sign simply mean that the wave is propagating in the −x̂ direction.
In S′ the transmitted wave has frequency ω′t = ω′i and wave vector k ′t = nk ′i =

nω′i/c. Transforming back to S we obtain

ωt = γ (ω′t + βck ′t ) = γ(1+ βn) ω′i = γ2(1+ βn)(1− β)ωi , (S-13.317)

kt = γ

(
k ′t +

β

c
ω′t

)
= γ (n+ β)

ω′i
c
= γ2(n+ β)(1− β) ki . (S-13.318)

The phase velocity is

vt = ωt

kt
= 1+ βn

n+ β

ωi

ki
= 1+ βn

n+ β
c . (S-13.319)

(b) First we apply the Lorentz transformations in order to obtain the fields of the
incident wave in S′

E ′i = γ(1− β)Ei , B ′i = E ′ . (S-13.320)

The electric fields E ′r and E ′t of the reflected and transmitted wave. respectively, can
be obtained from the Fresnel equations (11.6) and (11.7) by replacing n1 by 1, n2 by
n and cos θi = cos θt = 1, obtaining

E ′r =
1− n
1+ n

E ′i , E ′t =
2

1+ n
E ′i . (S-13.321)

The magnetic field of the reflected wave is B ′r = −E ′r . Transforming back to S we
obtain
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Er = γ(E ′r + βB ′r ) = γ(1− β)E ′r =
1− β

1+ β

1− n
1+ n

Ei ,

Br = −Er . (S-13.322)

In S′ the magnetic field of the transmitted wave is B ′t = nE ′t , where E ′t is given by
the second of (S-13.321). Transforming back to S we obtain

Et = γ (E ′t + βB ′t ) =
2γ

1+ n
E ′i (1+ βn) = 2γ2(1− β)(1+ βn)

1+ n
Ei ,

(S-13.323)

Bt = γ (B ′t + βE ′t ) =
2γ

1+ n
E ′i (n+ β) = 2γ2(1− β)(n+ β)

1+ n
Ei , (S-13.324)

so that
Et

Bt
= 1+ βn

n+ β
= vt

c
, (S-13.325)

where vt is the phase velocity of the transmitted wave in S.
(c) The refracrive index has a definite value n(ω′i ) in S′, thus we must replace n by
n(ω′i ) in all the above formulae.

S-13.25 The Electromotive Force in Two Different Frames

(a) The flux of the magnetic field through the square coil can be approximated as
Φ = a2B(X),where X is the x coordinate of the center of the loop.This approximation
is valid because of the condition a � L . Further, we are assuming that the self-
inductance of the coil is negligible. Thus, according to Farady’s law, the electromotive
force on the coil is

E = −1

c

dΦ

dt
	 −1

c

d

dt

[
a2

B0

L
X (t)

]
= − B0 a2

cL
V . (S-13.326)

Alternatively, E can be expressed as the line integral of E+ (V/c)× B around the
perimeter of the coil

E =
∮ (

E+ V
c
× B

)
· d� = 1

c

∮
V× B · d�

= V

c

[
−Bz

(
X + a

2

)
+ Bz

(
X − a

2

)]
a = − B0 a2

cL
V , (S-13.327)

since E is zero in the laboratory frame, and, again, X (t) is the x coordinate of the
center of the loop. Note that V× B is directed along −ŷ in the coil sides parallel



548 S-13 Solutions for Chapter 13

to the y axis, Bz(X + a/2) > Bz(X − a/2), thus the resulting electromotive force is
negative.
(b) The electric current flowing in the coil is

I = E
R
= − B0 a2

cRL
V , (S-13.328)

the minus sign meaning that it is flowing clockwise. The Lorentz force on the loop is

FL = 1

c

∮
I (d�× B) = I

c

[
− B0

L

(
X + a

2

)
+ B0

L

(
X − a

2

)]
a x̂

= − I

c

B0 a2

L
x̂ = − B2

0 a
4

c2L2R
V x̂ = − E2

RV
x̂ , (S-13.329)

the minus sign indicates that the Lorentz force is directed along −x̂, thus opposite
to V. In order to maintain the velocity V constant we must apply an external force
F = −FL. The work done by F per unit time is

P = F · V = E2

R
, (S-13.330)

equal to the power dissipated in the coil by Joule heating.
(c) Under the assumption V � c the Lorentz transformations reduce to the Galilean
transformations, with γ 	 1, t ′ 	 t and x ′ 	 x − V t . Thus in the frame S′ we have
an electric field E′ = (V/c)× B parallel to the y axis, while B′(x ′) 	 B(x ′ + V t),
thus

E ′y(x
′) = −V

c
B ′z(x

′) = −V B0

cL

(
x ′ + V t

)
. (S-13.331)

According to Faraday’s law we have for the electromotive force E′ in S′

E′ = −1

c

dΦ ′

dt
= −1

c

d

dt

[
a2Bz(X

′, t)
] = −a2 ∂B ′z(X ′, t)

∂t

= −a2 B0

cL
V = E . (S-13.332)

Evaluating the electromotive force as the line integral of E′ + (V′/c)× B′ we obtain

E′ =
∮ (

E′ + V′

c
× B′

)
· d�′ =

∮
E′ · d�′ =

[
E ′y

(
X ′ + a

2

)
− E ′y

(
X ′ − a

2

)]
a

= −V

c

[
Bz

(
X ′ + a

2

)
− Bz

(
X ′ − a

2

)]
a = − B0 a2

cL
V = E , (S-13.333)

sinceV′ = 0 in the rest frame of the coil.We haveF′L = FL andF′ = F, and apparently
F′ does no work because the coil is at rest in S′. However, the force F on the coil is
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exerted by something or someone. For the sake of simplicity, let us assume that the
experimenter is pushing the coil while walking on the laboratory floor. According to
Newton’s third law a force−F is exerted on the floor, which is at rest in the laboratory
frame S. Also the magnetic field sources are resting on the floor. In S′ the coil is at
rest, but the floor, and the field sources, are moving with velocity −V. Thus there is
a work done per unit time

P ′ = (−F) · (−V) = FV = P , (S-13.334)

equal to the power dissipated by Joule heating. In other words, in S′ moving the
sources of the magnetic field requires work because of the presence of the coil, which
acts as an electromagnetic brake.

Note: all the above formulae are in Gaussian units. For SI units just remove c every-
where.

S-13.26 Electron Orbits in a Magnetic Field

(a) The equation of motion for the electron is

me
dv

dt
= −e v

c
× B , (S-13.335)

where −e is the electron charge, me its mass and v its velocity. The Cartesian com-
ponents of (S-13.335) are

dvx
dt

= − e vy

mec
Bz(x) , (S-13.336)

dvy

dt
= e vx

mec
Bz(x) , (S-13.337)

dvz
dt
= 0 . (S-13.338)

The motion along z is decoupled from the motion in the xy plane and, for the sake of
simplicity, we can assume vz = 0.Nowwe introduce the vector potentialA = ŷ Ay(x)
such that Bz(x) = (∇ × A)z = dAy(x)/dx . Then we have from (S-13.337)

dvy

dt
= e

mec
vx

dAy(x)

dx
= e

mec

dAy(x)

dt
, (S-13.339)

where d/dt = ∂/∂t = v ·∇ gives the time variation along the electron trajectory.
Thus we have

d

dt

[
vy − eAy(x)

mec

]
= 0 . (S-13.340)
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The constant of motion Py = mevy − eAy(x)/c is the y component of the canonical
momentum [5] and arises from the invariance of the magnetic configuration along y.
(b) Inserting vy = Py/me + eAy(x)/(me c) into (S-13.336) we obtain

me
dvx
dt

= −
[Py

me
+ eAy(x)

me c

]
eBz(x)

c

= − d

dx

[
Py

me

eAy(x)

c
+ 1

2me

(
eAy(x)

c

)2
]

, (S-13.341)

where the term in square brackets, whichwe recast in the form V (x) = [C Â + Â2/2],
withC = Py/me and Â = eAy(x)/(mec), plays the role of an effective potential. Then
(S-13.341) reads

me
dvx
dt

= − d

dx
V (x) . (S-13.342)

(c) For Bz(x) = B0 (x/L) we have Ay = B0x2/(2L), and

Â = eAy(x)

mec
= eB0x2

2cmeL
= Ωcex2

2L
, (S-13.343)

with Ωce = eB0/(mec) the reference electron cyclotron frequency. We may recast
(S-13.342) in a dimensionless form by normalizing lengths over L and times over
Ω−1

ce . Then (S-13.342) becomes

me
d2X (τ )

dτ 2
= − d

dX
V (X) = − d

dX

[
P X2

2
+ X4

4

]
, (S-13.344)

where X (τ ) = x/L gives the normalized electron position at normalized time τ =
t Ωce and

P = Py

meΩceL
= vy

ΩceL
− eAy(x)

meΩceL
= vy

ΩceL
− x2

2L2
= vy

ΩceL
− X2

2
(S-13.345)

is the only dimensionless parameter of the problem.

Fig. S-13.8

The shape of the potential V (X)

depends on the sign ofPwhich, in its turn,
depends on the initial conditions vy(t =
0) and x(t = 0). In particular, keeping
vy(t = 0)fixed,P becomes large and neg-
ative for large |x(t = 0)|, i.e., for initial
positions far from the magnetic null line
at x = 0.

