

Google Cloud for Developers

Write, migrate, and extend your code by leveraging
Google Cloud

Hector Parra Martinez

BIRMINGHAM—MUMBAI

Google Cloud for Developers
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Mohd Riyan Khan
Publishing Product Manager: Niranjan Naikwadi
Senior Editor: Sayali Pingale
Technical Editor: Nithik Cheruvakodan
Copy Editor: Safis Editing
Project Coordinator: Ashwin Kharwa
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Vijay Kamble
Marketing Coordinator: Agnes D'souza

First published: May 2023
Production reference: 1040523

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83763-074-5
www.packtpub.com

http://www.packtpub.com

To my loving wife, Eva Celada, for her patience during the endless nights and weekends I spent
writing this book, and her tireless support during this and many other not-so-easy moments during
the last 15 years. You are my light; thank you for making me smile and feel so fortunate every single

day. I love you!

– Hector Parra Martinez

Foreword

Google Cloud was launched some years ago to make available for customers all around the world the
same infrastructure that Google uses for its end user products, such as Google Search and YouTube.
We combine our offering of massive amounts of computing power with a versatile portfolio of managed
services and open APIs, which can help developers integrate advanced capabilities, such as artificial
intelligence, into their workflows in a very easy, secure, and cost-effective way.

Google Cloud is also the greenest cloud. Google has been carbon neutral since 2007, but we aim to
run on carbon-free energy 24*7 at all of our data centers by 2030. We are also helping organizations
around the world to transition to more carbon-free and sustainable systems by sharing technology
and methods and providing funding.

Many of the readers of this book may be developers working for companies that don’t use a cloud
provider. This book will help you understand what Google Cloud is, how it can help your organization
during its digital transformation, and how you can get the most out of it as a developer, engineer,
architect, or IT professional. Once you get rid of the burden of having an infrastructure to maintain
and rebuild your processes for agility and efficiency, the tangible benefits of the transformation will
be really surprising.

Combining open source technologies, such as Kubernetes, with our own implementations of Google
Kubernetes Engine and Anthos, Google Cloud for Developers will show you how to architect and
write code for cloud-native applications that can run on Google Cloud and how to take them to the
next level by containerizing them and making them available to run either on-premises, on Google
Cloud, or even on other public cloud providers, taking you on a journey toward hybrid and multi-
cloud architectures.

Technical information is complemented in the book with a nice list of best practices and tips, as well
as identifying pitfalls that often arise when an organization is migrating an application to Google
Cloud. This is a great resource with a lot of practical information that can help you save lots of time.

I also like the fact that this book is written by a Googler who was new to Google Cloud five years ago
but now develops solutions for the biggest advertisers in Spain and EMEA.

This shows that the learning curve is not so steep and that spending time studying the different
alternatives that we offer to architect and build cloud applications can have a significant impact on
your professional career.

If you are a developer looking for a powerful, secure, reliable, and sustainable cloud platform, Google
Cloud will be a great option. And this book will provide you with the information you need to start
building and deploying applications that can run wherever you want.

Isaac Hernández Vargas

Google Cloud Country Manager for Spain and Portugal

Contributors

About the author
Hector Parra Martinez has worked in corporate IT for more than 15 years, specializing in failure
monitoring and the automatic recovery of applications, systems, and networks. In 2018, he joined
Google as a customer solutions engineer, helping the largest customers in Spain and EMEA to make
the most out of Google Cloud for their advanced marketing analytics and data activation projects
using Google Ads and Google Marketing Platform.

Hector is a certified Google Cloud Digital Leader and co-leads Google’s Mind the Gap program in
Spain, created to encourage more young women to pursue science and engineering careers. In his
spare time, Hector is a big fan of retro gaming, TV shows, and electronic music. He also loves traveling
with his wife, Eva, and spending quality time with his big family, especially his five grandchildren
and two niblings.

I want to thank Google for believing in this project and making it possible, especially Eric A. Brewer
for his kind support and Priyanka Vergadia and Miguel Fernandes for their titanic efforts to make
this a great book. My deepest gratitude also to the Packt team that made this book possible: Ashwin,
Sayali, Niranjan, Nimisha, and Agnes, you are really amazing!

About the reviewers
Miguel Fernandes is a senior solutions engineer with more than 16 years of experience in IT. He helps
companies navigate their digital transformation efforts, with the last five years dedicated to delivering
cloud solutions. He is currently working on privacy challenges as a privacy solutions engineer at Google.
Having received an electronics engineering degree from Universidad Simón Bolívar, an MBA from
Universidad Carlos III de Madrid, and a Master’s degree in telematics engineering from Universidad
de Vigo, he is passionate about scaling solutions globally using cloud technology while working within
the constantly evolving privacy landscape.

I’d like to thank my family for being understanding of the time and commitment it takes to be on top
of all the technology changes we are experiencing every day. This sector involves constant learning and
I’m grateful for their acceptance and encouragement. I’ve also been lucky enough to work with great
colleagues, like Hector—their support has made the experience so rewarding and immensely fulfilling.

Priyanka Vergadia is an accomplished author and public speaker specializing in cloud technology. As
a staff developer advocate at Google Cloud, she helps companies solve complex business challenges
using cloud computing. Priyanka combines art and technology to make cloud computing approachable
through engaging visual stories. She has authored a unique cloud book (Visualizing Google Cloud)
and created popular content, including videos, comics, and blog posts. Her work has helped many
cloud enthusiasts get started, learn the fundamentals, and achieve cloud certifications. Find her on
the YouTube channel and at thecloudgirl.dev.

Preface� xvii

Part 1: Foundations of Developing for
Google Cloud

1
Choosing Google Cloud� 3

My story as a developer� 3
Project management, Agile,
DevOps, and SRE� 8
Introducing Digital Transformation� 11
Why should you run your code
on the cloud?� 13

Introducing Google Cloud� 14
Why should you choose
Google Cloud?� 17
Summary� 19
Further reading� 19

2
Modern Software Development in Google Cloud� 21

What does a developer do?� 21
The risks of traditional
software development� 22
Software bugs� 23
Slow development� 23
Resource exhaustion� 24
Lack of resiliency and fault tolerance� 24
Failing to estimate usage patterns� 24
Lack of proper monitoring and
risk management� 25

Unclear priorities, accountability,
and ownership� 25
Security approach� 26
Lost source code� 26

How modern software
development mitigates risks� 26
Software bugs� 26
Resource exhaustion and slow development� 27
Lack of resiliency and fault tolerance� 28
Failure to estimate usage patterns� 28

Table of Contents

Table of Contentsx

Lack of proper monitoring and
risk management� 28
Unclear priorities, accountability,
and ownership� 28
Security approach� 29

The benefits of implementing
modern software development
on Google Cloud� 29
Built for agility, elasticity, and reliability� 29
Security at the core� 31
Built for developers� 31

Google Cloud toolbox for developers� 31
Migration and development paths to
run your code on Google Cloud� 33
Migration checklist� 34
Migrate or refactor?� 35

Managing hybrid and
multi-cloud environments
with Anthos� 36
Summary� 38
Further reading� 39

3
Starting to Develop on Google Cloud� 41

The first steps with the
Google Cloud console� 41
Introducing Cloud Shell� 43
Writing code for Google Cloud
using Cloud Shell Editor� 44
Taking a look at the interface� 46
Showing the built-in terminal� 48
Uploading and downloading files� 48
Editing and writing code� 49
Version control� 49
Cloud Code support� 50
Moving your code to a different IDE� 51

Writing code for Google Cloud
using VS Code� 51
Installing the plugin� 52

Setting up Cloud Logging� 53

Best practices for logging� 55

Monitoring the execution
of your code� 56
Introducing observability� 56
Gathering information about your services� 57

Troubleshooting by debugging,
tracing, and profiling your code� 59
Appendix – testing your code
on Google Cloud� 61
Types of tests� 61
Recommendations and best practices
for testing your code� 63

Summary� 64
Further reading� 64

Table of Contents xi

Part 2: Basic Google Cloud Services
for Developers

4
Running Serverless Code on Google Cloud – Part 1� 67

Technical requirements� 67
Introducing serverless architectures� 68
Using Cloud Functions to run
your code� 68
Introducing Cloud Functions� 69
Running code using service accounts� 72
Writing, deploying, and running
a cloud function� 73
Testing a cloud function� 78
Deploying a cloud function� 79
Debugging a cloud function� 88
Tips and tricks for running your code
using Cloud Functions� 89
How much does it cost to run a cloud function?� 90

Using App Engine to run your code� 91

Introducing App Engine� 91
App Engine environment types� 92
Scaling strategies in App Engine� 94
Using App Engine in
microservice architectures� 95
Configuring App Engine services� 96
Writing, deploying, and running
code with App Engine� 96
Debugging in App Engine� 101
How much does it cost to run your code
on App Engine?� 101
Tips and tricks for running your code on
App Engine� 102

Summary� 102
Further reading� 103

5
Running Serverless Code on Google Cloud – Part 2� 105

Using Cloud Run to run your code� 105
Introducing Cloud Run� 105
Basic concepts of Cloud Run� 107
The two different execution environments
to choose from� 109
Writing and running code using Cloud Run� 110
Debugging in Cloud Run� 113
How much does it cost to run your code
on Cloud Run?� 113

Tips and tricks for running your
code on Cloud Run� 114

Choosing the best serverless
option for each use case� 116
Summary� 117
Further reading� 118

Table of Contentsxii

6
Running Containerized Applications with
Google Kubernetes Engine� 119

Introducing Google
Kubernetes Engine� 120
Deep diving into GKE – key
concepts and best practices� 120
GKE cluster architecture� 120
Advanced cluster management features� 122
GKE operation modes� 122
Cluster types based on availability� 123
Node pools and node taints for
easier management� 124
Best practices for cost efficiency in GKE� 126

Storage in GKE� 126
Networking in GKE� 126
Security in GKE� 127
Deploying applications on GKE� 128
Scaling an app in GKE� 129
Monitoring GKE applications� 131

Comparing GKE and Cloud Run –
when to use which� 132
GKE hands-on example� 133
Summary� 147
Further reading� 148

7
Managing the Hybrid Cloud with Anthos� 149

The pitfalls of choosing
a cloud provider� 149
Introducing hybrid cloud computing� 151

Anthos, the hybrid cloud
management platform� 152
Computing environment� 153
Simplified management using fleets� 154
Service Mesh for microservice architectures� 154
Networking in Anthos� 155
Centralized configuration management� 157
Securing containerized workloads� 157
Binary Authorization for a secure
software supply chain� 157
Consolidated logging and monitoring� 158

Unified UI� 158
Making hybrid cloud simple with
Cloud Run for Anthos� 159
Third-party application marketplace� 159
Anthos usage and pricing options� 160

Anthos hands-on example� 161
Running our example on Microsoft Azure� 172
Cleaning up� 184

Summary� 184
Further reading� 184

Table of Contents xiii

Part 3: Extending Your Code – Using Google
Cloud Services and Public APIs

8
Making the Best of Google Cloud Networking� 187

Introducing Google Cloud
networking� 188
Understanding regions and zones� 189
Choosing the best region and zone� 190

Connecting to our cloud resources� 192
VPC networks� 192
Network connectivity products� 193

Basic Google Cloud
networking services� 194
Cloud DNS� 194
Cloud Armor� 197
Cloud CDN� 199

Network Service Tiers� 201
Sample architecture� 202
Summary� 204
Further reading� 204

9
Time-Saving Google Cloud Services� 207

Cloud Storage for object storage
and retrieval� 208
Introducing Cloud Storage� 208
Bucket locations and storage classes� 209

Cloud Tasks for asynchronous
task execution� 210
Firestore in Datastore mode for
high-performance NoSQL storage� 212
Cloud Workflows for
service orchestration� 213
Pub/Sub for inter-service messaging� 214
Secret Manager for storing
sensitive data� 215

Cloud Scheduler for running
jobs at the right time� 216
A hands-on exercise� 217
Reading the list of cities� 219
Getting weather information for each city� 220
Storing weather information in
a central location� 222
Updating the weather web page� 222
The end-to-end workflow for our
weather solution� 224
Updating our web page every 30 minutes� 227
What’s next?� 228

Summary� 228
Further reading� 229

Table of Contentsxiv

10
Extending Applications with Google Cloud Machine Learning APIs� 231

Unstructured versus structured data� 232
Speech-to-Text� 233
Cloud Translation� 235
Cloud Natural Language� 237
Cloud Vision� 244

Cloud Video Intelligence� 253
Hands-on exercise� 259
What’s next� 264

Summary� 264
Further reading� 265

Part 4: Connecting the Dots –Building Hybrid
Cloud Solutions That Can Run Anywhere

11
Architecture Patterns for Hybrid and Multi-Cloud Solutions� 269

Defining hybrid and
multi-cloud solutions� 270
Why hybrid and multi-cloud?� 271
Best practices for hybrid and
multi-cloud architectures� 272
Types of architecture patterns� 273
Distributed architecture patterns� 274
Tiered Hybrid� 274
Partitioned multi-cloud� 275

Analytics hybrid or multi-cloud� 276
Edge Hybrid� 277

Redundant architecture patterns� 278
Environment hybrid� 278
Business continuity hybrid or multi-cloud� 279
Cloud bursting� 281

Summary� 282
Further reading� 283

12
Practical Use Cases of Google Cloud in Real-World Scenarios� 285

Invoice management –
deconstructing the monolith� 285
Specifications� 286
Analysis and opportunities� 286
Approaching the migration� 288

Designing the new architecture� 289
Hybrid and multi-cloud options� 291

Highway toll system –
centralizing and automating
a distributed scenario� 292

Table of Contents xv

Specifications� 292
Analysis and opportunities� 293
Designing the new architecture� 293
Making the most of our data� 297
Hybrid and multi-cloud options� 297

Fashion Victims – using the cloud
as an extension of our business� 298

Specifications� 299
Analysis and opportunities� 299
Designing the new architecture� 300
Hybrid and multi-cloud options� 302

Summary� 303
Further reading� 303

13
Migration Pitfalls, Best Practices, and Useful Tips� 305

Common pitfalls while moving
to the cloud� 305
Management not on board� 306
Unclear strategy and poorly defined
migration roadmap� 306
Unmanaged expectations regarding
benefits and costs� 307
Too disruptive or too conservative� 308
Not knowing your infrastructure and
services well enough� 309
Migrating to the cloud is just moving
infrastructure� 309
Being too careless with your data� 310
Making migration waves too big or too long� 311
Unbalanced latency, complexity, and cost� 312

Best practices for bringing
your code to Google Cloud� 312

Avoid migrate and delete� 313
Check regulations and compliance
before moving ahead� 313
Prepare a migration toolkit in advance� 314
Try to simplify, that’s what the cloud is about� 315
Analyze and prioritize accordingly� 316
Measure, analyze, optimize,
and prove success� 316
Connectivity and latency can make
a huge difference� 317
Build once, deploy anywhere,
and as many times as required� 318

Summary� 319
Further reading� 319

Index� 321

Other Books You May Enjoy� 338

Preface

Public cloud providers offer unlimited resources and a pay-per-use model, which opens the way to
a new era of programming, no longer restricted by the lack of resources or the use of data centers
located far away from customers.

Google decided to offer its internal technology to public users in 2008, and that’s how Google Cloud
was born. This meant universal access to massive processing and computing resources, together with a
complete set of tools and services exposed using public APIs. This allows modern developers to easily
extend their applications to benefit from the latest computing technologies and services, from modern
infrastructure components to machine learning powered text, image, audio, and video analysis APIs.

I have written this book with a clear purpose in mind: to make it as easy as possible for developers
to start writing, running, profiling, and troubleshooting their code in Google Cloud. But creating
applications that run partially or totally in the cloud comes with its own list of challenges.

This book explains the pillars of digital transformation and how software development and project
management have evolved in the last few years. The portfolio of services offered by Google Cloud has
been constantly updated to remain aligned with the best practices of the industry and has become
an invaluable tool for fast cloud application and service development, deployment, and migration.

While cloud computing is a trending topic, many organizations do not like to put all their eggs in the
same basket. That is why this book also covers distinctive design patterns that combine on-premises
and cloud computing resources to create hybrid and multi-cloud applications and services, making
the most of each environment while diversifying the computing strategy.

This book also covers the most important parts of a migration to the cloud, from the initial questions
to the long-term thinking process that will bring you closer to succeeding. A lot of real-world examples
are included, together with lots of best practices and tips.

I have authored the book that I would have loved to have when I started my career, and I hope that it
will be useful and will help you succeed. Thank you for reading it!

Who this book is for
This book has been written by a developer and is targeted at other developers and roles where writing
code to run on Google Cloud is a requirement: cloud solution architects, engineers, and IT developers
willing to bring their code to Google Cloud or start building it from scratch. Entrepreneurs in early-
stage start-ups and IT professionals bringing their legacy servers and processes to Google Cloud will
also benefit from this book.

Prefacexviii

What this book covers
Chapter 1, Choosing Google Cloud, begins with my own story as a developer and continues to explain
how software development has evolved over the years. This chapter also covers the basics of digital
transformation and why you should run your code in a public provider in general and on Google
Cloud in particular.

Chapter 2, Modern Software Development in Google Cloud, begins by exploring the risks of traditional
software development and how modern techniques mitigate these risks. The next part of the chapter
covers how Google Cloud provides a set of tools and products that can be used to implement the
mentioned modern techniques. The last part covers the different paths to migrate and write code that
runs on Google Cloud.

Chapter 3, Starting to Develop on Google Cloud, starts by introducing the Google Cloud web console
and then covers all the tools that can be used during the different phases of software development:
Cloud Shell and its companion editor for writing code; it also mentions how to integrate Cloud Code in
alternative integrated development environments (IDEs) such as Visual Studio Code, Cloud Logging
and Cloud Monitoring for observability, and Cloud Trace and Cloud Profiler for troubleshooting.

Chapter 4, Running Serverless Code on Google Cloud – Part 1, covers the first two options for running
serverless code on Google Cloud: Cloud Functions and App Engine, including how they work, what
their requirements are, and how much they cost. The chapter also uses an example to show how we
can use both options to run, test, and troubleshoot our code.

Chapter 5, Running Serverless Code on Google Cloud – Part 2, talks about Cloud Run, the third option
available to run serverless code on Google Cloud, and explains the differences between the two
environments that can be used. The example from the previous chapter is also implemented using
containers, also explaining how to debug our code and how to estimate how much this option costs.
The last part of the chapter is used to compare the three available options for serverless code, including
some tricks to help you make the best choice.

Chapter 6, Running Containerized Applications with Google Kubernetes Engine, starts with an
introduction to Google Kubernetes Engine (GKE), deep diving into the key topics, such as cluster
and fleet management, security, monitoring, and cost optimization. The similarities and differences
between GKE and Cloud Run are also explained, and tips are provided to help you decide when to
use them. A hands-on example where a web application is containerized is also included.

Chapter 7, Managing the Hybrid Cloud with Anthos, starts by enumerating the key points to consider
when choosing a cloud provider and how being able to work with different environments and providers
simultaneously can be beneficial. Anthos is then introduced as a platform to easily manage hybrid and
multi-cloud environments while providing unified management, security, and observability capabilities.
After deep diving into Anthos components, concepts, and features, a hands-on example is included
that can be deployed to either Google Cloud or Azure to better understand the benefits of Anthos.

Preface xix

Chapter 8, Making the Best of Google Cloud Networking, begins with a brief introduction to networking
in Google Cloud, including how regions and zones work and how we can connect to our cloud
resources. Next, some of the most important networking services available in Google Cloud are
covered, including Cloud DNS, Load Balancing, Cloud Armor, and Cloud CDN. Finally, the two
different Network Service Tiers are explained, and a sample architecture is used to showcase many of
the network services and products discussed in this chapter.

Chapter 9, Time-Saving Google Cloud Services, this chapter covers some of the basic Google Cloud
services that we can use to simplify our development process and our migrations to the cloud, including
Cloud Storage to store our files, Cloud Tasks as a managed service for asynchronous task execution,
Firestore in Datastore as a NoSQL database, Cloud Workflows to create end-to-end solutions, Pub/
Sub for inter-component communication, Secret Manager to store our most sensitive data, and Cloud
Scheduler to run our tasks and workflows exactly when we want. Finally, a practical exercise is included
that combines most of these services.

Chapter 10, Extending Applications with Google Cloud Machine Learning APIs, explains how we can
use Google’s AI services and APIs to easily improve our own code. First, the differences between
unstructured and structured data are explained, and then speech-to-text is covered as an example.
Then, Cloud Translation is presented as a way to obtain final text files in the same language, and
Cloud Natural Language is proposed as an interesting option to analyze these text files. In the next
section, Cloud Vision and Cloud Video Intelligence are also presented as an alternative to help us
understand the content of images and videos. Finally, a hands-on exercise is used to combine some
of the mentioned services.

Chapter 11, Architecture Patterns for Hybrid and Multi-Cloud Solutions, starts by explaining the
differences between hybrid and multi-cloud solutions and then justifies why these architectures
make sense. Next, a list of some of the best practices to use when designing these kinds of solutions is
provided. Then, hybrid and multi-cloud architecture patterns are divided into two different categories,
and each of the design patterns is explained, including details such as the recommended network
topology to use in each case.

Chapter 12, Practical Use Cases of Google Cloud in Real-World Scenarios, this chapter describes three
very different scenarios and goes through the process of deciding which design patterns should be
used to modernize and migrate each of them to Google Cloud. The key areas where we should focus
our efforts are identified, together with the key decisions we need to take and the right sequence of
actions to complete for these migrations to succeed.

Chapter 13, Migration Pitfalls, Best Practices, and Useful Tips, starts by identifying the most common
pitfalls that happen while we move or modernize our applications to Google Cloud. Then, a list of
best practices to bring our code to Google Cloud is discussed. Tips are included to help you overcome
obstacles, handle delicate situations, which are quite usual in this kind of migration, and mitigate the
complexity of this kind of process.

Prefacexx

To get the most out of this book
You should understand the basics of writing, deploying, and running code. Basic knowledge of cloud
services would be beneficial too, but a quick introduction is included for those who may be lacking it.

You will also need to have some familiarization with the Google Cloud web console and know how
to use a Linux command shell. Also, since most of the examples are written in Python, knowing this
programming language will make things much easier.

Software/hardware covered in the book Operating system requirements

 Python 3.x Linux

 Bash shell Linux

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Google-Cloud-for-Developers. If there’s an update to the code, it
will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/d4IEw.

https://github.com/PacktPublishing/Google-Cloud-for-Developers
https://github.com/PacktPublishing/Google-Cloud-for-Developers
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/d4IEw

Preface xxi

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Now we
are ready for testing, and the four files have been copied to the same working directory: app.yaml,
favicon.ico, main.py, and requirements.txt.”

A block of code is set as follows:

DEFAULT_TEMPLATE = "english.html"

@app.route('/')

def get():

    template = request.args.get('template', DEFAULT_TEMPLATE)

    name = request.args.get('name', None)

    company = request.args.get('company', None)

    resume_html = return_resume(template, name, company)

    return resume_html

This is only used when running locally. When running live,

gunicorn runs the application.

if __name__ == '__main__':

    app.run(host='127.0.0.1', port=8080, debug=True)

Any command-line input or output is written as follows:

/home/<user>/.local/bin/gunicorn -b :8080 main:app &

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “The Testing tab can be useful for fast
tests since it will help us quickly build a payload and trigger our Cloud Function, so we can then
switch back to the Logs tab and check that everything works as expected.”

Tips or important notes
Appear like this.

Prefacexxii

Share Your Thoughts
Once you’ve read Google Cloud for Developers, we’d love to hear your thoughts! Please click here to
go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

.

https://packt.link/r/1-837-63074-7
https://packt.link/r/1-837-63074-7

Preface xxiii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837630745

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781837630745

Part 1:
Foundations of Developing

for Google Cloud

Public cloud providers have revolutionized software development, making resource restrictions and
costly maintenance concepts of the past. Let’s use this part of the book to discuss what these changes
are, what they mean for an organization nowadays, and how corporate culture needs to evolve to
embrace these changes.

We will also use this part to introduce Google Cloud as a platform that can help your organization
implement all the new trends in software development, with a complete toolkit that will make writing,
testing, deploying, and troubleshooting your code a much more enjoyable experience.

This part contains the following chapters:

•	 Chapter 1, Choosing Google Cloud

•	 Chapter 2, Modern Software Development in Google Cloud

•	 Chapter 3, Starting to Develop on Google Cloud

1
Choosing Google Cloud

I have written this book with a clear purpose in mind: to make it as easy as possible for developers
to start writing, running, profiling, and troubleshooting their code in Google Cloud. Indeed, I’m a
developer too, and I would love to share my story so I can better explain why I think, first, that you
should be writing code on the cloud and, second, why, in my opinion, Google Cloud is the best option
to do so nowadays.

We’ll cover the following main topics in this chapter:

•	 My story as a developer

•	 Project management, Agile, DevOps, and SRE

•	 Introducing Digital Transformation

•	 Why should you run your code on the cloud?

•	 Introducing Google Cloud

•	 Why should you choose Google Cloud?

My story as a developer
I got my first computer in 1987 as a gift from my parents. I must admit that I chose an Amstrad CPC
464 because it came bundled with a few cassette tapes with games:

Choosing Google Cloud4

Figure 1.1 – Amstrad CPC 464 (author: Bill Bertram, source: https://en.wikipedia.

org/wiki/Amstrad_CPC#/media/File:Amstrad_CPC464.jpg)

I used to play some of those games during my initial days with the computer, but they were unfortunately
quite boring and primitive. One of them was called Animal, Vegetal, Mineral and it especially caught
my attention. It was a very simple text game that tried to guess any animal, plant, or mineral that you
could think of as soon as possible, by asking questions such as is it a vegetable?, is it green?, and is it
a lettuce?

I have always been a very curious person and started to think how that game could work, and mentally
pictured some kind of tree structure organizing all the information about potential answers so that
the answers provided to the questions could help the code decide which leaf of that tree to traverse.
As you can see, my mind was already a good fit for data structures, wasn’t it?

The CPC 464 came with a small book, which was one of the reasons why I became a developer (I’ll
leave the other story about reverse engineering the protection scheme of a Lemmings game for another
time). The title of the book in English was called Basic Reference Manual for Programmers. I loved
reading at that age, indeed the worst punishment I could get was not being allowed to read at night,
but this manual surprised and entertained me even more than the sci-fi classics I was used to reading
because it opened the door to learning and fostered my digital creativity at the same time:

https://en.wikipedia.org/wiki/Amstrad_CPC#/media/File:Amstrad_CPC464.jpg
https://en.wikipedia.org/wiki/Amstrad_CPC#/media/File:Amstrad_CPC464.jpg

My story as a developer 5

Figure 1.2 – CPC-464 Basic Reference Manual for Programmers

One step at a time, I was able to learn how to code in Basic on my own and implemented an even
more primitive version of the game I mentioned earlier. But much more important than that, I loved
the experience and decided at quite a young age that computers in general, and programming, in
particular, would both be core parts of any professional career I would choose in the future.

Programming at that time was like writing with a pen on a blank piece of paper but using the bundled
and primitive Line Editor application instead. In 1985, I just had that Basic manual to learn and get
inspiration from. Forget about autocompletion, online help… and, oh my God, there was no Stack
Overflow! Just take a look:

Choosing Google Cloud6

Figure 1.3 – Amstrad screen with Basic code

In the following years of my professional career, I had the chance to start working with Unix and
Linux systems and started using vi and emacs as code editors for shell and Perl scripts, together with
code written in C. I have always felt quite comfortable with the console, even for editing code, but I
have to admit that graphical and integrated interfaces were game-changers.

A few years later, I moved to a pharma company where the presence of Windows systems was much
more frequent. That meant meeting Microsoft’s Visual Studio UI for the first time, and I must admit
it was a very pleasant surprise. Coding in Visual Basic felt different when compared with my good old
Amstrad CPC and exploring interface design was a very interesting experience. I also started using
Notepad++ for my PHP, Perl, and bash scripts. It was great to see how all these applications added
new features year after year.

But I still realized I had to create everything from scratch whenever I started working on a new project,
and the time required to develop an application or service was just too long.

Fortunately, nowadays, there are a lot of different integrated development environments (IDEs)
to choose from, with amazing features such as code completion, code control integration, online
references, and samples, which make writing code a much more enjoyable experience. I love the idea
of using web-based IDEs, which in my opinion make the experience comfortable. Being able to open
a browser and have access to an IDE full of options is just amazing!

My story as a developer 7

Visual Studio Code (https://code.visualstudio.com/) is one example that I use quite
often when I develop applications for Google Cloud. Just compare the following screenshot with the
previous one from the Amstrad CPC...

Figure 1.4 – Interface of Visual Studio Code

And we are getting closer and closer to code being automatically written by just providing
a summary of what the piece of code should do (https://www.forbes.com/sites/
janakirammsv/2022/03/14/5-ai-tools-that-can-generate-code-to-help-
programmers/).

However, what I love about developing for the cloud is how easy it is to integrate external services
that provide advanced features, or how accessible architecture patterns, reference implementations,
or sample code are. Now, I can put together pieces of code during a single day of work that can do
much more than what I could achieve years ago working for 2 weeks.

During my first few months at Google, I worked on a solution that analyzed display ads and let
advertisers know what elements worked better. Knowing whether ads with a palm tree worked better
than those with a swimming pool, or whether an image of a couple with a baby got more clicks than
one with a group of friends was cool.

And implementing this application was reasonably easy thanks to what Google calls the Cloud Vision
API, an AI-based service able to detect objects, text, and colors on an image. Imagine how long it
would take me to develop this system on my own. I will admit it: I would never have been able to do
it. But now, it just takes a few minutes to integrate the API of this service with my code.

https://code.visualstudio.com/
https://www.forbes.com/sites/janakirammsv/2022/03/14/5-ai-tools-that-can-generate-code-to-help-programmers/
https://www.forbes.com/sites/janakirammsv/2022/03/14/5-ai-tools-that-can-generate-code-to-help-programmers/
https://www.forbes.com/sites/janakirammsv/2022/03/14/5-ai-tools-that-can-generate-code-to-help-programmers/

Choosing Google Cloud8

And the same happens with other key services, such as storage, messaging queues, databases, and many
others that we will cover later in this book. I can say loud and clear that Google Cloud has changed the
way I understand and conceive software development. Not only can I develop applications much faster
and much more securely but I can also deploy them much more comfortably and make them available
to any amount of users worldwide. And all of this can be done from a browser running on my laptop.

Now, I can focus my time on innovative applications and use different components, which make use
of cutting-edge technologies, to develop and deploy these applications in record time. And this is
what Google Cloud can do for you, too.

So, long story short, after spending endless days fixing the effects of bad initial designs and upgrading
hardware, operating systems, and applications, I realized that it would be much better if I could
design and build resilient and distributed applications while reusing cutting-edge components and
services, which would scale great and deploy faster, and try to decouple them from the hardware and
the operating system.

But when we talk about developing, it’s not just writing code but also getting to identify what problem
or challenge needs to be solved and decide how we can provide a solution that works. And doing all
of this properly is the real challenge.

In my case, I was lucky because, just before joining Google, my employer happened to start exploring
ways to make projects shorter and more successful. That’s how I became familiarized and started to
use project management, Agile, DevOps, and, once I joined Google, Site Reliability Engineering
(SRE) practices.

Let’s discuss what these are and how they can help developers.

Project management, Agile, DevOps, and SRE
Organizations put a lot of effort into minimizing the waste of time and money in projects since both
are frequently scarce. Being able to anticipate bottlenecks and blockers can help reduce the chances
for a project to fail.

And it is here that project managers become the key players. Among other tasks, they are responsible
for identifying stakeholders, dividing the work into tasks, assigning times to each activity, and following
up to ensure that everything is completed on time.

Traditional project management used the so-called waterfall methodology, which divides a project
into different steps that are completed in sequential order one after another: requirement gathering,
design, implementation, testing, and maintenance.

However, there can be projects that may run for much longer than planned due to different reasons
– for example, wrong or incomplete initial assessments leading to undetected dependencies, or never-
ending tasks that block others.

Project management, Agile, DevOps, and SRE 9

Also, projects managed using waterfall methodologies are more rigid in terms of features. As these
are defined in the initial phases, any changes due to unexpected reasons, such as a feature not being
needed anymore or becoming obsolete, could derail the project.

Project management has evolved and one of the most common practices to reduce the risk of long
delays is to split the project into different phases of incremental complexity, also known as sprints,
while following an iterative approach instead of a linear one. These practices were introduced in more
recent methodologies, such as Agile, which aim to speed up the progress of projects and offer tangible
results as soon as possible.

In Agile and similar methodologies, a Minimum Viable Product (MVP) can be provided after
completing just one or a few of the initial code sprints; then, the team will work on improving it using
an iterative approach that adds new features and capabilities. It fixes any found bugs in each new sprint
until the project meets all the requirements and is then considered to be finished.

The following diagram summarizes the different phases for each sprint:

Figure 1.5 – Agile development phases

Agile is a project management methodology aimed at getting an MVP ready earlier, but it needs a
compatible process on the development side to ensure agility. And here is where DevOps comes to
the rescue.

DevOps is a set of practices that aims to increase the software delivery velocity, improve service
reliability, and build shared ownership among software stakeholders. Many organizations use DevOps
to complement Agile project management methodologies and reduce the lead time – that is, how long
it takes for a team to go from committing code to having code successfully deployed and running
in production:

Choosing Google Cloud10

Figure 1.6 – DevOps development cycle (source: https://nub8.net/wp-content/

uploads/2019/12/Nub8-What-is-Devops-1-min.png)

By implementing DevOps, you can improve a lot of your development metrics by increasing the speed
of your deployments, reducing the number of errors in these deployments, and building security
from the start.

These methodologies are very interesting for developers, but agility can only be achieved if the underlying
infrastructure components are also compatible with fast deployments. For example, running short
and fast sprints will not make sense at all in a platform where virtual machines are provided no earlier
than 3 days after being requested and databases after 5 (and I have seen that happen, I promise).

An environment that can help you speed up all your processes is the best option, not only for developers
but for everyone involved in IT projects. As we’ll see shortly, the cloud is an extremely good option
if you use Agile methodologies, are a big fan of code sprints, or want to implement DevOps in
your organization.

And if DevOps helps automate deployments, SRE can also help in a later stage by automating all the
manual tasks required to keep your environments up and running, such as those included as part of
change management or incident response processes. And guess what – the cloud is a great place to
implement SRE practices, too! To learn more about SRE, visit https://sre.google/.

If you are new to concepts such as Agile or DevOps, you may still be wasting a lot of your precious
time as a developer doing the wrong kind of things. You should be spending most of your hours on
innovating, thus contributing to the Digital Transformation of your team and the whole organization.
We’ll use the next section to explain what Digital Transformation means and why it is really important
and should be appropriately prioritized if it hasn’t been already.

https://nub8.net/wp-content/uploads/2019/12/Nub8-What-is-Devops-1-min.png
https://nub8.net/wp-content/uploads/2019/12/Nub8-What-is-Devops-1-min.png
https://sre.google/

Introducing Digital Transformation 11

Introducing Digital Transformation
I can imagine that many of you, while reading the first part of this introductory chapter, will have
remembered your very own unpleasant experiences of working with infrastructure, applications,
and architectures that started to grow and run out of resources due to a limited physical or virtual
on-premises environment, a monolithic or overcomplicated initial design that made the application
or service die of success after growing much more than expected and that you had to fix for good,
or data split among so many databases in the organization that a minor update in the schema of a
supposedly rarely used table broke most of the corporate applications.

The situations I just pictured are quite common among organizations that are still using an important
amount of their IT time to decide where their infrastructure should run. And that’s probably because
they haven’t completed their Digital Transformation yet. Even if you work for a start-up in its first
stages, you may still be asking yourself these kinds of questions today. If that is the case, you should
embrace the practices of digital transformation starting today.

The reason is that all these sadly common situations are incompatible with innovation. And IT
professionals in organizations where innovation is constantly postponed because there are other higher
priorities will become either outdated or burnt out, if not both, over time. If we combine this golden
jail scenario with the burden of system and infrastructure migrations, there is a lot of precious time
wasted on tasks that developers and engineers hate, and that don’t add any value to the organization.

Let’s say it loud and clear: if you want to innovate and if you want to be disruptive, you should focus your
efforts on transforming or creating an organization where everyone can drive innovation. Otherwise,
you will be wasting precious time and resources focusing on the wrong tasks.

Rob Enslin, former President of Global Customer Operations for Google Cloud, mentioned a few areas
to focus on during a digital transformation process in a blog post from the Google Cloud website:
https://cloud.google.com/blog/topics/inside-google-cloud/innovation-
in-the-era-of-the-transformation-cloud. This list is, in my opinion, a very good
summary of four of the main pillars of digital transformation, where organizations should put their
efforts to free time and resources and be able to innovate more.

Let’s comment on each of these pillars:

•	 Accelerate the transformation, while also maintaining the freedom to adapt to market needs. This is
a very important point because while the digital transformation should happen in a reasonable
amount of time, the process itself needs to be flexible too; otherwise, it may fail miserably if
either the market or any other important external variable suddenly changes without prior
notice. For example, during the pandemic, many companies were forced to speed up their
digital transformation, and those who were ready to provide remote working capabilities for
their employees earlier suffered less from the effects of the lack of productivity during those
months that all of us had to spend working from home.

https://cloud.google.com/blog/topics/inside-google-cloud/innovation-in-the-era-of-the-transformation-cloud
https://cloud.google.com/blog/topics/inside-google-cloud/innovation-in-the-era-of-the-transformation-cloud

Choosing Google Cloud12

•	 Make every employee, from data scientists to sales associates, smarter with real-time data to
make the best decisions. First-party data is power; however, it is often split into silos across
an organization. A digital transformation should break down these silos by centralizing,
deduplicating, and consolidating all data sources so that all the information is available to all
members of the organization together with real-time insights that each department can use to
make their own informed strategical decisions.

•	 Bring people together and enable them to communicate, collaborate, and share, even when they
cannot meet in person. After the pandemic, it’s even more clear that physical distance should
not be a stopper, and all cultural elements of the organization should be replicable for people
working remotely too so that people can also collaborate and share comfortably when they are
far away from each other. Consider this as flexibility seen from a very specific angle.

•	 Protect everything that matters to your organization: your people, your customers, your data,
your customer’s data, and each transaction you undertake. Security is more important than ever,
especially now that companies are using the power of technology to provide better services,
and it should be a key element in any modern company transformation plan. Your data is your
treasure and, together with your intellectual property, it might be what differentiates your
organization from the competition. But it is also your responsibility to keep all your data safe,
even more so when it probably contains personal and private information about your customers.

Rob summarizes these four pillars into their corresponding objectives: application and infrastructure
modernization, data democratization, people connections, and trusted transactions. Any organization
able to meet these objectives will have much more time and resources to dedicate to innovation.

If you read the previous paragraph carefully, you will realize that we developers are the key players in
each of the four pillars of Digital Transformation, one way or another. During the digital transformation
of an organization, developers will be working hand in hand with engineers on application and
infrastructure modernization, which should be achieved by simplifying monolithic architectures by
splitting them into elastic microservices. These apps and services will be using data as an input, and
probably also generating data and insights as an output in many of the cases, so they will benefit from
both the data centralization and the democratization mentioned earlier, and code should become
simpler once data is easier to access.

And being connected to the rest of the team will also be important to make sure that our code meets
everyone’s needs. If we work using sprints, we need to be aligned with the rest of the team, even if each
of us is located in a different office, country, or even continent. Finally, security is the key to ensuring
that our apps and services are safe to be used and that our customers trust us more than ever.

Designing a Digital Transformation plan is not easy, and that’s why there are a lot of companies working
to help others succeed on their transformation journey. Some companies can help you design and
execute the plan, but many others have created platforms that can make things much easier.

Some years ago, tech giants had the idea of abstracting the infrastructure up to the point that the
customer wanted, letting organizations focus on what they love to do: architect, write, and run modern

Why should you run your code on the cloud? 13

applications, centralize their data, make the most out of it, and get people connected, all of it in a
secured platform. And guess what – Google Cloud is one of them.

Why should you run your code on the cloud?
There are a few reasons why I would recommend developers run their code on the cloud.

First of all, let me say once again: if you are spending too much time setting up servers, installing
operating systems, deploying patches, and performing migrations, then you simply deserve better. I’ve
been there and I can’t put into words how happy I felt after I left it behind. I used to dedicate 20% of
my time (and much longer on specific occasions) to maintaining, troubleshooting, and supporting the
operating system, applications, and database. Since I joined Google, I can use that extra time to learn,
brainstorm innovative solutions with my team, or write better code. I also think that code is poetry
(https://www.smashingmagazine.com/2010/05/the-poetics-of-coding/), so
IMHO, inspiration arrives better when we have more time and less pressure.

Besides, most cloud-based services offer customizable infrastructure components, or at least different
sizes, so you can still have a reasonable degree of control over where your code runs. In summary,
running code on the cloud will provide you with more options and better performance and will allow
you to focus your time on coding, not on other distracting tasks.

Also, a cloud provider has many data centers in different locations across the world. If the start-up or
organization you work for is planning to grow and have customers in more than one market at some
point, a single server or even a few servers in a single location may not be enough to offer decent-
quality service. This is becoming more and more important as real-time services become predominant
and latency has to remain low.

If you can anticipate that you may suffer a potential scaling or latency problem in the future, already
being in the cloud can make things much easier if you need to replicate your architecture in another
continent for local users. Having infrastructure located closer to users can also help you meet legal
requirements, as some countries require data or processes to be located in-country.

And speaking about scaling, the pay-per-use model is reasonably compatible with organizations
growing because you will use more resources as you make more business and generate more revenue.
Besides, most cloud providers will offer bigger discounts as you increase your usage. And if you have
very particular needs, you can use huge clusters for a few minutes or hours and pay a very reasonable
price. Indeed, you can have thousands of servers at your command at a very affordable price, something
that would be prohibitive in an on-premises data center.

If your infrastructure is affected by traffic peaks, the cloud is also your place to go. If you have a lot
of visitors on Sundays, your website crashes during Black Friday, or your app is usually down during
the Christmas holiday season because of seasonality peaks, you may have decided not to increase the
resources available for your application or website because, during most of the year, it can handle the
average demand. With a cloud provider, you can scale up your application automatically when there

https://www.smashingmagazine.com/2010/05/the-poetics-of-coding/

Choosing Google Cloud14

is a peak and you can do the contrary too – that is, you can scale it down while your customers are
sleeping so that you can reduce your costs. You can also schedule some tasks to run when the data center
has less workload and save more money. We will discuss all of these opportunities later in this book.

What if you want to implement Agile and DevOps practices? Cloud providers have very fast provisioning
times, so you can deploy complex applications and the infrastructure associated with them, as it is no
longer static, in a matter of minutes. And that makes a huge difference, which allows you to use that extra
time for better testing or even to do more iterations, which in the end will translate into better code.

And regarding the everyday life of a developer, if you are worried because you may not be able to keep
on using your favorite IDE or fear that latency while writing code could be a problem, or that processes
might be more complicated, just give it a try – you will be delighted. Hosting your repository in the
cloud should be easy and you will not notice the difference. And you can connect from anywhere,
even while commuting back home if you realize that you forgot to submit a very important CL before
leaving the office.

I hope that you have been convinced that running your code on the cloud is a great idea. Now, let me
show you why I think that Google Cloud is the best cloud provider to do so.

Introducing Google Cloud
Cloud providers offer different infrastructure components and managed services on demand using
a pay-per-use model so that you don’t have to worry about migrations, updates, patches, and similar
time thieves.

Google’s specific vision is to run their customer’s code (and any other stuff they want to bring over
to the cloud) on the same infrastructure used by its well-known products with billions of users, such
as Google Search, Gmail, Google Drive, and YouTube. Using these same services is a guarantee of
scalability and reliability. And this is what Google calls Google Cloud, a public cloud provider that
many companies choose for their digital transformation journey.

If you are new to Google Cloud or are unsure about the number of products it offers, then it’s a
perfect time to visit Google's Developer cheat sheet (https://googlecloudcheatsheet.
withgoogle.com/) so that you can understand the real magnitude of this offering; there are hundreds
of services, organized in different areas, which allow you to accomplish virtually any task on the cloud.
When you load the cheat sheet, you will see all the products, along with their corresponding names
and icons, organized in different areas with different colors. You can scroll down to see the whole list;
putting your mouse cursor over any of the tiles will show a very short description of each product.

A zoomed-out view of the cheat sheet looks like this:

https://googlecloudcheatsheet.withgoogle.com/
https://googlecloudcheatsheet.withgoogle.com/

Introducing Google Cloud 15

Figure 1.7 – Zoomed-out view of the Google Cloud cheat sheet (source: https://

googlecloudcheatsheet.withgoogle.com/)

If you feel overwhelmed at this point, that’s OK. I do too. This book is not aimed at going through that
whole list, but to guide you on a quick and easy path to get you to write, run, and troubleshoot your
code as easily as possible in Google Cloud. This book will cover those services directly or indirectly
related to code development.

The product and service offerings of Google Cloud cover many different areas. I have selected just a
few of the main services so that you can get a better idea of what I’m talking about:

•	 Computing resources: Virtual machines running in Google’s Data Centers.

•	 Serverless platforms: Run your code without having to worry about the hardware or the
operating system, including services such as Cloud Functions or App Engine.

•	 Containerized applications: You can use either Cloud Run or Kubernetes Engine.

•	 Databases: These offer all flavors: relational, NoSQL, document, serverless, and memory-based.
They even offer managed instances of MySQL, PostgreSQL, and SQL Server and tools to easily
migrate your database from Oracle, MySQL, and PostgreSQL to Cloud SQL.

•	 Storage: This is either for files or any kinds of objects and supports many different scenarios
in terms of availability and retention.

•	 Data analytics: You can do this with a complete set of tools to help you ingest, process, and
analyze all your data.

•	 Artificial intelligence and machine learning: These help turn your data into insights and
generate models able to make predictions.

•	 Networking: This offers cloud and hybrid connectivity security solutions, together with load
balancing and content distribution services, among many others.

https://googlecloudcheatsheet.withgoogle.com/
https://googlecloudcheatsheet.withgoogle.com/

Choosing Google Cloud16

•	 Mobile platform: This provides tools to help you make the most out of your mobile applications.

•	 Hybrid and multi-cloud: These options use Anthos to migrate, run, and operate your
applications anywhere.

•	 Migration tools: These make it easier for you to move your stuff from an on-premises
environment or other cloud providers.

But where are the services for developers? I’m a really bad guy and left them out of the previous list
on purpose so that you didn’t skip the rest. These are some of the development-related services that
you can enjoy in Google Cloud, in addition to those already mentioned:

•	 Development tools and services, such as command-line tools and libraries, CloudShell, Cloud
Source Repositories, Tools for PowerShell, Cloud Scheduler for task automation and management,
Cloud Code, and IDE support to write, run and debug Kubernetes applications.

•	 DevOps continuous integration and continuous delivery (CI/CD) tools and services, allowing fast
and safe code deployments with low error rates. Use Cloud Build for CI/CD, Artifact Registry
to store build artifacts and dependencies, Google Cloud Deploy for fully managed purposes,
Google Kubernetes Engine, Tekton for declaring CI/CD pipelines, and Cloud Deployment
Manager to create and manage Google Cloud resources. Operations and monitoring tools and
services are also provided, built to help you once your code is running in production. Log,
Trace, Profile, and Debug can be used to troubleshoot any issue.

•	 A long list of public APIs provides a wide range of advanced features offered using a pay-per-
use model that you can use to modernize your applications very quickly.

Indeed, the Google Cloud website has a page with a list of all the developer tools: https://cloud.
google.com/products/tools.

Combine this a wide variety of managed services with the ability to connect your code to a huge API
platform and ecosystem, allowing you to manage all your Google Cloud products and services. Besides,
some of these Google Cloud APIs provide access to a set of machine learning that’s pre-trained with
advanced capabilities using a pay-per-use model, such as the following:

•	 Vision API: Able to identify objects, texts, colors, and faces in images and videos, and also
flag explicit content

•	 Speech-to-Text: Used to transcribe audio into text (and vice versa) in more than 125 languages
and variants

•	 AutoML: Allows you easily create, train, and productize custom machine learning models,
even if you don’t have any experience

•	 Natural Language AI: Allows you to analyze text, understand its structure and meaning,
extract sentiment, and annotate it

https://cloud.google.com/products/tools
https://cloud.google.com/products/tools

Why should you choose Google Cloud? 17

•	 Cloud Translation: This is very useful for translating texts from one language into another

•	 Dialogflow: This can help you implement chat or voice conversation agents easily

These APIs can also help you simplify and modernize your applications by integrating the corresponding
services to provide advanced capabilities with a few lines of code.

You can find the full list of APIs available in Google Cloud here: https://cloud.google.
com/apis.

Technical documentation and videos are also available to help you solve some of the most common
developer problems and use cases. You can read more about them here: https://cloud.google.
com/docs/get-started/common-developer-use-cases.

Why should you choose Google Cloud?
There are many reasons why I would recommend you choose Google Cloud, not only to run your
code but also to take your organization to the next level, because I picture us, developers, as main
actors in any digital transformation process.

Summarizing all the topics previously covered in this chapter, these are the six key factors I would
consider when choosing a cloud provider, in no particular order:

•	 Compatibility with Agile practices and app modernization

•	 Capabilities for data democratization

•	 People connections

•	 Protection and security

•	 Level of freedom and use of open software

•	 Cost-effectiveness

Note
Apart from my personal opinion, which I have shared during this chapter, to put together a
more objective list of reasons why you should choose Google Cloud, let’s review each of these
factors and summarize all the information about these topics, all of which can be found on
Google Cloud’s website (https://cloud.google.com/why-google-cloud).

Thinking about app modernization and agility, Google Cloud is the first cloud provider to release
a platform, Anthos (https://cloud.google.com/anthos), that empowers you to quickly
build new apps and modernize existing ones to increase your agility and enjoy all the benefits of the
multi-cloud. Also, the managed Kubernetes service seamlessly allows you to implement DevOps and
SRE practices with cloud-native tools so that you can deploy your code with agility.

https://cloud.google.com/apis
https://cloud.google.com/apis
https://cloud.google.com/docs/get-started/common-developer-use-cases
https://cloud.google.com/docs/get-started/common-developer-use-cases
https://cloud.google.com/why-google-cloud
https://cloud.google.com/anthos

Choosing Google Cloud18

From the data democratization point of view, Google Cloud offers the ability to manage every stage
of the data life cycle, whether running operational transactions, managing analytical applications
across data warehouses and data lakes, or breaking down rich data-driven experiences. Besides, the
key differentiator is that artificial intelligence/machine learning is a core component of the data cloud
solution, which helps organizations not only build improved insights available to all members but
also automate core business processes using data as the core.

Speaking about bringing people together, in Google Cloud, you can integrate video calling, email, chat,
and document collaboration in one place with Google Workspace, which already connects more than
3 billion users. Google Workspace is built with a zero-trust approach and comes with enterprise-grade
access management, data protection, encryption, and endpoint protections built in.

Protection is a key element of digital transformation, and Google Cloud can help you defend your
data and apps against threats and fraudulent activity with the same security technology Google uses.
Google keeps more people safe online than anyone else in the world: billions of users and millions
of websites globally. Google pioneered the zero-trust model at the core of its services and operations
and enables its customers to do the same. Besides, data is encrypted in transit between their facilities
and at rest, ensuring that it can only be accessed by authorized roles and services with audited access
to the encryption keys.

And if freedom is important for your organization, you should take into account that Google Cloud
is the only cloud provider with a clear multi-cloud strategy. In Google Cloud, you can deploy and
run each of your applications wherever you want: on-premises, on Google Cloud, or with other cloud
providers. Google is also one of the largest contributors to the open source ecosystem, working with
the open-source community to develop well-known open-source technologies such as Kubernetes,
then roll these out as managed services in Google Cloud to give users maximum choice and increase
their IT investments’ longevity and survivability.

Another important point is that Google Cloud is open and standards-based and offers best-in-class
integration with open-source standards and APIs, which ensures portability and extensibility to prevent
lock-in, with easy interoperability with existing partner solutions and investments.

From a financial point of view, organizations can see significant savings when building on or migrating
to a cloud-native architecture on Google Cloud. In addition, a reliable platform with 99.99% availability
reduces risk and increases operational efficiency.

In summary, if you choose Google Cloud for your digital transformation, the result will be an
organization and its workers being able to take advantage of all of the benefits of cloud computing
to drive innovation.

Summary 19

Summary
I hope you are convinced about the benefits of choosing Google Cloud and how it is the best platform
to help your organization simplify its development and infrastructure-related work to put more focus
on innovation by completing your digital transformation, which will help you become much more
competitive in your field.

In the next chapter, I will describe how developers work in legacy environments and highlight the
differences in development workflows once you move to the cloud in general and Google Cloud
in particular.

But before closing this chapter, and especially if you are new to the platform, before your development
journey begins, I would recommend you make sure that someone in your organization takes care
of building a proper Google Cloud Foundation by completing the 10-step checklist at https://
cloud.google.com/docs/enterprise/setup-checklist.

And if you need more details about how to complete these steps, Packt has published an amazing book
about it that I had the pleasure to review, called The Ultimate Guide to Building a Cloud Foundation
(https://www.amazon.com/Ultimate-Guide-Building-Google-Foundation/
dp/1803240857), so that you can start developing with peace of mind, knowing that all the basics
have been taken care of.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

•	 CPC Wiki page about the Amstrad CPC 464 and other family members (https://www.
cpcwiki.eu/index.php/CPC_old_generation).

•	 The evolution to Integrated Development Environments (IDE) (https://www.computerworld.
com/article/2468478/the-evolution-to-integrated-development-
environments--ide-.html)

•	 DeepMind’s AlphaCode AI writes code at a competitive level (https://techcrunch.
com/2022/02/02/deepminds-alphacode-ai-writes-code-at-a-
competitive-level/)

•	 The transition from Waterfall to Agile (https://chisellabs.com/blog/transition-
from-waterfall-to-agile/)

•	 Agile Vs. DevOps: What’s the difference? (https://www.guru99.com/agile-vs-
devops.html)

•	 What is Digital Transformation? (https://cloud.google.com/learn/what-is-
digital-transformation)

•	 Why Cloud Development Could (Finally) Become the New Standard (https://devspace.
cloud/blog/2019/12/12/cloud-development-new-standard)

https://cloud.google.com/docs/enterprise/setup-checklist
https://cloud.google.com/docs/enterprise/setup-checklist
https://www.amazon.com/Ultimate-Guide-Building-Google-Foundation/dp/1803240857
https://www.amazon.com/Ultimate-Guide-Building-Google-Foundation/dp/1803240857
https://www.cpcwiki.eu/index.php/CPC_old_generation
https://www.cpcwiki.eu/index.php/CPC_old_generation
https://www.computerworld.com/article/2468478/the-evolution-to-integrated-development-environments--ide-.html
https://www.computerworld.com/article/2468478/the-evolution-to-integrated-development-environments--ide-.html
https://www.computerworld.com/article/2468478/the-evolution-to-integrated-development-environments--ide-.html
https://techcrunch.com/2022/02/02/deepminds-alphacode-ai-writes-code-at-a-competitive-level/
https://techcrunch.com/2022/02/02/deepminds-alphacode-ai-writes-code-at-a-competitive-level/
https://techcrunch.com/2022/02/02/deepminds-alphacode-ai-writes-code-at-a-competitive-level/
https://chisellabs.com/blog/transition-from-waterfall-to-agile/
https://chisellabs.com/blog/transition-from-waterfall-to-agile/
https://www.guru99.com/agile-vs-devops.html
https://www.guru99.com/agile-vs-devops.html
https://cloud.google.com/learn/what-is-digital-transformation
https://cloud.google.com/learn/what-is-digital-transformation
https://devspace.cloud/blog/2019/12/12/cloud-development-new-standard
https://devspace.cloud/blog/2019/12/12/cloud-development-new-standard

2
Modern Software Development

in Google Cloud

Development workflows have changed a lot in the last decades, as we started to discuss in the first
chapter. In this one, we will set up the basis of what a developer does, so we can also discuss the
potential associated risks and how modern development, especially on Google Cloud, can mitigate
these risks and make the whole development experience much more enjoyable.

We will also introduce the set of tools that Google Cloud provides to help us developers be more
productive. I will describe the different migration and development paths that you can use to get
your code to run on Google Cloud, including how Anthos can be of help if you need to use hybrid or
multi-cloud environments and take software modernization on them to the ultimate level.

We’ll cover the following main topics in this chapter:

•	 What does a developer do?

•	 The risks of traditional software development

•	 How modern software development mitigates risks

•	 The benefits of implementing modern software development on Google Cloud

•	 Google Cloud toolbox for developers

•	 Migration and development paths to run your code on Google Cloud

•	 Managing hybrid and multi-cloud environments with Anthos

What does a developer do?
Answering this question is not easy, since there are many kinds of developers working in different
areas, but let’s try to summarize what they have in common.

Modern Software Development in Google Cloud22

Regarding skills, traditionally software developers were expected to have good problem-solving skills
and be good both when working individually and when working as part of a team, with elevated
levels of motivation and passion for their job. But what kinds of tasks does a developer take care of?

First, and obvious for sure, developers write or have written code to be run as a part of a script,
application, or service at some point in their careers. They also probably (and hopefully) have written
documentation for those pieces of code, so that others can know either how to extend them or at least
how to use them. Some developers may also work on reviewing or documenting code written by others.

Code written by developers is usually the translation of requirements into an actual application,
solution, module, or service, which could also be part of a project, and the work of a developer will
often also involve tasks related to fixing detected bugs and supporting the users of our software.

Developers often work in teams, which involves some organizational work related to who does what
and ensuring that the work of each of the different members does not interfere with the rest, using
techniques such as code control tools and project management tasks to divide and assign the different
pieces of work to the different members of the team.

While some of you reading this book may be working on developing small applications, or coding for
start-ups in their first stages with not so many users yet, this book will also focus on the big scenarios
because those start-ups you are at will get bigger very soon, and that’s why we will also discuss complex
and big applications that need to be ready to serve millions of users every day.

While this may seem an unnecessary generalization, it will help me to expose much more easily the
potential risks that we may be facing as developers. As I will unceasingly repeat during the whole book,
if you design and build an application that can handle heavy loads from the first iterations, you will
save a lot of time and money when your user base starts to grow, especially if this happens suddenly
or even unexpectedly. Thinking big from the beginning will never hurt a developer, but save a lot of
time, money... and pain.

Picturing these big scenarios, I imagine a team of programmers and engineers working together on
a big project to develop a complex application or service for millions of users. As you can imagine,
there will be different areas of risk in such a scenario. Let’s mention some of them and then discuss
how modern development tries to mitigate them.

The risks of traditional software development
I worked in corporate IT for more than 20 years before I joined Google and dedicated most of my
professional career during that time to developing code aimed at monitoring applications written by
colleagues or sold by third parties.

Having witnessed, and also suffered, a lot of failures and issues during all those years, I will try to
summarize all the potential risks of traditionally developed software that I can think of, in no special order.

The risks of traditional software development 23

Software bugs

Software bugs are undoubtedly the most frequent risk for developers. The quality of the code that we
write does not entirely depend on our coding skills: a tight deadline, an excessive workload, or bad
communication leading to a poor requirement-gathering phase may be among the varied reasons that
can make it more probable for unexpected issues to be detected during the life cycle of our software,
which we will need to promptly address.

In my opinion, code reviews are one of the most useful and interesting practices that can help reduce
the number of bugs that reach production, while fostering a culture of collaboration and increasing
awareness of what the rest of the team is working on. Integrating code reviews in our development
cycle is vital to let bug detection happen before the software is available to the user.

However, a changing environment, especially sudden scope changes, which are common among
developers and tend to make our lives more difficult, makes it difficult to get rid of bugs. So, it’s much
better to prevent as many bugs as possible from reaching production, while also accepting that some
will reach our users undetected.

For this reason, having a proper process ready for the early detection of software bugs, fast mitigation
by writing and testing patches, and quick deployment of the required fixes will help us deal with these
bugs as soon as possible before they cause more harmful effects.

Slow development

When we speak about traditional software development, we are usually referring to monolithic
applications, often written by a small team of people over the years and usually including thousands
of lines of code in a single code base. This scenario will probably include more than one single point
of failure because large code bases make poor-quality hacks more difficult to identify, and these can
make the whole application easily crash if they cause memory leaks, or they can also be exploited by
malicious intruders who detect them after reverse engineering the corresponding binaries.

Updating these kinds of applications is complicated because any changes in the code may affect
multiple functionalities of the software, and the complexity of the source code can make it difficult
to do proper testing.

Once we get the changes approved, we have another situation to deal with: deploying changes in
monolithic applications automatically implies application downtimes when we perform the actual
upgrades. If these upgrades are bundled with long data update operations, the downtimes can
be significant.

Modern Software Development in Google Cloud24

Resource exhaustion

I already mentioned this risk in the first chapter and will also include it in this list, since it is usually
the main reason for our development headaches due to applications not having enough memory
available to run properly.

This risk is usually associated with monolithic applications and infrastructure availability issues,
together with limited technical resources, all of them quite common in legacy environments and
traditional software development processes. Apps developed in this scenario are usually not designed
with built-in resilience and often crash for good when they run out of resources.

Lack of resiliency and fault tolerance

Our code should be able to handle virtually any potential issues that may occur. For example, if there
is a power blackout or if a database starts to fail for a relatively prolonged period, we, as developers,
should be able to design plans for keeping the application running while also keeping the integrity
of our data safe.

Practices such as making updates in a transactional way or ensuring that there is consistency in
every operation that we try to run can help mitigate this situation. We should only mark each of
these operations as completed once we have verified that all the underlying tasks have been properly
executed with a successful result.

This will be the only way to guarantee that we can not only recover from disasters but also avoid any
catastrophic effects they could have on our applications and services.

Talking about disasters, running disaster simulations is a remarkably interesting way to be prepared
for the unexpected. The list of unit tests that we may put together as developers to verify the successful
execution of our code and all its functionalities will often not consider the potential effects of a
rack exploding, a cable being cut by accident, or consecutive power outages. These and many other
uncommon situations should be simulated periodically to prepare our solutions for the unexpected,
using an approach that is compared with the random chaos that a monkey could wreck while wandering
around a lab or a data center.

Indeed, using a simian army approach has worked well for Netflix, as you can read in this post in
their technical blog (https://netflixtechblog.com/the-netflix-simian-army-
16e57fbab116).

Failing to estimate usage patterns

Since most traditional software runs on limited resources, estimating usage patterns is key for allocating
the right infrastructure size and avoiding application crashes. Once we understand how many users
we are normally expecting, resources can be provisioned to ensure a decent service level for those
users, adding an extra buffer of resources to support small peaks.

https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116

The risks of traditional software development 25

A widespread problem in these scenarios is that if we want to supply a satisfactory level of service
during uncommon seasonal peaks, we will need to provision more infrastructure components, and
most of these additional resources will be either unused or idling during the rest of the time, which
is a total waste of money.

For this reason, these kinds of applications should be built to handle peaks by temporally dropping
users in excess with a nice Please try again in a few minutes message. Thus, we prevent a complete
crash that could be catastrophic if it happens at the busiest time of the day or the year.

Lack of proper monitoring and risk management

While the main goal for developers is writing code to build applications and services, additional time
should also be spent on finding weak spots and potential risks in our software and building a proper
internal and external monitoring plan that can check the status of these services by combining active
and passive techniques.

During my career, I have seen big architectures not working because the SSL certificate of a non-critical
web server had expired and services not working for days because a server had been shut down by
accident without anyone noticing.

These are extreme examples, but they show the benefits of internal and external automated tests that
simulate the behavior of our users and can be combined with log analysis and process and service
checks, to verify the end-to-end availability of a service.

Unclear priorities, accountability, and ownership

One of the key factors to ensure fast and proper bug and disaster management is being able to
understand who is responsible for each line of the code, especially when we are working in a team. Each
component, service, or application should have a clearly identifiable author and a person responsible
for issues detected within that component.

They may not be the same person in all cases, and that’s why having a proper process in place to
understand ownership and accountability will expedite the start of any recovery actions required and
ensure that high-priority bugs are addressed as soon as possible.

It is also important to effectively manage employee turnovers, making sure that when a developer is
about to leave the company, there is a proper handover process where one or more members of the
team are involved and ready to inherit those responsibilities. It is also important that the ownership
information database is updated accordingly so that the rest of the people in the organization are
aware of these changes in the future.

Finally, the team should be aligned during the whole development process, sharing common priorities
and practices, so that each team member is adding value instead of interfering with the work of the
others. This is even more important if there are multiple teams collaborating to create a solution,
with some of them even probably outsourced. In this kind of scenario, it is key to agree on common

Modern Software Development in Google Cloud26

design patterns, methodologies, and practices, so that processes such as integration, testing, and
maintenance can be simplified, especially if the same team will be responsible for the whole code base
in any of those processes.

Security approach

Traditional software development tends to build security as a separate layer built on top of applications
or services. Besides, security is often added once the code has already been completed. It is often not
updated when any changes are deployed during an update.

This approach to security greatly increases the chances of security accidents because security is
decoupled from the services that should be protected. More weak spots can be exploited in both parts
of our architecture when they are isolated from each other.

Lost source code

I have worked with running applications whose source code had been lost years ago, with no options
for potential improvements, since only the binary was available.

Situations such as this can throw overboard years of work and it may be impossible to rebuild those
applications ever again. For this reason, a proper code version control system is a must-have for all
developers and, used together with regular backups stored in multiple locations, can save us from
living dramatic situations and disasters that could make the work of a few months suddenly disappear
in front of our eyes.

Now that we have gone through the main risks associated with traditional software development, let’s
take a look at how modern development practices can mitigate them.

How modern software development mitigates risks
Modern development workflows are significantly different from traditional ones. Even the required
skills for developers have evolved, with a more prominent presence of soft skills, data science, or
experience with software version control tools among the most wanted ones (https://www.
botreetechnologies.com/blog/top-skills-software-development-companies-
looking-for/).

Modern development has also ideated diverse ways of mitigating most of the risks mentioned in the
previous section. Let’s revisit and discuss how this can be done for each of them.

Software bugs

A few different practices can be combined to reduce the number of bugs and especially their potential
to affect the availability of our application. First, code reviews should always happen following the

https://www.botreetechnologies.com/blog/top-skills-software-development-companies-looking-for/
https://www.botreetechnologies.com/blog/top-skills-software-development-companies-looking-for/
https://www.botreetechnologies.com/blog/top-skills-software-development-companies-looking-for/

How modern software development mitigates risks 27

rule of “at least four eyes.” That is, at least the author and another developer should review the code
before it is approved for submission to a code repository.

Code reviews should not be seen as an exam or as a process where other people get to judge how good or
bad we are as developers. Instead, they are a fantastic opportunity to learn from other team members
and write better code by iterating based on the feedback supplied by colleagues.

Reviewing other people’s code also gives us the chance to see how they try to solve a problem, and
honestly, I have learned a lot from this process and eaten so many humble pies after realizing that I
still have so much to learn as a developer!

Resource exhaustion and slow development

Modern development tries to reduce resource exhaustion by dividing applications into multiple
small, reusable, and independent components, known as microservices. These take care of a small
part of the global functionality provided and are isolated from each other in terms of resource usage
and communication using messages, in what is called an event-driven architecture pattern. These
practices eliminate single points of failure and reduce the chances of a lack of resources in one of the
components affecting some or all the other microservices in our application. However, microservices
should be used only when they really make sense, as otherwise, they may add a lot of overhead and
maintenance costs.

On top of this, virtualization and containers provide an easy way of supplying additional infrastructure
resources to increase the available capacity before it gets exhausted. This, combined with the use of
load balancers, can have two beneficial effects on our architectures:

•	 First, we can make our application or service elastic by increasing or reducing the size of
the infrastructure depending on the number of users or the server loads, which will be
frequently measured

•	 Second, we can redirect the traffic to infrastructure located in different data centers so that our
users are always connected to the nearest data center, geographically speaking, minimizing
latency and maximizing throughput

Looking at microservices from another angle, having independent services that communicate with
each other allows different teams to develop each of these services; they just need to agree on the
communication protocol for services to communicate and work together seamlessly. Each of these
microservices could even be written using different programming languages, without this causing
any issues.

All these situations make development much faster. Indeed, microservices architectures usually go
hand in hand with Agile and DevOps, because services can be independently updated or improved,
and deployments can be done very quickly without service interruptions and without affecting the
availability of any of the other microservices in our architecture.

Modern Software Development in Google Cloud28

Lack of resiliency and fault tolerance

Resiliency is based on the weakest link principle, so a reasonable way to mitigate this problem is to use
resilient infrastructure and communication protocols so that issues don’t affect our service. For example,
if I need an event message from one microservice to reach another, I can write a piece of resilient code
with multiple delivery retries and exponential backoff, or I can use a third-party communication
service that does it for me (as we will see later in the book) and queues my message, automatically
retrying communication attempts if there are failures and informing me asynchronously when the
delivery has been confirmed, even if this happened hours or days after the message was queued.

Failure to estimate usage patterns

Modern development techniques, where applications become elastic, mitigate potential usage estimation
errors by measuring usage much more often. If our application checks whether the amount of allocated
resources is enough every few minutes, and we can add or remove capacity very quickly when needed,
then the application will become tolerant to peaks in the number of active users.

This does not only mean being able to handle the mentioned peaks but also being able to handle the
opposite situation, reducing allocated resources when the number of users is lower than usual (for
example, at night or during weekends or holidays). So, this feature, also known as zero scaling, can
also help companies save a lot of money, as we will discuss in Chapter 4, Running Serverless Code on
Google Cloud – Part 1.

Lack of proper monitoring and risk management

Implementing decent monitoring and risk management processes can become quite complex and the
reason is simple: the number of different infrastructure components, applications, operating systems,
and hardware used by an organization will grow exponentially with its size, and each infrastructure
component will require a specific risk assessment and a customized monitoring plan.

The solution to minimizing these issues is to simplify or, even better, abstract our infrastructure,
with the ideal picture being a data center where you just need to care about what you want to do (for
instance, run a Python script and not worry about where it needs to run).

Once your view of the underlying infrastructure is homogeneous, risk management and monitoring
processes will become much simpler. If the infrastructure is offered as a service, as it happens in the
cloud, risk- and monitoring-related information may be offered as an additional feature of this service,
making it even easier for you. Simplification is indeed a key step in the digital transformation process
of any company.

Unclear priorities, accountability, and ownership

Mitigating the negative effects of the risks associated with these three topics can be done by taking
different actions.

The benefits of implementing modern software development on Google Cloud 29

First, using a common set of practices can be achieved by using Agile and DevOps and agreeing on
the duration of cycles, including fast deployment and common development rules for the team.

Also, using code repositories makes it easier to understand who wrote what, and having well-defined
escalation paths can make it easier to establish ownership and decide what to do next.

Finally, a properly implemented identity management system will help avoid the potential harms of
employee turnover by quickly finding which objects are owned by that employee and allowing them
to easily transfer ownership, a process that should preferably happen before the employee actually
leaves the company.

Security approach

Modern development is based on what is called security by default, which means that security is
one more of the core topics that developers should always take into account when they design and
build their applications. Integrating concepts such as Zero Trust, requiring users of an application to
be constantly authenticated, authorized, and validated before they are allowed to use it, can make an
enormous difference and reduce security-related incidents. In these situations, bypassing common
security layers such as perimeter security, which this is not a replacement for but an addition to, will
no longer be enough to gain access to the application or its data.

If the infrastructure that we use is also built using similar concepts at its core, then the global level of
security will make it the perfect place to run our code.

After reviewing how modern software development practices mitigate risks, it’s time to discuss how
Google Cloud has mitigated these and other risks.

The benefits of implementing modern software
development on Google Cloud
Google Cloud can help your organization minimize development risks and provide added benefits
that will make developers more productive. Let’s go through some of the features that make Google
Cloud the best provider for modern development.

Built for agility, elasticity, and reliability

Cloud-supplied infrastructure components have four key features that differentiate them from traditional
offerings: fast deployment, high availability, pay per use, and user abstraction.

