<packt

Google Cloud
for Developers

Write, migrate, and extend your code by
leveraging Google Cloud

HECTOR PARRA MARTINEZ

Foreword by Isaac Hernandez Vargas,
Google Cloud Country Manager for Spain and Portugal

Google Cloud for Developers

Write, migrate, and extend your code by leveraging
Google Cloud

Hector Parra Martinez

BIRMINGHAM—MUMBAI

Google Cloud for Developers

Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Mohd Riyan Khan
Publishing Product Manager: Niranjan Naikwadi
Senior Editor: Sayali Pingale

Technical Editor: Nithik Cheruvakodan

Copy Editor: Safis Editing

Project Coordinator: Ashwin Kharwa
Proofreader: Safis Editing

Indexer: Manju Arasan

Production Designer: Vijay Kamble

Marketing Coordinator: Agnes D'souza

First published: May 2023
Production reference: 1040523

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-83763-074-5

www . packtpub.com

http://www.packtpub.com

To my loving wife, Eva Celada, for her patience during the endless nights and weekends I spent
writing this book, and her tireless support during this and many other not-so-easy moments during
the last 15 years. You are my light; thank you for making me smile and feel so fortunate every single

day. I love you!

- Hector Parra Martinez

Foreword

Google Cloud was launched some years ago to make available for customers all around the world the
same infrastructure that Google uses for its end user products, such as Google Search and YouTube.
We combine our offering of massive amounts of computing power with a versatile portfolio of managed
services and open APIs, which can help developers integrate advanced capabilities, such as artificial
intelligence, into their workflows in a very easy, secure, and cost-effective way.

Google Cloud is also the greenest cloud. Google has been carbon neutral since 2007, but we aim to
run on carbon-free energy 24*7 at all of our data centers by 2030. We are also helping organizations
around the world to transition to more carbon-free and sustainable systems by sharing technology
and methods and providing funding.

Many of the readers of this book may be developers working for companies that don't use a cloud
provider. This book will help you understand what Google Cloud is, how it can help your organization
during its digital transformation, and how you can get the most out of it as a developer, engineer,
architect, or IT professional. Once you get rid of the burden of having an infrastructure to maintain
and rebuild your processes for agility and efficiency, the tangible benefits of the transformation will
be really surprising.

Combining open source technologies, such as Kubernetes, with our own implementations of Google
Kubernetes Engine and Anthos, Google Cloud for Developers will show you how to architect and
write code for cloud-native applications that can run on Google Cloud and how to take them to the
next level by containerizing them and making them available to run either on-premises, on Google
Cloud, or even on other public cloud providers, taking you on a journey toward hybrid and multi-
cloud architectures.

Technical information is complemented in the book with a nice list of best practices and tips, as well
as identifying pitfalls that often arise when an organization is migrating an application to Google
Cloud. This is a great resource with a lot of practical information that can help you save lots of time.

I also like the fact that this book is written by a Googler who was new to Google Cloud five years ago
but now develops solutions for the biggest advertisers in Spain and EMEA.

This shows that the learning curve is not so steep and that spending time studying the different
alternatives that we offer to architect and build cloud applications can have a significant impact on
your professional career.

If you are a developer looking for a powerful, secure, reliable, and sustainable cloud platform, Google
Cloud will be a great option. And this book will provide you with the information you need to start
building and deploying applications that can run wherever you want.

Isaac Herndndez Vargas

Google Cloud Country Manager for Spain and Portugal

Contributors

About the author

Hector Parra Martinez has worked in corporate IT for more than 15 years, specializing in failure
monitoring and the automatic recovery of applications, systems, and networks. In 2018, he joined
Google as a customer solutions engineer, helping the largest customers in Spain and EMEA to make
the most out of Google Cloud for their advanced marketing analytics and data activation projects
using Google Ads and Google Marketing Platform.

Hector is a certified Google Cloud Digital Leader and co-leads Google’s Mind the Gap program in
Spain, created to encourage more young women to pursue science and engineering careers. In his
spare time, Hector is a big fan of retro gaming, TV shows, and electronic music. He also loves traveling
with his wife, Eva, and spending quality time with his big family, especially his five grandchildren
and two niblings.

I want to thank Google for believing in this project and making it possible, especially Eric A. Brewer
for his kind support and Priyanka Vergadia and Miguel Fernandes for their titanic efforts to make
this a great book. My deepest gratitude also to the Packt team that made this book possible: Ashwin,
Sayali, Niranjan, Nimisha, and Agnes, you are really amazing!

About the reviewers

Miguel Fernandes is a senior solutions engineer with more than 16 years of experience in IT. He helps
companies navigate their digital transformation efforts, with the last five years dedicated to delivering
cloud solutions. He is currently working on privacy challenges as a privacy solutions engineer at Google.
Having received an electronics engineering degree from Universidad Simén Bolivar, an MBA from
Universidad Carlos III de Madrid, and a Master’s degree in telematics engineering from Universidad
de Vigo, he is passionate about scaling solutions globally using cloud technology while working within
the constantly evolving privacy landscape.

Id like to thank my family for being understanding of the time and commitment it takes to be on top
of all the technology changes we are experiencing every day. This sector involves constant learning and
I'm grateful for their acceptance and encouragement. I've also been lucky enough to work with great
colleagues, like Hector—their support has made the experience so rewarding and immensely fulfilling.

Priyanka Vergadia is an accomplished author and public speaker specializing in cloud technology. As
a staff developer advocate at Google Cloud, she helps companies solve complex business challenges
using cloud computing. Priyanka combines art and technology to make cloud computing approachable
through engaging visual stories. She has authored a unique cloud book (Visualizing Google Cloud)
and created popular content, including videos, comics, and blog posts. Her work has helped many
cloud enthusiasts get started, learn the fundamentals, and achieve cloud certifications. Find her on
the YouTube channel and at thecloudgirl.dev.

Table of Contents

Preface Xvii

Part 1: Foundations of Developing for

Google Cloud

Choosing Google Cloud 3

My story as a developer 3 Introducing Google Cloud 14

Project management, Agile, Why should you choose

DevOps, and SRE 8 Google Cloud? 17

Introducing Digital Transformation 11 ~ Summary 19

Why should you run your code Further reading 19

on the cloud? 13

Modern Software Development in Google Cloud 21

What does a developer do? 21 Unclear priorities, accountability,

The risks of traditional and O?merShip =

software development 22 Securityapproach 26
Lost source code 26

Software bugs 23

Slow development 23 How modern software

Resource exhaustion 24 development mitigates risks 26

Lack of resiliency and fault tolerance 24 Software bugs 26

Failing to estimate usage patterns 24 Resource exhaustion and slow development 27

Lack of proper monitoring and Lack of resiliency and fault tolerance 28

risk management 25 Failure to estimate usage patterns 28

Table of Contents

Lack of proper monitoring and Google Cloud toolbox for developers 31
risk management 28 Migration and development paths to
Unclear priorities, accountability, run your code on Google Cloud 33
and ownership 28 . . .
Migration checklist 34
Security approach 29 .
Migrate or refactor? 35
The benefits of implementin . .
P 8 Managing hybrid and
modern software development . .
on Gooele Cloud 29 multi-cloud environments
& with Anthos 36
Built for agility, elasticity, and reliability 29
. Summary 38
Security at the core 31 .
Built for developers 31 Further reading 39
Starting to Develop on Google Cloud 41
The first steps with the Best practices for logging 55
Google Cloud console 41 Monitoring the execution
Introducing Cloud Shell 43 of your code 56
Writing code for Google Cloud Introducing observability 56
uSing Cloud Shell Editor 44 Gathering information about your services 57
Taki look at the interf: 46 . .
g g fookdl fhe mferiace Troubleshooting by debugging,
Showing the built-in terminal 48 . X
_ . tracing, and profiling your code 59
Uploading and downloading files 48 . .
Editing and writing code 49 Appendli(- tleStlclllg your code
Version control 49 on Google Clou 61
Cloud Code support 50 Types of tests 61
Moving your code to a different IDE 51 Recommendations and best practices
for testing your code 63
Writing code for Google Cloud S
using VS Code 51 ummary 64
Installing the plugin 52 Further reading 64
Setting up Cloud Logging 53

Table of Contents Xi

Part 2: Basic Google Cloud Services
for Developers

4

Running Serverless Code on Google Cloud - Part 1 67
Technical requirements 67 Introducing App Engine 91
Introducing serverless architectures 68 ~ APP Engine environment types 92

. . li ies in App Engi 4
Using Cloud Functions to run Scaling strategies in App Engine ?

our code 68 Using App Engine in

¥ .) microservice architectures 95
Introducing Cloud Functions 69 Configuring App Engine services 9%
Running code using service accounts 72 - . .

.)) Writing, deploying, and running
Writing, deploying, and running code with App Engine 9%
4 clolud function) 73 Debugging in App Engine 101
Testing a cloud function 8 How much does it cost to run your code
Deploying a cloud function 79 on App Engine? 101
Debugging a cloud function 88 Tips and tricks for running your code on
Tips and tricks for running your code App Engine 102
using Cloud Functions 89
How much does it cost to run a cloud function? 90 Summary 102

Further readin 103

Using App Engine to run your code 91 8
Running Serverless Code on Google Cloud - Part 2 105
Using Cloud Run to run your code 105 Tips and tricks for running your
Introducing Cloud Run 105 code on Cloud Run 114
Basic concepts of Cloud Run 107 Choosing the best serverless
The two different execution environments option for each use case 116
to choose from 109 Summary 117

Writing and running code using Cloud Run 110

Debugging in Cloud Run 113 Further reading 118

How much does it cost to run your code
on Cloud Run? 113

Xii

Table of Contents

6

Running Containerized Applications with

Google Kubernetes Engine 119
Introducing Google Storage in GKE 126
Kubernetes Engine 120 Networking in GKE 126
Deep diving into GKE - key Security in GKE 127
concepts and best practices 120 Deploying applications on GKE 128
GKE cluster architecture 120 Scaling an app in GKE 129
Advanced cluster management features 122 Monitoring GKE applications 131
GKE operation modes 122 Comparing GKE and Cloud Run -
Cluster types based on availability 123 when to use which 132
Node pools and node taints for GKE hands-on example 133
easier management 124 S 147
Best practices for cost efficiency in GKE 126 ummary
Further reading 148
Managing the Hybrid Cloud with Anthos 149
The pitfalls of choosing Unified Ul 158
a cloud provider 149 Making hybrid cloud simple with
Introducing hybrid cloud computing 151 Cloud Run for Anthos 159
. Third-party application marketplace 159
Anthos, the hybrld cloud Anthos usage and pricing options 160
management platform 152
C . . Anthos hands-on example 161
omputing environment 153
Simplified management using fleets 154 Running our example on Microsoft Azure 172
Service Mesh for microservice architectures 154 Cleaning up 184
Networking in Anthos 155 Summary 184
Centralized configuration management 157 Further reading 184
Securing containerized workloads 157
Binary Authorization for a secure
software supply chain 157
Consolidated logging and monitoring 158