If P ≥ 0 the potential V (X) has a sin-
gle minimum at X = 0, see Fig. S-13.8,
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and the electron makes unharmonic oscillations centered at X = 0. These oscilla-
tions reduce to harmonic oscillations with dimensional frequency ω = Ωce

√
P for

small amplitudes X2
0 � P, i.e., for initial conditions such that [x(t = 0)]2 � L vy(t =

0)/Ωce, where vy(t = 0)/Ωce has the form of a Larmor radius. From (S-13.345) we

see that for these orbits the electron velocity along y oscillateswith frequency 2Ωce

√
P

in addition to a constant term, called a drift velocity:

vy

ΩceL
= P+ X2

2
= P+ X2

0

2
cos2

(
Ωce

√
P
)
= P+ X2

0

4
+ X2

0

4
cos

(
2Ωce

√
P t

)

= P+ X2
0

4
+ X2

0

4
cos

(
2
√
P τ

)
, (S-13.346)

thus

Y (τ ) = y(τ )

L
= Y0 +

τ∫
0

[
w + X2

0

4
cos

(
2
√
Pϑ

)]
dϑ

= wτ + X2
0

8
√P sin

(
2
√
P τ

)
, (S-13.347)

where Y0 = y(t = 0)/L and w = P+ X2
0/4 is the drift velocity.

Fig. S-13.9

The resulting electron orbit
is called “figure 8 orbit”11 and
is shown in Fig. S-13.9. The
same type of orbits occurs in
the case of unharmonic oscil-
lations along X but the corre-
sponding “figure-8” trajecto-
ries become distorted.

If P < 0 the potential
V (X) has the so called “Mex-
ican hat shape” with a single
local maximum at X = 0, and

two symmetric minima located at X = ±
√
2
∣∣P∣∣, as shown in Fig. S-13.10. In this

case two classes of orbits are possible depending on the value of the particle normal-
ized effective energyW = [dX (τ )/dτ ]2/2+ V (X). IfW < 0 the electrons remain

trapped inside the wells at X = ±
√

(2
∣∣P∣∣ and cannot cross the null line x = 0, see

Fig. S-13.11. These orbits are essentially cyclotron orbits in a non vanishing magnetic
field with a drift along y, as follows (S-13.337), that, as for the “figure-8” orbits, arises
from the inhomogeneity of the magnetic field. The frequency of the harmonic oscil-

11 Analogously shaped orbits are found in the case of a relativistic electron moving in a linearly
polarized monochromatic plane wave discussed in Problem 13.17. Similar types of orbits called
“Speiser orbits” play an important role in space and laboratory plasmas [6].
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lations of the orbits trapped near the bot-
tom of the wells corresponds, in dimen
sional units, to the value of the cyclotron-
frequency computed with the value of the
magnetic field at the point around which
the electron is oscillating.

Fig. S-13.10

Fig. S-13.11

On the contrary if W > 0 the orbits
cross the null line x = 0 and are similar
to the orbits found for P > 0.
The special case when P < 0 andW = 0
corresponds to orbits that approach the null
line of the magnetic field in a logarithmi-
cally diverging time.

You may wonder why the effective
energy can be negative. It is a question
of definition, the electron in reality has
only kinetic energy which is by defini-
tion positive. A direct transformation from
the real energy would lead to redefine

V (x) as V (x) =
[
C2 + 2C Â + Â2

]
/2 =[

C + Â
]2

/2 which simply amounts to the

addition of a constant term.

Note: all the above formulae are in Gaus-
sian units. For SI units just remove c every-
where.

S-13.27 A Parallel-Wire Metamaterial

(a) The total field inside the cylinder Etot equals the external field E0 plus the field
due to the cylinder polarization Epol, which we assune to be uniform. Thus we have

P = εr − 1

4π
Etot = εr − 1

4π

(
E0 + Epol

) = εr − 1

4π
(E0 − 2πP) , (S-13.348)

where we have used (S-3.103) of Solution S-3.11. Solving for P we get

P = εr − 1

2π(εr + 1)
E0 . (S-13.349)
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Fig. S-13.12

(b) The surface charge density σ of the conducting cylinder
equals the surface polarization charge density of a uniformly
transversally polarized cylinder which, in the presence of the
same external fieldE0, cancels the electric field at its interior.
Using (S-3.103) we have

P = E0

2π
, (S-13.350)

which is the limit of (S-13.349) as εr →∞. Thus we have

σ = P · r̂ = E0

2π
cos θ , (S-13.351)

where θ is the angle shown in Fig. S-13.12.
(c) Since a � λ the polarization of each cylinder is given by (S-13.349), with E0

replaced by the electric field of the wave, which, locally, we can write as E0 eiωt .
Since the cylinders fill a fraction f of the volume given by

f = πa2

b2
(S-13.352)

the macroscopic polarization density of the metamaterial is

Pmet = πa2

b2
εr − 1

2π(εr + 1)
E0 e

iωt = εmet⊥
r − 1

4π
E0 e

iωt , (S-13.353)

where εmet⊥
r is the dielectric permittivity of the metamaterial for polarization perpen-

dicular to the cylinder axes. Solving for εmet⊥
r we obtain

εmet⊥
r = 1+ 2π

(a
b

)2 εr − 1

εr + 1
(S-13.354)

(d) The dielectric permittivity of the metamaterial is

εmet⊥
r (ω) = 1− 2π

(a
b

)2 ω2
p

2ω2 − ω2
p

(S-13.355)

The wave can propagate in the metamaterial if εmet⊥
r > 0, thus

ω2 >
ω2
p

2
+ π

(a
b

)2
ω2

p 	
ω2
p

2
, (S-13.356)

since π (a/b)2 � 1. We have resonance for ω = ωp/
√
2. This resonance arises from

the collective oscillation of electrons perpendicularly to the cylinder axis, and it is the
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analogous for a cylinder of the Mie oscillation for a sphere, as seen in Problems 1.5
and 11.11. We remark that this oscillation can be excited only when the external field
is perpendicular to the axis of the cylinder
(e) The interface conditions require the electric field to be continuous at the cylinder
surfaces, therefore the polarization inside each cylinder is

P = εr − 1

4π
E0 . (S-13.357)

As above, the spatially-averaged polarization inside the metamaterial is obtained by
multiplying the polarization inside a cylinder by f .

In the case of a metal with εr = 1− ω2
p/ω

2 we have

εmet‖
r = 1−

(a
b

)2 ω2
p

4ω2
= 1− ω2

p eff

ω2
, where ωp eff = a

2b
ωp , (S-13.358)

thus, for polarization parallel to the wires, the effective plasma frequency (and cutoff
frequency)ωp eff of the metamaterial is smaller than the plasma frequency of themetal
by a factor a/(2b). Our metamaterial is obviously anisotropic.

S-13.28 Motion in an Inhomogeneous Magnetic field

(a) In a static magnetic field the energy of the particle, and thus the magnitude of
its velocity, are constant. As long as the particle remains in the x > 0 region it will
perform a circular motion with frequency and radius

ω1 = qB1

mγ0c
, r1 = v0

ω1
, (S-13.359)

where γ0 =
√
1− v2

0/c
2 (for non-relativistic motion we set γ0 = 1).

Fig. S-13.13

At t = t1 = π/ω1, the particle enters the
x < 0 region with velocity −v0 and again
performs a circular motion with frequency
and radius

ω2 = qB2

mγ0c
, r2 = v0

ω2
. (S-13.360)

At t = t2 = t1 + π/ω2, the particle reenters
the x > 0 region, again with velocity v0.
However, between t = 0 and t = t2 it has
drifted along ŷ by δy = 2r2 − 2r1. This cor-
responds to an average drift velocity along
ŷ
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vd = 2(r2 − r1)

π/ω1 + π/ω2
ŷ = 2v0

π

ω1 − ω2

ω2 + ω1
ŷ

= 2v0
π

B1 − B2

B2 + B1
ŷ . (S-13.361)

If for example q > 0, v0 > 0, and B1 > B2 > 0 then r2 > r1 and vd > 0 ; this is the
case shown in Fig. S-13.13.
(b) In the S′ frame there is an electric field

E′ 	 vd

c
× B =

⎧⎪⎨
⎪⎩

vd

c
B2x̂ (x < 0)

vd

c
B1x̂ (x > 0)

(S-13.362)

while at the limit vd � c the magnetic field B′ 	 B. Thus, on each side of the x = 0
plane the particle motion will be the superposition of a circular cyclotron orbit and a
drift in the E′ × B′ direction, i.e., along ŷ′ = ŷ. We expect the trajectory to be closed.

At t ′ = t = 0, the particle has initial velocity v′(0) = (v0,−vd) and is located at
(x ′ = x = 0, y′ = y = 0). The equations of motion for the velocity v′ are

dv′x
dt

= q

m

(
E ′1 +

v′y
c

B1

)
= 1

c

q

m
B1

(
v′y + vd

)
,

dv′y
dt

= − q

m

v′x
c

B1 ,

(S-13.363)
with solution

v′x = v0 cosω1t
′ , v′y = −v0 sinω1t

′ − vd (x ′ > 0) (S-13.364)

The corresponding trajectory is

x ′ = v0

ω1
sinω1t

′ , y′ = v0

ω1
(cosω1t

′ − 1)− vd t
′ (x ′ > 0). (S-13.365)

Fig. S-13.14

At t ′ = t1 = π/ω1, the particle enters
the x ′ < 0 region with velocity
v′(t1) = (−v0,−vd) at the position
(0, y′1) with y′1 = −(2v0 + πvd)/ω1.
The solution for the velocity for
t ′ > t1 is analogous to the solution for
0 < t ′ < t1:

v′x = −v0 cosω2(t
′ − t1) ,

v′y = +v0 sinω2(t
′ − t1)− vd (x ′ < 0).

(S-13.366)
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For the position we obtain

x ′ = − v0

ω2
sinω2(t

′ − t1) ,

y′ = − v0

ω2

[
cosω2(t

′ − t1)− 1
]

− vd(t
′ − t1)+ y′1 , (x ′ < 0). (S-13.367)

Thus, at t ′ = t2 = t1 + π/ω2, the particle is at (x ′ = 0, y′ = y′2) where y′2 = y′(t2) is

y′2 =
2v0
ω2

− πvd

ω2
+ y′1 =

2v0
ω2

− πvd

ω2
− 2v0

ω1
− πvd

ω1
= 2v0

(
1

ω2
− 1

ω1

)
− πvd

(
1

ω2
− 1

ω1

)

= 2v0

(
1

ω2
− 1

ω1

)
+ 2v0

ω1 − ω2

ω2 + ω1

ω2 + ω1

ω1ω2
= 2v0

(
1

ω2
− 1

ω1

)
+ 2v0

(
1

ω1
− 1

ω2

)
= 0 .