This means that you can implement Agile and DevOps and be able to perform extremely fast deployments
in your sprints, while you enjoy unprecedented levels of stability and reliability at extremely competitive
prices and totally forget about administrative tasks at the infrastructure level.

Modern Software Development in Google Cloud30

You can also design elastic architectures where the size of allocated resources is dynamically adjusted
depending on how many users are active at a given time, which optimizes costs and prevents resource
exhaustion, giving you access to an unlimited pool of infrastructure components available using the
pay-per-use model.

If you need a giant AI architecture to train your model just for a few minutes, you’ve got it. If you
need to start 1,000 virtual machines for a one-off process lasting a couple of hours, you just request
them, use them, and destroy them. This opens the door to a totally different way of understanding
and using infrastructure, putting a virtually unlimited pool of resources at your fingertips, and letting
you use it for as long as you need at a very reasonable price.

The different options available to run your code using a serverless service, from using containers to the
Function as a Service (FaaS) model or virtual machines, also make it easier than ever to implement
event-driven microservices and add support for service orchestration and choreography. We will
discuss and compare all these services and options later in the book.

Once your application is deployed, there is still a lot to offer: the operations suite (https://cloud.
google.com/products/operations), formerly known as Stackdriver, includes products that
will allow you to aggregate logs from all the applications and services that you use on Google Cloud,
and adds monitoring, tracing, debugging and profiling capabilities. We will talk about these services
in the next chapter.

And if you thought that running your code on Google Cloud was comparable to putting it into a black
box, you couldn't be more wrong: this suite will allow you to deep dive into both your applications
and the components and services provided by Google and identify bottlenecks and issues, optimize
your code, and improve your architecture. This is a gold mine for Site Reliability Engineers (SREs),
IT operations teams, and even for troubleshooting and improving your DevOps processes.

Even if you have public-facing APIs, Google Cloud has your back thanks to API Gateway (https://
cloud.google.com/api-gateway) and especially Apigee (https://cloud.google.
com/apigee), an amazing tool that helps you design, secure, analyze, and scale APIs anywhere
with visibility and control.

And you don’t need to care about patching, maintenance, and similar tasks; just request the infrastructure
component that you need using either the UI or the API and destroy it when you no longer need it,
since many of the infrastructure components used in the cloud architectures will be ephemeral, as
we will discuss later in this book.

Talking about reliability, Google Cloud has 103 zones in 34 regions, which means having data centers
available all around the world, allowing you to replicate your architecture across countries and even
continents, providing the lowest latency and the highest throughput to your customers, while allowing
you to implement high availability for your applications and services. And finally, let me remind you
that Google Cloud provides a platform with 99.99% availability, which reduces risks and maximizes
operational reliability, efficiency, and resiliency.

https://cloud.google.com/products/operations
https://cloud.google.com/products/operations
https://cloud.google.com/api-gateway
https://cloud.google.com/api-gateway
https://cloud.google.com/apigee
https://cloud.google.com/apigee

Google Cloud toolbox for developers 31

Security at the core

Google Cloud has security built in by default in its infrastructure offering, with some of the key security
features including layered security and data encryption, together with extensive hardening, also for
network communications, and a state-of-the-art process and team to respond to any detected threats.

As mentioned on the Google Cloud Security page of the official Google Cloud website (https://
cloud.google.com/security), Google Cloud provides a secure-by-design infrastructure with
built-in protection and a Zero Trust model that builds security through progressive layers, delivering
true defense in-depth at scale. Data is encrypted by default, at rest and in transit, ensuring that it can
only be accessed by authorized roles and services, and with audited access to the encryption keys.

Access to sensitive data is protected by advanced tools such as phishing-resistant security keys. Stored
data is automatically encrypted at rest and distributed for availability and reliability, and no trust is
assumed between services, using multiple mechanisms to set up and keep trust.

Built for developers

As I already mentioned, cloud providers are the best fit for teams using short cycles, speeding up
development and deployment. This should be complemented with tools and services to ease the whole
software development cycle, also including monitoring, debugging, profiling, and troubleshooting.

Google Cloud is the perfect choice for developers who use Agile and DevOps, or similar methodologies,
allowing developers to minimize deployment and lead times, and making new features and bug fixes
available much faster to the users of our applications.

A complete toolbox is available to help us implement these methodologies during all the stages of the
development workflow. Let’s take a look at this toolbox in the next section.

Google Cloud toolbox for developers
Google provides a toolbox aimed at improving productivity by providing advanced automation
capabilities and centralizing information to make logging and troubleshooting tasks much easier.

Note
As I did in the first chapter, I will use the Google Cloud developer tools web page (https://
cloud.google.com/products/tools) from Google Cloud as the official reference
list to enumerate the different tools available to help us developers increase our productivity.
I will also be adding my own opinions about them.

The next chapter will cover how to use Google Cloud to write, deploy, run, monitor, enable
logging on, troubleshoot, profile, and debug your code. So, this section plus the next chapter
should provide you with a lot of information about the different tools that can help you succeed
in your journey with Google Cloud and when and how to use each of them.

https://cloud.google.com/security
https://cloud.google.com/security
https://cloud.google.com/products/tools
https://cloud.google.com/products/tools

Modern Software Development in Google Cloud32

Let’s take a look at the different tools available, divided into categories based on their main purpose:

•	 Code:

	� Cloud Code (https://cloud.google.com/code): This is a set of plugins for popular
Integrated Development Environments (IDEs) that make it easier to create, deploy, and
integrate applications with Google Cloud. Remote debugging, reduced context switching,
and Skaffold integration are among my favorite features. Developers can keep on using
the IDE of their choice (VSCode, IntelliJ, PyCharm, GoLand, WebStorm, or Cloud Shell
Editor) and use Cloud Code to develop, deploy, and debug containerized applications on
their Google Cloud projects, having a similar experience to when they are working locally.
This tool is available free of charge.

	� Cloud Software Development Kit (SDK; https://cloud.google.com/sdk): Libraries
and tools for interacting with Google Cloud products and services using client libraries for
popular programming languages such as Java, Python, Node.js, Ruby, Go, .NET, and PHP.
The SDK also includes the Google Cloud Command-Line Interface (gcloud CLI), a very
useful tool to manage resources using the command line or to use with automation scripts.
This tool is also available free of charge.

	� Spring Framework on Google Cloud (https://spring.io/projects/spring-
cloud-gcp): Brings the Pivotal-developed (https://pivotal.io/) Spring Framework
to the Google Cloud APIs to accomplish common tasks, such as exposing services and
interacting with databases and messaging systems.

•	 Build

	� Cloud Build (https://cloud.google.com/build): A serverless Continuous
Integration and Continuous Delivery (CI/CD) platform to build, test, and deploy your
applications. It scales up and down with no need to pre-provision servers, just pay only for
what you use, since each of your build steps is run in a Docker container. I especially like
how it provides high-CPU virtual machines and a cache system to significantly reduce build
times, together with its support for multi-cloud and built-in security, including vulnerability
scans and the possibility to set up a secure CI/CD perimeter, blocking access to public IPs.

	� Tekton (https://cloud.google.com/tekton): A powerful yet flexible Kubernetes-
native open source framework for creating CI/CD systems and helping you standardize your
CI/CD tooling and processes across vendors, languages, and deployment environments.
It works in both hybrid and multi-cloud environments and its goal is to let developers
create and deploy immutable images, manage version control of infrastructure, or perform
easier rollbacks. Tekton is a more powerful but also more complex option when compared
with Jenkins.

	� Jenkins on Google Cloud (https://cloud.google.com/architecture/
jenkins-on-kubernetes-engine-tutorial): A third option to help you set up

https://cloud.google.com/code
https://cloud.google.com/sdk
https://spring.io/projects/spring-cloud-gcp
https://spring.io/projects/spring-cloud-gcp
https://pivotal.io/
https://cloud.google.com/build
https://cloud.google.com/tekton
https://cloud.google.com/architecture/jenkins-on-kubernetes-engine-tutorial
https://cloud.google.com/architecture/jenkins-on-kubernetes-engine-tutorial

Migration and development paths to run your code on Google Cloud 33

a CI/CD pipeline with native Kubernetes support, GKE-based scaling and load balancing,
and built-in CD best practices. Jenkins is more user-friendly but less powerful than Tekton.

•	 Manage artifacts

	� Artifact Registry (https://cloud.google.com/artifact-registry): This
is an evolution of Container Registry and allows the creation of both regional and multi-
regional repositories with granular IAM permissions and integration with either Cloud
Build or directly with Google Kubernetes Engine, App Engine, and Cloud Functions. Some
additional features include integrated security through binary authorization and vulnerability
scanning, making Artifact Registry the best place for your organization to manage container
images and language packages (such as Maven and npm) and set up automated pipelines.

•	 Deploy

	� Google Cloud Deploy (https://cloud.google.com/deploy): This is a managed
service that automates the delivery of your applications to a series of target environments
in a defined promotion sequence. When you want to deploy your updated application, you
create a release, whose life cycle is managed by a delivery pipeline. A nice addition to your
existing DevOps ecosystem, Cloud Deploy will allow you to create deployment pipelines
for GKE and Anthos within minutes.

	� Cloud Build (https://cloud.google.com/build): This appears again in this
list because it can also deploy your code using built-in integrations to Google Kubernetes
Engine, App Engine, Cloud Functions, and Firebase, and supports complex pipeline creation
with Spinnaker, adding an extra protection layer provided by Google Cloud. This is a very
versatile tool to cover both the build and deployment phases of your development life cycle.

Now that we know which tools we can use in each phase of the development cycle, the last topic to
discuss in this chapter is what the different options to migrate our applications and services to Google
Cloud are and how to approach this process effectively.

Migration and development paths to run your code on
Google Cloud
We have already discussed the potential risks of software development and how to mitigate them in
modern environments, such as Google Cloud, and we also got familiar with the different tools that
Google provides to help us become more productive as developers.

To complete the picture (and the chapter), let’s discuss the different migration and development paths
that you can use to get your code to run on Google Cloud, and explain how Anthos can help you in
some cases during the process.

https://cloud.google.com/artifact-registry
https://cloud.google.com/deploy
https://cloud.google.com/build

Modern Software Development in Google Cloud34

There will be a specific chapter dedicated to migrations at the end of this book, but I think it makes
sense to introduce the topic in this chapter since this is one of the first decisions you need to take
when you are starting to develop on Google Cloud.

Migration checklist

Before even starting to choose from the different options to migrate your application, there are a few
questions that you should keep in mind.

Can this application run on the cloud?

This may sound like a dumb question at first, but if you are able to identify any limitations preventing
your application from running on the cloud, and you are not able to find a valid solution or workaround,
then you will be able to save a lot of precious time. Limitations preventing migrations are usually not
technical, but come from areas such as licensing, compliance, or privacy, and they may be powerful
blockers that cannot always be sorted out.

Some applications may also not be compatible with either virtualization or containerization, and
that’s another check that you should consider. When I say this application in the section title, please
remember that your code may have third-party dependencies that you will need to test, too. Your
code may be well prepared to run anywhere, but the libraries that you are using may not, and this will
be the right time to study whether they can be replaced or whether you have found a solid blocker.
So, you will not regret it if you invest some time to answer this question.

Is it worth migrating this application to the cloud now?

This is another apparently obvious question that many developers regret not having asked themselves
at the right time. There are different points of view we answer this question from.

For example, how long are we expecting to have the application running once it is migrated? It may not
make sense at all to have a team take 4 months to migrate an application and then receive a decommission
request after a couple more months. Believe me, while this can always happen unexpectedly due to
unforeseen circumstances, I have also seen this happening due to a lack of proper communication. So,
please make sure that information flows correctly between areas in your organization before making
big decisions regarding migration scheduling and prioritization.

Another possible angle to answer this question from is the complexity of the migration compared
to the current number of users and how critical it is for the organization. Personally, I would hate to
waste time migrating a legacy app that nobody used in the last 5 years, and that will never be used
again. Having proper usage tracking metrics can help you save a lot of time and money. If an app
must be migrated due to compliance reasons, at least knowing the metrics beforehand can help you
choose the fastest migration path.

Migration and development paths to run your code on Google Cloud 35

A third and final angle to answer the question is whether Google Cloud provides any service that may
be used as a replacement for the whole application or service. If that is the case, migration could be
considered the equivalent of reinventing the wheel and should be rejected.

Depending on the answers to these two questions, my suggestion is to go first with those applications
or services for which you got two positive answers, prioritizing them based on how critical they are
to the organization, and once you are done with the quick-wins, you can study the options for the
most complex cases. You can also consider destinations such as Google Cloud Bare Metal Solution
for Oracle (https://cloud.google.com/bare-metal) or even co-locate those servers that
cannot be moved to the cloud, if your data center is being shut down as part of the migration and you
need those applications to keep on running somewhere else.

Migrate or refactor?

Now that you have decided which applications are worth migrating, you will need a plan for each of
them, and that’s where you will choose which migration option is the best.

In most cases, you will be migrating monolithic applications or hybrid architectures running either
on-premises or on other cloud providers. In general, there are three options that you can take when
you decide to bring an application to the cloud:

•	 Refactor your application: This means fully rewriting or porting the application to the cloud,
making use of all of its benefits to simplify the process while making the application better than
ever. Depending on how you approach this process and the specifics of your application, this
could be the most time-consuming of all options and it will rarely be the best choice.

•	 Move and improve: If you choose this option, you will be gradually migrating services, one at
a time, to Google Cloud, and improving them using modern design patterns to decouple them
from the monolithic core and implement them using an event-driven microservices architecture.
This option may not be possible in all cases, especially with monolithic applications where partial
migrations are not possible, but it can be an interesting option because it allows you to choose
which services to migrate first, probably prioritizing those that are more problematic in the
current architecture, making them benefit from all the features of the cloud first, and leaving
the rest for a second phase. You could even decide to leave parts of your application in their
current location (on-premises or on another cloud provider), thus creating a hybrid application.

•	 Lift and shift: Migrating an application as is is always an option. You can just clone your current
setup in Google Cloud using either a virtual machine or a container, copy your binaries, libraries,
and data files, and let the application run on the cloud in the same way as it did on-premises.
There are a few scenarios where this could be the preferred option, such as virtualizing a legacy
environment to enjoy the better scalability and pricing that Google Cloud offers, or for those
applications that have very specific requirements to run properly and cannot be modernized,
either because they were developed by a third party, because the original source code was lost,
or because of legal requirements. In all these cases, there is a solution that will work for you.

https://cloud.google.com/bare-metal

Modern Software Development in Google Cloud36

While these three options will cover many of your use cases, there are still a few that are out of scope,
especially those regarding applications that are either hybrid or multi-cloud. In these cases, you can
try to migrate the part of the code running on-premises or on another cloud provider to Google Cloud
and turn your application into a cloud-native application.

However, if you still need to keep some of your applications or services running either on-premises
or on another cloud provider, Anthos is a Google Cloud service that can make it much easier to
manage this kind of heterogeneous scenario. Let’s explain what Anthos is and when and why it can
make sense for you to use it.

Managing hybrid and multi-cloud environments with Anthos
Migrating your applications and services to Google Cloud is not always going to be possible and you
may need to run some of them in different environments and platforms.

While this is technically possible, it can make things much more complicated, because you will need
to manage different environments with their own capabilities, limitations, and requirements. And on
top of that complexity, trying to have the same level of security, stability, privacy, orchestration, or
compliance may just not be possible or it could be unmanageable for your development, IT support,
and SRE teams.

This is where Anthos comes to your rescue. Anthos (https://cloud.google.com/anthos)
offers a consistent development and operations experience for hybrid and multi-cloud landscapes.
Consider Anthos as an abstraction provider for Kubernetes clusters, making it possible to deploy
containers not only to run on Google Cloud, but also on-premises, on Amazon Web Services (AWS),
or on Microsoft Azure (and the list keeps growing).

Use Anthos to deploy your clusters anywhere you want and manage them all in exactly the same way
from your Google Cloud console. This sounds much better, doesn’t it?

Anthos can be a very convenient tool when it comes to migrating your stuff to the cloud, especially if
you are already using containers or if you confirm that your legacy applications can be containerized.

If you already run your applications using containers, you have three options to choose from. The
first is to attach your existing Kubernetes clusters to Anthos (currently supporting Amazon EKS,
Microsoft AKS, and OpenShift), and use some of the centralization and observability features that
Anthos provides, while you keep on managing and updating your on-premises clusters manually.

The second option involves setting up Anthos locally on-premises, so you can either move your
current clusters to your on-premises Anthos zone, or you may decide to move them to any of the
other supported destination environments compatible with Anthos.

In all cases, you will be modernizing your applications and, once all your clusters are running on
Anthos, you will be free to move the clusters to wherever you prefer at any time while still being able

https://cloud.google.com/anthos

Managing hybrid and multi-cloud environments with Anthos 37

to centrally manage not only the containers but also the services they provide and the policies that
you want to enforce in all of them.

This second approach is also valid if your legacy applications are not containerized, but can be because
you can decide where to run each after containerizing them in Anthos, and still be able to manage
your complete landscape no matter where each container runs.

The third option is valid for organizations where VMware vSphere is a corporate standard and also
for those who are running their containerized applications on bare-metal servers.

If you are already running VMware vSphere, you can choose to run Anthos clusters on VMware and
migrate your current virtual machines using Migrate to Containers (https://cloud.google.
com/migrate/containers/docs). If you are running your containerized application on bare-
metal servers, you can choose to install Anthos clusters on bare metal (https://cloud.google.
com/anthos/clusters/docs/bare-metal/latest) and get rid of the supervisor for
lower-than-ever latency and better performance.

In any of the last two scenarios mentioned, remember that you can also move your Anthos clusters
to any other supported environment (Google Cloud, AWS, or Azure) whenever you want.

And once all your applications have been containerized and are managed by Anthos, you can create
logical groups of clusters and containers located in different platforms. These groups are called fleets
and allow you to group your resources, for example, depending on which environment they belong
to. In this example, the group names would be development, test, and production. You can also set up
different regions within a fleet to group resources by geographical location.

Once you create a fleet, you can apply changes to all members at the same time, which can save your
administrators a lot of time and is perfect to integrate modern software practices such as CI/CD.

Some of the benefits that fleet members (https://cloud.google.com/anthos/fleet-
management/docs/fleet-concepts) can provide include the following:

•	 Form, monitor, and manage a service mesh using Anthos Service Mesh

•	 Use common workload identity pools to authenticate and authorize workloads uniformly
within a service mesh and to external services

•	 Anthos Config Management can be used to apply policy and configuration changes and is
fully compatible with core Kubernetes concepts, such as namespaces, labels, and annotations

•	 Customize load balancing destinations using Multi Cluster Ingress

•	 Use Cloud Run for Anthos to enjoy all the benefits of Knative

Anthos also introduces the concept of sameness, a normalization process where some Kubernetes
objects such as namespaces with the same name in different clusters are treated as the same thing to
make grouping and administering fleet resources even easier.

https://cloud.google.com/migrate/containers/docs
https://cloud.google.com/migrate/containers/docs
https://cloud.google.com/anthos/clusters/docs/bare-metal/latest
https://cloud.google.com/anthos/clusters/docs/bare-metal/latest
https://cloud.google.com/anthos/fleet-management/docs/fleet-concepts
https://cloud.google.com/anthos/fleet-management/docs/fleet-concepts

Modern Software Development in Google Cloud38

Before finishing this chapter, I would like to elaborate a bit more on the concept of a service mesh,
since it combines many modern software development practices. A service mesh (https://
cloud.google.com/service-mesh/docs/overview) provides a dedicated and uniform
infrastructure layer for managed, observable, and secure communication across services. This sentence,
taken from the Service Mesh documentation page linked previously, means the ultimate abstraction
of the most common points of concern when running an application using hundreds of containerized
microservices: monitoring, networking, and security.

A service mesh has a proxy instance, called a sidecar, which connects to each application container
and obtains information that is then centralized and automatically updated when new instances of
a microservice are created, offering a clear picture of what’s currently going on in your application
and enabling unprecedented levels of observability and security while making global management
possible with ease. All these features are offered at the cost of proxying all service requests, but it can
be a lifesaver when the number of different microservices to manage begins to increase exponentially.

As you can imagine, Service Mesh is a fantastic addition to Anthos and brings modern software
development to the next level of abstraction. Combining the fleet management capabilities of Anthos
with the global observability and security features that a service mesh provides, you can simplify your
processes and use most of your time as a developer for innovation.

Summarizing this last section, Anthos allows your organization to abstract infrastructure from
applications and provides a console where you can group resources logically and manage fleets no
matter where each cluster is running (on-premises, on Google Cloud, on AWS, or on Azure). This
makes administration much easier and gives you total freedom to run each of your containerized
services wherever you want and to move them from one place to another at your will.

Anthos fleets can use Anthos Service Mesh to deploy a dedicated infrastructure layer that provides
centralized capabilities for observability, security, and common management options for all microservices,
making Anthos even more convenient for software developers

As you can imagine, this is the culmination of software development modernization and a perfect
ending scenario, from a software development process point of view, for the digital transformation
of any organization.

Summary
In this chapter, we described what a developer does, according to traditional development workflows,
the associated risks, and how modern development workflows in general and cloud development
mitigate or get rid of those risks. Then, we enumerated the benefits of developing on Google Cloud
and introduced the different elements of the toolbox that the platform offers to help professional
developers like you and me be more productive. Finally, we described the different migration and
development paths that you can take when you start developing or migrating an existing application
to Google Cloud, remarking on how Anthos can help you build and manage hybrid or multicloud
environments and take software modernization to the ultimate level.

https://cloud.google.com/service-mesh/docs/overview
https://cloud.google.com/service-mesh/docs/overview

Further reading 39

The next chapter will focus on how you can use Google Cloud to write code, deploy and run it, set up
logging, and monitor, profile, and troubleshoot your code, proving that Google Cloud is an amazing
platform to cover all your needs as a developer.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

•	 What does a Software Developer Do? (https://www.rasmussen.edu/degrees/
technology/blog/what-does-software-developer-do/)

•	 12 Risks in Software Development (https://www.indeed.com/career-advice/
career-development/risks-in-software-development)

•	 7 Advantages of Cloud Computing That Developers Can Benefit From (https://datafloq.
com/read/7-advantages-cloud-computing-that-developers-can-
benefit-from/)

•	 Use fleet Workload Identity (https://cloud.google.com/anthos/fleet-
management/docs/use-workload-identity)

•	 Choosing between Cloud Run and Cloud Run for Anthos (https://cloud.google.com/
anthos/run/docs/choosing-a-platform)

https://www.rasmussen.edu/degrees/technology/blog/what-does-software-developer-do/
https://www.rasmussen.edu/degrees/technology/blog/what-does-software-developer-do/
https://www.indeed.com/career-advice/career-development/risks-in-software-development
https://www.indeed.com/career-advice/career-development/risks-in-software-development
https://datafloq.com/read/7-advantages-cloud-computing-that-developers-can-benefit-from/
https://datafloq.com/read/7-advantages-cloud-computing-that-developers-can-benefit-from/
https://datafloq.com/read/7-advantages-cloud-computing-that-developers-can-benefit-from/
https://cloud.google.com/anthos/fleet-management/docs/use-workload-identity
https://cloud.google.com/anthos/fleet-management/docs/use-workload-identity
https://cloud.google.com/anthos/run/docs/choosing-a-platform
https://cloud.google.com/anthos/run/docs/choosing-a-platform

3
Starting to Develop on

Google Cloud

As we mentioned in the previous chapter, Google Cloud provides a set of tools to help us developers
improve our productivity. This chapter will focus on introducing and describing the key features of
these tools, so you can properly set up your development environment, while the next chapters will
focus on examples and tips on how to make the most out of each tool when you run your code on
Google Cloud. If you have previous experience with Google Cloud, you may want to skim-read or
fully skip this chapter and go straight to the next one for some serverless action.

We’ll cover the following main topics in this chapter:

•	 The first steps with the Google Cloud console

•	 Introducing Cloud Shell

•	 Writing code for Google Cloud using Cloud Shell Editor

•	 Writing code for Google Cloud using Visual Studio Code

•	 Setting up Cloud Logging

•	 Monitoring the execution of your code

•	 Troubleshooting by debugging, tracing, and profiling your code

•	 Appendix – testing your code on Google Cloud

The first steps with the Google Cloud console
Since some of you may be new to Google Cloud, I decided to include a very brief introduction to the
Google Cloud console, so you can easily find everything in its User Interface (UI).

Starting to Develop on Google Cloud42

Note
Google Cloud is an ever-changing environment, and this is also applicable to its UI. When you
read this book, the interface may not exactly match the screenshots used in the book, but they
should still help you understand the concepts and find each element.

When we load the main screen of Google Cloud for an existing project (https://console.
cloud.google.com/), we will either see a welcome page or the project dashboard, depending on
our configuration, with quick access to the latest products that we recently used and their associated
information, such as news, tutorials and documentation, platform status, API usage, billing, and
monitoring, as shown in the following screenshot:

Figure 3.1 – Project dashboard screen in Google Cloud

There is also a blue ribbon at the top that provides easy access to all services and options:

Figure 3.2 – The blue ribbon at the top of the Google Cloud UI

https://console.cloud.google.com/
https://console.cloud.google.com/

Introducing Cloud Shell 43

Clicking on the hamburger icon (the first one with three horizontal lines) on the left side of the ribbon
will open the services menu. Next to it, after the Google Cloud text, there is a drop-down menu to
choose the project we will be working on. In the center of the ribbon, there is an omni-search box to
easily find any product, resource, or documentation by just typing a few words describing what we
are looking for.

The right side of the ribbon holds, from right to left, the account picture that we can click to switch
accounts, an icon with three dots to access the preferences and settings menu, a question mark icon
to open the help and support page, a bell icon to easily access pending notifications (or a number
showing the number of unread notifications), an icon to open Cloud Shell, which I highlighted with a
red box in the previous figure, and finally, a gift icon that will only appear if you are using free credits.

If you click on the Cloud Shell icon, you will see a message while your Cloud Shell Virtual Machine
(VM) starts and, in a matter of seconds, you will see a Linux console on the bottom side of the screen,
similar to the one you can see in this figure:

Figure 3.3 – Google console after opening Cloud Shell

Congratulations, you just opened Cloud Shell! Now, let’s learn how to use it to write, run, and test
code in combination with Cloud Shell Editor.

Introducing Cloud Shell
Cloud Shell (https://cloud.google.com/shell) is an online operations environment
that you can access anywhere using a web browser and is offered at no added cost to Google Cloud

https://cloud.google.com/shell

Starting to Develop on Google Cloud44

customers. In other words, a Linux VM with persistent storage is provided for free to developers
and administrators working on Google Cloud and its command-line console can be accessed from
a web browser.

Cloud Shell is an online Linux terminal with a few preloaded utilities. This terminal, together with Cloud
Shell Editor, can be used to write, deploy, run, and troubleshoot our applications on Google Cloud.

These are some of the key features of Cloud Shell that you should be aware of:

•	 Pre-installed and up-to-date tools: Cloud Shell includes many useful tools that you will often
use, such as the gcloud command-line administration tool (https://cloud.google.
com/sdk/gcloud/) and many other tools to help you manage software such as Kubernetes,
Docker, Skaffold, minikube, MySQL, and so on. Of course, you can also install any other tools
that you regularly use.

•	 Persisting storage: 5 GB of storage is provided and mounted in the home directory of your
Cloud Shell VM, persisting between sessions. This makes Cloud Shell the perfect place to clone
your repositories and then write, test, and deploy your code directly from your browser, and
finally, commit changes back to the original repository.

•	 Online code editor: Write code using Cloud Shell Editor directly from your browser, a
particularly useful feature for developers that deserves its very own section right after this one.

•	 Cloud Shell VM and minikube Kubernetes emulator: Run your code in Cloud Shell and test
it in your browser before deploying it to production.

Tip
While Cloud Shell provides persistent storage and is a convenient tool for our development
needs, it should never be used as a replacement for a proper code repository. Your storage will
persist for a few days even if you don’t use the Cloud console for a while, but after a few more
days, you will receive an email warning you that your VM will be automatically shut down to
save resources unless you use it again in a few days. If this shutdown happens, your storage will
be gone forever. You can always click on the Cloud Shell icon again and the VM will start up,
but its attached storage will now be empty. You have been warned!

Let’s see how we can write code directly from the Cloud console.

Writing code for Google Cloud using Cloud Shell Editor
Cloud Shell Editor (https://cloud.google.com/shell/docs/editor-overview) is
included as part of Cloud Shell and adds some interesting features to write code, letting us build, test,
and deploy our code, all from our favorite browser.

https://cloud.google.com/sdk/g﻿cloud/
https://cloud.google.com/sdk/g﻿cloud/
https://cloud.google.com/shell/docs/editor-overview

Writing code for Google Cloud using Cloud Shell Editor 45

Cloud Shell Editor is based on Theia (https://theia-ide.org/), an open, flexible, and extensible
cloud and desktop IDE platform that supports languages such as Go, Python, Java, .NET Core, and
Node.js. Among its features, we can enjoy syntax highlighting and context completions, linting, and
code navigation, together with debugging capabilities.

The editor can be opened from Cloud Shell, using the button highlighted in the following figure:

Figure 3.4 – Details of the Open Editor button in Cloud Shell

But it isn’t all good news...

Note
Cloud Shell has a limited usage quota per week, which also includes Cloud Shell Editor. Make
sure to check your available quota so you don’t run out of time while you still have pending
tasks. If it is not enough, you can request a quota increase by contacting Cloud Customer
Care (https://cloud.google.com/support).

Let’s go through the features of Cloud Shell Editor in the following section.

https://theia-ide.org/
https://cloud.google.com/support

Starting to Develop on Google Cloud46

Taking a look at the interface

In the top menu of Cloud Shell, you will see a button with a blue icon of a pencil and the Open Editor
text (I highlighted it with a red box in Figure 3.4). Just click that button to open Cloud Shell Editor.
After a few seconds to provision your editor instance, the screen will change, and you will see the editor:

Figure 3.5 – The Google Shell Editor screen after clicking on the Open Editor button

The Cloud Shell Editor UI has a button with the Open Terminal text in blue letters to switch between
the editor and the terminal, which, at least in my opinion, is not too comfortable for daily use. If you
agree, there is a maximize icon to the right of the Open Terminal button with an arrow pointing to
the top-right corner that you can click to open the editor in full screen in a new window, where the
terminal will also be available at the bottom. This looks much better and the visual experience is quite
similar to any other IDE:

Writing code for Google Cloud using Cloud Shell Editor 47

Figure 3.6 – Cloud Shell Editor in full-screen mode

Tip
If you find Cloud Shell Editor to be an interesting tool that you will use often, you can open it
directly in full screen using this bookmark: https://ide.cloud.google.com/

The main screen in Cloud Shell Editor has a toolbar with icons at the top, a menu right below, an
action bar on the left side, and two panels: a file browser on the left side and the main code editor in
the middle. Finally, there is an outline bar on the right side.

The icons in the toolbar at the top-right side of the screen should already be quite familiar to you and
can be used, respectively, to close the editor, open the terminal panel at the bottom, configure and
launch the web preview, check your usage quota, access uploads, downloads, and other configurations
(using the icon with three dots), and switch accounts.

The activity bar on the left side has a set of icons, each with its own purpose. I have included a
description for the icons in the following figure next to them, so you can have an idea about the
different functionalities that Cloud Shell Editor offers:

https://ide.cloud.google.com/

Starting to Develop on Google Cloud48

Figure 3.7 – The Cloud Shell Editor icon toolbar with descriptions

Showing the built-in terminal

The built-in terminal is a remarkably interesting feature since it allows you to use Cloud Shell without
leaving the editor, so you can manage your cloud infrastructure, run and test your code, or use it for
any other needs directly from Cloud Shell Editor.

You can even open multiple terminals using the button with the plus (+) sign in the terminal toolbar
or using the Terminal / New Terminal menu item. The former will take you to a Google Cloud project
selection screen before opening the terminal, which makes it possible to open a terminal directly
connected to a different project, which can be useful to compare the configuration among different
projects or other similar cases.

Uploading and downloading files

You will often need to upload or download files to/from the editor, and you can easily do this in two
different ways:

•	 The first one is to right-click on an empty area of the file explorer panel to open a menu that
includes one option to upload one or more files and another to download the current directory
as a TAR file.

•	 The second way is to use the three-dots icon at the top-left side of the Cloud Shell Editor window,
next to the thumbnail of your account image. Here, you will also see options for uploading
or downloading files. I personally prefer to use this one for downloading files, because it will
let you write the full path to the file or directory of your choice and will let you download it,
which can be useful, for example, if you are using workspaces.

Writing code for Google Cloud using Cloud Shell Editor 49

Editing and writing code

Cloud Shell Editor is compatible with the concept of workspaces, which means that all files used by a
project are found below a specific root directory level (which is also the root level of the workspace)
so that a download of that directory and all its subdirectories will contain all project files.

The benefit of opening a workspace instead of a single file is that you get instant access in the file panel
to all project files, which is much more comfortable than having to use the browse dialog to locate
each file that we need to open.

There are also more advanced workspace management options that you can read about on this
page: https://cloud.google.com/shell/docs/workspaces

While you can open a file by clicking on it from the left-side file panel, you can also open it directly
from the Cloud Shell terminal using a command like this:

cloudshell edit README-cloudshell.txt

Version control

Cloud Shell Editor supports accessing your existing Git repositories or even creating new ones
using the Source Control button in the activity bar. You can also host your private repositories in
Google Cloud using Cloud Source Repositories (https://cloud.google.com/source-
repositories/docs). From that panel, you will also be able to see existing and staged changes
and merge those changes.

Whenever you choose an action that has to do with your code repositories, Cloud Shell Editor will ask
you to authenticate with your password, if you haven’t done it recently. For this purpose, you should
use a Personal Access Token (PAT), recommended by GitHub as a more secure alternative to standard
passwords (https://docs.github.com/en/github/authenticating-to-github/
keeping-your-account-and-data-secure/creating-a-personal-access-
token). You can also turn on and configure Git credentials helper (https://git-scm.com/
book/en/v2/Git-Tools-Credential-Storage) to make the use of PATs more comfortable
by enabling caching of your PAT and increasing the time it is cached, so it’s not constantly asking you
to enter it again.

Once your setup is ready, you can clone a repository by going to View | Command Palette and running
the "Git: Clone" command. You can also create a branch or switch to another one using the
"Git: Checkout" command.

Now that everything is ready, it’s time to code! At this point, the Changes section of the Source Control
panel will display each of the files that have been changed, and opening each file will show you which
lines have been changed but not committed yet. You can also click on a filename to display pending
changes and decide whether to stage or discard them.

https://cloud.google.com/shell/docs/workspaces

https://cloud.google.com/source-repositories/docs
https://cloud.google.com/source-repositories/docs
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage
https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage

Starting to Develop on Google Cloud50

If you decide to stage your changes, the new Staged Changes section in the Source Code panel will
allow you to click on a file and see a diff command view showing all the changes after comparing
it with the earlier version.

At all times, an icon will show you which branch you are working on and a summary of the current
status, and you can use the Synchronize Changes action from the Command Palette to push your
local pending changes to the chosen branch and pull recent remote changes.

Finally, you can commit your changes using "Git: Clone" in the Command Palette.

Of course, if you feel more comfortable using a terminal for all Git-related commands, you can use
Cloud Shell to clone your repository, add files, include a comment, and push the changes yourself,
while using the editor just to write code.

Cloud Code support

Cloud Code is directly integrated into Cloud Shell Editor. The last four icons in the Activity Bar provide
access to options for different Google Cloud services, Cloud Run, Cloud APIs, Secret Manager, and
Kubernetes, as you can see in Figure 3.7. A clickable button in the status bar with the text Cloud Code
can be used to open a menu with different options, as you can see in the following figure, where all
UI elements related to Cloud Code have been highlighted in red:

Figure 3.8 – The Cloud Code menu options in Cloud Shell Editor

Writing code for Google Cloud using VS Code 51

Cloud Code includes sample applications that we can use as templates for faster prototyping and
makes it easier to debug our code by including direct access to a Cloud Run emulator, particularly
useful when testing containerized applications. All these menu options are available by clicking on
the Cloud Code text in the status bar.

There are direct links for debugging an application, either on Kubernetes or on Cloud Run, together
with a last option to deploy our code to Cloud Run once our testing is successfully completed.

Next to the Cloud Code button in the status bar, there is also a minikube button that allows you to
instantly connect to a minikube cluster without leaving the IDE.

In the next chapter, we will see detailed examples of how to use Cloud Shell Editor in all the phases
of our development workflow (write, test, deploy, run, and troubleshoot) for the different options
available to run our code on Google Cloud.

Moving your code to a different IDE

Moving a project from Cloud Shell Editor to your favorite IDE is quite easy. The first step is to copy
your workspace files somewhere else. You can either download your files using the File | Download
menu or commit your latest changes to your code repository, using either the Cloud Shell Editor UI
or some of the standard Git commands run from the terminal window.

Then, open your favorite IDE and either import the downloaded files, preferably by using a workspace-
compatible IDE to make it easier and faster, or clone or import your repository using the UI of your
chosen IDE. A third option would be to use Git command-line commands to clone the repository
and make the files available in a local directory of your choice.

Once the code is available in your favorite IDE, you can set up and use Cloud Code to make your
development tasks easier. Let’s see an example with Visual Studio Code (VS Code).

Writing code for Google Cloud using VS Code
Cloud Code is a set of plugins that provide support for different IDEs and makes it much easier
to work with Kubernetes and Cloud Run. I have chosen VS Code as an example built on the open
source Code-OSS, but you can follow a similar process with any of the other supported IDEs: IntelliJ,
PyCharm, GoLand, WebStorm, and, as we have already seen earlier, Cloud Shell Editor.

In order to install VS Code, we should first make sure that all the prerequisites mentioned in the
Google Cloud documentation (https://cloud.google.com/code/docs/vscode/
install) are met:

•	 Install VS Code (https://code.visualstudio.com/)

•	 Install and configure the support for the languages that you will be using: Go (https://
marketplace.visualstudio.com/items?itemName=ms-vscode.Go),

https://cloud.google.com/code/docs/vscode/install
https://cloud.google.com/code/docs/vscode/install
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.Go
https://marketplace.visualstudio.com/items?itemName=ms-vscode.Go

Starting to Develop on Google Cloud52

Python (https://marketplace.visualstudio.com/items?itemName=ms-
python.python), Java (https://marketplace.visualstudio.com/
items?itemName=vscjava.vscode-java-debug), and .NET (https://
marketplace.visualstudio.com/items?itemName=ms-dotnettools.
vscode-dotnet-pack)

•	 Install Git (https://git-scm.com/book/en/v2/Getting-Started-Installing-
Git), which is required for copying code to and from your IDE

•	 You may also need to install the Docker client (https://docs.docker.com/
install/#supported-platforms), unless you will use Cloud Build for building

I will be assuming that you already have access to a Google Cloud project with billing enabled.

Once the installation is complete, and after launching VS Code, you should see a screen similar to
this one:

Figure 3.9 – The VS Code main screen

Installing the plugin

In order to install the plugin, just visit the VS Code Marketplace page for Cloud Code (https://
marketplace.visualstudio.com/items?itemName=GoogleCloudTools.cloudcode)
and click on the Install button. You may be asked to restart VS Code for the plugin to be enabled.

https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.vscode-dotnet-pack
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.vscode-dotnet-pack
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.vscode-dotnet-pack
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://marketplace.visualstudio.com/items?itemName=GoogleCloudTools.cloudcode
https://marketplace.visualstudio.com/items?itemName=GoogleCloudTools.cloudcode

Setting up Cloud Logging 53

Now, you should be able to see the familiar Cloud Code icons that we mentioned for Cloud Shell
Editor and can further customize your settings using the top-level menu Code | Preferences | Settings
| Extensions | Cloud Code.

Figure 3.10 – The VS Code main screen after installing Cloud Code

Please notice that the plugin installs some dependencies automatically by default (kubectl,
Skaffold, minikube, and the gcloud CLI command). If you prefer, you can disable this option
by visiting Manage | Settings and setting Autodependencies to Off, and then proceed to install them
manually at your convenience.

Now that we have discussed how to write code either in Cloud Shell Editor or in your favorite IDE
(using VS Code as an example), we will start preparing our environment for testing our code.

Setting up Cloud Logging
One of the first tasks to complete is to properly set up Cloud Logging in our cloud project. This will
make it possible for any service and application running on this project to send logging events that
will be centralized in Cloud Logging (https://cloud.google.com/logging), where we
will be able to filter and display a specific list of events whenever we need them.

Cloud Logging, part of the Google Cloud operations suite (https://cloud.google.com/
products/operations), formerly known as Stackdriver, is a managed real-time logging service

https://cloud.google.com/logging
https://cloud.google.com/products/operations
https://cloud.google.com/products/operations

Starting to Develop on Google Cloud54

that allows us to store, search, and analyze our logs and set up alerts when certain events are received.
Logs can be stored in regional log buckets, and inclusion and exclusion filters can be set up to decide
which events we want to capture. Cloud Logging not only includes events generated by our code and
by cloud platform components but also audit-related messages to help us gain visibility about who
did what, when, and where within our cloud project.

You can quickly access Cloud Logging either by searching for logging in the search box at the
top, or you can have it pinned in the list of services available by clicking the hamburger icon in the
top-left corner of the screen.

Once you have accessed it, you should see a screen like this:

Figure 3.11 – The Cloud Logging main screen

Lucky for us, by default all platform logs are automatically ingested and stored with no previous setup
required. GKE workload logs are also automatically captured too and, if we deployed Ops Agent in our
VMs, their workload logs will also be automatically captured. Of course, we can use exclude and include
filters to discard messages that we don’t want or to choose exactly what we want to see in our logs.

Setting up Cloud Logging 55

Event filtering can be done in two different ways:

•	 Using include filters, where you specify patterns just for the events that you want to keep, while
the rest are discarded. While this can seem an easy way for keeping only the events that you
are interested in, it can also be a trap since you may be leaving out very important events or
you can miss new important patterns that start being written to Cloud Logging after an update.

•	 Using exclude filters, where you define patterns for those messages that you don’t want to see, is
the method that I always recommend. While building the list of unwanted patterns can take a
while and will require periodical reviews, any rare or new messages will be captured, providing
better chances of identifying critical issues.

Now that Cloud Logging is ready, let’s discuss some of the best practices for sending the most useful
logging events from our application or service.

Best practices for logging

Implementing proper logging in our applications and services can make a difference when monitoring
and troubleshooting our code since it can help us find the root cause for an issue much faster by
identifying which part of our code failed and what the symptoms were.

First of all, it’s important to adjust the verbosity level, that is, what kind of events we send and how
often we do it. This is because logging too many events or doing it too frequently can also have a
negative performance impact on our application, fill our logs with noise, and increase the cost if the
volume is huge, especially when the application is working as expected, due to the unnecessary use
of resources to write events that nobody will probably ever care to take a look at.

For this reason, having the option to temporarily increase the verbosity of the logger without having to
make changes in the code or even recompile it can be very beneficial once an issue has been detected.
Using either a debug enabled flag, which you can set to true to increase the verbosity, or a
variable that allows customizing the minimum level of logging that will be sent to Cloud Logging (i.e.,
if the logging level is set to warning, then only events of severity warning and critical will
be logged) can help us troubleshoot in both a faster and more efficient way.

In the world of microservices, changing the verbosity level should be a trivial change that can be
applied just to a specific microservice by changing a configuration parameter, and be deployed and
live in a matter of minutes, when we should start seeing more events almost immediately in our Cloud
Logging console.

Another key topic is to make sure that each logging event sent contains all the information needed
to make it useful. A good line of logging should include the following:

•	 A complete timestamp, including time zone information, especially for architectures distributed
across data centers in different parts of the world

•	 The name of the microservice or component that sent the event

Starting to Develop on Google Cloud56

•	 The ID of the process, service, or instance the event refers to, which allows tracing back by
looking at all events sent from that specific component

•	 A descriptive name of the part of the code that is running, such as a module, function, or
action name

•	 Information about either the input or output variables, or the intermediate or final status of
the operations being run by the portion of code the event is referring to

A generic line such as the following provides very few details about an error and is virtually useless:

2023-03-24 Data Reader error

But working just a bit to properly format the line and to make sure that all required information is
present can make it much more useful for troubleshooting:

2023-03-24 23:09:14 CET [cache-loader] PID: 12217, File:
12217-cache.txt (Load Cache) Error reading file: Cache file
does not exist

This second example tells us when the issue happened (and in which time zone), what file was affected
(12217-cache.txt), in which component (cache-loader), which operation was running at
that time (Load Cache), and what was exactly the issue detected (Cache file does not
exist). This information can help us understand where the error happened and start tracing back
in the code to try to identify its root cause and either mitigate it or fix it.

Generating this kind of log event is very easy if you write a small function with parameters that
generates the text for each event and combine it with a global on/off debug or a minimum severity
flag to define in which specific cases an event will be sent. We will see a practical example of this
implementation in the next chapter.

Once our code is ready and our logging configuration is complete, it’s time to start testing it. Since
the testing process is more complex than the rest of the steps covered in this chapter, I moved it to an
appendix at the end of this chapter.

Monitoring the execution of your code
Monitoring is defined in this Google Cloud documentation page (https://cloud.google.
com/monitoring) as the process of gaining visibility into the performance, availability, and health
of your applications and infrastructure.

Introducing observability

In my professional career, I have met quite a few developers who thought that their work was done
when the last system tests were passed, only expecting issues to be reported and fixed as part of the

https://cloud.google.com/monitoring
https://cloud.google.com/monitoring

Monitoring the execution of your code 57

maintenance phase. They couldn’t be more wrong, because once you test and deploy your code, you
need to put in place a proper monitoring system to ensure that you can answer the following three
questions at any time:

•	 Is your code actually running? If the process crashes and you never noticed, then you have a
serious problem for sure.

•	 Does the performance of my code meet the requirements? Code running doesn’t mean code
running efficiently. You should define and measure Service-Level Indicators (SLIs) (what to
measure) and establish Service-Level Objectives (SLOs) (what those measures should look
like) so you can detect and quickly take action when an issue that is affecting the performance
of your service is detected.

•	 Is your code really providing the expected services? Since a running process doesn’t guarantee
that the service it should be providing is actually working, there should be tests in place that
periodically check the end-to-end availability of each service.

Observability, also known as visibility, is a key topic in the area of monitoring because we aim to
obtain the information required to be able to answer these three questions at any moment in time. This
connects with the principles of Site Reliability Engineering (SRE), where being able to detect potential
issues and fix them before our users are affected can make our applications and services better as we
make changes to improve their availability and performance, thus improving their overall reliability.

Gathering information about your services

In order to achieve observability, we need to understand our code and the services it provides and
identify the key metrics that can be used to detect performance bottlenecks, integration issues, or
global availability problems.

For example, if our service analyzes pictures of documents, extracts the text using Optical Character
Recognition (OCR), and stores the result in a text file for each document, we could use the number
of documents pending to be analyzed as a key performance metric, together with the ratio of errors
returned by the Cloud Vision API (used to implement OCR) every 1,000 calls, or the number of output
text files pending to be written to storage.

We could also measure memory and CPU utilization, and how many microservice instances are
running every 5 minutes. This, together with the number of requests analyzed every hour, can provide
us with a basic level of visibility of our service.

In an example like this, there would be different metrics involved:

•	 Internal metrics, such as the size of the document queue, the number of text files pending to
be written to storage, or the number of hourly errors returned by the API, which can be logged
periodically or obtained by parsing the logs externally.

Starting to Develop on Google Cloud58

•	 Service metrics, such as requests handled hourly, can be obtained by parsing log files externally.

•	 Infrastructure metrics, such as resource utilization, number of processes running, or number
of instances of a microservice. These should be obtained by either using an agent running on
the system or reading metrics provided by a hypervisor or a management API.

As you can see from the list, we need a few components to build a decent monitoring system:

•	 Periodical internal statistics and metrics measured and exported by our own code regarding
health and performance

•	 System statistics and metrics provided by an agent running on the host OS

•	 Infrastructure statistics and metrics provided by a management API or a hypervisor

All this data, stored in a centralized database, will allow us to analyze trends, define a threshold, and
set up alerts when the value of a metric is outside the usual range.

Google Cloud provides a set of tools to make this process easier:

•	 Cloud Monitoring (https://cloud.google.com/monitoring/) is also part of the
Google Cloud operations suite and lets you access over 1,500 cloud monitoring metrics from
Google Cloud and Amazon Web Services using its API (https://cloud.google.com/
monitoring/api/v3), a list that can be extended by adding your own custom metrics. You
can also use it to generate alerts when the value of one or more of your key metrics exceeds a
defined threshold.

•	 Cloud Monitoring also provides predefined and custom monitoring dashboards (https://
cloud.google.com/monitoring/dashboards) that let you combine data from
different sources in the same context and create a visualization of the health of a service or
application. These charts can be useful for operations and troubleshooting teams (including
SREs) in order to quickly identify issues and their root cause, so the Mean Time to Recovery
(MTTR) of the service can be kept to a minimum.

•	 Ops Agent (https://cloud.google.com/monitoring/agent/ops-agent)
is the software that can obtain log events and metrics from Compute Engine instances, thus
improving our global visibility of Linux and Windows VMs.

•	 If you have a big architecture or want a more powerful monitoring system, Google Cloud
Managed Service for Prometheus (https://cloud.google.com/stackdriver/
docs/managed-prometheus) provides a fully managed multi-cloud solution that is
compatible with open source monitoring and dashboarding solutions, including Prometheus
(https://prometheus.io/) and Grafana (https://grafana.com/grafana/).
The benefits of using Managed Service for Prometheus are that you can monitor the whole
infrastructure with a unified solution, centralize all the data gathered from the different sources,
and use powerful queries to obtain and visualize the exact information and insights that help

https://cloud.google.com/monitoring/
https://cloud.google.com/monitoring/api/v3
https://cloud.google.com/monitoring/api/v3
https://cloud.google.com/monitoring/dashboards
https://cloud.google.com/monitoring/dashboards
https://cloud.google.com/monitoring/agent/ops-agent
https://cloud.google.com/stackdriver/docs/managed-prometheus
https://cloud.google.com/stackdriver/docs/managed-prometheus
https://prometheus.io/
https://grafana.com/grafana/

Troubleshooting by debugging, tracing, and profiling your code 59

you achieve observability, and then set up alerts to be the first one to know when there is
an issue. This solution works for both Kubernetes and VM workloads and has 24 months of
data retention.

As you can see, monitoring our applications and services is very useful, but can also become quite
complicated, especially as the number of microservices and components in use starts to grow exponentially.

While there are numerous third-party solutions specialized in cloud monitoring, Google Cloud
offers a good set of tools that can help us set up our monitoring architecture and, ultimately, use it to
achieve observability of our workloads and ensure that both availability and performance are within
reasonable limits, and get alerted when something wrong happens, so that we can troubleshoot our
code and find out what’s going on.

Troubleshooting by debugging, tracing, and profiling
your code
Our code can have issues of different types. For example, it may just not run as expected due to a bug,
or it may be running apparently fine, but have some operations lasting much longer than initially
expected. In situations like these, we will need to dig deep into our code, follow the execution flow
step by step, and ultimately identify what is wrong and put together a fix.

While this can be easy to do locally, it may become quite complicated in cloud environments, especially
with technologies such as clusters, where observability is limited, and you usually need to resort to
remote debugging techniques if you want to have some visibility. Fortunately, Google Cloud provides a
set of tools that makes these tasks much easier, helping us avoid tedious tasks such as port forwarding,
even if our workload is running on a different cloud provider.

With Cloud Code, for example, you can debug remote containers in the same way as if they were
running locally. Isn’t that great? Let’s describe how debugging works, and we’ll see some real examples
in the next chapter.

As we already discussed, we can either use Cloud Shell Editor or our favorite supported IDE to enjoy
the features of Cloud Code, one of them being to help us debug our code. In the case of container
debugging, all we need to do is to have a local copy of the code running on the container, run the
container in debug mode, and attach our remote debugger to the corresponding Artifact Registry
or pod, including support for Google Cloud, Amazon AWS, and Microsoft Azure registries, and we
will be able to see the real-time execution logs, inspect variables, and set breakpoints as if we were
working with a local container.

Cloud Code will help us through all the steps, including the configuration, if it wasn’t already completed,
of both the Skaffold (https://cloud.google.com/skaffold) and the cloudcode.
kubernetes launch configuration.

https://cloud.google.com/skaffold

Starting to Develop on Google Cloud60

Debugging our code can be very helpful because we can check the value of all related variables
around the portion of code where an error is reported, and start tracing back in our code until we
find the line where one or more variables get a wrong value. Since we have access to the source code
locally, we can take study the code, compare it with the original requirements, and, fingers crossed,
ultimately identify what is wrong. We can even change the value of the affected variable in real time,
after setting a breakpoint on the offending line, and verify that it works fine before starting to write
a patch to fix the issue.

This is what a debugging session looks like using VS Code:

Figure 3.12 – Debugging in VS Code

There is even a watch mode that detects any changes that you perform locally on the code and
automatically redeploys a new version of the container and reconnects to it, making it even faster to
verify that the changes in the code actually fix the problem by testing it on a live cluster. This mode
can, of course, be disabled if you are not comfortable with this process and prefer to decide when
changes should be applied remotely.

If we detect a performance issue, sometimes, we may be able to apply a quick fix by reordering our
code or optimizing loops, but there will be cases where we will need a deeper understanding of which
parts of our code take longer to run, so we can focus on improving their performance. This is when
Cloud Trace and Cloud Profiler come to the rescue!

As we can read on its documentation page, Cloud Trace (https://cloud.google.com/trace)
is a distributed tracing system that collects latency data from our applications and displays it in the

https://cloud.google.com/trace

Appendix – testing your code on Google Cloud 61

Google Cloud console. We can track how requests propagate through our application and receive
detailed near real-time performance insights.

Cloud Trace automatically analyzes all of our application’s traces to generate in-depth latency reports
to surface performance degradations and can capture traces from all of our VMs, containers, or App
Engine projects.

Indeed, all Cloud Run, Cloud Functions, and App Engine standard applications are automatically
traced and it’s very easy to enable tracing for applications running elsewhere.

Cloud Profiler (https://cloud.google.com/profiler/docs) is a statistical, low-overhead
profiler that continuously gathers CPU usage and memory-allocation information from our production
applications. It attributes that information to the application’s source code, helping us identify the
parts of the application consuming the most resources.

The main benefit of combining these two tools is that they provide performance observability, helping
us understand which parts of our architecture in general and our code in particular are degrading
the global performance or eating too many resources. This information is especially valuable in a
cloud environment because we can easily differentiate which performance issues are being caused by
infrastructure components, and take strategic decisions to mitigate them, and which ones are caused
by our code, and in that case, work on replacing specific libraries or improving the performance of
specific portions of code to make more reasonable use of the allocated resources.

A well-performing application will not only provide a faster service but also help our organization
save money by reducing the number of resources required, being able to serve more users with the
same resources it used before being optimized.

We will see practical examples of debugging, tracing, and profiling for each of the options to run our
code on Google Cloud in the next chapter.

Appendix – testing your code on Google Cloud
I added this section as an appendix because testing is a harder concept that requires more thought
and customization, so I consider this as an extra effort that will be worth your while.

When we speak about testing, there are a few basic concepts that we should take into account, as this
Google Cloud documentation page mentions: https://cloud.google.com/functions/
docs/testing/test-basics.

We should ensure that our code works properly from different perspectives. Let’s introduce the three
types of tests.

Types of tests

An important concept to keep in mind is that a portion of code, even if it implements a full service,
needs to be tested from different points of view before we can say that it fully works as expected. And

https://cloud.google.com/profiler/docs
https://cloud.google.com/functions/docs/testing/test-basics
https://cloud.google.com/functions/docs/testing/test-basics

Starting to Develop on Google Cloud62

for this to be possible, we need to put together a list of tests that, when passed, will confirm that our
code is functional in three different scenarios: on its own, as part of a bigger workflow, and as part
of a whole system.

First, unit tests help us test code on its own, just taking into account its expected functionality, the
edge cases, and assumptions that we considered at the time when the code was written. We can verify
this by providing inputs to the code and comparing the results obtained against those expected.

Unit tests are defined by developers to ensure that changes in code don’t break basic functionalities.
In this phase, we do not integrate our code with other components, but we rather replace them with
mocks and emulators.

If we think of a car, a unit test would involve testing a tire or the brake pedal separately from the rest
of the car, even those parts that usually interact with them.

Then, integration tests help us verify that our code integrates correctly with other services and
components, which means that mocking must be kept to a minimum and we need to build end-to-
end tests involving any other components and cloud services that are used to provide its functionality.

Integration tests help us validate code for a microservice as a part of a bigger workflow, service, or
operation, and verify that it communicates properly with the rest of the microservices and components
involved. The integration with any external platform services and components used by the code to
be tested is also validated by identifying end-to-end operations where parameters are provided and
a final response is provided after following a specific workflow, making it possible to detect whether
either an issue in our code or an issue or change in another component made the whole operation
fail or provide a response different from the one expected.

In the example of a car, an integration test could be used to validate the integration of all the components
of the braking system, including the expected response of a car when we hit the brake pedal until the
expected outcome happens (wheels no longer move and the car stops).

Finally, system tests validate the whole functionality of an application or service. We can understand
system tests as a series of integration tests run together, and sometimes involving connections between
the operations validated using integration tests. These tests help us validate that the whole system,
including all its services, meets the defined business requirements.

In the case of Cloud Code, some components may be reused in a different part of the architecture,
and system tests would validate each of these uses, to make sure that all of these components are
working as expected.

In the example of a car, we should run tests for all elements and features of the car: lights, speed and
power, security, safety, and many others. As you can see, as we move from unit to integration, and
from integration to system tests the complexity increases, as does the number of components involved
and the time required to complete them.

Appendix – testing your code on Google Cloud 63

Recommendations and best practices for testing your code

As you can see after reading the previous section, testing can become quite complicated as our
architectures begin to grow, and automating the testing process can help us save a lot of time and
eliminate human errors, helping us detect issues faster.

But before we are able to actually implement this automation for tests, we should take a few tips and
best practices into account.

When possible, separate code and configuration. The main reason for this suggestion is that sometimes
issues can be fixed just by making a change in the value of one or more configuration parameters,
and it can be much more time-consuming if you need to rebuild the code than if you can just make a
change in a JSON or XML file, or an environment variable and restart the service (or even make the
service reload its configuration without having to restart it).

Since some of the configuration parameters may include passwords and other information that should
be properly protected, you can use Secret Manager (https://cloud.google.com/secret-
manager) to securely store sensitive information and retrieve it.

Another good practice is to use hermetic builds (https://sre.google/sre-book/release-
engineering/#hermetic-builds-nqslhnid), meaning that your builds are consistent
and repeatable, that is, not dependent on the version of the tools running on the build machine, but
depending only on known versions of compilers and libraries. This will provide a controlled environment,
where the same build process for the same code version in two different build machines will provide
identical results. This type of environment makes testing much easier because we avoid failures caused
by external components, often not under our control, that may complicate troubleshooting a lot.

It’s also strongly recommended to implement a proper retry strategy (https://cloud.google.
com/storage/docs/retry-strategy) in your code. An API call failing once doesn’t mean
that our code doesn’t work and, as we discussed earlier in the book, all code in general, but code to
be run on the cloud in particular, should be ready for failures and configured to retry any operation
that fails, whether it’s an idempotent operation or not. Concepts such as exponential backoff, where
the waiting time between consecutive retries grows exponentially, can help our code elegantly handle
temporary failures while eventually passing all tests and being resilient when deployed in production.

Finally, all the aforementioned suggestions will make it easier for you to implement Continuous
Integration and Deployment (CI/CD) pipelines to complete both your unit tests and your integration
tests on Google Cloud, implementing what is known as continuous testing. Cloud Build (https://
cloud.google.com/build) can run your tests on an ongoing basis, helping you to ensure that
your code keeps on working as expected and that all dependencies are up to date.

We will discuss practices such as exponential backoff and concepts such as continuous testing, as
well as go through practical examples, in the next chapters of the book, where we will look into the
different options to test, run, and troubleshoot code on Google Cloud.

https://cloud.google.com/secret-manager
https://cloud.google.com/secret-manager
https://sre.google/sre-book/release-engineering/#hermetic-builds-nqslhnid
https://sre.google/sre-book/release-engineering/#hermetic-builds-nqslhnid
https://cloud.google.com/storage/docs/retry-strategy
https://cloud.google.com/storage/docs/retry-strategy
https://cloud.google.com/build
https://cloud.google.com/build

Starting to Develop on Google Cloud64

Summary
In this chapter, we covered the tools that Google Cloud provides for the different phases of software
development, and discussed their features and how they can be of help when writing, running, testing,
and debugging code to be run on the cloud.

First, we introduced Cloud Shell and Cloud Shell Editor and mentioned how Cloud Code can help us
integrate code writing and testing for different Google Cloud products. We also covered alternative
IDEs, such as VS Code, that Cloud Code is also compatible with, and then talked about Cloud Logging
and the importance of setting up proper logging in our applications.

Then, we talked about the need for proper monitoring to achieve observability and closed the chapter
by explaining the available tools for troubleshooting issues, including debugging, tracing, and profiling
our code in order to fix availability issues or to improve its performance. Finally, we enumerated the
different types of tests and provided some tips on how to set up a good test environment.

This is the last chapter with a more theoretical focus. Starting with the next one, we will deep dive
into the different options for running code on Google Cloud, with a lot of practical examples where
we will put into action all of the topics that we covered in these first three chapters.

Further reading
To learn more about the topics covered in this chapter, please visit the following links:

•	 Tips and Tricks for using Google Cloud Shell as a Cloud IDE (https://dev.to/ndsn/
tips-and-tricks-for-using-google-cloud-shell-as-a-cloud-ide-4cek)

•	 Building idempotent functions (https://cloud.google.com/blog/products/
serverless/cloud-functions-pro-tips-building-idempotent-functions)

•	 Concepts in service monitoring (https://cloud.google.com/stackdriver/docs/
solutions/slo-monitoring)

•	 Setting SLOs: a step-by-step guide (https://cloud.google.com/blog/products/
management-tools/practical-guide-to-setting-slos)

•	 Observability in Google Cloud (https://services.google.com/fh/files/misc/
observability_in_google_cloud_one_pager.pdf)

https://dev.to/ndsn/tips-and-tricks-for-using-google-cloud-shell-as-a-cloud-ide-4cek
https://dev.to/ndsn/tips-and-tricks-for-using-google-cloud-shell-as-a-cloud-ide-4cek
https://cloud.google.com/blog/products/serverless/cloud-functions-pro-tips-building-idempotent-functions
https://cloud.google.com/blog/products/serverless/cloud-functions-pro-tips-building-idempotent-functions
https://cloud.google.com/stackdriver/docs/solutions/slo-monitoring
https://cloud.google.com/stackdriver/docs/solutions/slo-monitoring
https://cloud.google.com/blog/products/management-tools/practical-guide-to-setting-slos
https://cloud.google.com/blog/products/management-tools/practical-guide-to-setting-slos
https://services.google.com/fh/files/misc/observability_in_google_cloud_one_pager.pdf
https://services.google.com/fh/files/misc/observability_in_google_cloud_one_pager.pdf

Part 2:
Basic Google Cloud Services

for Developers

One of the benefits of running our code on Google Cloud is that we no longer need to use servers. This
part of the book will cover three different options for running your code using a serverless approach.

We will then deep-dive into the concept of containers and how they can be used to abstract even more
of our code from the underlying infrastructure.

Finally, we will explore how Anthos can make it easy to design hybrid and multi-cloud architectures,
while at the same time, it provides global observability and the ability to move any workload from
one provider to another, including private on-premises clusters and multiple public cloud providers,
so that you can make the most out of each option.

This part contains the following chapters:

•	 Chapter 4, Running Serverless Code on Google Cloud – Part 1

•	 Chapter 5, Running Serverless Code on Google Cloud – Part 2

•	 Chapter 6, Running Containerized Applications with Google Kubernetes Engine

•	 Chapter 7, Managing the Hybrid Cloud with Anthos

4
Running Serverless Code on

Google Cloud – Part 1

After three chapters without having written a single line of code, you will probably be looking forward
to some hands-on action happening as soon as possible. As you will see, it was worth the wait, since
I introduced a lot of concepts that we will be using in this and the following chapters.

This chapter will cover two of the serverless options available for running your code on Google Cloud,
while the next will cover the third. You will learn what serverless means and then I’ll introduce each
of the serverless options, together with an example that we will make run in each option so that we
can compare the implementation, as well as tips for running your code on Google Cloud using either
Cloud Functions or App Engine in this chapter, or Cloud Run in the next one.

Finally, we will discuss their similarities and differences and when you should choose each.

We’ll cover the following main topics in this chapter:

•	 Introducing serverless architectures

•	 Using Cloud Functions to run your code

•	 Using App Engine to run your code

Let’s get started!

Technical requirements
If you want to complete the exercises included in this chapter, all you will need is access to the Google
Cloud console, a Google Cloud project with either billing enabled or some available free credits, and
the code files for this chapter, which are available in the code repository for this book: https://
github.com/PacktPublishing/Google-Cloud-for-Developers.

https://github.com/PacktPublishing/Google-Cloud-for-Developers
https://github.com/PacktPublishing/Google-Cloud-for-Developers

Running Serverless Code on Google Cloud – Part 168

Introducing serverless architectures
For decades, the infrastructure required to run code included an Operating System (OS) running on
top of dedicated hardware, leading to a tremendous waste of computing resources.

While virtualization started in the late 1960s for mainframes, it wasn’t until the early 2000s that it
became generally available and users could finally share resources, which started to simplify the
original scenario. Virtualization created multiple logical servers on top of a shared pool of computing
power, allowing for allocated resources to be better adjusted, and providing services to more users
with the same or less hardware.

The use of containers, whose predecessors we've been using since the 1970s, exploded in popularity
when Docker emerged in the early 2010s. Using containers reduces the contents of a deployment
package to just the OS libraries and the dependencies that our code requires, making packaged
applications much smaller and also portable, with a higher level of abstraction because a common
host OS is shared by all the applications or services running in containers.

The use of these and similar technologies led to the appearance of different levels of abstraction
of hardware and OSs, eliminating the complexity of setting up and maintaining the underlying
infrastructure, among which I would like to highlight the following:

•	 Function as a Service (FaaS): Runs a function of code in an environment that scales according
to the traffic

•	 Platform as a Service (PaaS): Runs a frontend or backend application and adjusts the resources
according to the traffic and the load

•	 Container as a Service (CaaS): Runs a container and adjusts the number of instances depending
on the load

Google Cloud offers three different products to run our code using serverless architectures, where we
care about packaging and deploying our code and Google Cloud takes care of all the rest. Patching,
maintenance windows, and updates are no longer taking most of our time, and we can now dedicate
our efforts to writing even better code, focusing on innovation at its best. Doesn’t this ring a bell? I
hope it does...

Let’s discuss each of the three options available to run your code using a Google Cloud serverless
product: Cloud Functions, App Engine, and Cloud Run.

Using Cloud Functions to run your code
Using Cloud Functions (https://cloud.google.com/functions) is one of the simplest
ways to run your code on Google Cloud, using the benefits of a FaaS platform. Let’s explain what it
is and how it works.

https://cloud.google.com/functions

Using Cloud Functions to run your code 69

Introducing Cloud Functions

The concept of Cloud Functions, and the reason for its name, is that you can create a code function
in your favorite programming language and use a trigger to execute it on demand. Personally, I love
the idea of packing my code, specifying the dependencies in a text file, deploying it, and... voilà, it is
ready to run in a matter of minutes with no hassle.

The choice of programming language is quite extensive, including Node.js, Python, Go, Java, .NET,
Ruby, and PHP at the time of writing. You can see the full list of supported languages and versions
here: https://cloud.google.com/functions/docs/concepts/execution-
environment#runtimes.

There are different triggers available to get your code to run:

•	 HTTP/HTTPS: Make our function react to HTTP requests.

•	 Cloud Storage: Run our function when a file is uploaded or updated in Google Cloud
Storage (GCS).

•	 Pub/Sub: React to a new message being received.

•	 Cloud Scheduler: Integrate our functions with a modern version of cron.

•	 Cloud Tasks: A great option for repetitive actions with high volumes that supports parallel
calls to Cloud Functions to process noticeably big queues with thousands or even millions of
invocations. Service requests are sent to Cloud Tasks, which handles multiple threads with
automated retries and configurable exponential back-off.

You can read the full up-to-date list of triggers in this section of the official Google Cloud
documentation: https://cloud.google.com/functions/docs/calling.

As you can see, the combination of the most used programming languages and a complete set of
triggers makes Cloud Functions a valid solution for many frontend and backend scenarios.

Let’s list some of the most common combinations, so you can better understand what we can do
with them:

•	 Run a basic web service: For instance, we can get some parameters from the HTTP request,
run an operation with them, and return a JSON file with the results. Or, we can even implement
a small web server and return HTML.

•	 Process files as soon as they are uploaded or modified in GCS: For example, generate a
thumbnail automatically for each new image that is uploaded to a GCS bucket. We can also
use triggers for files being updated, archived, or deleted.

•	 Handle a queue of requests: For instance, we can translate each of the comments received in
any other language to English during the last hour. We can send hundreds of asynchronous
requests using Pub/Sub messages from another microservice and each of them will be shortly

https://cloud.google.com/functions/docs/concepts/execution-environment#runtimes
https://cloud.google.com/functions/docs/concepts/execution-environment#runtimes
https://cloud.google.com/functions/docs/calling

Running Serverless Code on Google Cloud – Part 170

processed by a different instance of a cloud function. There are other more efficient architectures
for this kind of situation, as we will discuss a bit later in this chapter.

•	 Run a workload periodically: For example, train a machine learning model weekly, every
Monday morning. Using Cloud Scheduler to schedule the trigger, we can either use HTTP
or send a Pub/Sub message every Monday at 6 A.M. to start the cloud function and use the
Vertex AI API to re-train our model.

Note
There are currently two generations of Cloud Functions coexisting at the time of writing
this chapter. I will focus code and comments on the second generation since it is much more
powerful and it’s constantly receiving new features, while the first generation is more limited
and will probably not be updated any longer. You can read more about the differences between
these two generations in this section of the documentation site: https://cloud.google.
com/functions/docs/concepts/version-comparison.

Now that we have a clearer picture of what Cloud Functions is, let’s discuss how it works and what
the key technical aspects are that you need to know so that you can decide whether it is the best fit
for your development needs.

The following paragraph from the documentation page perfectly describes the inner workings of
Cloud Functions and can lead us to a few interesting discussions (https://cloud.google.
com/functions/docs/building):

When you deploy your function’s source code to Cloud Functions, that source is stored in a Cloud Storage
bucket. Cloud Build then automatically builds your code into a container image and pushes that image to
the Artifact Registry. Cloud Functions accesses this image when it needs to run the container to execute
your function.

So, in summary, we write a function in our favorite programming language, it gets automatically
containerized and associated with a trigger on deployment, and it ultimately becomes a cloud function
that runs on demand when the configured trigger is detected.

Note
Cloud Functions is billed based on how many times it is executed, apart from the costs of any
other Google Cloud products that we may invoke from our code or use as part of the architecture
used to invoke Cloud Functions.

Since its code is run on demand, if we don’t use our Cloud Functions instance for a while, it will be
shut down to save resources (and cost) unless we specify to keep a specific number of instances always
running. This is called zero-instance scaling and means that when we use it again, the first execution
may take a bit longer because the container needs to be cold-started again. You should take this into

https://cloud.google.com/functions/docs/concepts/version-comparison
https://cloud.google.com/functions/docs/concepts/version-comparison
https://cloud.google.com/functions/docs/building
https://cloud.google.com/functions/docs/building

Using Cloud Functions to run your code 71

account, especially if you will be using Cloud Functions in real-time scenarios, where you should either
define a minimum number of instances to always be running or use some less elegant alternatives.
An example is periodically invoking your Cloud Functions instance to awaken or keep it running, for
example, using a parameter that just wakes up the Cloud Functions instance.