Table of Contents

Part 3: Extending Your Code - Using Google
Cloud Services and Public APIs

Making the Best of Google Cloud Networking 187
Introducing Google Cloud Basic Google Cloud
networking 188 networking services 194
Understanding regions and zones 189 Cloud DNS 194
Choosing the best region and zone 190 Cloud Armor 197
. Cloud CDN 199
Connecting to our cloud resources 192
VPC networks 192 Network Service Tiers 201
Network connectivity products 193 Sample architecture 202
Summary 204
Further reading 204
Time-Saving Google Cloud Services 207
Cloud Storage for object storage Cloud Scheduler for running
and retrieval 208 jobs at the right time 216
Introducing Cloud Storage 208 A hands-on exercise 217
Bucket locations and storage classes 209 Reading the list of cities 219
Cloud Tasks for asynchronous Getting weather information for each city 220
task execution 210 Storing weather information in
. . a central location 222
Firestore in Datastore mode for Undatine th 0 b .
. atin € weather we age
high-performance NoSQL storage 212 L P
The end-to-end workflow for our
Cloud Workflows for weather solution 224
service orchestration 213 Updating our web page every 30 minutes 227
Pub/Sub for inter-service messaging 214 What's next? 228
Secr.et. Manager for storing Summary 228
sensitive data 215 .
Further reading 229

Xiv

Table of Contents

Extending Applications with Google Cloud Machine Learning APIs 231

Unstructured versus structured data 232 Cloud Video Intelligence 253
Speech-to-Text 233 Hands-on exercise 259
Cloud Translation 235 What's next 264
Cloud Natural Language 237 Summary 264
Cloud Vision 244 Further reading 265
Part 4: Connecting the Dots -Building Hybrid
Cloud Solutions That Can Run Anywhere

Architecture Patterns for Hybrid and Multi-Cloud Solutions 269
Defining hybrid and Analytics hybrid or multi-cloud 276
multi-cloud solutions 270 Edge Hybrid 277
Why hybrid and multi-cloud? 271 Redundant architecture patterns 278
Best practices for hybrid and Environment hybrid 278
multi-cloud architectures 272 Business continuity hybrid or multi-cloud 279
Types of architecture patterns 273 Cloud bursting 281
Distributed architecture patterns 274 Summary 282
Tiered Hybrid 274 Further reading 283
Partitioned multi-cloud 275

Practical Use Cases of Google Cloud in Real-World Scenarios 285
Invoice management — Designing the new architecture 289
deconstructing the monolith 285 Hybrid and multi-cloud options 291
Specifications 286 Highway toll system —

Analysis and opportunities 286 centralizing and automating

Approaching the migration 288 a distributed scenario 292

Table of Contents

Specifications 292 Specifications 299
Analysis and opportunities 293 Analysis and opportunities 299
Designing the new architecture 293 Designing the new architecture 300
Making the most of our data 297 Hybrid and multi-cloud options 302
Hybrid and multi-cloud options 297 Summary 303
Fashion Victims - using the cloud Further reading 303
as an extension of our business 298

Migration Pitfalls, Best Practices, and Useful Tips 305
Common pitfalls while moving Avoid migrate and delete 313
to the cloud 305 Checkregulations and compliance

Management not on board 306 before moving ahead 313
Unclear strategy and poorly defined Prepare a migration toolkit in advance 314
migration roadmap 306 Try to simplify, that’s what the cloud is about 315
Unmanaged expectations regarding Analyze and prioritize accordingly 316
benefits and costs 307 Measure, analyze, optimize,

Too disruptive or too conservative 308 and prove success 316
Not knowing your infrastructure and Connectivity and latency can make

services well enough 309 a huge difference 317
Migrating to the cloud is just moving Build once, deploy anywhere,

infrastructure 309 and as many times as required 318
Being too careless with your data 310 Summary 319
Making migration waves too big or toolong 311 Further reading 319
Unbalanced latency, complexity, and cost 312

Best practices for bringing

your code to Google Cloud 312

Index 321
Other Books You May Enjoy 338

XV

Preface

Public cloud providers offer unlimited resources and a pay-per-use model, which opens the way to
a new era of programming, no longer restricted by the lack of resources or the use of data centers
located far away from customers.

Google decided to offer its internal technology to public users in 2008, and that’s how Google Cloud
was born. This meant universal access to massive processing and computing resources, together with a
complete set of tools and services exposed using public APIs. This allows modern developers to easily
extend their applications to benefit from the latest computing technologies and services, from modern
infrastructure components to machine learning powered text, image, audio, and video analysis APIs.

I have written this book with a clear purpose in mind: to make it as easy as possible for developers
to start writing, running, profiling, and troubleshooting their code in Google Cloud. But creating
applications that run partially or totally in the cloud comes with its own list of challenges.

This book explains the pillars of digital transformation and how software development and project
management have evolved in the last few years. The portfolio of services offered by Google Cloud has
been constantly updated to remain aligned with the best practices of the industry and has become
an invaluable tool for fast cloud application and service development, deployment, and migration.

While cloud computing is a trending topic, many organizations do not like to put all their eggs in the
same basket. That is why this book also covers distinctive design patterns that combine on-premises
and cloud computing resources to create hybrid and multi-cloud applications and services, making
the most of each environment while diversifying the computing strategy.

This book also covers the most important parts of a migration to the cloud, from the initial questions
to the long-term thinking process that will bring you closer to succeeding. A lot of real-world examples
are included, together with lots of best practices and tips.

I have authored the book that I would have loved to have when I started my career, and I hope that it
will be useful and will help you succeed. Thank you for reading it!

Who this book is for

This book has been written by a developer and is targeted at other developers and roles where writing
code to run on Google Cloud is a requirement: cloud solution architects, engineers, and IT developers
willing to bring their code to Google Cloud or start building it from scratch. Entrepreneurs in early-
stage start-ups and IT professionals bringing their legacy servers and processes to Google Cloud will
also benefit from this book.

Xviii

Preface

What this book covers

Chapter 1, Choosing Google Cloud, begins with my own story as a developer and continues to explain
how software development has evolved over the years. This chapter also covers the basics of digital
transformation and why you should run your code in a public provider in general and on Google
Cloud in particular.

Chapter 2, Modern Software Development in Google Cloud, begins by exploring the risks of traditional
software development and how modern techniques mitigate these risks. The next part of the chapter
covers how Google Cloud provides a set of tools and products that can be used to implement the
mentioned modern techniques. The last part covers the different paths to migrate and write code that
runs on Google Cloud.

Chapter 3, Starting to Develop on Google Cloud, starts by introducing the Google Cloud web console
and then covers all the tools that can be used during the different phases of software development:
Cloud Shell and its companion editor for writing code; it also mentions how to integrate Cloud Code in
alternative integrated development environments (IDEs) such as Visual Studio Code, Cloud Logging
and Cloud Monitoring for observability, and Cloud Trace and Cloud Profiler for troubleshooting.

Chapter 4, Running Serverless Code on Google Cloud - Part 1, covers the first two options for running
serverless code on Google Cloud: Cloud Functions and App Engine, including how they work, what
their requirements are, and how much they cost. The chapter also uses an example to show how we
can use both options to run, test, and troubleshoot our code.

Chapter 5, Running Serverless Code on Google Cloud - Part 2, talks about Cloud Run, the third option
available to run serverless code on Google Cloud, and explains the differences between the two
environments that can be used. The example from the previous chapter is also implemented using
containers, also explaining how to debug our code and how to estimate how much this option costs.
The last part of the chapter is used to compare the three available options for serverless code, including
some tricks to help you make the best choice.

Chapter 6, Running Containerized Applications with Google Kubernetes Engine, starts with an
introduction to Google Kubernetes Engine (GKE), deep diving into the key topics, such as cluster
and fleet management, security, monitoring, and cost optimization. The similarities and differences
between GKE and Cloud Run are also explained, and tips are provided to help you decide when to
use them. A hands-on example where a web application is containerized is also included.

Chapter 7, Managing the Hybrid Cloud with Anthos, starts by enumerating the key points to consider
when choosing a cloud provider and how being able to work with different environments and providers
simultaneously can be beneficial. Anthos is then introduced as a platform to easily manage hybrid and
multi-cloud environments while providing unified management, security, and observability capabilities.
After deep diving into Anthos components, concepts, and features, a hands-on example is included
that can be deployed to either Google Cloud or Azure to better understand the benefits of Anthos.

Preface

Chapter 8, Making the Best of Google Cloud Networking, begins with a brief introduction to networking
in Google Cloud, including how regions and zones work and how we can connect to our cloud
resources. Next, some of the most important networking services available in Google Cloud are
covered, including Cloud DNS, Load Balancing, Cloud Armor, and Cloud CDN. Finally, the two
different Network Service Tiers are explained, and a sample architecture is used to showcase many of
the network services and products discussed in this chapter.

Chapter 9, Time-Saving Google Cloud Services, this chapter covers some of the basic Google Cloud
services that we can use to simplify our development process and our migrations to the cloud, including
Cloud Storage to store our files, Cloud Tasks as a managed service for asynchronous task execution,
Firestore in Datastore as a NoSQL database, Cloud Workflows to create end-to-end solutions, Pub/
Sub for inter-component communication, Secret Manager to store our most sensitive data, and Cloud
Scheduler to run our tasks and workflows exactly when we want. Finally, a practical exercise is included
that combines most of these services.

Chapter 10, Extending Applications with Google Cloud Machine Learning APIs, explains how we can
use Google’s Al services and APIs to easily improve our own code. First, the differences between
unstructured and structured data are explained, and then speech-to-text is covered as an example.
Then, Cloud Translation is presented as a way to obtain final text files in the same language, and
Cloud Natural Language is proposed as an interesting option to analyze these text files. In the next
section, Cloud Vision and Cloud Video Intelligence are also presented as an alternative to help us
understand the content of images and videos. Finally, a hands-on exercise is used to combine some
of the mentioned services.

Chapter 11, Architecture Patterns for Hybrid and Multi-Cloud Solutions, starts by explaining the
differences between hybrid and multi-cloud solutions and then justifies why these architectures
make sense. Next, a list of some of the best practices to use when designing these kinds of solutions is
provided. Then, hybrid and multi-cloud architecture patterns are divided into two different categories,
and each of the design patterns is explained, including details such as the recommended network
topology to use in each case.

Chapter 12, Practical Use Cases of Google Cloud in Real-World Scenarios, this chapter describes three
very different scenarios and goes through the process of deciding which design patterns should be
used to modernize and migrate each of them to Google Cloud. The key areas where we should focus
our efforts are identified, together with the key decisions we need to take and the right sequence of
actions to complete for these migrations to succeed.

Chapter 13, Migration Pitfalls, Best Practices, and Useful Tips, starts by identifying the most common
pitfalls that happen while we move or modernize our applications to Google Cloud. Then, a list of
best practices to bring our code to Google Cloud is discussed. Tips are included to help you overcome
obstacles, handle delicate situations, which are quite usual in this kind of migration, and mitigate the
complexity of this kind of process.

Xix

XX

Preface

To get the most out of this book

You should understand the basics of writing, deploying, and running code. Basic knowledge of cloud
services would be beneficial too, but a quick introduction is included for those who may be lacking it.