(S-13.368)

We have thus verified that v′(0) = v′(t2) and (x ′(0), y′(0)) = (x ′(t2), y′(t2)), as it
must be for a closed orbit with period t2. Figure S-13.14 shows the particle orbit as
observed in S′ for the case B1 = 4B2.

S-13.29 Solar Sail

(a) The pressure of electromagnetic radiation of intensity I on a planar surface is

p = (1+ R)
I

c
cos2 θ , (S-13.369)

independently of the wavelength, with R the reflection coefficient (R = 1 or 0 for
perfectly reflecting or absorbing surfaces, respectively) and θ the angle of incidence.
Since the grain is assumed to be larger than the wavelength, the total force on the
grain can be estimated by a simple integration over the angle; for our aims, however,
it will be sufficient to estimate the force as 	 πa2g I/c. If a grain of mass mg is at a
distance r from the center of the Sun, the gravity force will be

fg = −GmgM#
r2

= −G
(

ρg
4π

3
a3g

)
M#
r2

. (S-13.370)

The sunlight intensity also scales with r2 and thus it can be estimated from the knowl-
edge of its value at the distance of the Earth,

I = IE
r2E
r2

, (S-13.371)

yielding a total radiative force on the grain
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fr = πa2g
IE
c

r2E
r2

. (S-13.372)

The dust grain will be swept away if | fr | >
∣∣ fg∣∣, which gives (independently of the

distance from the Sun r )
IE
c
r2E > Gρg

4

3
agM# , (S-13.373)

or, equivalently,

ag <
3IEr2E

4ρgcGM#
	 6.7× 10−7 m , (S-13.374)

Fig. S-13.15

where ρg 	 103 kg m−3 was used. Actually the value of
ag falls at the upper limit of the spectral range considered,
thus the assumption of a grain larger than thewavelength
is not a very good approximation.

For the sake of completeness let us calculate in detail
the total force exerted by the sunlight pressure on the
grain, assumed spherical. The rays of sunlight incident at
an angle θ exert a force per unit surface p = −p r̂g , with
r̂g the unit vector along the direction from the center of
the grain to the point of incidence. This force must first
be integrated over the area dS = 2πa2g sin θ dθ shown
in Fig. S-13.15. The component parallel to the sunlight
direction is pz = p cos θ = p0 cos3 θ where p0 = (1+

R) I/c, while the perpendicular components cancel out. Thus the total force is

fr =
∫

pxdS = 2πa2g p0

π/2∫
0

cos3 θ sin θ dθ = πa2g(1+ R)
I

2c
, (S-13.375)

we see that our above estimate fr = πa2g I/c is exact for R = 1, which means a
perfectly reflecting grain.
(b) For a thin sail the mass is ms = ρs a2s ds , and replaces mg in (S-13.370). Thus we
have the condition

2IE
c

r2Ea
2
s > Gρsa

2
s dsM# , (S-13.376)

which is independent of the value of as and yields

ds <
2IEr2E

ρscGM#
	 7.8× 10−7 m , (S-13.377)

Note that values much smaller than the relevant wavelengths could invalidate the
assumption of a perfectly reflecting sail, the reflectivity being dependent on thickness.
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(c) Based on the above estimates we may assume the radiation boost force to be twice
the gravity force, yielding a total force on the sail

fr = a2s
IE
c

r2E
r2
= −dUs

dr
. (S-13.378)

with Us = US(r) = a2s IEr
2
E/c/r . The final velocity v f can thus be obtained as

ms

2
v2
f = U (rE ) = a2s

IE
c
rE , (S-13.379)

which yields

v f

c
=

√
2IE
σsc3

rE , (S-13.380)

where we have substituted ms/a2s = ρsds = σs . This yields v f 	 4.8× 10−3c 	
1.4× 106 m s−1. For a comparison, this is nearly five orders of magnitude greater
than the maximum velocity reached by the Voyager probe. A minimal sail weight of
10 g, due to essential miniaturized (“on-chip”) equipment placed on board, would
require a sail surface of about 105 m2. The sail might reach v f values of the order
of 107 m s−1, sufficient to reach the Alpha Centauri system in a century, if initially
placed reasonably near to the Sun [7]. However it is worth noting that, close to the
Sun, the solar wind (consisting of energetic particles like electrons, protons, alpha
particles, but also atoms like C, N, O, Ne, Mg, …) exerts a pressure higher than the
radiation pressure. At a distance of 1 AU from the Sun (r = rE ) the pressure of the
solar wind is in the range 1–6× 10−9 Pa. For instance, the effect of the solar wind is
dominant in creating the tail of a comet.

S-13.30 Canonical Momentum

(a) If we differentiate Py with respect to time applying the chain rule we obtain

dPy

dt
= m

dvy

dt
+ q

c

dx

dt

∂Ay

∂x
= m

dvy

dt
+ q

c
vx

∂Ay

∂x
= m

dvy

dt
+ q

c
vx Bz ,

(S-13.381)
since, with our choice of the vector potential A, we have Bz = ∂Ay/∂x . On the other
hand our particle is subject only to the magnetic force, thus its equation of motion is

m
dv

dt
= q

c
v × B , with projection on the y axis m

dvy

dt
= −q

c
vx Bz ,

(S-13.382)
which, substituted into (S-13.381), leads to dPy/dt = 0.
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(b) In the case of a uniform magnetic field B0 = ẑ B0 the particle describes a circular
orbit with angular frequency and radius

ω = qB0

mc
, r = cmv0

qB0
, (S-13.383)

respectively, where v0 is the particle speed. Assuming q > 0 and B0 > 0 the rotation
occurs clockwise. Thus the particle coordinates as functions of time are

x(t) = x0 + r cosωt = x0 + cmv0

qB0
cosωt ,

y(t) = y0 − r sinωt = y0 − cmv0

qB0
sinωt , (S-13.384)

where x0 and y0 are the coordinates of the orbit center (center of gyration), while the
velocity components are

vx (t) = −v0 sinωt , vy(t) = −v0 cosωt . (S-13.385)

Writing the vector potential as A(1) = ŷ B0x we have for Py

Py ŷ =
[
mvy + q

c
A(1)
y (x)

]
ŷ =

[
−mv0 cosωt + q

c
B0

(
x0 + cmv0

qB0
cosωt

)]
ŷ

=
(q
c
B0x0

)
ŷ =

(q
c
B0 ẑ

)
× (

x0 x̂
)

, (S-13.386)

proportional to the x coordinate of the orbit center.
(c) The uniform magnetic field ẑ B0 can be obtained also from the vector potential
A(2)(y) = −x̂ B0y. With this choice we have for the x component of the canonical
momentum

Px x̂ =
[
mvx + q

c
A(2)
x (y)

]
x̂ =

[
−mv0 sinωt − q

c
B0

(
y0 − cmv0

qB0
sinωt

)]
x̂

=
(
−q

c
B0y0

)
x̂ =

(q
c
B0 ẑ

)
× (

y0 ŷ
)

. (S-13.387)

proportional to the y coordinate of the center of gyration. Note that the difference
A(1) − A(2) = B0

(
ŷ x + x̂ y

) = ∇(B0xy) is the gradient of a scalar function of the
coordinates, as required by the gauge invariance of the vector potential.

S-13.31 Classical Zeeman Effect

(a) In the absence of the magnetic field the only centripetal force is the Coulomb
attraction between electron and nucleus, thus we have for our circular orbit
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meω
2
0 r =

e2

r2
, with ω0 = e√

mer3
, (S-13.388)

where e is the elementary charge and me the electron mass. Rigorously, we should
use the reduced mass of the proton-electron system but, given that the proton mass is
1836 times larger than the electron mass, we can neglect this correction.

In the presence of a magnetic field B0 parallel to the angular momentum also the
magnetic force is centripetal, and we have

meω
2r = e2

r2
+ eωr B0

c
. (S-13.389)

Subtracting (S-13.388) from (S-13.389) we obtain

me
(
ω2 − ω2

0

) = eωB0

mec
, or (ω − ω0) (ω + ω0) = eωB0

mec
, (S-13.390)

where we have divided both sides by mer . Assuming δω = (ω − ω0) � ω0 we can
approximate (ω + ω0) 	 2ω, obtaining

δω = e

2mec
B0 , (S-13.391)

the factor e/ (2mec) is called the gyromagnetic ratio, it is written e/ (2me) in SI units.
In the case of B0 antiparallel to the orbital angular momentum we simply have

δω = − e

2mec
B0 . (S-13.392)

For a hydrogen atom we can assume r = 5× 10−9 cm (a0 = 5.291772× 10−9 is
the Bohr radius), the elementary charge is e = 4.803× 10−10 esu and the electron
mass isme = 9.11× 10−28 g. This leads to ω0 = 4.5× 1016 rad/s. The gyromagnetic
ratio is 8.787× 106 rad/(sG), thus a even a small ratio δω/ω0 = 10−3 requires a
field B0 = 5× 106 G = 500 T, much higher than the highest fields available in most
laboratories.