When we deploy a cloud function, there is a set of parameters that we can configure and that will be
key to its performance:

•	 The region where the container will run, which can affect the latency of our users. Of course,
we can replicate cloud functions in different regions.

•	 The programming language chosen to write the code of the function.

•	 The amount of memory to be allocated (and, as we will see later, this also decides the associated
amount of vCPU). The defaults are 256 MiB and .167 vCPU, which is a sixth part of a 2.4
GHz CPU.

•	 The timeout, in seconds, before each execution is automatically killed. The default is 60 seconds.

•	 The maximum number of instances running in parallel, so we can limit the maximum scaling.

When our cloud function needs to handle multiple requests, there are at least two different ways of
doing it:

•	 The first one is quite simple: we just let each instance of our cloud function handle exactly one
request. This makes the design much simpler but may increase the costs since we are billed
by the number of executions and, depending on the scenario, with this approach, there may
be millions.

•	 The second choice is to take advantage of the maximum execution time, which is 540 seconds
for first- and second-generation cloud functions, except for second-generation HTTP-triggered
functions, where they can run for up to 60 minutes and try to run as many complete operations
as possible during that time. This requires a bit more complexity because we should treat each
operation as a transaction and only remove it from the queue, marking it as complete, once
the whole transaction has been successfully executed. But on the other side, it can speed up the
execution time required to process the whole queue, and make your code more cost-effective.

Which of the two approaches should you use? Well, it will depend on your use case and the number
of expected runs every month. You will probably need to make some calculations and compare the
simple approach against the more complex one and decide whether it’s worth the extra effort.

Before getting to the example, let’s discuss the concept of a service account, which we will use constantly
in all serverless products.

Running Serverless Code on Google Cloud – Part 172

Running code using service accounts

When we log in to the Google Cloud console, we have a set of roles and permissions granted to our
account by the admin using Identity and Access Management (IAM), which defines what we can
and cannot do while we interact with the Google Cloud console.

When we need to run code or start a virtual machine, we will need to associate it to an account too,
for the same reason. If we used our own account, it would be inheriting our roles and permissions,
and this could be a source of trouble for different reasons:

•	 We would be breaking the principle of least security, running code with more permissions than
required, which would be an important security risk

•	 If the user leaves the organization, we will need to transfer the ownership of all the code running
from the original account, probably update the roles and permissions of the receiver, and finally
redeploy all assets, which would be really inconvenient

Service accounts were created to solve both problems. They are non-interactive accounts that we
use to run services and deployments and that can have roles and permissions assigned to them too.

For example, if we want to run a cloud function, we can configure it to run using a specific service
account. In that case, our code will run authenticated as this service account, and we can use IAM to
grant additional roles that will allow our cloud function to access any additional resources required
to complete its tasks. In this case, the service account would be the identity of the application, and the
associated roles would be used to control which resources the application can access.

A default service account is automatically created with a limited set of permissions in each Google Cloud
project, and it is assigned by default to all deployments. However, those permissions will often not be
enough, and in that case, we can create our own service account, use IAM to grant it the minimum
set of permissions required by our code to complete its tasks, and redeploy the cloud function using
this new service account. This same approach can be used with any other serverless product.

There are some differences between service accounts and user accounts that you should be aware of:

•	 While user accounts must have a password set (and should have a second authentication factor
enabled for a higher security level), service accounts don’t use passwords and cannot be used
to log in using a browser or cookies.

Instead, we can generate public and private RSA key pairs to authenticate service accounts
and sign data.

•	 Users or service accounts can impersonate another service account if they are granted specific
permission to do so, which can significantly simplify permission and account management.

Using Cloud Functions to run your code 73

•	 Service accounts are totally separated from Google Workspace domains, which means that
globally shared assets in a domain will not be shared with service accounts and, vice versa,
assets created by a service account will not be created in your Workspace domain.

You can read more about service accounts on this page of the official documentation site: https://
cloud.google.com/iam/docs/service-accounts

Now, finally, it’s time to start writing our first cloud function.

Writing, deploying, and running a cloud function

I will be running away from “Hello world!” examples in this book and will try to include instead useful
examples that can run using the Free Tier.

Note
Google Cloud provides Free Trial and Free Tier (https://cloud.google.com/free)
options for some of its services, free of charge every month. Knowing the details about these
can be very interesting, since you can use them to run the examples provided in this book, test
new services, reduce your costs, or host your resume for free!

In the case of Cloud Functions, the following services are included in the monthly Free Tier:

•	 2 million invocations per month (including both background and HTTP invocations)

•	 400,000 GB-seconds and 200,000 GHz-seconds of compute time

•	 5 GB network egress per month

Now, let’s make use of our Free Tier to learn how Cloud Function works.

The example that I mentioned earlier was a website that uses parameters to send a response, but I also
mentioned that it could be used as a web server. Let’s combine both ideas and build a cloud function
to host our resume so that we can share it with anyone interested and provide a certain degree of
personalization for each recipient.

You can use this example to highlight your knowledge of Google Cloud. What would be a better way
to do so than using a cloud function to share your resume with interviewers and hiring managers? We
will later implement this example with the other serverless products too, so we can see the similarities
and differences between platforms.

If you remember the concept, a cloud function has an entry point, a function, which is run when it is
triggered by an event. Taking this information into account, we can organize our code so that it can
be compatible not only with the deployment of a Cloud Function but also with unit tests.

https://cloud.google.com/iam/docs/service-accounts
https://cloud.google.com/iam/docs/service-accounts
https://cloud.google.com/free

Running Serverless Code on Google Cloud – Part 174

For this, we can include a main function that will never be executed on the cloud but will allow testing
the code using the command line. We can also divide our code into functions that implement a separate
part of the whole process so that we can later test one or more of those parts whenever we need to.

Let me show you how to do this using our example about resumes, which includes the following actions:

1.	 Load an existing HTML resume template from GCS.

2.	 Check passed parameters and build a customized header message.

3.	 Replace the placeholder in the resume template with a customized message.

4.	 Return the full resume to the requestor.

So, if we split the code into four functions, each taking care of one of these topics, we can have different
functionalities that we can test separately. We can even include unit tests as part of the cloud function
in our repository. They will be used for local testing purposes. A main function in the Python file
will enable us to run the full code, or just a part of it, using the command line, which can speed up
testing even more.

I will now show you how I got to the files included in the repository for this chapter. You may refer
to the Cloud Functions directory to see the whole code, which I will reference in the next part
of this section.

First, let’s create an HTML file for the resume. I will name it english.html and include a few lines
and an externally hosted picture. This is just a simple example. I’m sure you can design a much better
resume, in terms of both content and design. I have included a placeholder tagged as ##RESUME_
HEAD## at the top of the HTML file that we will replace with a proper title right before returning
the full resume to the requestor.

The HTML file looks like this when loaded on a browser. Notice how the first line has been personalized
for a fictional interviewer:

Using Cloud Functions to run your code 75

Figure 4.1 – A preview of the resume in a web browser

Our cloud function will read the HTML template from GCS, customize the header depending on the
parameters received, and return the final HTML to the caller, acting as a web server. This is a portion
of the code that we should use for that purpose inside main.py:

def return_resume(template, name, company):

  resume_html = load_resume(template)

  resume_header = build_resume_header(name, company)

  resume_html = replace_resume_header(resume_html,

                                      resume_header)

  return resume_html

Running Serverless Code on Google Cloud – Part 176

We will now code three more functions to load the resume, build the customized header, and replace
it in the raw HTML:

Imports the Google Cloud client library

from google.cloud import storage

Name of the bucket storing the template files

BUCKET_NAME = "resume_xew878w6e"

def load_resume(template):

  # Instantiate a Cloud Storage client

  storage_client = storage.Client()

  # Open the bucket

  bucket = storage_client.bucket(BUCKET_NAME)

  # And get to the blob containing our HTML template

  blob = bucket.blob(template)

  # Open the blob and return its contents

  with blob.open("r") as resume_file:

    return(resume_file.read())

def build_resume_header(name, company):

  custom_header = ""

  if name or company:

    custom_header = "(Specially prepared for "

    if name:

      custom_header = custom_header + "" + name +

                      ""

    if company:

      if not name:

        custom_header = custom_header + "" + company
+                         ""

      else:

Using Cloud Functions to run your code 77

        custom_header = custom_header + " from " +

                        company + ""

    custom_header = custom_header + ")"

  return custom_header

def replace_resume_header(resume_html, header_text):

  return resume_html.replace("##RESUME_HEAD##", header_text)

Now, all we need is to add the function that will be triggered by each HTTP request, together with
a main function. I have written the trigger function as a wrapper so we can also run unit tests for
each functionality, and added the main function so we can test the code just by running it from the
command line:

import functions_framework

DEFAULT_TEMPLATE = "english.html"

@functions_framework.http

def return_resume_trigger(request):

    template = request.args.get('template', DEFAULT_TEMPLATE)

    name = request.args.get('name', None)

    company = request.args.get('company', None)

    resume_html = return_resume(template, name, company)

def main():

    template = "english.html"

    name = "John Smith"

    company = "StarTalent"

    resume_html = return_resume(template, name, company)

    print(resume_html)

if __name__ == "__main__":

    main()

Using this code, we can run quick checks from the command line and also write and run unit tests,
checking for the expected output of each function separately or all of them in sequence, in order to
verify that all the functionality is intact after making changes to our code.

Once all tests are successfully passed, our cloud function should be ready for testing.

Running Serverless Code on Google Cloud – Part 178

Testing a cloud function

As we will see shortly, deploying a cloud function can take a few minutes. While it’s a straightforward
process, if you want to follow a typical development cycle, first testing your code, then identifying
issues, then getting them fixed in your code and re-iterating, it can become quite frustrating and
inefficient because you will be spending more time staring at the screen waiting for the deployment
to complete rather than coding or testing your code.

To make this process easier, Google Cloud provides a Cloud Functions emulator, which allows us to
set up a local server that will simulate what the actual product does and enable fast testing by directly
using our local code to serve requests. This way we can run tests and just deploy the final version
once all of them pass locally. This doesn’t mean that we should bypass tests on the cloud but will just
make the first iterations much faster.

Installing the emulator is extremely easy. Just use the following pip command:

pip install functions-framework

Once the installation process is completed, you can change to the directory where the main source
code file for your cloud function is located and run the emulator using this command:

functions-framework --target=return_resume_trigger

This will start a local server on port 8080 (we can customize the port, of course) that will execute the
return_resume_trigger function on each connection and will return the results to the caller.

We can invoke the cloud function, if it is triggered using HTTP, as was the case for our resume example,
running the following command and using double quotes to enclose the URL:

curl "http://localhost:8080?template=english.
html&name=John+Smith&company=StarTalent"

If you need to trigger background cloud functions that use Pub/Sub or GCS events, you can read how
to do it on the following documentation page: https://cloud.google.com/functions/
docs/running/calling

Notice how I’m passing the values for both name and company by double quoting the full URL so
that all the parameters are passed to the server. If you don’t use double quotes, your server will only
receive the first parameter because the ampersand will be interpreted by the shell as the end of the
command and no user or company name will be printed.

You should now see the HTML content of your resume printed on your screen, which you can validate
by loading the URL in a browser. If there are any issues or you see anything that you don’t like, just
make the appropriate changes and try again. Once you are happy with the resume, we will be ready
to deploy the cloud function to Google Cloud.

https://cloud.google.com/functions/docs/running/calling

https://cloud.google.com/functions/docs/running/calling

Using Cloud Functions to run your code 79

Important note
Each time you make changes to your code, you will need to stop and restart the test server for
the code to be refreshed. Having a script to do this could be quite convenient.

If you are using other Google Cloud services, such as Pub/Sub, my recommendation is to find out
whether an emulator exists from the documentation website before using real services for your tests,
especially if your code triggers a service hundreds or thousands of times, so you don’t incur significant
costs. For example, if your code makes use of Pub/Sub, you can read more about its emulator in this
section of the documentation: https://cloud.google.com/pubsub/docs/emulator.

Deploying a cloud function

The last step before having a cloud function ready for use is deploying it and we will need a deployment
package to do it.

A deployment package will include at least one file with the source code, or multiple ones if we are
using modules. We can also structure our code in subdirectories, and it will also work as soon as the
imports are properly specified and resolved in the code.

We should also include any external or added files that our cloud function is using, such as the HTML
file for the resume in our previous example. Please notice that these files will not be directly exposed
with a public URL but we will need to read them from our code, instead.

Finally, when using Python as the programming language for Cloud Functions, as I will do for the
examples in this book, we should use a file named requirements.txt to specify which external
libraries we are using, so they can be installed before our function is executed. If we miss any libraries,
the code will just fail to run because the Python interpreter will not be able to resolve that dependency.

Since pip is used to install the updates, the requirements file should contain one line per package,
each including the package name and, optionally, the requested version. If a version is not specified,
the latest one available will be installed.

The following is an example of a requirements.txt file for a cloud function requiring the use
of the latest version of the GCS library and version 2.20.0 of requests:

requests==2.20.0

google-cloud-storage

https://cloud.google.com/pubsub/docs/emulator

Running Serverless Code on Google Cloud – Part 180

Note
If you are wondering whether and why you should be including the required version for all
libraries in your requirements file, you can have two different scenarios: first, if you don’t
specify the versions, each deployment will always use the latest versions of all libraries. While
this can seem to be beneficial for the sake of security or to get bugfixes and optimizations
deployed as soon as they are available, it can also mean breaking changes in major version
updates, including changes in the list of expected parameters and other scenarios that you will
probably prefer to avoid.

On the other hand, specifying the requested version for all libraries guarantees that the code
will always be using the same version of the libraries, but will force you to periodically test the
newest versions and update the requirements file to prevent the versions used becoming out
of date and even no longer being available.

In my experience, a version freeze will cause you fewer headaches because issues due to updated
libraries can happen at any time and they may surprise you in the worst moment when you don’t
have time or resources to deal with them. Freezing the versions will allow you to decide how
often and when you will perform the library updates. This is an added reason why having a nice
set of automated tests can help you quickly verify whether, after updating your requirements
file to use the latest versions of the libraries, your code still passes all the tests.

You can read more about specifying dependencies, including the list of packages preinstalled in Cloud
Functions using Python, on the following documentation website: https://cloud.google.
com/functions/docs/writing/specifying-dependencies-python.

Our example uses GCS to host the HTML templates, so the first thing that we need to do is to create a
new bucket and upload the template file there. You can use the following address and then select your
project using the drop-down menu at the top, if required: https://console.cloud.google.
com/storage/browser. Once there, just click on the Create button, and choose a unique name
for your bucket, such as resume_xew878w6e, which I used in my example. Bucket names are
globally unique, so sometimes it can take a while until you find a name that is not in use. Write down
the name because you will need to fill it in the Cloud Function’s main.py file.

Once you confirm the name, you can select Region hosting, since the simpler option will work for our
test, and leave all the other options at their default values. Click on the Create button and confirm the
prevention of public access, since we will use the bucket to store files internally. Now, you can use the
Upload files button to select and upload the english.html template file from the source directory.

Once the template has been uploaded, in order to deploy the cloud function, we will just need a
directory containing the main.py and requirements.txt files. Edit main.py and replace
the value of BUCKET_NAME at the top of the file with the name of the bucket that you just created.
Save the file and now it’s time to prepare our environment for the deployment.

https://cloud.google.com/functions/docs/writing/specifying-dependencies-python
https://cloud.google.com/functions/docs/writing/specifying-dependencies-python
https://console.cloud.google.com/storage/browser
https://console.cloud.google.com/storage/browser

Using Cloud Functions to run your code 81

First, we will need gcloud, the Google Cloud command-line utility, to be installed. It comes
preinstalled in Cloud Shell but if you use any other environment where it is not installed yet, just run
this command or a similar one compatible with your development environment:

sudo apt-get update && sudo apt-get install google-cloud-cli

If gcloud was already installed, you can search for available updates by running this command:

gcloud components update

Now, it’s time to authenticate ourselves and set the default Google Cloud project for the gcloud utility
by running the following two commands and following any instructions that they specify:

gcloud auth login

gcloud config set project <your_project_name>

If we have any extra files in our Cloud Function’s directory, we can prevent them from being deployed
to the cloud using a .gcloudignore file, so that unit tests, temporary files, and similar examples
never get deployed. Each line of this file contains either a complete file or directory name or a pattern
that will be checked against each filename before deciding whether it will be deployed or not.

This would be the sample content of a .gcloudignore file to filter out Git files:

.git

.gitignore

You can read more about this feature by running the following command:

gcloud topic gcloudignore

Check whether gcloudignore is enabled by running this other one:

gcloud config list

Finally, enable it, if it wasn’t already, using this final one:

gcloud config set gcloudignore/enabled true

Now, we are ready to deploy the cloud function using the following multi-line deployment command,
which includes default values for the most common parameters:

gcloud functions deploy resume-server \

--gen2 \

--runtime=python310 \

--region=us-central1 \

--memory=256MB \

Running Serverless Code on Google Cloud – Part 182

--source=. \

--entry-point=return_resume_trigger \

--trigger-http \

--allow-unauthenticated

Please take a look at the command, so you can understand the different configuration options we are
setting here:

•	 The function name will be resume-server

•	 It’s a second-generation function

•	 It will be running from the us-central1 region

•	 It will be limited to 256 MiB and .167 vCPU

•	 The source code to be deployed will be in the same directory from where we are running the
deploy command

•	 The function to be executed by the trigger will be return_resume_trigger

•	 This is an HTTP-triggered function

•	 We are allowing unauthenticated users to run this cloud function, that is, making it public and
open for anyone to run it if they know the URL to use

All these options, and many more, can be customized using the different command-line parameters
of the build command, as described in the corresponding documentation section: https://
cloud.google.com/sdk/gcloud/reference/functions/deploy

The first time that we run a deploy command, we will be requested to enable the APIs for Cloud
Functions, Cloud Build, Artifact Registry, and Cloud Run if they weren’t already so that the deployment
can be completed. Just answer y for each of the requests and the deployment will begin:

API [artifactregistry.googleapis.com] not enabled on project
[<your_project_name>].

Would you like to enable and retry (this will take a few
minutes)? (y/N)? y

Once you answer positively, you will see how Cloud Run is containerizing your cloud function and
the console will keep you informed about each step until the trigger URL will be displayed.

We will be using the Free Tier to store our cloud functions without additional costs unless you already
have many other cloud functions deployed in your project and exceed the free quota. An excerpt of
the output should look like the following:

[...]

Preparing function...done.

https://cloud.google.com/sdk/gcloud/reference/functions/deploy

https://cloud.google.com/sdk/gcloud/reference/functions/deploy

Using Cloud Functions to run your code 83

OK Deploying function...

[...]Done.

You can view your function in the Cloud Console here:

[...]

  timeoutSeconds: 60

  uri: https://python-http-function-4slsbxpeoa-uc.a.run.app

As you can see in the preceding code, my external URL for the cloud function would be https://
python-http-function-4slsbxpeoa-uc.a.run.app. But since it’s unique for each
project, you will get a different one for yours, and loading that URL in a browser will actually display
our sample resume:

Figure 4.2 – The resume returned by the cloud function

Running Serverless Code on Google Cloud – Part 184

We can customize the header by passing the parameters, building a URL like this: https://
python-http-function-4slsbxpeoa-uc.a.run.app/?template=english.
html&name=John&company=StarTalent. And voilà, our cloud-based resume server is
now online!

Of course, this sample cloud function could benefit from a lot of improvements. These are just some
of the ideas I can think of, but I’m sure you will have many more:

•	 Encoded URLs, so that people won’t see their name passed as a parameter,
for example, us ing Base64 to hash the parameters and hide them in a
URL like this: https://hostname/?resumekey=dGVtcGxhd
GU9ZW5nbGlzaC5odG1sJm5hbWU9Sm9obiZjb21wYW55PVN0YXJUYWxlbnQ=. This
sample URL contains the exact same parameters used in the preceding example and would
display the resume customized for John Smith from StarTalent using the English template.

•	 Allow online real-time What You See Is What You Get (WYSIWYG) editing of the content
of the resume, using GCS to store each different template and revision.

Note
Second-generation Cloud Functions URLs are non-deterministic at the time I’m writing this,
but this is on the roadmap and is quite useful since you can guess the URL just by knowing the
region, the name of the Google Cloud project, and the name of the cloud function.

Once a cloud function has been deployed, we can see a lot of information about it in the Google
Cloud console. The Cloud Functions section can always be accessed using the direct link https://
console.cloud.google.com/functions/list, or we can use the direct link that appears
when we deploy a function, after the text You can view your function in the Cloud Console here:.

Once you open the preceding link, you will see a list of all the cloud functions deployed, including
information such as the function name, the region, the runtime version, memory allocated, or which
function is executed once it’s triggered. At the end of each line on the list, there is an icon with three
dots that allows quick access to see the logs, allows you to make a copy of a cloud function, and can
also take you to the Cloud Run-associated service.

Clicking on a function name will take you to another screen with a tabbed interface. Let’s summarize
what you can see in each of those tabs since they can be extremely useful.

The Metrics tab will show you some interesting numbers about your cloud function, such as the
number of invocations per second or the number of active instances, which is useful to see the traffic
in real time.

In order to simulate real traffic, I used the hey command-line tool, which is available in Cloud Shell
and can be used for this purpose. Just invoking it by passing a URL as a parameter will generate 200
requests, but you can customize it using many other options. For my test, I used this Bash one liner,

https://console.cloud.google.com/functions/list
https://console.cloud.google.com/functions/list

Using Cloud Functions to run your code 85

which generates random traffic, and left it running. If you want to use it, just replace <YOUR-CLOUD-
FUNCTION-URL> with the URL to your cloud function:

while sleep $[($RANDOM % 300)  + 1]s; do hey https://<YOUR-
CLOUD-FUNCTION-URL>/; done

These were the metrics I got after an hour:

Figure 4.3 – The metrics information for our resume cloud function

The preceding graphs are interesting because you can see how Cloud Functions is scaling up when
the 200 requests are received and then goes back to 0. You can also see how long requests take and

Running Serverless Code on Google Cloud – Part 186

how much memory is used: there is some variability in the numbers due to Cloud Run warming up
after a cool-down. All this can help us better understand how our code runs, and what we can do to
improve its behavior.

There are two quite useful metrics to look at: execution time and memory utilization. Execution time
allows us to understand whether our cloud function is well designed and runs to completion before
the configured timeout is triggered; otherwise, we should redeploy our function, increasing its value.
In second-generation Cloud Functions, the maximum timeout duration is 60 minutes (3,600 seconds)
for HTTP functions and 9 minutes (540 seconds) for event-driven functions.

Finally, memory utilization allows us to see how much memory our cloud functions are using in each
execution. Each deployment configures the amount of memory and vCPU allocated to run, with a
default of 256 MiB and .167 vCPU, a sixth part of a 2.4 GHz CPU. In the preceding screenshot, you can
see that our resume-serving function uses less than 100 MiB in each run, so we could even decrease
the amount of allocated memory to 128 MiB and save costs even more.

On the other end, if our cloud function tries to use more than the allocated amount of memory, it
will crash, so this graph can help us detect this situation and redeploy the cloud function, this time
increasing the amount of memory using the --memory flag. The list of available memory and CPU
tiers is available on this documentation page: https://cloud.google.com/functions/
docs/configuring/memory.

The second tab, Details, offers information about the deployment, including region, timeout, minimum,
and maximum configured instances, service account, or networking settings. You can modify any
of these parameters by redeploying the cloud function with an updated deployment command. You
can see the full list of parameters on this documentation page: https://cloud.google.com/
sdk/gcloud/reference/functions/deploy.

In the third tab, Source, you can see the deployed code, which is read-only by default. But you can
also click on the EDIT button at the top and proceed to make changes on the fly and redeploy by just
clicking the Deploy button once you are finished. Beware of using this option too frequently, since
any changes applied locally may leave your deployed code out of sync with the one stored in your
code repository. However, this option can still be a lifesaver if you need a very quick fix to be applied.

The next tab, Variables, contains all information about the Runtime and Build environment variables,
together with any secrets that your cloud function may be using. You can pass environment variables
to your cloud function, which will be read on execution time and used in a similar way to any
other parameters.

If any of these variables include sensitive information, you should use secrets instead, which will be
both safely stored and retrieved, thus reducing the chances of unwanted leaks.

https://cloud.google.com/functions/docs/configuring/memory
https://cloud.google.com/functions/docs/configuring/memory
https://cloud.google.com/sdk/gcloud/reference/functions/deploy
https://cloud.google.com/sdk/gcloud/reference/functions/deploy

Using Cloud Functions to run your code 87

You can pass environment variables using the --set-build-env-vars=[KEY=VALUE,…] build
parameter or use --build-env-vars-file=FILE_PATH and pass the path to a YAML file
including a key and value pair in each line. For secrets, you can use --set-secrets=[SECRET_ENV_
VAR=SECRET_VALUE_REF,/secret_path=SECRET_VALUE_REF,/mount_path:/secret_
file_path=SECRET_VALUE_REF,…] to define the secrets or --update-secrets=[SECRET_
ENV_VAR=SECRET_VALUE_REF,/secret_path=SECRET_VALUE_REF,/mount_path:/
secret_file_path=SECRET_VALUE_REF,…]] to update them.

The next tab, Trigger, allows us to see how we can trigger our cloud function, either using HTTP or
an event, including a direct link to invoke our cloud function.

Then, the next one, Permissions, summarizes all security entries defined for our cloud function, both
by Principals (who can do what) or by Role (which groups can do what). Unless a cloud function
has been deployed enabling anonymous invocation, only users with invoke permission will be able to
run a cloud function. You should be extremely careful and only open anonymous access if you really
want your functions to be publicly accessible. Otherwise, your cloud function could be triggered by
anyone, and this may not only lead to security issues but also increase your costs since you will be
charged by the number of runs and online scanners and bots may increase your numbers and you
may have a nasty surprise when the billing cycle ends.

Note
Properly securing your serverless deployments is a key step that you should include in your
development cycles, sprints, or iterations.

There are just two more tabs in the interface: the first is the Logs tab, which provides us with access
to the latest log entries. Personally, I prefer to open a link to the Logs Viewer on a new screen from
the three-dots icon on the Cloud Functions list page, but this can also be useful to identify any recent
issues when our cloud function fails.

Finally, the Testing tab can be useful for fast tests, since it will help us quickly build a payload and
trigger our cloud function, so we can then switch back to the Logs tab and check that everything
works as expected.

Tests can also be done using the command line, with a snippet like the one following this paragraph,
which I used to test an HTTP function. This code is also available in the book’s repository, so you can
try it if you want to. Notice how, in the following screenshot, the name parameter is passed in the
URL and the HTML response is customized for that specific name in the line containing “(Specially
prepared for...)”. An authorization token is also included so that the testing is also compatible with
Cloud Functions not allowing anonymous invocations:

Running Serverless Code on Google Cloud – Part 188

Figure 4.4 – Using curl to test the cloud function from the command line

Note
The preceding example uses POST to send the payload data, and your code may only be ready
to handle GET data. It’s up to you whether you implement support for both methods or just
one, depending on your use case and how the HTTP function will be invoked. GET exposes
the parameters in the URL while POST sends them as data.

You can use similar commands to send Pub/Sub messages or to generate any other type of events in
production, but it is a good practice to use emulators during our internal tests. You can read more
about this topic in the following documentation section: https://cloud.google.com/
functions/docs/testing/test-overview.

Debugging a cloud function

As I did in the section about testing, I will cover Cloud Functions debugging considering two different
environments: local debugging before deployment and remote debugging, once our cloud function
is running on Google Cloud.

In the first case, for local debugging, we can use the function’s framework in debug mode to help us
have a better understanding of what’s happening during the execution of a cloud function. When

https://cloud.google.com/functions/docs/testing/test-overview
https://cloud.google.com/functions/docs/testing/test-overview

Using Cloud Functions to run your code 89

the framework has started adding the --debug flag, it will log all requests and logging events to
the local console, which can be very useful if we developed our application including a flag to enable
verbose logging, so we can follow the execution by looking at the events and better understand where
our code is failing.

Once we have deployed our cloud function in Google Cloud, we can also use Stackdriver to connect
to the running container and be able to debug it. This process is not as simple as the others described,
but it can be a lifesaver once you get used to it.

If you are interested in this topic, I added some detailed articles about testing and debugging Cloud
Functions in the Further reading section, at the end of the chapter.

Tips and tricks for running your code using Cloud Functions

I have put together some tips for getting the most out of Cloud Functions.

Whenever it’s possible, you should code cloud functions to minimize their memory usage. Since
the cost is proportional to the memory and vCPU allocated, loading big structures in memory will
increase costs. If you can implement your use case in a simpler way and not require processing huge
amounts of data in each execution, Cloud Functions will be not only the best technical fit but also
the most affordable one.

Also, if you need to test your cloud function in production, you can directly execute it from the console
using the gcloud utility as follows:

gcloud functions call python-http-function --data
'{"template":"english.html", "name":"John Smith",
"company":"StarTalent"}'

As you will have noticed, this is an example of testing our resume server. Please take into account that
when using the gcloud command, the data is passed using POST, so you may need to make some
small changes in the source code to also support this method besides GET.

You can read more about direct invocation on the following documentation page: https://cloud.
google.com/functions/docs/running/direct.

Another interesting tip is that we can deploy a cloud function directly from source code located in
Cloud Source Repositories, also enabling us to use GitHub or Bitbucket, thus reducing the complexity
of our development and testing workflows because we no longer need to check out our code before
deploying it.

For this to work, we must first set up a repository and, optionally, connect it to our GitHub or Bitbucket
repository if we want to use them as sources. Then, we can use the following URL in the --source flag:

https://source.developers.google.com/projects/PROJECT_ID/repos/
REPOSITORY_NAME

https://cloud.google.com/functions/docs/running/direct
https://cloud.google.com/functions/docs/running/direct

Running Serverless Code on Google Cloud – Part 190

You can read more about this feature and other advanced deployment techniques on this page of the
official documentation: https://cloud.google.com/functions/docs/deploy

How much does it cost to run a cloud function?

One of the most common questions about running our code on any cloud provider is how to accurately
estimate how much we will be paying at the end of the month. While this can be easy for some services,
it becomes more complicated with others, as is the case with Cloud Functions.

The fact that a cloud function is just a piece of architecture, meaning that it will be using other services
most of the time, complicates finding an answer.

For example, imagine that you have a thumbnail generation service where you schedule your cloud
function to run every 10 minutes using Cloud Scheduler and use it to get information about the latest
image uploads by querying a BigQuery table, and then loading the image from GCS, finally generating
and storing a thumbnail in another directory of the bucket.

This small example has made use of the following Google Cloud services:

•	 Cloud Functions

•	 Cloud Scheduler

•	 BigQuery

•	 GCS

So, you will be charged for each of them, depending on your usage and whether you exceeded the free
tier, where available. Please take this into account and make sure you consider any external services
that you are using when you try to calculate your total costs.

Considering just Cloud Functions, you will highly likely incur the following charges:

•	 Artifact Registry: For storing your function (but this has a free tier).

•	 Cloud Build: Used to build an executable image containing your function.

•	 Eventarc: Used for event delivery.

•	 Cloud Functions invocations: Charged by every million invocations, with the first two included
in the free tier.

•	 Compute time: There is a free tier, too.

•	 Internet egress traffic: Charged by GB. The first 5 GB are included in the free tier.

https://cloud.google.com/functions/docs/deploy

Using App Engine to run your code 91

As you can see, cost calculations can become complicated, and that’s why the detailed documentation
page for Cloud Functions pricing (https://cloud.google.com/functions/pricing)
includes a couple of real-world examples that can be useful to estimate costs in different scenarios:

•	 A simple event-driven function with 128 MB of memory and a 200 MHz CPU, invoked 10
million times per month and running for 300 ms each time using only Google APIs (no billable
egress), will cost $7,20 every month

•	 A medium-complexity HTTP function with 256 MB of memory and a 400 MHz CPU, invoked
50 million times per month via HTTP, running for 500 ms each time and sending 5 KB of data
back to the caller (5 KB egress per invocation) will cost $159.84

In my own experience, using Cloud Functions has always been an affordable option for short and
repetitive operations, and, even with millions of invocations every month, I never saw costs over a
few hundred dollars a month. Also, since the cost is proportional to the number of invocations, Cloud
Functions can be an interesting alternative for services where more invocations also mean more
revenue, so that monthly costs are just a small fraction of the benefits they provide.

However, there are other alternatives for running your code where costs can be more stable and
predictable. Let’s introduce App Engine.

Using App Engine to run your code
Now, it’s time to move from FaaS to PaaS and introduce the second option for our serverless
deployments: App Engine.

Introducing App Engine

App Engine (https://cloud.google.com/appengine) is a serverless PaaS product for
developing and hosting our web applications. We can choose among many popular programming
languages and use any framework or library to build our application, and Google Cloud will handle
the infrastructure, including a demand-based scaling system to ensure that you always have enough
capacity for our users.

This product is a very good fit for microservices-based architectures and requires zero server management
and zero configuration deployment tasks, so we can focus on developing amazing applications. Indeed,
we can use App Engine to host different versions of our app and use this feature to create separate
environments for development, testing, staging, and production.

It’s important that you know that there can only be one App Engine instance in each Google Cloud
project and that whatever region you choose when you create it will become permanent, so please
make that choice wisely.

An App Engine application (https://cloud.google.com/appengine/docs/legacy/
standard/python/an-overview-of-app-engine) is made up of one or more services,

https://cloud.google.com/functions/pricing
https://cloud.google.com/appengine
https://cloud.google.com/appengine/docs/legacy/standard/python/an-overview-of-app-engine
https://cloud.google.com/appengine/docs/legacy/standard/python/an-overview-of-app-engine

Running Serverless Code on Google Cloud – Part 192

each of which can use different runtimes, each of which can have customized performance settings.
Each of our services can have multiple versions deployed that will run within one or more instances,
depending on the amount of traffic that we configured it to handle.

All the resources of an application will be created in the region that we choose when we create our
App Engine app, including code, settings, credentials, and all the associated metadata. Our application
will include one or more services but must have at least what is called the default service, which can
also have multiple versions deployed.

Each version of a service that we deploy in our app will contain both the source code that we want to
run and the required configuration files. An updated version may contain changes in the code, the
configuration, or both, and a new version will be created when redeploying the service after making
changes to any of these elements.

The ability to have multiple versions of our application within each service will make it easier to
switch between versions for cases such as rollbacks or testing and can also be very useful when we
are migrating our service, allowing us to set up traffic splits to test new versions with a portion of the
users before rolling them out to all of them.

The different deployed versions of our services will run on one or more instances depending on the
load at each time. AppEngine will scale our resources automatically, up if required to maintain the
performance level, or down to avoid resource waste and help reduce costs.

Each deployed version of a service must have a unique name, which can be used to target and route
traffic to a specific resource. These names are built using URLs that follow this naming convention:

https://<VERSION>-dot-<SERVICE>-dot-<PROJECT_ID>.<REGION_
ID>.r.appspot.com

Note
The maximum length of <VERSION>-dot-<SERVICE>-dot-<PROJECT_ID> is 63
characters, where VERSION is the name of our version, SERVICE is the name of our service,
and PROJECT_ID is our project ID, or a DNS lookup error will occur. Another limitation is
that the name of the version and the service cannot start or end with a hyphen. Any requests
that our application receives will be routed only to those versions of our services that have been
configured to handle the traffic. We can also use the configuration to define which specific
services and versions will handle a request depending on parameters such as the URL path.

App Engine environment types

App Engine offers two different environment types.

The App Engine standard environment is the simplest offering, aimed at applications running
specific versions of the supported programming languages. At the time of writing this chapter, you

Using App Engine to run your code 93

can write your application in Node.js, Java, Ruby, C#, Go, Python, or PHP. You can see the up-to-
date list on this documentation page: https://cloud.google.com/appengine/docs/
the-appengine-environments.

In a standard environment, our application will run on a lightweight instance inside of a sandbox,
which means that there will be a few restrictions that you should consider. For example, we can only
run a limited set of binary libraries, restricting access to external Google Cloud services only to
those available using the App Engine API, instead of the standard ones. Other particularly important
limitations are that App Engine standard applications cannot write to disk and that the options of CPU
and memory to choose from are limited. For all these reasons, App Engine standard is a genuinely
precise fit for stateless web applications that respond to HTTP requests quickly, that is, microservices.

App Engine standard is especially useful in scenarios with sudden changes in traffic because this
environment can scale very quickly and supports scaling up and down. This means that it can scale
up your application quickly and effortlessly to thousands of instances to handle sudden peaks, and
scale it down to zero if there is no traffic for some time.

If the mentioned limitations are not a problem for your use case, this can be a remarkably interesting
choice to run your code, because you will pay close to nothing (or literally nothing).

App Engine standard instances are charged based on instance hours, but the good news is that all
customers get 28 instances in a standard environment free per day, not charged against our credits,
which is great for testing and even for running a small architecture virtually for free.

The second type is called the App Engine flexible environment. This one will give us more power, more
options... and more responsibilities, at a higher cost. In this case, our application will be containerized
with Docker and run inside a virtual machine. This is a perfect fit for applications that are expecting
a reasonably steady demand and need to scale more gradually. The cons of this environment are that
the minimum number of instances in App Engine flexible is 1 and that scaling in response to traffic
will take significantly longer in comparison with standard environments.

On the list of pros, flexible environments allow us to choose any Compute Engine machine type to
run our containerized application, which means that we have access to many more combinations of
CPU, memory, and storage than in the case of a standard environment.

Besides, flexible environments have fewer requirements about which versions of the supported
programming languages we can use, and they even offer the possibility of building custom runtimes,
which we can use to add support for any other programming languages or versions that we may
specifically need. This will require additional effort to set it up but also opens the door to running
web applications written in any version of any language.

Flexible App Engine instances are billed based on resource usage, including vCPU, memory, and
persistent disks.

https://cloud.google.com/appengine/docs/the-appengine-environments
https://cloud.google.com/appengine/docs/the-appengine-environments

Running Serverless Code on Google Cloud – Part 194

Finally, most of the restrictions that affect App Engine standard instances do not apply to flexible
environments: we can write to disk, use any library of our choice, run multiple processes, and use
standard cloud APIs to access external services.

Note
Standard and flexible App Engine environments should not be mutually exclusive, but
complementary. The idea is that we run simple microservices using fast scaling and cost-efficient
standard environments whenever possible and complement them with flexible environments
used for those microservices that will not work under the limitations of a standard environment.
Specific requirements such as needing more CPU or memory, requiring disk access, or making
API calls to use cloud services will justify the use of flexible instances. When combining both
instance types, inter-service communication can be implemented using Pub/Sub, HTTP, or
Cloud Tasks, which makes App Engine a great choice to create architectures combining always-
on and on-demand microservices.

You can read an interesting comparison table detailing the similarities and key differences between
both environment instances in the following documentation section: https://cloud.google.
com/appengine/docs/flexible/flexible-for-standard-users.

Scaling strategies in App Engine

App Engine applications are built on top of one or more instances, which are isolated from one another
using a security layer. Received requests are balanced across any available instances.

We can choose whether we prefer a specific number of instances to run despite the traffic, or we can let
App Engine handle the load by creating or shutting down instances as required. The scaling strategy
can be customized using a configuration file called app.yaml. Automatic scaling will be enabled
by default, letting App Engine optimize the number of idle instances.

The following is a list of the three different scaling strategies available for App Engine:

•	 Manual scaling: A fixed number of instances will run despite changes in the amount of traffic
received. This option makes sense for complex applications using a lot of memory and requiring
a fast response.

•	 Basic scaling: As its name suggests, this option will make things simple by creating new instances
when requests are received and shutting them down when instances have been idle for some
time. This is a nice choice for applications with occasional traffic.

•	 Automatic scaling: This is the most advanced option, suitable for applications needing to fine-
tune their scaling to prevent performance issues. Automatic scaling will let us define multiple
metrics with their associated thresholds in our YAML configuration file. App Engine will use
these metrics to decide when it’s the best time to create new instances or shut down idle ones

https://cloud.google.com/appengine/docs/flexible/flexible-for-standard-users

https://cloud.google.com/appengine/docs/flexible/flexible-for-standard-users

Using App Engine to run your code 95

so that there is no visible effect on performance. We can also optionally use the automatic_
scaling parameter to define the minimum number of instances to always keep running.

You can find a table comparing these scaling strategies in the documentation page about App Engine
instance management: https://cloud.google.com/appengine/docs/legacy/
standard/python/how-instances-are-managed

The differences between the different strategies are quite simple to explain. In basic scaling, App
Engine prioritizes cost savings over performance, even at the expense of increasing latency and
hurting performance in some scenarios, for example, after it scales to 0. If low latency is an important
requirement for your application, this option will probably not work for you.

Automatic scaling, however, uses an individual queue for each instance, whose length is periodically
monitored and used to detect traffic peaks, deciding when new instances should be created. Also,
instances with queues detected to be empty for a while will be turned off, but not destroyed, so they
can be quickly reloaded if they are needed again later. While this process will reduce the time needed
to scale up, it may still increase latency up to an unacceptable level for some users. However, we can
mitigate this side effect by specifying a minimum number of idle instances to always keep running,
so we can handle sudden peaks without seeing our performance hurt.

Using App Engine in microservice architectures

When we build an application using a microservice architecture, each of these microservices implements
full isolation of code, which means that the only communication method that we can use to execute
their code is using HTTP or a RESTful API call. One service will otherwise never be able to directly
execute code running on another. Indeed, it’s common that different services are written using different
programming languages too. Besides, each service has its own custom configuration, so we may be
combining multiple scaling strategies.

However, there are some App Engine resources, such as Cloud Datastore, Memcached, or Task
Queues, which are shared between all services running in the same App Engine project. While this
may have advantages, it may be a risk since a microservices-based application must maintain code
and data isolation between its microservices.

While there are some architectural patterns that can help mitigate unwanted sharing, enforced separation
can be achieved by using multiple App Engine projects at the expense of worse performance and more
administrative overhead. A hybrid approach can also be a very valid option.

The App Engine documentation contains more information about microservices, including a
comparison of service and project isolation approaches, so you can make a better choice for your
architecture: https://cloud.google.com/appengine/docs/legacy/standard/
python/microservices-on-app-engine.

https://cloud.google.com/appengine/docs/legacy/standard/python/how-instances-are-managed

https://cloud.google.com/appengine/docs/legacy/standard/python/how-instances-are-managed

https://cloud.google.com/appengine/docs/legacy/standard/python/microservices-on-app-engine
https://cloud.google.com/appengine/docs/legacy/standard/python/microservices-on-app-engine

Running Serverless Code on Google Cloud – Part 196

Before getting to the example, let’s introduce configuration files, which are key for deploying App
Engine applications.

Configuring App Engine services

Each version of an App Engine service has an associated .yaml file, which includes the name of the
service and its version. For consistency, this file usually takes the same name as the service it defines,
while this is not required. When we have multiple versions of a service, we can create multiple YAML
files in the same directory, one for each version.

Usually, there is a separate directory for each service, where both its YAML and the code files are
stored. There are some optional application-level configuration files, such as dispatch.yaml,
cron.yaml, index.yaml, and queue.yaml, which will be located in the top-level directory
of the app. However, if there is only one service or multiple versions of the same service, we may just
prefer to use a single directory to store all configuration files.

Each service’s configuration file is used to define the configuration of the scaling type and instance class
for a specific combination of service and version. Different scaling parameters will be used depending
on the chosen scaling strategy, or otherwise automatic scaling will be used by default.

As we mentioned earlier, the YAML can also be used to map URL paths to specific scripts or to identify
static files and apply a specific configuration to improve the overall efficiency.

There are four additional configuration files that control optional features that apply to all the services
in an app:

•	 dispatch.yaml overrides default routing rules by sending incoming requests to a specific
service based on the path or hostname in the URL

•	 cron.yaml configures regularly scheduled tasks that operate at defined times or regular intervals

•	 index.yaml specifies which indexes your app needs if using Datastore queries

•	 queue.yaml configures push and pull queues

After covering all the main topics related to App Engine, it’s time to deploy and run some code to see
all the discussed concepts in action.

Writing, deploying, and running code with App Engine

We will now deploy our resume-serving application in App Engine and see the differences between
this implementation and the one using Cloud Functions.

Using App Engine to run your code 97

The first file that we will create for our application is app.yaml, which can be used to configure a
lot of settings. In our case, it will include the following contents:

runtime: python38

service: resume-server

handlers:

- url: /favicon\.ico

  static_files: favicon.ico

  upload: favicon\.ico

First, we will define which runtime we want to use. In this case, it will be a Python 3.8 module. Then,
we will define a service name. I chose resume-server just in case you were already using the
default service for any other purposes. Please remember that if this parameter is not defined in
the file, the app will be deployed to the default service.

Since App Engine is a full application server, I’m taking the chance to include a favicon, that is, an
icon that the web browser will show next to the page title. In this case, we just add the icon file, called
favicon.ico, and add a rule to serve the icon when it is requested. The runtime will forward the rest
of the requests by default to a file called main.py, which will be the next file that we will talk about.

As its name may suggest, main.py contains the core of the code and it is indeed quite similar to
the version that we created as a cloud function. There are some differences at the beginning of the
file because we will be using Flask to handle the requests and an instance of Cloud Logging when the
app is deployed in production:

from flask import request, current_app, Flask

from google.cloud import storage

import google.cloud.logging

import logging

BUCKET_NAME = "<YOUR_BUCKET_NAME>"

DEFAULT_TEMPLATE_NAME = "english.html"

app = Flask(__name__)

app.debug = False

app.testing = False

Configure logging

if not app.testing:

Running Serverless Code on Google Cloud – Part 198

    logging.basicConfig(level=logging.INFO)

    client = google.cloud.logging.Client()

    # Attaches a Cloud Logging handler to the root logger

    client.setup_logging()

After these lines, you will see the same functions that we already covered earlier in this chapter, until
we get to the last few lines of the file. Notice how now we have one line for routing requests to the root
URL and how the last line runs the app, making it listen on the loopback interface for local executions:

DEFAULT_TEMPLATE = "english.html"

@app.route('/')

def get():

    template = request.args.get('template', DEFAULT_TEMPLATE)

    name = request.args.get('name', None)

    company = request.args.get('company', None)

    resume_html = return_resume(template, name, company)

    return resume_html

This is only used when running locally. When running live,

gunicorn runs the application.

if __name__ == '__main__':

    app.run(host='127.0.0.1', port=8080, debug=True)

The deployment package also includes a requirements.txt file. In this case, these are its contents:

Flask==2.2.2

google-cloud-storage==2.5.0

google-cloud-logging==3.2.4

Notice how all three imported packages have their version frozen, for the sake of stability in future
deployments, as we already discussed.

Now we are ready for testing, and the four files have been copied to the same working directory: app.
yaml, favicon.ico, main.py, and requirements.txt.

Python’s virtualenv and pytest can be used for local fast testing, and they are indeed recommended
as the first option, rather than using dev_appserver, which is the local development server that
Google Cloud SDK provides. However, if you are still interested, there’s information about it in this
section of the official documentation: https://cloud.google.com/appengine/docs/
standard/tools/using-local-server.

https://cloud.google.com/appengine/docs/standard/tools/using-local-server
https://cloud.google.com/appengine/docs/standard/tools/using-local-server

Using App Engine to run your code 99

Please notice that simulated environments may not have exactly the same restrictions and limitations
as the sandbox. For example, available system functions and runtime language modules may be
restricted, but timeouts or quotas may not.

The local development server will also simulate calls to services such as Datastore, Memcached, and
task queues by performing their tasks locally. When our application is running in the development
server, we can still make real remote API calls to the production infrastructure using the Google
API's HTTP endpoints.

Another option to simulate a production App Engine environment is to use a Web Server Gateway
Interface (WSGI) server locally by installing gunicorn in Cloud Shell using the following command:

pip install gunicorn

Then, we will just run it using our app as an entry point, as in the following example:

gunicorn -b :$PORT main:app

Here, $PORT is the port number we defined for our application, 8080 by default, and main:get
is the name of the Python file and the function to execute when a request is received.

In my example, I invoked it using the following command line in Cloud Shell, so that it runs in
the background:

/home/<user>/.local/bin/gunicorn -b :8080 main:app &

Now, we can send requests using curl and validate the output as part of our unit tests. For example,
our usual test URL would now be triggered using the following command. Please don’t forget the
double quotes, or otherwise only the first parameter will be received:

curl "http://127.0.0.1:8080/?template=english.
html&name=John&company=StarTalent"

Applications designed for flexible environments can also be directly executed for testing, given that
they will have direct access to cloud services. Using emulators is often recommended in cases like this
in order to avoid incurring excessive costs while running the tests.

After successfully passing all local tests, the application will be ready for deployment. And it couldn’t
be any simpler than running the following command in the console from the working directory
containing all the files previously mentioned:

gcloud app deploy app.yaml

Running Serverless Code on Google Cloud – Part 1100

This deployment command supports other flags, such as the following:

•	 --version to specify a custom version ID

•	 --no-promote to prevent traffic from being automatically routed to the new version

•	 --project to deploy to a specific Google Cloud project

As it happened with Cloud Functions, you may be asked to authenticate yourself during the deployment,
and you could also be asked to enable any required APIs the first time that you deploy an app. In the
case of App Engine, this is an example of the output of a deployment command:

Services to deploy:

descriptor:                  [/home/clouddevelopersguide/App_
Engine/app.yaml]

source:                      [/home/clouddevelopersguide/App_
Engine]

target project:              [cloud-developers-365616]

target service:              [resume-server]

target version:              [20221021t201413]

target url:                  [http://resume-server.cloud-
developers-365616.uc.r.appspot.com]

target service account:      [App Engine default service
account]

Do you want to continue (Y/n)? Y

Beginning deployment of service [resume-server]...

Uploading 1 file to Google Cloud Storage

100%

100%

File upload done.

Updating service [resume-server]...done.

Setting traffic split for service [resume-server]...done.

Deployed service [resume-server] to [http://resume-server.
cloud-developers-365616.uc.r.appspot.com]

You can stream logs from the command line by running:

  $ gcloud app logs tail -s resume-server

Using App Engine to run your code 101

To view your application in the web browser run:

  $ gcloud app browse -s resume-server

Notice how we can use the last section of the output to get the URL to the application, and the one
right above it to print the logs in the command-line console. The deployment process involves copying
our files to GCS, and then updating the service and setting its traffic split.

Once we obtain the URL, we can again append the parameters to test the application. In my case, this
was the complete URL:

https://resume-server-dot-cloud-developers-365616.uc.r.appspot.
com/?template=english.html&name=John+Smith&company=StarTalent

You can read more about testing and deploying your applications in App Engine in this section of the
official documentation site: https://cloud.google.com/appengine/docs/standard/
testing-and-deploying-your-app.

Debugging in App Engine

Luckily for us, App Engine is compatible with many of the tools that we already introduced for testing
and debugging our cloud functions. With App Engine, we can also use Cloud Monitoring and Cloud
Logging to monitor the health and performance of our app, and Error Reporting to diagnose and fix
bugs quickly. Cloud Trace can also help us understand how requests propagate through our application.

Cloud Debugger can help us inspect the state of any of our running services without interfering with
their normal behavior. Besides, some IDEs, such as IntelliJ, allow debugging App Engine standard
applications by connecting to a local instance of dev_appserver. You can find more information
in this section of the official documentation site: https://cloud.google.com/code/docs/
intellij/deploy-local.

After completing the whole development cycle when using App Engine, it’s the perfect time to explain
how we will be billed if we decide to use App Engine.

How much does it cost to run your code on App Engine?

App Engine pricing scales with our app’s usage, and there are a few basic components that will be
included in the App Engine billing model, such as standard environment instances, flexible environment
instances, and App Engine APIs and services.

As I mentioned earlier, flexible App Engine instances are billed based on resource utilization, including
vCPU, memory, persistent disks, and outgoing network traffic. Standard App Engine instances follow
a much simpler model based on the number of hours they have been running for. Any other APIs
and services used should be also added to the bill, such as Memcached, task queue, or the Logs API.

https://cloud.google.com/appengine/docs/standard/testing-and-deploying-your-app
https://cloud.google.com/appengine/docs/standard/testing-and-deploying-your-app
https://cloud.google.com/code/docs/intellij/deploy-local
https://cloud.google.com/code/docs/intellij/deploy-local

Running Serverless Code on Google Cloud – Part 1102

For more details about the pricing, you can refer to this documentation section: https://cloud.
google.com/appengine/pricing

Regarding the free tier, users get 28 standard frontend instances and 9 backend instances for free every
day, and new customers get $300 in free credits to spend on App Engine. You may find all the details
about quotas in the following section of the documentation website: https://cloud.google.
com/appengine/docs/standard/quotas.

To get an estimate of our bill, we can use the Google Cloud Pricing Calculator available in the
following section of the documentation: https://cloud.google.com/products/
calculator#tab=app-engine.

Tips and tricks for running your code on App Engine

If you read the Limits section at the end of the App Engine Overview section of the documentation
(https://cloud.google.com/appengine/docs/legacy/standard/python/
an-overview-of-app-engine), you will see that there are different limits for the number of
services and instances depending on the application type (free or paid) and whether the app is hosted
in us-central or in any other region. You should take these numbers into account when you decide
which application type to use.

If our app uses automatic scaling, it will take approximately 15 minutes of inactivity for the idle
instances to start shutting down. To keep one or more idle instances running, we should set the value
of min_idle_instances to 1 or higher.

Regarding security, a component called the App Engine firewall can be used to set up access rules.
Managed SSL/TLS certificates are included by default on custom domains at no additional cost.

This was all the information we need to know about App Engine. Now, it’s time to wrap up.

Summary
In this chapter, we discussed how Cloud Functions and App Engine work, what their requirements
are, and how much they cost. We also covered how we can use them to run our code and how we
can test and troubleshoot our applications and services when they use these products. Finally, we
implemented the same example using both options.

In the next chapter, we will cover Cloud Run, the third option to run serverless code on Google Cloud
using a CaaS model.

https://cloud.google.com/appengine/pricing

https://cloud.google.com/appengine/pricing

https://cloud.google.com/appengine/docs/standard/quotas
https://cloud.google.com/appengine/docs/standard/quotas
https://cloud.google.com/products/calculator#tab=app-engine
https://cloud.google.com/products/calculator#tab=app-engine
https://cloud.google.com/appengine/docs/legacy/standard/python/an-overview-of-app-engine
https://cloud.google.com/appengine/docs/legacy/standard/python/an-overview-of-app-engine

Further reading 103

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

•	 What is virtualization? (https://www.redhat.com/en/topics/virtualization/
what-is-virtualization)

•	 What are Cloud Computing Services [IaaS, CaaS, PaaS, FaaS, SaaS] (https://medium.
com/@nnilesh7756/what-are-cloud-computing-services-iaas-caas-
paas-faas-saas-ac0f6022d36e)

•	 How to Develop, Debug and Test your Python Google Cloud Functions on Your Local Development
Environment (https://medium.com/ci-t/how-to-develop-debug-and-test-
your-python-google-cloud-functions-on-your-local-dev-environment-
d56ef94cb409)

https://www.redhat.com/en/topics/virtualization/what-is-virtualization
https://www.redhat.com/en/topics/virtualization/what-is-virtualization
mailto:https://medium.com/@nnilesh7756/what-are-cloud-computing-services-iaas-caas-paas-faas-saas-ac0f6022d36e
mailto:https://medium.com/@nnilesh7756/what-are-cloud-computing-services-iaas-caas-paas-faas-saas-ac0f6022d36e
mailto:https://medium.com/@nnilesh7756/what-are-cloud-computing-services-iaas-caas-paas-faas-saas-ac0f6022d36e
https://medium.com/ci-t/how-to-develop-debug-and-test-your-python-google-cloud-functions-on-your-local-dev-environment-d56ef94cb409
https://medium.com/ci-t/how-to-develop-debug-and-test-your-python-google-cloud-functions-on-your-local-dev-environment-d56ef94cb409
https://medium.com/ci-t/how-to-develop-debug-and-test-your-python-google-cloud-functions-on-your-local-dev-environment-d56ef94cb409

5
Running Serverless Code on

Google Cloud – Part 2

After covering Cloud Functions and App Engine in the previous chapter, this one will introduce the
third serverless option to run our code on Google Cloud, this time using containers: Cloud Run.

First, I will introduce its basic concepts and describe the two different execution environments available.
Then, we will see together how we can run our code using Cloud Run and what the best practices for
debugging it are. Next, I will show you how much Cloud Run costs and include some tips and tricks
to help you get the most out of it.

Finally, we will discuss the similarities and differences between the three serverless products covered
in this and the previous chapter, so you can better decide when you should use each.

We’ll cover the following main topics in this chapter:

•	 Using Cloud Run to run your code

•	 Choosing the best serverless option for each use case

Let’s get started!

Using Cloud Run to run your code
Cloud Run is the third and last option for serverless code execution that we will discuss in this chapter.
This is the CaaS option, and you should keep an eye on it because, as we will see in the next couple of
chapters, containers are the biggest bet for portable development as of today, and the base for Google’s
hybrid and multi-cloud offering.

Introducing Cloud Run

Cloud Run (https://cloud.google.com/run/docs/overview/what-is-cloud-
run) is the third serverless option for running our code on Google Cloud. In this case, our code

https://cloud.google.com/run/docs/overview/what-is-cloud-run
https://cloud.google.com/run/docs/overview/what-is-cloud-run

Running Serverless Code on Google Cloud – Part 2106

will be running on containers on top of Google’s scalable infrastructure, once again forgetting about
everything to do with operational tasks or scaling our architecture, since Google’s CaaS compute
platform will take care of it for us.

This also means that Google will decide when to stop sending requests and even when to terminate an
instance, and since each of them will be ephemeral and disposable, our code should be well prepared
for imminent disposal.

Cloud Run offers some interesting features for developers, which can help us accommodate specific
use cases very easily:

•	 First, we can run virtually any kind of code written in our preferred programming language,
using Cloud Run, as long as it can be containerized. For our code to work, we can either build
our own container image, using any programming language, as long as we include all libraries
and dependencies and even binaries if we need them, or we can use a feature called source-
based deployment, where Cloud Run will build the container image for us, ready to run code
written on one of the supported languages: Go, Node.js, Python, Java, Kotlin, .NET, or Ruby.

•	 Second, since we will be charged based either on the number of requests it served or the
resources it used while running, we can run it continuously as a service, so it can respond to
HTTP requests or events but may be idling quite often, or we can run it as a job, meaning that
it will perform a specific task and then quit once it has finished.

The service option can help us save costs and it can be a great fit both for single-use tasks, such as
a migration or installation job, and for repetitive maintenance tasks, such as data clean-ups, daily
aggregations, or similar scenarios that are scheduled to run periodically, but not too frequently.

In order to be a good fit for Cloud Run, our application will need to meet all the following criteria:

•	 Either it serves requests, streams, or events delivered via HTTP, HTTP/2, WebSockets, or
gRPC, or it executes to completion

•	 Does not require a local persistent filesystem

•	 It’s built to handle multiple instances of the app running simultaneously

•	 Does not require more than 8 CPUs and 32 GiB of memory per instance

•	 Meets one of the following criteria:

	� Is containerized

	� Is written in Go, Java, Node.js, Python, or .NET

We can otherwise containerize it.

Now, let’s take a look at some of the basic concepts that can help us understand how Cloud Run works.

Using Cloud Run to run your code 107

Basic concepts of Cloud Run

Looking at Cloud Run’s resource model (https://cloud.google.com/run/docs/
resource-model), there are some interesting concepts that we should be familiarized with before
we start working on some examples:

A service is the main resource of Cloud Run. Each service is located in a specific Google Cloud
Platform (GCP) region. For redundancy and failover, services are automatically replicated across
multiple zones in that same region. Each service exposes a unique HTTPS endpoint on a unique
subdomain of *.run.app domain and automatically scales the underlying infrastructure to
handle incoming requests.

Similarly to what we just mentioned in the case of App Engine, each new deployment of a service in
Cloud Run makes a new revision of that service to be created, which includes a specific container
image, together with configuration settings such as environment variables or memory limits. Revisions
are immutable, so any minor change will create a new revision, even if the container image remains
intact and only an environment variable was updated.

We must take into account the following requirements when we develop a service using Cloud Run:

•	 The listening port must be customizable using the PORT environment variable. Our code
will be responsible for detecting the optional use of this variable and updating the port used
to listen for requests, in order to maximize portability. The service must be stateless. It cannot
rely on a persistent local state.

•	 If the service performs background activities outside the scope of request handling, it must
use the CPU always allocated setting.

•	 If our service uses a network filesystem, it must use the second-generation execution environment.

Regarding concurrency (https://cloud.google.com/run/docs/about-concurrency),
Cloud Run behaves similarly to App Engine with autoscaling: each revision will be automatically
scaled to the number of container instances needed to handle the queue of pending requests, but will
also be scaled down if there is less or no traffic. Indeed, Cloud Run is also a zero-scaling service,
which means that, by default, it will dispose of even the last remaining instance if there is no traffic
to serve for a specific amount of time. We can change this behavior and eliminate cold starts by using
the min-instance setting at the expense of increasing costs. You can read more details about how
autoscaling works for Cloud Run at this link: https://cloud.google.com/run/docs/
about-instance-autoscaling.

Note
A container instance can receive many requests at the same time, and this will lead to more
resources being used, which also will mean higher costs. To give us more control over the limits
of the scaling process, we can set the maximum number of requests that can be sent in parallel
to a given container instance.

https://cloud.google.com/run/docs/resource-model
https://cloud.google.com/run/docs/resource-model
https://cloud.google.com/run/docs/about-concurrency
https://cloud.google.com/run/docs/about-instance-autoscaling
https://cloud.google.com/run/docs/about-instance-autoscaling

Running Serverless Code on Google Cloud – Part 2108

By default, each Cloud Run container instance can receive up to 80 requests at the same time. This is
the maximum number of requests, and other metrics will be considered, such as CPU usage, to decide
the final number, which could be lower than this maximum.

If our microservice can handle more queries, we can increase this to a maximum of 1,000. Although
it is recommended to use the default value, we can also lower it in certain situations. For example, if
our code cannot process parallel requests or if a single request will need to use all the CPU resources
allocated, we can set the concurrency to 1 and our microservice will then only attend to one request
at a time.

Requests are routed by default to the latest healthy service revision as soon as possible. The health
of a service is probed by the load balancer, and a revision may be marked as unhealthy if it does not
respond successfully a separately configurable number of times. For this reason, testing and debugging
each service properly is especially important, in order to properly configure startup and liveness probes
to detect when a service is not starting or suddenly stops working, so that it can be automatically
restarted, thus reducing downtime.

We can also split traffic to multiple revisions at the same time, in order to reduce the risk while
deploying a new revision. We can start by sending 1% of requests to a new revision and increase that
percentage progressively while closely testing that everything works as expected until we complete
the rollout, with a final scenario where 100% of the requests are sent to the latest revision.

As I mentioned previously, Cloud Run also supports the execution of jobs. Each Cloud Run job runs
in a specific Google Cloud region and consists of one or multiple independent tasks that are executed
in parallel in each job execution. Each task runs one container instance to completion and might retry
it if it fails. All tasks in a job execution must complete for the job execution to be successful.

We can set timeouts for the tasks and even specify the number of retries in case of failure. If any task
exceeds its maximum number of retries, it will be marked as failed and the parent job will be, too. By
default, tasks execute in parallel up to a maximum of 100, but we can define a lower maximum if the
level of usage of resources requires it.

Besides, Cloud Run introduces the concept of array jobs, where repetitive tasks within a job can be
split among different instances to be run in parallel, thus reducing the time required for the full job
to complete. This turns App Engine into a remarkably interesting choice if we need to process objects
in batches, such as cropping lots of images, translating an extensive list of documents, or processing
a big set of log files.

Considering the concepts that we just introduced, there are different options for triggering the execution
of our code on Cloud Run. Let’s enumerate them and provide a link with more information about each:

•	 Using HTTPS requests (https://cloud.google.com/run/docs/triggering/
https-request)

•	 Using gRPC to enjoy the benefits of protocol buffers (https://cloud.google.com/
run/docs/triggering/grpc)

https://cloud.google.com/run/docs/triggering/https-request
https://cloud.google.com/run/docs/triggering/https-request
https://cloud.google.com/run/docs/triggering/grpc
https://cloud.google.com/run/docs/triggering/grpc

Using Cloud Run to run your code 109

•	 Using WebSockets (https://cloud.google.com/run/docs/triggering/
websockets)

•	 Using Pub/Sub push (https://cloud.google.com/run/docs/triggering/
pubsub-push)

•	 Using Cloud Scheduler to run services at a specific time (https://cloud.google.com/
run/docs/triggering/using-scheduler)

•	 Using Cloud Tasks to execute them asynchronously (https://cloud.google.com/
run/docs/triggering/using-tasks)

•	 Using Eventarc events as triggers (https://cloud.google.com/run/docs/
triggering/trigger-with-events)

•	 Using workflows as a part of a pipeline (https://cloud.google.com/workflows)

Now that we have covered the basic concepts, let’s take a look at the two execution environments that
Cloud Run provides.

The two different execution environments to choose from

As is the case with Cloud Functions, Cloud Run has two different generations of execution environments
(https://cloud.google.com/run/docs/about-execution-environments). Cloud
Run services, by default, operate within the first-generation execution environment, which features
fast cold-start times and emulation of most, but not all, operating system calls.

Originally, this was the only execution environment available to services in Cloud Run. This generation
is the best choice for either bursty traffic that requires scaling out fast, or for the opposite case with
infrequent traffic where our service frequently scales out from 0. If our services use less than 512 MiB
of memory, which is the minimum for second-generation instances, we may also benefit from cost
savings by choosing the first generation.

The second-generation execution environment for Cloud Run instances provides faster CPU and
network performance, the latter especially in the presence of packet loss, and full Linux compatibility
instead of system call emulation, including support for all system calls, namespaces, and cgroups,
together with the support of network filesystem. These features make it the best choice for steady
traffic, where scaling and cold starts are much less frequent, and for services that are intensive in CPU
usage or make use of any of the new specific features provided by this generation.

Second-generation Cloud Run instances are in the preview phase at the time of writing this, and
while the second-generation execution environment generally performs faster under sustained load,
it has longer cold-start times than the first generation, which is something to consider when making
a choice, depending on the specifics of your application or service.

We can specify the execution environment for our Cloud Run service when we deploy either a new
service or a new revision of it. If we don’t specify an execution environment, the first generation is used

https://cloud.google.com/run/docs/triggering/websockets
https://cloud.google.com/run/docs/triggering/websockets
https://cloud.google.com/run/docs/triggering/pubsub-push
https://cloud.google.com/run/docs/triggering/pubsub-push
https://cloud.google.com/run/docs/triggering/using-scheduler
https://cloud.google.com/run/docs/triggering/using-scheduler
https://cloud.google.com/run/docs/triggering/using-tasks
https://cloud.google.com/run/docs/triggering/using-tasks
https://cloud.google.com/run/docs/triggering/trigger-with-events
https://cloud.google.com/run/docs/triggering/trigger-with-events
https://cloud.google.com/workflows
https://cloud.google.com/run/docs/about-execution-environments

Running Serverless Code on Google Cloud – Part 2110

by default. Cloud Run jobs, however, automatically use second-generation execution environments,
and this cannot be changed in the case jobs.

Now that we are done with the basic concepts of Cloud Run, let’s move on and clarify a few requirements
before we start developing a Cloud Run example service.

Writing and running code using Cloud Run

There are a few requirements for our Cloud Run services that are included in the container runtime
contract (https://cloud.google.com/run/docs/container-contract) and we
should take them into consideration before actually starting to write our code.

The code running in our Cloud Run container must listen for requests on IP address 0.0.0.0 on
the port to which requests are sent. By default, requests are sent to port 8080, but we can configure
Cloud Run to send requests to another port of our choice, as long as it is not already in use.

Cloud Run injects the PORT environment variable into the container. Inside Cloud Run container
instances, the value of the PORT environment variable always reflects the port to which requests are
sent. Again, it defaults to 8080.

A particularly important note to make, and a common reason for early errors among beginners, is,
our container should not implement any Transport Layer Security (TLS) directly. TLS is terminated
by Cloud Run for HTTPS and gRPC. Then, requests are proxied as HTTP/1 or gRPC to the container
without TLS. If you configure a Cloud Run service to use HTTP/2 from end to end, your container
must handle requests in HTTP/2 cleartext (h2c) format because TLS is still ended automatically.

For Cloud Run services, our container instance must send a response within the time specified in
the request timeout setting after it receives a request, including the container instance startup time.
Otherwise, the request is ended and a 504 error is returned.

With these requirements in mind, it’s time to start building our first Cloud Run service, which we will
use to implement our resume server using a container.

First of all, we will create a file called .dockerignore, which will contain a list of patterns of
filenames that will not be copied to the container in any case:

Dockerfile

README.md

*.pyc

*.pyo

*.pyd

__pycache__

.pytest_cache

https://cloud.google.com/run/docs/container-contract

Using Cloud Run to run your code 111

Then, we will use the slim Dockerfile template, which contains the following lines:

Use the official lightweight Python image.

https://hub.docker.com/_/python

FROM python:3.10-slim

Allow statements and log messages to immediately appear in
the Knative logs

ENV PYTHONUNBUFFERED True

Copy local code to the container image.

ENV APP_HOME /app

WORKDIR $APP_HOME

COPY . ./

Install production dependencies.

RUN pip install --no-cache-dir -r requirements.txt

Run the web service on container startup. Here we use the

gunicorn webserver, with one worker process and 8 threads.

For environments with multiple CPU cores, increase the

number of workers to be equal to the cores available.

Timeout is set to 0 to disable the timeouts of the workers

to allow Cloud Run to handle instance scaling.

CMD exec gunicorn --bind :$PORT --workers 1 --threads 8
--timeout 0 main:app

Since we will be running our application from a container, we must include the resume template
directly in the working directory, in this case, called english.html.

There will also be a requirements.txt file, but this time the number of lines will be shorter:

Flask==2.2.2

gunicorn==20.1.0

Finally, main.py will be very similar to other versions, so let’s just take a look at the last few lines of
code. As you will see, the main difference is that parameters are now passed as environment variables:

DEFAULT_TEMPLATE_NAME = "english.html"

@app.route('/')

Running Serverless Code on Google Cloud – Part 2112

def get():

    template = request.args.get('template', DEFAULT_TEMPLATE)

    print('Loading template file ', template)

    name = request.args.get('name', None)

    if name:

      print('Customizing for name ', name)

    company = request.args.get('company', None)

    if company:

      print('Customizing for company ', company)

    resume_html = return_resume(template, name, company)

    return resume_html

This is only used when running locally. When running live,

gunicorn runs the application.

if __name__ == "__main__":

    app.run(debug=True, host="0.0.0.0", port=int(os.environ.
get("PORT", 8080)))

Now that all five files are copied together, .dockerignore, Dockerfile, main.py,
requirements.txt, and english.html, we can just run the following command to deploy
our container:

gcloud run deploy

You should see an output similar to the following (I just included an excerpt) and, again, you may be
asked to authenticate or enable certain APIs during the first run:

Deploying from source. To deploy a container use [--image]. See
https://cloud.google.com/run/docs/deploying-source-code for
more details.

...

Please specify a region:

...

[27] us-central1

...Please enter numeric choice or text value (must exactly
match list item):  27

...

Building using Dockerfile and deploying container to Cloud Run
service [cloudrun] in project [cloud-developers-365616] region

Using Cloud Run to run your code 113

[us-central1]

OK Building and deploying...

...Service [cloudrun] revision [cloudrun-00005-tux] has been
deployed and is serving 100 percent of traffic.

Service URL: https://cloudrun-4slsbxpeoa-uc.a.run.app

As you will see, there are a few questions asked during the deployment:

•	 The first question is the location of the source code, the current directory being the default.

•	 Then, the service name needs to be filled in. It will be prepopulated with a normalized version
of the current directory name.

•	 At this point, we should choose a region for our deployment using a numerical code.