You will also need to have some familiarization with the Google Cloud web console and know how
to use a Linux command shell. Also, since most of the examples are written in Python, knowing this
programming language will make things much easier.

Software/hardware covered in the book | Operating system requirements

Python 3.x Linux

Bash shell Linux

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Google-Cloud-for-Developers. If there’s an update to the code, it
will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https: //
github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/d4IEw.

https://github.com/PacktPublishing/Google-Cloud-for-Developers
https://github.com/PacktPublishing/Google-Cloud-for-Developers
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/d4IEw

Preface

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Now we
are ready for testing, and the four files have been copied to the same working directory: app . yaml,
favicon.ico,main.py, and requirements.txt’”

A block of code is set as follows:

DEFAULT TEMPLATE = "english.html"
@app.route ('/")
def get () :

template = request.args.get ('template', DEFAULT TEMPLATE)
name = request.args.get ('name', None)

company = request.args.get ('company', None)

resume_html = return resume (template, name, company)

return resume_ html

This is only used when running locally. When running live,
gunicorn runs the application.
if name == ' main ':

app.run(host='127.0.0.1"', port=8080, debug=True)
Any command-line input or output is written as follows:
/home/<user>/.local/bin/gunicorn -b :8080 main:app &

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “The Testing tab can be useful for fast
tests since it will help us quickly build a payload and trigger our Cloud Function, so we can then
switch back to the Logs tab and check that everything works as expected”

Tips or important notes
Appear like this.

XXi

XXii Preface

Share Your Thoughts

Once you've read Google Cloud for Developers, we'd love to hear your thoughts! Please click here to
go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1-837-63074-7
https://packt.link/r/1-837-63074-7

Preface

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don't worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837630745

2. Submit your proof of purchase

3. That’s it! We'll send your free PDF and other benefits to your email directly

xxiii

https://packt.link/free-ebook/9781837630745

Part 1:
Foundations of Developing
for Google Cloud

Public cloud providers have revolutionized software development, making resource restrictions and
costly maintenance concepts of the past. Let’s use this part of the book to discuss what these changes
are, what they mean for an organization nowadays, and how corporate culture needs to evolve to
embrace these changes.

We will also use this part to introduce Google Cloud as a platform that can help your organization
implement all the new trends in software development, with a complete toolkit that will make writing,
testing, deploying, and troubleshooting your code a much more enjoyable experience.

This part contains the following chapters:
o Chapter 1, Choosing Google Cloud

o Chapter 2, Modern Software Development in Google Cloud
o Chapter 3, Starting to Develop on Google Cloud

1
Choosing Google Cloud

I have written this book with a clear purpose in mind: to make it as easy as possible for developers
to start writing, running, profiling, and troubleshooting their code in Google Cloud. Indeed, I'm a
developer too, and I would love to share my story so I can better explain why I think, first, that you
should be writing code on the cloud and, second, why, in my opinion, Google Cloud is the best option
to do so nowadays.

We'll cover the following main topics in this chapter:

My story as a developer

Project management, Agile, DevOps, and SRE
Introducing Digital Transformation

Why should you run your code on the cloud?
Introducing Google Cloud

Why should you choose Google Cloud?

My story as a developer

I got my first computer in 1987 as a gift from my parents. I must admit that I chose an Amstrad CPC
464 because it came bundled with a few cassette tapes with games:

4

Choosing Google Cloud

BASIC 1.0
iﬂl'

Figure 1.1 — Amstrad CPC 464 (author: Bill Bertram, source: https://en.wikipedia.
org/wiki/Amstrad CPC#/media/File:Amstrad CPC464.3jpQ)

I used to play some of those games during my initial days with the computer, but they were unfortunately
quite boring and primitive. One of them was called Animal, Vegetal, Mineral and it especially caught
my attention. It was a very simple text game that tried to guess any animal, plant, or mineral that you
could think of as soon as possible, by asking questions such as is it a vegetable?, is it green?, and is it
a lettuce?

I have always been a very curious person and started to think how that game could work, and mentally
pictured some kind of tree structure organizing all the information about potential answers so that
the answers provided to the questions could help the code decide which leaf of that tree to traverse.
As you can see, my mind was already a good fit for data structures, wasn't it?

The CPC 464 came with a small book, which was one of the reasons why I became a developer (T'll
leave the other story about reverse engineering the protection scheme of a Lemmings game for another
time). The title of the book in English was called Basic Reference Manual for Programmers. I loved
reading at that age, indeed the worst punishment I could get was not being allowed to read at night,
but this manual surprised and entertained me even more than the sci-fi classics I was used to reading
because it opened the door to learning and fostered my digital creativity at the same time:

https://en.wikipedia.org/wiki/Amstrad_CPC#/media/File:Amstrad_CPC464.jpg
https://en.wikipedia.org/wiki/Amstrad_CPC#/media/File:Amstrad_CPC464.jpg

My story as a developer

Figure 1.2 - CPC-464 Basic Reference Manual for Programmers

One step at a time, I was able to learn how to code in Basic on my own and implemented an even
more primitive version of the game I mentioned earlier. But much more important than that, I loved
the experience and decided at quite a young age that computers in general, and programming, in
particular, would both be core parts of any professional career I would choose in the future.

Programming at that time was like writing with a pen on a blank piece of paper but using the bundled
and primitive Line Editor application instead. In 1985, I just had that Basic manual to learn and get
inspiration from. Forget about autocompletion, online help... and, oh my God, there was no Stack
Overflow! Just take a look:

6

Choosing Google Cloud

Amstyrad 128K Microcomputer (u3)d

21985 Amstrad Consumexr Electronics Elc
and Locomotive Software Ltd.

a
+ STR¥CLED

B
Re
[
18
15
18
28
|

Figure 1.3 — Amstrad screen with Basic code

In the following years of my professional career, I had the chance to start working with Unix and
Linux systems and started using vi and emacs as code editors for shell and Perl scripts, together with
code written in C. I have always felt quite comfortable with the console, even for editing code, but I
have to admit that graphical and integrated interfaces were game-changers.

A few years later, I moved to a pharma company where the presence of Windows systems was much
more frequent. That meant meeting Microsoft’s Visual Studio UT for the first time, and I must admit
it was a very pleasant surprise. Coding in Visual Basic felt different when compared with my good old
Amstrad CPC and exploring interface design was a very interesting experience. I also started using
Notepad++ for my PHP, Perl, and bash scripts. It was great to see how all these applications added
new features year after year.

But I still realized I had to create everything from scratch whenever I started working on a new project,
and the time required to develop an application or service was just too long.

Fortunately, nowadays, there are a lot of different integrated development environments (IDEs)
to choose from, with amazing features such as code completion, code control integration, online
references, and samples, which make writing code a much more enjoyable experience. I love the idea
of using web-based IDEs, which in my opinion make the experience comfortable. Being able to open
a browser and have access to an IDE full of options is just amazing!

My story as a developer

Visual Studio Code (https://code.visualstudio.com/) is one example that I use quite
often when I develop applications for Google Cloud. Just compare the following screenshot with the
previous one from the Amstrad CPC...

 main.py - google_cloud_for_developers - Visual Studio Code

ion View Go Run Terminal Help

cope demo (FEqUEst)

function_var = light con

OUTLINE
TIMELINE
@0A2 Ln4, Col23(7 cted) Spaces:4 UTF-8 LF Python 3.10.664-bit & [

Figure 1.4 - Interface of Visual Studio Code

And we are getting closer and closer to code being automatically written by just providing
a summary of what the piece of code should do (https://www.forbes.com/sites/
janakirammsv/2022/03/14/5-ai-tools-that-can-generate-code-to-help-
programmers/).

However, what I love about developing for the cloud is how easy it is to integrate external services
that provide advanced features, or how accessible architecture patterns, reference implementations,
or sample code are. Now, I can put together pieces of code during a single day of work that can do
much more than what I could achieve years ago working for 2 weeks.

During my first few months at Google, I worked on a solution that analyzed display ads and let
advertisers know what elements worked better. Knowing whether ads with a palm tree worked better
than those with a swimming pool, or whether an image of a couple with a baby got more clicks than
one with a group of friends was cool.

And implementing this application was reasonably easy thanks to what Google calls the Cloud Vision
API, an Al-based service able to detect objects, text, and colors on an image. Imagine how long it
would take me to develop this system on my own. I will admit it: I would never have been able to do
it. But now, it just takes a few minutes to integrate the API of this service with my code.

https://code.visualstudio.com/
https://www.forbes.com/sites/janakirammsv/2022/03/14/5-ai-tools-that-can-generate-code-to-help-programmers/
https://www.forbes.com/sites/janakirammsv/2022/03/14/5-ai-tools-that-can-generate-code-to-help-programmers/
https://www.forbes.com/sites/janakirammsv/2022/03/14/5-ai-tools-that-can-generate-code-to-help-programmers/

Choosing Google Cloud

And the same happens with other key services, such as storage, messaging queues, databases, and many
others that we will cover later in this book. I can say loud and clear that Google Cloud has changed the
way I understand and conceive software development. Not only can I develop applications much faster
and much more securely but I can also deploy them much more comfortably and make them available
to any amount of users worldwide. And all of this can be done from a browser running on my laptop.

Now, I can focus my time on innovative applications and use different components, which make use
of cutting-edge technologies, to develop and deploy these applications in record time. And this is
what Google Cloud can do for you, too.

So, long story short, after spending endless days fixing the effects of bad initial designs and upgrading
hardware, operating systems, and applications, I realized that it would be much better if I could
design and build resilient and distributed applications while reusing cutting-edge components and
services, which would scale great and deploy faster, and try to decouple them from the hardware and
the operating system.

But when we talk about developing, it’s not just writing code but also getting to identify what problem
or challenge needs to be solved and decide how we can provide a solution that works. And doing all
of this properly is the real challenge.

In my case, I was lucky because, just before joining Google, my employer happened to start exploring
ways to make projects shorter and more successful. That's how I became familiarized and started to
use project management, Agile, DevOps, and, once I joined Google, Site Reliability Engineering
(SRE) practices.

Let’s discuss what these are and how they can help developers.

Project management, Agile, DevOps, and SRE

Organizations put a lot of effort into minimizing the waste of time and money in projects since both
are frequently scarce. Being able to anticipate bottlenecks and blockers can help reduce the chances
for a project to fail.

And it is here that project managers become the key players. Among other tasks, they are responsible
for identifying stakeholders, dividing the work into tasks, assigning times to each activity, and following
up to ensure that everything is completed on time.

Traditional project management used the so-called waterfall methodology, which divides a project
into different steps that are completed in sequential order one after another: requirement gathering,
design, implementation, testing, and maintenance.

However, there can be projects that may run for much longer than planned due to different reasons
- for example, wrong or incomplete initial assessments leading to undetected dependencies, or never-
ending tasks that block others.

Project management, Agile, DevOps, and SRE

Also, projects managed using waterfall methodologies are more rigid in terms of features. As these
are defined in the initial phases, any changes due to unexpected reasons, such as a feature not being
needed anymore or becoming obsolete, could derail the project.