In 1896 Pieter Zeeman observed that the frequency of a spectral line was split into
three components when a magnetic field was applied to the emitting atoms (normal
Zeeman effect). One component was unperturbed, one was shifted by δω and one by
−δω. This effectwas originally interpreted as being due to atomswhose orbital angular
momenta were perpendicular to (unperturbed component), parallel or antiparallel to
(±δω) themagnetic field. In the followingyearThomasPrestonobserved spectral lines
split into more than three components by a magnetic field (anomalous Zeeman effect).
Actually the normal Zeeman effect turns out to be a special case of the anomalous
effect, and quantum mechanics is required for a rigorous treatment.
(b) Let us assume axial symmetry around the orbit axis. The time variation of the
magnetic field corresponds to the presence of an induced azimuthal electric field
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E = φ̂ Eφ. The line integral of E over the electron orbit is, according to Faraday’s
law of induction,

∮
E · d� = 2πr Eφ = −1

c

dΦ

dt
= −πr2

1

c

dB

dt
, (S-13.393)

where Φ is the flux of the magnetic field B through the area enclosed by the orbit.
Due to our assumed axial symmetry the electric field on the orbit is thus

Eφ = 1

2πr

(
−πr2

1

c

dB

dt

)
= − r

2c

dB

dt
, (S-13.394)

directed clockwise in Fig. 13.17. This field exerts a torque on the electron

τ = r × (−e) E = ẑ r(−e) Eφ = ẑ
r2 e

2c

dB

dt
, (S-13.395)

and the torque changes the orbital angularmomentumof the electronL = ẑ Lz accord-
ing to the law

dLz

dt
= r2me

dω

dt
= r2 e

2c

dB

dt
, from which

dω

dt
= e

2mec

dB

dt
. (S-13.396)

The change of the electron angular frequency is thus

δω =
�t∫
0

dω

dt
dt = e

2mec

�t∫
0

dB

dt
dt = e

2mec
B0 , (S-13.397)

in agreementwith (S-13.391). The increasingmagnetic field corresponds to an increas-
ing centripetal force, thus an increasing angular velocity is required in order to follow
an orbit of constant radius. The induced azimuthal electric field provides the required
accelaration of the electron, as shown by the equality of (S-13.391) and (S-13.397).
In other words, at any time t∗ < �t the magnetic field is B(t∗) and the orbital angular
frequency is

ω(t∗) = ω0 + e

2mec

t∗∫
0

dB

dt
dt = ω0 + e

2mec
B(t∗) = ω0 + δω(t∗) . (S-13.398)

Thus the centripetal force required for keeping the electron on a circular orbit of radius
r at time t∗ is



562 S-13 Solutions for Chapter 13

fc(t
∗) = merω

2(t) 	 mer

[
ω2
0 +

ω0e

mec
B(t∗)

]
= mer

[
ω2
0 + 2ω0 δω(t∗)

]
,

(S-13.399)
where we have neglected the quadratic term in δω(t∗), consistently with the treatment
that led us to (S-13.391). On the other hand the total force acting on the electron is

ft(t
∗) = e2

r2
+ erω(t∗)B(t∗)

c
= meω

2
0r +

er B(t∗)
c

[
ω0 + e

2mec
B(t∗)

]

	 mer

[
ω2
0 +

ω0e

mec
B(t∗)

]
= mer

[
ω2
0 + 2ω0 δω(t∗)

]
, (S-13.400)

where, again, we have neglected the quadratic term in δω(t∗). Thus, with our assump-
tion of axial symmetry around the orbit axis, the shape of the orbit is unperturbed up
to terms in [δω(t∗)]2.
(c) In the absence of the magnetic field the canonical angular momentum simply
equals the kinetic angular momentum

Lc
i = Lkin

i = r × (mω0 × r) = ẑ r2mω0 . (S-13.401)

After applying the field the kinetic angular momentum is, within our approximations,

Lkin
f = ẑ r2m (ω0 + δω) . (S-13.402)

From this we obtain the final canonical angular momentum by adding the contribution
of r × (−e)A/c

Lc
f = ẑ r2m (ω0 + δω)− e

c
r × A = ẑ r2m (ω0 + δω)− eB0

2c
r × (−x̂ ry + ŷ rx )

= ẑ
[
r2m (ω0 + δω)− r2

eB0

2c

]
= ẑ r2mω0 = Lc

i . (S-13.403)

S-13.32 Force-Free Magnetic Field

(a) The density of the magnetic force is J× B/c. Thus, if J and B are both different
from zero, J and B must be parallel (or antiparallel) to each other for the force to be
zero.
(b) If J and B are parallel (or antiparallel) to each other the following relation holds

J(r) = f (r)B(r) , (S-13.404)

where f (r) is a generic scalar function of the coordinates, here r is the radial cylin-
drical coordinate while r is the position vector. We thus have
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∇ × B(r) = 4π

c
J(r) = 4π

c
f (r) B(r) . (S-13.405)

The conditions∇ · B = 0 (always valid) and∇ · J = 0 (valid in stationary conditions)
further imply

0 = ∇ · J = ∇ · ( f B) = f ∇ · B+ B ·∇ f = B ·∇ f , (S-13.406)

this means that f (r) must be constant along the field lines of B. Here we consider the
special case

f (r) = const = α
c

4π
, (S-13.407)

where α has the dimensions of the inverse of a length. Inserting (S-13.407) into
(S-13.405) we obtain

∇ × B(r) = αB(r) . (S-13.408)

(c) The curl of the left-hand side of (S-13.408) is

∇ × (∇ × B) = ∇(∇ · B)− ∇2B = −∇2B , (S-13.409)

thus we have, equating the curls of both sides,

−∇2B(r) = α∇ × B = α2B(r) . (S-13.410)

Now we consider the z component of (S-13.410), remembering that B depends on r
only,

∇2Bz(r) = 1

r

∂

∂r

[
r
∂Bz(r)

∂r

]
= −α2Bz(r) , (S-13.411)

and introduce the dimensionless variable ρ = |α|r , obtaining
1

ρ

∂

∂ρ

[
ρ
∂Bz(ρ)

∂ρ

]
= −Bz(ρ) . (S-13.412)

(d) Equation (S-13.412) can be rewritten as

∂2Bz(ρ)

∂ρ2
+ 1

ρ

∂Bz(ρ)

∂ρ
+ Bz(ρ) = 0 , (S-13.413)

which is the Bessel differential equation

x2
d2y

dx2
+ x

dy

dx
+ (

x2 − n2
)
y = 0 , (S-13.414)
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Fig. S-13.16

for n = 0. The solution of (S-13.413)
which is nonsingular at the origin,
as required by the condition Bz(0) =
4πJz(0)/(αc) = 4πJ0/(αc), is

Bz(ρ) = Bz(0)J0(ρ) . (S-13.415)

where J0(ρ) is the Bessel function
of the first kind of order 0, plotted
in Fig. S-13.16. From (S-13.404) and
(S-13.407) we further have

Jz(ρ) = cα

4π
Bz(0)J0(0) ,

(S-13.416)
thus Bz(0) = 4πJ0/(cα) since J0(0) = 1. The corresponding expression for Bφ(ρ)

is obtained by considering the azimuthal components of (S-13.408)

αBφ(r) =
[∇ × B(r)

]
φ
= −∂Bz(r)

∂r
. (S-13.417)

Introducing the dimensionless variable ρ we have

Bφ(ρ) = −(sgnα)
∂Bz(ρ)

∂ρ
= (sgnα)Bz(0)J1(ρ) = 4π

cα
Jφ(ρ), (S-13.418)

where we used the relation dJ0(ρ)/dρ = −J1(ρ). The condition Bz(R) = 0 implies
that the productαR corresponds to a zero of theBessel functionJ0.Known R, we have
a discrete set of possible values forα. The first values areαR 	 2.40, 5.52, 8.63, . . .,
see Fig. S-13.16.

A qualitative physical insight into the problem can be gained by remembering
that parallel electric currents attract each other, while antiparallel currents repel each
other. Now consider two small volume elements of the conducting medium located at
(r,φ, z) and (r,φ+ π, z), respectively. The Jz components of the current density in
the two volume elements are parallel, while the Jφ components are antiparallel. We
have evaluated the dependencies of Jz and Jφ on r such that the two contributions,
summed over all the volume elements, cancel out.

S-13.33 Field Inside a Spherical Shell

(a) The similarity with Problem 3.4 suggests that the polarization charges of the shell
give origin to a dipole-type contribution to the field outside the shell, justifying the
ansatz (13.26). We assume p0, p1, E1 and E2 to be all parallel to E0, and we use a
spherical coordinate system (r, θ,φ) with the origin located at the shell center and
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the polar axis parallel to E0. The boundary conditions are the continuities of the
components (εrE)⊥ and E‖ at the interfaces between dielectric and vacuum, i.e., at
r = b and r = a. The directions perpendicular (⊥) and (‖) to the interface surfaces
coincide with the unit vectors r̂ and θ̂, respectively. The electric field generated by an
electric dipole is, in spherical coordinates,

Ep = (3p · r̂) r̂ − p
r3

= r̂
2p cos θ

r3
+ θ̂

p sin θ

r3
, (S-13.419)

while we have for the external field

E0 = r̂ E0 cos θ − θ̂ E0 sin θ , (S-13.420)

the φ components vanishing because of the cylindrical symmetry around the polar
axis. Thus the boundary conditions at r = b and r = a are written

E0 + 2p0
b3

= εr

(
E1 + 2p1

b3

)
, (S-13.421)

−E0 + p0
b3
= −E1 + p1

b3
, (S-13.422)

εr

(
E1 + 2p1

a3

)
= E2 , (S-13.423)

−E1 + p1
a3
= −E2 , (S-13.424)

or equivalently, in matrix form,

⎛
⎜⎜⎝
2/b3 −εr −2εr/b3 0
1/b3 1 −1/b3 0
0 εr 2εr/a3 −1
0 −1 1/a3 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

p0
E1

p1
E2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
−E0

E0

0
0

⎞
⎟⎟⎠ . (S-13.425)

We can use Cramer’s method to determine the four unknown values. The determinant
of the system matrix is