Once we have answered all three questions, the actual deployment will begin, and the service URL
will be displayed in the last line of the output. As usual, we can use it to test that everything works as
expected, and add our standard parameters too, with a sample URL like this one:

https://cloudrun-4slsbxpeoa-uc.a.run.app/?template=english.
html&name=John+Smith&company=StarTalent

Our application is ready and running, but we can still debug it if we detect any issues and want to
identify its root cause.

Debugging in Cloud Run

Fortunately, in the case of Cloud Run, we can use Cloud Code to leverage Skaffold Debug (https://
skaffold.dev/docs/workflows/debug) and debug our containers on an emulator. Debugging
requires a Cloud Code-ready Cloud Run application that includes a skaffold.yaml configuration
file and a launch.json file of type cloudcode.cloudrun.

This option is compatible with all the IDEs that Cloud Code supports.

You can read more about this process on the following page of the official documentation: https://
cloud.google.com/code/docs/shell/debug-service.

How much does it cost to run your code on Cloud Run?

Cloud Run supports two different pricing models (https://cloud.google.com/run/
pricing), which we should get familiarized with because it may affect the way in which we develop
our components to reduce the global cost of our applications or services:

•	 Request-based: In this model, we don’t pay for idle periods since no CPU is allocated when
there is no traffic, but a fee will be charged for each request that is sent to our container. This

https://skaffold.dev/docs/workflows/debug
https://skaffold.dev/docs/workflows/debug
https://cloud.google.com/code/docs/shell/debug-service
https://cloud.google.com/code/docs/shell/debug-service
https://cloud.google.com/run/pricing
https://cloud.google.com/run/pricing

Running Serverless Code on Google Cloud – Part 2114

model works better for services with a small number of requests or those where requests happen
at specific times of the day.

•	 Instance-based: In this model, we pay a fixed fee for the entire lifetime of the container instance
and CPU resources are permanently allocated. In this model, there are no added per-request
fees. This model will be interesting for services expecting intensive traffic, with a considerable
number of requests happening consistently during the day. In these cases, the cost of an instance
will be significantly lower than the total cost of the request-based pricing model.

As we discussed in the case of App Engine, these two models are not mutually exclusive but complement
each other, so we can use the request-based model for microservices or components with a low volume
of requests, and we can choose an instance-based model for those that will receive traffic constantly.

Tips and tricks for running your code on Cloud Run

Earlier in the chapter, when I started introducing Cloud Run, I mentioned the need to be prepared
for imminent disposal. If we want to receive a warning when Cloud Run is about to shut down one
of our container instances, our application can trap the SIGTERM signal. This enables our code to
flush local buffers and persist local data to an external data store. To persist files permanently, we can
either integrate with Cloud Storage or mount a network filesystem (NFS).

You can find an example of how to handle the SIGTERM signal here: https://cloud.google.
com/run/docs/samples/cloudrun-sigterm-handler

Cloud Run is also an interesting option for implementing Continuous Delivery and Continuous
Deployment. If you store your source code in GitHub, Bitbucket, or Cloud Source Repositories, you
can configure Cloud Run to automatically deploy new commits using a Cloud Build trigger. When
we use a Cloud Build trigger to build containers, the source repository information is displayed in
the Google Cloud console for our service after we deploy it to Cloud Run.

You can read more about this topic in the following section of the documentation: https://cloud.
google.com/run/docs/continuous-deployment-with-cloud-build

Regarding networking, a Cloud Run service can either be reachable from the internet, or we can
restrict access in three ways:

•	 Specify an access policy using Cloud IAM. You can read more about this topic and its
implementation here: https://cloud.google.com/run/docs/securing/
managing-access.

•	 Use ingress settings to restrict network access. This is useful if we want to allow only internal
traffic from the Virtual Private Cloud (VPC) and internal services. You can find more
information here: https://cloud.google.com/run/docs/securing/ingress.

https://cloud.google.com/run/docs/samples/cloudrun-sigterm-handler

https://cloud.google.com/run/docs/samples/cloudrun-sigterm-handler

https://cloud.google.com/run/docs/continuous-deployment-with-cloud-build

https://cloud.google.com/run/docs/continuous-deployment-with-cloud-build

https://cloud.google.com/run/docs/securing/managing-access
https://cloud.google.com/run/docs/securing/managing-access
https://cloud.google.com/run/docs/securing/ingress

Using Cloud Run to run your code 115

•	 Only allow authenticated users by using Cloud Identity-Aware Proxy (IAP). Read more on
how to enable it in the following section of the documentation: https://cloud.google.
com/iap/docs/enabling-cloud-run.

Continuing with this topic, Cloud Run container instances can reach resources in the VPC network
through the serverless VPC access connector. This is how our service can connect with Compute
Engine virtual machines or products based on Compute Engine, such as Google Kubernetes Engine
or Memorystore. You can read more about this topic on this page of the documentation: https://
cloud.google.com/run/docs/configuring/connecting-vpc.

Regarding load balancing and disaster recovery, data and traffic are automatically load balanced
across zones within a region. Container instances are automatically scaled to handle incoming traffic
and are load balanced across zones as necessary. Each zone maintains a scheduler that provides this
autoscaling per zone. It’s also aware of the load other zones are receiving and will provide extra capacity
in-zone to make up for any zonal failures. You can find more information about this topic in this
section of the documentation: https://cloud.google.com/architecture/disaster-
recovery#cloud-run.

Directly connected to the previous topic, having multiple instances located across different zones may
be a problem unless you implement data synchronization to ensure clients connecting to a Cloud
Run service receive a uniform response, for example, if you are using WebSockets to implement a chat
server. For this purpose, you will need to integrate an external data storage system, such as a database
or a message queue. In scenarios like these, it will also be important to implement session affinity,
so that clients stay connected to the same container on Cloud Run throughout the lifespan of their
connection. External storage is again the solution to mitigate both problems, as you can read in this
section of the documentation: https://cloud.google.com/run/docs/triggering/
websockets.

If we are providing public services for users in different locations across the world, we can choose
to serve traffic from multiple regions by deploying our services in these regions and setting up an
external HTTP(S) load balancer. You can read more about this topic, including how to set it up, in
the following section of the documentation: https://cloud.google.com/run/docs/
multiple-regions.

Directly connected with the previous topic, we can also front a Cloud Run service with a Content
Delivery Network (CDN) to serve cacheable assets from an edge location closer to clients, thus returning
faster responses. Both Firebase Hosting and Cloud CDN provide this capability. You can read more
about how to set up Cloud CDN for serverless compute products on the following documentation
page: https://cloud.google.com/cdn/docs/setting-up-cdn-with-serverless.

Finally, if you are interested in understanding which services work well with Cloud Run and which are
not yet supported, Google Cloud maintains an up-to-date documentation page with this information
together with an introduction to Integrations, a new feature in preview at the time of writing, which
will help us enable and configure complicated integrations directly from the UI, such as connecting to

https://cloud.google.com/iap/docs/enabling-cloud-run
https://cloud.google.com/iap/docs/enabling-cloud-run
https://cloud.google.com/run/docs/configuring/connecting-vpc
https://cloud.google.com/run/docs/configuring/connecting-vpc
https://cloud.google.com/architecture/disaster-recovery#cloud-run
https://cloud.google.com/architecture/disaster-recovery#cloud-run
https://cloud.google.com/run/docs/triggering/websockets
https://cloud.google.com/run/docs/triggering/websockets
https://cloud.google.com/run/docs/multiple-regions
https://cloud.google.com/run/docs/multiple-regions
https://cloud.google.com/cdn/docs/setting-up-cdn-with-serverless

Running Serverless Code on Google Cloud – Part 2116

a Redis instance or mapping our custom domains to Cloud Run using an external load balancer. You
can read all about these topics on the following documentation page: https://cloud.google.
com/run/docs/integrate/using-gcp-services#integrations.

I hope you found these tips useful. With them, we finished the list of serverless products that Google
Cloud offers for running our code. Now is the perfect time to summarize and compare all the offerings
so that you can better choose when to use each.

Choosing the best serverless option for each use case
After reviewing Cloud Functions, App Engine, and Cloud Run, let’s compare them to clarify when
each fits best.

Cloud Functions is a function as a service offering, while App Engine and Cloud Run are platform as
a service offerings to deploy code and containers, respectively, requiring a bit more work to prepare a
deployment. While all three can overlap as alternatives for many use cases, there are some differences
to consider before making our choice.

Cloud Functions is the simplest way to turn a function into a microservice and works well for event-
driven scenarios. However, if you are used to working with containers, App Engine flexible and Cloud
Run will probably be your favorite choices. App Engine standard would be the best choice for simpler
applications that need fast scaling and can run in a limited sandbox.

App Engine can bundle multiple services within a single application, while we would need many
separate Cloud Function instances to implement a complex architecture. The ability to share data
among services makes App Engine a very good choice for microservice-based applications, while
Cloud Functions is great for simple and single tasks.

Cloud Functions and Cloud Run are both good for hosting webhook targets. Generally, Cloud Functions
is quick to set up, good for prototyping, and ideal for lower volume workflows with lightweight data
as input, while Cloud Run provides more flexibility and can handle larger volumes using concurrency.

Use Cloud Run in the following cases:

•	 You’re using languages or runtimes not supported in Cloud Functions

•	 You want longer request timeouts (up to 15 minutes)

•	 You’re expecting large volumes and need concurrency (up to 80 concurrent requests per
container instance)

If you need a zero-scaling solution, App Engine flexible will probably not be a good choice for you. If
you want to host an always-on service, you will need to decide whether either cost or speed is more
important to you, because Cloud Run is significantly cheaper, particularly in low-traffic scenarios,
but App Engine is usually faster and has a lower latency.

https://cloud.google.com/run/docs/integrate/using-gcp-services#integrations
https://cloud.google.com/run/docs/integrate/using-gcp-services#integrations

Summary 117

Speaking about costs, App Engine standard includes a generous free tier, which can make it an
interesting option if cost is a priority and its limitations are not a problem. Also, payment models can
make a big difference between services, since sometimes a request-based fee will make sense, while
in others a monthly fixed fee will help us save a lot of money.

If you need portability, all the options based on containers may be the best choice for you. If you need
to run one-offs and scheduled tasks or need to complete a big volume of repetitive tasks, Cloud Run
jobs and array jobs can be the best option.

Cloud Run services are great for code that handles requests or events. Example use cases include
the following:

•	 Websites and web applications: Build a web app using our favorite stack, access our SQL
database, and render dynamic HTML pages

•	 APIs and microservices: We can build a REST API, a GraphQL API, or private microservices
that communicate over HTTP or gRPC

•	 Streaming data processing: Cloud Run services can receive messages from Pub/Sub push
subscriptions and events from Eventarc

Speaking of versatility, Cloud Run has better Docker image support and more memory-CPU pairs to
choose from, which may fit a lot of scenarios.

If we think about regional scope, Cloud Run allows the deployment of a service to multiple regions
using a single project, which is not the case for App Engine. Besides, using Anthos, we can go beyond
Google Cloud and host a part of our components in other cloud providers, making portable hybrid
cloud applications easy to deploy.

Last but not least, please remember that this is not a choice to make just once, because Google Cloud
serverless solutions are not mutually exclusive. by combining all of them, we can build amazing
architectures where each microservice runs in the serverless platform that better fits its needs.

Summary
In this chapter, we discussed how Cloud Run works, what its basic concepts are, and what the two
environments that we can choose from are. We also covered how we can use containers to run our
code, how we can debug our applications and services, and how much it costs to run our code using
Cloud Run.

Finally, we compared the three serverless options against each other and identified specific areas
where not all of them will perform equally, so we can make the best choice, combining them to build
applications that take the best of each product.

Running Serverless Code on Google Cloud – Part 2118

In the next chapter, we will take containerization to the next level with Google Kubernetes Engine,
a very interesting alternative for container orchestration, especially when we are managing complex
architectures with hundreds or thousands of containers.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

•	 A Brief History of Containers From the 1970s Till Now (https://blog.aquasec.com/a-
brief-history-of-containers-from-1970s-chroot-to-docker-2016)

•	 Microservices may be the new “premature optimization” (https://ptone.com/
dablog/2015/07/microservices-may-be-the-new-premature-
optimization/)

https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
https://ptone.com/dablog/2015/07/microservices-may-be-the-new-premature-optimization/
https://ptone.com/dablog/2015/07/microservices-may-be-the-new-premature-optimization/
https://ptone.com/dablog/2015/07/microservices-may-be-the-new-premature-optimization/

6
Running Containerized

Applications with Google
Kubernetes Engine

In the previous chapter, we discussed different serverless options available for running our code on
Google Cloud. If you remember, most of those services were internally implemented using containers.

In this chapter, we will continue focusing on the concept of containerization, but this time, we will
cover how to deploy and manage applications and services that use many containers.

First, I will introduce Google Kubernetes Engine (GKE) and then discuss its key concepts and
features, including topics such as security, scalability, monitoring, and cost optimization. I will then
talk about the similarities and differences between GKE and Cloud Run, providing some hints on
when to choose each.

If you found the examples in the previous chapter to be too lightweight, I have good news for you:
a good part of this chapter will be dedicated to a detailed hands-on example. I intend to gradually
increase the presence and the scope of these examples as we progress through this book.

We’ll cover the following main topics in this chapter:

•	 Introducing Google Kubernetes Engine

•	 Deep diving into GKE – key concepts and best practices

•	 Comparing GKE and Cloud Run – when to use which

•	 GKE hands-on example

Running Containerized Applications with Google Kubernetes Engine120

Introducing Google Kubernetes Engine
Google Kubernetes Engine (GKE) is a Google Cloud service that provides a managed environment
where we can deploy, manage, and scale our containerized applications.

A GKE cluster is formed by multiple Compute Engine instances and consists of at least one control
plane and multiple worker machines called nodes. All of them run the Kubernetes (https://
kubernetes.io) cluster orchestration system.

GKE (https://cloud.google.com/kubernetes-engine) works with containerized
applications. As we mentioned in the previous chapter, these are applications packaged into platform-
independent, isolated user space instances – for example, by using Docker (https://www.docker.
com). Containerized applications are also referred to as workloads, which are packaged into a container
before they can be used to run an application or host a set of batch jobs.

Kubernetes also provides different mechanisms to help us interact with our cluster. We can use
Kubernetes commands and resources to deploy and manage our applications, perform administration
tasks, set policies, and monitor the health of our deployed workloads.

Deep diving into GKE – key concepts and best practices
Starting with basic concepts, a Kubernetes Pod (https://cloud.google.com/kubernetes-
engine/docs/concepts/pod) is a self-contained and isolated logical host that contains all the
needs, at a systemic level, of the application it will serve. Pods are the smallest deployable objects in
Kubernetes, representing a single instance of a running process in our cluster and can host one or
more containers. All the containers within the same Pod share their resources and are managed as
a single entity.

Each Pod has a unique IP address and all the containers in the Pod share the same IP address and
network ports, using localhost to communicate with each other. Shared storage volumes may also be
present and shared among the containers.

A Kubernetes Service (https://kubernetes.io/docs/concepts/services-
networking/service/) is an abstract way to expose an application running on a set of pods as
a network service. Kubernetes will assign each Pod a unique IP address, and each set of pods will get
a single DNS name, and they will be used to load-balance across them.

Let’s take a look at the architecture of a GKE cluster.

GKE cluster architecture

In the cluster architecture of GKE (https://cloud.google.com/kubernetes-engine/
docs/concepts/cluster-architecture), the control plane runs processes that provide
features such as the Kubernetes API server (which makes it our endpoint for management), scheduler,
and core resource controllers:

https://kubernetes.io
https://kubernetes.io
https://cloud.google.com/kubernetes-engine
https://www.docker.com
https://www.docker.com
https://cloud.google.com/kubernetes-engine/docs/concepts/pod
https://cloud.google.com/kubernetes-engine/docs/concepts/pod
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture

Deep diving into GKE – key concepts and best practices 121

Figure 6.1 – Architecture of a zonal cluster in GKE

We interact with the cluster through Kubernetes API calls, which can be made using HTTP or gRPC,
indirectly using the Kubernetes command-line client (kubectl) to run commands, or using the Google
Cloud console.

Nodes are the worker machines that run our containerized applications and other workloads. These
are individual Compute Engine VM instances that will be created by GKE for our cluster.

A node also runs those services required by the containers within our workloads, including the
runtime and the Kubernetes node agent (kubelet), which communicates with the control plane and
will take care of starting and running our containers as scheduled.

The control plane controls all nodes and receives periodical status updates from each of them. As we
will discuss shortly, we can decide to manually check and decide on the life cycle of each node, or we
can let GKE repair and upgrade our cluster’s nodes automatically.

A few other special containers are also part of GKE and run as per-node agents to provide functionality
such as log collection and intra-cluster network connectivity.

Running Containerized Applications with Google Kubernetes Engine122

Advanced cluster management features

Kubernetes can provide many of the features we already discussed for other managed services in
Google Cloud, including automatic management, monitoring and liveness probes for application
containers, automatic scaling, and rolling updates.

There are also some advanced cluster management features that Google Cloud provides:

•	 Load balancing to help us distribute traffic

•	 Node pools to improve flexibility

•	 Automatic scaling and node auto-provisioning, while optionally letting us define the minimum
and maximum number of nodes

•	 Automatic upgrades of the node software to keep it up to date with the cluster control plane version

•	 Node auto-repair to maintain node health and availability, with periodic health checks

•	 Logging and monitoring with Google Cloud’s operations suite for visibility

All these features can be used in two different ways. Let’s explore their similarities and differences.

GKE operation modes

We can choose to run GKE using two different operation modes (https://cloud.google.
com/kubernetes-engine/docs/concepts/types-of-clusters), with the best choice
depending on how much flexibility, responsibility, and control we want to have over our clusters:

•	 Autopilot: As its name suggests, it manages both cluster and node infrastructure for us so that
we can focus on our workloads and only pay for the resources used to run our applications.

•	 Standard: In this mode, we can decide which configuration to use for our production workloads,
including the number of nodes that will be used and paid for. This means more flexibility and
control at the cost of more responsibility and work.

The software running on GKE cluster control planes is automatically upgraded, so we can enjoy
new features and security fixes as soon as they are available. New features are listed as Alpha, Beta,
or Stable, depending on their status. GKE will include the last two in newer builds, but Kubernetes
Alpha features will only be available in special GKE Alpha clusters that still can be requested and used
if we want to (https://cloud.google.com/kubernetes-engine/docs/concepts/
alpha-clusters).

At the other end of the life cycle, GKE also handles any potential feature deprecations so that they
have the minimum possible impact on our running applications and services (https://cloud.
google.com/kubernetes-engine/docs/deprecations).

https://cloud.google.com/kubernetes-engine/docs/concepts/types-of-clusters
https://cloud.google.com/kubernetes-engine/docs/concepts/types-of-clusters
https://cloud.google.com/kubernetes-engine/docs/concepts/alpha-clusters
https://cloud.google.com/kubernetes-engine/docs/concepts/alpha-clusters
https://cloud.google.com/kubernetes-engine/docs/deprecations
https://cloud.google.com/kubernetes-engine/docs/deprecations

Deep diving into GKE – key concepts and best practices 123

Cluster types based on availability

Another classification of GKE clusters, apart from their mode of operation, can be done using
availability as a criterion (https://cloud.google.com/kubernetes-engine/docs/
concepts/types-of-clusters).

While all clusters created in autopilot mode are regional, cluster types in GKE standard mode can be
either zonal (single-zone or multi-zonal) or regional.

Important
Once a cluster has been created, we won’t be able to change it from zonal to regional, or from
regional to zonal. Instead, we will have to create a new cluster and then migrate traffic from
the old cluster to the new one.

Zonal clusters have a single control plane running on a single zone, but we can choose to run our
workloads in one or multiple zones, depending on our availability requirements:

•	 A single-zone cluster uses a single zone to run both its workloads and a single control plane
that manages them. Due to this limitation, if an outage affects this zone, there will be downtime
for all our workloads.

•	 A multi-zonal cluster has nodes in different zones, but its control plane will be replicated
in a single zone. This means that our workloads would still run during an outage affecting a
single zone, even if it is the zone running the control plane, but in that case, we would lose
management capabilities until the service is restored in that zone.

Regional clusters run workloads and the control plane in the same region, but here, the control plane
replicates multiple times in different zones, which makes it much more resistant to any potential
outages. Nodes can run on either a single zone or multiple ones, but they must be located within the
same region used by the control plane.

By default, GKE creates three replicas of each node in different zones, but we can optionally customize
this number and the regions where they will be run ourselves when we create a cluster or add a new
node pool.

Important
Regional clusters are recommended for production workloads clusters because they offer higher
availability compared to zonal clusters.

https://cloud.google.com/kubernetes-engine/docs/concepts/types-of-clusters
https://cloud.google.com/kubernetes-engine/docs/concepts/types-of-clusters

Running Containerized Applications with Google Kubernetes Engine124

Node pools and node taints for easier management

Since the number of containers in GKE can grow into the thousands, there are some features and
concepts that can make it easier for us to manage big environments.

Node pools (https://cloud.google.com/kubernetes-engine/docs/concepts/
node-pools) are groups of nodes within a cluster that all have the same configuration. To assign
a node to a pool, we must use a Kubernetes node label, cloud.google.com/gke-nodepool,
which will have the node pool’s name as its value.

Nodes in a node pool can be created, upgraded, and deleted individually, but they share the same
configuration and any changes in this configuration will be applied globally to all the nodes in the
pool. Node pools can also be resized by adding or removing nodes.

If we create a new node pool in multi-zonal or regional clusters, it will be automatically replicated to
all other zones. Similarly, deleting a node pool from a zone in these cluster types will remove it from
the other zones as well.

Note
The multiplicative effect of multi-zonal or regional clusters may increase the costs of creating
node pools. Take this into account when defining your architecture.

When a new workload is submitted to a cluster, it will include custom requirements for CPU, memory,
and additional resources that the new Pod requires. The scheduler will read and evaluate those
requirements and automatically select in which node (that can satisfy such requirements) it will be run.

Sometimes, we may need to have more control over this otherwise automatic node selection process.
In these cases, we have two different tools that can be used together to ensure that certain pods are
not assigned to unsuitable nodes:

•	 Node taints can be used to label nodes to let the scheduler know that specific pods should be
avoided in those nodes

•	 Tolerations can be used to indicate which specific pods can be run on a tainted node

Taints are defined as the combination of a key-value pair and are associated with one of the following effects:

•	 NoSchedule: Only pods tolerating this taint will be scheduled on the node. Formerly existing
pods won’t be affected when a new taint is defined, so they won’t be evicted from the node
even if they don’t tolerate the taint.

•	 PreferNoSchedule: Only pods tolerating this taint will be scheduled on the node, unless there
is no other left, making this a more flexible limitation.

https://cloud.google.com/kubernetes-engine/docs/concepts/node-pools
https://cloud.google.com/kubernetes-engine/docs/concepts/node-pools

Deep diving into GKE – key concepts and best practices 125

•	 NoExecute: This is the hardest limitation, where only pods tolerating this taint will be scheduled
on the node, but even those pods that were running before the taint was created will be evicted
from the node. While there are different options to add node taints to our clusters, using GKE
has some interesting benefits that justify its use:

	� Taints will be preserved whenever we need to restart a node, even if we decide to replace it

	� If we add new nodes to a node pool or clusters, taints will be automatically created for each
of them

	� If new nodes are added to our cluster due to autoscaling, the corresponding taints will be
automatically created, too

Let’s explain how taints and tolerations work with an example.

We can use the following command to create a node pool on a cluster that has a taint with a key value
of dedicated=testing combined with a NoSchedule effect:

gcloud container node-pools create example-pool \

--cluster example-cluster \

--node-taints dedicated=testing:NoSchedule

This means that, by default, the scheduler will prevent pods that contain a key value of
dedicated=testing in their specification from being scheduled on any of these nodes.

However, we can configure specific pods to tolerate a taint by including the tolerations field in
the pods’ specification. Here’s part of a sample specification:

tolerations:

- key: dedicated

  operator: Equal

  value: testing

  effect: NoSchedule

The Po d us ing th is sp ec i f icat ion can b e s cheduled on a no de that has the
dedicated=testing:NoSchedule taint because it tolerates that specific taint; otherwise, the
NoSchedule effect would prevent it from being scheduled on that node.

You can read more about node taints in the following section of the official documentation: https://
cloud.google.com/kubernetes-engine/docs/how-to/node-taints.

https://cloud.google.com/kubernetes-engine/docs/how-to/node-taints
https://cloud.google.com/kubernetes-engine/docs/how-to/node-taints

Running Containerized Applications with Google Kubernetes Engine126

Best practices for cost efficiency in GKE

Spot VMs (https://cloud.google.com/kubernetes-engine/docs/concepts/
spot-vms) are a very interesting concept for GKE since they can help us save a lot of money.

The concept is very simple: Spot VMs are virtual machines offered at a significantly lower price because
they can be required back at any time. If that happens, we will receive a termination notice and the
VM will be gone in 30 seconds.

We can use Spot VMs in our clusters and node pools to run stateless, batch, or fault-tolerant
workloads that can tolerate disruptions caused by their ephemeral nature. Besides, and in contrast to
Preemptible VMs (https://cloud.google.com/kubernetes-engine/docs/how-to/
preemptible-vms), which expire after 24 hours, Spot VMs have no specific expiration time and
will only be terminated when Compute Engine needs the resources elsewhere. Spot VMs are also
compatible with cluster autoscaler and node auto-provisioning.

It is also good to use a node taint to ensure that GKE does not schedule critical workflows or standard
ones that take longer than 30 seconds to run, to avoid early terminations. For this reason, a best practice
is to ensure that our cluster always includes at least one node pool using standard Compute Engine
VMs; otherwise, they won’t be able to run anywhere and that would be a serious flaw in our architecture.

And if, once we are in production, we are planning to keep running our application or service in Google
Cloud for quite a long time, we may want to consider signing up for committed use discounts, where
we can get up to a 70% discount on VM prices in return for committing to paying for either 1 or 3
years of use. You can learn more about these discounts in the following section of the documentation
site: https://cloud.google.com/compute/docs/instances/signing-up-
committed-use-discounts.

Next, we’ll discuss how to implement three of the most important elements of any application and
service: storage, networking, and security.

Storage in GKE

Storage on GKE (https://cloud.google.com/kubernetes-engine/docs/concepts/
storage-overview) can be implemented either using Kubernetes storage abstractions, including
ephemeral and persistent volumes, or using a managed storage product offered by Google Cloud, such
as a database (Cloud SQL, Cloud Spanner, and so on), Network Attached Storage (NAS), which can
be implemented using FileStore, or block storage using persistent disks.

Networking in GKE

Speaking about networking in GKE (https://cloud.google.com/kubernetes-engine/
docs/concepts/network-overview) requires a change of focus to considering how pods,
services, and external clients communicate rather than thinking about how our hosts or virtual
machines (VMs) are connected.

https://cloud.google.com/kubernetes-engine/docs/concepts/spot-vms
https://cloud.google.com/kubernetes-engine/docs/concepts/spot-vms
https://cloud.google.com/kubernetes-engine/docs/how-to/preemptible-vms
https://cloud.google.com/kubernetes-engine/docs/how-to/preemptible-vms
https://cloud.google.com/compute/docs/instances/signing-up-committed-use-discounts
https://cloud.google.com/compute/docs/instances/signing-up-committed-use-discounts
https://cloud.google.com/kubernetes-engine/docs/concepts/storage-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/storage-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/network-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/network-overview

Deep diving into GKE – key concepts and best practices 127

IP addresses are key for the Kubernetes networking model, with each GKE service having a stable
IP address during its lifetime, often also referred to as a ClusterIP, while the IP addresses of pods
are ephemeral.

Communication is possible thanks to a few components working together. First, management is
made possible thanks to a set of firewall and allow egress rules that are automatically created for
*.googleapis.com (Google Cloud APIs), *.gcr.io (Container Registry), and the control
plane IP address.

Second, a component called kube-proxy is watching the Kubernetes API server, adding and removing
destination NAT rules to the node’s iptables to map the ClusterIP to healthy pods. When traffic is sent
to a Service’s ClusterIP, the node selects a Pod at random and routes the traffic to that Pod.

Internal and external name resolution services are offered using a combination of a component called
kube-dns and Google’s own Cloud DNS. Here, load balancing is offered in three different flavors:
external, internal, and HTTPS. This helps provide connectivity in all possible scenarios.

Security in GKE

Security is very important in container-based architectures. A layered security approach works
especially well in these scenarios because protecting workloads means protecting the many layers of
the stack, including the contents of our container image, the container runtime, the cluster network,
and access to the cluster API server. Combining this approach with the principle of least privilege,
which means that a user should be given the most restricted set of privileges needed to complete their
task, can be a very good practice, too.

Authentication in Kubernetes is provided using two types of accounts: user and service. It’s important
to understand the difference between a Kubernetes service account and a Google Cloud service
account. The first is created and managed by Kubernetes but can only be used by Kubernetes-created
entities, such as pods, while the second is a subtype of a Kubernetes user account.

To implement the principle of least privilege, we should try to use Kubernetes service accounts
whenever possible, since their scope will be limited to the cluster where they were defined. This is
as opposed to Google Cloud service accounts, which have a broader scope and may have too many
permissions granted.

Finally, audit logging (https://cloud.google.com/logging/docs/audit) can be used
to centralize all events that occur in GKE environments. Logged information can be used for forensic
analysis, real-time alerting, or usage pattern detection.

https://cloud.google.com/logging/docs/audit

Running Containerized Applications with Google Kubernetes Engine128

Deploying applications on GKE

If we are planning to deploy a workload on GKE, we should make sure to complete the tasks mentioned
in the following checklist before proceeding:

•	 Select a node image (https://cloud.google.com/kubernetes-engine/docs/
concepts/node-images) for each container

•	 Choose the operation mode and level of availability for each cluster

•	 Define the resources to be allocated to each container (https://kubernetes.io/docs/
concepts/configuration/manage-resources-containers/)

•	 Decide which storage types we will be using, if any

•	 Configure networking, if needed

•	 Make sure to follow the best practices for security, especially regarding service accounts and
credential storage

•	 Use node taints, tolerations, and node pools (labeling) if we will be managing a considerable
number of nodes

•	 Review the architecture to identify potential opportunities for cost optimization

Once we have made our choices, it’s time to deploy and manage our containerized applications and
other workloads on our Google GKE cluster. For this purpose, we will use the Kubernetes system to
create Kubernetes controller objects, representing the applications, daemons, and batch jobs running
on our clusters.

We can create these controller objects through the Kubernetes API or using kubectl, a command-line
interface to Kubernetes installed by gcloud that allows us to create, manage, and delete objects.

Kubernetes controller objects are defined using YAML configuration files that contain the desired
configuration values for one or more properties of the object.

These YAML files can then be passed to either the Kubernetes API or kubectl, the Kubernetes
command-line tool, which will apply the requested operations to the referenced object.

Kubernetes provides different controller object types that allow us to create their associated workloads.

Some common types of workloads are as follows:

•	 Stateless applications: These are applications that do not preserve their state and save no data
to persistent storage. They can be created using a Kubernetes Deployment.

•	 Stateful applications: These are applications that use persistent storage because they require
their state to be saved or persistent. They can be created using a Kubernetes StatefulSet.

https://cloud.google.com/kubernetes-engine/docs/concepts/node-images
https://cloud.google.com/kubernetes-engine/docs/concepts/node-images
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Deep diving into GKE – key concepts and best practices 129

•	 Batch jobs: These represent finite, independent, and often parallel tasks that run to their
completion, such as automatic or scheduled tasks. They can be created using a Kubernetes Job.

•	 Daemons: These perform ongoing background tasks in their assigned nodes without the need
for user intervention. They can be created using a Kubernetes DaemonSet.

Google Cloud provides continuous integration and continuous delivery tools to help us build and serve
application containers. We can use Cloud Build (https://cloud.google.com/build) to build
container images (such as Docker) from a variety of source code repositories, and Artifact Registry
(https://cloud.google.com/artifact-registry) or Container Registry (https://
cloud.google.com/container-registry) to store and serve our container images.

We can use two methods to make changes to our objects: imperative commands and declarative
object configuration:

•	 Imperative commands are the traditional command-line statements that we can use for
one-off tasks where we want to quickly create, view, update, or delete objects using kubectl,
without the need to use configuration files or even have a deep knowledge of the object schema.
An example would be a command to create a new cluster or a command to change a single
property of an object.

•	 Declarative object configuration uses a text-based configuration file that contains the values
for each of the parameters. This option does not require us to specify specific commands to
make changes because we will be passing the full configuration file. In this case, kubectl will
read the live object and compare the value of each of its properties with the ones included in
the provided configuration file. If any changes are required, they will be applied by sending
one or more patch requests to the API server.

You can read more about deploying workloads on GKE in the following section of the official
documentation: https://cloud.google.com/kubernetes-engine/docs/how-to/
deploying-workloads-overview.

Next, let’s discuss how we can make our application scale up and down with GKE.

Scaling an app in GKE

Scaling an application (https://cloud.google.com/kubernetes-engine/docs/
how-to/scaling-apps) means increasing or decreasing its number of replicas, depending on
the level of traffic and demand.

We can use the kubectl autoscale command to make changes manually, but this will force us
to continuously watch specific metrics to find out when changes are needed. The alternative is to let
the autoscaler do this for us.

https://cloud.google.com/build
https://cloud.google.com/artifact-registry
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://cloud.google.com/kubernetes-engine/docs/how-to/deploying-workloads-overview
https://cloud.google.com/kubernetes-engine/docs/how-to/deploying-workloads-overview
https://cloud.google.com/kubernetes-engine/docs/how-to/scaling-apps
https://cloud.google.com/kubernetes-engine/docs/how-to/scaling-apps

Running Containerized Applications with Google Kubernetes Engine130

For example, we can do this with a command like this:

kubectl autoscale deployment my-app \

--max 6 --min 1 --cpu-percent 40

The CPU utilization will be used to scale our application, where new replicas will be added if the CPU
stays above 40% for some time. Notice how we also define the minimum and maximum number of
replicas, set to 1 and 6, respectively.

While there are a few predefined metrics to use for autoscaling, we can also use our own, too. You can
read how to do it in this tutorial: https://cloud.google.com/kubernetes-engine/
docs/tutorials/custom-metrics-autoscaling.

While we recently mentioned that regional clusters are a better option for high availability scenarios,
this happens at the expense of a slower propagation of configuration changes, which may affect the
speed at which they can scale up, so all the pros and cons need to be considered before deciding what
cluster type to use.

In the specific case of multi-zonal node pools, for example, we may suffer higher latency, more costly
egress traffic between zones, and the potential lack of some features in some zones, such as GPUs,
which means that we will also need to study each case before deciding which specific zones to use.

You can find some more interesting tips and best practices for increasing both availability and
performance in our workloads at https://cloud.google.com/kubernetes-engine/
docs/best-practices/scalability, together with details about the different quotas and
limits that should be considered when scaling our applications. I didn’t include the specifics here since
these numbers are constantly being updated.

As a final note, don’t forget that scaling up is not the only way to have a more powerful cluster. Let’s
see how we can also achieve this using GPUs.

GPUs may be of help, too

In some specific use cases, we may prefer to have more processing power rather than a bigger number
of nodes. In these scenarios, using a graphics processing unit (GPU) can be an interesting choice. In
GKE autopilot and standard, we can attach GPU hardware to nodes in our clusters, and then allocate
GPU resources to containerized workloads running on those nodes.

We can use these accelerators to increase the performance of resource-intensive tasks, such as large-scale
data processing or machine learning (ML) inference and training. We can even configure multiple
containers to share a single physical GPU and optimize costs (https://cloud.google.com/
kubernetes-engine/docs/concepts/timesharing-gpus).

You can read more about GPUs and how to use them in this section of the official
documentation: https://cloud.google.com/kubernetes-engine/docs/concepts/
gpus.

https://cloud.google.com/kubernetes-engine/docs/tutorials/custom-metrics-autoscaling
https://cloud.google.com/kubernetes-engine/docs/tutorials/custom-metrics-autoscaling
https://cloud.google.com/kubernetes-engine/docs/best-practices/scalability
https://cloud.google.com/kubernetes-engine/docs/best-practices/scalability
https://cloud.google.com/kubernetes-engine/docs/concepts/timesharing-gpus
https://cloud.google.com/kubernetes-engine/docs/concepts/timesharing-gpus
https://cloud.google.com/kubernetes-engine/docs/concepts/gpus
https://cloud.google.com/kubernetes-engine/docs/concepts/gpus

Deep diving into GKE – key concepts and best practices 131

Monitoring GKE applications

Logging and monitoring are key to ensuring the successful execution of our containerized workloads,
and fortunately, Google Cloud has a product called Cloud Operations for GKE (https://cloud.
google.com/stackdriver/docs/solutions/gke) that can help us monitor GKE clusters
by combining monitoring and logging capabilities.

Using the customized Cloud Operations dashboard for GKE clusters, we can do the following:

•	 Display the cluster’s key metrics, such as CPU use, memory utilization, and the number of
open incidents

•	 View clusters by their infrastructure, workloads, or services

•	 Inspect namespaces, nodes, workloads, services, pods, and containers

•	 Check the health status of the Kubernetes control plane

•	 View GKE logs for Kubernetes clusters, node pools, pods, and containers

We have been talking a lot about GKE in this chapter, but we have missed a very important topic: how
much does it cost to run an application in GKE?

Price model for GKE

Estimating the costs of running an application on GKE is not easy since architectures tend to be
complex and make use of additional Google Cloud services. Let’s cover some of the basics to make
this process easier.

First of all, let me share some good news: GKE has a free tier that provides enough monthly credits
to run a single zonal or autopilot cluster for free.

The pricing model, however, will vary depending on the mode.

For autopilot clusters, there is a flat rate of $0.10 per hour at the time of writing. The final figure
should also consider the cost of additional resources used by our pods, such as CPU, memory, or
ephemeral storage.

Standard mode clusters use Compute Engine instances as worker nodes, so standard Compute Engine
prices are applied in this case. These clusters can also benefit from committed use agreements, which
we mentioned earlier in the book, with discounts of up to 70% off.

There is also an additional cluster management fee of $0.10 per cluster per hour to consider, regardless
of the cluster mode, size, or topology. On the other hand, system pods, operating system overhead,
unallocated space, or unscheduled pods do not accrue any costs.

https://cloud.google.com/stackdriver/docs/solutions/gke
https://cloud.google.com/stackdriver/docs/solutions/gke

Running Containerized Applications with Google Kubernetes Engine132

It’s also important to know that GKE includes a financially-backed service-level agreement (SLA)
guaranteeing an availability rate of 99.95% for the control plane of regional clusters, and 99.5% for
the control plane of zonal clusters. Since the SLA is financially backed, if these availability levels are
not met, customers would be compensated.

The full documentation about GKE pricing, including a useful pricing calculator, can be found in
this section of the official documentation site: https://cloud.google.com/kubernetes-
engine/pricing.

As this section comes to an end, let’s discuss when we should use GKE and Cloud Run. Then, we’ll
be ready to start working on the hands-on examples.

Comparing GKE and Cloud Run – when to use which
In the previous chapter, we compared different serverless products while trying to understand which
one was the best choice, depending on our use case. Following a similar process to compare GKE and
Cloud Run, we will start by taking a look at their summarized features:

•	 With GKE, we have complete control over every aspect of container orchestration, from
networking to storage, and stateful use cases are supported

•	 Cloud Run can deploy containers to production with a single command, supports any
programming language, and uses Docker images, but only for stateless apps

As a small spoiler for the next chapter, Cloud Run is offered not only as a managed service but also
as Cloud Run for Anthos (https://cloud.google.com/anthos/run). In this second
format, Cloud Run is compatible with custom machine types, has additional networking options, and
we can use GPUs to enhance our services. And the best part is that we can easily change our mind at
any time later, switching from managed Cloud Run to Cloud Run for Anthos or vice versa, without
having to reimplement our service.

On the other hand, if we want to run a stateful application or if we are planning to deploy a complex
architecture with hundreds of containers, GKE will probably be a better choice due to its additional
features that will help us manage our fleet much more comfortably. Cloud Run supports up to 1,000
containers at the time of writing this chapter, but this limit can be raised by request (https://
cloud.google.com/run/quotas). Also, at the time of writing, GKE can handle a maximum of
100 clusters per zone, plus 100 regional clusters per region, with up to 15,000 nodes per GKE standard
cluster or 1,000 per autopilot cluster.

So, long story short, if we are looking for simplicity or don’t need the extra features, configuration
options, and control provided by GKE, Cloud Run can be a great choice for an application running on
top of stateless containers. An intermediate option would be GKE in autopilot mode. GKE standard
would be the best choice for complex architecture requiring more flexibility and control.

https://cloud.google.com/kubernetes-engine/pricing
https://cloud.google.com/kubernetes-engine/pricing
https://cloud.google.com/anthos/run
https://cloud.google.com/run/quotas
https://cloud.google.com/run/quotas

GKE hands-on example 133

Please remember that these options are not mutually exclusive. We can (and should) combine them
to build architectures where each component is run using the most suitable combination of product
and option, smartly balancing cost and complexity.

And now (drum roll!), it’s time for a hands-on example that will put many of the concepts introduced
in this chapter into practice.

GKE hands-on example
In this hands-on example, we will take a simple web application written in Python that implements
a phonebook, using a MySQL database to store its data. Contact entries include a name and a phone
number, and the application will let us view our contact list, add new contacts, and delete any of them.

We will create a Cloud SQL instance to replace MySQL and containerize the application to serve
requests from a frontend running on an autopilot GKE cluster:

Figure 6.2 – Architecture diagram for our GKE hands-on example

First, select the project that you will use for this example by going to https://console.cloud.
google.com/projectselector/kubernetes. If you haven’t done so yet, the selector will
take you to the Kubernetes API screen so that you can enable it by clicking on the blue button with the
text ENABLE. Please be patient since this process may take a few seconds or even minutes. However,
once it’s completed, you will see the Kubernetes cluster page in the Google Cloud console. Please also
make sure that billing is enabled for your cloud project or that you have free trial credits available.

https://console.cloud.google.com/projectselector/kubernetes
https://console.cloud.google.com/projectselector/kubernetes

Running Containerized Applications with Google Kubernetes Engine134

This example uses the following billable components of Google Cloud: GKE and Cloud SQL.

Note
Once you have completed this example, you can avoid continued billing by deleting the resources
you created during its execution. If you have the chance, run this exercise on a new project so
that you can shut it down at the end. For more information, please read the Cleaning up section
at the end of this tutorial.

Open Cloud Shell by clicking on its icon on the right-hand side of the top bar. Please keep the shell
open during all the exercises since we will use environment variables to make the deployment easier.
These will be lost if you close it. I recommend opening it in a new window so that you can have a
more comfortable setup in full screen.

You should start by running the following commands to configure your project ID and store it in an
environment variable:

export PROJECT_ID="<YOUR_PROJECT_ID>"

gcloud config set project $PROJECT_ID

Now, you must prepare your gcloud setup for a zonal cluster by choosing the zone closest to you.
You can get a list of available zones and their corresponding regions using this command:

gcloud compute zones list

Then, assign both the zone and the associated region with an environment variable using the following
commands. Here, replace <COMPUTE-ZONE> with your zone – for example, us-west1-a – and
<COMPUTE-REGION> with your region – for example, us-west1:

export ZONE="<COMPUTER-ZONE>"

export REGION="<COMPUTER-REGION>"

Finally, run the following command to set up the zone:

gcloud config set compute/zone $ZONE

You may be requested to confirm this action, just press Enter or answer Y.

With that, we are ready to move on, but first, let’s take a quick look at the code that we will be deploying
in this exercise.

GKE hands-on example 135

Taking a look at the code of the sample application

We will be working with a simple implementation of a phonebook. Each entry has a name and a
number, which are stored in a MySQL table, and we can list all our contacts alphabetically, add a new
contact, or delete a specific one.

The following portion of the code shows the routing rules for each operation:

@app.route('/')

def print_phonebook_worker():

    return(print_phonebook())

@app.route('/add', methods=['POST'])

def add_entry_worker():

    new_name = request.values.get("name")

    new_number = request.values.get("number")

    if new_name and new_number:

        add_entry(new_name, new_number)

        return(html_ok("Entry was successfully added"))

    else:

        return(html_error("You must specify a name and a
number"))

@app.route('/delete', methods=['POST'])

def delete_entry_worker():

    entry_id = request.values.get("id")

    if entry_id and entry_id.isdigit():

        delete_entry(entry_id)

        return(html_ok("Entry was successfully deleted"))

    else:

        return(html_error("You must specify a valid ID"))

As you can see, the default URL, /, will show the whole list of contacts, while /add will be used to
add a new contact, and /delete will be used to delete a specific entry upon specifying its internal
ID. Parameters are always passed using POST so that they are not shown in the URL.

Running Containerized Applications with Google Kubernetes Engine136

Containerizing the application with Cloud Build

To containerize the sample app, we will create a file named Dockerfile in our working directory
that will contain the instructions for our container, including the version of Python, additional packages
to install for dependencies, and the configuration of gunicorn to serve requests:

Use the official lightweight Python image.

https://hub.docker.com/_/python

FROM python:3.11.0-slim

Copy local code to the container image.

ENV APP_HOME /app

WORKDIR $APP_HOME

COPY . ./

Install production dependencies.

RUN pip install Flask gunicorn cloud-sql-python-
connector["pymysql"] SQLAlchemy

Run the web service on container start-up.

Here we use the gunicorn webserver, with one worker

process and 8 threads.

For environments with multiple CPU cores, increase the

number of workers to be equal to the cores available.

CMD exec gunicorn --bind :$PORT --workers 1 --threads 8 app:app

We will also include .dockerignore in our working directory, a file containing filename patterns
to be ignored when creating the container, similar to how .gitignore works for Git. This is done
to ensure that local unwanted files don’t affect the container build process. The following snippet is
the content of this file:

Dockerfile

README.md

*.pyc

*.pyo

*.pyd

__pycache__

GKE hands-on example 137

In this example, you will store your container in Artifact Registry and deploy it to your cluster from
the registry. Run the following command to create a repository named phonebook-repo in the
same region as your cluster, and wait for the operation to finish:

gcloud artifacts repositories create phonebook-repo \

--project=$PROJECT_ID \

--repository-format=docker \

--location=$REGION \

--description="Docker repository"

Note
Some of the following commands may request you to enable specific APIs if you run them
on a new Google Cloud project. Just answer Yes and wait for the operation to complete; you
should be ready to run the command.

Now, it’s time for you to build your container image using Cloud Build, which is similar to running
docker build and docker push, but in this case, the build happens on Google Cloud:

gcloud builds submit \

--tag ${REGION}-docker.pkg.dev/${PROJECT_ID}/phonebook-repo/
phonebook-gke .

The image will be stored in Artifact Registry (https://cloud.google.com/artifact-
registry/docs) and you should see a lot of output on the console during the process, with a
STATUS: SUCCESS message at the end.

Creating a cluster for the frontend

Now, it’s time to create an autopilot GKE cluster for our frontend. Just run the following command
and go for a coffee, since the creation process will take a few minutes:

gcloud container clusters create-auto phonebook \

--region $REGION

You may get an error if the container API was not enabled. If this is the case, just run the following
command and try again:

gcloud services enable container.googleapis.com

Once the cluster has been created, you will see a message with a URL that will allow you to inspect
its contents. Please open it and take a look at the different tabs in the UI. We will go back to that page
once our deployment is completed.

https://cloud.google.com/artifact-registry/docs
https://cloud.google.com/artifact-registry/docs

Running Containerized Applications with Google Kubernetes Engine138

You can also list and get detailed information about the cluster using the following two commands:

gcloud container clusters list

gcloud container clusters describe phonebook \

--region $REGION

This command will list the nodes in your container:

kubectl get nodes

Now that the cluster is ready, let’s set up the database.

Creating a database instance

Now, let’s create a Cloud SQL for MySQL instance to store the application data, using the following
command, which may take a while to complete:

export INSTANCE_NAME=mysql-phonebook-instance

gcloud sql instances create $INSTANCE_NAME

You will be asked to enable the SQL Admin API if it wasn’t already; the instance will be created
afterward. This process may also take a few minutes to complete.

Now, let’s add the instance connection name as an environment variable:

export INSTANCE_CONNECTION_NAME=$(gcloud sql instances describe
$INSTANCE_NAME \

--format='value(connectionName)')

Next, we will create a MySQL database:

gcloud sql databases create phonebook \

--instance ${INSTANCE_NAME}

Then, it’s time to create a database user called appuser with a random password to authenticate to
the MySQL instance when needed:

export CLOUD_SQL_PASSWORD=$(openssl rand -base64 18)

gcloud sql users create phonebookuser \

--host=% --instance ${INSTANCE_NAME} \

--password ${CLOUD_SQL_PASSWORD}

GKE hands-on example 139

Please keep in mind that if you close your Cloud Shell session, you will lose the password. So, you
may want to take note of the password just in case you don’t complete this example in a single session.

You can display the password by running the following command:

echo $CLOUD_SQL_PASSWORD

If the password is correctly displayed, then we can move to the next section.

Configuring a service account and creating secrets

To let our app access the MySQL instance through a Cloud SQL proxy, we will need to create a
service account:

export SA_NAME=cloudsql-proxy

gcloud iam service-accounts create ${SA_NAME} --display-name
${SA_NAME}

Let’s add the service account email address as an environment variable:

export SA_EMAIL=$(gcloud iam service-accounts list \

--filter=displayName:$SA_NAME \

--format='value(email)')

Now, add the cloudsql.client role to your service account so that it can run queries:

gcloud projects add-iam-policy-binding ${PROJECT_ID} \

--role roles/cloudsql.client \

--member serviceAccount:$SA_EMAIL

Run the following command to create a key for the service account:

gcloud iam service-accounts keys create ./key.json \

--iam-account $SA_EMAIL

This command downloads a copy of the key in a file named key.json in the current directory.

Now, we will create a Kubernetes secret for the MySQL credentials. Secrets allow us to safely store
variables instead of passing their values in plain text as environment variables, which would be a
security risk since they would be readable to anyone with access to the cluster:

kubectl create secret generic cloudsql-db-credentials \

--from-literal username=phonebookuser \

--from-literal password=$CLOUD_SQL_PASSWORD

Running Containerized Applications with Google Kubernetes Engine140

Finally, let’s create another Kubernetes secret for the service account credentials since secrets can hold
either key-value pairs or whole files that we can safely retrieve, as in this case:

kubectl create secret generic cloudsql-instance-credentials \

--from-file key.json

And we are ready to deploy the application.

Deploying the application

Our sample application has a frontend server that handles web requests. We will define cluster resources
needed to run the frontend in a file called deployment.yaml. These resources are described as
a deployment, which we use to create and update a ReplicaSet and its associated pods. This is the
content of the deployment configuration YAML:

apiVersion: apps/v1

kind: Deployment

metadata:

  name: phonebook-gke

spec:

  replicas: 1

  selector:

    matchLabels:

      app: phonebook

  template:

    metadata:

      labels:

        app: phonebook

    spec:

      containers:

      - name: phonebook-app

        # Replace $REGION with your Artifact Registry

        # location (e.g., us-west1).

        # Replace $PROJECT_ID with your project ID.

        image: $REGION-docker.pkg.dev/$PROJECT_ID/phonebook-
repo/phonebook-gke:latest

        # This app listens on port 8080 for web traffic by

        # default.

        ports:

GKE hands-on example 141

        - containerPort: 8080

        env:

          - name: PORT

            value: "8080"

          - name: DB_USER

            valueFrom:

              secretKeyRef:

                name: cloudsql-db-credentials

                key: username

          - name: DB_PASS

            valueFrom:

              secretKeyRef:

                name: cloudsql-db-credentials

                key: password

      - name: cloudsql-proxy

        image: gcr.io/[...](cloud-sql-proxy:latest

        args:

          - "--structured-logs"

          - "--credentials-file=/secrets/cloudsql/key.json"

          - "$INSTANCE_CONNECTION_NAME"

        securityContext:

          runAsNonRoot: true

          allowPrivilegeEscalation: false

        volumeMounts:

          - name: cloudsql-instance-credentials

            mountPath: /secrets/cloudsql

            readOnly: true

        resources:

          requests:

            memory: "2Gi"

            cpu: "1"

      volumes:

        - name: cloudsql-instance-credentials

          secret:

            secretName: cloudsql-instance-credentials

Running Containerized Applications with Google Kubernetes Engine142

Now, it’s time to deploy the resource to the cluster.

First, let’s replace the variables in the template with their actual values by using the following command:

cat ./deployment.yaml.template | envsubst > ./deployment.yaml

Then, we will apply the file to perform the actual deployment with this command:

kubectl apply -f deployment.yaml

You will see a notice about defaults being applied and a link that is interesting to visit so that you can
become familiar with the default values used for autopilot GKE instances.

You can track the status of the deployment using the following command, which will continue updating
the status of the pods until you stop it by pressing Ctrl + C:

kubectl get pod -l app=phonebook --watch

The deployment will be complete when all the pods are READY. This will take a few minutes, and will
finally display a message similar to this, but with a different name:

NAME                      READY   STATUS    RESTARTS   AGE

phonebook-gke-65fd-qs82q  2/2     Running   0          2m11s

Remember that you will need to press Ctrl + C to exit the running command.

Exposing the service

Now, it’s time to expose our phonebook application. We will be using a Kubernetes Service for this
purpose because pods are ephemeral and, since their lifetime is limited, we should use a service
address to reliably access our set of pods. Adding a load balancer will also make it possible to access
the phonebook app pods from a single IP address.

The “phonebook” service is defined in service.yaml. Here are the contents of this file:

apiVersion: v1

kind: Service

metadata:

  name: phonebook

spec:

  type: LoadBalancer

  selector:

GKE hands-on example 143

    app: phonebook

  ports:

  - port: 80

    targetPort: 8080

Now, it’s time to create the phonebook service:

kubectl apply -f service.yaml

Finally, we should get the external IP address of the service so that we can use it from our browser.
For this purpose, we will run the following command:

kubectl get services

It can take up to 60 seconds to allocate the IP address. The external IP address is listed under the
EXTERNAL-IP column for the phonebook service and will have a first value of <pending> that
will be replaced with the actual IP address after a few seconds.

You will then see an output like this, but please notice that the IP address that you will see will be
different than mine. Copy it or write it down, since you will need it for the next step:

NAME         TYPE           CLUSTER-IP     EXTERNAL-IP    

PORT(S)        AGE

kubernetes   ClusterIP      10.1.128.1     <none>         

443/TCP        52m

phonebook    LoadBalancer   10.1.129.138   34.79.133.73   

80:31706/TCP   91s

At this point, our application is ready for testing!

Testing the application

In your browser, go to the following URL, replacing <external-ip-address> with the
EXTERNAL_IP address of the service that exposes your phonebook instance that you just wrote down:

http://<external-ip-address>

Running Containerized Applications with Google Kubernetes Engine144

After adding a few contacts, you should see a screen similar to this:

Figure 6.3 – Main screen of our phonebook running on GKE

Alternatively, you can use curl to get the HTML returned by the external IP address of the service:

curl <external-ip-address>

Next, let’s take a look at how we can get more information about how our application, so we can
measure its performance and perform troubleshooting.

Looking at logs and metrics

Now that our application is up and running, let’s take a few minutes to add and delete contacts, and
then list them. You will be doing this to generate log entries and usage metrics.

After a while, open the following address in a new tab of your web browser: https://console.
cloud.google.com/kubernetes/list. Then, select the Observability tab. In the Cluster
drop-down menu, select the Google Cloud project you used to run this example.

GKE hands-on example 145

Now, you should see a screen like this one:

Figure 6.4 – Cloud Operations for GKE Observability tab for our example

We can see global metrics or filter by cluster and/or namespace. In the default Observability dashboard,
we can see interesting metrics, including memory and CPU utilization, warning events, error logs
per second, and restarts per minute.

In the left sidebar, we can switch to other dashboards that include specific information about areas
such as memory, Kubernetes events (including statistics but also the actual events), and statistics about
log ingestion and monitoring metrics.

Next to the Observability tab, there is a Cost Optimization tab, which shows how much of the
requested memory and CPU our containers are using so that we can adjust these values and save
money. This can also help us detect undersized clusters.

If we want to check out more details about the clusters, including the logs, we can click on the cluster’s
name (for example, clicking on phonebook in the Overview tab). At this point, we will be taken to
a new screen that includes all kinds of information about our cluster, including configuration and
features, networking, storage observability, and logs. Notice that these logs are Kubernetes logs, so
any log entries generated by our Python application will not appear here.

If we want to troubleshoot our actual code running on the containers, we will need to switch to
the Workload section using the icon menu on the left-hand side or by using the following direct
link: https://console.cloud.google.com/kubernetes/workload.

https://console.cloud.google.com/kubernetes/workload

Running Containerized Applications with Google Kubernetes Engine146

On the new screen, once we click on the workload’s name, which is phonebook-gke for our
example, we will be able to see general and specific information about the workload, along with the
revision history, events such as scaling changes, the contents of the YAML file in use, as well as the
logs, which, in this case, will include events from both gunicorn and our Python application code.
This is very useful for troubleshooting code errors.

Cleaning up

If you used a new project for this exercise, you can just shut it down to ensure that all the resources
are stopped properly and that they don’t cost you extra money or credits.

Otherwise, you can follow these steps to complete the cleanup:

1.	 Delete the GKE cluster by running the following command. The deletion process may take a
few minutes to complete:

gcloud container clusters delete phonebook \

--region $REGION

2.	 Run the following command to delete the image from your Artifact Registry repository:

gcloud artifacts docker images delete \

$REGION-docker.pkg.dev/$PROJECT_ID/phonebook-repo/
phonebook-gke

3.	 Next, delete the Artifact Registry repository with the following command:

gcloud artifacts repositories delete phonebook-repo \

--location=$REGION

4.	 Now, delete the Cloud SQL instance:

gcloud sql instances delete $INSTANCE_NAME

5.	 Then, remove the role from the service account:

gcloud projects remove-iam-policy-binding $PROJECT_ID \

--role roles/cloudsql.client \

--member serviceAccount:$SA_EMAIL

6.	 Finally, delete the service account:

gcloud iam service-accounts delete $SA_EMAIL

Summary 147

What’s next?

I hope this GKE example helped you understand some of the key concepts of GKE.

There is one added step that you can try to implement on your own so that your application can have a
domain name and static IP address. You can read more about it here: https://cloud.google.
com/kubernetes-engine/docs/tutorials/configuring-domain-name-static-ip.

While I chose to use commands so that you could better learn the concepts provided and see how
kubectl can be used, remember that Cloud Code can help you run some tasks much more comfortably
from the IDE. For example, you can manage Kubernetes clusters directly from Visual Studio Code
(https://cloud.google.com/code/docs/vscode/manage-clusters) and also
view Kubernetes task status and logs (https://cloud.google.com/code/docs/vscode/
view-logs).

You can read more about the different capabilities of the integration with each IDE and find interesting
examples, some of them about Kubernetes and GKE, on the Cloud Code extensions page: https://
cloud.google.com/code/docs.

I have also included other interesting tutorials in the Further reading section so that you can see sample
implementations of autopilot and standard GKE architectures using different programming languages.
You can also find many more interesting examples in the Google Cloud architecture section (https://
cloud.google.com/architecture?category=containers).

Now, it’s time to review what we covered in this chapter.

Summary
This chapter started with an introduction to the basic concepts of GKE before deep diving into key
topics, such as cluster and fleet management, security, monitoring, and cost optimization.

Then, we discussed the similarities and differences between GKE and Cloud Run, and when to use which.

Finally, we worked on a hands-on example to show you how to use GKE to containerize and run a
web application.

In the next chapter, we will discuss how the abstraction level of containers makes them, combined
with the power of Anthos, the ideal choice for hybrid and multi-cloud architectures and deployments.

https://cloud.google.com/kubernetes-engine/docs/tutorials/configuring-domain-name-static-ip
https://cloud.google.com/kubernetes-engine/docs/tutorials/configuring-domain-name-static-ip
https://cloud.google.com/code/docs/vscode/manage-clusters
https://cloud.google.com/code/docs/vscode/view-logs
https://cloud.google.com/code/docs/vscode/view-logs
https://cloud.google.com/code/docs
https://cloud.google.com/code/docs
https://cloud.google.com/architecture?category=containers
https://cloud.google.com/architecture?category=containers

Running Containerized Applications with Google Kubernetes Engine148

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

•	 Google Kubernetes Engine vs Cloud Run: Which should you use? https://cloud.google.
com/blog/products/containers-kubernetes/when-to-use-google-
kubernetes-engine-vs-cloud-run-for-containers

•	 Kubernetes on GCP: Autopilot vs Standard GKE vs Cloud Run: https://blog.searce.
com/kubernetes-on-gcp-standard-gke-vs-cloud-run-vs-autopilot-
17c4e6a7fba8

•	 Choosing Between GKE and Cloud Run: https://medium.com/@angstwad/choosing-
between-gke-and-cloud-run-46f57b87035c

•	 Best practices for running cost-optimized Kubernetes applications on GKE: https://cloud.
google.com/architecture/best-practices-for-running-cost-effective-
kubernetes-applications-on-gke.

•	 How to find – and use – your GKE logs with Cloud Logging: https://cloud.google.
com/blog/products/management-tools/finding-your-gke-logs

•	 Create a guestbook with Redis and PHP: https://cloud.google.com/kubernetes-
engine/docs/tutorials/guestbook

•	 Deploy WordPress on GKE with Persistent Disk and Cloud SQL: https://cloud.google.
com/kubernetes-engine/docs/tutorials/persistent-disk

•	 Deploying Memcached on GKE: https://cloud.google.com/architecture/
deploying-memcached-on-kubernetes-engine

•	 Tutorial: Using Memorystore for Redis as a game leaderboard: https://cloud.google.
com/architecture/using-memorystore-for-redis-as-a-leaderboard

•	 Deploy a batch machine learning workload: https://cloud.google.com/kubernetes-
engine/docs/tutorials/batch-ml-workload

https://cloud.google.com/blog/products/containers-kubernetes/when-to-use-google-kubernetes-engine-vs-cloud-run-for-containers
https://cloud.google.com/blog/products/containers-kubernetes/when-to-use-google-kubernetes-engine-vs-cloud-run-for-containers
https://cloud.google.com/blog/products/containers-kubernetes/when-to-use-google-kubernetes-engine-vs-cloud-run-for-containers
mailto:https://medium.com/@angstwad/choosing-between-gke-and-cloud-run-46f57b87035c
mailto:https://medium.com/@angstwad/choosing-between-gke-and-cloud-run-46f57b87035c
https://cloud.google.com/architecture/best-practices-for-running-cost-effective-kubernetes-applications-on-gke
https://cloud.google.com/architecture/best-practices-for-running-cost-effective-kubernetes-applications-on-gke
https://cloud.google.com/architecture/best-practices-for-running-cost-effective-kubernetes-applications-on-gke
https://cloud.google.com/blog/products/management-tools/finding-your-gke-logs
https://cloud.google.com/blog/products/management-tools/finding-your-gke-logs
https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook
https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook
https://cloud.google.com/kubernetes-engine/docs/tutorials/persistent-disk
https://cloud.google.com/kubernetes-engine/docs/tutorials/persistent-disk
https://cloud.google.com/architecture/deploying-memcached-on-kubernetes-engine
https://cloud.google.com/architecture/deploying-memcached-on-kubernetes-engine
https://cloud.google.com/architecture/using-memorystore-for-redis-as-a-leaderboard
https://cloud.google.com/architecture/using-memorystore-for-redis-as-a-leaderboard
https://cloud.google.com/kubernetes-engine/docs/tutorials/batch-ml-workload
https://cloud.google.com/kubernetes-engine/docs/tutorials/batch-ml-workload

7
Managing the Hybrid Cloud

with Anthos

The previous chapter covered different serverless options for running our code on Google Cloud. If
you remember, most of those services were internally implemented using containers.

This chapter will discuss how to choose a cloud provider and what the associated risks of this process
are. We will then focus on the potential benefits of using more than one provider, and what challenges
this approach can bring to the table.

That will be the perfect time to introduce Anthos, a hybrid-cloud application management platform
created by Google that helps us run our applications in multiple environments and with multiple providers.

The chapter will finish with a hands-on exercise, so you can try Anthos yourself and better understand
how to make the most of some of its features.

We’ll cover the following main topics in this chapter:

•	 The pitfalls of choosing a cloud provider

•	 Anthos, the hybrid-cloud management platform

•	 A hands-on example of Anthos

Important note
Please run bash setup.sh to copy third party files to the chapter folder before reading on.

The pitfalls of choosing a cloud provider
Public cloud providers have a key role in the digital transformation of any organization. However,
deciding which one to use is not an easy task.

Managing the Hybrid Cloud with Anthos150

There are many factors to consider when choosing a cloud provider. I have put together a list with
a few of the considerations listed in no specific order, but this list can still grow a lot depending on
each specific situation and need:

•	 Geographical availability, which we should compare with our current and future expansion plans

•	 Technology and roadmaps, which should meet our requirements and be refreshed with new
features and services over time

•	 Free tier and welcome offers, making it easier to test services and run proof of concepts at a
limited cost or even for free

•	 Pricing is also a key factor, sometimes offering multi-year special contracts or bundles with
other services

•	 Security and reliability, including service level objectives and agreements to guarantee uptime
for our services

•	 Migration and support services, which can help us plan and execute our move to the cloud and
help with any issues during and after the migration

•	 Legal and regulatory requirements that we will need to follow and that may reduce the list of
providers that we can work with or the locations where our workloads can run

•	 Certifications and standards, from following best practices to specific adherences that may be
indispensable for certain sectors, such as finance or pharma

•	 Compatibility or integration with the rest of the software and applications used by our
organization, so we can find out whether we can benefit from any specific synergies or out-of-
the-box integrations between products

Once we consider these and other important topics for our organization, we can assign a weight to each
topic, calculate a score for each provider, and make our choice, taking into account the obtained results.

However, before choosing a provider, we should also consider some of the associated risks:

•	 Dependency: We may get so dependent on our provider and its technology that we will lose
our freedom to migrate at will in the future. The situation will be critical as we get to use more
cloud resources and as our code gets too bound to specific APIs and services.

•	 Roadmap not meeting our expectations: We may choose a provider who is not offering new
features and services at the speed that we want or need. Or we may even see how other providers
start offering services in areas where our provider doesn’t.

•	 Regulatory requirements: This is a classic in every list of risks. Our list of candidates may
have been reduced a lot due to either new or long-time active legal and regulatory constraints,
and that may negatively affect our ability to innovate due, for example, to the need to store our
corporate data in a specific country and/or follow a set of local regulations.

The pitfalls of choosing a cloud provider 151

In summary, choosing a cloud provider is not easy, and there are many times and situations where
we will think that we made the wrong choice and start to feel like a bird in a cage, and even worse,
this will be a pay-per-use cage!

Introducing hybrid cloud computing

The ideal situation in many of these scenarios would be being able to choose the best environment
and cloud provider, depending on our needs. We would only move to the cloud those workloads that
will benefit from the move, while we would keep the rest on-premises.

And even when talking about moving workloads to the cloud, why not move some of these workloads
to the provider where they will be cheaper and others to a different provider where they will be able
to make the most out of the technology available?

This is what is called hybrid cloud computing, where an organization may have workloads running
in private and public locations using multiple providers, often combining these workloads to architect
a service or application that literally runs on a hybrid cloud:

Figure 7.1 – A hybrid cloud environment

This would be an amazing opportunity from both the technical and the economic point of view, but
this freedom comes at the high price of having to manage many heterogeneous components and make
them work together seamlessly.

This is indeed an extremely complex scenario, but one that could also help organizations break the
chains once and for all and run their workloads wherever they want. And that’s what motivated
Google to find a solution.

Managing the Hybrid Cloud with Anthos152

The answer is one that combines the portability of containers, thanks to its advanced level of abstraction,
with a platform that supports multiple locations for deployment while providing centralized management.
Let’s introduce Anthos.

Anthos, the hybrid cloud management platform
In the previous chapter, we deep-dived into Google Kubernetes Engine (GKE), and you should
now be familiar with its main concepts. As I mentioned at the end of that chapter, the next level in
the abstraction that containers provide would be extending GKE to work in multiple environments.

This is exactly what Anthos (https://cloud.google.com/anthos) does; it provides a
consistent development and operations experience whether we are using Anthos on Google Cloud,
hybrid cloud, or multiple public clouds:

Figure 7.2 – Anthos architecture diagram

Anthos is an advanced management platform for the quick building and deployment of container-
based services and applications.

Some of the key benefits of Anthos are the following:

•	 Code can be quickly deployed, traffic easily re-configured, and applications automatically scaled
while Google takes care of all the underlying infrastructure

•	 Both code and configuration can be managed using Git to implement CI/CD workflows

https://cloud.google.com/anthos

Anthos, the hybrid cloud management platform 153

•	 Observability and instrumentation are provided by Anthos Service Mesh, Cloud Monitoring,
and Cloud Logging without requiring a single additional line of code

•	 Automatic service protection using mutual TLS (mTLS) and throttling (again, with no code
changes needed)

•	 Integrated Google Cloud Marketplace allowing the quick deployment of compatible products
into clusters

The main priorities for Anthos are speed, flexibility, and security, letting us manage, govern, and operate
our workloads wherever we want by providing a common platform with centralized management,
security, and observability.

If we need to migrate our applications and services, Anthos also includes Migrate to Containers
(https://cloud.google.com/velostrata/docs/anthos-migrate/anthos-
migrate-benefits), which allows us to orchestrate migrations using Kubernetes in Anthos so
we can enjoy the benefits of containers. It can also convert legacy applications to be used in containers
instead of virtual machines.

Now, let’s walk through the main concepts of Anthos.

Computing environment

Anthos uses Anthos clusters as its primary computing environment, taking GKE beyond Google
Cloud because these clusters can also run on on-prem and on other public cloud providers, allowing
us to centrally manage Kubernetes installations in any of these environments.

As you will remember from the previous chapter, Kubernetes has two main parts: the control plane and
the node components. These two will be hosted differently depending on where we choose to run Anthos:

•	 Anthos on Google Cloud: Google Cloud hosts the control plane, and customers can only
access the Kubernetes API server. GKE manages node components in the customer’s project
using instances in Compute Engine.

•	 Anthos on-premises: In both Anthos clusters on VMware and Anthos clusters on bare metal,
all components are hosted in the customer’s on-prem data center.

•	 Anthos on AWS: All components are hosted in the customer’s AWS environment.

•	 Anthos on Azure: All components are hosted in the customer’s Azure environment.

While Anthos clusters are based on GKE, we can also add conformant non-GKE Kubernetes clusters
to Anthos, taking advantage of a subset of Anthos features on our existing systems, even if we don’t
perform a full migration to Anthos clusters. You can read more about this topic in the following
section of the official documentation site for Anthos: https://cloud.google.com/anthos/
clusters/docs/attached/how-to/attach-kubernetes-clusters.

https://cloud.google.com/velostrata/docs/anthos-migrate/anthos-migrate-benefits
https://cloud.google.com/velostrata/docs/anthos-migrate/anthos-migrate-benefits
https://cloud.google.com/anthos/clusters/docs/attached/how-to/attach-kubernetes-clusters
https://cloud.google.com/anthos/clusters/docs/attached/how-to/attach-kubernetes-clusters

Managing the Hybrid Cloud with Anthos154

As you can imagine, Anthos will often be used to manage a lot of clusters. Let’s introduce the concept
of fleets, which can help us simplify this process a lot.

Simplified management using fleets

Another interesting concept to make management easier in Anthos is the use of fleets. A fleet (https://
cloud.google.com/anthos/multicluster-management/fleet-overview) is just
a logical group containing clusters and other Kubernetes resources. The benefit of a fleet is that all
its elements can be viewed and managed as a group in Anthos, thus reducing the complexity when
managing architectures with many components.