Project management has evolved and one of the most common practices to reduce the risk of long
delays is to split the project into different phases of incremental complexity, also known as sprints,
while following an iterative approach instead of a linear one. These practices were introduced in more
recent methodologies, such as Agile, which aim to speed up the progress of projects and offer tangible
results as soon as possible.

In Agile and similar methodologies, a Minimum Viable Product (MVP) can be provided after
completing just one or a few of the initial code sprints; then, the team will work on improving it using
an iterative approach that adds new features and capabilities. It fixes any found bugs in each new sprint
until the project meets all the requirements and is then considered to be finished.

The following diagram summarizes the different phases for each sprint:

AGILE

Methodology

Figure 1.5 - Agile development phases

Agile is a project management methodology aimed at getting an MVP ready earlier, but it needs a
compatible process on the development side to ensure agility. And here is where DevOps comes to
the rescue.

DevOps is a set of practices that aims to increase the software delivery velocity, improve service
reliability, and build shared ownership among software stakeholders. Many organizations use DevOps
to complement Agile project management methodologies and reduce the lead time - that is, how long
it takes for a team to go from committing code to having code successfully deployed and running
in production:

10

Choosing Google Cloud

Release/
Deploy

Create/

Implement Configure

Integrate Monitor

Figure 1.6 — DevOps development cycle (source: https: //nub8.net /wp-content/
uploads/2019/12/Nub8-What-is-Devops-1-min.png)

By implementing DevOps, you can improve a lot of your development metrics by increasing the speed
of your deployments, reducing the number of errors in these deployments, and building security
from the start.

These methodologies are very interesting for developers, but agility can only be achieved if the underlying
infrastructure components are also compatible with fast deployments. For example, running short
and fast sprints will not make sense at all in a platform where virtual machines are provided no earlier
than 3 days after being requested and databases after 5 (and I have seen that happen, I promise).

An environment that can help you speed up all your processes is the best option, not only for developers
but for everyone involved in IT projects. As we'll see shortly, the cloud is an extremely good option
if you use Agile methodologies, are a big fan of code sprints, or want to implement DevOps in
your organization.

And if DevOps helps automate deployments, SRE can also help in a later stage by automating all the
manual tasks required to keep your environments up and running, such as those included as part of
change management or incident response processes. And guess what - the cloud is a great place to
implement SRE practices, too! To learn more about SRE, visit https://sre.google/.

If you are new to concepts such as Agile or DevOps, you may still be wasting a lot of your precious
time as a developer doing the wrong kind of things. You should be spending most of your hours on
innovating, thus contributing to the Digital Transformation of your team and the whole organization.
We'll use the next section to explain what Digital Transformation means and why it is really important
and should be appropriately prioritized if it hasn’t been already.

https://nub8.net/wp-content/uploads/2019/12/Nub8-What-is-Devops-1-min.png
https://nub8.net/wp-content/uploads/2019/12/Nub8-What-is-Devops-1-min.png
https://sre.google/

Introducing Digital Transformation

Introducing Digital Transformation

I can imagine that many of you, while reading the first part of this introductory chapter, will have
remembered your very own unpleasant experiences of working with infrastructure, applications,
and architectures that started to grow and run out of resources due to a limited physical or virtual
on-premises environment, a monolithic or overcomplicated initial design that made the application
or service die of success after growing much more than expected and that you had to fix for good,
or data split among so many databases in the organization that a minor update in the schema of a
supposedly rarely used table broke most of the corporate applications.

The situations I just pictured are quite common among organizations that are still using an important
amount of their IT time to decide where their infrastructure should run. And that’s probably because
they haven’t completed their Digital Transformation yet. Even if you work for a start-up in its first
stages, you may still be asking yourself these kinds of questions today. If that is the case, you should
embrace the practices of digital transformation starting today.

The reason is that all these sadly common situations are incompatible with innovation. And IT
professionals in organizations where innovation is constantly postponed because there are other higher
priorities will become either outdated or burnt out, if not both, over time. If we combine this golden
jail scenario with the burden of system and infrastructure migrations, there is a lot of precious time
wasted on tasks that developers and engineers hate, and that don’t add any value to the organization.

Let’s say it loud and clear: if you want to innovate and if you want to be disruptive, you should focus your
efforts on transforming or creating an organization where everyone can drive innovation. Otherwise,
you will be wasting precious time and resources focusing on the wrong tasks.

Rob Enslin, former President of Global Customer Operations for Google Cloud, mentioned a few areas
to focus on during a digital transformation process in a blog post from the Google Cloud website:
https://cloud.google.com/blog/topics/inside-google-cloud/innovation-
in-the-era-of-the-transformation-cloud. This list is, in my opinion, a very good
summary of four of the main pillars of digital transformation, where organizations should put their
efforts to free time and resources and be able to innovate more.

Let’s comment on each of these pillars:

o Accelerate the transformation, while also maintaining the freedom to adapt to market needs. This is
a very important point because while the digital transformation should happen in a reasonable
amount of time, the process itself needs to be flexible too; otherwise, it may fail miserably if
either the market or any other important external variable suddenly changes without prior
notice. For example, during the pandemic, many companies were forced to speed up their
digital transformation, and those who were ready to provide remote working capabilities for
their employees earlier suffered less from the effects of the lack of productivity during those
months that all of us had to spend working from home.

1

https://cloud.google.com/blog/topics/inside-google-cloud/innovation-in-the-era-of-the-transformation-cloud
https://cloud.google.com/blog/topics/inside-google-cloud/innovation-in-the-era-of-the-transformation-cloud

12

Choosing Google Cloud

o Make every employee, from data scientists to sales associates, smarter with real-time data to
make the best decisions. First-party data is power; however, it is often split into silos across
an organization. A digital transformation should break down these silos by centralizing,
deduplicating, and consolidating all data sources so that all the information is available to all
members of the organization together with real-time insights that each department can use to
make their own informed strategical decisions.

o Bring people together and enable them to communicate, collaborate, and share, even when they
cannot meet in person. After the pandemic, it’s even more clear that physical distance should
not be a stopper, and all cultural elements of the organization should be replicable for people
working remotely too so that people can also collaborate and share comfortably when they are
far away from each other. Consider this as flexibility seen from a very specific angle.

o Protect everything that matters to your organization: your people, your customers, your data,
your customer’s data, and each transaction you undertake. Security is more important than ever,
especially now that companies are using the power of technology to provide better services,
and it should be a key element in any modern company transformation plan. Your data is your
treasure and, together with your intellectual property, it might be what differentiates your
organization from the competition. But it is also your responsibility to keep all your data safe,
even more so when it probably contains personal and private information about your customers.

Rob summarizes these four pillars into their corresponding objectives: application and infrastructure
modernization, data democratization, people connections, and trusted transactions. Any organization
able to meet these objectives will have much more time and resources to dedicate to innovation.

If you read the previous paragraph carefully, you will realize that we developers are the key players in
each of the four pillars of Digital Transformation, one way or another. During the digital transformation
of an organization, developers will be working hand in hand with engineers on application and
infrastructure modernization, which should be achieved by simplifying monolithic architectures by
splitting them into elastic microservices. These apps and services will be using data as an input, and
probably also generating data and insights as an output in many of the cases, so they will benefit from
both the data centralization and the democratization mentioned earlier, and code should become
simpler once data is easier to access.

And being connected to the rest of the team will also be important to make sure that our code meets
everyone’s needs. If we work using sprints, we need to be aligned with the rest of the team, even if each
of us is located in a different office, country, or even continent. Finally, security is the key to ensuring
that our apps and services are safe to be used and that our customers trust us more than ever.

Designing a Digital Transformation plan is not easy, and that’s why there are a lot of companies working
to help others succeed on their transformation journey. Some companies can help you design and
execute the plan, but many others have created platforms that can make things much easier.

Some years ago, tech giants had the idea of abstracting the infrastructure up to the point that the
customer wanted, letting organizations focus on what they love to do: architect, write, and run modern

Why should you run your code on the cloud?

applications, centralize their data, make the most out of it, and get people connected, all of it in a
secured platform. And guess what — Google Cloud is one of them.

Why should you run your code on the cloud?

There are a few reasons why I would recommend developers run their code on the cloud.

First of all, let me say once again: if you are spending too much time setting up servers, installing
operating systems, deploying patches, and performing migrations, then you simply deserve better. I've
been there and I can’t put into words how happy I felt after I left it behind. I used to dedicate 20% of
my time (and much longer on specific occasions) to maintaining, troubleshooting, and supporting the
operating system, applications, and database. Since I joined Google, I can use that extra time to learn,
brainstorm innovative solutions with my team, or write better code. I also think that code is poetry
(https://www.smashingmagazine.com/2010/05/the-poetics-of-coding/), so
IMHO, inspiration arrives better when we have more time and less pressure.

Besides, most cloud-based services offer customizable infrastructure components, or at least different
sizes, so you can still have a reasonable degree of control over where your code runs. In summary,
running code on the cloud will provide you with more options and better performance and will allow
you to focus your time on coding, not on other distracting tasks.

Also, a cloud provider has many data centers in different locations across the world. If the start-up or
organization you work for is planning to grow and have customers in more than one market at some
point, a single server or even a few servers in a single location may not be enough to offer decent-
quality service. This is becoming more and more important as real-time services become predominant
and latency has to remain low.

If you can anticipate that you may suffer a potential scaling or latency problem in the future, already
being in the cloud can make things much easier if you need to replicate your architecture in another
continent for local users. Having infrastructure located closer to users can also help you meet legal
requirements, as some countries require data or processes to be located in-country.

And speaking about scaling, the pay-per-use model is reasonably compatible with organizations
growing because you will use more resources as you make more business and generate more revenue.
Besides, most cloud providers will offer bigger discounts as you increase your usage. And if you have
very particular needs, you can use huge clusters for a few minutes or hours and pay a very reasonable
price. Indeed, you can have thousands of servers at your command at a very affordable price, something
that would be prohibitive in an on-premises data center.

If your infrastructure is affected by traffic peaks, the cloud is also your place to go. If you have a lot
of visitors on Sundays, your website crashes during Black Friday, or your app is usually down during
the Christmas holiday season because of seasonality peaks, you may have decided not to increase the
resources available for your application or website because, during most of the year, it can handle the
average demand. With a cloud provider, you can scale up your application automatically when there

13

https://www.smashingmagazine.com/2010/05/the-poetics-of-coding/

14

Choosing Google Cloud

is a peak and you can do the contrary too - that is, you can scale it down while your customers are
sleeping so that you can reduce your costs. You can also schedule some tasks to run when the data center
has less workload and save more money. We will discuss all of these opportunities later in this book.

What if you want to implement Agile and DevOps practices? Cloud providers have very fast provisioning
times, so you can deploy complex applications and the infrastructure associated with them, as it is no
longer static, in a matter of minutes. And that makes a huge difference, which allows you to use that extra
time for better testing or even to do more iterations, which in the end will translate into better code.

And regarding the everyday life of a developer, if you are worried because you may not be able to keep
on using your favorite IDE or fear that latency while writing code could be a problem, or that processes
might be more complicated, just give it a try — you will be delighted. Hosting your repository in the
cloud should be easy and you will not notice the difference. And you can connect from anywhere,
even while commuting back home if you realize that you forgot to submit a very important CL before
leaving the office.