D = 1

b3

⎛
⎝2

∣∣∣∣∣∣
1 −1/b3 0
εr 2εr/a3 −1
−1 1/a3 1

∣∣∣∣∣∣−
∣∣∣∣∣∣
−εr −2εr/b3 0
εr 2εr/a3 −1
−1 1/a3 1

∣∣∣∣∣∣
⎞
⎠

= 1

b3

⎛
⎝2

∣∣∣∣∣∣
1 −1/b3 0

εr − 1 (2εr + 1)/a3 0
−1 1/a3 1

∣∣∣∣∣∣−
∣∣∣∣∣∣
−εr −2εr/b3 0

εr − 1 (2εr + 1)/a3 0
−1 1/a3 1

∣∣∣∣∣∣
⎞
⎠

= 1

b3

(
2

∣∣∣∣ 1 −1/b3
εr − 1 (2εr + 1)/a3

∣∣∣∣−
∣∣∣∣ −εr −2εr/b3
εr − 1 (2εr + 1)/a3

∣∣∣∣
)
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= 1

b3

(
2
2εr + 1

a3
+ 2

εr − 1

a3
+ εr

2εr + 1

a3
− 2εr

εr − 1

b3

)

= 1

b3

(
(2εr + 1)(εr + 2)

a3
− 2(εr − 1)2

b3

)
. (S-13.426)

The parameter E2, i.e., the electric field inside the shell cavity, is obtained by dividing
the determinant obtained by replacing the fourth column by the column vector of the
constant terms by D,

E2 = E0

D

∣∣∣∣∣∣∣∣

2/b3 −εr −2εr/b3 −1
1/b3 1 −1/b3 1
0 εr 2εr/a3 0
0 −1 1/a3 0

∣∣∣∣∣∣∣∣
= E0

D

∣∣∣∣∣∣∣∣

0 −(εr + 2) 2(1− εr)/b3 −3
1/b3 1 −1/b3 1
0 εr 2εr/a3 0
0 −1 1/a3 0

∣∣∣∣∣∣∣∣

= − E0

b3D

∣∣∣∣∣∣
−(εr + 2) 2(1− εr)/b3 −3

εr 2εr/a3 0
εr − 1 (2εr + 1)/a3 0

∣∣∣∣∣∣ =
3E0

b3D

∣∣∣∣ εr 2εr/a3

εr − 1 (2εr + 1)/a3

∣∣∣∣
= 3E0

a3b3D
((2εr + 1)εr − 2εr(εr − 1))

= 9εrE0

a3b3D
= 9εrb3

b3(εr + 2)(2εr + 1)− a3(εr − 1)2
E0 . (S-13.427)

Quantities E1, p0 and p1 are obtained analogously, by dividing the respective deter-
minants by D.

Alternatively we can subtract (S-13.421) from (S-13.422) multiplied by two, and
add (S-13.423) to (S-13.424), obtaining a system of two linear equations in the two
unknowns E1 and p1

b3(εr + 2)E1 + 2(εr − 1)p1 = 3b3E0 , (S-13.428)

a3(εr − 1)E1 + (2εr + 1)p1 = 0 , (S-13.429)

with solutions

E1 = 3b3(2εr + 1)

b3(εr + 2)(2εr + 1)− a3(εr − 1)2
E0 , (S-13.430)

p1 = − 3b3a3(εr − 1)

b3(εr + 2)(2εr + 1)− a3(εr − 1)2
E0 . (S-13.431)
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Fig. S-13.17

Knowing E1 and p1 we can easily obtain E2

by substituting p1 into (S-13.424)

E2 = 9εrb3

b3(εr + 2)(2εr + 1)− a3(εr − 1)2
E0 ,

(S-13.432)
in agreement with (S-13.427), and p0 by sub-
stituting E1 and p1 into (S-13.422)

p0 = b6(2εr + 1)(εr − 1)− a3b3(ε2r + εr − 2)

b3(εr + 2)(2εr + 1)− a3(εr − 1)2
E0 .

(S-13.433)

Note that the condition E2 < E0 reduces to
(εr − 1)2 > 0 which is valid for any value of

εr: this means that the external field is screened by the shell.
The field lines of the electric field in the presence of a dielectric shell are shown

in Fig. S-13.17 for the case of εr = 10 and b/a = 4/3.
We note that for εr = 1 we have E1 = E2 = E0 and p0 = p1 = 0, as expected. As

further checks we can evaluate the limit for a → 0

lim
a→0

E1 = 3E0

εr + 2
, (S-13.434)

which is the field inside a dielectric sphere in the presence of an external uniform
field E0. The limit b→∞ corresponds to a cavity of radius a in an infinite dielectric
medium with field

Ediel = lim
b→∞ E1 = 3E0

εr + 2
(S-13.435)

far from the cavity. The field inside the cavity is

Ecav = lim
b→∞ E2 = 9εrE0

(εr + 2)(2εr + 1)
= 3εrEdiel

2εr + 1
= 3Ediel

1/εr + 2
, (S-13.436)

in agreement with (S-3.32), as expected.
(b)Due to the analytical similarity of the equations of electrostatics andmagnetostatics
in the absence of free charges and currents, we can obtain the solution for the problem
of the magnetic spherical shell in an external uniform magnetic field B0 from point
(a), through the replacements E → H, D → B, and εr → μr. Noting that E0 = D0,
B0 = H0, and D2 = E2 we immediately obtain

B2 = 9μrb3

(2μr + 1)(μr + 2)b3 − 2(μr − 1)2a3
B0 . (S-13.437)

As in the dielectric case, B2 < B0, i.e., the external field is screened by the shell
for any value of μr = 1, including the case μr < 1, i.e., diamagnetic materials. As a



568 S-13 Solutions for Chapter 13

special case, μr = 0 corresponds to a superconducting shell with B2 = 0, as expected.
In the case of a strongly paramagnetic material, with μr � 1,

B2 	 9

2μr(1− a3/b3)
B0 . (S-13.438)

The effect of the highly paramagnetic material is to “concentrate” the field lines inside
the shell, thus screening the inner cavity, as shown in Fig. S-13.17.

S-13.34 Resonances in a Spherical Shell

(a) To describe the response of the shell it is sufficient to generalize the results for a
dielectric shell discussed in Problem 13.33 to the case of a time-dependent harmonic
field, which corresponds to insert the metal permittivity in the expressions for the
fields. For instance, taking the expression (S-13.427) for the uniform field inside the
cavity we obtain

Ec = 9εrb3

(2εr + 1)(εr + 2)b3 − 2(εr − 1)2a3
E0

= 9(1− ω2
p/ω

2)

(3− 2ω2
p/ω

2)(3− ω2
p/ω

2)− 2(a/b)3ω4
p/ω

2
E0

≡ 9(1− ω2
p/ω

2)

D(ω)
E0 . (S-13.439)

Resonance frequencies are identified as zeros of the denominator D(ω) in the above
expressions (obviously the denominator is common also to the dipole moment and
current density of the shell). Before calculating the full expression, it may be worth
noting that in both the case of a → 0 at fixed b (dielectric sphere) and the case of
b→∞ at fixed a (spherical cavity in a dielectric medium) the denominator becomes

D(ω) 	
(
3− 2

ω2
p

ω2

)(
3− ω2

p

ω2

)
, (S-13.440)

which vanishes for ω = ωp/
√
3 and ω = ωp

√
2/3. The first value corresponds to the

case εr + 2 = 0, i.e., to the well-known Mie resonance frequency for a sphere (see
Problem 1.5), the second value to the resonance of a spherical cavity which, according
to (S-3.32) of Problem 3.4, occurs for 1+ 2εr = 0.

In the general case, posing D(ω) = 0 yields a quadratic equation in (ω/ωp)
2,

(
ω

ωp

)4

−
(

ω

ωp

)2

+ 2

9

[
1−

(a
b

)3
]
= 0 , (S-13.441)
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with the two solutions

(
ω±
ωp

)2

= 1

2

{
1±

√
1− 8

9

[
1−

(a
b

)3
]}

. (S-13.442)

Both roots are positive, so that there are two resonant values forω.At thea/b→ 0 limit
we recover the frequencies of the above mentioned “cavity’ and “sphere” oscillation
modes.

At the limit d = b − a � b, we have (a/b)3 	 1− 3d/b at the first order in d/b,
which leads to

(
ω±
ωp

)2

	 1

2
± 1

2

√
1− 8d

3b
	 1

2
± 1

2

(
1− 4d

3b

)

=

⎧⎪⎪⎨
⎪⎪⎩
1− 2d

3b
,

2d

3b
.

(S-13.443)

Thus we see that in a thin shell the resonant frequencies ω+ and ω− are slightly less
and much less than the plasma frequency ωp, respectively.

Fig. S-13.18

From a qualitative viewpoint, the two reso-
nances can be viewed as a sort of superpositions
of the abovementioned oscillationmodes of the
sphere and the cavity: these modes are indepen-
dent for a thick shell (a/b→ 0) but become
linearly coupled for a thin shell. When the two
oscillations are in phase, the surface charge den-
sity has the same angular dependence on both
the outer and inner surfaces of the shell. Thus,
both charge distributions cooperate to enhance
the field in the cavity (Ec) and to largely cancel
the field inside themetal layer (Em), as shown in
Fig. S-13.18a. The electrostatic recoil force on
electrons is thus weakened, reducing the oscil-
lation frequency to values much smaller than
ωp as found for the ω− mode. When the two
oscillations are out of phase, the surface charge
densities are opposite to each other, which leads
to a large cancellation of Ec, as shown in Fig. S-13.18b. At the thin shell limit, the sur-
face charge distribution produces a near-plane capacitor-like field in the metal layer,
so the frequencies approaches that of planar plasma oscillations (Problem 1.4), i.e.,
ω+ � ωp.
(b) The laser source frequency is ωL = 2πc/λL 	 2.5× 1015 Hz. Since ωp is signifi-
cantly larger than ωL , the best option is to excite the shell resonance corresponding to
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the second of the two resonant frequencies (S-13.443), i.e., to achieve the condition

ωL =
√
2d

3b
ωp , (S-13.444)

which is possible by choosing an appropiately small d/b ratio. Since ωL/ωp 	 1/5.6,
we get d/b 	 4.8× 10−2. Assuming b = 80 nm (we recall that b � λ is required for
the electrostatic modeling to be accurate) we obtain d 	 3.8 nm.