The most important concept for fleets is sameness, where Kubernetes objects sharing the same identity
in different clusters are treated as the same thing. For example, services with the same namespace
and service name are considered as the same service, even if they are in different clusters. This makes
administration much easier because this common identity makes it possible to use a single rule for
all of them instead of having to create one for each cluster. For example, we can grant the namespace
frontend in the fleet access to the namespace backend, and that would make the frontend in each cluster
able to access the backend in any of the other clusters in the fleet. This uplevel of management to the
fleet is called high trust and helps narrow cluster boundaries.

A cloud project can only have one fleet associated with it, and fleet-aware resources can only be
members of a single fleet at any given time. This is done to ensure that there is a single source of truth
in every cluster.

You can read more about fleet-related concepts in this section of the official documentation: https://
cloud.google.com/anthos/fleet-management/docs/fleet-concepts.

As we are speaking about making management easier, let’s now introduce Service Mesh, another key
component that helps simplify container orchestration.

Service Mesh for microservice architectures

Going back to the basics of Kubernetes, services are composed of many pods, which execute containers,
and these containers, in turn, run services. In a microservice architecture, a single application may
consist of numerous services, and each service may have multiple versions deployed concurrently.
As you can see, there are a lot of different components that need to communicate with each other.

In legacy applications, communication between components is done using internal function calls. In
a microservice architecture, service-to-service communication occurs over the network, and it can be
unreliable and insecure, so services must be able to identify and deal with any potential network issues.

How should services respond to communication timeouts? Should there be retries, and if so, how
many? And how long should we wait between retries? When a response is obtained, how can we know
for sure that it is coming from the expected service?

https://cloud.google.com/anthos/multicluster-management/fleet-overview
https://cloud.google.com/anthos/multicluster-management/fleet-overview
https://cloud.google.com/anthos/fleet-management/docs/fleet-concepts
https://cloud.google.com/anthos/fleet-management/docs/fleet-concepts

Anthos, the hybrid cloud management platform 155

A service mesh can solve these problems by using sidecar proxies to improve network security,
reliability, and visibility. Each deployed service gets a second service attached to it (that’s why they
are called sidecar), which works as a proxy and forwards the information in real time for the service
mesh to provide additional features and benefits.

Anthos has its own service mesh: Anthos Service Mesh (https://cloud.google.com/
anthos/service-mesh), based on Istio (https://istio.io/docs/concepts/what-
is-istio/), an open source implementation of the service mesh infrastructure layer.

These are some of the benefits that Anthos Service Mesh provides to applications running on Anthos:

•	 Fine-grained traffic control with rich routing rules, service metrics, and logs

•	 Automatic metrics, logs, and traces for all HTTP traffic within a cluster

•	 Service-to-service relationships mapping, including a graphical representation

•	 Secure service-to-service communication with authentication and authorization, including
the support of mTLS authentication

•	 Easy A/B testing and canary rollouts

•	 Automatically generated dashboards to let us dig deep into our metrics and logs

•	 Service health metrics with service-level objectives (SLOs)

All these features are provided just by installing Anthos Service Mesh, and most of them require zero
configuration, which can be helpful for big architectures with thousands of components. We will try
some of these features in our hands-on exercise.

Anthos Service Mesh can always be installed in the control plane of our cluster, but if we run Anthos on
Google Cloud, we will also have the option to use it as a managed service, making things even simpler.

And this is a perfect time to discuss networking in Anthos, a basic element of
service-to-service communication.

Networking in Anthos

Given the potential complexity of microservice architectures, networking plays a crucial role in
delivering requests to our workloads across different pods and environments.

The scenarios will vary depending on whether we run Anthos on Google Cloud, on-prem, or on
another provider.

https://cloud.google.com/anthos/service-mesh
https://cloud.google.com/anthos/service-mesh
https://istio.io/docs/concepts/what-is-istio/
https://istio.io/docs/concepts/what-is-istio/

Managing the Hybrid Cloud with Anthos156

If we run Anthos on Google Cloud, Network Load Balancing (https://cloud.google.com/
load-balancing/docs/network) will be used for the transport layer, and HTTP(S) Load
Balancing (https://cloud.google.com/load-balancing/docs/) will be used for the
application layer, with the advantage of both being managed services requiring no added configuration
or provisioning. These two can be complemented with Multi Cluster Ingress (https://cloud.
google.com/kubernetes-engine/docs/how-to/ingress-for-anthos), allowing us
to deploy a load balancer that serves an application across multiple GKEs on Google Cloud clusters.

If we run Anthon on-prem, the options will vary depending on our environment: for clusters on
VMware, we can use bundled options, such as MetalLB or Seesaw, or we can manually set up F5
BIG-IP, Citrix, or any other similar option. On bare metal, we can choose either to use a bundled
transport layer load balancer during the cluster installation or to deploy an external one manually.

Running Anthos on AWS is compatible with multiple AWS load balancers, including AWS Classic
Elastic Load Balancers (ELB), AWS Network Load Balancers, and AWS Application Load Balancers,
and with Anthos Service Mesh. In the case of Azure, we can set up a transport layer load balancer
backed by an Azure Standard Load Balancer.

You can find detailed information about setting up each load balancing option on this page of the
documentation site: https://cloud.google.com/anthos/clusters/docs/on-prem/
latest/how-to/setup-load-balance.

Once each of our environments is ready, we can connect our on-premises, multi-cloud, attached
clusters, and Google Cloud environments in diverse ways.

The easiest way to get started is by implementing a site-to-site VPN between the environments using
Cloud VPN (https://cloud.google.com/network-connectivity/docs/vpn).

If you have more demanding latency and speed requirements, you may prefer to use Dedicated
Interconnect (https://cloud.google.com/network-connectivity/docs/how-to/
choose-product#dedicated) or Partner Interconnect (https://cloud.google.com/
network-connectivity/docs/how-to/choose-product#partner), which both offer
better performance at a higher cost.

Connect (https://cloud.google.com/anthos/multicluster-management/
connect) is a basic element of Anthos that allows our clusters to be viewed and managed centrally
from the Anthos dashboard.

For Anthos to work properly, all environments outside Google Cloud must be able to reach Google’s
API endpoints for Connect, Cloud Monitoring, and Cloud Logging. Attached clusters just need
connectivity with Connect.

Another remarkably interesting feature of Anthos, and a great aid for simplifying management tasks,
is centralized configuration management. Let’s talk about it in the next section.

https://cloud.google.com/load-balancing/docs/network
https://cloud.google.com/load-balancing/docs/network
https://cloud.google.com/load-balancing/docs/
https://cloud.google.com/kubernetes-engine/docs/how-to/ingress-for-anthos
https://cloud.google.com/kubernetes-engine/docs/how-to/ingress-for-anthos
https://cloud.google.com/anthos/clusters/docs/on-prem/latest/how-to/setup-load-balance
https://cloud.google.com/anthos/clusters/docs/on-prem/latest/how-to/setup-load-balance
https://cloud.google.com/network-connectivity/docs/vpn
https://cloud.google.com/network-connectivity/docs/how-to/choose-product#dedicated
https://cloud.google.com/network-connectivity/docs/how-to/choose-product#dedicated
https://cloud.google.com/network-connectivity/docs/how-to/choose-product#partner
https://cloud.google.com/network-connectivity/docs/how-to/choose-product#partner
https://cloud.google.com/anthos/multicluster-management/connect
https://cloud.google.com/anthos/multicluster-management/connect

Anthos, the hybrid cloud management platform 157

Centralized configuration management

As the size of our architecture on the cloud grows and becomes more complex, having a clear picture
of the configuration of each of our nodes becomes a real challenge.

Configuration as Data can help manage this complexity by storing the desired state of our hybrid
environment under version control. Once we want to make changes, we can just commit the updated
configuration files, and they will be scanned for changes, and these will be directly applied. In Anthos,
this is possible thanks to a unified declarative model that can be used with computing, networking,
and even service management across clouds and data centers.

Anthos Config Management (https://cloud.google.com/anthos-config-management)
uses a Git repository as the source of truth for configuration settings. Using Kubernetes concepts such
as namespaces, labels, and annotations in our YAML or JSON files, we can define which configuration
file must be applied to each component. A single commit will be translated into multiple kubectl
commands across all clusters to apply the configuration. And rolling back the changes is as simple as
reverting the change in Git, which will produce the kubectl commands required to undo the previous
changes in the environment.

Anthos Config Management also includes Policy Controller, which can detect whether any API
requests and configuration settings violate the policies and rules that we define and help us keep our
clusters under control.

As we are talking about policy enforcement, discussing security on Anthos feels like a natural next step.

Securing containerized workloads

The key security features that complement Anthos Config Management include the following:

•	 Automatic code-free securing of microservices with in-cluster mTLS and certificate management.
GKE on Google Cloud uses certificates provided by MeshCA.

•	 Built-in service protection using Anthos Service Mesh authorization and routing.

Binary Authorization is another feature that can improve the security in Anthos. Let’s get to know a
bit more about it in the next section.

Binary Authorization for a secure software supply chain

When we have thousands of containers running in production, the main concern of administrators
is that we may easily lose control and no longer know which images are running in each of them.

Binary Authorization was created to ensure that only signed and authorized images are deployed in
our environment. It uses signatures, also known as attestations, generated as an image passes through
and prevents images that do not meet the defined policies from being deployed.

https://cloud.google.com/anthos-config-management

Managing the Hybrid Cloud with Anthos158

Apart from attestations, name patterns can also be used to generate allow-lists matching against the
repository or the path name or by directly specifying a list of which specific images are allowed to
be deployed.

Binary Authorization is currently available for Anthos on Google Cloud and in preview for Anthos on-prem.

Two other features that can complement our security strategies are logging and monitoring. Let’s
explain how they work in Anthos.

Consolidated logging and monitoring

Anthos integrates Cloud Logging and Cloud Monitoring for both cluster and system components,
centralizing metrics and events, and includes entries from audit logs, making it easier to detect and
troubleshoot issues.

If Anthos runs on Google Cloud, our workloads will have their logs additionally enriched with relevant
labels, such as pod label, pod name, and the cluster name that generated them. Labeled logs will be
easier to browse and filter using advanced queries.

Kubernetes Engine Monitoring (https://cloud.google.com/monitoring/kubernetes-
engine) is the component that stores our application’s critical metrics that we can use for debugging,
alerting, or in post-incident analysis.

These features are available in the user interface (UI). Let’s see what it looks like in Anthos.

Unified UI

The Anthos dashboard in the Google Cloud console provides a unified UI to view and manage our
containerized applications.

The views of the dashboard provide different information and options to manage our resources. First,
we can view the state of all our registered clusters and create new ones for our project. We can also
see graphs about resource utilization, which are useful for optimizing our spending. Data provided by
the Policy Controller can be used to identify areas where security and compliance can be improved.
Configuration Manager helps us see the configuration state of our clusters at a glance and easily enables
the component on those that haven’t been set up yet.

For workloads running in GKE on Google Cloud, Anthos Service Mesh automatically uploads metrics
and logs provided by the sidecar proxies, providing observability into the health and performance
of our services without the need to deploy custom code to collect telemetry data or manually set up
dashboards and charts. Finally, Cloud Monitoring and Cloud Logging help us troubleshoot, maintain,
and optimize our applications.

The unified UI provides an excellent integration of the numerous features that Anthos provides. However,
if Anthos seems too complicated for you, just remember that an old friend can help you make the
most of Anthos while you let Google take care of all the complexities. Let’s re-introduce Cloud Run.

https://cloud.google.com/monitoring/kubernetes-engine
https://cloud.google.com/monitoring/kubernetes-engine

Anthos, the hybrid cloud management platform 159

Making hybrid cloud simple with Cloud Run for Anthos

Cloud Run for Anthos (https://cloud.google.com/anthos/run/docs) is a remarkably
interesting option for developers since it abstracts away the complexities of the underlying Anthos
platform, helping us focus on writing code for our workloads, so we can generate customer value in
less time.

Instead of wasting our time authoring many YAML files and fine tuning our clusters, Cloud Run
for Anthos manages how our services run, whether in the cloud or on-premises, while optimizing
performance and resource usage, scaling to and from zero, and using all the features of Anthos
Service Mesh.

Cloud Run for Anthos has some special benefits when compared with the standard Cloud Run, such as
its ability to deploy containers, the support of custom machine types, additional networking features,
or the use of GPUs to enhance our services.

At the time of writing this section, Cloud Run for Anthos is generally available for Anthos on
Google Cloud and Anthos on-prem deployment options and is on the roadmap for multi-cloud and
attached clusters.

And, speaking about how to make things simpler with Anthos, there is an especially useful marketplace
you will love to know about.

Third-party application marketplace

Since the Kubernetes ecosystem is very dynamic, a lot of new third-party applications are regularly
published or updated that could run on top of our existing clusters. We can use Google Cloud
Marketplace to find and deploy any of these applications to our Anthos clusters, no matter where
they are running. We can easily identify Anthos-compatible solutions because they will be marked
with an Anthos badge.

Solutions available in the marketplace have direct integration with Google Cloud billing and are
supported directly by the software vendor.

In the Marketplace Solution Catalog (https://console.cloud.google.com/marketplace/
browse?filter=solution-type%3Ak8s), we can find solutions for storage, databases, CI/CD,
monitoring and security, among many others. You can access the marketplace using this URL: https://
console.cloud.google.com/marketplace/browse?filter=solution-
type:k8s&filter=deployment-env:anthos.

Now that we have covered all the basics of Anthos, it’s the perfect time to discuss its different usage
and pricing options.

https://cloud.google.com/anthos/run/docs
https://console.cloud.google.com/marketplace/browse?filter=solution-type%3Ak8s
https://console.cloud.google.com/marketplace/browse?filter=solution-type%3Ak8s
https://console.cloud.google.com/marketplace/browse?filter=solution-type:k8s&filter=deployment-env:anthos
https://console.cloud.google.com/marketplace/browse?filter=solution-type:k8s&filter=deployment-env:anthos
https://console.cloud.google.com/marketplace/browse?filter=solution-type:k8s&filter=deployment-env:anthos

Managing the Hybrid Cloud with Anthos160

Anthos usage and pricing options

There are two pricing alternatives to choose from for the Anthos platform:

•	 Pay-as-you-go pricing: This is where we are billed for Anthos-managed clusters as we use them
at the rates listed on the official Anthos pricing page (https://cloud.google.com/
anthos/pricing). We can enable the Anthos API whenever we want to use this option.

•	 Subscription pricing: This provides a discounted price for a committed term, including all Anthos
deployments, irrespective of environment, at their respective billing rates. This option can be
enabled by contacting sales (https://cloud.google.com/contact/?form=anthos).

Note
New Anthos customers can try Anthos on Google Cloud for free, up to $800 worth of usage
or for a maximum of 30 days, whichever comes first. This is perfect for running the Anthos
examples provided in this book and some others available on the Google Cloud website. If you
currently have an Anthos subscription, then this trial will not be available to you.

To sign up, go to the Anthos page on the Cloud Marketplace (https://console.cloud.
google.com/marketplace/product/google/anthos.googleapis.com) and
click on START TRIAL. You can see your available credit in the Anthos section within the
Google Cloud console.

We can make full use of the Anthos platform, including hybrid and multi-cloud features, by enabling
the Anthos API in our project. Once it's enabled, we will be charged on an hourly basis for an amount
based on the number of Anthos cluster vCPUs under management.

We can see the vCPU capacity, which is the number used for Anthos billing, of each of our user clusters
by running the following command:

kubectl get nodes -o=jsonpath="{range .items[*]}{.metadata.
name}{\"\t\"} \

        {.status.capacity.cpu}{\"\n\"}{end}"

Logs and metrics from Anthos system components are collected in Cloud Logging and Cloud Monitoring
for no added charge when we pay for the Anthos platform with a default retention period of 30 days.

If we don’t need to register clusters outside Google Cloud and only require some of the Anthos features,
we can pay for each of those features individually without enabling the entire platform. The pricing
guide can be found at https://cloud.google.com/anthos/pricing.

The official deployment options page (https://cloud.google.com/anthos/deployment-
options) contains valuable information about which Anthos features are enabled in each deployment
option, a very recommendable read before choosing where you will run your workloads.

https://cloud.google.com/anthos/pricing
https://cloud.google.com/anthos/pricing
https://cloud.google.com/contact/?form=anthos
https://console.cloud.google.com/marketplace/product/google/anthos.googleapis.com
https://console.cloud.google.com/marketplace/product/google/anthos.googleapis.com
https://cloud.google.com/anthos/pricing
https://cloud.google.com/anthos/deployment-options
https://cloud.google.com/anthos/deployment-options

Anthos hands-on example 161

And with this, the theory is over, and it’s time for some hands-on action using Anthos.

Anthos hands-on example
For this example, we will be simulating a non-fungible token (NFT) store (if you don’t know what
NFTs are, I added a link about them in the Further reading section at the end of the chapter). This
will allow us to explore some of the key concepts that we have discussed in the last two chapters,
including zonal clusters, sidecar proxies, canary deployments, and traffic splits. Let’s take a look at
the architecture and we will be ready to begin!

Figure 7.3 – Hand-on example architecture

First, you can choose whether you prefer to create a Google Cloud Platform project for this example
or whether you prefer to reuse another. Cleaning up will be extremely easy in this example, so either
of the options will work well. Whichever one you choose, please copy your project ID to the clipboard
since we will need it for the next step.

Now, open Cloud Shell, set the PROJECT_ID shell variable, and check that it has the right value:

PROJECT_ID=<your-project-id>

echo $PROJECT_ID

Managing the Hybrid Cloud with Anthos162

Next, set which cloud project to use with the following command. You may be asked to authorize the
configuration change with your account:

gcloud config set project $PROJECT_ID

Now, please create a directory and either copy or clone the files for this chapter from the code repository
for the book. I will assume that you are running all the commands mentioned in this section from
the directory for this chapter.

Then, use the following command to ensure that both GKE and Cloud Operations APIs are enabled.
After running it, you may have to authenticate and authorize the command to act on your behalf to
enable the APIs:

gcloud services enable container.googleapis.com \

--project $PROJECT_ID

The command may take a while to complete before confirming that the operation finished successfully.
If the APIs were already enabled, you will quickly get an empty response; that’s also OK.

Now we will create a GKE zonal cluster in standard mode with at least four nodes and using the
e2-standard-4 machine type.

First, please choose the computing zone closest to you. You can get a list of available zones and their
corresponding regions using this command; you will have to use the value of the NAME parameter
for the chosen zone:

gcloud compute zones list

Once you choose a zone to use, export it as a shell variable with this command:

COMPUTE_ZONE="<your-GCP-zone>"

echo $COMPUTE_ZONE

We will also export the cluster name as a shell variable for later use. Use this one or any other you like:

CLUSTER_NAME="onlinestore"

Then, run the following command to create the cluster. The process will take a few minutes to complete.
Go for a coffee if you have the chance:

gcloud container clusters create $CLUSTER_NAME \

    --project=$PROJECT_ID \

    --zone=$COMPUTE_ZONE \

Anthos hands-on example 163

    --machine-type=e2-standard-4 \

    --num-nodes=4

Let’s ensure that our account has cluster-admin permissions. Just run the following command,
replacing <YOUR_EMAIL> with the actual email address of the account you are using in the Google
Cloud console:

kubectl create clusterrolebinding cluster-admin-binding \

  --clusterrole=cluster-admin \

  --user=<YOUR_EMAIL>

Now, we will download the latest version of the Anthos Service Mesh command-line client and
make it executable using the following commands. Please note that there may be a newer version of
asmcli available, and you should update the command accordingly. You can find the latest one in
the Download asmcli section of the following documentation: https://cloud.google.com/
service-mesh/docs/unified-install/install-dependent-tools:

curl https://storage.googleapis.com/csm-artifacts/asm/
asmcli_1.15 > asmcli

chmod +x asmcli

Then, it’s time to install Anthos Service Mesh. We will use the --enable_all option for the installer
to automatically perform any actions required to properly complete the installation, including enabling
APIs, enabling workload identity, or creating namespaces and labels. Otherwise, we would have to
complete all those tasks manually:

./asmcli install \

   --project_id $PROJECT_ID \

   --cluster_name $CLUSTER_NAME \

   --cluster_location $COMPUTE_ZONE \

   --fleet_id $PROJECT_ID \

   --output_dir ./asm_output \

   --enable_all \

   --ca mesh_ca

The command may take a while to run, up to 10 minutes according to its own output, depending on
the features to enable, and will output a lot of information during the execution, including a warning
about the Linux command netcat (nc) that you can safely ignore. The final line, showing a successful
completion, should look the following:

asmcli: Successfully installed ASM.

https://cloud.google.com/service-mesh/docs/unified-install/install-dependent-tools
https://cloud.google.com/service-mesh/docs/unified-install/install-dependent-tools

Managing the Hybrid Cloud with Anthos164

Now let’s get the revision name into another variable:

REVISION=$(kubectl -n $CLUSTER_NAME \

  get mutatingwebhookconfiguration \

  -l app=sidecar-injector \

  -o jsonpath={.items[*].metadata.labels.'istio\.io\/
rev'}'{"\n"}' | awk '{ print $1 }')

Use the following command to verify that the variable was assigned an actual value:

echo $REVISION

And then, let’s enable automatic sidecar injection using the following command. You can safely ignore
the label not found message that you will see after running it:

kubectl label namespace default istio-injection- \ istio.io/
rev=$REVISION --overwrite

Next, let’s deploy the sample online store app to the cluster. We will apply the Kubernetes manifest
to deploy our services:

kubectl apply -f yaml/kubernetes.yaml

Then, we should just wait for all the pods to be ready using the following command:

kubectl get pods

After a few minutes, you should see an output like the following, where all the pods have their two
containers displayed in a ready status. Wait until all rows in the output show 2/2, periodically
re-running the preceding command until you get the expected result. For me, it took less than one
minute until I got an output like this:

NAME                           READY  STATUS RESTARTS AGE

catalog-77d69f5fbb-tf5kc        2/2   Running   0     2m57s

loadgenerator-68bf6bcb67-kg2tf  2/2   Running   0     2m57s

nftstore-fc987977f-8sx5k        2/2   Running   0     2m58s

offers-7bd86cc97-2zsjh          2/2   Running   0     2m58s

Note
Notice that each pod has two containers because the sidecar proxy is injected in all of them.

Anthos hands-on example 165

The deployment is complete at this point. Now you can find the external IP address of your Istio
Gateway Ingress or service by running the following command, and you can visit the application
frontend by pasting this IP address in your web browser:

kubectl get service nftstore-external | awk '{print $4}' | tail
-1

Visit http://<YOUR-EXTERNAL-IP> and play around a bit with the website, which simulates
an online boutique. The front page should look like this:

Figure 7.4 – Front page of the online boutique

You can see some products on the front page of the store, whose details are provided by the catalog
service. Click on each to read more details, or you can even click on the Add to cart button, which, of
course, is totally useless. Notice also how each time you load a web page, there is a different offer shown
in yellow after the page title. These offers are provided by the offers service. You may want to look
again at the architecture diagram included at the beginning of this section since all its components
should make much more sense now.

Managing the Hybrid Cloud with Anthos166

After a few minutes, the load generator built-in to the online store will have generated some meaningful
metrics, and your browsing will have too. At that point, it’s time to look at what Anthos already knows
about our service.

Search for Anthos in the omni-search box on the top bar, and you will see a screen like the one
in the following screenshot, where you should click on START TRIAL first and then click again on
ENABLE. If the mentioned buttons are no longer clickable or the screen does not appear, you may
have enabled the API and the trial in the past, and you can safely skip this step:

Figure 7.5 – Anthos trial and enable the API screen

Now click on the Service Mesh section on the left-side bar of Anthos and look for a table that
includes all the different services for our online boutique on the right side of the screen: frontend,
recommendations, checkout, currency, email, and payments.

Next, switch to the Topology view using the icon at the top-right side of the Anthos Service Mesh
area, and we will be able to see how services are connected thanks to a graph view like this one:

Anthos hands-on example 167

Figure 7.6 – An Anthos Service Mesh topology view

Notice how you can click on each node on the graph to see key metrics about each service on the
right side of the screen. Also, if you move your cursor over a service, the graph will show the number
of queries per second (QPS) the service sends to the rest it depends on. The preceding screenshot
also shows these QPS numbers.

Apart from being able to generate topology maps, this view can also be used to display a current and
historical snapshot of the topology, allowing us to see which changes were applied to the service over
time and even compare snapshots of the service taken at separate times, as a kind of a visual service
change log.

Now please go back to the Table view using the button on the top-right side and look for and click
on the catalog entry in the list of services. Then, select the Traffic view using the corresponding
option in the left-side menu. Notice how there is a single version of the catalog service, as shown
in the following screenshot. On the right side, we can also see graphs for some of the key metrics of
our service:

Managing the Hybrid Cloud with Anthos168

Figure 7.7 – Traffic view for productcatalogservice using a single version of the service

We will now deploy a version 2 of the catalog service and will send 25% of the traffic its way, with
the other 75% still being routed to version 1. Please leave the Traffic view page open in a tab because
we will come back to it right after the deployment.

This is what is called a canary deployment, where we only send part of the traffic to an updated
version of a service so we can confirm that it works correctly before we approve it to fully replace the
earlier version.

To do this, let’s first create a destination rule for productcatalogservice:

kubectl apply -f yaml/destinationrule.yaml

Then let’s create v2 of our productcatalog service:

kubectl apply -f yaml/catalog-v2.yaml

Finally, let’s split the traffic with 75% for v1 and 25% for v2:

kubectl apply -f yaml/split-traffic.yaml

After deploying these new services, wait for three minutes, go back to the main page of the online
store in your web browser, and reload it a few times. You will notice that it’s slower now. The reason
for this is that v2 of the catalog service added a latency of three seconds to each request. This
means that if you reload any of the pages, you should receive a slower response one out of four times.

Now, please load a few more pages on the store to generate data. You should also notice the effect of
the added latency during this process.

Then, just wait for a few minutes for the load generator component to make random requests and get
the metrics populated. Finally, reload the tab where you had the Traffic view, and you will now see a
traffic split in place, like the following:

Anthos hands-on example 169

Figure 7.8 – Traffic split view for the online boutique

Traffic is now being split between the two versions, sending approximately 25% of the requests to
catalog-v2, and the other 75% to catalog, which is the name for v1.

Also, look at the latency graph in the right column and see how catalog has a latency of a bit less
than two seconds, while catalog-v2has almost four seconds due to the extra lag added in the code:

Figure 7.9 – The latency view for each version of the product catalog service

This is how we can identify an issue during a canary deployment and only affect a small percentage
of our users. In cases like this, we would roll back the traffic split and remove catalog-v2 while
we work on a fix.

This is the command to undo the traffic split, but there’s no need to run it now:

kubectl apply -f yaml/rollback-traffic-split.yaml

Managing the Hybrid Cloud with Anthos170

And this is how we would delete catalog-v2 if we found that it doesn’t work as expected. Again,
this is not needed right now, but you can look at the YAML file to have a better understanding of how
deletions and rollbacks are implemented:

kubectl delete -f yaml/catalog-v2.yaml

Now, let’s open Cloud Logging by visiting the following URL for your project:

https://console.cloud.google.com/logs/query

Since there is a load generator running in the background, there will be continuous requests to our
online store, which we can take a look at. Your screen should look like this:

Figure 7.10 – Events for the online store in Cloud Logging

As you can see from this screen, it’s easy to see what our applications running on Anthos are doing,
even without debug logging enabled.

Now, try to filter the listing to display only error events:

1.	 Find the Severity drop-down list at the top-right part of the screen.

2.	 Check the box next to Error and click apply.

This is how to display only error messages. We can choose one or more severities, which is especially
useful for troubleshooting. Notice how you can also filter by resource or log name using the other
two drop-down lists next to the one for severity. Finally, notice how the first drop-down list on that
same line allows us to select the time range that we want to use, including both default ranges and the
possibility to define a custom one. Filters can be defined using the drop-down lists or by writing a query.

https://console.cloud.google.com/logs/query

Anthos hands-on example 171

The following screenshot displays logs for our online store on a specific node. You can see the selections
in the drop-down lists and how these are also shown as a query:

Figure 7.11 – Filtering events in Cloud Logging using drop-down lists or queries

Now let’s check the metrics for our cluster by opening Cloud Monitoring using this URL: https://
console.cloud.google.com/monitoring.

If you go to the Metrics explorer section using the left menu, you can click on the Select a Metric
button and see that there are a lot of metrics to choose from. For example, choose Server Response
Latencies, as shown in the following screenshot:

Figure 7.12 – Metric selection screen in Cloud Monitoring

https://console.cloud.google.com/monitoring
https://console.cloud.google.com/monitoring

Managing the Hybrid Cloud with Anthos172

Now choose to group by destination_service_name; which services have the highest latency?
In my case, they are the nftstore-external and catalog services, as you can see here:

Figure 7.13 – A customized Metrics explorer graph for server response latencies

Take some time to display other metrics. As you can see, there are a lot to choose from, including
metrics from Kubernetes, Istio, Networking, IAM, and metrics about consumed API calls and quotas,
together with audit events. These can be a great aid in performance and cost optimization procedures.

I hope this exercise helped you better understand how Anthos works and how easily we can deploy
services in Google Cloud. But Anthos also makes it easy to run our workloads on other providers. To
prove it, let’s use the next section to deploy our store on Microsoft Azure.

Running our example on Microsoft Azure

This section describes the steps required to deploy our store in Microsoft Azure, and it’s based on the
original example published by Google Cloud at the following URL: https://cloud.google.
com/anthos/clusters/docs/multi-cloud/azure/deploy-app.

Please note how most of the commands are used to create the underlying infrastructure, but once it is
available, the steps are the same as in any other platform, and all the setup is done from Cloud Shell.

To complete this part of the exercise, you need to have an active Microsoft Azure subscription. A free
test account will not work due to the limitation in the number of cores that can be requested.

https://cloud.google.com/anthos/clusters/docs/multi-cloud/azure/deploy-app
https://cloud.google.com/anthos/clusters/docs/multi-cloud/azure/deploy-app

Anthos hands-on example 173

First, open Cloud Shell, set the PROJECT_ID shell variable, and check that it has the right value:

PROJECT_ID=<your-project-id>

echo $PROJECT_ID

Next, set which Cloud project to use with the following command. You may be asked to authorize the
configuration change with your account:

gcloud config set project $PROJECT_ID

Then, use the following command to ensure that all required APIs are enabled:

gcloud --project="$PROJECT_ID" services enable \

  anthos.googleapis.com \

  cloudresourcemanager.googleapis.com \

  connectgateway.googleapis.com \

  gkemulticloud.googleapis.com \

  gkeconnect.googleapis.com \

  logging.googleapis.com \

  monitoring.googleapis.com

You should see a message saying Operation finished successfully.

Then, it’s time to install the Azure command-line interface (CLI) utility by running the
following command:

curl -sL https://aka.ms/InstallAzureCLIDeb | sudo bash

The installation will take a few seconds to complete.

You can verify that everything went well by issuing the following command, which will display a list
with the version of each component used by the Azure client:

az version

Now, log on to your Azure account with the Azure CLI using the credentials that you obtained at the
beginning of this section:

az login --use-device-code

Managing the Hybrid Cloud with Anthos174

Follow the instructions on the screen to authenticate, and you will see a JSON text, including information
about your account. You can use the following command at any time to verify that your account was
successfully added and show that JSON text again:

az account show

If you have more than one subscription and the one shown in the previous command is not the one
that you want to use, just run the following command to list all available subscriptions:

az account list

And then copy the value for the id field of the right one, and enable it by issuing this command:

az account set –subscription <SUBSCRIPTION_ID>

You can then run az account list again to verify that the right subscription is now being shown.

We are now ready to start creating our infrastructure in Azure.

First, please use the following commands to choose which Azure and Google Cloud regions will host
and manage your cluster. In my case, I chose eastus for Azure and us-east4 for Google Cloud,
but you may prefer to use other options that are closer to you. I recommend you choose regions that
are geographically close to each other:

az account list-locations -o table

gcloud compute regions list

Then, we’ll first define some environmental variables in Cloud Shell by pasting the following lines.
These variables will be used in later commands.

Just replace the placeholders in the first and second lines with your chosen Azure and Google Cloud
regions, respectively, and copy and paste the whole chunk into your console:

AZURE_REGION="<YOUR-CHOSEN-AZURE-REGION>"

GOOGLE_CLOUD_LOCATION="<YOUR-CHOSEN-GCLOUD-REGION>"

APPLICATION_NAME="azureapp"

CLIENT_NAME="anthosclient"

CLUSTER_RESOURCE_GROUP_NAME="azureapprg"

NAT_GATEWAY_NAME="azureappnatgw"

SSH_PRIVATE_KEY="./private_key.txt"

VNET_NAME="azureappvmnet"

VNET_ADDRESS_PREFIXES="10.0.0.0/16 172.16.0.0/12"

VNET_RESOURCE_GROUP_NAME="azureappvmnetrg"

Anthos hands-on example 175

Now, it’s time to create the different resources in Azure.

First, let’s create a new resource group for the virtual network:

az group create \

--location "$AZURE_REGION" \

--resource-group "$VNET_RESOURCE_GROUP_NAME"

Then, let’s create a new virtual network with a default subnet. You can safely ignore the warning related
to Microsoft.Network:

az network vnet create \

--name "$VNET_NAME" \

--location "$AZURE_REGION" \

--resource-group "$VNET_RESOURCE_GROUP_NAME" \

--address-prefixes $VNET_ADDRESS_PREFIXES \

--subnet-name default

Now, we will create an IP address for a new network address translation (NAT) gateway:

az network public-ip create \

--name "${NAT_GATEWAY_NAME}-ip" \

--location "$AZURE_REGION" \

--resource-group "$VNET_RESOURCE_GROUP_NAME" \

--allocation-method Static \

--sku Standard

Next, we will attach a NAT gateway to the IP address:

az network nat gateway create \

--name "$NAT_GATEWAY_NAME" \

--location "$AZURE_REGION" \

--resource-group "$VNET_RESOURCE_GROUP_NAME" \

--public-ip-addresses "${NAT_GATEWAY_NAME}-ip" \

--idle-timeout 10

Finally, we will attach the NAT gateway to the default subnet:

az network vnet subnet update \

--name default \

--vnet-name "$VNET_NAME" \

Managing the Hybrid Cloud with Anthos176

--resource-group "$VNET_RESOURCE_GROUP_NAME" \

--nat-gateway "$NAT_GATEWAY_NAME"

We are done with the networking part, let’s work on other resources.

First, we will create a separate resource group for our Azure clusters:

az group create --name "$CLUSTER_RESOURCE_GROUP_NAME" \

--location "$AZURE_REGION"

Next, we will create an Azure Active Directory (Azure AD) application and principal, which Azure
clusters will use to store configuration information. Let’s first create the Azure AD application by
issuing the following command:

az ad app create --display-name $APPLICATION_NAME

We will save the application ID in an environment variable for later use:

APPLICATION_ID=$(az ad app list --all \

--query "[?displayName=='$APPLICATION_NAME'].appId" \

--output tsv)

You can verify that the variable has a valid value using this command:

echo $APPLICATION_ID

Finally, we will create a service principal for the application:

az ad sp create --id "$APPLICATION_ID"

We will now create a few roles to allow Anthos clusters on Azure to access Azure APIs. First, let’s
define a few more environment variables that we will need to use in minute:

SERVICE_PRINCIPAL_ID=$(az ad sp list --all  --output tsv \

--query "[?appId=='$APPLICATION_ID'].id")

SUBSCRIPTION_ID=$(az account show --query "id" \

--output tsv)

Feel free to echo each of the variables to check for valid values.

Anthos hands-on example 177

In the next step, we will assign the Contributor, User Access Administrator, and Key
Vault Administrator roles to our subscription:

az role assignment create \

--role "Contributor" \

--assignee "$SERVICE_PRINCIPAL_ID" \

--scope "/subscriptions/$SUBSCRIPTION_ID"

az role assignment create \

--role "User Access Administrator" \

--assignee "$SERVICE_PRINCIPAL_ID" \

--scope "/subscriptions/$SUBSCRIPTION_ID"

az role assignment create \

--role "Key Vault Administrator" \

--assignee "$SERVICE_PRINCIPAL_ID" \

--scope "/subscriptions/$SUBSCRIPTION_ID"

Anthos clusters on Azure use an AzureClient resource to authenticate.

To create one, let’s first set the environment variable to hold information about our Azure tenant ID:

TENANT_ID=$(az account list \

--query "[?id=='${SUBSCRIPTION_ID}'].{tenantId:tenantId}" \

--output tsv)

Did you check that it was assigned a valid ID by using echo to display its value?

Then, let’s create the actual client:

gcloud container azure clients create $CLIENT_NAME \

--location=$GOOGLE_CLOUD_LOCATION \

--tenant-id="$TENANT_ID" \

--application-id="$APPLICATION_ID"

Next, let’s save the certificate to a variable, so we can upload it:

CERT=$(gcloud container azure clients get-public-cert \

--location=$GOOGLE_CLOUD_LOCATION $CLIENT_NAME)

Managing the Hybrid Cloud with Anthos178

And finally, let’s upload the certificate to your application on Azure AD:

az ad app credential reset \

--id "$APPLICATION_ID" \

--cert "$CERT" --append

Now, we will create a public and private key pair to encrypt communications and associate it with our
control plane and node pool virtual machines.

Run the following command to create the key pair. Notice that you may need to press the Enter key
for the command to complete:

ssh-keygen -t rsa -m PEM -b 4096 -C "COMMENT" \

-f $SSH_PRIVATE_KEY -N "" 1>/dev/null

Let’s next store the public key in an environment variable using the following command:

SSH_PUBLIC_KEY=$(cat $SSH_PRIVATE_KEY.pub)

Next, let’s set the default management location for our Azure cluster. This is the reason I recommended
you choose Azure and Google Cloud regions that are close:

gcloud config set container_azure/location \

$GOOGLE_CLOUD_LOCATION

Now, we will save our cluster’s resource group to an environment variable by running the
following command:

CLUSTER_RESOURCE_GROUP_ID=$(az group show \

--query id \

--output tsv \

--resource-group=$CLUSTER_RESOURCE_GROUP_NAME)

Next, we’ll save our cluster’s Virtual Network ID to an environment variable by running the
following command:

VNET_ID=$(az network vnet show \

--query id --output tsv \

--resource-group=$VNET_RESOURCE_GROUP_NAME \

--name=$VNET_NAME)

Anthos hands-on example 179

Finally, let’s save our cluster’s subnet ID to an environment variable by running the following command:

SUBNET_ID=$(az network vnet subnet show \

--query id --output tsv \

--resource-group $VNET_RESOURCE_GROUP_NAME \

--vnet-name $VNET_NAME \

--name default)

All the preparations are now finished, and we are ready to create our cluster in Azure!

The following command will create our cluster in Azure. Notice which CIDR blocks I chose for pods
and services and customize them to your requirements. I also chose our own project ID to register
the cluster; please change it, too, if you prefer to use any other. Notice that the cluster version was
the latest one available at the time of writing this chapter, and a new one will probably be available
when you read it.

This command will take a while to complete, this is normal, and it can be a very good time to go for
a coffee!

The command may display a PrincipalNotFound error due to replication errors, but that shouldn’t
be a problem; just be patient and let the command finish. If the command does not run properly on
the first run, it may be that the certificate that we generated a few minutes ago is not ready for use yet
or that some other replication has not yet finished. Just wait a minute and try again. You may need to
delete the cluster before you can try to create it again. If that is the case, please refer to the Cleaning
up section for more details:

gcloud container azure clusters create azure-cluster-0 \

--cluster-version 1.25.5-gke.1500 \

--azure-region $AZURE_REGION \

--fleet-project $PROJECT_ID \

--client $CLIENT_NAME \

--resource-group-id $CLUSTER_RESOURCE_GROUP_ID \

--vnet-id $VNET_ID \

--subnet-id $SUBNET_ID \

--pod-address-cidr-blocks "192.168.208.0/20" \

--service-address-cidr-blocks "192.168.224.0/20" \

--ssh-public-key "$SSH_PUBLIC_KEY" \

--tags "google:gkemulticloud:cluster=azure-cluster-0"

Managing the Hybrid Cloud with Anthos180

If the command finished successfully, you should see an output like this:

Created Azure Cluster [https://us-east4-gkemulticloud.
googleapis.com/v1/projects/anthos-azure/locations/us-east4/
azureClusters/azure-cluster-0].

NAME: azure-cluster-0

AZURE_REGION: eastus

CONTROL_PLANE_VERSION: 1.25.5-gke.1500

CONTROL_PLANE_IP: 10.0.0.4

VM_SIZE: Standard_DS2_v2

STATE: RUNNING

Next, let’s create a node pool:

gcloud container azure node-pools create pool-0 \

--cluster azure-cluster-0 \

--node-version 1.25.5-gke.1500 \

--vm-size Standard_B2s \

--max-pods-per-node 110 \

--min-nodes 1 \

--max-nodes 5 \

--ssh-public-key "$SSH_PUBLIC_KEY" \

--subnet-id $SUBNET_ID \

--tags "google:gkemulticloud:cluster=azure-cluster-0"

Again, a successful execution will finish with a message similar to the following one:

Created Azure Node Pool [https://us-east4-gkemulticloud.
googleapis.com/v1/projects/anthos-azure/locations/us-east4/
azureClusters/azure-cluster-0/azureNodePools/pool-0].

NAME: pool-0

NODE_VERSION: 1.25.5-gke.1500

VM_SIZE: Standard_B2s

MIN_NODES: 1

MAX_NODES: 5

STATE: RUNNING

You can use the following command to check the status of your cluster:

gcloud container azure clusters describe azure-cluster-0 \

--location $GOOGLE_CLOUD_LOCATION

Anthos hands-on example 181

Once the cluster and the node pool are ready, we will just need to obtain application credentials for
the cluster by running the following command:

gcloud container azure clusters \

get-credentials azure-cluster-0

The command will display an output like this one:

A new kubeconfig entry "gke_azure_anthos-azure_us-east4_azure-
cluster-0" has been generated and set as the current context.

Then, we will be ready to deploy our application using almost the same commands that we used for
Google Cloud, which is the magic of Anthos. Please remember that these commands should be run
from the base directory in the code repository for this chapter.

The only command that changes its format is asmcli, which must be run with the following command-
line parameters from Cloud Shell, where you should replace <your_username> with your own
username to provide a path to the configuration file. Also, make sure that asmcli was downloaded
during the Google Cloud deployment exercise; otherwise, the execution will fail:

./asmcli install \

--fleet_id $PROJECT_ID \

--kubeconfig /home/<your_username>/.kube/config \

--output_dir ./asm_output \

--platform multicloud \

--enable_all \

--ca mesh_ca

Then, let’s add a label using the commands that we already know:

REVISION=$(kubectl -n azure-cluster-0 \

get mutatingwebhookconfiguration \Ç-l app=sidecar-injector \

-o jsonpath={.items[*].metadata.labels.'istio\.io\/
rev'}'{"\n"}' | awk '{ print $1 }')

And then the following:

kubectl label namespace default istio-injection- \

istio.io/rev=$REVISION --overwrite

Managing the Hybrid Cloud with Anthos182

Now, it’s time to deploy our sample application:

kubectl apply -f yaml/kubernetes.yaml

Then, just wait for all the pods to be ready using the following command:

kubectl get pods

We should get two pods for each service due to the sidecar proxies, which will provide information
about our services to Anthos Service Mesh.

The deployment is complete at this point. Now, you can find the external IP address of your store by
running the following command, and you can visit the application frontend by pasting this IP address
into your web browser:

kubectl get service nftstore-external | awk '{print $4}' | tail
-1

Visit http://<YOUR-IP-ADDRESS> and play around a bit with the website.

After a few minutes, our new cluster should appear in the Google Cloud UI section for Anthos, just
as it did for its Google Cloud equivalent. This is what the cluster information section should look like:

Figure 7.14 – Azure Kubernetes cluster information shown in the Anthos UI

And the Anthos Service Mesh will also provide us with visibility about the different services, even if
this time they are running in Azure, as you can see in the following screenshot:

Anthos hands-on example 183

Figure 7.15 – The Topology view of our application from the Anthos UI

If you want to clean up once you have tested the application and played around with the Azure UI or
its CLI, just use the following commands to delete all the created resources:

gcloud container azure node-pools \

delete pool-0 --cluster azure-cluster-0

gcloud container azure clusters delete azure-cluster-0

az network vnet delete \

--name "$VNET_NAME" \

--resource-group "$VNET_RESOURCE_GROUP_NAME"

az network nat gateway delete \

--name "$NAT_GATEWAY_NAME" \

--resource-group "$VNET_RESOURCE_GROUP_NAME"

az network public-ip delete \

--name "${NAT_GATEWAY_NAME}-ip" \

--resource-group "$VNET_RESOURCE_GROUP_NAME"

Note
This project uses a load generator, so leaving it running overnight will mean having continuous
requests in our online boutique. Please take this into consideration since it may affect your
available credits or incur costs. My recommendation is to clean up at once after completing
the exercise.

Managing the Hybrid Cloud with Anthos184

Cleaning up

If you created a new project in Google Cloud to run this example, please delete it so you don’t incur any
extra costs. If you reused another project, you can just delete the cluster using the following command:

gcloud container clusters delete $CLUSTER_NAME \

--zone=$COMPUTE_ZONE

Now, let’s summarize what we discussed in this chapter.

Summary
This chapter started by enumerating the key points to consider when choosing a cloud provider, together
with the common pitfalls and second thoughts that we can have during and after the process, and how
being able to work in different environments and providers simultaneously can be extremely beneficial.

Then we introduced Anthos, a platform that can help us use multiple environments and cloud providers
while providing unified management, security, and observability capabilities.

After deep diving into Anthos components, concepts, and features, we had the chance to use a hands-on
example to better understand the benefits of Anthos and deploy a test application to Google Cloud
and Azure.

In the next two chapters, I will show you how Google Cloud services and APIs can help us simplify
our code while bringing advanced and useful features to our applications and services.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

•	 8 Criteria to ensure you select the right cloud service provider: https://cloudindustryforum.
org/8-criteria-to-ensure-you-select-the-right-cloud-service-
provider/

•	 A valuable resource containing information about how to choose an interconnect type is How
to choose a Network Connectivity product: https://cloud.google.com/network-
connectivity/docs/how-to/choose-product

•	 Fleet management examples: https://cloud.google.com/anthos/fleet-
management/docs/fleet-concepts/examples

•	 NFTs explained: https://www.theverge.com/22310188/nft-explainer-what-
is-blockchain-crypto-art-faq

https://cloudindustryforum.org/8-criteria-to-ensure-you-select-the-right-cloud-service-provider/
https://cloudindustryforum.org/8-criteria-to-ensure-you-select-the-right-cloud-service-provider/
https://cloudindustryforum.org/8-criteria-to-ensure-you-select-the-right-cloud-service-provider/
https://cloud.google.com/network-connectivity/docs/how-to/choose-product
https://cloud.google.com/network-connectivity/docs/how-to/choose-product
https://cloud.google.com/anthos/fleet-management/docs/fleet-concepts/examples
https://cloud.google.com/anthos/fleet-management/docs/fleet-concepts/examples
https://www.theverge.com/22310188/nft-explainer-what-is-blockchain-crypto-art-faq
https://www.theverge.com/22310188/nft-explainer-what-is-blockchain-crypto-art-faq

Part 3:
Extending Your Code – Using

Google Cloud Services and
Public APIs

Another of the benefits of Google Cloud is that it provides a lot of products and services, which we
can integrate with our existing applications and services to add new and powerful features just by
adding a few lines of code.

In this part of the book, we will first cover how networking works in Google Cloud since it’s a very
important part of cloud architecture, and then we will describe different advanced services that we
can use to make our code even better, including storage and databases, translation and text-to-speech
services, and even artificial intelligence-based APIs, which allow us to easily analyze our media assets
to understand their contents, opening the door to a lot of new and exciting applications.

This part contains the following chapters:

•	 Chapter 8, Making the Best of Google Cloud Networking

•	 Chapter 9, Time-Saving Google Cloud Services

•	 Chapter 10, Extending Applications with Google Cloud Machine Learning APIs

8
Making the Best of Google

Cloud Networking

In the last four chapters, we presented different options for running our code, from the simplest to
the most complex, and we ended our journey by discussing the hybrid and multi-cloud architectures
facilitated by Anthos.

All these scenarios have something in common: we want to run our code on the cloud, take advantage
of its many benefits, and expose it as a service or application to our users.

This chapter will present important concepts about networking that can help us improve the availability,
performance, and security of our services and applications deployed on Google Cloud.

I will first enumerate and briefly describe all the network-related services available in Google Cloud.
Then, we will discuss how resources are organized in Google Cloud data centers. In the following
section, we will dive deep into a few services that can help us connect to our resources on Google Cloud.

Next, we will discuss some of the basic Google Cloud networking services, such as Content Delivery
Network (CDN), Domain Name System (DNS), Load Balancing, and Cloud Armor. Finally, we will
find out how the network service tiers can help us prioritize performance or cost savings, depending
on our priorities.

We’ll cover the following main topics in this chapter:

•	 Introducing Google Cloud networking

•	 Understanding regions and zones

•	 Connecting to our cloud resources

•	 Basic Google Cloud networking services

•	 Network Service Tiers

•	 Sample architecture

Making the Best of Google Cloud Networking188

Introducing Google Cloud networking
Networking is a key component of any public cloud provider. Connecting our private resources to
the internet in the best possible way, considering performance, latency, security, and availability will
be key for our online strategy to succeed.

Google Cloud networking services have three key features that make them the best candidates for
enterprises to use to modernize their infrastructure:

•	 They are built on top of a planet-scale infrastructure, making it possible to get closer than ever
to our users, minimizing latency and maximizing performance

•	 We can leverage automation to make tasks easier and managed services that minimize
administrative and maintenance tasks

•	 We can use AI and programmability to make services detect and react to specific situations,
reconfiguring themselves automagically

With these three features in mind, network services and technologies in Google Cloud have been
organized into four different families according to their purpose: connect, scale, secure, and optimize.

The connect family includes quite a few products. We will see some of them later, in their own sections.

The rest of the key services for connecting our resources to the outside world are as follows:

•	 Private Service Connect: This provides private connectivity to our own services, Google
services, and third-party services from our Virtual Private Cloud (VPC).

•	 Service Directory: This is a managed service to publish, discover, and connect all application
services by registering their endpoints. It offers inventory management at scale.

We will cover the scale family of products later in this chapter, including Cloud Load Balancing,
Cloud CDN, and Media CDN.

Next is the family of products used to secure our network. While there will be a specific section
dedicated to talking about Cloud Armor, there are a few other products worth mentioning:

•	 Cloud IDS: This is a detection service for intrusions, malware and spyware, and botnet attacks
on our network

•	 Cloud NAT: This assigns internal IP addresses to our private resources while providing them
with controlled internet access and preventing external access

•	 VPC Service Controls: These allow us to define security perimeters for API-based services,
mitigating any potential opportunities for our data to be exfiltrated

And last, but not least, is the family of products used to optimize our network. Network Service Tiers
will have its own section later in the chapter, but it’s also worth mentioning Network Intelligence Center,

Understanding regions and zones 189

a product that provides observability into the status of our network, including health, connectivity,
performance, and security.

Having introduced the networking services available in Google Cloud, let’s deep dive into how Google
Cloud organizes its resources around the world.

Understanding regions and zones
When we use Google Cloud to deploy our code using any of the different options that we already
discussed in earlier chapters, one of the most important decisions to make is where to deploy and
run our workloads.

Compute Engine resources, such as virtual machines or containers, are available in data centers
located in many different countries. Google Cloud organizes these resources geographically using
regions and zones.

A region is just a geographical location that we can choose to host our cloud resources. Three examples
would be us-west-1, asia-northeast-2, and europe-west-3. As you can see, the first part of a region
includes the continent, followed by the area, and ends with a number that identifies the region.

Each region contains three or more zones, which are deployment areas for our cloud resources. Zones
in each region are interconnected with low latency and high bandwidth.

For example, one of the previously mentioned regions, asia-northeast-2, contains the following zones:
asia-northeast2-a, asia-northeast2-b, and asia-northeast2-c, all three located in Osaka, Japan. Zone
names begin with the region name, followed by a letter identifying the zone.

If we have customers in or near Osaka, we should choose asia-northeast-2 as the region to deploy our
resources because then they will be geographically closer to our users. If we also want higher availability
for our services, we should deploy these resources to different zones in that region, so that an outage
in any of the zones will not affect our service.

We can achieve an even better availability level if we replicate our resources in multiple regions.
Continuing with our example, if we want extra availability and we are planning to expand our business
to Tokyo, or if we already have customers there, it would make sense to replicate our infrastructure
to asia-northeast1, which also has three zones; all of them are located in Tokyo.

If our company keeps on growing and decides to open local headquarters in the EMEA region and
the US, and we get a lot of new customers in those markets, we will probably decide at some point to
deploy our resources to local regions in each of these continents so that we can reduce latency and
meet legal requirements, again using different zones for better availability.

Making the Best of Google Cloud Networking190

Note
Please take into account that while extending or replicating your architecture to multiple
regions will make your architecture more robust, it may also require additional work to keep
your data in sync, depending on the nature of your services, their requirements, and how they
were implemented. This sync process will involve communication within or across regions,
which will incur different costs. This added complexity and cost is another factor to take into
account when deciding about both your location and expansion strategies.

Now that we know how to use regions and zones, let’s talk about cloud resources and how they are
bound to each other.

If we want to deploy a container, for example, it makes sense to think that it will run in a data center,
and since there is at least one in each zone, we can say that a container is a zonal resource. If we attach
a disk to this container, it will also be provided from a storage system within the data center so, again,
a disk is also a zonal resource.

However, this container may have an external IP address associated with it. These addresses are shared
between all the regions, which means that they are a regional resource.

As you can probably imagine, zonal resources can only be used within the scope of the zone where
they are located, while regional resources can be requested and used in any of the underlying zones
in that region.

For example, we can use an IP address that was just freed in the asia-northeast1-b zone in a container
located in asia-northeast1-a because IP addresses are regional resources. However, if we try to attach a
disk located in asia-northeast1-c to a virtual machine located in asia-northeast-b, that will fail because
these resources are zonal, and we cannot attach them unless they are in the same zone.

Besides zonal and regional resources, we have also worked in previous chapters with global resources,
which can be used in any region or zone. An example of a global resource would be a container image.
Can you think of any other examples?

Finally, it’s important to know that in Google Cloud zones and clusters are decoupled, which means
that your organization may have its resources in one or more clusters within a chosen zone, while
another may use a different set of clusters. This abstraction helps balance resources across the clusters
available in a region and is also compatible with the addition of new regions as the available Google
Cloud infrastructure grows over time.

Choosing the best region and zone

One of the steps that we need to complete before establishing our presence in the cloud is deciding
where our resources will be geographically located.

Understanding regions and zones 191

As a rule of thumb, we should choose a region that is geographically closer to our customers. There
are several reasons for doing this:

•	 Lower latency: Being physically closer to our customers reduces the latency to our workloads,
which equates to better performance for our applications or services.

•	 Higher availability: If our services are replicated in different data centers, it will be easier to
tolerate outages, either by redirecting traffic to others that are not affected or by having backup
services ready to be run on different data centers.

•	 Better compliance: Some services need to follow strict regulations and policies, often preventing
personal data from leaving the country where it was obtained. Being present in different countries
can make it easier for us to comply with all these requirements.

However, there are some other important criteria to consider when making this choice:

•	 Service and feature availability: Not all regions have the same services available to Google
Cloud customers. For instance, if we need to use GPUs for complex calculations or to train
ML models in a shorter time, we need to choose a region where they are available. This is also
applicable to virtual machine families, and we should not only consider current needs but also
future ones before we make a final choice.

•	 Carbon footprint: Google is making a huge effort to minimize its footprint but, at the time of
writing, some regions still have a higher carbon footprint than others, and you may want to
exclude those from your list of candidates.

•	 Pricing: Services don’t have the same cost in all regions, and if your budget is limited, you
may prefer to sacrifice a bit of latency for a significant price cut. Please take into account that
this will depend a lot on which services you use and how often you use them, and may not be
worth it in many cases.

•	 Quotas: Google Cloud has both project-wide and per-region quota limits for certain resources.
Being aware of these limits is essential if you want to make a good choice considering current
usage and future plans for growth. You can find details about these limits on the following
documentation page: https://console.cloud.google.com/iam-admin/quotas.

•	 Expansion plans: If you have a clear plan to extend your service to other countries or even
continents, it may be worth building an architecture that supports multiple zones and regions
from day one. Not taking this into account early enough is a common mistake that costs
organizations a lot of money and time later. As we discussed earlier in the book, thinking big
won’t hurt anyone, and designing an application with scalability in mind from day one can
only save you time and money in the future.

•	 Service-Level Agreements (SLAs): If your service includes some kind of SLA, it is a good idea
to have backup infrastructure ready in passive mode in another region or zone, ready to be
awakened if an outage happens. This is just another kind of replication, but one that can save
you a lot of money if a disaster happens.

https://console.cloud.google.com/iam-admin/quotas

Making the Best of Google Cloud Networking192

You can find a list of zones and information about their available machine types, CPUs, carbon footprint
levels, and whether they support GPUs on the following documentation page: https://cloud.
google.com/compute/docs/regions-zones.

Next, let’s discuss which options are available to connect Google Cloud with the rest of our infrastructure.

Connecting to our cloud resources
Before learning more about the connectivity options available in Google Cloud, let’s first understand
how networking works internally by introducing VPC networks.

VPC networks

Just as a Virtual Machine is the virtual version of a physical host, a VPC network is the virtual version
of a traditional physical network. VPCs are directly implemented inside Google’s production network.

A VPC network provides different services and features:

•	 Connectivity for our VMs and GKE clusters, App Engine flexible environment instances, and
other Google Cloud products built on VMs.

•	 Native internal TCP/UDP load balancing and proxy systems for internal HTTP(S) load balancing.

•	 Compatibility with Cloud VPN and Cloud Interconnect to help us connect to our on-premises
networks. We will cover these two products in a minute.

•	 Traffic distribution from Google Cloud external load balancers to backends.

Beyond this feature list, VPC networks support standard networking protocols and services such as
IPv4 and IPv6, subnet creation, route definitions, and firewall rules, among others. We can even use
a shared VPC to let multiple projects communicate with each other with higher standards of security
and better performance.

A Google Cloud project can contain multiple VPC networks and, by default, each new project comes
bundled with a VPC network that has one subnet. Regarding its scope, VPC networks are global
resources while subnets are regional.

We can even connect one of our VPC networks to another located in a different Google Cloud project
or organization by using VPC network peering.

In summary, VPC networks will cover all our internal networking needs, but let’s now go through
the different Google Cloud networking options to connect our cloud resources with on-premises
networks, third-party data centers, or public cloud providers.

https://cloud.google.com/compute/docs/regions-zones
https://cloud.google.com/compute/docs/regions-zones

Connecting to our cloud resources 193

Network connectivity products

Google Cloud offers various products depending on our purpose and requirements.

Starting from the simpler to the more complex cases, if we just need to connect to Google APIs, also
including Google Workspace if our organization uses it, these are our two options:

•	 Direct Peering: This establishes a bi-directional direct path from our on-premises network to
Google’s edge network, providing connectivity with any Google Cloud products and services
that can be exposed through one or more public IP addresses. This option is available at more
than 100 locations in 33 countries.

•	 Carrier Peering: This uses a service provider to set up a dedicated link that connects on-premises
systems with Google, with a lower latency and higher availability.

If we want to access our VPC networks from either our on-premises networks or other cloud providers,
we have three different options:

•	 Cloud VPN: This uses an IPSec VPN connection in a single region to securely connect our
on-premises network to our VPC networks in Google Cloud, with an SLA of 99.99% service
availability. This is the basic option.

•	 Dedicated Interconnect: The first Cloud Interconnect option creates a dedicated connection
between our on-premises network and our VPC networks in Google Cloud. This is the most
powerful option, a cost-effective choice for high-bandwidth needs, offering 10-Gbps or 100-Gbps
circuits with attachment capacities from 50 Mbps to 50 Gbps. If you don’t need that circuit
speed, you can opt for Partner Interconnect.

•	 Partner Interconnect: The second option with Cloud Interconnect uses a service provider to set
up a connection between our on-premises network and our VPC networks in Google Cloud. It
offers flexible capacities from 50 Mbps to 50 Gbps and can be considered an intermediate option.

Please take into account that Cloud Interconnect is recommended as a better alternative to any of the
peering options previously described as long as you don’t need access to Google Workspace.

We can also use Google Cloud to connect our sites using Network Connectivity Center, which
uses Google’s network as a Wide Area Network (WAN) and reduces operational complexity using
a hub-and-spoke model. Network Connectivity Center acts as the hub, and we can set up spokes so
that different types of Google Cloud resources can be attached. For example, we can set up a spoke
with a VLAN attached to one of our sites.

Finally, if we need to connect to external CDN providers, CDN Interconnect can help us optimize our
CDN population costs while providing direct connectivity to select CDN providers from Google Cloud.

Now that we have been familiarized with the available options for connectivity, let’s use the next section
to discuss some of the basic networking services available in Google Cloud.

Making the Best of Google Cloud Networking194

Basic Google Cloud networking services
Google Cloud offers other managed networking services with advanced features and little to no
maintenance overhead. Let’s cover the most important ones.

Cloud DNS

The internet was built on top of Transmission Control Protocol and Internet Protocol (TCP/IP).
IP makes it possible to assign each host a unique address, also known as an IP address, while TCP
takes care of transmitting the information between two IP addresses. We can think of IP as a gigantic
phone book and TCP as a big team of couriers responsible for delivering information from a source
host to a destination.

There are two versions of the IP protocol that co-exist at the time of writing. The older one, IPv4,
provides a 32-bit pool with up to 4,294,967,296 different addresses, most of which are currently in use.
A newer version, IPv6, was built to solve the address shortage and added some interesting new features,
providing a 128-bits pool with up to 340,282,366,920,938,463,374,607,431,768,211,456 addresses.

As you can imagine from these numbers, a phonebook is vital to help us connect to the right destination
without having to remember thousands of numbers, and that’s the reason domain names were created.

For example, if I want to take a look at the NBA’s website to read the latest news on my favorite US
basketball teams, I should remember their IP address, 34.213.106.51, so I can load their web
page in my web browser. This would become rather difficult as I started to access many other websites.
However, remembering its associated domain name, nba.com, seems much easier. Besides, the IP
address associated with this domain name may be subject to changes; for example, if they move to a
new provider or if good old IPv4 is deprecated at some time soon. The domain name, however, will
remain the same for much longer.

As the NBA did some time ago, if we want to set up our presence on the internet in general, and if
we need to use cloud resources in particular, we will need to use domain names to make it easier for
our users and customers to connect to our online services. And here is where Cloud DNS comes to
the rescue.

Cloud DNS is Google’s implementation of a DNS, that is, a managed service used to publish information
about our domain names to the global DNS, a hierarchical distributed database holding information
about all the domains available worldwide, including IP addresses and other types of information
provided by domain owners. Yes, this would be that gigantic phonebook we recently mentioned.

As owners of one or more domains, we will maintain a DNS zone, which is a small part of the global
database where we will keep our names and IPs up to date. A managed zone contains DNS records
with a common name suffix, such as nba.com. The combination of millions of DNS zones makes up
the global DNS database, which is replicated multiple times by service providers using caching DNS
servers, which provide a faster local experience to customers all around the globe.

Basic Google Cloud networking services 195

All domain names are registered in a domain registrar, which provides information about the owner,
together with a list of the IP addresses of the DNS servers, which can answer requests about the DNS
zone for a specific domain. Google Domains (https://domains.google) is an example of a
registrar, among many other ones available, while Cloud DNS is one of the many options available to
host the information about our DNS zone.

As with other managed services, Google provides a UI and an API, which makes it much easier for
us to use the service while they take care of DNS server administration and patching. Users can then
perform lookup requests to get the IP addresses of our hosted services so that they can connect to
and use them.

Cloud DNS supports both public and private DNS zones. The former are those that are visible to
anyone once they have been published. The latter, however, will be internal and only visible from
one or more VPC networks that we configure to have access. These are mostly used to provide DNS
resolution for internal corporate IP addresses, which don’t have any use outside our organization.

An interesting benefit of using a cloud-based DNS service is that our zonal databases are replicated
across Google’s regions, and any received requests are routed and responded to from the location
closest to the requestor using anycast, which means that our users will experience lower latency and
better performance.

Another nice feature of Cloud DNS is that it integrates with Identity and Access Management (IAM),
allowing us to define access permissions at both the project and zone level, and is also compatible
with the use of service accounts. This is key to ensuring that we can control who can make changes
to our DNS zones.

A DNS system provides different types of records, which can be queried to obtain information that
helps clients connect to servers. Each record has a type, which defines what it can be used for, an
expiration date to indicate for how long the provided data is valid, and the actual data associated with
the record type.

These are the record types that can be stored in a DNS zone for a domain in Cloud DNS:

•	 A: An address record that maps host names to their IPv4 address – for example, 65.1.4.33,
a bunch of numbers that we could potentially remember.

•	 AAAA: An IPv6 address record that maps host names to their IPv6 address. An example
would be c109:56a9:bfa0:9596:b84e:be91:875f:5dd6. As you can see, these
are virtually impossible to remember.

•	 Canonical Name (CNAME): A CNAME record that specifies alias names. For example, nba.
com could be set up as an alias of www.nba.com so that all users writing the short name in
their browsers are redirected to the full WWW domain.

https://domains.google

Making the Best of Google Cloud Networking196

•	 Mail exchange (MX): An MX record that is used in routing requests to mail servers. It can be
used to obtain the IP addresses of servers that handle incoming emails. One of the records for
nba.com is mxa-001bf601.gslb.pphosted.com.(148.163.156.86).

•	 Name server (NS): A NS record that delegates a DNS zone to an authoritative server. It contains
two or more entries for servers that can provide authoritative answers to requests about this
zone. One of the records for nba.com is a7-67.akam.net. (23.61.199.67).

•	 Pointer (PTR) record: A PTR record defines a name associated with an IP address. Is often
known as a reverse lookup, which provides a name given an IP address. For example, if we
looked up an IP address of 34.213.106.51 and it had a PTR record defined (which it
doesn’t), it would point to nba.com because this is another valid IP for NBA’s website.

•	 Start of authority (SOA): An SOA record is used to designate the primary name server and
administrator responsible for a zone. Each zone hosted on a DNS server must have an SOA
record and this is useful for obtaining more information about who owns a domain. In our
example, the SOA record for nba.com defines a1-148.akam.net as the primary NS and
dnsteam@nba.com as the responsible email. An SOA record also has a serial number that
increases with any change performed in the record, so it’s easier to ensure that DNS caches
always have the latest version.

As you can see from this list, we can use DNS records to resolve the IP address of a specific domain
name (both for IPv4 and IPv6), get the IP addresses where our emails should be sent for a specific
domain, or get a list of the primary name servers for a specific zone. All these requests, properly
combined, can provide us with all the information we need at the IP protocol level to connect to a
specific address. Then, the TCP protocol will be used to route the packets containing our information
to the IP address indicated.

DNS information is critical in terms of security. If someone can point our domain names to another IP
address, they can set up a fake server and impersonate ours, which could cause us serious problems. To
prevent this, the Domain Name System Security Extensions (DNSSEC) can be used to authenticate
responses provided to lookups by the DNS system. These extensions are only available in public
DNS zones.

For the DNSSEC validation process to work properly, all elements in the lookup chain must be properly
configured: the DNS server must be compatible with it, the specific zone must have a DNSKEY record,
and the client must enable authentication in the lookup request.

Security and observability in Cloud DNS are provided via integrated monitoring and logging, which
includes audit information, together with a dashboard where we can see graphs and metrics about
latency, queries per second, or error rates, which can help us detect and troubleshoot any issues.

In the next section, we will discuss how load balancing is implemented in Google Cloud, a key service
if we want to deploy services for many users.

Basic Google Cloud networking services 197

Cloud Load Balancing

A load balancer distributes user traffic across multiple instances of our applications or services, thus
reducing the risk of performance issues caused by sudden traffic peaks.

Cloud Load Balancing is a distributed managed service providing virtual load balancers that minimize
management tasks, offering low latency and superior performance and supporting more than 1 million
queries per second.

There are different load balancer types we can choose from, so there are a few questions that can help
us choose the best one for our needs:

•	 What type of traffic do we need to balance? There are Layer 4 load balancers available for HTTP,
HTTPS, TCP, SSL, UDP, ESP, and ICMP.

•	 Do we need global or regional balancers? Global balancers distribute traffic to backends across
multiple regions, while regional ones work with backends located in a single region. Please
notice that global load balancing will only be available if we use the Premium Network Service
Tier. We will discuss tiers later in this chapter.

•	 Is the expected traffic external or internal? External means that traffic is coming from the
internet, while internal means that traffic begins and ends inside Google Cloud.

•	 Do we prefer a proxy or a pass-through balancer? Proxy balancers terminate client connections
and open new ones to the target backends, while pass-through ones preserve client packet
information and implement direct server returns, where the response doesn’t go back through
the load balancer, but directly to the client.

Google Cloud offers software-defined load balancers with no hardware involved, which reduces
maintenance needs and uses a single anycast IP address to offer a global frontend available in all
regions worldwide. Seamless autoscaling makes it possible to handle unexpected traffic peaks without
pre-warning. Also, Layer 7 load balancers can use advanced routing, such as using the URI or a field
in the HTTP header to decide which is the best backend to use.

Cloud Load Balancing has native integration with Cloud CDN for delivering cached content and
Cloud Armor for advanced protection.

Speaking of the devil, next, we will discuss how Cloud Armor can help us prevent attacks and mitigate
online threats.

Cloud Armor

When online services are exposed to public connections and traffic, either directly or using load
balancers, these services should be properly protected from potential threats that may affect their
performance or compromise their security.

Making the Best of Google Cloud Networking198

These are some of the most common dangerous attacks:

•	 Distributed denial-of-service (DDOS) attacks aim to disrupt the normal behavior of a service
by flooding it with internet traffic coming from thousands of different hosts, making the target
service unavailable

•	 Cross-site scripting (XSS) attacks are used to send malicious code, generally using browser-
side scripts, to end users of a web application

•	 SQL injection (SQLi) attacks use bad filtering of parameters in the code to inject additional
SQL clauses, allowing the attacker to gain access to privileged data or even delete the contents
of a database

•	 Local file inclusion (LFI) attacks trick a web application to display local files, either exposing
sensitive information or remotely executing unwanted code

•	 Remote file inclusion (RFI) attacks exploit web applications that dynamically include or
reference external scripts or files, tricking them into loading different files instead, which often
contain malware

•	 Remote code execution (RCE) allows attackers to run malicious code remotely by using exploits

Any public service is exposed to potential risks and threats and should be actively protected and
monitored from a security perspective. Google Cloud Armor is a security product built for this purpose
and is able to detect and mitigate the aforementioned risks and also other attack types working at the
load balancer level. It’s compatible not only with native applications running on Google Cloud but
also with hybrid and multi-cloud architectures.

Cloud Armor is compatible with the following types of load balancers:

•	 A global external HTTP(S) load balancer

•	 A global external HTTP(S) load balancer (classic)

•	 An external TCP proxy load balancer

•	 An external SSL proxy load balancer

Security is provided using a sophisticated Web Application Firewall (WAF), which includes thousands
of complex preconfigured policies, each with dozens of rules compiled from open source security
standards. Some of these rules only apply to HTTP(S) load balancers since some of the most popular
threats previously mentioned only target web applications.

We can also add our custom policies using a specific language that can help us define which match
conditions will trigger the policy and which actions will be taken when in that case.

Additional security capabilities include rate limiting, which can be used to prevent the exhaustion
of application resources; compatibility with named IP lists, provided and maintained by third-party

Basic Google Cloud networking services 199

providers and which can be associated with specific actions; and Adaptative Protection, which analyzes
incoming traffic, detecting potential threats and dynamically applying WAF rules to mitigate them.

Cloud Armor is offered in two different service tiers:

•	 Google Cloud Armor Standard, which uses a pay-as-you-go pricing model and includes
always-on DDoS protection and preconfigured WAF rules for Open Web Application Security
Project (OWASP) Top 10 protection.