I hope that you have been convinced that running your code on the cloud is a great idea. Now, let me
show you why I think that Google Cloud is the best cloud provider to do so.

Introducing Google Cloud

Cloud providers offer different infrastructure components and managed services on demand using
a pay-per-use model so that you don’t have to worry about migrations, updates, patches, and similar
time thieves.

Google’s specific vision is to run their customer’s code (and any other stuff they want to bring over
to the cloud) on the same infrastructure used by its well-known products with billions of users, such
as Google Search, Gmail, Google Drive, and YouTube. Using these same services is a guarantee of
scalability and reliability. And this is what Google calls Google Cloud, a public cloud provider that
many companies choose for their digital transformation journey.

If you are new to Google Cloud or are unsure about the number of products it offers, then it’s a
perfect time to visit Google's Developer cheat sheet (https://googlecloudcheatsheet.
withgoogle.com/) so that you can understand the real magnitude of this offering; there are hundreds
of services, organized in different areas, which allow you to accomplish virtually any task on the cloud.
When you load the cheat sheet, you will see all the products, along with their corresponding names
and icons, organized in different areas with different colors. You can scroll down to see the whole list;
putting your mouse cursor over any of the tiles will show a very short description of each product.

A zoomed-out view of the cheat sheet looks like this:

https://googlecloudcheatsheet.withgoogle.com/
https://googlecloudcheatsheet.withgoogle.com/

Introducing Google Cloud

Figure 1.7 - Zoomed-out view of the Google Cloud cheat sheet (source: https://

googlecloudcheatsheet.withgoogle.com/)

If you feel overwhelmed at this point, that’s OK. I do too. This book is not aimed at going through that
whole list, but to guide you on a quick and easy path to get you to write, run, and troubleshoot your
code as easily as possible in Google Cloud. This book will cover those services directly or indirectly
related to code development.

The product and service offerings of Google Cloud cover many different areas. I have selected just a
few of the main services so that you can get a better idea of what I'm talking about:

o Computing resources: Virtual machines running in Google’s Data Centers.

o Serverless platforms: Run your code without having to worry about the hardware or the
operating system, including services such as Cloud Functions or App Engine.

o Containerized applications: You can use either Cloud Run or Kubernetes Engine.

o Databases: These offer all flavors: relational, NoSQL, document, serverless, and memory-based.
They even offer managed instances of MySQL, PostgreSQL, and SQL Server and tools to easily
migrate your database from Oracle, MySQL, and PostgreSQL to Cloud SQL.

« Storage: This is either for files or any kinds of objects and supports many different scenarios
in terms of availability and retention.

o Data analytics: You can do this with a complete set of tools to help you ingest, process, and
analyze all your data.

« Artificial intelligence and machine learning: These help turn your data into insights and
generate models able to make predictions.

o Networking: This offers cloud and hybrid connectivity security solutions, together with load
balancing and content distribution services, among many others.

15

https://googlecloudcheatsheet.withgoogle.com/
https://googlecloudcheatsheet.withgoogle.com/

16

Choosing Google Cloud

Mobile platform: This provides tools to help you make the most out of your mobile applications.

Hybrid and multi-cloud: These options use Anthos to migrate, run, and operate your
applications anywhere.

Migration tools: These make it easier for you to move your stuft from an on-premises
environment or other cloud providers.

But where are the services for developers? I'm a really bad guy and left them out of the previous list
on purpose so that you didn’t skip the rest. These are some of the development-related services that
you can enjoy in Google Cloud, in addition to those already mentioned:

Development tools and services, such as command-line tools and libraries, CloudShell, Cloud
Source Repositories, Tools for PowerShell, Cloud Scheduler for task automation and management,
Cloud Code, and IDE support to write, run and debug Kubernetes applications.

DevOps continuous integration and continuous delivery (CI/CD) tools and services, allowing fast
and safe code deployments with low error rates. Use Cloud Build for CI/CD, Artifact Registry
to store build artifacts and dependencies, Google Cloud Deploy for fully managed purposes,
Google Kubernetes Engine, Tekton for declaring CI/CD pipelines, and Cloud Deployment
Manager to create and manage Google Cloud resources. Operations and monitoring tools and
services are also provided, built to help you once your code is running in production. Log,
Trace, Profile, and Debug can be used to troubleshoot any issue.

A long list of public APIs provides a wide range of advanced features offered using a pay-per-
use model that you can use to modernize your applications very quickly.

Indeed, the Google Cloud website has a page with a list of all the developer tools: https://cloud.
google.com/products/tools.

Combine this a wide variety of managed services with the ability to connect your code to a huge API
platform and ecosystem, allowing you to manage all your Google Cloud products and services. Besides,
some of these Google Cloud APIs provide access to a set of machine learning that’s pre-trained with
advanced capabilities using a pay-per-use model, such as the following:

Vision API: Able to identify objects, texts, colors, and faces in images and videos, and also
flag explicit content

Speech-to-Text: Used to transcribe audio into text (and vice versa) in more than 125 languages
and variants

AutoML: Allows you easily create, train, and productize custom machine learning models,
even if you don’t have any experience

Natural Language AI: Allows you to analyze text, understand its structure and meaning,
extract sentiment, and annotate it

https://cloud.google.com/products/tools
https://cloud.google.com/products/tools

Why should you choose Google Cloud?

o Cloud Translation: This is very useful for translating texts from one language into another

o Dialogflow: This can help you implement chat or voice conversation agents easily

These APIs can also help you simplify and modernize your applications by integrating the corresponding
services to provide advanced capabilities with a few lines of code.

You can find the full list of APIs available in Google Cloud here: https://cloud.google.
com/apis.

Technical documentation and videos are also available to help you solve some of the most common
developer problems and use cases. You can read more about them here: https://cloud.google.
com/docs/get-started/common-developer-use-cases.

Why should you choose Google Cloud?

There are many reasons why I would recommend you choose Google Cloud, not only to run your
code but also to take your organization to the next level, because I picture us, developers, as main
actors in any digital transformation process.

Summarizing all the topics previously covered in this chapter, these are the six key factors I would
consider when choosing a cloud provider, in no particular order:

o Compatibility with Agile practices and app modernization
o Capabilities for data democratization

o People connections

« DProtection and security

o Level of freedom and use of open software

o Cost-effectiveness

Note

Apart from my personal opinion, which I have shared during this chapter, to put together a
more objective list of reasons why you should choose Google Cloud, let’s review each of these
factors and summarize all the information about these topics, all of which can be found on
Google Cloud’s website (https://cloud.google.com/why-google-cloud).

. J

Thinking about app modernization and agility, Google Cloud is the first cloud provider to release
a platform, Anthos (https://cloud.google.com/anthos), that empowers you to quickly
build new apps and modernize existing ones to increase your agility and enjoy all the benefits of the
multi-cloud. Also, the managed Kubernetes service seamlessly allows you to implement DevOps and
SRE practices with cloud-native tools so that you can deploy your code with agility.

17

https://cloud.google.com/apis
https://cloud.google.com/apis
https://cloud.google.com/docs/get-started/common-developer-use-cases
https://cloud.google.com/docs/get-started/common-developer-use-cases
https://cloud.google.com/why-google-cloud
https://cloud.google.com/anthos

18

Choosing Google Cloud

From the data democratization point of view, Google Cloud offers the ability to manage every stage
of the data life cycle, whether running operational transactions, managing analytical applications
across data warehouses and data lakes, or breaking down rich data-driven experiences. Besides, the
key differentiator is that artificial intelligence/machine learning is a core component of the data cloud
solution, which helps organizations not only build improved insights available to all members but
also automate core business processes using data as the core.

Speaking about bringing people together, in Google Cloud, you can integrate video calling, email, chat,
and document collaboration in one place with Google Workspace, which already connects more than
3 billion users. Google Workspace is built with a zero-trust approach and comes with enterprise-grade
access management, data protection, encryption, and endpoint protections built in.

Protection is a key element of digital transformation, and Google Cloud can help you defend your
data and apps against threats and fraudulent activity with the same security technology Google uses.
Google keeps more people safe online than anyone else in the world: billions of users and millions
of websites globally. Google pioneered the zero-trust model at the core of its services and operations
and enables its customers to do the same. Besides, data is encrypted in transit between their facilities
and at rest, ensuring that it can only be accessed by authorized roles and services with audited access
to the encryption keys.

And if freedom is important for your organization, you should take into account that Google Cloud
is the only cloud provider with a clear multi-cloud strategy. In Google Cloud, you can deploy and
run each of your applications wherever you want: on-premises, on Google Cloud, or with other cloud
providers. Google is also one of the largest contributors to the open source ecosystem, working with
the open-source community to develop well-known open-source technologies such as Kubernetes,
then roll these out as managed services in Google Cloud to give users maximum choice and increase
their IT investments’ longevity and survivability.

Another important point is that Google Cloud is open and standards-based and offers best-in-class
integration with open-source standards and APIs, which ensures portability and extensibility to prevent
lock-in, with easy interoperability with existing partner solutions and investments.

From a financial point of view, organizations can see significant savings when building on or migrating
to a cloud-native architecture on Google Cloud. In addition, a reliable platform with 99.99% availability
reduces risk and increases operational efficiency.

In summary, if you choose Google Cloud for your digital transformation, the result will be an
organization and its workers being able to take advantage of all of the benefits of cloud computing
to drive innovation.

Summary

Summary

I hope you are convinced about the benefits of choosing Google Cloud and how it is the best platform
to help your organization simplify its development and infrastructure-related work to put more focus
on innovation by completing your digital transformation, which will help you become much more
competitive in your field.

In the next chapter, I will describe how developers work in legacy environments and highlight the
differences in development workflows once you move to the cloud in general and Google Cloud
in particular.

But before closing this chapter, and especially if you are new to the platform, before your development
journey begins, I would recommend you make sure that someone in your organization takes care
of building a proper Google Cloud Foundation by completing the 10-step checklist at https://
cloud.google.com/docs/enterprise/setup-checklist.