In laser surgery, nanoshells are inserted in those parts of tissues which must be
removed. By tuning the resonant frequency to the laser source, energy is strongly
absorbed by the nanoshells which heat up and burn the local tissue out. No significant
damage is done to the surrounding tissue if the absorption is negligible at the used
frequency, which is the case for infrared sources.
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Appendix A
Mathematical Appendix

A.1 Gradient, Curl, Divergence and Laplacian

Fig. A.1

Fig. A.2

Vector equations are independent of the coordinate
system used. Cartesian coordinates are used very
often because they are the most convenient when the
problem has no particular symmetry. However, in the
case of particular symmetries, calculations can be
greatly facilitated by a suitable choice of the coor-
dinate system. Apart from the elliptical coordinates,
used only in Problem 2.14, The only two special sys-
temsused in this book are the cylindrical and spherical
coordinates.

A cylindrical coordinate system (r,φ, z) specifies
a point position by the distance r from a chosen ref-
erence (longitudinal) axis z, the angle φ that r forms
with a chosen reference plane φ = 0 containing the
z axis, and the distance, positive or negative, from a
chosen reference plane perpendicular to the axis. The
origin is the point where r and z are zero, for r = 0 the
value ofφ is irrelevant. FigureA.1 shows a cylindrical
coordinate system, superposed to a Cartesian system
sharing the same origin, with the z axes of the two
systems are superposed, the xz plane corresponding
to the φ = 0 plane of the cylindrical system. We have
the conversion relations

x = r cosφ , y = r sin φ , z = z . (A.1)

The orthogonal line elements are dr , r dφ and dz, and the infinitesimal volume element
is r dr dφ dz.
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Table A.1 Gradient, curl, divergence and Laplacian in cylindrical and spherical coordinates

Cylindrical coordinates Spherical coordinates

Components of the gradient of a scalar function V

r̂ ∂V
∂r r̂ ∂V

∂r

φ̂ 1
r

∂V
∂φ θ̂ 1

r
∂V
∂θ

ẑ ∂V
∂z φ̂ 1

r sin θ
∂V
∂φ

Components of the curl of a vector function A

r̂
(
1
r

∂Az
∂φ −

∂Aφ

∂z

)
r̂ 1
r sin θ

[
∂
∂θ

(
Aφ sin θ − ∂Aθ

∂φ

)]
φ̂

(
∂Ar
∂z − ∂Az

∂r

)
θ̂
[

1
r sin θ

∂Ar
∂φ − 1

r
∂(r Aφ)

∂r

]
ẑ 1
r

[
∂(r Aφ)

∂r − ∂Ar
∂φ

]
φ̂ 1

r

[
∂(r Aθ)

∂r − ∂Ar
∂θ

]
Divergence of a vector function A
1
r

∂(r Ar )
∂r + 1

r
∂Aφ

∂φ + ∂Az
∂z

1
r2

∂(r2Ar )
∂r + 1

r sin θ
∂(Aθ sin θ)

∂θ + 1
r sin θ

∂Aφ

∂φ

Laplacian of a scalar function V
1
r

∂
∂r

(
r ∂V

∂r

)
+ 1

r2
∂2V
∂φ2 + ∂2V

∂z2
1
r2

∂
∂r

(
r2 ∂V

∂r

)
+ 1

r2 sin θ
∂
∂θ

(
sin θ ∂V

∂θ

)
+ 1

r2 sin2 θ
∂2V
∂φ2

Components of the Laplacian of a vector function A

r̂
(
∇2Ar − Ar

r2
− 2

r2
∂Aφ

∂φ

)
r̂
[
∇2Ar − 2Ar

r2
− 2

r2 sin θ
∂(Aθ sin θ)

∂θ − 2
r2 sin θ

∂Aφ

∂φ

]
φ̂

(
∇2Aφ − Aφ

r2
+ 2

r2
∂Ar
∂φ

)
θ̂
(
∇2Aθ − Aθ

r2sinθ
+ 2

r2
∂Ar
∂θ − 2 cos θ

r2 sin2 θ

∂Aφ

∂φ

)
ẑ∇2Az φ̂

(
∇2Aφ − Aφ

r2 sin θ
+ 2

r2 sin2 θ
∂Ar
∂φ + 2 cos θ

r2 sin2 θ
∂Aθ
∂φ

)

A spherical coordinate system (r, θ,φ) specifies a point position by the radial
distance r from from a fixed origin, a polar angle θ measured from a fixed zenith
direction, and the azimuth angle φ of the orthogonal projection of r on a reference
plane that passes through the origin and is orthogonal to the zenith, measured from
a fixed reference direction on that plane. Figure A.2 shows a spherical coordinate
system, superposed to a Cartesian system sharing the same, origin, with the z axis
superposed to the zenith axis, and the xz plane corresponding to the φ = 0 plane of
the spherical system. We have the conversion relations

x = r sin θ cosφ , y = r sin θ sin φ , z = r cos θ . (A.2)

The orthogonal line elements are dr , r dθ, and r sin θdφ, and the infinitesimal volume
element is r2 sin θ dθ dφ dr .

In the expressions for the components of the Laplacian of a vector function of
Table A.1, ∇2Ai stands for the Laplacian of the vector component Ai treated as if it
were a scalar function. The extra terms are due to the fact that the unit vectors r̂ and
φ̂ for the cylindrical coordinates, and r̂, θ̂ and φ̂ for the spherical coordinates, are not
constants.
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A.2 Vector Identities

Quantities A, B, and C are vectors or vector functions of the coordinates, f and g are
scalar functions of the coordinates.

A · B× C = A× B · C = B · C× A = C · A× B ; (A.3)

A× (B× C) = (C× B)× A = (A · C) B− (A · B) C ; (A.4)

∇( f g) = f ∇g + g∇ f ; (A.5)

∇ · ( f A) = f ∇ · A+ A ·∇ f ; (A.6)

∇ × ( f A) = f ∇ × A+∇ f × A ; (A.7)

∇ · (A× B) = B ·∇ × A− A ·∇ × B ; (A.8)

∇ × (A× B) = A (∇ · B)− B (∇ · A)+ (B ·∇) A− (A ·∇) B ; (A.9)

∇(A · B) = A× (∇ × B)+ B× (∇ × A)+ (A ·∇)B+ (B ·∇)A ; (A.10)

∇2A = ∇(∇ · A)−∇ ×∇ × A , (A.11)

∇ × (∇ × A) = ∇(∇ · A)− ∇2A . (A.12)

A.3 Hyperbolic Functions

x 2−
y 2
=

1

x

y
cosh 

si
nh

 

/2

Fig. A.3

Hyperbolic functions are analogues of the ordi-
nary trigonometric functions: as the points
(cosφ, sin φ) for 0 ≤ φ < 2π form the unit cir-
cle x2 + y2 = 1, the points (coshα, sinhα) for
−∞ < α <∞ form the right branch of the unit
hyperbola x2 − y2 = 1, as shown inFig.A.3. The
argument α of the hyperbolic functions corre-
sponds to twice the area of the hyperbolic sector
shaded in Fig. A.3. Areas are considered nega-
tive for points on the hyperbola below the x axis.
Mathematically, the functions hyperbolic sine,
sinh, and hyperbolic cosine, cosh, are defined as

sinhα = eα − e−α

2
, (A.13)

coshα = eα + e−α

2
, (A.14)

thus sinhα and coshα are the odd and even parts of the exponential function eα,
respectively. From these we derive the hyperbolic tangent, cotangent, secant and
cosecant
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tanhα = sinhα

coshα
, cothα = 1

tanhα
, sechα = 1

coshα
, cschα = 1

sinhα
,

(A.15)
analogously to their trigonometric counterparts. The functions coshα and sechα are
even functions of α, all other hyperbolic functions are odd.

Some useful equalities are

coshα+ sinhα = eα , (A.16)

coshα− sinhα = e−α , (A.17)

cosh2 α− sinh2 α = 1 , (A.18)

sech2 α = 1− tanh2 α , (A.19)

csch2 α = coth2 α− 1 . (A.20)

The inverse hyperbolic functions and their domains are

arsinh x = ln
(
x +

√
x2 + 1

)
, −∞ < x < +∞ , (A.21)

arcosh x = ln
(
x +

√
x2 − 1

)
, 1 ≤ x < +∞ , (A.22)

artanh x = 1

2
ln

(
1+ x

1− x

)
, −1 < x < 1 , (A.23)

arcoth x = 1

2
ln

(
x + 1

x − 1

)
, −∞ < x < −1 or 1 < x <∞ , (A.24)

arsech x = ln

(
1+√1− x2

x

)
, 0 < x ≤ 1 , (A.25)

arcsch x = ln

(
1

x
+

√
1

x2
+ 1

)
, x = 0 . (A.26)

The letters ar in the symbols for the inverse hyperbolic functions stand for area, not
for arcus as in the inverse trigonometric functions. This is the ISO 80000-2 norm,
however, the prefix arc instead of ar (arcsinh, arccosh, …) is also commonly used by
many authors in analogywith the nomenclature for the inverse trigonometric functions
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A
Absorbing medium, radiation pressure on an,

129, 536
Alternate LC ladder network, 67, 362
Amplitude reflection coefficient, 115, 487
Angle of incidence, 85
Angle of reflection, 85
Angular momentum of a light beam, 75, 389
Antenna feeding a resonant cavity, 117, 491,