•	 Managed Protection Plus, a monthly subscription with all the features of Google Cloud Armor
Standard, adding third-party named IP address lists, and Adaptive Protection. Subscribers also
get access to DDoS bill protection and DDoS response team services.

Now, it’s time to talk about the last networking service, in this case, used for content delivery.

Cloud CDN

Globalization is unstoppable. A few decades ago, it was inconceivable that a small store in Madrid,
Spain, could be selling its products to users in Africa, South America, or Japan, at the same time. The
internet has become a window to the world; companies no longer think locally and must be prepared
to do business on a global scale.

Continuing with the example, if a well-known t-shirt company based in Madrid wants to sell its
products worldwide, it will probably start by setting up an e-commerce website. There, it will organize
its t-shirts by size, style, and color... and it will add high-density pictures (in terms of pixels) for each
article so that customers can see all their details and fall instantly in love with them. It will need some
JavaScript to implement fancy zoom effects on the pictures and a bunch of CSS style sheets to make
the website look great, and it will be ready to rock!

If its web server is located in a hosting company, it will load blazingly quickly when a laptop is used
to test it out, and the t-shirt company will be very happy with the result, but it won’t be long before
it gets an email from an angry customer in Japan, complaining because the t-shirts are great, but the
website is really slow and browsing the product section is disappointing. How can this be possible?
What can be done to fix it?

The bigger the distance between the user and the server, the bigger the latency is too, and the lower the
speed, unless our hosting company has good peering and optimized routes for international traffic. In
a global world, it’s impossible to find a location that will work well for all our international customers.
And this is where CDNs come to the rescue.

Our cloud resources should be as close as possible to our users, but what happens when our users can
be anywhere in the world? The answer is quite simple: our resources should also be all around the
world so that we can provide the best possible experience to potential customers wherever they are.

Making the Best of Google Cloud Networking200

This approach was impossible due to costs not so long ago: setting up servers in many distinct locations
would be extremely expensive and would take a lot of maintenance work to keep systems patched and
files synchronized across locations.

Thanks to CDNs, we can now straightforwardly do this. Cloud CDN uses Google’s global edge
network to cache and serve content to users from the closest location, improving their experience by
minimizing latency while maximizing bandwidth.

Caching means that CDNs intercept an object when it is requested, for example, an image in a
website, retrieving it from the origin and storing a local copy before returning it to the requestor.
Future requests will be directly served from the cache, saving time and improving speed because
the content will be available in a location closer to the user. A cache is a storage area where we store
copies of all these requests, together with information about their original location, so we can reuse
them in future requests.

In our example, imagine that we have a CDN enabled in Japan. A Japanese user finds our store by
searching on Google and gets to the product page of the t-shirt website, which has a lot of pictures
of assorted designs. These images will be configured to load from Cloud CDN, which will detect that
the user is based in Tokyo and will look for the closest location of a Google Cloud CDN, which is
Tokyo in this case.

When each image is requested, Cloud CDN will check whether it already exists in the local cache. If
it does, which is called a cache hit, the image will be returned directly from the cache.

If the image didn’t exist in the local cache, which is known as a cache miss, the image will be loaded
and copied into the local cache from the origin server, which can be either the original web server
or a Google Cloud Storage bucket, depending on our configuration, and will be returned to the user
from the local cache and stored for future requests.

The cache hit ratio is the percentage of requests that resulted in a cache hit, which means that the
requested objects were served from the cache. This is a useful metric to understand how well our
caching strategy is working.

As traffic grows from a specific location to our website, all users can benefit from cached files and have
a better user experience while loading objects originally located in a remote location. The price for
bandwidth is much cheaper too since hosting plans often have limited bandwidth and as the number
of daily visitors increases, costs will rocket. The web server load is also much lower once we hand
over the serving of popular and cacheable content to a CDN server. Indeed, we can cache all kinds of
static assets such as images, videos, JavaScript, and CSS files, among many others.

Caches are built to be always full, so cache content needs to be constantly evicted. Eviction is the
mechanism used to make room for updated content by deleting unpopular or old files. Since these
are the first on the list to be evicted, they can be replaced with content that is newer and has a higher
probability of being reused; objects may also be chosen at random.

Network Service Tiers 201

If we are using content that needs to be periodically refreshed, imagine, for example, a section with a
picture called “Today’s offer” that changes every day, we can use headers in the origin server to define
an expiration date for an object. The object’s expiration date will be checked on the next request and
if it has already expired, a new copy will be cached and the outdated one will be evicted.

Objects will be inserted in the cache when they are fetched from the origin. In some cases, you may
need to force the eviction of some of these objects to prevent serving stale content, for example,
out-of-date JavaScript or CSS. This can be done by following a process known as cache invalidation,
which uses a path pattern to find which matching objects should be evicted.

Finally, an interesting practice is negative caching, where we configure our CDN to cache error
responses too, preventing malformed requests or URLs no longer working, but still referenced in
our website, from sending huge loads of traffic to the origin server, which would defeat the main
purpose of a CDN.

Negative caching mitigates the effect of errors on the web server load at the cost of having to move
error analysis from the original server to the cloud, which in our case is not a big issue thanks to
Cloud Logging.

CDNs are easy to learn about but not so easy to master, but once they are properly tweaked, they can
be a significant help to reduce load and minimize the cost of serving static assets while providing a
great user experience wherever our users are located.

The same week that I was writing this chapter, Google Cloud announced the availability of a new
product called Media CDN, specifically created for media streaming. This product complements Cloud
CDN by providing optimized caching support for streaming video, large file downloads, and other
similar workloads that require high-throughput egress. Media CDN can serve cached content using
encrypted traffic (HTTPS) and supports bring-your-own (BYO) domains to replace Google-hosted
default ones. It can also use Cloud Armor to control access to content, and also supports using a Private
Cloud Storage bucket as the origin by only allowing authenticated requests to access its contents. You
can read more about Media CDN here: https://cloud.google.com/media-cdn.

And this was the last service in this section. Finally, let’s discuss how network tiering works in
Google Cloud.

Network Service Tiers
Each organization has different use cases and requirements for its presence in Google Cloud. We
will use different services, deployed in various locations, and will choose our own payment options.

Why should we not be able to do the same when it comes to networking? Indeed, Google Cloud was
the first major cloud provider to offer a tiered model for networking, allowing customers to optimize
for either performance or cost, depending on their needs.

To make things simple, the two available tiers are called Standard Tier and Premium Tier.

https://cloud.google.com/media-cdn

Making the Best of Google Cloud Networking202

The main difference between them is that in the Standard Tier, the traffic between the internet and
VM instances in our VPC network is routed over the internet in general, while in the Premium
Tier, traffic is kept within Google’s network as much as possible, which means better performance,
obviously at a higher cost.

The Premium Tier routes traffic using Google’s network until it reaches the user’s ISP while for the
Standard one, traffic will exit much earlier and will transit multiple networks, with higher latency
and lower performance.

For this reason, the Standard Tier is recommended for services hosted within a region and provides a
performance level like any other provider, while the Premium Tier is a much better choice for globally
available services, with higher performance when compared with other providers.

As I already mentioned in other sections, the two network service tiers available are not mutually
exclusive, and while it makes sense to use the Premium Tier for global and mission-critical systems,
the Standard one works well for regional services without incurring unnecessary additional costs.

Standard Tier is also not compatible with services such as Cloud CDN or Cloud VPN/NAT gateways, as
I already mentioned, with HTTP(S) balancers being only usable if the backend is a Cloud Storage bucket.

Whatever tier we use, all the traffic between our Virtual Machines will be kept on Google’s network,
regardless of whether they are in the same or different regions, whether a load balancer is on the path,
or whether we are using public or private IP addresses.

Note
Standard Tier is only available to resources that use regional external IP addresses. Besides, it
is only available in some of the Google Cloud regions, so you’d better check its availability if
you are planning to use this tier.

That’s everything on Network Service Tiers in Google Cloud. Next, let’s look at a sample network
architecture including many of the services we just discussed.

Sample architecture
After quite a few pages describing the different networking services and products, I thought that a
wonderful way to finish the chapter would be to combine a few of them in a real word scenario.

Imagine a company called e-Design 4U, based in Portland, Oregon. It sells graphic designs and
templates for web designers in the United States, but most of its customers are in the east and the
west of the country.

The company wants to provide fast downloads from both sides of the country but would like some
added capacity to alleviate the load on its private servers a bit, located in a hosting provider in Portland.

Sample architecture 203

Security is also important, and the company wants to make sure that it’s not possible to access its
content without a paid subscription.

Given this scenario, we could think of an architecture combining some of the services we covered in
the chapter. Let’s take a look at the following diagram and then we will discuss how it works:

Figure 8.1 – Architecture diagram for our sample networking architecture

The proposed design uses similar workloads on both sides of the United States, in the us-east1 and
us-west1 regions, to create a hybrid architecture. A VPC is used to connect both regions, making it
easier to replicate media and to use a common set of tools and processes across the whole Google
Cloud environment, regardless of the region.

Cloud DNS will translate the domain name to the IP address of the load balancer when users want to
access the website by typing www.edesign4u.com in their browsers, the domain name used by
the company. Cloud Load Balancing will then take users to either the east or the west cloud region,
depending on their location. Users who are geographically close to the hosting provider, such as
the example one in Portland in the earlier figure, will be connected directly to the private hosting
environment, but the rest will be balanced across regions, where an elastic setup will be able to scale
the number of nodes up and down, depending on the traffic received.

Static media will be originally hosted in Portland but will also be replicated in the Google Cloud regions
using a local media storage component to store a copy of the files and Cloud CDN to cache recently
requested files closer to the edge to minimize latency and maximize download speeds.

Making the Best of Google Cloud Networking204

Notice how load balancers are connected to an Identity-Aware Proxy (IAP) to ensure that only
authenticated users can access the private part of the website. The company only creates accounts for
users with active subscriptions, using this system to protect the media files that they produce. The
private part of the website also allows subscription renewals.

Finally, Cloud Armor is enabled to include firewall rules to allow traffic from the IP addresses of the
load balancers, denying any traffic. CDN traffic will not pass through Cloud Armor, but any requests
that reach the workloads or duplicate media content servers will be analyzed to minimize intrusion
and any other potential security risks.

I hope you found this example interesting. Now, as an optional exercise, please take a few minutes to
think how you would extend this scenario to other parts of the world, maybe using Tokyo or Amsterdam
as the new headquarters for Asia and Europe, respectively. Also, how would you change the design if
the company wants to stop using its hosting provider and run its website on Google Cloud?

Once you have answered those questions, it’s time to wrap up.

Summary
This chapter started with a brief introduction to networking in Google Cloud. Then, we discussed how
regions and zones work and then explained how we can connect to our cloud resources.

Right after, we deep-dived into some of the most important networking services available in Google
Cloud, including Cloud DNS, Load Balancing, Cloud Armor, and Cloud CDN.

Finally, we talked about how the two different Network Service Tiers can be used to prioritize
performance or cost savings and analyzed a sample architecture showcasing many of the network
services and products discussed during this chapter.

In the next two chapters, I will show you how Google Cloud services and APIs can help you simplify
your code while bringing advanced and useful features to your applications and services. Then, it will
be the perfect time to put everything we have learned into practice.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

•	 DNS Security Extensions (DNSSEC) overview: https://cloud.google.com/dns/
docs/dnssec

•	 Best practices for Cloud DNS: https://cloud.google.com/dns/docs/best-
practices

•	 Load balancer feature comparison: https://cloud.google.com/load-balancing/
docs/features

https://cloud.google.com/dns/docs/dnssec

https://cloud.google.com/dns/docs/dnssec

https://cloud.google.com/dns/docs/best-practices

https://cloud.google.com/dns/docs/best-practices

https://cloud.google.com/load-balancing/docs/features

https://cloud.google.com/load-balancing/docs/features

Further reading 205

•	 OWASP list of attacks: https://owasp.org/www-community/attacks/

•	 Google Cloud Armor Adaptative Protection overview: https://cloud.google.com/
armor/docs/adaptive-protection-overview

•	 Network Service Tiers overview: https://cloud.google.com/network-tiers/
docs/overview

https://owasp.org/www-community/attacks/

https://cloud.google.com/armor/docs/adaptive-protection-overview

https://cloud.google.com/armor/docs/adaptive-protection-overview

https://cloud.google.com/network-tiers/docs/overview
https://cloud.google.com/network-tiers/docs/overview

9
Time-Saving Google

Cloud Services

The time available to complete a migration or develop a new application is often too short. Using some
of the services provided by Google Cloud as building blocks for our applications can save us time and
money when creating new services or migrating legacy ones. Even if we are not short of time, using
managed services will help us mitigate security risks and reduce maintenance tasks.

Let’s introduce some of the most useful Google Cloud services for developers and use an example to
understand how we can use them together.

We’ll cover the following main topics in this chapter:

•	 Cloud Storage for object storage and retrieval

•	 Cloud Tasks for asynchronous task execution

•	 Firestore in Datastore mode for high-performance NoSQL storage

•	 Cloud Workflows for service orchestration

•	 Pub/Sub for inter-service messaging

•	 Secret Manager for storing sensitive data

•	 Cloud Scheduler for running jobs at the right time

•	 A hands-on exercise to put them everything into practice

Let’s get started!

Time-Saving Google Cloud Services208

Cloud Storage for object storage and retrieval
Our applications or services often need to store data files, and this can be a common source of
headaches when our users are in different parts of the world. Luckily for us, Google Cloud has an ace
in the hole to make our lives easier.

Introducing Cloud Storage

Cloud Storage is a managed service that allows us to store any amount of unstructured data and
retrieve it as often as we like. Combine this with dual-region storage, turbo replication, automatic
class assignment, and life cycle management, and this service can help us integrate advanced storage
capabilities into our application while enormously simplifying our development cycle.

Cloud Storage stores immutable pieces of data, called objects, each of which can contain a file of
any kind. We can organize our files in directories, and all of these are stored in buckets, which are
containers associated with a Google Cloud project. Note that directories are just logical organization
systems that make Cloud Storage more similar to how operating systems group files, but in reality,
all objects in a bucket are stored at the same level. This is something to consider when we write code
because a simple operation such as moving a lot of files from one directory to another is no longer
as simple as updating the pointer. In this case, all objects will need to have their location metadata
updated, which is a much more complex process. Buckets are resources that can be created in one
or more regions and are integrated with IAM, allowing us to configure who can read, create, update,
or delete them, and even making it possible to mark a container as public so that anyone can read
its contents. Indeed, one of the uses for Cloud Storage is to implement a simple web server for static
assets or to store the files for services such as Cloud CDN.

When we have access to a bucket, we can upload or download files to it, depending on our permissions,
and there are different ways to do it. Cloud Storage is easy to use from the Cloud console for simple
operations, and the gcloud utility can also be used to upload, copy, move, or delete big amounts of
files using the command line. We can also integrate this service with our code using either its REST
API or different client libraries provided by Google for different programming languages. We will
see some examples in our hands-on exercise.

And if you remember, when we spoke about Cloud Functions, we mentioned that they can be deployed
with a trigger that runs them when a file is uploaded, modified, or deleted from a specific bucket.
This is a very convenient way to automate file management using an asynchronous serverless model
where we only pay when there is activity in our buckets.

From a security point of view, apart from the already mentioned IAM integration, it’s important to
know that server-side encryption is used for our data by default, using keys managed by Google,
with the option to use customer-managed encryption keys if we prefer.

When an object is uploaded to a bucket using the same name as an existing one, it will be overwritten.
However, object versioning can be enabled to keep old versions, too. This will increase the number

Cloud Storage for object storage and retrieval 209

of stored objects and the associated cost, but it will also allow us to recover old versions of a file if
needed, which can be a lifesaver depending on our requirements. I have seen a few customers struggle
because of not enabling this feature early enough.

A retention policy can also be defined so that uploaded objects are deleted after a specific amount of
time. This makes Cloud Storage useful for applications that need to follow data retention regulations
for legal purposes or, for example, for services where old content is automatically deleted after some
time to leave room for newer uploads.

Finally, Cloud Storage pricing is calculated by combining three different factors: the amount of data
stored in our buckets, the processing that’s done by Cloud Storage, and the amount of data read
from or moved between our buckets. The free tier includes 5 GB of regional storage for free (in US
regions only), together with 100 GB of network egress from North America to all region destinations
(excluding China and Australia) per month.

Now, let’s deep dive into the two key concepts of Cloud Storage.

Bucket locations and storage classes

When we create a bucket in one of our projects, we will be asked to choose a geographic location for
it. This is an important choice because it can’t be changed later. If we make a mistake, we can always
create another bucket and move our files there, but given that bucket names are unique, this may not
be an easy or comfortable transition in some cases.

We will be offered three choices for the location type of a new bucket:

•	 Region: Our objects will be stored in a single geographic place. This is the most affordable option.

•	 Dual region: Our objects will be stored in two geographic places. This is the most expensive option.

•	 Multi-region: Our object will be stored in a large geographic area with two or more geographic
places. This option is cheaper than a dual region but more expensive than a single region.

Since each region has at least two available zones, as we mentioned in the previous chapter, all Cloud
Storage data is always zone-redundant, and dual or multi-region types add region redundancy, with
data replicated in areas located at least 100 miles away from each other.

Replication will happen in 1 hour or less by default, but we can enable Turbo Replication if this is not
fast enough, and in that case, replication will happen in 15 minutes or less at an extra cost.

And if any of the regions become unavailable before an object has been replicated to them, Cloud
Storage will make sure that stale versions of an object are never served, and objects will be replicated
as soon as the region is available again. All of this is part of a feature called strong consistency.

And speaking of objects, when our applications use them to store files, there can be different requirements
regarding retention and accessibility. For example, a backup log file may be required to be available

Time-Saving Google Cloud Services210

for a long time but rarely be accessed, while images for a website or app may be used only for a few
days, but will be frequently read by our visitors.

This takes us to the concept of a storage class, a piece of metadata attached to an object that defines
the conditions under which that object will be stored, including information such as how long it will
be stored and what its level of availability will be.

We can define a default storage class when we create a bucket, and Cloud Storage will attach that
storage class to any object that is created inside that bucket. We can also change the storage class for
one or more objects anytime we want.

These are the storage classes that we can attach to any object or set by default in a bucket:

•	 Standard storage: This is the best class for frequently accessed data and provides the highest level
of availability. It doesn’t have a minimum storage duration and no retrieval fees are incurred.
It can be combined with dual- or multi-region storage options to increase redundancy and
reduce latency.

•	 Nearline storage: This is a low-cost option that’s ideal for files that need to be read or modified,
on average, once a month or less frequently. This class is also useful for long-tail static assets.
The minimum storage duration is 30 days and low-cost retrieval fees will be incurred.

•	 Coldline storage: This is a very low-cost option for storing data that is read or modified less
than once a quarter. The minimum storage duration is 90 days and very low-cost retrieval fees
will be incurred.

•	 Archive storage: This is the lowest-cost option for data access and happens less than once a
year. This is the ideal option for long-term data archiving, backups, and disaster recovery data.
Despite its slightly lower availability when compared with the Standard class, files will still
be available within milliseconds. The minimum storage duration is 365 days and extremely
low-cost retrieval fees will be incurred.

We just covered the basics of Cloud Storage. Next, let’s change topics and introduce Cloud Tasks, an
interesting service for repetitive tasks.

Cloud Tasks for asynchronous task execution
Our solutions or services will often need to deal with repetitive tasks, and it’s in this kind of scenario
that we can make the most out of our cloud provider. Processing millions of images or videos or
making thousands of API calls to download reports can take a long time if we don’t create a fast and
robust architecture.

Having multiple workers for different tasks, implementing parallel processing, or being able to retry
failed operations with an exponential backoff can complicate our code quite a lot and make it difficult
to maintain.

Cloud Tasks for asynchronous task execution 211

Google Cloud offers different solutions for these kinds of challenges. We already covered some of them
earlier in this book, such as Cloud Functions, App Engine, and Cloud Run, but this time, I want to
include Cloud Tasks because, in my opinion, it’s a very good example of a managed service that can
save us a lot of time when we are creating a new application or migrating a legacy one.

Cloud Tasks is a managed service that allows us to create different queues, where we can offload requests
to be processed asynchronously. We will map each of these queues to a worker that will complete the
required task for a single request. Cloud Tasks will then take care of executing our worker multiple
times in parallel to process all queued requests, giving us full control over how each queue will work:
how many threads will run in parallel, how many times a failed operation will be retried, when to
consider that a request timed out, and if and how to implement exponential backoff between retries.

Imagine a simple example: we need to create thumbnails for 3 million images every half an hour. There
are different ways to implement this in Google Cloud, but Cloud Tasks is an interesting option. We
can just create a queue and configure it to accept requests that include the URL of an image in Cloud
Storage and the name of the bucket and path where the thumbnail must be stored.

Then, we create a Cloud Function or set up an App Engine service that takes these three parameters
and creates a thumbnail for a single image. Finally, we need to create another Cloud Function that
detects new files uploaded in our Cloud Storage input bucket and queues one request for each of them
to Cloud Tasks; we will use Cloud Scheduler to run it every half an hour.

Just with these few steps, we have easily built a scalable system that will create our thumbnails as fast
as possible and at a very low cost. And best of all, if tomorrow we need to crop these or other images
too, we can reuse many of these components and implement the new service in a matter of minutes!

Cloud Tasks can help us move those tasks that are not user-facing to the background so that we can
quickly answer any request. For example, imagine that a user requests complex processing of a video
file using our application. Our code can just queue the processing request in Cloud Tasks and show
the user a web response, almost immediately, saying that an email will be sent when the processing
is completed, which improves the user experience.

The actual processing of the uploaded video will begin later, once the request reaches the top of the queue,
and the user will be notified once the processing is complete, as the last action of the associated worker.

Cloud Tasks queues can be configured using the gcloud command-line tool, but for compatibility
reasons, we can also use the AppEngine queue.yaml SDK file to create and configure our queues.
The Cloud Tasks API is our third and last option, using either the REST API or the client libraries
available for multiple programming languages.

Compared to Cloud Pub/Sub, Cloud Tasks provides scheduled delivery and task creation deduplication,
together with individual task management, as differential features, apart from the fact that it is more
targeted at explicit invocations, while Pub/Sub is often used for implicit invocations.

Time-Saving Google Cloud Services212

And while Cloud Scheduler acts more as a scheduler for repetitive tasks using a unique trigger, when
we compare it with Cloud Tasks, we can see the latter more as an asynchronous task manager that
supports multiple tasks and triggers.

Cloud Tasks is billed by every million billable operations, including API calls or push delivery attempts.
The first million is offered at no cost every month, as part of the Free Tier. Services used or invoked
using API requests are charged separately.

Next, we’ll talk about Datastore, a flexible, fast, and scalable database.

Firestore in Datastore mode for high-performance NoSQL
storage
Firestore in Datastore mode is a NoSQL fully-managed database that supports atomic transactions
and provides flexible storage and massive scalability, with encryption at rest. It’s a very interesting
option for web backends and mobile applications.

Firestore in Datastore mode is a rebranding and the next evolution of Datastore. This mode combines
Datastore’s system behavior with Firestore’s storage layer, which makes queries strongly consistent
and removes previous limitations on the number of entity groups and writes per second, which
were applicable when using Firestore in its legacy Native mode. On the other hand, when we use
Firestore in Datastore mode, we need to use the Datastore viewer in the Google Cloud console, and
the Datastore API and client libraries in our code. You can read more about the differences between
the two Firestore modes on this page of the Google Cloud documentation site: https://cloud.
google.com/datastore/docs/firestore-or-datastore.

Compared to traditional databases, basic concepts change their names:

•	 Tables become kinds

•	 Rows become entities

•	 Columns become properties

•	 Primary keys become keys

The main additional difference is that Firestore in Datastore mode is schemaless, which makes it
much more flexible. For example, different entities (rows) in the same kind (table) can have different
properties (columns), and these properties can use the same name but contain values of different types.

This makes Datastore especially useful in scenarios where different product types coexist, using different
field names and types for each product. We no longer need hundreds of empty fields to support many
different products at once – Datastore adapts to our needs instead of it being us who need to adapt
to available features and capabilities.

https://cloud.google.com/datastore/docs/firestore-or-datastore
https://cloud.google.com/datastore/docs/firestore-or-datastore

Cloud Workflows for service orchestration 213

Datastore supports SQL-like queries using GQL and indexes, together with keys, but it does not
support joins, which may be a significant limitation in some use cases. As a fully managed service,
Google takes care of data sharding and replication to ensure both consistency and availability.

Also, we can execute multiple datastore operations in a single Datastore transaction due to its
compatibility with all four ACID characteristics: atomicity, consistency, isolation, and durability.

Datastore data can be accessed using its JSON API, open source clients, or community-maintained
object-relational mappings (ORMs), such as Objectify or NDB.

The Free Tier of Datastore includes 1 GB storage, 50,000 entity reads, 20,000 entity writes, 20,000
entity deletes, 50,000 small operations, and 10 GiB of egress per month. Extra entity operations are
paid per use in groups of 100,000, while additional egress is charged by GiB used each month.

Now, let’s talk about Cloud Workflows and how it can help us connect services to build an
end-to-end solution.

Cloud Workflows for service orchestration
When we build a solution using microservices or if we simply create different pieces that handle a
part of the total job, we need a way to connect all these services and order them in a way that makes
sense, where the outputs from one step will become the input to the next one.

For example, if we create an application to convert audio recordings recorded by our Customer Support
department into a dashboard of sentiments, one of our components will detect the audio file format
and route the file to the corresponding processor. Then, the processor will convert the audio file into
a common audio format, another service will convert the audio file in the common format into text,
the next one will analyze the language and create insights, and a final service will consolidate all the
information, generate a dashboard, and email a sentiment report when it’s ready.

Cloud Workflows can help us build solutions like the one I just described, integrating Google Cloud
Public APIs such as natural language processing with custom services, such as our Cloud Functions,
App Engine, or Cloud Run, and with any other HTTP-based APIs, internal or external.

This is a managed service and we also have all the benefits of a serverless solution – that is, on one
side, we will not be charged when our workflows are idle and on another, there will be no infrastructure
to patch or security to harden. We just care about designing our workflows and Cloud Workflows
will do the rest for us.

There are many use cases for which this service can be a nice fit, including service orchestration to
build solutions, handling repetitive jobs, automating IT delivery or business processes, and any other
scenarios where an ordered execution of services can be of help.

Workflows are written using either JSON or YAML files, describing each of the steps that should be
executed. Different blocks can be used in each step, including multiple conditional statements based

Time-Saving Google Cloud Services214

on the value of a variable, iterations over a collection of data, or executing a step concurrently to
process multiple values in parallel.

We can also group steps that repeat often into a sub-workflow, which acts similarly to a function
written in any programming language, and access global parameters passed to the workflow in any
of the steps. All these features will allow us to create rather complex workflows that can be used to
solve many different challenges.

Once our workflow is ready, we can run it using the UI or the gcloud command-line utility, use
the REST API or a client library to execute it from our code, or schedule it to run one or more times
using Cloud Scheduler, a service that we will talk about at the end of this chapter.

The pricing of Workflows is calculated monthly based on the number of workflow steps executed,
regardless of their result and whether they are first or subsequent retries. External API requests,
resources with custom domains, and steps waiting for callbacks are considered external steps, while
the rest are internal. The first 5,000 internal steps and 2,000 external HTTP calls per month are offered
at no cost, as part of the Free Tier.

We will create a workflow in our Hands-on exercise section so that you understand how this service
works and how useful it can be to connect all our microservices and turn them into actual solutions.

Speaking about service connection and communication, it’s time to talk about Pub/Sub.

Pub/Sub for inter-service messaging
Pub/Sub is a messaging service that works well with distributed applications and those using microservice
architectures. Its key advantage is that it provides an asynchronous service that decouples message
producers from message consumers.

Inter-process communication has been traditionally performed using remote procedure calls (RPCs)
and similar synchronous systems. Pub/Sub offers an alternative based on asynchronous broadcasting,
where event producers send a global message attached to a topic, and event consumers subscribe only
to those topics that are of interest to them.

Each of the messages is indeed lent to all active subscribers until they are acknowledged by one of
the consumers, indicating that it has been processed, after which they are removed from the queue.

Since a message can contain all kinds of information, this makes it possible to send data across processes
and services using a scalable and asynchronous system. Services sending messages can do so whenever
and as many times as they want, and services developed to receive and process those messages can
do so at a different time, without causing any disruptions or data loss in the communication process.

For example, imagine a highway toll system, where all daily toll charges are sent at night to a central
processing system and sent for payment the next morning. We could use Pub/Sub for all toll stations to
stream their daily pending charges at 11 P.M. and use a central receiver to start reading and processing
those payments the next morning.

Secret Manager for storing sensitive data 215

Pub/Sub is offered in two different versions:

•	 Pub/Sub standard: Replicates data to at least two zones, with a third added with a best-effort
approach. No additional maintenance is required.

•	 Pub/Sub Lite: This is a lower-cost option where topics are available only within a single zone or
region. If we choose this option, we will need to provide and manage our storage and throughput
capacity, an additional load that may not justify this choice in most cases.

We can use Pub/Sub in a lot of different scenarios and for many different uses, such as these:

•	 Parallel processing: We can have a single event producer and multiple consumers that will
process queued messages in parallel, maximizing the performance of our application.

•	 Event ingestion: We can have multiple event producers streaming a massive amount of events
that we will be queued and that we will ingest asynchronously on our backend using one or
more consumers, maybe at a different time.

•	 Event distribution: If we need to share global information to be used by multiple departments
or applications, we can broadcast them using different topics and let each department subscribe,
receive, and process only messages from those topics that they are interested in.

•	 Data streaming or replication: We can stream our data row by row or in slices and use a
subscriber to replicate it in another location.

As with the rest of the services, we can interact with Pub/Sub using the UI, run commands using gcloud,
or use either the REST API directly or via a client library for our favorite programming language.

The cost of this service is based on the combination of throughput, egress, and storage required for
our messages. The first 10 GiB of throughput is free every month as part of the Free Tier.

Due to the nature of this server, using an emulator for testing is recommended. I added a link about
this topic in the Further reading section.

Next, let’s present another service that will help us protect our secrets.

Secret Manager for storing sensitive data
When we write our code, there is a lot of sensitive data that we use and should never be stored in a
repository, such as credentials, API keys, certificates, or database passwords. Even if leaving this data
out of our code is a good practice, where can we store it, access it, and easily update it when required
without compromising security? This is where Secret Manager comes to the rescue.

Secret Manager is a managed service that allows us to store any kind of configuration information
or sensitive data, stored either as text strings or binary blobs, and retrieve it any time we need it.

Time-Saving Google Cloud Services216

Each piece of sensitive data is stored as part of what is called a secret, which also contains additional
metadata. Versioning is enabled for the contents of each secret, so we can always recover an old
password if it’s needed, or just get the latest version to ensure that we are always up to date. When
we add a new version, the secret is said to be rotated. Besides, any specific version of a secret can be
disabled if we need to prevent access to its contents.

Using the Secret Manager API directly is the recommended implementation path to maximize
security. Remember that security is based on the principle of the weakest link, so practices such as
retrieving a secret just to store it in a file or passing it using an environment variable can put your
entire application at risk.

Also, rotating secrets periodically will mitigate the risk of leaked data, which will make them unusable
after the rotation. Configuring IAM wisely and enabling data access logging can also help us troubleshoot
and identify the root cause of any security issues.

This service can also be used in combination with Cloud KMS to create cryptographic keys and use
them to encrypt or decrypt our secrets.

Secret Manager is billed depending on the number of active secret versions per location, the number
of access operations, and the number of rotation notifications. The Free Tier includes 6 active secret
versions, 3 rotation notifications, and 10,000 access operations every month.

In the following section, we’ll discuss how we can schedule jobs and tasks in Google Cloud.

Cloud Scheduler for running jobs at the right time
This is the service offered by Google Cloud for running tasks at specific times. We can schedule a Cloud
Function to generate and send a daily report at 7 A.M. from Monday to Friday, or we can invoke our
App Engine service to process pending user-uploaded images every 10 minutes. If you are a Linux or
Unix user, this is the equivalent of cron.

Cloud Scheduler can schedule units of work to run periodically and supports the following types
of targets:

•	 A HTTP(S) endpoint

•	 A Pub/Sub topic

•	 An App Engine HTTP(S) service

•	 Cloud Workflows

For App Engine, the job must be created in the same region as the App Engine app, while for the other
three options, any Google Cloud region where the service is available can be chosen.

A hands-on exercise 217

Cloud Scheduler jobs can be created from the UI in the Cloud console, using the gcloud command-
line utility, or using either the REST API or a client library. The UI will use a second tab in the Cloud
Scheduler interface to show information about jobs scheduled in App Engine using cron.yaml.

For example, creating a job using gcloud would be as simple as this:

gcloud scheduler jobs create http sample-http-job \

    --schedule "0 7 * * *" \

    --uri "http://mydomain.com/my-url" \

    --http-method GET

This would schedule a job every day at 7 P.M., invoking the specific URL included previously. The
scheduling time is defined using the cron format. I added a link in the Further reading section at the
end of this chapter to help you get familiarized with this format if you have never used it.

As shown in the preceding example, additional parameters can be used, depending on the target
type, such as the HTTP method, the Pub/Sub topic, the Workflow name, the App Engine location, or
relative URL. A job can also be configured to run as a specific service account to enable authentication
using either OAuth2 or OpenID Connect tokens. We will see an example in our hands-on exercise.

Other important parameters are the region where the job will run and the time zone that the schedule
will use. Please take into account that if we don’t choose a time zone carefully, our execution times
may change during any Daylight Saving Time (DST) period. If this will be a problem for our service,
we should choose a UTC-based time zone.

Finally, we can also configure a specific number of retries in case of errors, including a backoff strategy
to increase the interval between failed jobs, which can help us support both instant failures and also
longer-running ones. For these strategies to work, it is key that our application provides a proper
return code or status code to indicate the result of the operation.

Cloud Scheduler is billed at a fixed cost by job ($0.10 at the time of writing this chapter) and all accounts
get 3 services as part of the Free Tier. Notice that this is at the account level and not at the project level.

Now, it’s time to put all these services into action in our hands-on exercise.

A hands-on exercise
In this exercise, we will build a solution using most of the services covered in this chapter. Our objective
is to provide a web page containing the current weather information for a list of cities. This can be
implemented using different architectures. Let me describe one of them and then we can comment
on what other options we could have chosen.

Time-Saving Google Cloud Services218

In this case, I identified the following list of steps:

1.	 Read the list of cities.

2.	 Get the forecast for each city.

3.	 Put the results in a centralized storage location.

4.	 Update the web page containing the weather information.

5.	 Repeat all previous steps periodically.

A lot of questions need to be answered before we can move on; these are some that came to my mind
during the process and how I came to answers to them. You may disagree with some of them, and
that’s perfectly fine.

First, I decided to use an external list of cities stored in a file, containing just the name of each of them,
so that anyone could make changes without needing updates in the code. I thought that a file in Cloud
Storage could be a nice option since it’s also one of the services described in this chapter. Additional
options could be a Google Docs spreadsheet, a file in Google Drive, and more.

Then, I had to find an open API providing weather information. I chose Weather API (https://
weatherapi.com) because they have a free tier that just requires a link back and they offer a nice
API that provides the weather by city name.

For centralized storage, I chose Datastore because I can create a custom kind and store a single entry
associated with each city name and assign it to the full response provided by the API, which I can use
later. Data updates and listing all entries are really easy operations, too.

For the final web page, I could have set up a Cloud Function or an App Engine service but decided to
use a public Cloud Storage bucket where I could directly serve the content so that you could understand
how to set it up and how to mitigate potential risks.

Last, but not least, I decided to orchestrate the whole process using Cloud Workflows to show you
how simple and useful it can be. And, as we discussed, it can be integrated with Cloud Scheduler, so
our idea of updating the web page periodically can be easily implemented too.

Let’s begin by cloning the source code from the repository for this book in our Cloud Shell console.
All the required files are in the subdirectory for this chapter. Also, either create a new project or
choose one that you created before, find its project ID, and don’t forget to configure it by running the
following command:

gcloud config set project <YOUR_PROJECT_ID>

Now, it’s time to create our first Cloud Function.

https://weatherapi.com
https://weatherapi.com

A hands-on exercise 219

Reading the list of cities

This was the first step I identified. I decided to create a Cloud Function that reads a file from Cloud
Storage and returns the list of city names in JSON. My input file for tests, named city_list.csv,
looks like this:

Madrid

london

toKyo

HousToN

lima

Pretoria

As you can see, I mixed upper and lowercase letters to check how well the API behaved in all these
different cases, and I must admit that it worked well.

I created a private Cloud Storage bucket called sampleprivate384 in a single location (us-east1).
Using the Standard storage class, I uploaded my file in a folder called input, so the full path to the
CSV file containing the list of the cities is input/city_list.csv. Please proceed to do the same
in your project; just choose a different name and write it down.

This first Cloud Function is called weatherinfo-readcitynames. I recommend using a
common prefix in the name so that all the resources belonging to a specific solution are easier to find.

The code for this function is located in the readcitynames directory in the repository for this
chapter. The code will just take the name of the bucket and the path to the list file as parameters and
will read all the lines and return a Python list containing the cities. Since we are using Flask to handle
the request and the response, it will be automatically converted into a JSON structure when returned,
and we can integrate it later in our workflow. This is an extract of the main code, where exception
handling and comments were removed:

storage_client = storage.Client()

bucket = storage_client.bucket(bucket_name)

blob = bucket.blob(city_list_path)

with blob.open("r") as city_list_file:

    city_list_raw = city_list_file.readlines()

city_list = []

for line in city_list_raw:

  city_list.append(line.strip())

return city_list

Time-Saving Google Cloud Services220

Also, notice how parameters are passed using JSON. This is the way Cloud Workflows works:

bucket_name = request.json.get('bucket_name')

city_list_path = request.json.get('city_list_path')

print(f'Reading list {city_list_path} in {bucket_name}')

return(get_city_list(bucket_name, city_list_path))

I also included a main() function in these and all other Cloud Functions so that the code can be
run, for testing purposes, from the command line. I also added a few logging lines so that we can
track the execution and verify that all the parameters work as expected. The list of cities is printed
too before it’s returned.

You can deploy this Cloud Function by running the following command from the readcitynames
directory. You may prefer a different region; choose the one you prefer and use it for these and the
rest of the deployments in this exercise:

gcloud functions deploy weatherinfo-readcitynames \

--gen2 --runtime=python310 --region=us-east1 \

--memory=256MB --source=. \

--entry-point=read_city_names_trigger \

--trigger-http --allow-unauthenticated

Next, it’s time to get the weather information.

Getting weather information for each city

The second Cloud Function will retrieve the weather information for a specific city and will return
the raw API response. To use the API, we will need to sign up and get an API key. Let’s do so by going
to https://www.weatherapi.com/signup.aspx.

Once you fill in the form, check your email; you will receive a message with an account activation
link that you should click on. Then, just log in and copy your API key.

Since this API key is a sensitive resource and could be changed at any time, I decided to store it in Google
Secret Manager. To do this, you can open the product section in the Cloud console at https://
console.cloud.google.com/security/secret-manager or just search for Secret
in the omnisearch box at the top of the Cloud console.

Once there, click on + Create Secret and use weatherapi_key as the name, and paste your API
key into the Secret Value text box. Our API key is now securely stored, and we will use the Secret
Manager API to retrieve it in our code.

In terms of parameters for this Cloud Function, we will just need the name of the city and the Project
ID, which Secret Manager will require to retrieve the secret.

https://www.weatherapi.com/signup.aspx
https://console.cloud.google.com/security/secret-manager
https://console.cloud.google.com/security/secret-manager

A hands-on exercise 221

I decided to use an optional api_key parameter so that I can hardcode an API key during my
tests. If this parameter is not passed, it becomes None by default and the secret is retrieved. This is a
summary of the code for retrieving the secret:

Figure 9.1 – Code for retrieving the value of a secret from Secret Manager

Notice that the name of the secret is hardcoded, as it is the latest, which is an alias to always retrieve
the up-to-date version of a secret.

Now, we can use Weather API and return the result with just a few lines of code. This is a summary:

URL = "http://api.weatherapi.com/v1/current.json"

PARAMS = {'q': city_name, 'aqi': 'no', 'key': api_key }

api_result = requests.get(url = URL, params = PARAMS)

return api_result.json()

Notice how we pass the city name as a parameter, together with the API key. The aqi parameter is
used to include Air Quality Information (AQI) in the response. I disabled it because I didn’t want
to use it, but I included a sample API response for London, including AQI, in the repository for this
chapter, in a directory called sample_api_response.

You can deploy this Cloud Function using a command like the earlier one:

gcloud functions deploy weatherinfo-getcityweather \

--gen2 --runtime=python310 \

--region=us-east1 --memory=256MB --source=. \

--entry-point=get_city_weather_trigger \

--trigger-http --allow-unauthenticated

The next Cloud Function will store the response in Datastore.

Time-Saving Google Cloud Services222

Storing weather information in a central location

This Cloud Function will just receive a city name, a city weather information JSON response, and the
Project ID as parameters and will store that information in Datastore. This part of the functionality
could have been included in the previous Cloud Function, but I opted to keep it apart so that it can
be easily updated if we ever decide to use a different storage location. Besides, I prefer each function
to do a single task where possible, following a microservice approach.

This is a simple function whose simplified core code looks like this:

datastore_client = datastore.Client(project=project_id)

kind = 'city_weather'

details_key = datastore_client.key(kind, city_name)

weather_details = datastore.Entity(key=details_key)

weather_details['weather_details'] = city_weather_details

datastore_client.put(weather_details)

return "Sucess"

I used a kind called city_weather to store this type of information; then, I created a new entity
associated with this kind and the city name and used it to store the weather details. This way, I can
later request all entities of this same kind to build the final web page.

The following command is required to deploy this Cloud Function, similar to others seen before:

gcloud functions deploy weatherinfo-storecityweather \

--gen2 --runtime=python310 \

--region=us-east1 --memory=256MB --source=. \

--entry-point=store_city_weather_trigger \

--trigger-http --allow-unauthenticated

The final Cloud Function will update our HTML file containing the weather information for all the
cities in our list.

Updating the weather web page

This is the last of the Cloud Functions, where we will generate and store the public web page. As input
parameters, we will just need the Project ID (for Datastore), together with the name of a bucket and
the full path to our HTML target file.

You can use the same bucket where the CSV file is stored, so long as it doesn’t have uniform access
enabled and public access is not prevented. I created a new bucket without these limitations and called
it samplepublic134. This is a key part of the process. The following screenshot shows the options
you can choose from when creating this bucket:

A hands-on exercise 223

Figure 9.2 – Options to take into account when creating our public bucket

Now, we must retrieve all the entities of the city_weather kind and use parts of the weather
information stored for each of them to build our web page, which we will then send to Cloud Storage.
This is a summary of that part of the code:

datastore_client = datastore.Client(project=project_id)

query = datastore_client.query(kind='city_weather')

weatherdata_list = query.fetch()

...

storage_client = storage.Client()

bucket = storage_client.bucket(bucket_name)

blob = bucket.blob(html_path)

with blob.open("w") as f:

Time-Saving Google Cloud Services224

  f.write(html_content)

blob.content_type = 'text/html'

blob.cache_control = 'no-store'

blob.patch()

blob.make_public()

print(f'HTML file publicly accessible at {blob.public_url}')

return 'Success'

In the preceding code, after writing the file contents to the blob, I updated the content type and the
cache control metadata using the patch() function to make sure, first, that the file is displayed in
a browser instead of being sent as a download. Second, I wanted to ensure that the file is not cached
so that we can get updated content as soon as it is available.

I am also using the make_public() method to make the file available to any user, turning Google
Cloud Storage into a static web server for this specific file. Please remember that this function will
fail to work if you create the public GCS bucket with uniform access control since in that case, the
configuration cannot be applied at the file level and must be applied at the bucket level. Please use a
bucket with fine-grained access control instead.

This is the deployment command that you can use for this Cloud Function:

gcloud functions deploy weatherinfo-updateweatherpage \

--gen2 --runtime=python310 \

--region=us-east1 --memory=256MB --source=. \

--entry-point=update_weather_page_trigger \

--trigger-http --allow-unauthenticated

Now, it’s time to connect all these functions using Cloud Workflows.

The end-to-end workflow for our weather solution

Once we have built all the pieces, we can use Cloud Workflows to define the order of the steps to follow.

First of all, we will need a service account to run both our workflow and to invoke it later using
Cloud Scheduler. Let’s go to the Service Account area of IAM in the Cloud console by opening the
following address in a new tab of our browser: https://console.cloud.google.com/
iam-admin/serviceaccounts. If required, click on your Google Cloud project name to get
to the account list screen.

Next, click on + Create Service Account and choose a name for the service account – for example,
weather-agent. Then, click on Create and Continue and grant the Service Account the Cloud
Datastore User role, click on Continue, and click on Done to finish creating the account. Remember
the name of the account you just created, since you will need it very shortly.

https://console.cloud.google.com/iam-admin/serviceaccounts
https://console.cloud.google.com/iam-admin/serviceaccounts

A hands-on exercise 225

Open the UI in the Cloud Console by either using the omnisearch box at the top to find Workflows
or using the following link: https://console.cloud.google.com/workflows.

Click on + CREATE and enter a name for the workflow (in my example, I used update_weather_
for_cities). Select the same region as for your Cloud Functions and the service account you just
created and click Next.

On the new screen, open the workflow contents provided in the workflow directory and paste it
into the big text box. Notice how a few seconds later, a graph like the one shown in the following
screenshot will be shown on the right-hand side of your screen, visually representing all the different
steps in the workflow and how they are connected:

Figure 9.3 – Detail of the graph in the workflow editing screen

https://console.cloud.google.com/workflows

Time-Saving Google Cloud Services226

This graph summarizes how our workflow will work and is consistent with our idea of listing the cities,
then iterating to get and store the weather information for each of those cities, and finally generating
a web page containing all the information.

Important note
Notice that the workflow will process and store the weather information of all cities in parallel
(notice the boxed part of the graph in the step called iterateCities) so that the execution will
be faster. Once all cities are done, we will update the weather page with the information for all
cities. This is an interesting option for this service.

Click on the Deploy button and wait for a few seconds; the workflow will be ready to be executed.
Click on the Execute blue text at the top, then click on the blue Execute button on the next screen,
and wait for a bit – you should see the workflow reaching the final step, returnOK, with a status
code of Succeeded.

Now, if you visit the properties page of your public GCS bucket in the Cloud Console, you should see
a file named weather_by_city.html available in the root folder. If you copy the public URL
using the link located at the right-hand side of the row and paste it into your browser, that will be the
URL where your weather information will be updated. The file looks like this on my browser:

Figure 9.4 – Weather information web page preview on a browser

A hands-on exercise 227

Notice how I used the city name returned by the API instead of using the provided ones where upper
and lowercase letters were used. I also used the icons provided by Weather API. Please remember
that if you use this for any purposes beyond this exercise, you should add a link back to their website.

Now, we just need to schedule the workflow periodically and we will be done.

Updating our web page every 30 minutes

Since Cloud Scheduler is compatible with Cloud Workflows, this will be very easy to set up. Open
Cloud Scheduler by searching for it in the omni box or opening its direct link: https://console.
cloud.google.com/cloudscheduler.

Click on + Create Job at the top and choose a name for the scheduler (for example, update_weather),
choose the same region as for the rest of the resources, and schedule it to run every 30 minutes using
the */30 * * * * string for frequency. Choose your time zone, even though it won’t be relevant
in this case because we are running the job at regular intervals. Click on Continue.

Next, select Workflows via HTTP for Target type and select both the workflow and the service account
created earlier. Add the roles/workflows.invoker role to the service account if required either
using IAM or by running the following command from the console, replacing the placeholders with
your actual Project ID and Service Account address:

gcloud projects add-iam-policy-binding <PROJECT_ID> \

--member=serviceAccount:<SERVICE_ACCOUNT> \

--role=roles/workflows.invoker

Click on CONTINUE and look at the retry configuration options so that you can get familiarized with
them, even though there is no need to change anything at this time. Then, just click on CREATE – our
workflow will be scheduled to run every 30 minutes.

You can also run it manually from the main Cloud Scheduler screen, and use logging to verify it, or
just reload our weather page, where I added a last update column to the right so that it’s easier to see
how recent the last update was. I included cities from all continents so that you can verify it more easily.

This is the end of our exercise for this chapter. I hope you found it interesting and that it helped you
understand how you can use Google Cloud services to build better solutions faster.

But if you haven’t had enough, let me share some tips, questions, and additional work ideas in the
following section.

https://console.cloud.google.com/cloudscheduler
https://console.cloud.google.com/cloudscheduler

Time-Saving Google Cloud Services228

What’s next?

Now that we are done with our exercises, here are some tips and some food for thought:

•	 All the deployment scripts use 256 MB of memory and allow unauthenticated invocations. How
would you check whether more or less memory is required for any of them? For this specific
case, does it make any sense to allow unauthenticated invocations?

•	 What happens if we remove a city from our list? How can we fix it or mitigate it? Are there any
other weak spots that you can find in the architecture, the workflow, or the code? How would
you improve or fix them?

•	 Some of the actions (retrieve secret, store weather information, read city list, and so on) can be
directly implemented as workflow steps replacing cloud functions with REST API calls. Will
you be able to make any of them work?

•	 Most of the actions that we performed using the console can be also implemented using gcloud
commands – for example, creating the scheduler. Can you find the alternative commands for
all these cases?

•	 What alternative implementations can you think of for this specific example, such as using
Cloud Tasks, App Engine, Cloud SQL, and so on?

•	 Can you think of a similar example for working with other kinds of information, such as getting
sports results, stock market updates, the latest news, release dates for books, movies, TV shows,
and so on? Find a topic that interests you and try to adapt this workflow to implement it. You
will realize how easy it is once you know the parts that you can combine to make things faster
and more reliable. This is the magic of Google Cloud!

And now, it’s time to wrap up.

Summary
In this chapter, we covered some of the basic Google Cloud services that we can use to simplify our
development and migrations to the cloud.

First, we discussed how we can use Cloud Storage to store our files. Then, we introduced Cloud Tasks as
a managed service for asynchronous task execution. Next, we talked about how Firestore in Datastore
mode can help us store our data in a NoSQL database, with high performance and automatic scaling.

Next, we saw how Cloud Workflows is a great tool for combining multiple pieces and creating an
end-to-end solution. Then, we went through the different uses of Pub/Sub for inter-component
communication. In the next section, we talked about Secret Manager and how we can use it to store
our most sensitive data. Finally, Cloud Scheduler was presented as a great option to ensure that our
tasks and workflows run exactly when we want.

Further reading 229

After covering all these services, we worked together on an exercise where we used them to provide
weather information for multiple cities.

I hope you found this chapter interesting. In the next one, we will continue exploring Google Cloud
services, but this time, we will cover those that are based on powerful machine learning models,
offered using a public API, and that we can easily integrate to supercharge our application with
advanced capabilities.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

•	 Manage encryption keys on Google Cloud with KMS: https://cloud.google.com/kms

•	 Datastore GQL reference: https://cloud.google.com/datastore/docs/
reference/gql_reference

•	 Running the Datastore emulator: https://cloud.google.com/datastore/docs/
tools/datastore-emulator

•	 Cloud Workflows code samples: https://cloud.google.com/workflows/docs/
samples

•	 Testing apps locally using the Pub/Sub emulator: https://cloud.google.com/
pubsub/docs/emulator

•	 Configure cron job schedules: https://cloud.google.com/scheduler/docs/
configuring/cron-job-schedules

https://cloud.google.com/kms

https://cloud.google.com/datastore/docs/reference/gql_reference

https://cloud.google.com/datastore/docs/reference/gql_reference

https://cloud.google.com/datastore/docs/tools/datastore-emulator

https://cloud.google.com/datastore/docs/tools/datastore-emulator

https://cloud.google.com/workflows/docs/samples

https://cloud.google.com/workflows/docs/samples

https://cloud.google.com/pubsub/docs/emulator

https://cloud.google.com/pubsub/docs/emulator

https://cloud.google.com/scheduler/docs/configuring/cron-job-schedules
https://cloud.google.com/scheduler/docs/configuring/cron-job-schedules

10
Extending Applications

with Google Cloud Machine
Learning APIs

The previous chapter covered Google Services that we can use as building blocks for our applications
and services to make our development faster. Another way of achieving this purpose is using public
APIs to integrate advanced services, providing features that we wouldn’t be able to develop otherwise
due to limitations in our budget, time, or even our knowledge and skills.

Google Cloud provides some remarkably interesting machine learning models that have been trained
with huge amounts of data and can help us convert our unstructured data into structured data, a topic
we will cover at the beginning of this chapter.

These models can be easily integrated into our code using their corresponding Application Programming
Interface (API) and will add useful features to our applications, such as audio-to-text conversion,
text translation, or insight extraction from text, images, or videos.

If you are interested in this area, you can also find a link to AutoML in the Further reading section.
This more advanced product will allow you to create custom models for most of the AI solutions
available in Google Cloud.

We’ll cover the following main topics in this chapter:

•	 Unstructured versus structured data

•	 Speech to text

•	 Cloud translation

•	 Cloud natural language

•	 Cloud vision

Extending Applications with Google Cloud Machine Learning APIs232

•	 Cloud video intelligence

•	 Hands-on exercise

Unstructured versus structured data
As developers, we use different input and output methods and formats in our applications. One of
the most common ones is files. We create files, copy, or move them to different locations or process
them by reading and making changes to their contents.

A file contains, by default, what is known as unstructured data. This means that an audio, video, or
text file is just data in a specific format. We can know the size of the file, what format was used to store
the data, and maybe have access to some additional structured metadata, such as the creation date or
the owner of the file, but we don’t know anything about the contents. What’s this video about? Is that
audio file a song or a voice recording? Which language does this audio use? Is that text file a poem,
or does it contain the transcription of a movie? Being able to answer these questions can enable more
useful and impactful features in our applications.

The simplest example would be text files. Imagine we have a text file named readme.txt in Cloud
Storage. From its metadata, we can know when it was created or modified and how big it is. We can
even go one step further and read it using our code, counting the number of sentences, carriage
returns, or punctuation symbols. While this can give us interesting information about the text, we still
won’t know which language it uses, what it is about, or even how the writer felt when it was written.

Machine learning (ML) and artificial intelligence (AI) can help us analyze and understand the
content of our files, and Google Cloud offers different products in this area. For example, we can use
Translation AI to translate all our texts into a common language. We can even use Speech-to-Text to
convert audio files into text and obtain more input data. Finally, we can use Cloud Natural Language
to analyze, classify, and annotate each of the files and extract interesting insights from our text files.

Are our customers happy with the product we just released? To answer this question, we can retrieve
their public social media posts and perform sentiment analysis. We can also find out which of our
customers reported bad experiences to our support team on the phone using Speech-to-Text. Or we
can now understand what the best and worst valued areas in our business are by extracting names
and adjectives from user surveys.

This can be even more powerful as we add media to the equation. We can use Cloud Vision and
Cloud Video Intelligence to understand what’s being shown on an image or when a specific object
appears in a video. We can now understand why our users only watched half of our video or identify
which characters keep them engaged. We can identify objects and colors, read and extract text, or
detect different scenes and create structured metadata to classify our media and provide, for example,
a much better searching experience for our users. The opportunities are endless!

To show you how easy it is to integrate these technologies with our code, let’s start by explaining how
Speech-to-Text can help us increase the amount of data we can analyze.

Speech-to-Text 233

Speech-to-Text
When I discuss the available sources of information with customers, since breaking information silos
is one of my priorities at Google, they often leave audio and speech data out of the picture, even if
they usually have digital call centers with hours of support conversations recorded.

Adding speech as an additional source of information can help us access more data and obtain better
insights by knowing our customers better. Besides, text is much easier to analyze than audio.

Speech-to-Text can help us transcribe audio to text and offers some useful features, such as specific
enhanced models for phone calls and videos, multiple speaker labeling and splitting, automatic
language detection, or word-level confidence scoring. Multiple audio formats are supported, such as
WAV, MP3, FLAC, AMR, OGG, or WEBM.

Since the length of a sound file can vary, transcriptions can be performed synchronously or
asynchronously. In the first case, our code will wait for the process to end before resuming the
execution, while in the second, we will be returned an operation name that we can use to poll for
status updates until the transcription is available. We can only use synchronous requests for local
audio files lasting 60 seconds or less; otherwise, we will need to upload our file to Cloud Storage and
pass the URI of the file instead of the file contents.

The following request can be sent to the API endpoint to synchronously transcribe a short standard
WAV audio file recorded at 44 kHz from Cloud Storage:

{

    "config": {

        "encoding": "LINEAR16",

        "sampleRateHertz": 44100,

        "languageCode": "en-US",

    },

    "audio": {

        "uri": "gs://your-bucket-name/path_to_audio_file"

    }

}

I had some trouble sending this request using the Try this method section at https://cloud.google.
com/speech-to-text/docs/reference/rest/v1/speech/longrunningrecognize,
and as OAuth 2.0 is more flexible, I decided to use the OAuth 2.0 Playground instead, located at
https://developers.google.com/oauthplayground/. This is a very useful tool for
testing the GET and POST requests to Google API endpoints.

https://cloud.google.com/speech-to-text/docs/reference/rest/v1/speech/longrunningrecognize
https://cloud.google.com/speech-to-text/docs/reference/rest/v1/speech/longrunningrecognize
https://developers.google.com/oauthplayground/

Extending Applications with Google Cloud Machine Learning APIs234

I used it to request a long-running operation to transcribe the audio and obtain an operation name.
Then I used https://cloud.google.com/speech-to-text/docs/reference/rest/
v1/operations/get as the endpoint to get the transcription after passing the previously obtained
operation name as a parameter.

This is an excerpt of the result, which I included in the repository for this chapter:

{

  resultEndTime": "150.730s",  

  "languageCode": "en-us",  

  "alternatives": [

    {

      "confidence": 0.93837625,  

      "transcript": " nasal is released through the nose"

    }

  ]

}

As you can see, each portion of the audio is transcribed into a block, for which one or more transcribing
alternatives are provided, together with their confidence score, which is used to order them in the
request from higher to lower.

The same request can also be implemented in Python using the client library. In this sample snippet, the
first alternative for each block is printed for the sake of simplicity since they are ordered by confidence:

from google.cloud import speech

client = speech.SpeechClient()

gcs_uri = "gs://your-bucket-name/path_to_audio_file"

audio = speech.RecognitionAudio(uri=gcs_uri)

config = speech.RecognitionConfig(

  encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,

  sample_rate_hertz=44100,

  language_code="en-US",

)

operation = client.long_running_recognize(config=config,
audio=audio)

print("Operation in progress, please wait...")

response = operation.result(timeout=90)

for result in response.results:

https://cloud.google.com/speech-to-text/docs/reference/rest/v1/operations/get
https://cloud.google.com/speech-to-text/docs/reference/rest/v1/operations/get

Cloud Translation 235

  print("Transcript: {}".format(result.alternatives[0].
transcript))

  print("Confidence: {}".format(result.alternatives[0].
confidence))

Important note
Notice that using service accounts is the recommended implementation option for the APIs
included in this chapter for the sake of security. Loading a key or running the code as a Cloud
Function deployed to run as a service account will help us mitigate potential risks, which may
also affect our budget if a malicious user finds a way to make millions of calls.

Regarding pricing, the first 60 minutes of Speech-to-Text are free every month, and the rest are
charged at $0.024 per minute. There is an option to log your data to help improve the quality of the
ML models, and if you opt-in, the price is reduced to $0.016 per minute.

Transcribing is easy and can provide us with more text files to analyze. As a next step, we may want
to translate all these texts into a common language before running a language analysis. In the next
section, we’ll see how we can use Translation AI for this purpose.

Cloud Translation
Translating text programmatically allows us to offer our services to users speaking different languages.
Cloud Translation can help us understand their opinions and comments and even make them able
to communicate with each other, thanks to its support for more than 100 language pairs. You can
find a link to the full list of supported languages in the Further reading section, located at the end of
this chapter.

Cloud Translation is a part of Translation AI and is offered in two editions: Basic and Advanced. I will
only cover the Basic edition in the rest of this section, but you can find a link to a full comparison of
both editions at the end of the chapter.

We can use the Cloud Translation API to translate texts or documents, supporting file extensions such
as TXT, HML, TSV, PDF, DOCX, XLSX, or PPTX.

A basic translation request will include the text to translate, the source and target languages, and the
format of the input data. I chose a very famous quote by William Shakespeare that will be translated
into my native language, Spanish:

{

  "q": " To be or not to be, that is the question.",

  "source": "en",

  "target": "es",

Extending Applications with Google Cloud Machine Learning APIs236

  "format": "text"

}

The raw response from the API looks like the following. Notice the special character in the translated text:

{

  "data": {

    "translations": [

      {

        "translatedText": "Ser o no ser, esa es la cuesti\
u00f3n."

      }

    ]

  }

}

If I omit the source parameter because, in many cases, I will not know in advance the language used
in the text, the API will detect it and return it as part of the response, which can be very useful, too:

{

  "data": {

    "translations": [

      {

        "translatedText": "Ser o no ser, esa es la cuesti\
u00f3n.",

        "detectedSourceLanguage": "en"

      }

    ]

  }

}

Now it’s time to implement the same request using the client libraries for Python. You may need to
enable the Translation API in your cloud project before the code works. Here, we will also let the
API detect the source language. Notice also the use of u in the print statements to support printing
Unicode characters:

from google.cloud import translate_v2 as translate

translate_client = translate.Client()

text = "To be or not to be, that is the question".

result = translate_client.translate(text,

Cloud Natural Language 237

target_language="es")

print(u"Text: {}".format(result["input"]))

print(u"Translation: {}".format(result["translatedText"]))

print(u"Detected source language: {}".
format(result["detectedSourceLanguage"]))

This is the output of the code, where the special character is correctly printed:

Text: To be or not to be, that is the question.

Translation: Ser o no ser, esa es la cuestión.

Detected source language: en

The pricing model for the Basic edition of Cloud Translation is based on the number of text characters
processed, including the first 500,000 characters for free every month, while the rest are charged at
$20 per million characters.

I hope this section helped you understand that translating is also very easy using the ML models
available in Google Cloud. Now that all our text files use the same language, what kind of information
can we obtain from them? Let’s find it out in the next section.

Cloud Natural Language
Cloud Natural Language can help us analyze and understand the contents of a text file. We may not
even know which language that text is written in, and the Natural Language API will detect it for us
and provide that information as part of its response.

Note
Please take into account that while the list is constantly growing, not all languages are supported
for all functions. You can find an up-to-date list at the following URL: https://cloud.
google.com/natural-language/docs/languages. I also added this address to
the Further reading section, so you can always have it to hand.

Once our text is ready, there are five different types of analysis that we can run on all or part of the
contents of a text file:

•	 Content classification: This analyzes the provided text and assigns it a content category.

•	 Syntactic analysis: This breaks up the text into sentences and tokens and provides additional
details about each of them.

•	 Entity analysis: This detects known entities, such as landmarks or public figures, and returns
information about each of them.

https://cloud.google.com/natural-language/docs/languages
https://cloud.google.com/natural-language/docs/languages

Extending Applications with Google Cloud Machine Learning APIs238

•	 Sentiment analysis: This analyzes the text from an emotional point of view, returning if the
writer’s attitude is positive, negative, or neutral.

•	 Entity sentiment analysis: This combines the former two, providing a list of entities together
with the prevailing emotional opinion for each of them.

We can run each of these analyses individually or combine two or more of them to be run simultaneously
using the Annotate Text request.

Let’s try an example: I looked up the first summary sentence about “Tolkien” in Wikipedia and took
the liberty of making some small changes to add my personal opinion, resulting in this paragraph:

“John Ronald Reuel Tolkien was an English writer and philologist. He was the author of The Lord of the
Rings, an amazing fantasy book you will love to read.”

This can be a nice example for entity analysis because it’s a short text that combines the name of a
famous writer with one of his most famous works and my own (positive) opinion.

Figure 10.1 – Testing Cloud Natural Language AI using the demo website

Cloud Natural Language 239

Let’s feed this text to Natural Language API demo available at the following URL: https://cloud.
google.com/natural-language. Just go to the Demo section using the menu on the left side of
the screen, paste the text as you can see in the preceding screenshot, click on the blue Analyze button
and complete the Captcha, and you should see the results of the entity analysis looking similar to this:

Figure 10.2 – Results of the entity analysis

As you can see in the results, the author’s name, his place of birth, and his work are detected and
linked to their corresponding articles in Wikipedia. A salience score is also included, indicating the
relevance of each entity within the overall text.

https://cloud.google.com/natural-language
https://cloud.google.com/natural-language

Extending Applications with Google Cloud Machine Learning APIs240

If you change to the Sentiment tab (marked in red in the preceding screenshot), your results should
be similar to the following:

Figure 10.3 – Sentiment Analysis results

As you can see, Score and Magnitude are provided for each entity. The score is normalized between
-1.0 (negative) and +1.0 (positive) and scores the overall emotion in the text, while the magnitude is
not normalized and can be used to measure the absolute strength of the identified emotion.

Looking at the results, we can see how AI is able to understand that I’m speaking positively about the
book, but this opinion is also affecting the score of its corresponding author. This kind of analysis can
be useful for identifying not only emotional points of view but also who or what we are speaking about.

Cloud Natural Language 241

Running this kind of analysis from our code is also really easy. For example, the first entity analysis
on our text could also be completed using the REST API and a simple request like this:

{

    "document":{

    "type":"PLAIN_TEXT",

    "language": "EN",

    "content":"John Ronald Reuel Tolkien was an English

               writer and philologist. He was the author

               of The Lord of the Rings, an amazing

               fantasy book you will love to read."

},

    "encodingType":"UTF8"

}

Notice that I included the language in the request, which I could omit and let the ML model identify
for me. I could also pass the location of the text file within Cloud Storage instead of the text itself,
which would lead to an even simpler request, such as the following:

{

  "document":{

    "type":"PLAIN_TEXT",

    "gcsContentUri":"gs://bucket-name/folder/file-name.txt"

  },

}

And this is an excerpt of the code that requests an entity analysis using the Python client library. We
will see the complete code in the Hands-on exercise section. As you can see, it is also simple to integrate
with our existing code, and iterating on the results is simple:

from google.cloud import language_v1 as language

def sample_analyze_entities(your_text):

    lang_client = language.LanguageServiceClient()

    lang_type = language.Document.Type.PLAIN_TEXT

    document = {"content": your_text, "type": lang_type}

    encoding_type = language.EncodingType.UTF8

    response = lang_client.analyze_entities(

      request={

        "document": document,

Extending Applications with Google Cloud Machine Learning APIs242

        "encoding_type": encoding_type

      }

    )

    for entity in response.entities:

      print("Representative name: {}".format(entity.name))

A couple of important points to take into consideration both for REST and Client Library implementations
are included in the following list:

•	 Both HTML and TEXT files are supported; you can select your preferred format using the
Document Type field.

•	 The encoding_type parameter is also important since the API calculates and returns
offsets for each portion of the text that is analyzed. If this parameter is omitted, all returned
offsets will be set to -1.

Now, let’s take a look at the API responses. As you will see, the results for both examples are consistent
with the ones we tried earlier on the demo site.

An excerpt of the response for our Entity Analysis request about Tolkien would look like this (the full
response is available in the repository for this chapter):

{

  "entities": [

    {

      "name": "John Ronald Reuel Tolkien",

      "type": "PERSON",

      "metadata": {

        "mid": "/m/041h0",

        "wikipedia_url": https://en.wikipedia.org/wiki/
J._R._R._Tolkien

      },

      "salience": 0.79542243,

...

    {

      "name": "The Lord of the Rings",

      "type": "WORK_OF_ART",

      "metadata": {

        "wikipedia_url": "https://en.wikipedia.org/wiki/The_
Lord_of_the_Rings",

        "mid": "/m/07bz5"

Cloud Natural Language 243

      },

      "salience": 0.09017082,

...

  "language": "en"

}

Notice how the language document is returned at the end of the response and how each returned
entity comes with a name, type, salience score, and metadata, including external references and a
machine-generated identifier (MID).

The MID associates an entity with an entry in Google’s Knowledge Graph, which is unique for all
languages, so this can be used to link together words or names in different languages, referring to
the same entity.

That’s all for the entity search. Next, this is the excerpt of the response for a sentiment analysis on the
same text about Tolkien:

{

  "documentSentiment": {

    "magnitude": 0.9,

    "score": 0.4

  },

  "language": "en",

  "sentences": [

    {

      "text": {

        "content": "John Ronald Reuel Tolkien was an English
writer and philologist.",

        "beginOffset": 0

      },

      "sentiment": {

        "magnitude": 0,

        "score": 0

      }

    },

    {

      "text": {

        "content": "He was the author of The Lord of the Rings,
an amazing fantasy book you will love to read.",

Extending Applications with Google Cloud Machine Learning APIs244

        "beginOffset": 65

      },

      "sentiment": {

        "magnitude": 0.9,

        "score": 0.9

      }

    }

  ]

}

In this response, notice first how each sentence comes with the corresponding offset, which works
because the request included encoding_type set to UTF8. Also, see how the first sentence
scores zero because there is no sentiment at all, but the second one, where I added my opinion, gets
a 0.9 positive score and a decent magnitude level, even though I only included two words involving
sentiments (but quite a powerful pair).

I hope these examples helped you understand the power of Cloud Natural Language. You will see a
more detailed example, coded in Python, in the Hands-on exercise section.

The pricing model for Cloud Natural Language includes a free tier, and prices vary for the different
analyses available. You can find all the details in the Further reading section.

Next, let’s see what Google Cloud AI can do for us if we need to analyze images.

Cloud Vision
As I mentioned earlier in this chapter, we can get some information about a text file by counting
characters or reading the size. In the case of images, the amount of information we can obtain is even
less, mostly file size, image size, and maybe camera metadata.

However, as the adage says, “a picture is worth a thousand words,” and there is a lot of information
that we can get by looking at a picture. Cloud Vision, a product belonging to Google Cloud Vision
AI, allows us to extract all this information in a structured way so we can see inside pictures and get
some interesting information that we can use to obtain insights.

Let’s give it a try first, so you can see what kind of information we can get. Let’s try the demo again,
this time available at the following URL: https://cloud.google.com/vision. Just go to
the Demo section using the left menu.

https://cloud.google.com/vision

Cloud Vision 245

This time we will use a picture of my good old Amstrad CPC 464, hosted by Wikipedia. This is the
full URL to the image: https://en.wikipedia.org/wiki/Amstrad_CPC#/media/
File:Amstrad_CPC464.jpg. Once you get to the Media Viewer page, click on the button
with the arrow facing down to download the image (the following image shows you how to easily
find that button):

Figure 10.4 – Image of an Amstrad CPC with the download button highlighted in red

Then, just go back to the Demo page and drag the image to the Try the API section, or click that
section to select it using the file browser. Next, just click on the Captcha test, and you should get to a
results page that looks like this:

https://en.wikipedia.org/wiki/Amstrad_CPC#/media/File:Amstrad_CPC464.jpg
https://en.wikipedia.org/wiki/Amstrad_CPC#/media/File:Amstrad_CPC464.jpg

Extending Applications with Google Cloud Machine Learning APIs246

Figure 10.5 – Cloud Vision demo results

Notice how the content of the Objects tab mentions both the monitor and keyboard, returning the
boundaries for each detected object and including a certainty score for each of them. This demo is
more interesting (at least in my opinion) than the one for Natural Language because we can also click
on the blue Show JSON banner at the bottom and see the raw API response. We will look at that
response in a minute. I have also included a full sample response in the repository for this chapter.

Take some time to check the other tabs on the demo site. Notice how Cloud Vision also provides Labels,
which describes elements detected in the picture, each of them also including its own confidence score
and the coordinates of its bounding box. Text is also detected, and notice how AI can read the text
on the Amstrad screen, despite its small size. The Properties tab also includes interesting information
about colors and aspect ratio. And last but not least, the Safe Search tab helps us find how likely it is
that an image includes explicit content, which may be problematic due to it being violent, racy, or
containing adult content.