And if you need more details about how to complete these steps, Packt has published an amazing book
about it that I had the pleasure to review, called The Ultimate Guide to Building a Cloud Foundation
(https://www.amazon.com/Ultimate-Guide-Building-Google-Foundation/
dp/1803240857), so that you can start developing with peace of mind, knowing that all the basics
have been taken care of.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

o CPC Wiki page about the Amstrad CPC 464 and other family members (https://www.
cpcwiki.eu/index.php/CPC_old generation).

o The evolution to Integrated Development Environments (IDE) (https : //www . computerworld.
com/article/2468478/the-evolution-to-integrated-development -
environments--ide-.html)

o DeepMind’s AlphaCode Al writes code at a competitive level (https://techcrunch.
com/2022/02/02/deepminds-alphacode-ai-writes-code-at-a-
competitive-level/)

o The transition from Waterfall to Agile (https://chisellabs.com/blog/transition-
from-waterfall-to-agile/)

o Agile Vs. DevOps: What’s the difference? (https://www.guru99.com/agile-vs-
devops.html)

o What is Digital Transformation? (https://cloud.google.com/learn/what-is-
digital-transformation)

o Why Cloud Development Could (Finally) Become the New Standard (https://devspace.
cloud/blog/2019/12/12/cloud-development -new-standard)

19

https://cloud.google.com/docs/enterprise/setup-checklist
https://cloud.google.com/docs/enterprise/setup-checklist
https://www.amazon.com/Ultimate-Guide-Building-Google-Foundation/dp/1803240857
https://www.amazon.com/Ultimate-Guide-Building-Google-Foundation/dp/1803240857
https://www.cpcwiki.eu/index.php/CPC_old_generation
https://www.cpcwiki.eu/index.php/CPC_old_generation
https://www.computerworld.com/article/2468478/the-evolution-to-integrated-development-environments--ide-.html
https://www.computerworld.com/article/2468478/the-evolution-to-integrated-development-environments--ide-.html
https://www.computerworld.com/article/2468478/the-evolution-to-integrated-development-environments--ide-.html
https://techcrunch.com/2022/02/02/deepminds-alphacode-ai-writes-code-at-a-competitive-level/
https://techcrunch.com/2022/02/02/deepminds-alphacode-ai-writes-code-at-a-competitive-level/
https://techcrunch.com/2022/02/02/deepminds-alphacode-ai-writes-code-at-a-competitive-level/
https://chisellabs.com/blog/transition-from-waterfall-to-agile/
https://chisellabs.com/blog/transition-from-waterfall-to-agile/
https://www.guru99.com/agile-vs-devops.html
https://www.guru99.com/agile-vs-devops.html
https://cloud.google.com/learn/what-is-digital-transformation
https://cloud.google.com/learn/what-is-digital-transformation
https://devspace.cloud/blog/2019/12/12/cloud-development-new-standard
https://devspace.cloud/blog/2019/12/12/cloud-development-new-standard

2

Modern Software Development
in Google Cloud

Development workflows have changed a lot in the last decades, as we started to discuss in the first
chapter. In this one, we will set up the basis of what a developer does, so we can also discuss the
potential associated risks and how modern development, especially on Google Cloud, can mitigate
these risks and make the whole development experience much more enjoyable.

We will also introduce the set of tools that Google Cloud provides to help us developers be more
productive. I will describe the different migration and development paths that you can use to get
your code to run on Google Cloud, including how Anthos can be of help if you need to use hybrid or
multi-cloud environments and take software modernization on them to the ultimate level.

We'll cover the following main topics in this chapter:

o What does a developer do?

o The risks of traditional software development

o How modern software development mitigates risks

o The benefits of implementing modern software development on Google Cloud
o Google Cloud toolbox for developers

o Migration and development paths to run your code on Google Cloud

o Managing hybrid and multi-cloud environments with Anthos

What does a developer do?

Answering this question is not easy, since there are many kinds of developers working in different
areas, but let’s try to summarize what they have in common.

22

Modern Software Development in Google Cloud

Regarding skills, traditionally software developers were expected to have good problem-solving skills
and be good both when working individually and when working as part of a team, with elevated
levels of motivation and passion for their job. But what kinds of tasks does a developer take care of?

First, and obvious for sure, developers write or have written code to be run as a part of a script,
application, or service at some point in their careers. They also probably (and hopefully) have written
documentation for those pieces of code, so that others can know either how to extend them or at least
how to use them. Some developers may also work on reviewing or documenting code written by others.

Code written by developers is usually the translation of requirements into an actual application,
solution, module, or service, which could also be part of a project, and the work of a developer will
often also involve tasks related to fixing detected bugs and supporting the users of our software.

Developers often work in teams, which involves some organizational work related to who does what
and ensuring that the work of each of the different members does not interfere with the rest, using
techniques such as code control tools and project management tasks to divide and assign the different
pieces of work to the different members of the team.

While some of you reading this book may be working on developing small applications, or coding for
start-ups in their first stages with not so many users yet, this book will also focus on the big scenarios
because those start-ups you are at will get bigger very soon, and that’s why we will also discuss complex
and big applications that need to be ready to serve millions of users every day.

While this may seem an unnecessary generalization, it will help me to expose much more easily the
potential risks that we may be facing as developers. As I will unceasingly repeat during the whole book,
if you design and build an application that can handle heavy loads from the first iterations, you will
save a lot of time and money when your user base starts to grow, especially if this happens suddenly
or even unexpectedly. Thinking big from the beginning will never hurt a developer, but save a lot of
time, money... and pain.

Picturing these big scenarios, I imagine a team of programmers and engineers working together on
a big project to develop a complex application or service for millions of users. As you can imagine,
there will be different areas of risk in such a scenario. Let’s mention some of them and then discuss
how modern development tries to mitigate them.

The risks of traditional software development

I worked in corporate IT for more than 20 years before I joined Google and dedicated most of my
professional career during that time to developing code aimed at monitoring applications written by
colleagues or sold by third parties.

Having witnessed, and also suffered, a lot of failures and issues during all those years, I will try to
summarize all the potential risks of traditionally developed software that I can think of, in no special order.

The risks of traditional software development

Software bugs

Software bugs are undoubtedly the most frequent risk for developers. The quality of the code that we
write does not entirely depend on our coding skills: a tight deadline, an excessive workload, or bad
communication leading to a poor requirement-gathering phase may be among the varied reasons that
can make it more probable for unexpected issues to be detected during the life cycle of our software,
which we will need to promptly address.

In my opinion, code reviews are one of the most useful and interesting practices that can help reduce
the number of bugs that reach production, while fostering a culture of collaboration and increasing
awareness of what the rest of the team is working on. Integrating code reviews in our development
cycle is vital to let bug detection happen before the software is available to the user.

However, a changing environment, especially sudden scope changes, which are common among
developers and tend to make our lives more difficult, makes it difficult to get rid of bugs. So, it's much
better to prevent as many bugs as possible from reaching production, while also accepting that some
will reach our users undetected.

For this reason, having a proper process ready for the early detection of software bugs, fast mitigation
by writing and testing patches, and quick deployment of the required fixes will help us deal with these
bugs as soon as possible before they cause more harmful effects.

Slow development

When we speak about traditional software development, we are usually referring to monolithic
applications, often written by a small team of people over the years and usually including thousands
of lines of code in a single code base. This scenario will probably include more than one single point
of failure because large code bases make poor-quality hacks more difficult to identify, and these can
make the whole application easily crash if they cause memory leaks, or they can also be exploited by
malicious intruders who detect them after reverse engineering the corresponding binaries.

Updating these kinds of applications is complicated because any changes in the code may affect
multiple functionalities of the software, and the complexity of the source code can make it difficult
to do proper testing.

Once we get the changes approved, we have another situation to deal with: deploying changes in
monolithic applications automatically implies application downtimes when we perform the actual
upgrades. If these upgrades are bundled with long data update operations, the downtimes can
be significant.

23

24

Modern Software Development in Google Cloud

Resource exhaustion

I already mentioned this risk in the first chapter and will also include it in this list, since it is usually
the main reason for our development headaches due to applications not having enough memory
available to run properly.

This risk is usually associated with monolithic applications and infrastructure availability issues,
together with limited technical resources, all of them quite common in legacy environments and
traditional software development processes. Apps developed in this scenario are usually not designed
with built-in resilience and often crash for good when they run out of resources.

Lack of resiliency and fault tolerance

Our code should be able to handle virtually any potential issues that may occur. For example, if there
is a power blackout or if a database starts to fail for a relatively prolonged period, we, as developers,
should be able to design plans for keeping the application running while also keeping the integrity
of our data safe.

Practices such as making updates in a transactional way or ensuring that there is consistency in
every operation that we try to run can help mitigate this situation. We should only mark each of
these operations as completed once we have verified that all the underlying tasks have been properly
executed with a successful result.

This will be the only way to guarantee that we can not only recover from disasters but also avoid any
catastrophic effects they could have on our applications and services.

Talking about disasters, running disaster simulations is a remarkably interesting way to be prepared
for the unexpected. The list of unit tests that we may put together as developers to verify the successful
execution of our code and all its functionalities will often not consider the potential effects of a
rack exploding, a cable being cut by accident, or consecutive power outages. These and many other
uncommon situations should be simulated periodically to prepare our solutions for the unexpected,
using an approach that is compared with the random chaos that a monkey could wreck while wandering
around a lab or a data center.

Indeed, using a simian army approach has worked well for Netflix, as you can read in this post in
their technical blog (https://netflixtechblog.com/the-netflix-simian-army-
l6e57fbabl1e).

Failing to estimate usage patterns

Since most traditional software runs on limited resources, estimating usage patterns is key for allocating
the right infrastructure size and avoiding application crashes. Once we understand how many users
we are normally expecting, resources can be provisioned to ensure a decent service level for those
users, adding an extra buffer of resources to support small peaks.

https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116

The risks of traditional software development

A widespread problem in these scenarios is that if we want to supply a satisfactory level of service
during uncommon seasonal peaks, we will need to provision more infrastructure components, and
most of these additional resources will be either unused or idling during the rest of the time, which
is a total waste of money.

For this reason, these kinds of applications should be built to handle peaks by temporally dropping
users in excess with a nice Please try again in a few minutes message. Thus, we prevent a complete
crash that could be catastrophic if it happens at the busiest time of the day or the year.

Lack of proper monitoring and risk management

While the main goal for developers is writing code to build applications and services, additional time
should also be spent on finding weak spots and potential risks in our software and building a proper
internal and external monitoring plan that can check the status of these services by combining active
and passive techniques.

During my career, I have seen big architectures not working because the SSL certificate of a non-critical
web server had expired and services not working for days because a server had been shut down by
accident without anyone noticing.

These are extreme examples, but they show the benefits of internal and external automated tests that
simulate the behavior of our users and can be combined with log analysis and process and service
checks, to verify the end-to-end availability of a service.

Unclear priorities, accountability, and ownership

One of the key factors to ensure fast and proper bug and disaster management is being able to
understand who is responsible for each line of the code, especially when we are working in a team. Each
component, service, or application should have a clearly identifiable author and a person responsible
for issues detected within that component.

They may not be the same person in all cases, and that’s why having a proper process in place to
understand ownership and accountability will expedite the start of any recovery actions required and
ensure that high-priority bugs are addressed as soon as possible.

It is also important to effectively manage employee turnovers, making sure that when a developer is
about to leave the company, there is a proper handover process where one or more members of the
team are involved and ready to inherit those responsibilities. It is also important that the ownership
information database is updated accordingly so that the rest of the people in the organization are
aware of these changes in the future.

Finally, the team should be aligned during the whole development process, sharing common priorities
and practices, so that each team member is adding value instead of interfering with the work of the
others. This is even more important if there are multiple teams collaborating to create a solution,
with some of them even probably outsourced. In this kind of scenario, it is key to agree on common

25

26

Modern Software Development in Google Cloud

design patterns, methodologies, and practices, so that processes such as integration, testing, and
maintenance can be simplified, especially if the same team will be responsible for the whole code base
in any of those processes.

Security approach

Traditional software development tends to build security as a separate layer built on top of applications
or services. Besides, security is often added once the code has already been completed. It is often not
updated when any changes are deployed during an update.