494
Antenna, circular, 93, 439
Anti-reflection coating, 103, 460
Atomic collapse, 90, 431
Avogadro constant, 169

B
Bar sliding in a magnetic field, 59, 335
Beam, Gaussian, 74, 386
Beats, optical, 95, 446
Bent dipole antenna, 92, 438
Bessel diffrential equation, 563
Bessel functions, 137, 564
Biot-Savart law, 40
Birefringence, 104, 105, 462, 463
Boundary conditions on a moving mirror, 85,

419
Brewster’s angle, 107, 470

C
Cable, twin-lead, 112, 480
Canonical angular momentum, 562
Canonical momentum, 79, 135, 400, 558
Capacitance per unit length, 111, 477
Capacitor, leaky, 246

Capacitor, non-coaxial cylindrical, 18, 201
Capacity of a conducting cylindrical wire, 18,

197
Capacity of a cylindrical wire, 200
Capacity per unit length , 358
Cavity, optomechanical , 129, 533
Center of gyration, 135
Charge distribution in the presence of electri-

cal currents, 34, 251
Charge in front of a dielectric half-space, 23,

210
Charged hemispherical surface, 8, 159
Charged sphere with internal spherical cavity,

4, 140
Charged sphere, electrostatic energy of a uni-

formly, 4, 141
Charged spheres, collision, 7, 152
Charged spheres, overlapping, 4, 139
Charged wire in front of a cylindrical conduc-

tor, 16, 188
Charge relaxation, 31, 240
Circular antenna, 93, 439
CL ladder network, 65, 359
Classical Zeeman effect, 136, 559
CO2, 119
Coating, anti-reflection, 103, 460
Coaxial cable, 111, 477
Coaxial cable with a Faraday generator, 131,

542
Coaxial cable, Lorentz transformations, 86,

421
Coaxial resistor, 32, 242
Coil in an inhomogeneous magnetic field, 48,

288
Collapse, atomic, 90, 431
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Collision of two charged spheres, 7, 152
Conducting cylindrical shell in a magnetic

field, 58, 331
Conducting foil, transmission and reflection,

102, 458
Conducting half-space, 27, 228
Conducting plane, charge in front of a, 12,

170, 174
Conducting plane, induced charge density, 18,

204
Conductingprolate ellipsoid of revolution, 18,

197
Conducting shell, point charge inside a, 15,

187
Conducting slab, 25, 217
Conducting sphere in an external field, 12, 169
Conducting sphere in a uniform electric field,

14, 184
Conducting sphere, electric charge in front of

a, 13, 176
Conducting sphere, electric dipole in front of

a, 13, 178
Conducting sphere, electromagnetic torque

on a, 125, 519
Conducting sphere, plasma oscillations in a

charged, 7, 154
Conducting sphere, scattering by a, 97, 450
Conducting surface, hemispherical, 16, 192
Conducting wire in a uniform electric field,

Lorentz transformations, 87, 427
Conductors, displacement current in, 313
Conductor, wave propagation in a, 100, 453
Coulomb explosion, infinite charged cylinder,

6, 150
Coulomb explosion, infinite charged slab, 6,

150
Coulomb explosion, uniformly charged

sphere, 6, 147
Coulomb’s experiment, 13, 181
Coupled RLC oscillators, 63, 64, 349, 352,

353
Crossed electric and magnetic fields, 43, 266
Currents and charge distribution in conduc-

tors, 33, 247
Cutoff frequency, 484
Cyclotron radiation, 90, 429
Cyclotron resonances, 68, 367, 370
Cylinder, transversally magnetized, 45, 276
Cylinder, transversally polarized, 27, 229
Cylinder, uniformly magnetized, 42, 265
Cylinders in transverse electric fields, 133,

552
Cylindrical capacitor, 26, 224

Cylindrical capacitor, discharge of a, 121, 505
Cylindrical conductor, charged wire in front

of a, 16, 188
Cylindrical conductor with an off-centered

cavity, 43, 269
Cylindrical dipole, 230
Cylindrical quadrupole, 28, 235
Cylindricalwire, capacity of a conducting, 18,

197

D
Damping, radiative, 90, 96, 433, 449
DC generator, magnetized cylinder, 53, 306
Detector, heterodyne, 78, 399
Dielectric-barrier discharge, 34, 250
Dielectric boundary conditions, 216
Dielectric half-space, 25, 217
Dielectric permittivity, measurement of the,

26, 224
Dielectric slab, 27, 228, 231
Dielectric sphere in an external field, 24, 213
Dielectric, lossy, 33, 249
Dielectric-wire metamaterial, 133, 552
Dipole antenna, bent, 92, 438
Dipole chain, waves in a, 109, 474
Discharge of a cylindrical capacitor, 121, 505
Disk, Faraday, 53, 308
Displacement current in conductors, 313
Distortionless transmission line, 66, 360
Drag force, radiation, 130, 540
Dynamo, self-sustained, 53, 308

E
Earth’s magnetic field, 50, 109
Eddy currents in a solenoid, 50, 292
Eddy inductance, 55, 313
Effect, Fizeau, 126, 523
Elastically bound electron, 90, 433
Electric charge in front of a conducting plane,

12, 170, 174
Electric charge in front of a conducting

sphere, 13, 176
Electric currents induced in the ocean, 51, 299
Electric dipole in a conducting spherical shell,

14, 184
Electric dipole in a uniform electric field, 14,

184
Electric dipole in front of a conducting sphere,

13, 178
Electric dipole, force between a point charge

and an, 7, 155
Electric field inside a dielectric shell, 137, 564
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Electric power transmission line, 112
Electrically connected spheres, 15, 186
Electrically polarized cylinder, 119, 497
Electrically polarized sphere, 23, 212
Electric susceptibility, 26, 224
Electromagnetic Brake, 60, 341
Electromagnetic moment of inertia, 58, 333
Electromagnetic torque on a conducting

sphere, 125, 519
Electromotive force, 133, 547
Electron, elastically bound, 90, 433
Electron gas, free, 101, 455
Electron Orbits in a magnetic field, 133, 549
Electrostatic energy in the presence of image

charges, 12, 170
Electrostatic pressure, 17, 25, 193, 195, 222,

223
Energy andmomentum flow close to a perfect

mirror, 122, 511
Energy densities in a free electron gas, 101,

455
Energy of a uniformly charged sphere, 4, 141
Equipotential surfaces, intersecting, 184
Equivalent magnetic charge, 43, 266
Evanescent wave, 100, 453
Experiment, the Rowland, 41, 257

F
Faraday disk, 53, 308
Faraday effect, 105, 463
Faraday generator, 131, 542
Ferrite, 295
Ferroelectricity, 23, 212
Feynman’s paradox, 51, 296
Feynman’s paradox (cylinder), 76, 390
Fiber, optical, 114, 487
Fields generated by spatially periodic surface

sources, 121, 508
Fields of a current-carrying wire, 82, 403
Fields of a plane capacitor, 82, 407
Fields of a solenoid, 83, 408
Filled waveguide, 115, 489
Fizeau effect, 126, 523
Floating conducting sphere, 25, 222
Fluid, resistivity, 32, 244, 245
Force between a parallel-plate capacitor and

a dielectric slab, 27, 231
Force between a point charge and an electric

dipole, 7, 155
Force between the plates of a parallel-plate

capacitor, 17, 193
Force on amagneticmonopole, Lorentz trans-

formation for the, 84, 411

Force on a spherical charge distribution, 9,
165

Force on an Ohmic wire, 87, 427
Force-free magnetic field, 136, 562
Four-potential of a plane wave, 83, 409
Free electron gas, 101, 455
Free fall in a magnetic field, 49, 289
Fresnel equations, 100
Frictional force, radiation, 95, 447

G
Generator, Faraday, 131, 542
Gyrayion, center of, 135
Gyromagnetic ratio, 560

H
Heating, induction, 52, 302
Heaviside step function, 150
Helmholtz coils, 46, 281
Hemispherical conducting surface, 16, 192
Hemispherical surface, charged, 8, 159
Heterodyne detector, 78, 399
High Frequency Capacitor, 60, 344
Homopolar motor, 56, 324
Hyperbolic functions, 201, 573
Hyperbolic functions, inverse, 574

I
Image charges, method of, 12, 170, 174
Image charges, method of, cylindrical con-

ductor, 16, 188
Image charges, method, hemispherical con-

ducting surfaces, 16, 192
Immersed cylinder, 26, 226
Impedance of an infinite ladder network, 120,

502
Impedance per unit length, cylindrical wire,

55, 313, 315
Incidence angle, 85
Induced charge density on a conducting plane,

18, 204
Inductance per unit length, 111, 477
Induction heating, 52, 302
Infinite charged cylinder, Coulomb explosion,

6, 150
Infinite charged slab, Coulomb explosion, 6,

150
Infinite ladder network, impedance, 122, 502
Infinite resistor ladder, 35, 255
Intensity of a light beam, 75, 389
Interference in scattering, 94, 445
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Internal spherical cavity in a charged sphere,
4, 140

Intersecting equipotential surfaces, 184
Interstellar light sail, 77, 395
Inverse hyperbolic functions, 574
Ionosphere, wave reflection at the, 473
Isolated system, 195

L
Ladder network, CL , 65, 359
Ladder network, LC , 65, 355
Ladder network, LC , alternate, 67, 362
Laser cooling of a mirror, 123, 512
LC ladder network, 65, 355
Leaky capacitor, 246
Levitation, magnetic, 42, 264
Light beam, 74, 386
Light beam, angular momentum of a, 75, 389
Light beam, Intensity of a, 75, 389
Light sail, 77, 395
Lighthouse, 95, 446
Linear molecule, 130, 538
Longitudinal waves, 102, 457
Longitudinal waves, Lorentz transformations

for, 126, 524
Lorentz transformation for the force on amag-

netic monopole, 84, 411
Lorentz transformations for a transmission

cable, 127, 526
Lorentz transformations for longitudinal

waves, 126, 524
Lorentz transformations on a coaxial cable,

86, 421
Lorentz transformations on a rectangular

metal pipe, 87, 424
Lossy dielectric, 33, 249

M
Magnetic birefringence, 105, 463
Magnetic charge, equivalent, 43, 266
Magnetic cylinder sliding inside a solenoid,