Cloud Vision 247

Now that we have already seen the practical side of Cloud Vision, let’s formally enumerate what its
API, Cloud Vision API, can do for us. There are quite a few different features available that, as for the
Natural Language API, we can run either individually or combined into a single request:

•	 Text detection: This detects and extracts texts from an image, including bounding boxes and
hierarchical information

•	 Document text detection: This is similar to the previous item but is optimized for pictures of
documents with a dense presence of text

•	 Landmark detection: This identifies landmarks and provides a name for each one, together
with a confidence score, a bounding box, and a set of coordinates

•	 Logo detection: This returns a name for each identified entity, a score, and a bounding box

•	 Label detection: This returns a set of generic labels with a description, together with a confidence
score and topicality rating for each result

•	 Image properties: This includes a list of predominant colors, each with its associated RGBA
values, confidence score, and the fraction of pixels it occupies

•	 Object localization: This detects multiple objects in an image, and, for each of them, the API
returns a description, a score, and the normalized vertices for a bounding polygon

•	 Crop hint detection: This can be given up to 16 different aspect ratio values passed as parameters
and provides a bounding polygon representing the recommended crop area, together with a
confidence score and an importance score, representing how important the cropped area is
when compared with the full original image

•	 Web entities and pages: This provides a list of resources related to the image, including entities
from similar images, full and partially matching images, pages with matching images, similar
images, and a best guess topical label

•	 Explicit content detection: This is also known as SafeSearch and provides six-degree likelihood
ratings for explicit content categories, including adult, spoof, medical, violence, and racy.

•	 Face detection: This detects faces and their different elements, such as eyes, ears, nose, or mouth,
with a bounding box and a score for each, together with a six-degree rating for emotions, such
as joy, anger or surprise, and general image properties, indicating, for example, whether the
image is underexposed or blurred

All these features open the door to amazing use cases that can help us make the most out of user-
generated content and can also be used in many other scenarios where we can extract a lot of insights
from our images.

You can read the full list of features in this section of the documentation website: https://cloud.
google.com/vision/docs/features-list.

https://cloud.google.com/vision/docs/features-list
https://cloud.google.com/vision/docs/features-list

Extending Applications with Google Cloud Machine Learning APIs248

Continuing with our earlier example for the Amstrad CPC464 image, the following is the original
REST request that was sent to the Cloud Vision API endpoint located at https://vision.
googleapis.com/v1/images:annotate. Multiple features were requested in a single request
to power the demo.

Notice how we can limit the maximum number of requests for each feature, select between different
AI models in some features (check out the DOCUMENT_TEXT_DETECTION section for an example),
and send different aspect ratios obtained by dividing the width by the height of an image to request
crop hints:

{

  "requests": [

    {

      "features": [

        {

          "maxResults": 50,

          "type": "LANDMARK_DETECTION"

        },

        {

          "maxResults": 50,

          "type": "FACE_DETECTION"

        },

        {

          "maxResults": 50,

          "type": "OBJECT_LOCALIZATION"

        },

        {

          "maxResults": 50,

          "type": "LOGO_DETECTION"

        },

        {

          "maxResults": 50,

          "type": "LABEL_DETECTION"

        },

        {

          "maxResults": 50,

          "model": "builtin/latest",

          "type": "DOCUMENT_TEXT_DETECTION"

https://vision.googleapis.com/v1/images:annotate
https://vision.googleapis.com/v1/images:annotate

Cloud Vision 249

        },

        {

          "maxResults": 50,

          "type": "SAFE_SEARCH_DETECTION"

        },

        {

          "maxResults": 50,

          "type": "IMAGE_PROPERTIES"

        },

        {

          "maxResults": 50,

          "type": "CROP_HINTS"

        }

      ],

      "image": {

        "content": "(data from Amstrad_CPC464.jpg)"

      },

      "imageContext": {

        "cropHintsParams": {

          "aspectRatios": [

            0.8,

            1,

            1.2

          ]

        }

      }

    }

  ]

}

Extending Applications with Google Cloud Machine Learning APIs250

Looking at the JSON response for the previous request, these are the sections included and the lines
at which each of them starts:

Figure 10.6 – Sections and beginning lines in the Cloud Vision API response

Notice how the textAnnotations sections take almost 7,000 lines, while the rest just take a bit
more than 300.

The layout of each result section is similar to what we saw for the Natural Language API. For example,
as you can see in the following code block, one of the entries returned for the objects in the Amstrad
CPC464 image. Notice the normalized vertices of the bounding box, the MID, the name, and the
confidence score:

"localizedObjectAnnotations": [

    {

      "boundingPoly": {

        "normalizedVertices": [

          {

            "x": 0.09177671,

            "y": 0.66179305

          },

          {

            "x": 0.95162266,

            "y": 0.66179305

          },

          {

            "x": 0.95162266,

            "y": 0.9035502

          },

          {

            "x": 0.09177671,

Cloud Vision 251

            "y": 0.9035502

          }

        ]

      },

      "mid": "/m/01m2v",

      "name": "Computer keyboard",

      "score": 0.8360065

    },

The entry for a label is simpler since there is no bounding box, but in this case, a topicality score is
also included:

  "labelAnnotations": [

    {

      "description": "Computer",

      "mid": "/m/01m3v",

      "score": 0.9721081,

      "topicality": 0.9721081

    },

This is another example of a part of the text seen on the computer screen. Notice how the detected
text includes some noise and artifacts due to the small size of the letters. We should always choose the
most useful results and filter them before we use them in other parts of our code. Finally, you can see
how AI automatically detects the language of the text. This can also be useful in images containing
text in different languages:

"textAnnotations": [

    {

      "boundingPoly": {

        "vertices": [

          {

            "x": 213,

            "y": 201

          },

          {

            "x": 927,

            "y": 201

          },

Extending Applications with Google Cloud Machine Learning APIs252

          {

            "x": 927,

            "y": 614

          },

          {

            "x": 213,

            "y": 614

          }

        ]

      },

      "description": "M\nAMSTRAD\n1802\n****\nW\nD\nC\nF\nG\
nAmstrad 64K Microcomputer (v1)\n$1984\nBASIC 1.0\nReady\nY\nH\
nand Locomotive Software L\nCPC 464 Coming\n98\nLA\nO\nP\nL\nJ
K L 7, G\nN, M. 3. 12\nCOOPUTOC",

      "locale": "en"

    },

Next, Safe Search confirms that this image is safe:

  "safeSearchAnnotation": {

    "adult": "VERY_UNLIKELY",

    "medical": "VERY_UNLIKELY",

    "racy": "VERY_UNLIKELY",

    "spoof": "VERY_UNLIKELY",

    "violence": "VERY_UNLIKELY"

  },

Finally, let’s look at some code that uses the Python client library to detect objects in an image on
Cloud Storage, with uri being the full path to the image to analyze. See how easy it is to invoke the
API and iterate on the results:

def localize_objects_uri(uri):

    from google.cloud import vision

    client = vision.ImageAnnotatorClient()

    image = vision.Image()

    image.source.image_uri = uri

Cloud Video Intelligence 253

    objects = client.object_localization(

        image=image).localized_object_annotations

    print('Found {} objects'.format(len(objects)))

    for object_ in objects:

        print('\n{} (confidence: {})'.format(object_.name,
object_.score))

        print('Normalized bounding polygon vertices: ')

        for vertex in

          object_.bounding_poly.normalized_vertices:

            print(' - ({}, {})'.format(vertex.x, vertex.y))

You can find more information about the price of the different features offered by Cloud Vision in
the Further reading section located at the end of this chapter.

Next, let’s discuss how Video Intelligence API can help us extract a lot of information from our videos.

Cloud Video Intelligence
If Cloud Vision helps us extract information and insights from our images, Video Intelligence does
the same with our videos. While some of their features are similar, others only make sense for videos.
Let’s enumerate them and add more information about the new features:

•	 Face detection.

•	 Text detection.

•	 Logo recognition.

•	 Label detection.

•	 Explicit content detection.

•	 Object tracking: This is similar to object detection in Cloud Vision, but the Video Intelligence
API will also return segments, including an offset and a duration, to help us understand when
the object was first seen in the segment and how long it was present.

•	 Person detection: This is a more advanced version of the face detection feature in Cloud Vision.
It not only provides information about segments and bounding boxes but also provides details
about upper and lower clothing color, sleeves, and the specific presence of body parts.

Extending Applications with Google Cloud Machine Learning APIs254

•	 Shot change detection: This feature detects abrupt changes in successive video frames and
returns a list of segments.

•	 Speech transcription: This returns a block of text for each part of the transcribed audio.
Currently, it only supports US English, with Speech-to-Text being an alternative available for
other languages.

This is also a very powerful tool for analyzing videos and extracting metadata and insights.

To run a test, I chose a free video by Vlada Karpovich, which you can download from the following URL:
https://www.pexels.com/video/a-person-pouring-water-on-a-cup-9968974/.
I uploaded this video to a Cloud Storage bucket.

Then, I used the API Explorer on the documentation page of the videos.annotate method,
found at https://cloud.google.com/video-intelligence/docs/reference/
rest/v1/videos/annotate. I used the right side of the screen to build the following request
to perform label detection, object tracking, and explicit content detection on the formerly mentioned
video. If you want to replicate it, you should replace the name of the bucket with your own:

{

  "features": [

    "LABEL_DETECTION",

    "EXPLICIT_CONTENT_DETECTION",

    "OBJECT_TRACKING"

  ],

  "inputUri": "gs://test_345xxa/pexels-vlada-karpovich-9968974.
mp4"

}

After clicking on the Execute button, I got the following response, which includes a name for the
requested operation:

{

"name": "projects/292824132082/locations/us-east1/
operations/1517923713137606264"

}

This means that the processing of the video is happening in the background, and I have to poll the
API until the results are ready.

https://www.pexels.com/video/a-person-pouring-water-on-a-cup-9968974/
https://cloud.google.com/video-intelligence/docs/reference/rest/v1/videos/annotate
https://cloud.google.com/video-intelligence/docs/reference/rest/v1/videos/annotate

Cloud Video Intelligence 255

To do that, I waited for a couple of minutes and then sent a post request to the endpoint for the
projects.locations.operations.get method, available at the following URL: https://
cloud.google.com/video-intelligence/docs/reference/rest/v1/operations.
projects.locations.operations/get. I filled the parameter with the operation name
obtained in the previous call and finally received the result of the operation in a JSON file containing
7,481 lines. I also included this file in the repository for this chapter. Let’s look at the distribution of the
contents of this file. As you will see in the following screenshot, object annotations take most of this file:

Figure 10.7 – Sections and line distribution of the Video Intelligence API response

This is an example of an object annotation. Notice how the coffee cup and its bounding box are
detected in each video frame, and information about the segment is also provided:

        "objectAnnotations": [

          {

            "entity": {

              "entityId": "/m/02p5f1q",

              "description": "coffee cup",

              "languageCode": "en-US"

            },

            "frames": [

              {

                "normalizedBoundingBox": {

                  "left": 0.40747705,

                  "top": 0.4910854,

                  "right": 0.6224501,

                  "bottom": 0.609916

https://cloud.google.com/video-intelligence/docs/reference/rest/v1/operations.projects.locations.operations/get
https://cloud.google.com/video-intelligence/docs/reference/rest/v1/operations.projects.locations.operations/get
https://cloud.google.com/video-intelligence/docs/reference/rest/v1/operations.projects.locations.operations/get

Extending Applications with Google Cloud Machine Learning APIs256

                },

                "timeOffset": "0s"

              },

...

              {

                "normalizedBoundingBox": {

                  "left": 0.435281,

                  "top": 0.5009521,

                  "right": 0.64407194,

                  "bottom": 0.62310815

                },

                "timeOffset": "13.320s"

              }

            ],

            "segment": {

              "startTimeOffset": "0s",

              "endTimeOffset": "13.320s"

            },

            "confidence": 0.84742075

          },

Label annotations are returned by segment and by shot, as in this example:

        "segmentLabelAnnotations": [

          {

            "entity": {

              "entityId": "/m/01spzs",

              "description": "still life",

              "languageCode": "en-US"

            },

            "categoryEntities": [

              {

                "entityId": "/m/05qdh",

                "description": "painting",

                "languageCode": "en-US"

              }

            ],

Cloud Video Intelligence 257

            "segments": [

              {

                "segment": {

                  "startTimeOffset": "0s",

                  "endTimeOffset": "13.360s"

                },

                "confidence": 0.3399705

              }

            ]

          },

          {

            "entity": {

              "entityId": "/m/02wbm",

              "description": "food",

              "languageCode": "en-US"

            },

            "segments": [

              {

                "segment": {

                  "startTimeOffset": "0s",

                  "endTimeOffset": "13.360s"

                },

                "confidence": 0.7001203

              }

            ]

          }

In my personal experience, label detection usually works better in Cloud Vision, so I sometimes extract
video frames as images and use Cloud Vision API to extract the labels, combining that information
with that provided by Video Intelligence. These APIs are not alternatives since they can and should
be combined to provide the best possible results.

Finally, explicit annotations are returned for each frame, including an offset and one of the six degrees
of likelihood:

        "explicitAnnotation": {

          "frames": [

            {

Extending Applications with Google Cloud Machine Learning APIs258

              "timeOffset": "0.554343s",

              "pornographyLikelihood": "VERY_UNLIKELY"

            },

...

            {

              "timeOffset": "12.697213s",

              "pornographyLikelihood": "VERY_UNLIKELY"

            }

          ]

        },

Using the Python client library is, once again, really easy. This is an excerpt that performs label detection
on a local video file, synchronously waiting for the operation to end. Notice that the timeout should
always be set to a time longer than the video duration itself or it will always fail:

from google.cloud import videointelligence_v1 as
videointelligence

video_client = videointelligence.
VideoIntelligenceServiceClient()

features = [videointelligence.Feature.LABEL_DETECTION]

with io.open(path, "rb") as movie:

    input_content = movie.read()

operation = video_client.annotate_video(

    request={

      "features": features,

      "input_content": input_content

    }

)

result = operation.result(timeout=90)

As you can see, we can also add video recognition capabilities to our code in a matter of minutes.

In general, the Cloud Video Intelligence pricing model is based on the number of minutes of video
processed and the features requested. You can find more information about the Free Tier and costs
by feature in the link included in the Further reading section.

And this concludes the list of AI-based services in this chapter. Now, let’s work together on an exercise
to see how easy it is to combine some of these services in our code.

Hands-on exercise 259

Hands-on exercise
For this example, I used a dataset created by Phillip Keung, Yichao Lu, György Szarvas, and Noah
A. Smith in their paper, The Multilingual Amazon Reviews Corpus, in the proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing, 2020, https://arxiv.org/
abs/2010.02573. The data files include thousands of reviews of Amazon products.

This example will process the reviews to find out which nouns are more frequent in positive reviews
and which ones are present in negative ones. While this is quite a basic approach, it could be the first
iteration of an application to provide information about which products our company should focus
on and which ones we should consider dropping.

To create the input file for our exercise, I downloaded all six JSON files from the /dev directory of
the dataset, available at https://docs.opendata.aws/amazon-reviews-ml/readme.
html, which requires an AWS account to access it. I created a small Python script to choose 16 random
reviews from each JSON file, meaning a total of 96 reviews in 6 languages, which are combined by
the script into a single JSON.

I included the consolidate_reviews.py script in the repository for this chapter, so you can
download the files yourself and create your own JSON file if you wish. You can even modify the
number of reviews selected from each language to your liking. Just in case, I also included my own
copy of consolidated_reviews.json for you to use. This is a random entry taken from it:

{

  "review_id": "en_0182997",

  "product_id": "product_en_0465827",

  "reviewer_id": "reviewer_en_0008053",

  "stars": "2",

  "review_body": "this is heavy. the tripod isn't that great
and actually is the heaviest part.", "review_title": "this is
heavy",

  "language": "en",

  "product_category": "wireless"

}

Our Python code for this chapter will perform the following steps:

1.	 Load consolidated_reviews.json from disk.

2.	 Iterate through all the reviews.

https://arxiv.org/abs/2010.02573
https://arxiv.org/abs/2010.02573
https://docs.opendata.aws/amazon-reviews-ml/readme.html
https://docs.opendata.aws/amazon-reviews-ml/readme.html

Extending Applications with Google Cloud Machine Learning APIs260

3.	 Translate the reviews to the target language if required (I configured it to be English by default,
but you can change it if you prefer to use another one). The original review_body field will
remain untouched in each entry, and a new property called translated_body will be
created to store the translated text for each review. If the source and destination languages are
the same, then the review_body value will just be copied to translated_body.

4.	 Run a syntax analysis and a document sentiment analysis for each review body.

5.	 Associate a global score to each noun that appears in one or more reviews and modify it depending
on the sentiment scores in those reviews by adding the product of score and magnitude each
time a noun is mentioned.

6.	 Finally, print the top 10 and the bottom 10 nouns ordered by the global score.

The full source code for this exercise is available in the repository for this chapter as analyze_
reviews.py, together with my copy of consolidated_reviews.json. You can run it directly
from Cloud Shell by copying analyze_reviews.py, consolidated_reviews.json, and
requirements.txt to a directory and then issuing the following commands to install the required
Python modules and enable the required APIs:

pip3 install -r requirements.txt

gcloud services enable translate.googleapis.com

gcloud services enable language.googleapis.com

Then, just wait for a couple of minutes for the APIs to become available and run the analysis:

python3 analyze_reviews.py

Note
This is just an example of how we can translate and analyze a set of text files. The scoring system
is extremely primitive and was used to provide a fast result since a complete Natural Language
analysis would make the code much longer and more complicated.

First, let’s define our constants, including the path to the consolidated reviews JSON and the target
language for our translations. Feel free to change their values if you prefer others:

REVIEW_LIST_FILE_NAME = "./consolidated_reviews.json"

TARGET_LANGUAGE = "en"

Then, we will load the consolidated JSON file from disk:

review_file = open(REVIEW_LIST_FILE_NAME, 'r')

review_list = json.load(review_file)

Hands-on exercise 261

Next, we will then instantiate the translation and Natural Language clients outside of the loops to
speed up execution and save memory by reusing them:

language_client = language.LanguageServiceClient()

translate_client = translate.Client()

Now, we will initialize a global dictionary to store the score associated with each name:

global_score = {}

Then, let’s iterate through all the reviews and translate them if required:

source_language = review_data['language']

if source_language == TARGET_LANGUAGE:

  print("- Translation not required")

  review_data["translated_body"] = review_data["review_body"]

else:

  print("- Translating from {} to {}".format(source_language,
TARGET_LANGUAGE))

translate_result = translate_client.translate(

  review_data['review_body'],

  target_language=TARGET_LANGUAGE

)

review_data["translated_body"] =

  translate_result["translatedText"]

print("- Review translated to: {}".

  format(review_data["translated_body"]))

Next, let’s perform syntax and document sentiment analysis using text annotation. You might need
to change the encoding type if you configured a different target language:

lang_document_type = language.Document.Type.PLAIN_TEXT

lang_encoding_type = language.EncodingType.UTF8

lang_document = {

  "content": review_data["translated_body"],

  "type": lang_document_type,

  "language": TARGET_LANGUAGE

}

Anotate text for syntax and document sentiment analysis

lang_features = {

Extending Applications with Google Cloud Machine Learning APIs262

  "extract_syntax": True,

  "extract_document_sentiment": True

}

language_result = language_client.annotate_text(

  request={

    "document": lang_document,

    "encoding_type": lang_encoding_type,

    "features": lang_features

  }

)

Now that the language analysis is complete, we will create a list of nouns appearing in the reviews so
we can quickly recognize them later:

noun_list = set()

for token_info in language_result.tokens:

  token_text = token_info.text.content.lower()

  token_type = token_info.part_of_speech.tag

  if token_type == 6: # If it's a NOUN

    if token_text not in noun_list:

      noun_list.add(token_text)

Then we will iterate through all the sentences, get their scores and magnitudes, find all nouns used
in those sentences, and update their global scores:

Iterate through all the sentences

for sentence_info in language_result.sentences:

  sentence_text = sentence_info.text.content

  magnitude = sentence_info.sentiment.magnitude

  score = sentence_info.sentiment.score

  sentence_score = magnitude * score

  # Split each sentence in words

  word_list = sentence_text.split()

  for word in word_list:

    word = word.lower()

    # Find nouns in the sentence and update global scores

    if word in noun_list:

      if word in global_score:

        global_score[word] =

Hands-on exercise 263

          global_score[word] + sentence_score

      else:

          global_score[word] = sentence_score

Finally, let’s use a pandas DataFrame to order the scores and print the top and bottom 10 nouns:

ordered_scores = pd.DataFrame(global_score.items(),

  columns=['word', 'score']).sort_values(by='score',

  ascending=False)

print("TOP 10 Nouns with the highest scores:")

print(ordered_scores.head(10))

print("\nBOTTOM 10 Nouns with the lowest scores:")

print(ordered_scores.tail(10))

While this is not a very precise analysis, it can help us understand which names appeared in sentences
with the most extreme magnitudes and what product features users write more frequently about. The
analysis could be much more accurate if we increased the number of reviews included if they referred
to a single category or even a single product and if we cleaned up the list of nouns to remove false
positives and other forms of noise. Again, this was just a small example to show you how quick and
easy it is to translate and analyze texts using Google Cloud.

This is the result I got in my execution; we can see classics such as quality, sound, or price among the
nouns with the highest scores, and sticker, button, or color among the names at the bottom of the list:

TOP 10 Nouns with the highest scores:

         word  score

89    quality   2.52

315    camera   1.66

154      love   1.45

155     story   1.45

115     sound   1.45

246  delivery   1.30

195     night   1.30

320     video   1.17

119      book   1.13

61      price   0.94

BOTTOM 10 Nouns with the lowest scores:

         word  score

275   sticker  -0.82

Extending Applications with Google Cloud Machine Learning APIs264

78      cover  -0.85

31      weeks  -0.89

66     button  -0.89

254    velvet  -0.98

132     waste  -1.13

135  purchase  -1.13

175     color  -1.13

260  download  -1.28

55        bit  -1.70

What’s next

Now that we are done with our exercise, here are some tips and some food for thought:

•	 Translating and analyzing text or extracting labels from media can become expensive as the
number of files increases, especially if we need to re-run our analysis repeatedly. How would
you modify the code so that each sentence is only translated and analyzed once, regardless of
the number of times that you run the script?

•	 I didn’t use service accounts for this example on purpose; however, they are the best option
for using this kind of API. How would you modify the code to run using a service account? Is
there any cloud service that can make it to run this code as a service account without requiring
tokens or keys?

•	 How would you validate words that can be nouns and verbs or nouns and adjectives at the
same time (i.e., love, which appears on the preceding list)?

And now, it’s time to wrap up.

Summary
In this chapter, we covered a few ML-powered services that Google provides through public APIs.
First, we discussed the differences between unstructured and structured data, and then we covered
how we can convert speech to text.

Then, we used Cloud Translation to get all our text files translated into the same language and went
through the different language analyses that we can perform using Cloud Natural Language. In the next
sections, we discussed how Cloud Vision and Cloud Video Intelligence can help us better understand
the content of our images and videos.

Finally, we used a hands-on exercise to try a combination of Cloud Translate and Cloud Natural
Language services to analyze a bunch of Amazon reviews.

Further reading 265

This chapter is the last one dedicated to showing you how to extend your code using the best products
and features provided by Google Cloud. We will use the final section of the book to connect the dots
and show you how to build hybrid and multi-cloud applications that can run anywhere. The next
chapter will focus on common design patterns for these kinds of solutions.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

•	 AutoML: Train high-quality custom ML models with minimal effort and ML expertise: https://
cloud.google.com/automl

•	 Speech-to-Text request construction: https://cloud.google.com/speech-to-text/
docs/speech-to-text-requests

•	 Compare Cloud Translation Basic and Advanced editions: https://cloud.google.com/
translate/docs/editions

•	 Cloud Translation supported languages: https://cloud.google.com/translate/
docs/languages

•	 Cloud Natural Language pricing: https://cloud.google.com/natural-language/
pricing

•	 Cloud Vision pricing: https://cloud.google.com/vision/pricing

•	 Cloud Video Intelligence pricing: https://cloud.google.com/video-intelligence/
pricing

https://cloud.google.com/automl
https://cloud.google.com/automl
https://cloud.google.com/speech-to-text/docs/speech-to-text-requests
https://cloud.google.com/speech-to-text/docs/speech-to-text-requests
https://cloud.google.com/translate/docs/editions
https://cloud.google.com/translate/docs/editions
https://cloud.google.com/translate/docs/languages
https://cloud.google.com/translate/docs/languages
https://cloud.google.com/natural-language/pricing
https://cloud.google.com/natural-language/pricing
https://cloud.google.com/vision/pricing
https://cloud.google.com/video-intelligence/pricing
https://cloud.google.com/video-intelligence/pricing

Part 4:
Connecting the Dots –Building

Hybrid Cloud Solutions That
Can Run Anywhere

The last part of the book combines all the topics described in the previous chapters to provide you
with a practical focus. First of all, we will discuss the different architecture patterns that can be used
when designing an application or service for Google Cloud.

Then, we will use three real-world scenarios to showcase the process of modernizing or migrating
them to Google Cloud and explain the focus areas and the challenges that we may encounter.

The final chapter includes a lot of useful information, including best practices, tips, and a list of the most
common pitfalls so that you can improve your understanding and face migration and development
projects with a much greater chance of success.

This part contains the following chapters:

•	 Chapter 11, Architecture Patterns for Hybrid and Multi-Cloud Solutions

•	 Chapter 12, Practical Use Cases of Google Cloud in Real-world Scenarios

•	 Chapter 13, Migration Pitfalls, Best Practices, and Useful Tips

11
Architecture Patterns for

Hybrid and Multi-Cloud
Solutions

After covering the different alternatives for running our code on Google Cloud and describing which
of its services and APIs we can use to simplify our code, the last part of this book will be dedicated to
best practices, implementation examples, and tips on how to build and run solutions while putting
all these pieces together. All these topics will apply to either new solutions or legacy ones being
modernized or migrated to Google Cloud.

In this chapter, we will first define what hybrid and multi-cloud solutions are and why they can be
useful. Then, we will discuss the best practices for designing these kinds of architectures and, finally,
we’ll divide the architecture patterns into two distinct groups and go through each of these patterns.

We’ll cover the following main topics in this chapter:

•	 Definitions

•	 Why hybrid and multi-cloud?

•	 Best practices for hybrid and multi-cloud architectures

•	 Types of architecture patterns

•	 Distributed architecture patterns

•	 Redundant architecture patterns

Let’s get started!

Architecture Patterns for Hybrid and Multi-Cloud Solutions270

Defining hybrid and multi-cloud solutions
We will dedicate the first section of this chapter to clarifying the differences between hybrid and multi-
cloud solutions, two concepts that, despite being often used interchangeably, have different meanings.

Many organizations have their own private computing environment, where they host their services.
An on-premises solution runs all its components in a private computing environment. No cloud
environments or components are used.

When we want to start using a public cloud provider to run a new solution or to migrate an existing
one, we can do it by choosing one of the following solution types:

•	 A native cloud solution runs all of its components on a single public cloud provider. No private
environments are used.

•	 A hybrid cloud solution combines our private computing environment with a public cloud
provider. Here, we will be deciding, for each component of the solution, if it will run in the
private or the public environment.

•	 A multi-cloud solution uses two or more different public cloud providers to run applications
and services, and may optionally include our private computing environment. Again, we will
define the criteria to decide in which of the available environments each component will run:

Figure 11.1 – Hybrid versus multi-cloud architecture

Why hybrid and multi-cloud? 271

As you can see in the preceding diagram, a hybrid architecture interconnects a private computing
environment with one or more public cloud providers, while a multi-cloud design interconnects two
or more different public cloud providers.

Now that we understand the difference between the different solution types in terms of environments used,
let’s discuss which key topics we should keep in mind when we decide to use one of these architectures.

Why hybrid and multi-cloud?
You may be surprised to be reading about hybrid and multi-cloud applications at this point, after
spending many chapters discussing how to build native cloud applications. The reason is quite simple:
many organizations have many of their workloads still running on-premise and, even if you need to
build a new architecture, you should consider hybrid and multi-cloud design patterns and compare
the pros and cons of each approach before making a final decision.

While moving to the cloud is a priority for many organizations, many of them are still hosting their main
services on-premises. In these situations, hybrid architectures can help us run at least part of any new
solution on Google Cloud until all the core components our solution depends on have been migrated.

Hybrid approaches are also often used as a first stage when migrating to the cloud, moving first those
non-critical services that have no dependencies. This approach reduces associated risks and can help
the team performing the migration improve their skills and experience, something that will be useful
when the time comes to migrate the most complex pieces of our corporate architecture.

Another possibility is to use Google Cloud to extend our on-premises computing environment during
seasonal peaks or special occasions. Alternatively, we can set up a failover environment that will take
control if our on-premises environment suffers an outage.

All the approaches mentioned have something in common: they can help us capitalize on all the
investment in on-premises hardware, at least until it reaches its end of life, which is another reason
to justify the use of these kinds of solutions.

A key part of the progress of migrating to the cloud is deciding which of our workloads will remain
on-premises and which will run on Google Cloud. This is not an easy decision. The interests of the
different stakeholders should be considered, and we should deliver an architecture guide that works
for everyone. There are also many other factors to be taken into account, such as licensing and local
regulations. A guide that considers all these conditioning factors should be put together as part of the
migration, and it should not only include a migration plan but also let the organization know how to
proceed from now on so that we get new workloads deployed in the proper location, thus avoiding
extra migration work.

For example, if we decide that we will run all our frontends on Google Cloud, we will need to define
a process to migrate existing frontends, but also another one to deploy new workloads directly on
Google Cloud. Both processes will contribute to fulfilling our architectural vision.

Architecture Patterns for Hybrid and Multi-Cloud Solutions272

Adding a new environment to our landscape will also bring added complexity to the table, so we will
need to consider some areas where specific mitigation actions may be required. We’ll discuss the most
important ones in the next section.

Best practices for hybrid and multi-cloud architectures
In a hybrid or multi-cloud solution, we will have components running on different environments. The
following is a list of some topics that we should keep in mind when we build a new solution or start
modernizing a legacy one, in no special order. I have also added additional resources to the Further
reading section, located at the end of this chapter:

•	 Abstraction: Being able to abstract the differences between environments will be key to
establishing common tooling and processes across all these environments, sometimes at the
expense of giving up on some unique features of a cloud provider so that we can achieve
workload portability. This concept is the ability to move any workload from one environment
to another and should be one of our objectives to pursue. Some examples of technical decisions
that can help us in our abstraction process are using containers and Google Kubernetes Engine
to standardize container deployment and management or using an API gateway to unify the
different layers in our solution.

•	 Processes: Being able to use the same tools for deployment, management, and monitoring across
the environment, as well as harmonizing our processes, will make our daily work simpler and
speed up development, while also preventing undetected issues or environment incompatibilities
from passing to production unnoticed. While this will involve additional efforts in the early
stages of the process, it will be worthwhile later on. However, please ensure that the processes
and tools don’t become too complex; otherwise, the cure may be worse than the disease.

•	 Synchronization and dependencies: We should reduce or eliminate dependencies and
synchronization processes across environments. These, particularly if they are running
synchronously, may hurt the global performance of our solutions and are potential points of
error in our architecture.

•	 Data location and requirements: While enabling workload portability should be one of
our priorities, we shouldn’t forget that the associated data has to “move” with the workload,
sometimes just figuratively but others in a physical way. This means that we need to have a
strategy in mind to make our data available to our workloads, regardless of the environment
where they run. We can achieve this by either interconnecting our environments or by enabling
data mirroring or data replication, each of which has its pros and cons that we should consider
for each of our use cases before making a final choice. You can find more information about
this topic in the Further reading section, located at the end of this chapter.

Types of architecture patterns 273

•	 Connectivity: Having multiple environments means that we will need to connect our private
computing environment with one or more public cloud providers. For this to work properly,
we should choose an appropriate connectivity model and a network topology that fits our use
case that works for each of those environments. Performance, reliability, and availability are key
metrics that we will need to consider before choosing the option that better fits our use case.
For example, we can consider options such as Direct Interconnect or Direct Peering to help
reduce our charges. We will match each architecture pattern, described later in this chapter,
with a suggested network topology to use.

•	 Security: Security is always a key topic, and it will be more than ever when multiple environments
are involved. There are some actions that we can take to help, such as encrypting data at transit,
adding extra security layers using API gateways, or implementing a common identity space
for all our environments, a topic that you can find more details about in the Further reading
section. For example, if we use Google Cloud resources to run batch or non-interactive jobs,
we should block external access to all infrastructure elements involved. Always remember to
implement the principle of least privilege that we discussed earlier in this book to minimize
potential security risks.

•	 Cloud resources location: Choosing our Google Cloud region wisely will help us reduce
latency and maximize performance if we use one that is geographically close to our on-premises
location. However, we will also need to study any additional requirements before making a
final choice, depending on the use that we will make of the cloud. For example, if we will be
using it as a failover environment, we may prefer it to be not so close.

•	 Cloud cost model: Knowing the details of our cloud provider’s cost model can help us make
better choices, too. For example, as we will discuss later in this chapter, some of the proposed
architecture patterns for Google Cloud benefit from the fact that ingress traffic is free to offer
a cost reduction.

Now that we have these best practices in mind, let’s use the next section to divide architecture patterns
into two groups before we go through the actual list.

Types of architecture patterns
There are two different types of architecture patterns, depending on our priorities and the reason why
we have decided to use these architectures for a new solution or a newer version of an existing one:

•	 Distributed architecture patterns are those where we will decide, for each of our components,
which environment where they will run. This means that we are prioritizing the performance,
compatibility, and cost of each component over any other factors in our design.

•	 Redundant architecture patterns use multiple redundant deployments so that our components
will be ready to run in more than one environment and may “jump from one to another” when
it’s required, focusing our efforts on increasing the capacity of our environments or maximizing
the resiliency of our applications.

Architecture Patterns for Hybrid and Multi-Cloud Solutions274

Which one should we choose? As you can imagine already, it will depend on the context, the
requirements, and our objectives. As I already mentioned for other choices earlier in this book, in
most situations, we shouldn’t choose just one, but combine a few of them to get the most out of each
of our environments, including Google Cloud, of course.

Next, let’s enumerate and discuss the details of each of the different architectural patterns, starting
with the distributed ones.

Distributed architecture patterns
There are four different patterns that we can use in our hybrid and multi-cloud distributed architectures.
Each of them can be applied to different scenarios, depending on if we finally decided to use hybrid
or multi-cloud, and depending on the current and future desired state of our application or service.

There will be a network topology associated with each of them that I will introduce, but you can find
more details about each of them in the Further reading section, located at the end of this chapter.

Please remember that these are just patterns, so they may need additional customizations to suit each
specific use case, but being aware of them will help us identify which of the available options can be
used in a given scenario, and compare them to find the best one.

Now, let’s go through each of the distributed architecture patterns.

Tiered Hybrid

The Tiered Hybrid pattern is an interesting option for organizations who want to migrate applications
where frontend and backend components are decoupled, but it can also be a useful choice if we
want to design an architecture for a new solution and our organization still has key components
running on-premises:

Figure 11.2 – The Tiered Hybrid design pattern

Distributed architecture patterns 275

In its most usual implementation, in a tiered hybrid application, the frontend components run on
Google Cloud, while the backend runs on-premises.

In migration scenarios, this can mean an enormous simplification because backends rarely depend
on frontends, so they can be safely decoupled. Besides, frontends are stateless and can benefit a lot
from the load balancing and autoscaling features of Google Cloud, so a public cloud provider is a
better environment for them to run.

On the other hand, backends often contain data subject to local regulations, which may complicate
their migration to the cloud, especially if the cloud provider is located in a different country, so moving
the frontends first is usually a quick win. Finally, with this distributed setup, there should be much
more ingress traffic from on-premises to Google Cloud (which is free) than egress, and this fact can
help reduce our costs.

There is a less common reverse approach that’s useful in migration scenarios, including legacy huge
and monolithic frontends, where we may prefer to move the backend to the cloud first, and keep the
frontend on-premises so that we can split it and migrate it later on.

In both cases, we should work on harmonizing the tools and processes to minimize the differences
when deploying workloads to one side or the other.

In migrations, this approach can be used as a temporary step before deciding if the rest of the
components of the solution should be moved to the cloud or not, all while reducing risks. Besides, the
process of migrating or deploying the frontend can be used to learn more about the cloud provider
and its service, and be better prepared to deal with the most complicated part of the migration later.

From a networking point of view, this architecture pattern requires stable connectivity between the
frontend and backend, with low latency. One option could be a gated egress topology, where the
visibility of components running on Google Cloud is limited to the API endpoints exposed from the
private environment. A meshed topology could be another option, enabling all environments to
connect with each other.

Next, let’s use the next section to discuss how to use multiple cloud providers to host components of
our applications.

Partitioned multi-cloud

In this architecture pattern, we have two or more public cloud environments from different providers
and will decide the best destination for each component of our solution. This option maximizes our
flexibility and can help us make the most out of each provider, while also avoiding potential vendor
lock-in. It can also be useful if our organization has users in a country where some of our providers
are not present, so we can use the others to fill that gap:

Architecture Patterns for Hybrid and Multi-Cloud Solutions276

Figure 11.3 – Partitioned multi-cloud pattern

However, notice that for this pattern to be effective, we will need to maximize the abstraction of each
platform and that this will require significant effort. For example, using containers and GKE can be
a very interesting option that will enable the possibility of moving workloads between providers,
helping us optimize our operations. Also, notice that some usual components in our architectures,
such as load balancers, may not work if we plan to use them with multiple cloud providers and DNS
will probably need some special setup, too. Meshed or gated topologies, which we described in the
previous pattern, are the usual recommendation for these types of architectures too. In this case, gated
ingress and egress are interchangeable, because we may want to expose the APIs from one environment
to the other, or just interconnect them all.

We should carefully consider the additional complexities that this option may bring and decide if it
is worth it for our specific use case. It is also a good practice to minimize the dependencies between
components running on different providers, thus preventing an outage in one of the providers that
may spread to the rest. Identity should also be unified if possible and security should be properly
implemented and carefully monitored.

Partitioned multi-cloud is an interesting pattern, but some others are special. One of them, which
we will describe in the next section, decides where our workloads should run depending on whether
they generate or if they consume our data. How does it sound to you?

Analytics hybrid or multi-cloud

This architecture pattern can be useful if we want to deploy a new analytical solution or if we want
to modernize our legacy setup. Since data extraction and data analysis pipelines are often separated
from each other, this pattern suggests running the analytical workloads on Google Cloud, while data
extraction is still done either on-premises or on the current cloud provider:

Distributed architecture patterns 277

Figure 11.4 – Analytics hybrid or multi-cloud pattern

For analytics hybrid or multi-cloud to work, extracted data should be later copied to Google Cloud
(and as ingress traffic, that would have no cost for us) where it will be analyzed. Depending on how
our process is defined, the results of the analysis may need to be copied back to our on-premises
environment where the original data came from.

This suggested split is reasonable because the analysis process is usually the most resource-intensive
one, so if we run it on Google Cloud, we can benefit from a nice portfolio of data analytics solutions
and products, and the availability of more resources with autoscaling capabilities, among other
interesting features.

A handover topology is recommended for this kind of architecture, where connectivity to Google
Cloud is limited, except for Pub/Sub and/or Cloud Storage, which are used to send data from the
private to the public environment, either using data slices or messages to transfer it. This data is later
processed inside the public cloud environment.

We can also add gated egress features to our topology if the volume of the resulting data that needs
to travel back is significant or if using APIs is needed to send it back.

The next one is the last distributed pattern that we will cover in this chapter. It’s a very interesting
case because we often assume that connectivity is a critical service that should be reliable, but this
will often not be the case. We’ll discuss how to handle this and similar situations in the next section.

Edge Hybrid

Using the Edge Hybrid pattern makes sense for those use cases where we are receiving data from
multiple locations intermittently or just at specific times of the day. These scenarios are special because
internet access is not on the list of critical dependencies and data synchronization may happen at any
time and can even be suddenly interrupted:

Architecture Patterns for Hybrid and Multi-Cloud Solutions278

Figure 11.5 – The Edge hybrid pattern

We can also benefit from the free ingress with this architecture by using Google Cloud to receive and
process all the data, and we should try to abstract the communication with all edge locations to make
the process simpler. Using containers and Kubernetes, together with a set of harmonized processes,
can help a lot in cases like this. We should also move as many of our workloads out from the edge
locations and into Google Cloud, which will simplify our architecture and contribute to reducing the
number of potential points of failure.

In this many-to-one architecture, data encryption and security will also be key factors to consider
since sensitive data may be transferred between environments. Gated ingress would be a nice network
topology for unidirectional setups, and gated ingress and egress would fit bidirectional scenarios.
The decision will depend on which sides need to expose their endpoints and if we need to connect
from the public environment to the private one.

This was all for the distributed patterns. Now, let’s move on to the next section to discuss how redundant
patterns can also be of help in many other situations.

Redundant architecture patterns
As we mentioned earlier, redundant architectures, as their name suggests, use copies of the same
environment hosted by different providers in different locations. Different scenarios can benefit from
redundancy, most of which can be mapped to the following architecture patterns.

Environment hybrid

Environment hybrid patterns run production workloads on-premises, while the rest of the environments,
such as development, test, and staging, run on the public cloud provider:

Redundant architecture patterns 279

Figure 11.6 – The environmental hybrid pattern

This can be a nice way to speed up migrations because production is often the most challenging
environment to migrate, but development, testing, and staging don’t usually have so many requirements
and limitations.

This pattern can also offer cost savings since non-critical environments can be shut down when they
are not in use, and in that case, we will only be paying for the storage used by these environments.

For this pattern to work properly, all environments must be equivalent in terms of functionality, so
abstraction is a priority here. GKE can be a useful option once again, combined with a set of tools
and processes that are harmonized across all our environments. This means that a corresponding
managed service should exist in Google Cloud for each product or service that we want to use or
run on-premises.

A mirrored network topology is a nice choice for this pattern, where workloads running on the
production environment are isolated from the rest of the environments. However, CI/CD and management
processes are globally available and can be used in all environments, including a monitoring and logging
system that is compatible with all our environments, wherever they are located, such as Prometheus.

Another classic design pattern that makes use of a public cloud provider sets up a latent copy of our
production environments and turns it on when a disaster happens. We’ll discuss it in the next section.

Business continuity hybrid or multi-cloud

Business continuity hybrid or multi-cloud presents another common way of integrating the cloud
into our architectures, both at solution design time and when we are looking for ways to improve
legacy applications:

Architecture Patterns for Hybrid and Multi-Cloud Solutions280

Figure 11.7 – The business continuity hybrid or multi-cloud pattern

In its hybrid option, we use a public cloud provider to set up a failover environment for our on-premises
private environment. There is also a multi-cloud version, where our application runs on a first public-
cloud provider and we use a second one to host our failover environment. In most cases, failover
environments are built using virtual machines.

Using Google Cloud to set up a failover environment is a good choice because of its pay-per-use
model and its presence in many different regions. We can also benefit from cost savings if we keep
our failover environment on standby, only paying for the storage of our VMs. The ability to quickly
resize our environment can also be of help during the execution of our Disaster Recovery measures.

Among the best practices recommended for this architecture pattern, the first one is to have an actual
Disaster Recovery plan in place, carefully defined. Second, this plan should be periodically executed
to properly test it, identify any existing issues and gaps, and improve it every year; otherwise, we may
find unpleasant surprises when we need to use our failover environment in the middle of a crisis (and
I have seen this happen to customers more than once, so you have been warned!).

Having a failover environment ready to run on Google Cloud whenever we need it will require us
to back up or synchronize our data to the cloud, and we should ensure that this data is traveling
encrypted, especially if it is sensitive. As part of this best practice, we should also decide if our data
synchronization should be unidirectional or bidirectional. If this seems like an easy decision to you,
you should read more about the split-brain problem in the Further reading section, located at the end
of this chapter, to better understand potential risks and be better prepared to mitigate them. Besides
this, our backup strategy should include additional destinations for copies of our data so that we don’t
only rely on our failover system when the main system is unavailable.

Redundant architecture patterns 281

There are some other useful recommendations when implementing this pattern. First, there should
be no dependencies between the main environment and the failover one. Containers and Kubernetes
can be once again a nice choice to abstract the differences between environments, an abstraction
that will be key to establishing harmonized processes, such as CI/CD, which should be replicated in
each environment so that one is a mirror of the other and can easily replace it when it’s down. Also, a
common failover architecture will use a handover network topology for data backups and a mirrored
topology for any other uses, both of which have already been described for other architecture patterns.

Load balancers are often used in this kind of architecture to redirect requests to one or another
environment, depending on the circumstances, but we tend to forget that they can fail too, so having
a plan B for them is a must, such as configuring our DNS with a fallback to the failover environment
to ensure that connections are switched even when the load balancer fails.

Another pattern includes those cases where we use our cloud provider as an extension of our private
environment to handle peaks. This pattern is known as cloud bursting.

Cloud bursting

Cloud bursting is one of the most common uses of public cloud providers to extend and improve
existing applications but can also be used in new solutions to provide scaling capabilities to the often
limited resources available on-premises:

Figure 11.8 – The cloud bursting pattern

In summary, this pattern suggests running the baseline load of our solution in our private environment,
and either switching to the cloud environment or complementing it with other instances running
temporarily on Google Cloud only when extra capacity is needed.

Architecture Patterns for Hybrid and Multi-Cloud Solutions282

For this pattern to be viable, we need a decent level of abstraction to enable workload portability so
that we can move workloads to and from Google Cloud. A load balancer can be used to decide where
each request has to be served from, but a normal one may not be able to read the currently available
amount of cloud resources, and will also probably lack the ability to scale them up or down dynamically
when required, even down to zero, which would be a desirable feature for dealing with peaks while
minimizing costs. Being able to implement these features may complicate our implementation, so
we’d better decide whether it’s worth the extra effort.

Some organizations use this pattern as an intermediate solution before they complete their migration
to the cloud, and run a cloud bursting architecture until the hardware running on-premises reaches its
end of life. This is a nice way to make the most out of the Capex investments until they are no longer
usable. Indeed, a good cloud bursting architecture should support a hybrid scenario, but also be ready
to switch and just use components running on the public cloud at any time.

A meshed topology, which interconnects all environments, is a good networking choice to ensure
that all workloads can access our resources, regardless of the environment where they are running.
Using the right Google Cloud region to minimize latency and encrypting data at transit is also a
good practice to succeed. And don’t forget to supervise the amount of egress traffic that is required,
because you will be charged for it!

As we have seen in other architecture patterns, we can achieve portability by using containers and
GKE for lightweight workloads, and in this case, we can add VMs with a managed instance group
for the most intensive ones.

Additional cost savings can be achieved in multiple ways. First of all, we will no longer need on-premises
extra capacity to be reserved for peaks, since we can use Google Cloud to provide extra resources that
scale up and down with our demand. Also, we can use preemptible VMs to run all our non-critical
jobs, which can be restarted and take less than 24 hours to complete, with important cost savings.

This was the last architecture pattern for hybrid and multi-cloud architectures. I hope this list improved
your knowledge and you are now able to consider different options when you need to design an
application that runs totally or partially on Google Cloud. Next, it’s time to wrap up.

Summary
We started this chapter by explaining the difference between the concepts of hybrid and multi-cloud
solutions and discussing why these architectures make sense. Then, we enumerated some of the best
practices to use when designing these kinds of solutions.

Next, we divided hybrid and multi-cloud architecture patterns into two different categories: distributed
and redundant. Then, we discussed each of the different patterns that Google Cloud suggests to
consider, explaining when they make sense and what we need to take into account if we decide to use
them, including the recommended network topology.

Further reading 283

In the next chapter, we will put all these concepts and options into practice and take three sample
applications to the next level by containerizing them and making them hybrid and multi-cloud friendly.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

•	 Understanding the difference between Mirroring and Replication: https://wisdomplexus.
com/blogs/difference-between-mirroring-and-replication/

•	 Limits to workload portability: https://cloud.google.com/architecture/
hybrid-and-multi-cloud-patterns-and-practices#limits-to-workload-
portability

•	 Authenticating workforce users in a hybrid environment: https://cloud.google.
com/architecture/authenticating-corporate-users-in-a-hybrid-
environment

•	 Eliminating MySQL Split-Brain in Multi-Cloud Databases: https://severalnines.
com/blog/eliminating-mysql-split-brain-multi-cloud-databases/

•	 What is Prometheus?: https://prometheus.io/docs/introduction/overview/

•	 Hybrid and multi-cloud patterns and practices: https://cloud.google.com/
architecture/hybrid-and-multi-cloud-patterns-and-practices

•	 Hybrid and multi-cloud architecture patterns: https://cloud.google.com/
architecture/hybrid-and-multi-cloud-architecture-patterns

•	 Best practices for hybrid and multi-cloud networking topologies: https://cloud.google.
com/architecture/hybrid-and-multi-cloud-network-topologies#best-
practices-topologies

https://wisdomplexus.com/blogs/difference-between-mirroring-and-replication/
https://wisdomplexus.com/blogs/difference-between-mirroring-and-replication/
https://cloud.google.com/architecture/hybrid-and-multi-cloud-patterns-and-practices#limits-to-workload-portability
https://cloud.google.com/architecture/hybrid-and-multi-cloud-patterns-and-practices#limits-to-workload-portability
https://cloud.google.com/architecture/hybrid-and-multi-cloud-patterns-and-practices#limits-to-workload-portability
https://cloud.google.com/architecture/authenticating-corporate-users-in-a-hybrid-environment
https://cloud.google.com/architecture/authenticating-corporate-users-in-a-hybrid-environment
https://cloud.google.com/architecture/authenticating-corporate-users-in-a-hybrid-environment
https://severalnines.com/blog/eliminating-mysql-split-brain-multi-cloud-databases/

https://severalnines.com/blog/eliminating-mysql-split-brain-multi-cloud-databases/

https://prometheus.io/docs/introduction/overview/

https://cloud.google.com/architecture/hybrid-and-multi-cloud-patterns-and-practices

https://cloud.google.com/architecture/hybrid-and-multi-cloud-patterns-and-practices

https://cloud.google.com/architecture/hybrid-and-multi-cloud-architecture-patterns

https://cloud.google.com/architecture/hybrid-and-multi-cloud-architecture-patterns

https://cloud.google.com/architecture/hybrid-and-multi-cloud-network-topologies#best-practices-topologies
https://cloud.google.com/architecture/hybrid-and-multi-cloud-network-topologies#best-practices-topologies
https://cloud.google.com/architecture/hybrid-and-multi-cloud-network-topologies#best-practices-topologies

12
Practical Use Cases of Google

Cloud in Real-World Scenarios

We are getting to the end of the book, and it’s the perfect moment to combine everything we’ve learned
to implement solutions for three very different scenarios by analyzing their challenges and discussing
how we can approach the design of the corresponding solutions, aimed at either replacing them or
extending them, using one or more of the architecture patterns discussed in the previous chapter.

The process that we will follow is valid for building a new solution, but also for migrating a legacy
application or modernizing an existing one. In all these cases, we can benefit from the exercise of
comparing how developers traditionally used to face challenges, and how we can use the strengths
of Google Cloud to create a better alternative, in terms of features, performance, security, and cost.
I will also include a section at the end of each example with potential multi-cloud alternatives that
could also be a nice fit in many cases.

Also, for your reference, and since there are hundreds of architecture patterns and guides that can
help us solve specific problems and needs, I added a link to the Google Cloud solutions guide in the
Further reading section, located at the end of the chapter. I’m sure you will find this resource useful
sooner or later.

We’ll cover the following main topics in this chapter:

•	 Invoice management – deconstructing the monolith

•	 Highway toll system – centralizing and automating a distributed scenario

•	 Fashion Victims – using the cloud as an extension of our business

Invoice management – deconstructing the monolith
Our first scenario is a legacy invoice management application running on a Windows server. This is a
huge monolithic application with multiple features that eats up more and more RAM and has become
a challenge to maintain due to its frequent crashes.

Practical Use Cases of Google Cloud in Real-World Scenarios286

As part of the corporate IT modernization plan, we are assigned the task of modernizing the application.
We have access to the source code and have a team of developers to work with us who have been
upskilled to develop on Google Cloud with some online training and a copy of this book :) We are
now ready to take this application to the next level, so let’s do it!

Specifications

After some interviews with the developers and the team supporting the application, and a careful
look at the source code, we have identified the following key features and details of our invoice
management software:

•	 It runs on a Windows server using a single binary.

•	 It uses a single external SQL Server database to store application data.

•	 It has a graphical UI that is used by members of the accounting team around the world using a
Remote Desktop Protocol (RDP) client to connect to the main server, where the binary runs.
Only one user can use the UI at a given moment.

•	 It allows the creation of new invoices from the UI, as well as modifying them and marking
them for deletion, but no invoice can be physically deleted for audit reasons.

•	 Signed PDFs can be generated for any invoice.

•	 It has an integrated payment system that uses an external API to send money via wire transfers.

•	 Since the company has providers from different countries, the solution supports multiple
currencies, obtaining updated exchange information periodically from an external third-party
provider, using its own API.

Analysis and opportunities

While we should get a lot more information before moving on, the previous list gives us some very
interesting hints about how we can proceed.

This is a diagram of the original architecture, which uses an active-passive Windows cluster to host
the application and the database in different nodes:

Invoice management – deconstructing the monolith 287

Figure 12.1 – Original architecture of the invoice management application

Running a single-process application on a unique server, even if it’s configured in high availability
using a cluster, has quite a few risks. First, an error or an exception in one of the threads may affect
the whole application in cases such as—for example—a memory leak.

Also, the user experience can be affected by the latency of the RDP connection, which may be particularly
annoying when we are connecting from a location geographically far away from the application server.

Deploying a new version of the binary with added features can also be a problem because it will not
be possible to do so without an associated downtime, and since we have users all around the world,
it will be complicated to find a proper time that does not interfere with daily work.

Besides, the current use of the application is limited to a single concurrent user, since RDP connects
to the session running the binary, and this is a restriction that we should eliminate, together with the
dependency on RDP.

Some improvements that we could present for this specific case if we rebuilt the application to run
on Google Cloud are listed here:

•	 UI modernization, with multiple users able to connect and use the application at the same time

•	 Infrastructure that autoscales to adapt to the number of connected users, scaling down to zero
when it’s not in use

Practical Use Cases of Google Cloud in Real-World Scenarios288

•	 Deployment of new versions with no associated downtime

•	 Replicated local UI and database instances in any location where the company has an office
(if Google Cloud has a presence; otherwise, we would choose the closest one) for minimum
latency and the highest possible performance

•	 Feature parity with the legacy version—signed PDFs, wire transfers, and currency exchange rates

•	 Additional features could be enabled thanks to the use of Google Cloud public APIs and
services—Optical Character Recognition (OCR) scanning to automatically import invoices
or an external API made available for our suppliers to add their own invoices remotely

•	 Cost savings due to the pay-per-use model, autoscaling, and getting rid of hardware
maintenance tasks

Approaching the migration

The first question that we should ask our managers has to do with time. How long can the application
run in its current state and location? Getting an answer is important to help us understand whether
we need to perform a fast migration or whether we can take our time to define a careful plan to be
executed step by step. Hardware end-of-life information and other corporate information should be
taken into account at this stage.

Another important question is this: Can the data stored in the database—particularly financial and
personal information—be moved to the cloud or not, depending on local regulations and the location
that we are choosing in Google Cloud? If the answer is no, our only cloud-friendly option would
be to use a hybrid approach, where the database would remain on-premises and data would travel
encrypted to the frontend, benefiting from the no-cost ingress. I will assume that this is not the case
and that we have the green light to move all components to Google Cloud.

If we are almost out of time to complete the migration, we should either use a lift-and-shift bare-metal
approach for the hardware or virtualize the servers. Before going virtual, we should check whether
the current amount of memory used and the number of CPUs required to run the applications are
available on Google Cloud, and run some tests to confirm that there is no performance degradation,
particularly in the database.

Lift and shift could also be a quick first step to follow to earn some time, and once the availability of
the application is guaranteed, we can start working on our future vision for the application in less
stressful circumstances.

If time is limited but there’s still a bit left, we could choose to build a minimum viable product (MVP)
on Google Cloud, with enough features to keep our users working, and then work on additional
features on a periodical basis. This approach can be risky and will require a well-crafted testing and
validation plan for the MVP before we can switch from the legacy application. A CI/CD system and
related tooling should also be defined as part of the design so that we can deploy newer versions
quickly and without requiring any downtime.

Invoice management – deconstructing the monolith 289

We may choose the MVP approach even if we have plenty of time ahead because it can help us
validate that we are following the right path in terms of features and performance before it is too late
to accommodate any fundamental changes in its architecture.

Working in sprints can be an interesting approach to prioritize both new features and bug fixes and
work with the team on what matters most for both our users and our business at any given time.

Designing the new architecture

Once we have a plan to follow, it’s time to start drafting the architecture of the new application, taking
into account all features and requirements.

In this example, we have access to the source code of the original application, and one of the most
important decisions to take is how much of this source code we are going to reuse for Google Cloud.
We may choose to reuse as much as possible or otherwise refactor the whole code base. As we discussed
at the beginning of the book, when writing code to be run on the cloud, we should keep security in
mind from the very beginning, so if writing code from scratch does not make a big difference in terms
of complexity and delivery time, it will be a better option for monolithic applications.

Our example has some clearly separated functionalities bundled into the monolithic binary, so we can
start by splitting the monolith into smaller services and microservices, and we can then customize
each of them to benefit from the special features that Google Cloud provides.

First, the frontend should be decoupled from the backend and should become multi-user friendly.
Using a web browser to connect to the application could be an easy option that would work for all users.

Then, there should be a dedicated service for invoice management, including creation, modification,
and marking for deletion. This module could be extended with another one to handle OCR for
imported invoices using Document AI.

Another dedicated service should be deployed to handle payments using wire transfers to a specific
account name and number. Note that this module should have extra security in place since an unwanted
intrusion could have catastrophic implications. Of course, a project-wide identity system would be a
good feature to enable a permission-based system to limit what each user can do and which modules
or services they can use.

Separate services could also be implemented to periodically refresh and offer currency exchange
rates and to generate signed PDFs. The former would need internet access, which should be limited
to connections from that specific service to the host exposing the API.

Regarding data storage, we could use a Cloud SQL instance for all transactional data, but we could
also complement it with Cloud Storage to store invoices and generated PDF files. Using Cloud Storage
offers a few benefits: we can use multi-region buckets, which is compatible with our intention of
getting geographically closer to our customers, and we can also build a token system to offer direct
downloads of generated PDF files from the bucket using authenticated URLs.

Practical Use Cases of Google Cloud in Real-World Scenarios290

Combining all these ideas, this would be a high-level draft of our new architecture:

Figure 12.2 – Draft architecture for invoice management in Google Cloud

Looking at Figure 12.2, we can identify a few components that would benefit from being elastic. The
frontend is an obvious choice so that we can have enough resources to serve multiple users, but also
scale to one or zero when there is none. Since each connection to the frontend will interact at least
with the invoice manager, this component should also be elastic to grow or shrink as the frontend does.

The currency exchange manager will provide a file for each request and should periodically update
the data from the main source, so it shouldn’t be a problem unless we have many users. A service such
as Cloud Scheduler could be used to schedule periodic updates, and a Cloud Functions or a Google
App Engine instance could be used to run its main functionality. Depending on how often we update
currency rates, we could benefit from the fixed cost of App Engine and use it to run our scheduled jobs.

The signed PDF generator is in a comparable situation; it shouldn’t be usual that multiple requests happen
at the same time, but it will depend on the number of users. Using a Cloud Function could also work
in this case, given that we are expecting a short execution time and a limited number of executions.

Invoice management – deconstructing the monolith 291

And related to the number of users too, we should decide whether this architecture would make sense
in a unique location or whether it should be distributed across the regions where our users have a
presence. If we decide to use a unique location, we should carefully decide which would be the best
location to serve customers connecting from multiple countries.

If we otherwise decide that the architecture should be replicated in multiple locations, we should
determine the number of locations and where these will be and decide whether we will need a central
database, or whether an independent one per region will work. Note that using a centralized database
would require periodical synchronization of available data in each regional instance, and user and
permission management may also be affected by this decision.

Added features are often provided at the cost of increasing the overall complexity of the architecture,
and this is a particularly good example of one that should have its pros and cons carefully considered
before deciding whether it’s worth the extra development time and complexity that it will add.

Hybrid and multi-cloud options

This scenario can also be implemented using a multi-cloud approach. You may choose this method
if you have any existing components already running on a provider that cannot be moved, or if you
just want to use various products that you like, each of them available in a different cloud provider.
You may also have an agreement in place or pre-paid services that will take a while to expire. All these
cases will be compatible with this scenario.

If we use Google Kubernetes Engine (GKE) for our services, we can use Anthos to deploy them to
any of the compatible providers. This would simplify our architecture by centralizing management and
unifying processes, which could be a great help given the usual complexity of multi-cloud architectures.

APIfying our services could help too—that is, using an API to provide a service instead of making our
code talk directly to the database. For example, we could provide a method to list the documents for
a user by just passing the user ID and returning a list using a predefined structure. The main benefit
is that we don’t need to expose the database port but just an HTTPS-secured port that offers limited
functionality, which could help mitigate security risks if the code used were written following some
of the security principles that we discussed earlier in the book.

With this approach in mind, we may decide to run the frontend on one public cloud provider and
the backend on another. If we just need to expose our backend endpoints and invoke them from the
frontend, setting up security and identity will be much simpler, and we can just block connections
to any other components to improve security globally. On the other hand, the added complexity of
distributing components from the same part of the application across different cloud providers will
probably void any potential technical advantage, so I’d recommend avoiding it.

I hope you found this analysis interesting. Now, let’s move on to the second example—a quite different
scenario where we will also have a lot of room for improvement.

Practical Use Cases of Google Cloud in Real-World Scenarios292

Highway toll system – centralizing and automating a
distributed scenario
In our second example, our company signs a contract with the local government to take care of the
maintenance of all the toll highways in the country for 10 years in exchange for all tolls collected from
vehicles using them.

Specifications

There are 537 toll booths in the whole highway network, distributed at different exits where there are
usually 2 or more booths in each. Our manager needs to know how much money was collected each
day and be able to see a dashboard with a historical evolution of the total amount collected daily.

The company is currently using the following process:

1.	 Each toll booth has a small computer with an Ethernet connection and limited storage, where
each transaction can be logged. There is also a camera for license plates and a weighing scale.
The booth also has a private screen that displays the total amount of money collected and is
secured with a cover and a lock. Software running on the booths can be customized since we
have access to its source code.

2.	 When a car enters a toll highway, the driver either gets a paper ticket or uses an electronic
device to open the entrance gates. Electronic devices are provided to subscribers, who pay their
consolidated tolls at the end of the month. At exit time, drivers either use their device again
to open the exit gate or insert the paper ticket they got when they entered and pay the due
amount in cash or by using a credit card. This amount depends on the vehicle’s type and weight.

3.	 Each highway exit has a manager who visits each booth at 1 A.M., opens the cover with a key,
and takes note of the amount collected in each booth. Then, they go back to the office and
sum the amount for all booths using a spreadsheet and attach it to an email, which is sent to
the global manager using a high-speed packet access (HSPA) mobile connection available in
every office, which is enabled from 1 A.M. to 3 A.M.

4.	 The global manager arrives at the office at 7 A.M., opens all 250+ spreadsheets, pastes them into
a global spreadsheet where the global collected amount is calculated, and then deletes the rows
for the least recent day. The global sheet is then sent to the vice president around 10 A.M.—this
includes a line graph to see daily historical information for the last 365 days.

5.	 This vice president happens to also be the IT manager and wants you to modernize this system
because updates were not received on time on 50+ days this year, due to different issues in
booths or during the consolidation process performed by the global manager.

6.	 Installing additional software either in the booths or in any of the offices located at the exits is an
option since they are all running remote connection software with file-transferring capabilities.

Highway toll system – centralizing and automating a distributed scenario 293

Analysis and opportunities

The combination of multiple, distributed locations and a lot of manual work makes this a perfect
opportunity to use Google Cloud to centralize and automate all the described processes.

There are some serious issues in these scenarios. First of all, writing down collected amounts manually
may lead to human errors, which could hamper the correct visibility of earnings. The company is also
lacking insight into other events—for example, data from sensors such as weighing scales, payment
method insights, payment system error rates, frequent customers, and other very valuable information
that is currently being wasted.

Having the raw logs for all booths available in a central location would open a new world of opportunities
for this company. New data could be identified to be logged in booths after an in-depth analysis of the
whole process, and the company could start using all available data for strategic and marketing purposes.

This is a list of some of the improvements that we could offer for this specific scenario:

•	 Fully automated raw data ingesting process, with no human intervention, leading to fewer errors

•	 Failure-resistant design, where connectivity issues will not involve data loss, but just a delay
in its ingestion

•	 Data processing will be performed on Google Cloud

•	 Self-service real-time dashboards that are available at any time for specific named user accounts,
removing the limitation on the historical window

•	 Raw data will be stored in a central database, where it will be available for additional analysis
and for fueling new projects, such as a traffic prediction model or a customer segmentation
system to improve marketing communications

•	 An improved security model, not only for booths and offices but also for the centralized data lake

Designing the new architecture

If I had to choose a design pattern to implement a solution for this scenario, I would combine two
of the patterns that we covered in the previous chapter to implement this solution: Edge Hybrid and
Analytics Hybrid.

Note
As happens in real life, for each of the scenarios in this chapter, there will often be more than
one possible solution. You will have your own ideas and may not agree with the choice I made,
and that is totally fine, but I still wanted to show you what I would do for each so that you
can use it to learn how to approach similar situations. In a real project, you will have to talk
to different stakeholders and find the best solution for all of them, which will probably make
decisions more complicated.

Practical Use Cases of Google Cloud in Real-World Scenarios294

I would choose Edge Hybrid because of how booths and offices are distributed, and the fact that a
similar sequence of actions is followed at each highway exit, so we can consider them as edge locations.
Information is then consolidated in the corporate HQ at a specific time of the day, meaning that
connectivity is not a critical service for these locations, which is compatible with this design pattern.

On the other hand, offices will be just pushing data to the cloud, and all the processing and insight
extraction will be done on Google Cloud, which clearly resembles an Analytics Hybrid pattern.

This is, indeed, a very good example of how patterns are not mutually exclusive but often work
very well in combination, and these combinations will make more sense when we are dealing with
complex scenarios.

Once we have identified the design patterns involved, let’s proceed to design the new architecture,
taking into account every possible component that we could improve in the process.

First of all, let’s imagine what happens when a car arrives at a toll booth located at one of the entrances to
a toll road. If the driver is a subscriber, an electronic device is used to open the gate and an entrance
event is logged containing UTC date and time, booth number, vehicle weight in pounds, and device
ID. Otherwise, the driver picks up a ticket, and an entrance event is generated that includes UTC
date and time, booth number, vehicle weight in pounds, and a ticket number. In both cases, a picture
of the license plate is also attached to the event.

A couple of sample events, in a semicolon-separated CSV format, might look like this:

2023-05-12;09:05:12;14;2800;T6512;T6512-20230512090512.JPG

2023-05-12;21:53:33;98;4400;D0343;D0343-20230512215333.JPG

The first line belongs to a compact car entering the highway at booth 14 at around 9 A.M. and getting
a ticket (notice how the ticket number begins with T). The second one is a large car entering the
highway at booth 98 a bit earlier than 10 P.M. Both events also include the name of the file containing
a photo of the license plate.

When a car exits the toll road, it will also arrive at an exit booth. At that point, the car could have a
monthly pass, whereby the gates will automatically open. This could be logged as a payment event of
the payment type with a subscription method and the corresponding amount to be paid at the
end of the month, also logging the ID of the electronic toll device located in the car and the name of
the file containing the license plate picture. The event will also contain the booth number and the exit
number, together with the date and time. All this information can be used later for different analyses.

For non-subscribers, payments can be done by credit card or in cash, so we can log a payment event
type, with the method being either cash or card and the corresponding amount. For credit card
payments, we must log the card number, since charges will be performed the next morning.

Highway toll system – centralizing and automating a distributed scenario 295

Exit events for the cars mentioned in the previous example would look like this:

2023-05-12;10:15;49;2800;T006512;PAYMENT;CARD;ERROR;4,85

2023-05-12;10:18;08;2800;T006512;PAYMENT;CASH;OK;4,85

2023-05-12;23:43;82;4400;D000343;PAYMENT;SUBSCRIPTION;OK;8,36

The first car tried to pay $4.85 at 10:15 A.M. at booth 49, but something happened when trying to
pay by card, so the driver finally decided to pay by cash at 10:18. The driver of the second car used a
device to exit on booth 82, generating a pending payment of $8.36 to be added to the corresponding
monthly bill. Notice that these events are missing the credit card number in the first event and the
filename of the license plate photo in all three of them, which I redacted to make each event fit in a
single line for easier reading, but this information would be included, too.

Now that we understand what events look like, let’s design a system where each payment, together
with its corresponding data, originally stored in the local booth storage area, is an event that must
arrive at Google Cloud. New events are queued locally, and we use a First-In, First-Out (FIFO)
process to send them to the central computer in the office. Whenever there is connectivity between
each booth and the central computer, events are transmitted and their reception is confirmed by the
destination—one by one—before they are deleted from the local storage of the booth.

This synchronization process could happen constantly, or just be triggered at a specific time of the
day, if we can guarantee to have enough local storage for data of a few days, preventing connectivity
issues from causing a loss of data. For instance, we could start the synchronization every night at 2
A.M., expecting all transfers to be completed at 3 A.M.

Another good practice is not to delete any information but to mark it for deletion, and use a separate
process to delete stale data when more room is required. This will increase our chances of recovering
data if any issue is detected.

For this process to work properly, we should complement our architecture with a monitoring system
that will check for connectivity errors and alert the office manager so that these can be fixed as soon
as possible.

Once we have new events in the central computer in each office, we need to transfer them to Google
Cloud. An interesting option to do this would be to use Pub/Sub. We can create a topic for booth
events and start queueing our events. My recommendation for scenarios such as this is to implement
our own code for acknowledging each message received so that it is deleted from the source only
when we know it has been correctly ingested. Again, we can just mark a message for deletion and use
a separate process to check when we are low on storage space, and only then proceed to the physical
deletion of old event records.

Now, let’s look at the event transmission process from Google Cloud. We receive a new event using Pub/
Sub, which may trigger a Cloud Function to receive it if the amount of expected messages is limited,
or Dataflow if streaming is required due to a high volume being expected. The Cloud Function or
Dataflow could insert a row in a sharded table in BigQuery, where we have a separate table containing

Practical Use Cases of Google Cloud in Real-World Scenarios296

all the events for each day. The photos of the license plates would be stored in a Cloud Storage bucket
and their filename would be included as one of the fields for the inserted row. At this point, we
could trigger another Cloud Function to use the OCR feature of Vision AI, or even our own trained
computer vision/machine learning (CV/ML) model, to read the license plate number and update
the corresponding event record.

From the point of view of networking and security, there are a few points that we should keep in mind:

•	 Booths must have physical and perimetral security as we must guarantee the integrity of
payment data since credit cards will be charged the next day. Physical and remote attacks must
be prevented by isolating the network. The connection at the office may be the weakest link
and should be properly protected from intruders.

•	 Booths should connect to the computer in the office just for two purposes: in one direction
to send events to the computer located in the office, and in the other to provide a response to
monitoring and failure-detection test requests. Any other connections should be dropped using
a software firewall or a similar security solution, where an exception would be temporarily
added during software updates. Failure monitoring could be performed using a self-test API
or a URL exposed in each booth, in order to limit the number of connections required to
complete the process.

•	 The computer in the office needs to be connected to the internet, but only to send Pub/Sub
events during a specific time range, so we can use another firewall to enforce this limitation,
thus preventing malware infections or any kind of threats.