This approach to security greatly increases the chances of security accidents because security is
decoupled from the services that should be protected. More weak spots can be exploited in both parts
of our architecture when they are isolated from each other.

Lost source code

I have worked with running applications whose source code had been lost years ago, with no options
for potential improvements, since only the binary was available.

Situations such as this can throw overboard years of work and it may be impossible to rebuild those
applications ever again. For this reason, a proper code version control system is a must-have for all
developers and, used together with regular backups stored in multiple locations, can save us from
living dramatic situations and disasters that could make the work of a few months suddenly disappear
in front of our eyes.

Now that we have gone through the main risks associated with traditional software development, let’s
take a look at how modern development practices can mitigate them.

How modern software development mitigates risks

Modern development workflows are significantly different from traditional ones. Even the required
skills for developers have evolved, with a more prominent presence of soft skills, data science, or
experience with software version control tools among the most wanted ones (https://www.
botreetechnologies.com/blog/top-skills-software-development -companies-
looking-for/).

Modern development has also ideated diverse ways of mitigating most of the risks mentioned in the
previous section. Let’s revisit and discuss how this can be done for each of them.

Software bugs

A few different practices can be combined to reduce the number of bugs and especially their potential
to affect the availability of our application. First, code reviews should always happen following the

https://www.botreetechnologies.com/blog/top-skills-software-development-companies-looking-for/
https://www.botreetechnologies.com/blog/top-skills-software-development-companies-looking-for/
https://www.botreetechnologies.com/blog/top-skills-software-development-companies-looking-for/

How modern software development mitigates risks

rule of ‘at least four eyes.” That is, at least the author and another developer should review the code
before it is approved for submission to a code repository.

Code reviews should not be seen as an exam or as a process where other people get to judge how good or
bad we are as developers. Instead, they are a fantastic opportunity to learn from other team members
and write better code by iterating based on the feedback supplied by colleagues.

Reviewing other people’s code also gives us the chance to see how they try to solve a problem, and
honestly, I have learned a lot from this process and eaten so many humble pies after realizing that I
still have so much to learn as a developer!

Resource exhaustion and slow development

Modern development tries to reduce resource exhaustion by dividing applications into multiple
small, reusable, and independent components, known as microservices. These take care of a small
part of the global functionality provided and are isolated from each other in terms of resource usage
and communication using messages, in what is called an event-driven architecture pattern. These
practices eliminate single points of failure and reduce the chances of a lack of resources in one of the
components affecting some or all the other microservices in our application. However, microservices
should be used only when they really make sense, as otherwise, they may add a lot of overhead and
maintenance costs.

On top of this, virtualization and containers provide an easy way of supplying additional infrastructure
resources to increase the available capacity before it gets exhausted. This, combined with the use of
load balancers, can have two beneficial effects on our architectures:

« First, we can make our application or service elastic by increasing or reducing the size of
the infrastructure depending on the number of users or the server loads, which will be
frequently measured

o Second, we can redirect the traffic to infrastructure located in different data centers so that our
users are always connected to the nearest data center, geographically speaking, minimizing
latency and maximizing throughput

Looking at microservices from another angle, having independent services that communicate with
each other allows different teams to develop each of these services; they just need to agree on the
communication protocol for services to communicate and work together seamlessly. Each of these
microservices could even be written using different programming languages, without this causing
any issues.

All these situations make development much faster. Indeed, microservices architectures usually go
hand in hand with Agile and DevOps, because services can be independently updated or improved,
and deployments can be done very quickly without service interruptions and without affecting the
availability of any of the other microservices in our architecture.

27

28

Modern Software Development in Google Cloud

Lack of resiliency and fault tolerance

Resiliency is based on the weakest link principle, so a reasonable way to mitigate this problem is to use
resilient infrastructure and communication protocols so that issues don't affect our service. For example,
if I need an event message from one microservice to reach another, I can write a piece of resilient code
with multiple delivery retries and exponential backoff, or I can use a third-party communication
service that does it for me (as we will see later in the book) and queues my message, automatically
retrying communication attempts if there are failures and informing me asynchronously when the
delivery has been confirmed, even if this happened hours or days after the message was queued.

Failure to estimate usage patterns

Modern development techniques, where applications become elastic, mitigate potential usage estimation
errors by measuring usage much more often. If our application checks whether the amount of allocated
resources is enough every few minutes, and we can add or remove capacity very quickly when needed,
then the application will become tolerant to peaks in the number of active users.

This does not only mean being able to handle the mentioned peaks but also being able to handle the
opposite situation, reducing allocated resources when the number of users is lower than usual (for
example, at night or during weekends or holidays). So, this feature, also known as zero scaling, can
also help companies save a lot of money, as we will discuss in Chapter 4, Running Serverless Code on
Google Cloud - Part 1.

Lack of proper monitoring and risk management

Implementing decent monitoring and risk management processes can become quite complex and the
reason is simple: the number of different infrastructure components, applications, operating systems,
and hardware used by an organization will grow exponentially with its size, and each infrastructure
component will require a specific risk assessment and a customized monitoring plan.

The solution to minimizing these issues is to simplify or, even better, abstract our infrastructure,
with the ideal picture being a data center where you just need to care about what you want to do (for
instance, run a Python script and not worry about where it needs to run).

Once your view of the underlying infrastructure is homogeneous, risk management and monitoring
processes will become much simpler. If the infrastructure is offered as a service, as it happens in the
cloud, risk- and monitoring-related information may be offered as an additional feature of this service,
making it even easier for you. Simplification is indeed a key step in the digital transformation process
of any company.

Unclear priorities, accountability, and ownership

Mitigating the negative effects of the risks associated with these three topics can be done by taking
different actions.

The benefits of implementing modern software development on Google Cloud

First, using a common set of practices can be achieved by using Agile and DevOps and agreeing on
the duration of cycles, including fast deployment and common development rules for the team.

Also, using code repositories makes it easier to understand who wrote what, and having well-defined
escalation paths can make it easier to establish ownership and decide what to do next.

Finally, a properly implemented identity management system will help avoid the potential harms of
employee turnover by quickly finding which objects are owned by that employee and allowing them
to easily transfer ownership, a process that should preferably happen before the employee actually
leaves the company.

Security approach

Modern development is based on what is called security by default, which means that security is
one more of the core topics that developers should always take into account when they design and
build their applications. Integrating concepts such as Zero Trust, requiring users of an application to
be constantly authenticated, authorized, and validated before they are allowed to use it, can make an
enormous difference and reduce security-related incidents. In these situations, bypassing common
security layers such as perimeter security, which this is not a replacement for but an addition to, will
no longer be enough to gain access to the application or its data.

If the infrastructure that we use is also built using similar concepts at its core, then the global level of
security will make it the perfect place to run our code.

After reviewing how modern software development practices mitigate risks, it’s time to discuss how
Google Cloud has mitigated these and other risks.

The benefits of implementing modern software
development on Google Cloud

Google Cloud can help your organization minimize development risks and provide added benefits
that will make developers more productive. Lets go through some of the features that make Google
Cloud the best provider for modern development.

Built for agility, elasticity, and reliability

Cloud-supplied infrastructure components have four key features that differentiate them from traditional
offerings: fast deployment, high availability, pay per use, and user abstraction.

This means that you can implement Agile and DevOps and be able to perform extremely fast deployments
in your sprints, while you enjoy unprecedented levels of stability and reliability at extremely competitive
prices and totally forget about administrative tasks at the infrastructure level.

29

30

Modern Software Development in Google Cloud

You can also design elastic architectures where the size of allocated resources is dynamically adjusted
depending on how many users are active at a given time, which optimizes costs and prevents resource
exhaustion, giving you access to an unlimited pool of infrastructure components available using the
pay-per-use model.

If you need a giant Al architecture to train your model just for a few minutes, you've got it. If you
need to start 1,000 virtual machines for a one-off process lasting a couple of hours, you just request
them, use them, and destroy them. This opens the door to a totally different way of understanding
and using infrastructure, putting a virtually unlimited pool of resources at your fingertips, and letting
you use it for as long as you need at a very reasonable price.

The different options available to run your code using a serverless service, from using containers to the
Function as a Service (FaaS) model or virtual machines, also make it easier than ever to implement
event-driven microservices and add support for service orchestration and choreography. We will
discuss and compare all these services and options later in the book.

Once your application is deployed, there is still a lot to offer: the operations suite (https://cloud.
google.com/products/operations), formerly known as Stackdriver, includes products that
will allow you to aggregate logs from all the applications and services that you use on Google Cloud,
and adds monitoring, tracing, debugging and profiling capabilities. We will talk about these services
in the next chapter.

And if you thought that running your code on Google Cloud was comparable to putting it into a black
box, you couldn't be more wrong: this suite will allow you to deep dive into both your applications
and the components and services provided by Google and identify bottlenecks and issues, optimize
your code, and improve your architecture. This is a gold mine for Site Reliability Engineers (SREs),
IT operations teams, and even for troubleshooting and improving your DevOps processes.

Even if you have public-facing APIs, Google Cloud has your back thanks to API Gateway (https://
cloud.google.com/api-gateway) and especially Apigee (https://cloud.google.
com/apigee), an amazing tool that helps you design, secure, analyze, and scale APIs anywhere
with visibility and control.

And you don’t need to care about patching, maintenance, and similar tasks; just request the infrastructure
component that you need using either the UI or the API and destroy it when you no longer need it,
since many of the infrastructure components used in the cloud architectures will be ephemeral, as
we will discuss later in this book.

Talking about reliability, Google Cloud has 103 zones in 34 regions, which means having data centers
available all around the world, allowing you to replicate your architecture across countries and even
continents, providing the lowest latency and the highest throughput to your customers, while allowing
you to implement high availability for your applications and services. And finally, let me remind you
that Google Cloud provides a platform with 99.99% availability, which reduces risks and maximizes
operational reliability, efficiency, and resiliency.

https://cloud.google.com/products/operations
https://cloud.google.com/products/operations
https://cloud.google.com/api-gateway
https://cloud.google.com/api-gateway
https://cloud.google.com/apigee
https://cloud.google.com/apigee

Google Cloud toolbox for developers

Security at the core

Google Cloud has security built in by default in its infrastructure offering, with some of the key security
features including layered security and data encryption, together with extensive hardening, also for
network communications, and a state-of-the-art process and team to respond to any detected threats.

As mentioned on the Google Cloud Security page of the official Google Cloud website (https://
cloud.google.com/security), Google Cloud provides a secure-by-design infrastructure with
built-in protection and a Zero Trust model that builds security through progressive layers, delivering
true defense in-depth at scale. Data is encrypted by default, at rest and in transit, ensuring that it can
only be accessed by authorized roles and services, and with audited access to the encryption keys.

Access to sensitive data is protected by advanced tools such as phishing-resistant security keys. Stored
data is automatically encrypted at rest and distributed for availability and reliability, and no trust is
assumed between services, using multiple mechanisms to set up and keep trust.

Built for developers

As I already mentioned, cloud providers are the best fit for teams using short cycles, speeding up
development and deployment. This should be complemented with tools and services to ease the whole
software development cycle, also including monitoring, debugging, profiling, and troubleshooting.