57, 328
Magnetic dipole in front of a magnetic half-

space, 42, 261
Magnetic dipole rotating inside a solenoid, 55,

312
Magnetic dipole, potential energy of a, 264
Magnetic field, cylinder rotating in, 44, 271
Magnetic field inside a shell, 137, 564
Magnetic field of a rotating cylindrical capac-

itor, 44, 272
Magnetic field, Earth’s, 50, 291

Magnetic field, force-free, 136, 562
Magnetic levitation, 42, 264
Magnetic levitation of a superconducting ring,

59, 337
Magnetic monopole, 76, 393
Magnetic monopole, Lorentz transformation

for the force on a, 84, 411
Magnetic pressure on a solenoid, 56, 322
Magnetized cylinder, 42, 119, 265, 497
Magnetized cylinder, DC generator, 53, 306
Magnetized sphere, 44, 273
Magnetized sphere, unipolar motor, 52, 300
Maxwell’s equations in the presence of mag-

netic monopoles, 76, 393
Maxwell stress tensor, 385
Mean value property (harmonic functions), 9,

165
Metal sphere in an external field, 12, 169
Metamaterial, 133, 552
Method of image charges, 12, 170, 174
Method of image charges, cylindrical conduc-

tor, 16, 188
Method of image charges, hemispherical con-

ducting surfaces, 16, 192
Mie oscillations, 5, 145
Mie resonance and a “plasmonic metamate-

rial”, 107, 469
Mirror, laser cooling of a, 123, 512
Mirror, moving, 84, 85, 412
Mirror, radiation pressure on a perfect, 74, 383
Moment of inertia, electromagnetic, 58, 333
Momentum, canonical, 135, 558
Monopole, magnetic, 76, 393
Motion in an inhomogeneous magnetic field,

134, 554
Motion of a charge in crossed electric and

magnetic fields, 43, 266
Motor, homopolar , 56, 324
Moving end, waveguide with a, 127, 529
Moving mirror, 84, 85, 412
Moving mirror, boundary conditions, 85, 419
Moving mirror, conservation laws in, 85, 412
Moving mirror, oblique incidence on a, 85,

415
Moving mirror, radiation pressure on a, 85,

416
Mutual induction between a solenoid and an

internal loop, 55, 312
Mutual induction between circular loops, 54,

310
Mutual induction, rotating loop, 54, 310
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N
Network, CL , 65, 359
Network, LC , 65, 355
Neutron star, 91, 430, 437
Non-coaxial cylindrical capacitor, 18, 201
Non-dispersive line, 66, 360
Non-uniform resistivity, 33, 247

O
Oblique incidence on a moving mirror, 85,

415
Ocean, induced electric currents, 51, 299
Open waveguide, TEM and TM modes in an,

112, 482
Optical beats, 95, 446
Optical fiber, 114, 487
Optomechanical cavity, 129, 533
Orbiting charges, radiation emitted by two,

91, 434
Oscillations of a triatomic molecule, 119, 501
Oscillations, Mie, 5, 145
Oscillators, coupled, 63, 64, 349, 352, 353
Overlapping charged spheres, 4, 139

P
Pair plasma, 106, 466
Parallel-plate capacitor, force between the

plates of a, 17, 193
Parallel-wire transmission line, 112, 480
Perfect mirror, energy and momentum flow

close to a, 122, 511
Pinch effect, 41, 56, 259, 319
Plane capacitor, fields of a, 82, 407
Plane wave, four-potential of a, 83, 409
Plasma frequency, 133, 472, 552
Plasma oscillations, 5, 143
Plasma oscillations in a charged conducting

sphere, 7, 154
Plasma, “pair”, 106, 466
Plasmonic metamaterial, 107, 469
Plasmons, 458
Point charge inside a conducting shell, 15, 187
Polaritons, 458
Polarization of scattered radiation, 93, 441
Polarization, Thomson scattering, 93, 442
Polygonal Loop, magnetic field of a, 45, 280
Potential energy of a magnetic dipole, 264
Potential generated by a grid of chargedwires,

8, 160, 162
Poynting Vector for a rotating charged spher-

ical shell, 79, 400
Poynting vector in a capacitor, 72, 377

Poynting vector in a solenoid, 73, 378
Poynting vector in a straight wire, 72, 375
Poynting vevtor in a capacitor with moving

plates, 73, 379
Pressure, electrostatic, 17, 193, 195, 223
Pressure, radiation, 78, 398
Propagation of a “relativistically” strong elec-

tromagnetic wave, 128, 530
Pulsar, 91, 437

Q
Quadrupole, cylindrical, 28, 235
Quasi-Gaussian wave packet, 69, 372

R
Radiation drag force, 130, 540
Radiation emitted by twoorbiting charges, 91,

434
Radiation frictional force, 95, 447
Radiation from a rotating ring, 58, 333
Radiation of an electron falling on a proton,

96, 449
Radiation pressure at oblique incidence, 78,

398
Radiation pressure on a moving mirror, 85,

416
Radiation pressure on a perfectmirror, 74, 383
Radiation pressure on a thin foil, 123, 513
Radiation pressure on an absorbing medium,

129, 536
Radiation, cyclotron, 90, 429
Radiation, undulator, 124
Radiative damping, 90, 96, 433, 449
Receiving circular antenna, 93, 439
Reflection angle, 85
Reflection by a thin conducting foil, 102, 458
Reflection coefficient, amplitude, 115, 487
Reflection from a moving transparent

medium, 132, 545
Refraction of the electric field at a dielectric

boundary, 24, 216
Relativistically strong electromagnetic wave,

propagation of a, 128, 530
Resistive skin depth, 117, 494
Resistivity, fluid, 32, 244, 245
Resistivity, non-uniform, 33, 247
Resistor, coaxial, 32, 242
Resistor ladder, infinite, 35, 255
Resonance, Schumann, 116, 491
Resonances in an LC ladder network, 67, 365
Resonances in a spherical shell, 137, 568
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Resonant cavity fed by an antenna, 117, 491,
494

Rotating charged spherical shall, vector
potential, 45, 277

Rotating cylinder in magnetic field, 44, 271
Rotating cylindrical capacitor, 44, 272
Rotating ring, radiation from, 58, 333
Rotation induced by electromagnetic induc-

tion, 51, 76, 296, 390
Rowland experiment, 41, 257

S
Sail, radiation-pressure, 77, 395
Sail, solar, 135, 556
Satellite, tethered, 50, 291
Scattered radiation, polarization of, 93, 441
Scattering and interference, 94, 445
Scattering by a perfectly conducting sphere,

97, 450, 451
Schumann resonances, 116, 491
Self-sustained dynamo, 53, 308
Skin depth, resistive, 117, 494
Skin effect, 55, 313
Slowly varying current approximation

(SVCA), 292
Solar sail, 135, 556
Solenoid, 57, 328
Solenoid, eddy currents in a, 50, 292
Solenoid, electric current in a, 128, 532
Solenoid, fields of a, 83, 408
Solenoid, magnetic dipole rotating inside a,

55, 312
Solenoid, magnetic pressure on a, 56, 322
Solenoid, mutual induction between an inter-

nal loop and a, 55, 312
Soliton, 532
Spatially periodic surface sources, 121, 508
Sphere, electrically polarized, 23, 212
Spheres, electrically connected, 15, 186
Sphere, uniformly magnetized, 44, 273
Spherical metallic shell, shell resonances,

137, 568
Spiral motion, 90, 429
Square wave generator, 48, 285
Square waveguides, 113, 483
Square wave packet, 74, 85, 383, 416
Stress tensor, Maxwell, 385
Superconducting ring, magnetic levitation of

a, 59, 337
Surface charge density, 12, 174
Surface charge density on a conducting

sphere, 19, 206

Surface charges, 25, 27, 217, 228
Surface waves, 106, 467
Surface waves in a thin foil, 125, 520

T
TEMand TMmodes in an “open” waveguide,

112, 482
Tethered satellite, 50, 291
Thin foil, radiation pressure on a, 123, 513
Thin foil, surface waves in a, 125, 520
Thin foil, transmission and reflection, 102,

458
Thomson scattering in the presence of a mag-

netic field, 124, 516
Thomson scattering, polarization, 93, 442
Tolman-Stewart experiment, 31, 239
Transmission and reflection by a thin conduct-

ing foil, 102, 458
Transmission cable, Lorentz transformations

for a, 127, 526
Transmission in a moving transparent

medium, 132, 545
Transmission line, parallel-wire, 112, 480
Transversally magnetized cylinder, 45, 276
Transversally polarized cylinder, 27, 229
Triangular waveguides, 113, 483
Triatomic molecule, oscillations, 119, 501
Twin-lead cable, 112, 480

U
Undulator radiation, 124, 517
Uniformly charged sphere, Coulomb explo-

sion, 6, 147
Unipolar machine, 53, 306
Unipolar motor, magnetized sphere, 52, 300

V
Vector potential of a magnetic dipole, 280
Vector potential of a rotating charged spheri-

cal shell, 45, 277

W
Wave in a conducting medium, 108, 472
Wave incident on amovingmedium, 132, 545
Wave packet, quasi-Gaussian, 69, 372
Wave packet, square, 74, 85, 383, 416
Wave propagation in a conductor, 100, 453
Wave propagation in a filled waveguide, 115,

489
Wave reflection at the ionosphere, 473
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Wave, evanescent, 100, 453
Waveguide Modes as an Interference Effect,

114, 485
Waveguide with a moving end, 127, 529
Waveguide, filled, 115, 489
Waveguides, square and triangular, 113, 483
Waveplate, 104, 462

Waves in a Dipole chain, 109, 474
Waves, surface, 106, 467
Whistler waves, 105, 465

Z
Zeeman effect, classical, 136, 559
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