All these requirements are compatible with handover and gated network topologies, which limit
connectivity to just a few exposed API endpoints and a number of specific Google Cloud services, so
they would be good options to implement in this case.

With all the mentioned topics in mind, this could be a diagram for a proposed architecture:

Figure 12.3 – Sample architecture diagram for the highway toll system

Highway toll system – centralizing and automating a distributed scenario 297

Making the most of our data

Once we have license plate and credit card numbers in our tables, we can use them to identify recurring
users, an analysis that can be interesting for statistical purposes. We can also offer users a 10% monthly
repayment if they register their license plates and credit cards on our website, which would allow us
to match cars to their owners and open a new world of marketing opportunities.

We can also use Looker Studio to visualize our data and provide dashboards and ML to extract insights
and perform predictions. Here is a list of ideas I could think of, in no particular order. I’m sure you’ve
already thought of many others to add:

•	 Sort exits by money collected, by the number of cars, and by the division of both, in order to
understand which ones are bringing in more money. We could use this information to prioritize
booth extension or modernization processes.

•	 Study traffic patterns and volumes throughout the day to understand whether there are capacity
issues and whether these affect just specific exits or all of the road network. This could help
prioritize where additional efforts could be required, such as express lanes or more booths, or
just to increase the number of subscribers using electronic devices to speed up toll collection.
Capacity and route information could also be used to find which would be the best locations
for services such as oil stations, rest areas, hotels, restaurants, and so on.

•	 Cluster vehicles using lifetime value based on recent purchases to identify high-value customers.
These customers could be offered more aggressive subscription offers when they register since
they use toll roads regularly. Drivers also need gas, new tires, and—eventually—to renew their
cars, so we could also partner with oil stations, garages, and car dealers to make additional
money while providing useful additional services to our customers.

•	 Obtain information about which car brands and models appear more frequently, using the
information provided by users when they register their vehicles. Understanding vehicle sizes
could help the company build toll booths that work for everyone, and this aggregated information
could also be useful to car manufacturers, or even for the government.

Hybrid and multi-cloud options

Imagine that all toll booths are connected to one cloud provider and you need to run your analysis
on another provider. Or, it could be that the data lake is hosted on one provider, but the analysis and
the dashboards should be performed on another because you will activate insights in a compatible
digital marketing platform. These are real-world cases in which using a hybrid or multi-cloud approach
could make sense, especially for the second scenario.

In cases such as this, Google Cloud is ready to be used as the platform to run your analytical workflows,
even if your source data is stored on Amazon Simple Storage Service (Amazon S3) or Azure Blob
Storage using BigLake tables. BigQuery Omni is a product that can help us perform this analysis by
deploying a BigQuery compute cluster in each additional environment, returning the results to Google

Practical Use Cases of Google Cloud in Real-World Scenarios298

Cloud using a secure connection so that we can access the results of different analyses performed
in Amazon Web Services (AWS), Azure, and Google Cloud and combine their results to provide
visualizations and extract insights from our data.

This can be a very interesting option for big companies that are using different cloud providers and need
to break data silos or run processes that require access to data spread across different providers. Using
a product such as BigQuery Omni can simplify this process a lot because of the multiple complexities
that integrating these processes may entail. Otherwise, an Analytics Hybrid design should be able to
work for any other not-so-complex scenarios.

I hope this example has helped you understand how complex scenarios can be improved by combining
different patterns and topologies in Google Cloud to build an architecture that is faster, less prone to
errors, and more secure, and that can provide many additional features and insights based on data
analysis to help businesses grow.

Next, let’s see an example of one of the most common situations that can make use of Google Cloud
to mitigate specific issues while reducing costs.

Fashion Victims – using the cloud as an extension of our
business
I included this third scenario because it represents a common first contact of many companies with
the cloud and, as we will discuss in the next and last chapter of the book, some of the decisions that
we will be taking during the earliest stages of establishing our presence in Google Cloud will have an
important impact on its future and may contribute to its success or otherwise totally ruin it.

This example has to do with a well-known brick-and-mortar brand. Fashion Victims has been
welcoming its very exclusive customers for decades in a very representative three-floor concept store
in the heart of Paris, France. Last year, the founder died, and his two daughters, who are now in control
of the company, want to take the brand to the next level, opening their fashion catalog to everyone
with more affordable offers for all tastes and budgets, and extending their presence to more than 10
new international markets by opening factories in each country that will produce the clothes locally.

Beyond the business challenges that such a change entails, which are way beyond the scope of this
book, the priority of the new owners is to boost online sales. For this purpose, a new website and an
app have been created, offering the full catalog in each country where there is a factory, plus special
flash sales with amazing discounts and free shipping on all local orders.

A French hosting provider is used to power these services. Once the new website was live, the news
went viral, and everyone wanted to become Fashion Victims’ customers… And this is when the IT
nightmare began.

This is what the current architecture looks like:

Fashion Victims – using the cloud as an extension of our business 299

Figure 12.4 – Diagram of the current architecture for Fashion Victims

Now, let’s take some time to study the current situation and identify potential opportunities
for improvement.

Specifications

As we take a look at the analytics for the last 3 months, we can see a regular traffic pattern during
normal days, but when a flash sale begins, the corresponding local site gets 10,000% hits, and servers
start to fail due to their lack of resources to deal with the extra traffic. At that point, a custom error
page is shown, asking customers to try again later, which makes both Fashion Victims and its
customers frustrated—the former because of the loss of sales and the latter because they cannot buy
their beloved garments.

Given that there are flash sales in different markets almost every week, we are urged to find an
alternative to properly handle peaks without interrupting the service. Also, some customers from Asia
and America are complaining about the overall performance of the website and the app, a problem
that they are experiencing even when there are no active flash sales.

Buying additional hardware could be a first idea, but it would increase capital and operational expenses,
and new equipment would be idling almost 65% of the time. We need an additional capacity that we
can switch on and off at will, depending on the current level of traffic.

Luckily, Google Cloud can help us in this scenario, too. Let’s see how.

Analysis and opportunities

This scenario is open to a lot of potential improvements. Let’s enumerate some of them, as follows:

•	 The capacity issue is the main headache. We can use elastic cloud services to provide additional
capacity, which could even scale down to zero when they are no longer in use. The most
important part of this architecture will be the load balancer because we need to have accurate
information about how much traffic we have and how many cloud resources we are using at

Practical Use Cases of Google Cloud in Real-World Scenarios300

any given moment so that our system can decide whether the traffic can be served by just using
the on-premises infrastructure, or whether it should be handed over to additional resources
deployed on Google Cloud.

•	 Serving users from Google Cloud means that both dynamic and static content should be
synchronized so that all users see the latest content, wherever they are connecting from (and to).

•	 We can use the opportunity to minimize latency and maximize throughput by using the closest
cloud region for each user, for the sake of additional content synchronization or caching. We
will discuss this topic shortly.

•	 Last, but not least, we can reduce costs by moving toward a pay-per-use model and benefit from
the competitive pricing of Google Cloud when compared with the costs of traditional hosting.
It should not be a surprise that many customers take the next step and fully move to Google
Cloud for hosting their properties after experiencing its benefits firsthand.

Designing the new architecture

If you remember the patterns that we discussed in the previous chapter, this may seem a perfect fit
for a cloud-bursting architecture, where the cloud provider is used to absorb extra traffic during peak
times. However, as I already mentioned earlier in this chapter, real-world scenarios are often not so
simple, and this is one of those examples because we will need to understand better how data is used
before we can decide whether we need to use additional design patterns or not.

For example, imagine that there is a central customer, inventory, and orders database hosted on-premises
and subject to legal requirements that prevent personal data from being moved to a different country.
This situation may lead to different potential scenarios.

In the first scenario, both the database and—optionally—part of the frontend would remain on-premises,
and we would need to connect this environment to Google Cloud with decent network latency and
performance—numbers that obviously would get worse as we connect from locations geographically
far away. In this case, we may want to turn the database calls into API calls if they weren’t already so
that we could implement an additional gated topology to connect private and public environments,
thus improving overall security. In this scenario, ingress traffic would be much more predominant,
and we could benefit from the fact that it has no cost in Google Cloud.

A second option would be to move the central database to Google Cloud, which would basically mean
switching ingress and egress traffic; this would increase costs because, in this case, egress traffic would
be predominant. If we chose this option, it would probably make sense to move the frontend to the
cloud too, and the advice to APIfy the database services would also apply.

A third option would be to build a Google Cloud self-contained architecture in each region, including
the frontend and backend, and then periodically synchronize new orders from each regional database
to the main one, which would be used for centralized reporting. For this synchronization, we could use
a process similar to the one described for the toll collection example. A well-built elastic architecture

Fashion Victims – using the cloud as an extension of our business 301

including a small database in each region might not be so costly; it would make it easier to manage
local inventories and would also help reduce dependencies across regions, which would cut down
costs and also make it easier to open new locations as the company scales up.

For the sake of simplicity, I will choose an intermediate solution, aimed at controlling costs while
keeping the central database on-premises. Self-contained sites will run on the cloud region closest to
each factory, and users will be forwarded to the closest site by default, but they will also be given the
chance to use any other site they prefer. Order payments will be run from the on-premises private
environment, so no personal sensitive data will be transferred to the cloud.

In this design, the central database will be the source of truth for article information, and the
on-premises frontend will be the equivalent one for media assets, such as photos and videos of the
different collections offered, but inventory and order management will be done at the factory-site
level, while payments will be handled on-premises. Updated order and inventory information will
be periodically retrieved from the central database too, in order to provide global information about
the status of the business.

The APIfied database service running on-premises will return a JSON document containing all
articles that are currently part of the different collections offered worldwide, including a description
and links to their corresponding media files for each of the products. Factory sites will use this service
to update their local data and will combine it with local inventory information to update the list of
articles offered in each local online store. A process running on-premises will also periodically poll
all factory sites using another APIfied database service located in regional databases that will provide
up-to-date information about inventory status and the latest orders.

GKE clusters will be used to scale up and down the number of worker frontend nodes automatically,
depending on the level of demand, and a local content delivery network (CDN) will be used to serve
local copies of static media files. The contents of the CDN will also be periodically refreshed during
low traffic hours, in order to reduce the number of concurrent requests being sent to on-premises,
private frontend systems.

At the network level, this architecture will make use of a gated topology to only expose the APIfied
database services used to download the latest product catalog from the central database, to obtain
the latest updates on inventory and orders from each factory site, and the payments API provided
from the on-premises backend. The on-premises private environment should be connected to Google
Cloud using Dedicated Interconnect.

Let’s take a look at a diagram of the suggested architecture:

Practical Use Cases of Google Cloud in Real-World Scenarios302

Figure 12.5 – Diagram of the modernized architecture for Fashion Victims

Despite the added complexity of the diagram, opening a new factory would be an easy process. We
just need to clone the regional setup to a new region close to the factory, and once the initial cache
refresh and catalog synchronization are complete, we would be ready to go.

Hybrid and multi-cloud options

If you remember, we mentioned in other chapters a specific situation that may justify the use of a
multi-cloud approach for a scenario such as this one. Imagine that we want to open a new factory in
a location that does not have any Google Cloud region close because of legal reasons, for example.

In that case, Fashion Victims may decide to use a local cloud provider and set up a compatible architecture.
Since we APIfied the main services, we were abstracting the internals of regional architecture, so as
long as the endpoints and formats are the same, we should be able to add a compatible new location.
However, we should still sort our connectivity, identity, and security before the new locations are ready
to go live and, when possible, try to adapt our tools and processes so that they also work in this new
provider. Note that if the alternative provider is AWS or Azure, we can still use Anthos to deploy our
clusters, so that can reduce the complexity quite a lot.

Summary 303

Depending on the products and services available in the new provider, building a feature-compatible
architecture may be quite challenging, and costs should be considered too before deciding whether
to use it or not. The costs to consider should include both development and monthly usage fees. Once
we have the numbers, all the pros and cons of using a new provider should be carefully compared
against those of using the closest Google Cloud region so that a proper decision can be made. While
having a local provider may bring a lot of interesting benefits, as I mentioned earlier, each provider
that we add to our equation will exponentially increase its complexity, particularly regarding setup
and maintenance tasks, so this is a very important decision to take.

One last piece of advice before we get to the end of this last example: whenever you need to make a
decision such as the one just mentioned, don’t think only about the present, but also try to think over
the medium term; otherwise, you may be wasting time and money for nothing.

And now, it’s time to wrap up.

Summary
In this chapter, we examined three very different scenarios and worked together through the process
of deciding which design patterns we should use to modernize them and migrate them, either fully
or partially, to Google Cloud. We first identified the key areas where we should focus our efforts and
which key decisions we needed to take, and defined the right sequence of actions to complete for these
migrations to succeed. I hope that deep diving into these real-world scenarios got you better prepared
to face your own real-world challenges and use cases with a more intuitive approach.

The next chapter will be the last one in the book, and I can’t think of a better way to close it than
providing you with a good list of potential migration pitfalls you should watch out for, a few tips that
can help you save time and get results faster, and a list of best practices to follow when you are facing
a migration to Google Cloud.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

•	 Google Cloud Architecture Center: https://cloud.google.com/architecture

•	 Introduction to BigQuery Omni: https://cloud.google.com/bigquery/docs/
omni-introduction

https://cloud.google.com/architecture
https://cloud.google.com/bigquery/docs/omni-introduction
https://cloud.google.com/bigquery/docs/omni-introduction

13
Migration Pitfalls, Best

Practices, and Useful Tips

Congratulations on making it to the last chapter of the book! I thought it would be a good idea to use
these last few pages to summarize interesting content that can save you a lot of effort and bad times
whenever you need to migrate or redesign an application to run on Google Cloud.

In this chapter, we will first discuss the most common pitfalls that can occur during our daily work
as developers. Then, we will look at the process from a different angle and talk about best practices
that can help us succeed in our migrations.

Both parts of the chapter will also contain some useful tips that will help you overcome obstacles,
successfully face delicate situations, and mitigate the complexity that migrations to the cloud usually entail.

We will cover the following topics in this chapter:

•	 Common pitfalls while moving to the cloud

•	 Best practices for bringing your code to Google Cloud

Let’s get started!

Common pitfalls while moving to the cloud
Migrating applications and services to Google Cloud is not an easy process. There will be different
stages, and pitfalls and challenges may appear in any of them. We should keep these situations in mind
even before they happen, so we can quickly mitigate any negative effects they could have on our plans,
particularly those that may put our migration schedule at risk.

Let’s go through the most common pitfalls of migrating to Google Cloud.

Migration Pitfalls, Best Practices, and Useful Tips306

Management not on board

Moving to the cloud will be challenging and working with multiple stakeholders will bring a lot of
scrutiny to the table. For this reason, it’s imperative that upper management is fully convinced and
defends and supports the need for migration.

Tip
Building a solid business case that clearly details all the benefits and provides KPIs to measure
the added value of migration to Google Cloud will help you obtain the buy-in from management
and will also make it possible to prove such benefits as soon as the earliest wave of migration
is completed.

You will find detractors in your way, for sure, so you should be armed with a certain degree of flexibility
in your plans and consider everyone’s interests while you keep the core of your migration plan as
intact as possible. Having people with stakeholder management skills in the team will be extremely
beneficial in the early stages of migration.

Unclear strategy and poorly defined migration roadmap

This pitfall is one of the most dangerous ones, and we mentioned it at the beginning of the book.
Planning a migration of a single application to Google Cloud is not trivial, so what can I say about
moving the whole data center? It will be a complex and tedious process, so it will require a reasonable
amount of time to put a good plan together.

As with any other project, we will need a global plan built as a combination of specific migration
strategies for each application or service. It will also help us a lot if we have a vision: a clear idea of what
we want to achieve. Having this final picture as a tangible objective will help us identify intermediate
milestones that we can use in our plan.

We reviewed an interesting list of questions at the end of Chapter 2, Modern Software Development
in Google Cloud, that we could use to prepare this plan. Some of them cover topics such as which
migration approaches to use or which of the anything-as-a-service (XaaS) models we prefer to use,
and we can use them to identify which additional requirements we may have.

It will take us a while to complete the initial analysis and to ensure that we have the right people on
board, including all the required skills to perform this assessment. Any gaps detected in this phase
should be covered by upskilling existing members, which may not always be possible, or by hiring
specialized external consultants.

Common pitfalls while moving to the cloud 307

Tip
Admitting that there are skill gaps in the organization when we are facing a migration and calling
out for external help is not a sign of weakness but a sign of common sense and responsibility.
Moving into a new technical space comes with its own set of challenges, and having all the
required knowledge and skills is often not possible, so hiring external consultants can be a nice
option to fill any detected gaps.

Unmanaged expectations regarding benefits and costs

While the benefits of moving to the cloud are easier to explain and will become our best tool to justify
the need to modernize our infrastructure and processes, a proper expectation management process
should provide all stakeholders with full and transparent information about what a migration to the
cloud entails and, particularly, how much it will cost in terms of time and money.

Tip
Estimating the costs of moving our infrastructure to the cloud will be one of the toughest
parts of a migration because we will need to take into account both direct and indirect costs,
including potential new hires, team upskilling, process updates, and post-migration tasks. This
is another reason for having a well-crafted migration strategy plan that will give us a much
more accurate action plan that we can later map to time and money.

Mapping the migration of components and waves to their corresponding amounts of time and money
will not be possible in all cases, and this may become additional criteria for prioritization since we
can identify the best candidates for migration among those that can bring tangible cost savings and
additional advantages to our organization since day one of its migration. We can prioritize their
migration and use them as early proof of the success of our plan.

Hidden costs will also appear sooner or later once the migration begins. They are very dangerous, and
we must keep them to a minimum, mitigating their potential negative effects on our budget.

Tip
Being familiar with the pricing model of the Google Cloud products that our organization will
use can help us mitigate some of the hidden costs that may appear during our migration. We
can use the Free Tier to accommodate unexpected extra required capacity or even consider
sustained use discounts to compensate for the extra costs, sometimes even bringing additional
cost savings to our organization. Also, think of your sales representative from Google Cloud
as another member of the team, and never stop asking for advice on new opportunities for
saving. Finally, keep in mind your organization’s potential long-term plans since you can use
them to obtain additional savings.

Migration Pitfalls, Best Practices, and Useful Tips308

Some commonly incorrect assumptions about migrations to the cloud include believing that lift and
shift migrations are immediate or that once an application has been moved to Google Cloud, it no
longer requires any additional maintenance or optimization work. Using detailed information for
myth-busting inside our organization will help everyone’s expectations align with reality and will
help us make better decisions.

Tip
Moving to the cloud is a great step forward toward modernizing our infrastructure, but this
process will also mean modernizing our organizational culture and mindset, which means
changing the way our users conceive and use applications and services. People in our organization
will need new skills to properly adapt to these changes, and we will need to include specific
action items in our migration plan for this purpose.

Too disruptive or too conservative

We can use different strategies when we are deciding how to approach a migration. A very conservative
one would be to only move small and non-critical parts of our infrastructure to the cloud while we
keep the core of our business on-premises, just using the cloud as an extension during peak times. We
can also be too disruptive, bet it all and move every single of our components to the cloud as soon as
possible. Both of these extreme approaches are a bad idea in most cases.

Tip
As with many other decisions in our professional and personal life, being too radical will not
often be the best choice, and there are always alternative intermediate approaches that will let
our organization enjoy the benefits of Google Cloud from day one while we don’t put our eggs
in a single basket, and we can progressively increase our presence on the cloud while we still
keep some essential services in our private data center.

This is the reason why hybrid and multi-cloud patterns exist and also the reason why we dedicated an
important part of this book to talking about and showing you how to use them. Whatever your reason
for choosing one of these architectures is, you made a great choice that will increase the available
options for hosting your applications and services, will help you avoid vendor lock-in, and will give
you a chance to decide later whether you want to become a cloud-native customer, or whether you
still prefer to run some of your workloads on-premises.

The good part of these strategies is that you are in control, and if you play the right cards (did anybody
say Anthos?), you can run your applications wherever you want. And once you taste the flavor of
freedom, you will not like any other.

Common pitfalls while moving to the cloud 309

Not knowing your infrastructure and services well enough

If we want to build a decent migration plan, it is key to have people on the team who are very familiar
with our infrastructure, applications, and services in their current state before the migration actually
starts. And that’s because knowing how they are connected and which dependencies they have can
determine the difference between success and failure.

Tip
Having a clear view of application dependencies and a full list of all the components that
each service uses will save us a lot of headaches. Of course, a migration process will never be
perfect, but we must work hard to make it as easy as we can. Carefully crafted migration waves,
containing apps and services that can be moved to Google Cloud together, and having all the
information required to prioritize these waves properly will make a huge difference.

Migrating to the cloud is just moving infrastructure

A common pitfall happens when the migration or upper management team underestimates what
a migration to Google Cloud entails. While moving infrastructure to the cloud will be a significant
part of the migration, we will also be migrating interdependent applications and services which run
on this infrastructure, and this will often mean partially modernizing or even fully re-writing their
code from scratch.

Tip
Each of our services comes with its own set of tools and processes. This means that modernizing
our infrastructure will inevitably involve the modernization of our tools and processes, too.
And we should include specific actions in our migration plan to ensure this modernization
actually happens.

It’s not uncommon to see customers finishing their migrations only to realize that their previous
processes are broken or no longer make sense. Thinking about the final picture of our organization
that we want to achieve, our vision should include not only the more technical view but also all the
processes and the teams that will interact with our shiny new cloud architecture, measuring and
improving application performance or applying patches and updates when they are required. Only if
we take into account all the details will we be able to identify the different areas that will need their
own transformation plan.

And, by the way, if you have not used DevOps and have no SRE team or have never invested in platform
engineering, this will be a perfect time to do it. You will not regret it!

Migration Pitfalls, Best Practices, and Useful Tips310

But the worst part of all is that we are leaving a key component out of the picture, a common oblivion
that may come with a heavy cost: what about our data? This is such an important topic that it will get
its very own section.

Being too careless with your data

I mentioned it in a previous chapter: data is a key component of migration, and when we migrate our
data, we don’t just copy it to a different location. Among some other tasks, depending on each scenario,
we will also need to ensure data integrity, define a data backup strategy, assign a data retention plan,
and configure data access policies.

Tip
Sometimes moving our data to the cloud will take longer than migrating the infrastructure that
will be using it. Identifying dependencies and having a good estimate of the time required to
migrate each part of our architecture, where data is just another key component, can help us
properly organize and prioritize all our tasks.

Some organizations are extremely careful with where and how they store their data. They keep it safely
stored on-premises, and then they set up an even more secure location to store it on their shiny new
public cloud provider. Finally, they copy their data to that new provider using blazing-fast FTP, which
transfers data without encryption...and this is how the chronicle of a disaster begins.

Our data is, in many cases, our competitive advantage and the result of years of work. And this data has
to be protected when being stored, when it’s in transit, and even once it had arrived at its destination.
I will repeat it just one last time, I promise: security and integrity both follow the principle of the
weakest link, so please ensure that none of your links are too weak, or you may be jeopardizing your
complete data security strategy.

Even once our data is properly protected in the cloud, we may be following other dubious practices,
such as exposing the ports of our databases to the internet. Please try to identify these risks as soon
as possible, preferably even before the migration actually happens, and work on mitigating them as
part of the plan. In the example of the database, we can expose our services using APIs, executing
queries internally, and having all passed parameters checked to prevent SQL injections. If we fix
our weak spots, combine them with proper identity, authentication, roles and responsibilities, and
foster the use of gated network topologies, we can reduce the risks of intrusions and minimize the
opportunities for data theft.

Common pitfalls while moving to the cloud 311

Tip
Optimization is an iterative process, and this is also applicable to security. Our work is never
completed, and we may just have completed the latest iteration, but we should start over again
shortly and keep on discovering weak spots. Since our organization will constantly be making
changes and deploying new services, it makes sense to keep an eye open and keep on trying
to identify sources of security risks.

Making migration waves too big or too long

Once we have all the information required to start planning our migration, we will assign each of our
components to a different wave.

Tip
A common error when defining migration waves is to make them too big or to put together
components that will take too long to migrate. Too much complexity may turn a migration
wave into a black hole, and we should prevent this by using an agile-like process, where quick
and short sprints get groups of applications migrated to the cloud in a short amount of time.
The migration process should also include specific actions to handle issues happening during
the migration, and these should be managed in a way that doesn’t affect the timelines of other
waves, specifically those with no dependencies.

If you find any components that cannot be accommodated into a wave, such as monolithic or extremely
complex applications, you should flag them and decide on the best strategy to bring them to the
cloud. Sometimes it will make sense to work on their migration once all the sprints are completed,
but in other cases, dependencies may force us to migrate them in parallel with our sprints so that the
complete migration doesn’t take too long.

Tip
A migration to the cloud will take a while, and an organization is like a living being: it’s constantly
changing and evolving. Our plans should consider that new deployments may be performed
during the migration, so we should define a process to minimize the negative effects of these
changes. This means that, at some point, new deployments on the legacy infrastructure should
no longer be allowed unless they affect components that will remain on premises. We should
also do our best to ensure a smooth transition by allowing new deployments on Google Cloud
to be performed as soon as possible.

Migration Pitfalls, Best Practices, and Useful Tips312

Unbalanced latency, complexity, and cost

When we have users in multiple locations worldwide, sometimes architects get too obsessed with the
idea of minimizing latency, often at the risk of increasing complexity and costs, which does not make
sense in many scenarios.

The last pitfall to avoid is oversizing for the sake of making a few numbers better while making others
much worse. It’s good to adapt our architectures to our users, but we should not get lost in endless
optimizations that may only benefit a minor portion of our users but have important costs for our
organization in terms of money and time or even make things worse for many others of our users.

We may be tempted to think that having replicas of our infrastructure on every continent is always
a great idea. Indeed, if our users always get content from a CDN cache located closer to them, they
will always have a better experience. While this may be true, we may also be making the mistake of
not looking at the whole picture.

Tip
Optimization matters, but costs and complexity also matter, and they usually come together in
one pack. Before making any changes to optimize a specific metric, we should carefully study
the potential effect of our actions on the rest of the metrics and processes that are key to our
organization and weigh the pros and the cons before deciding if it makes sense to go ahead
with those changes. This is another reason why knowing our services well and understanding
their dependencies is key for any migration to succeed.

If we decide not to use scale to zero in our workloads, this will make the first user in a while have a
shorter wait time. But is this worth the extra cost? The answer to this question will be different for
each service. If we provide corporate services used by colleagues in our organization during working
hours, then probably it won’t be required. If we manage micro-transactions that happen constantly,
we may not need to enable it either, because resources will always be alive. In some other business
scenarios, it may have a beneficial impact on our organization.

I hope you found this list of common pitfalls interesting. I’m sure that if you keep most of them in
mind when planning and performing your migration, they can save you quite a few headaches and
help you succeed.

And now, let’s move on to the next section, which includes some best practices that will also help us
a lot in our migrations.

Best practices for bringing your code to Google Cloud
While no migration to the cloud is exempt from risks, anticipating what could go wrong can help
us have countermeasures ready to be implemented, thus reducing the negative effects, and that’s the
main reason why we went through the list of common pitfalls.

Best practices for bringing your code to Google Cloud 313

But another way of making our migration less troublesome is to follow best practices that will also
help us mitigate those risks, but this time by following specific actions and guidelines.

Either if we are designing a cloud-native application or if we are modernizing a legacy one to bring it
to Google Cloud, we should keep in mind the following list of recommendations.

Avoid migrate and delete

I already mentioned this at some point in the book, and this is a common mistake that repeats again
and again. Services are often migrated to the cloud just to have them decommissioned a few weeks
later. This is an absolute waste of time and can have a negative effect on our cloud migration team.

We should take our time to understand our architecture, study usage patterns and metrics, and then
proceed to flag which components and services are no longer needed. And if no policies or regulatory
requirements prevent us from doing it, we should then shut them down and consider them out of the
scope of our migration.

If once our migration is complete, which should happen a few months later, nobody complained
because they were offline, my recommendation is to keep their latest backups, so we can restore the
services later if there is a very good reason for doing it, and we can safely proceed to decommission
all the components as soon as possible.

Tip
There are companies that are considering a migration to the cloud, but they have no application
and service usage data at all. If you happen to work for one of them, it would be a great idea to
start collecting this valuable information for a few weeks while you start the planning phase
of the migration. The money and time that you will need to implement this collection process
will be nothing compared to the benefits you will obtain from the collected data during the
planning phase of the migration, and you could also use the opportunity to include this good
practice in the core of your future cloud architecture.

We can save a lot of time and computing resources with this simple tip, and this will also avoid bringing
additional fatigue to our migration team, which should be focused on migrating critical services for
our organization and not wasting time with useless tasks.

Check regulations and compliance before moving ahead

This was also mentioned in earlier chapters, and it can be a source of trouble if it’s not considered
in every migration to the cloud. Please ensure that moving your applications, and particularly their
associated data, will not have any regulatory or compliance implications that you may regret later.

Migration Pitfalls, Best Practices, and Useful Tips314

Be particularly careful with Personally Identifiable Data (PII), especially if you are planning to host
your cloud workloads in a different location than your premises. Moving to a different country or
even to a different continent, will exponentially increase the risks of unwillingly breaking any law or
regulation, so having the legal team on board before taking the go/no-go decision for the migration
will always be an excellent idea.

Also make sure to ask which certifications your cloud provider has because these can be a good aid to
prove that they have your back. For example, you can see the list of Google Cloud compliance offerings
by visiting this link: https://cloud.google.com/security/compliance/offerings.

Tip
Remember that hybrid and multi-cloud patterns exist not only to avoid vendor lock-in but
also for situations like this, and not being able to migrate key services to the cloud because of
a compliance issue shouldn’t be a blocker to migrating the rest of your infrastructure. Also,
please remember that the different available public cloud providers are often opening new
regions worldwide, so your blocking may be only temporary, and you should keep on checking
for updates regularly because there may be alternatives to move the affected services in the
near future.

And let me insist on one other related key topic: please make sure that your migration team is not only
formed of technical profiles but also by people with expertise in other areas who can provide support
from the different angles that migration entails: from compliance experts to architects, network and
security experts, system administrators, developers (of course!) and external consultants, when required.

Prepare a migration toolkit in advance

While many organizations want to start migrating applications and infrastructure to the cloud as soon
as possible, the first technical implementation in cloud migration, once we have properly configured
our cloud account and project, should be defining a set of tools and processes which work across all
our different providers and environments.

We should have a complete toolkit in place, including CI/CD and a proper monitoring and logging
system offering centralized observability, after implementing the principle of least security and a
zero-trust model. These should be combined with a set of IT and operations processes compatible
with our hybrid or multi-cloud architectures. And only when these elements are in place we will be
ready to start planning our migration waves.

https://cloud.google.com/security/compliance/offerings

Best practices for bringing your code to Google Cloud 315

Tip
Some tools can help us automate many of our processes in Google Cloud to help us save a lot of
time and increase the reliability of our deployments. A good example is Terraform (https://
cloud.google.com/docs/terraform). You can find a link in the Further reading
section of this chapter to a book also published by Packt Publishing about this amazing tool
and how to use Terraform to build a strong Google Cloud foundation. I had the privilege of
technically reviewing that book and can say that Patrick Haggerty did an amazing job explaining
how to set up our Google Cloud projects in the best possible way from every possible angle.

Try to simplify, that’s what the cloud is about

Each organization may have its own reasons for moving to Google Cloud, but in general, users are
looking for elastic and almost infinite additional and easy-to-use computing resources, a reasonable
pay-per-use pricing model, and very short delivery times. In summary, we love how simple and quick
everything is on the cloud. So, please, don’t ruin this beautiful picture with some ancient and dreary
corporate processes.

I have seen automatic delivery workflows, which can be executed end to end in a couple of minutes,
paired with approval processes that take weeks to complete, and I’m sure you also have your own hall
of shame with many other examples. Trying to reuse the same processes that we defined years ago
and used on premises in our cloud environments will be a nonsense in most cases. Power and speed
are two key features of Google Cloud, and our processes should not only not harm them but also
contribute to maximizing their beneficial effects on our organization.

Tip
Try to make your processes as simple as possible. This doesn’t mean giving up on security,
control, or any other desirable features, but just making sure that all the benefits of the XaaS
model that we decided to adopt in the cloud, delegating part of our work to our platform, are
also reflected on our processes by removing all those steps that no longer make sense. Don’t
waste time with additional bureaucracy or approvals for components that can be requested
with just one click.

You should better use available products and features, such as roles and permissions, to delimit
who can do what and implement centralized observability and controls of cloud usage and
its associated costs. This way, you can let your users thrive and enjoy all the amazing features
that Google Cloud provides while you have access to real-time data and insights about what’s
going on in the platform.

https://cloud.google.com/docs/terraform
https://cloud.google.com/docs/terraform

Migration Pitfalls, Best Practices, and Useful Tips316

Analyze and prioritize accordingly

Spending a reasonable amount of time performing an initial analysis at the beginning of our migration
is a decision that we will never regret. It may be frustrating for many of our stakeholders to see the
technical work being delayed, but this stage of the migration must take its time to be properly completed.
Being able to correctly prioritize which applications and services should be migrated first will save
us a lot of time, money, and headaches and can also be used to boost the morale of the migration
team and to share the quick wins with the rest of our organization and also use them to propitiate a
cloud-friendly culture.

Tip
If any applications are clearly identified as cloud-native, they can be very good candidates
for the earliest migration wave. Developers can work in parallel on those other applications
which can be modernized so that they are ready to be migrated as soon as possible. And we
can decide what to do with the remaining ones, using one of the cloud migration approaches
that we discussed earlier in the book: either split them into pieces, use "lift and shift," replace
them with a more modern functionally compatible alternative, or re-write them from scratch
to make them cloud native. Don’t forget to always consider the pros and cons of each option,
including how much it will cost in terms of both time and money, and always take into account
whether there are any dependencies that may also affect additional applications and services.

Migration to the cloud is an amazing chance for us to make things simpler: split monoliths, reduce
risks, interconnect and reuse where possible, and use the opportunity to modernize our whole
organization and its culture.

Measure, analyze, optimize, and prove success

While our migration may still be ongoing, and even once it’s finished, our work will not be done yet.
As part of our new strategy in the cloud, we should have implemented performance and availability
monitoring and metric collection among our key management processes on Google Cloud.

Observability should be one of our key priorities to guarantee the success of our migration strategy.
We should constantly measure application performance and its associated key metrics to identify
potential points of failure, performance bottlenecks, and areas of improvement.

Best practices for bringing your code to Google Cloud 317

Tip
We should never forget that our Google Cloud environment will be dynamic, so we should
repeat our analysis of opportunities for improvement periodically so that we can also consider
the effect of new deployments and changes that happened since our last analysis. We should
also be aware of all the announcements made by Google, including not only notifications about
new services, improved features, and technical upgrades but also any news on price updates
and discounts that we could benefit from, especially if the number of cloud resources that we
are using increases and we move to a different tier.

We can use our experience during the migration process to extend our original list of KPIs with
additional information and use all the collected data to prove the success of our migration and offer
our stakeholders a clear view of the benefits and changes that Google Cloud has already brought to
our organization.

Tip
While we have already discussed the importance of putting together a team with different
skills and profiles to safely face our migration to the cloud, it’s also important to think about
which roles will be needed once the process is completed. Analysts and cloud security experts
could be examples of these new roles, but we should also consider having architects and
project managers who are in touch with Google Cloud account managers and experts so that
new opportunities can be identified, including participation in betas, early notification of new
features, access to learning and certification programs or access to additional discounts with
a committed-use contract.

Connectivity and latency can make a huge difference

Most migrations involve a hybrid scenario, sometimes permanent and others just temporary until
all our workloads have been moved to the cloud. In all these cases, and especially for those making
use of long-term hybrid and multi-cloud architectures, combining the right network topologies and
getting connected using an option that offers low latency and decent bandwidth will be key factors in
shaping the user experience of our new environment.

A common fear users express when they are new to the cloud is that everything becomes slower due
to distance and latency. While a bigger distance between our computer and any servers we connect
to may be associated with higher latency, this may not be true in most cases, since even when we
work on-premises, we may suffer networking issues. Everything will depend on the quality of our
connection, and this is where networking experts can help us choose among the many connectivity
options and network design patterns that are available. They should also carefully analyze where
redundant connections will be required to provide backup paths for our traffic. These best practices
will guarantee a good user experience and a reliable topology that can handle temporary failures in
some of our connections and links without causing downtime in our services.

Migration Pitfalls, Best Practices, and Useful Tips318

Tip
Since our organization may have a presence in multiple regions, it’s important to have a clear
picture of who will be using and who will be managing our applications and where they will
be connecting from to do it. The answers to these questions will be used to decide which is
the best connectivity option to use and which Google Cloud region or regions we should
deploy our services. And never forget that organizational needs may change, so we will need
to periodically check whether the answers that we got in the past are still valid or whether we
need to make upgrades to our original setup.

While all these decisions will not be written in stone, it’s important to make the best possible choices
by studying all the information and metrics that we have available so that we can provide the best
experience to our users.

This is an important topic that can directly affect cloud adoption because if we are able to provide a
good experience to our users and administrators, our organization will not see noticeable differences
in user experience after moving to the cloud. The added features that Google Cloud can also provide
will be perceived as a huge leap forward.

Tip
We didn’t dive too deep into the networking part of Google Cloud in the book since it is targeted
at developers, but networking is a key area in any migration to the cloud. Having network experts
among the team responsible for the migration plan first, and for cloud operations, once the
migration is completed will be a must if we want our migration to Google Cloud to succeed.

Build once, deploy anywhere, and as many times as required

I want to use this last best practice to summarize some of the key messages of this book on how to
build applications for Google Cloud.

Tip
Using self-contained architectures with workloads that can be deployed in more than one cloud
provider and in any of their regions will help us respond much faster to any organizational
needs, such as moving services to other regions and zones or adding extra replicas in new
locations to improve the user experience of local customers.

Since migrating to the cloud implies taking a lot of decisions, we will make the wrong ones at some
point despite all our efforts to avoid them. It will just happen, and we should accept the inevitable
but also be well prepared to act when it happens. And for this reason, it’s important to use design and
development patterns that can properly handle failures and that we can quickly deploy somewhere
else if we suddenly need to make corrections or improvements to our architecture.

Summary 319

And being able to deploy anywhere any time, and as many times as we want means that we have
total freedom and control over where our code will run and, personally, I think this is one of the best
situations in which we, as developers, can see ourselves, so we shouldn’t underestimate the opportunity
and do our best to bring it to our organizations.

And this was all regarding best practices. I hope you found all this information useful and interesting.
Now, it’s time for the final wrap-up.

Summary
We started the last chapter of the book by identifying the most common pitfalls that happen while
we move or modernize our applications and services to benefit from the multiple advantages that
Google Cloud offers.

Then, we discussed some of the best practices recommendable when bringing our code to Google Cloud.

Both parts of the chapter also included some tips to help you overcome obstacles, handle delicate
situations that are quite usual in this kind of migration, and mitigate the complexity of this kind
of process.

And we got to the end of the chapter! Thank you so much for finishing the book, and I hope that it
helped you better understand how you can start making the most out of Google Cloud as a developer.

You chose an amazing technical area to develop your skills, where there are still a lot of new applications
and breakthroughs to be ideated and offered, and I’m sure you will be an important part of this digital
revolution. I would love it if you let me know which amazing projects you worked on after reading
this book, and I wish you the best of luck on your journey with Google Cloud.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

•	 The Ultimate Guide to Building a Google Cloud Foundation: https://www.packtpub.
com/product/the-ultimate-guide-to-building-a-google-cloud-
foundation/9781803240855

•	 Visualizing Google Cloud: https://cloud.google.com/blog/topics/developers-
practitioners/introducing-visualizing-google-cloud-101-
illustrated-references-cloud-engineers-and-architects

https://www.packtpub.com/product/the-ultimate-guide-to-building-a-google-cloud-foundation/9781803240855

https://www.packtpub.com/product/the-ultimate-guide-to-building-a-google-cloud-foundation/9781803240855

https://www.packtpub.com/product/the-ultimate-guide-to-building-a-google-cloud-foundation/9781803240855

https://cloud.google.com/blog/topics/developers-practitioners/introducing-visualizing-google-cloud-101-illustrated-references-cloud-engineers-and-architects
https://cloud.google.com/blog/topics/developers-practitioners/introducing-visualizing-google-cloud-101-illustrated-references-cloud-engineers-and-architects
https://cloud.google.com/blog/topics/developers-practitioners/introducing-visualizing-google-cloud-101-illustrated-references-cloud-engineers-and-architects

Index

Symbols
 Amazon Simple Storage Service

(Amazon S3) 297

A
Adaptative Protection 199
address record 195
Agile 9, 10, 27

development phases 9
AI-based services

combining, together in code 259-263
exercise, tips 264

Air Quality Information (AQI) 221
Amazon Web Services (AWS) 36, 298
Amstrad CPC 464 3, 4
Amstrad screen

with Basic code 5
Analytics Hybrid 293
analytics hybrid or multi-cloud

pattern 276, 277
Annotate Text request 238
Anthos 33

Anthos clusters, using 153
benefits 152, 153

Binary authorization, for secure
software supply chain 157

centralized configuration management 157
Cloud Logging 158
Cloud monitoring 158
containerized workloads, securing 157
Fleets, using to make

management easier 154
hands-on example 161-172
hybrid cloud management platform 152, 153
hybrid environment, managing with 36, 37
multi-cloud environment,

managing with 36, 37
networking 155, 156
pricing, options 160
reference link 36, 152
running, on AWS 153
running, on Azure 153
running, on Google Cloud 153
running, on on-premises 153
Service Mesh, for microservice

architectures 154, 155
third-party application marketplace 159
unified UI 158
URL 17
usage 160

Anthos API 160

Index322

Anthos clusters
reference link 37
using 153

Anthos Configuration Management 37
reference link 157

Anthos, deployment options
reference link 160

Anthos, hands-on example
cleaning up 184
running, on Microsoft Azure 172-182

Anthos, Migrate to Containers
reference link 153

Anthos page, on Cloud Marketplace
reference link 160

Anthos pricing page
reference link 160

Anthos Service Mesh 37
benefits 155
reference link 155

anycast 195
anything-as-a-service (XaaS) models 306
API Gateway

URL 30
Apigee 30
API keys 215
App Engine 33, 91, 92

code execution, charges 101, 102
code execution, tips and tricks with 102
debugging 101
environment types 92-94
scaling, strategies 94, 95
services, configuring 96
used, for deploying code 96-101
used, for running code 91, 96-101
used, for writing code 96-101
using, in microservice architectures 95, 96
versus Cloud Functions 116, 117
versus Cloud Run 116, 117

App Engine flexible 93
App Engine HTTP(S) 216
App Engine standard 93
App Engine standard environment 92
application

deploying 140-142
downtimes 23
scaling, in GKE 129, 130
testing 143, 144

application, in GKE
GPUs, using 130

Application Programming
Interface (API) 231

applications
deploying, on GKE 128, 129

applications, to Google Cloud
migrating, pitfalls 305-312

application, with Cloud Build
containerizing 136, 137

architecture patterns
distributed architecture patterns 273
redundant architecture patterns 273
types 273

archive storage 210
array jobs 108
Artifact Registry 33, 59, 129

URL 33
artificial intelligence (AI) 15, 232
asynchronous broadcasting 214
asynchronously 233
asynchronous task execution

Cloud Tasks 210- 212
Atomicity, Consistency, Isolation,

and Durability (ACID) 213
attestations 157
audit logging 127
AutoML 16, 231
AWS Application Load Balancers 156

Index 323

AWS Classic Elastic Load
Balancers (ELB) 156

AWS Network Load Balancers 156
Azure Active Directory (Azure AD) 176
AzureClient 177
Azure Standard Load Balancer 156

B
bare-metal servers 37
Binary authorization 157
binary blobs 215
bounding box 246
brick-and-mortar brand example 298
bring-your-own (BYO) domains 201
bucket locations

types 209
buckets 208
business continuity hybrid or

multi-cloud pattern 279-281

C
cache 200
cache hit 200
cache hit ratio 200
cache invalidation 201
cache miss 200
caching 200
canary deployment 168
Canonical Name (CNAME) record 195
Carrier Peering 193
CDN Interconnect 193
centralization 36
certificates 215
Citrix 156
client libraries 208

Cloud Armor 197, 198
load balancers, types 198

Cloud Armor, service tiers
Google Cloud Armor Standard 199
Managed Protection Plus 199

Cloud Build 32, 33, 129
reference link 63
URL 32, 33

Cloud Build trigger 114
cloud bursting pattern 281, 282
Cloud CDN 115, 188, 199-201
Cloud Code 32

URL 32
Cloud Datastore 95
Cloud DNS 127, 194-196
Cloud Functions 33, 69-71, 208

code execution, tips and tricks with 89, 90
debugging 88
deploying 73-87
execution cost, considerations 90
reference link 68
running 73-77
running, cost 90, 91
testing 78, 79
triggers, for code execution 69
used, for running code 68
versus App Engine 116, 117
versus Cloud Run 116, 117
writing 73-77

Cloud Functions emulator 78
Cloud IDS 188
Cloud Interconnect 193
Cloud KMS 216
Cloud Load Balancing 188, 197
Cloud Logging 201

best practices 55, 56
reference link 53
setting up 53, 54

Index324

cloud monitoring 58
reference link 58

Cloud NAT 188
cloud-native application 36
Cloud Natural Language 232, 237-244

analysis, types 237
Cloud Operations, for GKE

reference link 131
Cloud Profiler 60

reference link 61
cloud provider 13, 14

factors, for selecting 17
selecting, pitfalls 149-151
selecting, risks considerations 150

Cloud Pub/Sub 211
cloud resources

connecting to 192
network connectivity products 193
VPC networks 192

Cloud Run 105, 106
code execution, charges 113
code execution, tips and tricks with 114-116
concepts 107-109
debugging 113
execution environments, selecting 109, 110
use cases, examples 117
used, for running code 105, 110-113
used, for writing code 110-113
versus App Engine 116, 117
versus Cloud Functions 116, 117
versus GKE 132

Cloud Run emulator 51
Cloud Run, for Anthos 37, 132

benefits 159
reference link 159
using, to make hybrid cloud simple 159

Cloud Run job 108

Cloud Scheduler 70, 212-214
types, of targets 216
used, for running jobs at right time 216, 217

Cloud Shell 44
key features 44
reference link 43

Cloud Shell Editor 44
built-in terminal, displaying 48
Cloud Code support 50, 51
code, editing 49
code, moving to IDE 51
code, writing 49
files, downloading 48
files, uploading 48
interface 46, 47
used, for writing Google Cloud code 44, 45
version control 49

Cloud Software Development Kit (SDK) 32
URL 32

Cloud Source Repositories
reference link 49

Cloud Storage 208, 209
bucket locations 209
for object storage and retrieval 208
storage classes 209

Cloud Tasks
for asynchronous task execution 210-212

Cloud Trace 60
reference link 60

Cloud Translation 17, 235-237
Cloud Video Intelligence 232, 253-258

features 253, 254
Cloud Vision (CV) 232, 244-253, 296

features 247
Cloud Vision API 7, 247
Cloud VPN

reference link 156

Index 325

Cloud Workflows 216
for service orchestration 213, 214

cluster autoscaler 126
ClusterIP 127
code execution

monitoring 56
code execution, on cloud

reasons 13, 14
code repositories 29
code reviews 23
code testing

best practices 63
on Google Cloud 61
recommendations 63

code, to Google Cloud
best practices 312-319

code troubleshoot
by debugging 59-61
by profiling 59-61
by tracing 59-61

code version control system 26
coldline storage 210
command-line interface (CLI) 173
committed use discounts 126
Compute Engine VM instances 121
computing resources 15
conditional statements 213
confidence score 246
Configuration as Data 157
conformant non-GKE Kubernetes

clusters 153
Connect management

reference link 156
Container as a Service (CaaS) 68
containerization 34
containerized applications 15
Container Registry 33, 129
container runtime contract 110

containers 27
Content Delivery Network (CDN) 115, 301
Continuous Delivery 114
Continuous Deployment 114
Continuous Integration and

Deployment (CI/CD) 16, 32, 63
continuous testing 63
control plane 120
credentials 215
Cross-site scripting (XSS) attacks 198
customer-managed encryption keys 208

D
data access logging 216
data analytics 15
database passwords 215
data retention 59
data science 26
data synchronization 115
Daylight Saving Time (DST) 217
Dedicated Interconnect 301

reference link 156
design patterns 25
destination rule 168
developer

tasks 21
Developer cheat sheet, Google Cloud

reference link 14
developer problems and use

cases, Google Cloud
reference link 17

developer tools, Google Cloud
reference link 16

DevOps 9, 27
development cycle 9, 10

Dialogflow 17

Index326

digital transformation 11, 12
Direct Peering 193
Disaster Recovery plan 280
distributed architecture patterns 274

analytics hybrid or multi-cloud 276, 277
Edge Hybrid pattern 277, 278
partitioned multi-cloud 275, 276
Tiered Hybrid pattern 274, 275

Distributed denial-of-service
(DDOS) attacks 198

DNS resolution 195
DNS system

record types 195, 196
DNS zone 194
Docker

URL 120
Domain Name System Security

Extensions (DNSSEC) 196
domain registrar 195

E
Edge Hybrid pattern 277, 278, 293
egress traffic 282
emacs 6
employee turnovers 25
environmental hybrid pattern 278, 279
ephemeral 30
Error Reporting 101
escalation paths 29
event-driven architecture pattern 27
eviction 200
exclude filters 55
expiration date 201
explicit content 246
exponential backoff 28, 63
external steps 214

F
F5 BIG-IP 156
Fashion Victims

analysis and opportunities 299, 300
architecture, designing 300, 301
cloud, using as extension 298
hybrid and multi-cloud options 302, 303
specifications 299

Firebase 33
Firebase Hosting 115
Firestore, in Datastore mode

for high-performance NoSQL
storage 212, 213

First-In, First-Out (FIFO) 295
fleet members

benefits 37
fleets 37

reference link 154
using, to make management easier 154

full isolation of code 95
Function as a Service (FaaS) 30, 68

G
gated egress features 277
gated egress 278
gated egress topology 275
gated ingress 278
gcloud 208, 211
gcloud CLI 44

reference link 44
Git credentials helper

reference link 49
GKE applications

monitoring 131
price model 131

Index 327

global resources 190
Google Cloud 3, 14

advanced cluster management features 122
code testing 61
code, writing with Cloud Shell Editor 44, 45
code, writing with Visual Studio Code 51
migration and development paths 33
migration checklist 34
migration options 35
plugin, installing 52, 53
prerequisites, reference link 51
product and service offerings 15, 16
reasons, for selecting 17, 18
test types 61
URL 17

Google Cloud APIs 16
reference link 17

Google Cloud Bare Metal
Solution, for Oracle

reference link 35
Google Cloud Command-Line

Interface (gcloud CLI) 32
Google Cloud console 41-43
Google Cloud Deploy 33

URL 33
Google Cloud developer tools 31

Artifact Registry 33
Cloud Build 32, 33
Cloud Code 32
Cloud Software Development Kit (SDK) 32
Google Cloud Deploy 33
Jenkins on Google Cloud 32
Spring Framework on Google Cloud 32
Tekton 32

Google Cloud features, on modern
software development

agility 29
built for developers 31

elasticity 29
reliability 30
security 31

Google Cloud Managed Service
for Prometheus 58

reference link 58
Google Cloud Marketplace 159
Google Cloud networking 188, 189

features 188
Google Cloud networking, services

Cloud Armor 197
Cloud CDN 199-201
Cloud DNS 194-196
Cloud Load Balancing 197

Google Cloud operations suite
reference link 53

Google Cloud Platform (GCP) 107
Google Cloud service account 127
Google Cloud services

best practices 217-228
Google Cloud Storage (GCS) 69
Google Domains

reference link 195
Google Kubernetes Engine

(GKE) 120, 152, 291
advanced cluster management features 122
application, scaling 129, 130
applications, deploying on 128, 129
best practices 120
cluster architecture 120, 121
cluster types, based on availability 123
cost efficiency, best practices 126
hands-on example 133, 134
key concepts 120
networking 126, 127
node pools, for easier management 124, 125
node taints, for easier management 124, 125
operation modes 122

Index328

security 127
storage 126
URL 120
versus Cloud Run 132

Google Kubernetes Engine (GKE), exercise
application, deploying 140-142
application, testing 143, 144
application with Cloud Build,

containerizing 136, 137
cleaning up 146
cluster, creating for frontend 137, 138
database instance, creating 138, 139
logs and metrics 144-146
sample application, code 135
secrets, creating 139, 140
service account, configuring 139, 140
service, exposing 142, 143
upgrading 147

Grafana
reference link 58

graphics processing unit (GPU) 130
gRPC 110

H
handover network topology 281
handover topology 277
healthy service revision 108
hermetic builds

reference link 63
high availability 30
high-performance NoSQL storage

Firestore in Datastore mode 212, 213
high-speed packet access (HSPA) 292
high trust 154
highway toll system

analysis and opportunities 293
architecture, designing 293-296

data, utilizing 297
distributed scenario, automating 292
hybrid and multi-cloud options 297, 298
specifications 292

HTTP(S) endpoint 216
HTTP(S) Load Balancing

reference link 156
hybrid and multi-cloud 16
hybrid cloud computing 151
hybrid cloud solution 270
hybrid environment

managing, with Anthos 36, 37
hybrid solution 270, 271

best practices 272, 273
need for 271, 272

hybrid solutions and multi-cloud solutions
selecting, between 270

I
idempotent operation 63
Identity and Access Management

(IAM) 72, 195, 208
Identity-Aware Proxy (IAP) 115, 204
identity management system 29
include filters 55
infrastructure metrics 58
instance hours 93
integrated development

environments (IDEs) 6
integration 26, 115
integration test 62
internal metrics 57
inter-service messaging

Pub/Sub 214, 215
intra-cluster network connectivity 121

Index 329

invoice management 285
analysis and opportunities 286, 287
architecture, designing 289, 291
hybrid and multi-cloud options 291
migration, approaching 288
specifications 286

IPv6 address record 195
Istio

reference link 155
iterations 214

J
Jenkins on Google Cloud 33

URL 32
JSON file 213

K
Knative 37
Knowledge Graph 243
kubectl 121, 128
kube-dns 127
kube-proxy 127
Kubernetes 51

concepts, using 157
URL 120

Kubernetes DaemonSet 129
Kubernetes Deployment 128
Kubernetes Engine Monitoring

reference link 158
Kubernetes Job 129
Kubernetes node agent 121
Kubernetes node label 124
Kubernetes Pod

reference link 120

Kubernetes Service 142
reference link 120

Kubernetes StatefulSet 128

L
large-scale data processing 130
layered security approach 127
load balancer 299
load balancers 27, 281

types 198
Local file inclusion (LFI) attacks 198
log collection 121

M
machine-generated identifier (MID) 243
machine learning (ML) 15, 130, 232, 296
Mail exchange (MX) record 196
managed service 213
Marketplace Solution Catalog

reference link 159
Mean Time to Recovery (MTTR) 58
Media CDN 188, 201

reference link 201
Memcached 95
MeshCA 157
meshed topology 275, 276, 282
metadata 216, 232
MetalLB 156
metrics, example

infrastructure metrics 58
internal metrics 57
service metrics 58

microservices 27
Microsoft Azure 36
Migrate to Containers

reference link 37

Index330

migration checklist, Google Cloud 34
migration options, Google Cloud

application, refactoring 35
lift and shift 35
move and improve 35

migration tools 16
Minimum Viable Product (MVP) 9, 288
min-instance 107
mirrored network topology 279
mirrored topology 281
mobile platform 16
modern software development

benefits, on Google Cloud 29
risk mitigation 26

monitoring 56
reference link 56

monitoring dashboards 58
reference link 58

monitoring system
components 58

monolithic applications 23
multi-cloud environment

managing, with Anthos 36, 37
multi-cloud solution 270

best practices 272, 273
need for 271, 272

multi-cloud solutions 270, 271
Multi Cluster Ingress 37

reference link 156
multi-zonal cluster 123
mutual TLS (mTLS) 153

N
Name server (NS) record 196
native cloud solution 270
Native mode 212

Natural Language AI 16
nearline storage 210
negative caching 201
netcat (nc) 163
network address translation (NAT) 175
Network Attached Storage (NAS) 126
Network Connectivity Center 193
network filesystem (NFS) 114
networking 15, 188
Network Intelligence Center 188
Network Load Balancing

reference link 156
Network Service Tiers 188, 201, 202

Premium Tier 201, 202
Standard Tier 201, 202

node auto-provisioning 126
node image 128
node pools 124
nodes 120, 121
node taints 124
non-fungible token (NFT) 161

O
OAuth2 token 217
object annotation 255
object-relational mappings (ORMs) 213
objects 208

versioning 208
observability 36-57
offload requests 211
OpenID Connect token 217
Open Web Application Security

Project (OWASP) 199
Operating System (OS) 68
Ops Agent 58

reference link 58

Index 331

Optical Character Recognition
(OCR) 57, 288

options, for connecting to Google APIs
Carrier Peering 193
Direct Peering 193

orchestration 213
ownership information database 25

P
partitioned multi-cloud

architecture 275, 276
Partner Interconnect

reference link 156
Personal Access Token (PAT) 49
Personally Identifiable Data (PII) 314
phonebook 194
Platform as a Service (PaaS) 68
Pointer (PTR) record 196
Policy Controller 157
PORT environment variable 107, 110
Preemptible VMs

reference link 126
Premium Tier 201, 202

versus Standard Tier 202
principle of least privilege 127, 273
Private Service Connect 188
programming languages 27
project management 8, 9
Prometheus 279

reference link 58
Pub/Sub 295

for inter-service messaging 214, 215
usage, scenarios 215
versions 215

Pub/Sub messages 69
Pub/Sub topic 216

Q
queries per second (QPS) 167

R
rate limiting 198
redundant architecture patterns 278

business continuity hybrid or
multi-cloud pattern 279-281

cloud bursting pattern 281, 282
environmental hybrid pattern 278, 279

region 189, 190
selecting 190
selecting, consideration 191
selecting, reasons 191

regional clusters 123
regional resource 190
remote code execution (RCE) 198
remote debugging 32
remote file inclusion (RFI) attacks 198
remote procedure calls (RPCs) 214
ReplicaSet 140
request timeout setting 110
resiliency 28
REST API 208
retention policy 209
retry strategy

reference link 63
return code 217
reverse lookup 196
risk management 28
risk mitigation, modern software

development 26
lack of fault tolerance 28
lack of monitoring 28
lack of resiliency 28
lack of risk management 28

Index332

resource exhaustion 27
security approach 29
slow development 27
software bugs 26
unclear accountability 29
unclear ownership 29
unclear priorities 28
usage patterns estimation, failing 28

risks, traditional software development
lack of fault tolerance 24
lack of monitoring 25
lack of resiliency 24
lack of risk management 25
lost source code 26
resource exhaustion 24
security approach 26
slow development 23
software bugs 23
unclear accountability 25
unclear ownership 25
unclear priorities 25
usage pattern estimation, failing 24

S
SafeSearch 247
sameness 154

concept 37
sample network architecture 202-204
scaling strategy 94
schemaless 212
secret 216
Secret Manager

reference link 63
used, for storing sensitive data 215, 216

security by default 29
Seesaw 156
segments 253

sensitive data
storing, with Secret Manager 215, 216

serverless architectures 68
serverless platforms 15
serverless solution 213
server-side encryption 208
service 107
service accounts

used, for running code 72, 73
verus user accounts 72

Service Directory 188
service information

gathering 57, 59
Service-Level Agreements (SLAs) 132, 191
Service-Level Indicators (SLIs) 57
Service-Level Objectives (SLOs) 57, 155
service mesh 38

for microservice architectures 154, 155
reference link 38

service metrics 58
service orchestration

Cloud Workflows 213, 214
services

APIfying 291
session affinity 115
shared VPC 192
sidecar 155
sidecar proxies 155
simplification 28
single-zone cluster 123
Site Reliability Engineers

(SREs) 8, 10, 17, 30, 57
Skaffold

reference link 59
Skaffold Debug

reference link 113
Skaffold integration 32
source-based deployment 106

Index 333

Speech-to-Text 16, 232-235
Spinnaker 33
split-brain problem 280
Spot VMs

reference link 126
Spring Framework on Google Cloud 32

URL 32
sprints 9
SQL injection (SQLi) attacks 198
SQL-like queries 213
standard storage 210
Standard Tier 201, 202

versus Premium Tier 202
Start of authority (SOA) record 196
storage class 210
strong consistency 209
structured data

versus unstructured data 232
sub-workflow 214
supervisor 37
synchronous systems 214
synchronously 233
system test 62

T
Task Queues 95
Tekton 32

URL 32
terraform

reference link 315
test types 61

integration test 62
system test 62
unit test 62

text strings 215
Theia

reference link 45

third-party dependencies 34
Tiered Hybrid pattern 274, 275
tolerations 124
topicality score 251
traditional software development

risks 22
Translation AI 232, 235
Transmission Control Protocol and

Internet Protocol (TCP/IP) 194
trigger 208

U
unit test 62
unstructured data

versus structured data 232
usage patterns 24
user accounts

versus service accounts 72
user-facing 211
User Interface (UI) 41

V
verbosity level 55
versioning 216
vi 6
Video Intelligence API 253
virtualization 27, 34
Virtual Machine (VM) 43, 126
Virtual Private Cloud (VPC) 114, 188
Vision AI 296
Vision API 16
Visual Studio 6
Visual Studio Code (VSCode) 7, 51

used, for writing Google Cloud code 51
VMware vSphere 37
VPC network peering 192

Index334

VPC networks 192
services and features 192

VPC networks, accessing options
Cloud VPN 193
Dedicated Interconnect 193
Partner Interconnect 193

VPC Service Controls 188
VSCode Marketplace page, for Cloud Code

reference link 52

W
waterfall methodology 8
Weather API

URL 218
weather web page

updating 222-224
Web Application Firewall (WAF) 198
Web Server Gateway Interface (WSGI) 99
What You See Is What You Get

(WYSIWYG) 84
Wide Area Network (WAN) 193
workload portability 272, 282
workloads 120

types 128
workspace management options

reference link 49
workspaces 49

Y
YAML file 213

Z
zero-instance scaling 70
zero-scaling service 107
Zero Trust 29
zonal clusters 123

requirements 123
zonal resource 190
zones 189, 190

selecting 190
selecting, consideration 191
selecting, reasons 191

Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

https://Packtpub.com

https://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
https://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

The Ultimate Guide to Building a Google Cloud Foundation

Patrick Haggerty

ISBN: 978-1-80324-085-5

•	 Create an organizational resource hierarchy in Google Cloud

•	 Configure user access, permissions, and key Google Cloud Platform (GCP) security groups

•	 Construct well thought out, scalable, and secure virtual networks

•	 Stay informed about the latest logging and monitoring best practices

•	 Leverage Terraform infrastructure as code automation to eliminate toil

•	 Limit access with IAM policy bindings and organizational policies

•	 Implement Google’s secure foundation blueprint

https://packt.link/9781803240855

337Other Books You May Enjoy

Terraform for Google Cloud Essential Guide

Bernd Nordhausen

ISBN: 978-1-80461-962-9

•	 Authenticate Terraform in Google Cloud using multiple methods

•	 Write efficient Terraform code

•	 Use modules to share Terraform templates

•	 Manage multiple environments in Google Cloud

•	 Apply Terraform to deploy multi-tiered architectures

•	 Use public modules to deploy complex architectures quickly

•	 Integrate Terraform into your Google Cloud environment

https://packt.link/9781804619629

338

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Google Cloud for Developers, we’d love to hear your thoughts! If you purchased
the book from Amazon, please click here to go straight to the Amazon review page for this book and
share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://authors.packtpub.com
https://packt.link/r/1-837-63074-7

339

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837630745

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781837630745

	Cover
	Title Page
	Copyright and Credits
	Foreword
	Contributors
	Table of Contents
	Preface
	Part 1:
Foundations of Developing
for Google Cloud
	Chapter 1: Choosing Google Cloud
	My story as a developer
	Project management, Agile, DevOps, and SRE
	Introducing Digital Transformation
	Why should you run your code on the cloud?
	Introducing Google Cloud
	Why should you choose Google Cloud?
	Summary
	Further reading

	Chapter 2: Modern Software Development in Google Cloud
	What does a developer do?
	The risks of traditional software development
	Software bugs
	Slow development
	Resource exhaustion
	Lack of resiliency and fault tolerance
	Failing to estimate usage patterns
	Lack of proper monitoring and risk management
	Unclear priorities, accountability, and ownership
	Security approach
	Lost source code

	How modern software development mitigates risks
	Software bugs
	Resource exhaustion and slow development
	Lack of resiliency and fault tolerance
	Failure to estimate usage patterns
	Lack of proper monitoring and risk management
	Unclear priorities, accountability, and ownership
	Security approach

	The benefits of implementing modern software development on Google Cloud
	Built for agility, elasticity, and reliability
	Security at the core
	Built for developers

	Google Cloud toolbox for developers
	Migration and development paths to run your code on Google Cloud
	Migration checklist
	Migrate or refactor?

	Managing hybrid and multi-cloud environments with Anthos
	Summary
	Further reading

	Chapter 3: Starting to Develop on
Google Cloud
	The first steps with the Google Cloud console
	Introducing Cloud Shell
	Writing code for Google Cloud using Cloud Shell Editor
	Taking a look at the interface
	Showing the built-in terminal
	Uploading and downloading files
	Editing and writing code
	Version control
	Cloud Code support
	Moving your code to a different IDE

	Writing code for Google Cloud using VS Code
	Installing the plugin

	Setting up Cloud Logging
	Best practices for logging

	Monitoring the execution of your code
	Introducing observability
	Gathering information about your services

	Troubleshooting by debugging, tracing, and profiling your code
	Appendix – testing your code on Google Cloud
	Types of tests
	Recommendations and best practices for testing your code

	Summary
	Further reading

	Part 2:
Basic Google Cloud Services
for Developers
	Chapter 4: Running Serverless Code on Google Cloud – Part 1
	Technical requirements
	Introducing serverless architectures
	Using Cloud Functions to run your code
	Introducing Cloud Functions
	Running code using service accounts
	Writing, deploying, and running a cloud function
	Testing a cloud function
	Deploying a cloud function
	Debugging a cloud function
	Tips and tricks for running your code using Cloud Functions
	How much does it cost to run a cloud function?

	Using App Engine to run your code
	Introducing App Engine
	App Engine environment types
	Scaling strategies in App Engine
	Using App Engine in microservice architectures
	Configuring App Engine services
	Writing, deploying, and running code with App Engine
	Debugging in App Engine
	How much does it cost to run your code on App Engine?
	Tips and tricks for running your code on App Engine

	Summary
	Further reading

	Chapter 5: Running Serverless Code on Google Cloud – Part 2
	Using Cloud Run to run your code
	Introducing Cloud Run
	Basic concepts of Cloud Run
	The two different execution environments to choose from
	Writing and running code using Cloud Run
	Debugging in Cloud Run
	How much does it cost to run your code on Cloud Run?
	Tips and tricks for running your code on Cloud Run

	Choosing the best serverless option for each use case
	Summary
	Further reading

	Chapter 6: Running Containerized Applications with Google Kubernetes Engine
	Introducing Google Kubernetes Engine
	Deep diving into GKE – key concepts and best practices
	GKE cluster architecture
	Advanced cluster management features
	GKE operation modes
	Cluster types based on availability
	Node pools and node taints for easier management
	Best practices for cost efficiency in GKE
	Storage in GKE
	Networking in GKE
	Security in GKE
	Deploying applications on GKE
	Scaling an app in GKE
	Monitoring GKE applications

	Comparing GKE and Cloud Run – when to use which
	GKE hands-on example
	Summary
	Further reading

	Chapter 7: Managing the Hybrid Cloud with Anthos
	The pitfalls of choosing a cloud provider
	Introducing hybrid cloud computing

	Anthos, the hybrid cloud management platform
	Computing environment
	Simplified management using fleets
	Service Mesh for microservice architectures
	Networking in Anthos
	Centralized configuration management
	Securing containerized workloads
	Binary Authorization for a secure software supply chain
	Consolidated logging and monitoring
	Unified UI
	Making hybrid cloud simple with Cloud Run for Anthos
	Third-party application marketplace
	Anthos usage and pricing options

	Anthos hands-on example
	Running our example on Microsoft Azure
	Cleaning up

	Summary
	Further reading

	Part 3:
Extending Your Code – Using Google Cloud Services and Public APIs
	Chapter 8: Making the Best of Google Cloud Networking
	Introducing Google Cloud networking
	Understanding regions and zones
	Choosing the best region and zone

	Connecting to our cloud resources
	VPC networks
	Network connectivity products

	Basic Google Cloud networking services
	Cloud DNS
	Cloud Armor
	Cloud CDN

	Network Service Tiers
	Sample architecture
	Summary
	Further reading

	Chapter 9: Time-Saving Google
Cloud Services
	Cloud Storage for object storage and retrieval
	Introducing Cloud Storage
	Bucket locations and storage classes

	Cloud Tasks for asynchronous task execution
	Firestore in Datastore mode for high-performance NoSQL storage
	Cloud Workflows for service orchestration
	Pub/Sub for inter-service messaging
	Secret Manager for storing sensitive data
	Cloud Scheduler for running jobs at the right time
	A hands-on exercise
	Reading the list of cities
	Getting weather information for each city
	Storing weather information in a central location
	Updating the weather web page
	The end-to-end workflow for our weather solution
	Updating our web page every 30 minutes
	What’s next?

	Summary
	Further reading

	Chapter 10: Extending Applications with Google Cloud Machine Learning APIs
	Unstructured versus structured data
	Speech-to-Text
	Cloud Translation
	Cloud Natural Language
	Cloud Vision
	Cloud Video Intelligence
	Hands-on exercise
	What’s next

	Summary
	Further reading

	Part 4:
Connecting the Dots –Building Hybrid Cloud Solutions That Can Run Anywhere
	Chapter 11: Architecture Patterns for Hybrid and Multi-Cloud Solutions
	Defining hybrid and multi-cloud solutions
	Why hybrid and multi-cloud?
	Best practices for hybrid and multi-cloud architectures
	Types of architecture patterns
	Distributed architecture patterns
	Tiered Hybrid
	Partitioned multi-cloud
	Analytics hybrid or multi-cloud
	Edge Hybrid

	Redundant architecture patterns
	Environment hybrid
	Business continuity hybrid or multi-cloud
	Cloud bursting

	Summary
	Further reading

	Chapter 12: Practical Use Cases of Google Cloud in Real-World Scenarios
	Invoice management – deconstructing the monolith
	Specifications
	Analysis and opportunities
	Approaching the migration
	Designing the new architecture
	Hybrid and multi-cloud options

	Highway toll system – centralizing and automating a distributed scenario
	Specifications
	Analysis and opportunities
	Designing the new architecture
	Making the most of our data
	Hybrid and multi-cloud options

	Fashion Victims – using the cloud as an extension of our business
	Specifications
	Analysis and opportunities
	Designing the new architecture
	Hybrid and multi-cloud options

	Summary
	Further reading

	Chapter 13: Migration Pitfalls, Best Practices, and Useful Tips
	Common pitfalls while moving to the cloud
	Management not on board
	Unclear strategy and poorly defined migration roadmap
	Unmanaged expectations regarding benefits and costs
	Too disruptive or too conservative
	Not knowing your infrastructure and services well enough
	Migrating to the cloud is just moving infrastructure
	Being too careless with your data
	Making migration waves too big or too long
	Unbalanced latency, complexity, and cost

	Best practices for bringing your code to Google Cloud
	Avoid migrate and delete
	Check regulations and compliance before moving ahead
	Prepare a migration toolkit in advance
	Try to simplify, that’s what the cloud is about
	Analyze and prioritize accordingly
	Measure, analyze, optimize, and prove success
	Connectivity and latency can make a huge difference
	Build once, deploy anywhere, and as many times as required

	Summary
	Further reading

	Index
	Other Books You May Enjoy