Google Cloud is the perfect choice for developers who use Agile and DevOps, or similar methodologies,
allowing developers to minimize deployment and lead times, and making new features and bug fixes
available much faster to the users of our applications.

A complete toolbox is available to help us implement these methodologies during all the stages of the
development workflow. Let’s take a look at this toolbox in the next section.

Google Cloud toolbox for developers

Google provides a toolbox aimed at improving productivity by providing advanced automation
capabilities and centralizing information to make logging and troubleshooting tasks much easier.

(R
Note

As 1did in the first chapter, I will use the Google Cloud developer tools web page (https://
cloud.google.com/products/tools) from Google Cloud as the official reference
list to enumerate the different tools available to help us developers increase our productivity.
I will also be adding my own opinions about them.

The next chapter will cover how to use Google Cloud to write, deploy, run, monitor, enable
logging on, troubleshoot, profile, and debug your code. So, this section plus the next chapter
should provide you with a lot of information about the different tools that can help you succeed
in your journey with Google Cloud and when and how to use each of them.

31

https://cloud.google.com/security
https://cloud.google.com/security
https://cloud.google.com/products/tools
https://cloud.google.com/products/tools

32

Modern Software Development in Google Cloud

Let’s take a look at the different tools available, divided into categories based on their main purpose:

Code:

Cloud Code (https://cloud.google.com/code): This is a set of plugins for popular
Integrated Development Environments (IDEs) that make it easier to create, deploy, and
integrate applications with Google Cloud. Remote debugging, reduced context switching,
and Skaffold integration are among my favorite features. Developers can keep on using
the IDE of their choice (VSCode, Intelli], PyCharm, GoLand, WebStorm, or Cloud Shell
Editor) and use Cloud Code to develop, deploy, and debug containerized applications on
their Google Cloud projects, having a similar experience to when they are working locally.
This tool is available free of charge.

Cloud Software Development Kit (SDK; https://cloud.google.com/sdk): Libraries
and tools for interacting with Google Cloud products and services using client libraries for
popular programming languages such as Java, Python, Node.js, Ruby, Go, .NET, and PHP.
The SDK also includes the Google Cloud Command-Line Interface (gcloud CLI), a very
useful tool to manage resources using the command line or to use with automation scripts.
This tool is also available free of charge.

Spring Framework on Google Cloud (https://spring.io/projects/spring-
cloud-gep): Brings the Pivotal-developed (https://pivotal. io/) Spring Framework
to the Google Cloud APIs to accomplish common tasks, such as exposing services and
interacting with databases and messaging systems.

Build

Cloud Build (https://cloud.google.com/build): A serverless Continuous
Integration and Continuous Delivery (CI/CD) platform to build, test, and deploy your
applications. It scales up and down with no need to pre-provision servers, just pay only for
what you use, since each of your build steps is run in a Docker container. I especially like
how it provides high-CPU virtual machines and a cache system to significantly reduce build
times, together with its support for multi-cloud and built-in security, including vulnerability
scans and the possibility to set up a secure CI/CD perimeter, blocking access to public IPs.

Tekton (https://cloud.google. com/tekton): A powerful yet flexible Kubernetes-
native open source framework for creating CI/CD systems and helping you standardize your
CI/CD tooling and processes across vendors, languages, and deployment environments.
It works in both hybrid and multi-cloud environments and its goal is to let developers
create and deploy immutable images, manage version control of infrastructure, or perform
easier rollbacks. Tekton is a more powerful but also more complex option when compared
with Jenkins.

Jenkins on Google Cloud (https://cloud.google.com/architecture/
jenkins-on-kubernetes-engine-tutorial): A third option to help you set up

https://cloud.google.com/code
https://cloud.google.com/sdk
https://spring.io/projects/spring-cloud-gcp
https://spring.io/projects/spring-cloud-gcp
https://pivotal.io/
https://cloud.google.com/build
https://cloud.google.com/tekton
https://cloud.google.com/architecture/jenkins-on-kubernetes-engine-tutorial
https://cloud.google.com/architecture/jenkins-on-kubernetes-engine-tutorial

Migration and development paths to run your code on Google Cloud

a CI/CD pipeline with native Kubernetes support, GKE-based scaling and load balancing,
and built-in CD best practices. Jenkins is more user-friendly but less powerful than Tekton.

o Manage artifacts

Artifact Registry (https://cloud.google.com/artifact-registry): This
is an evolution of Container Registry and allows the creation of both regional and multi-
regional repositories with granular JAM permissions and integration with either Cloud
Build or directly with Google Kubernetes Engine, App Engine, and Cloud Functions. Some
additional features include integrated security through binary authorization and vulnerability
scanning, making Artifact Registry the best place for your organization to manage container
images and language packages (such as Maven and npm) and set up automated pipelines.

o Deploy

Google Cloud Deploy (https://cloud.google.com/deploy): This is a managed
service that automates the delivery of your applications to a series of target environments
in a defined promotion sequence. When you want to deploy your updated application, you
create a release, whose life cycle is managed by a delivery pipeline. A nice addition to your
existing DevOps ecosystem, Cloud Deploy will allow you to create deployment pipelines
for GKE and Anthos within minutes.

Cloud Build (https://cloud.google.com/build): This appears again in this
list because it can also deploy your code using built-in integrations to Google Kubernetes
Engine, App Engine, Cloud Functions, and Firebase, and supports complex pipeline creation
with Spinnaker, adding an extra protection layer provided by Google Cloud. This is a very
versatile tool to cover both the build and deployment phases of your development life cycle.

Now that we know which tools we can use in each phase of the development cycle, the last topic to
discuss in this chapter is what the different options to migrate our applications and services to Google
Cloud are and how to approach this process effectively.

Migration and development paths to run your code on
Google Cloud

We have already discussed the potential risks of software development and how to mitigate them in
modern environments, such as Google Cloud, and we also got familiar with the different tools that
Google provides to help us become more productive as developers.

To complete the picture (and the chapter), let’s discuss the different migration and development paths
that you can use to get your code to run on Google Cloud, and explain how Anthos can help you in
some cases during the process.

33

https://cloud.google.com/artifact-registry
https://cloud.google.com/deploy
https://cloud.google.com/build

34

Modern Software Development in Google Cloud

There will be a specific chapter dedicated to migrations at the end of this book, but I think it makes
sense to introduce the topic in this chapter since this is one of the first decisions you need to take
when you are starting to develop on Google Cloud.

Migration checklist

Before even starting to choose from the different options to migrate your application, there are a few
questions that you should keep in mind.

Can this application run on the cloud?

This may sound like a dumb question at first, but if you are able to identify any limitations preventing
your application from running on the cloud, and you are not able to find a valid solution or workaround,
then you will be able to save a lot of precious time. Limitations preventing migrations are usually not
technical, but come from areas such as licensing, compliance, or privacy, and they may be powerful
blockers that cannot always be sorted out.

Some applications may also not be compatible with either virtualization or containerization, and
that’s another check that you should consider. When I say this application in the section title, please
remember that your code may have third-party dependencies that you will need to test, too. Your
code may be well prepared to run anywhere, but the libraries that you are using may not, and this will
be the right time to study whether they can be replaced or whether you have found a solid blocker.
So, you will not regret it if you invest some time to answer this question.

Is it worth migrating this application to the cloud now?

This is another apparently obvious question that many developers regret not having asked themselves
at the right time. There are different points of view we answer this question from.

For example, how long are we expecting to have the application running once it is migrated? It may not
make sense at all to have a team take 4 months to migrate an application and then receive a decommission
request after a couple more months. Believe me, while this can always happen unexpectedly due to
unforeseen circumstances, I have also seen this happening due to a lack of proper communication. So,
please make sure that information flows correctly between areas in your organization before making
big decisions regarding migration scheduling and prioritization.

Another possible angle to answer this question from is the complexity of the migration compared
to the current number of users and how critical it is for the organization. Personally, I would hate to
waste time migrating a legacy app that nobody used in the last 5 years, and that will never be used
again. Having proper usage tracking metrics can help you save a lot of time and money. If an app
must be migrated due to compliance reasons, at least knowing the metrics beforehand can help you
choose the fastest migration path.

Migration and development paths to run your code on Google Cloud

A third and final angle to answer the question is whether Google Cloud provides any service that may
be used as a replacement for the whole application or service. If that is the case, migration could be
considered the equivalent of reinventing the wheel and should be rejected.

Depending on the answers to these two questions, my suggestion is to go first with those applications
or services for which you got two positive answers, prioritizing them based on how critical they are
to the organization, and once you are done with the quick-wins, you can study the options for the
most complex cases. You can also consider destinations such as Google Cloud Bare Metal Solution
for Oracle (https://cloud.google.com/bare-metal) or even co-locate those servers that
cannot be moved to the cloud, if your data center is being shut down as part of the migration and you
need those applications to keep on running somewhere else.

Migrate or refactor?

Now that you have decided which applications are worth migrating, you will need a plan for each of
them, and that’s where you will choose which migration option is the best.

In most cases, you will be migrating monolithic applications or hybrid architectures running either
on-premises or on other cloud providers. In general, there are three options that you can take when
you decide to bring an application to the cloud:

o Refactor your application: This means fully rewriting or porting the application to the cloud,
making use of all of its benefits to simplify the process while making the application better than
ever. Depending on how you approach this process and the specifics of your application, this
could be the most time-consuming of all options and it will rarely be the best choice.

o Move and improve: If you choose this option, you will be gradually migrating services, one at
a time, to Google Cloud, and improving them using modern design patterns to decouple them
from the monolithic core and implement them using an event-driven microservices architecture.
This option may not be possible in all cases, especially with monolithic applications where partial
migrations are not possible, but it can be an interesting option because it allows you to choose
which services to migrate first, probably prioritizing those that are more problematic in the
current architecture, making them benefit from all the features of the cloud first, and leaving
the rest for a second phase. You could even decide to leave parts of your application in their
current location (on-premises or on another cloud provider), thus creating a hybrid application.

o Lift and shift: Migrating an application as is is always an option. You can just clone your current
setup in Google Cloud using either a virtual machine or a container, copy your binaries, libraries,
and data files, and let the application run on the cloud in the same way as it did on-premises.
There are a few scenarios where this could be the preferred option, such as virtualizing a legacy
environment to enjoy the better scalability and pricing that Google Cloud offers, or for those
applications that have very specific requirements to run properly and cannot be modernized,
either because they were developed by a third party, because the original source code was lost,
or because of legal requirements. In all these cases, there is a solution that will work for you.

35

https://cloud.google.com/bare-metal

36

Modern Software Development in Google Cloud

While these three options will cover many of your use cases, there are still a few that are out of scope,
especially those regarding applications that are either hybrid or multi-cloud. In these cases, you can
try to migrate the part of the code running on-premises or on another cloud provider to Google Cloud
and turn your application into a cloud-native application.

However, if you still need to keep some of your applications or services running either on-premises
or on another cloud provider, Anthos is a Google Cloud service that can make it much easier to
manage this kind of heterogeneous scenario. Let’s explain what Anthos is and when and why it can
make sense for you to use it.

Managing hybrid and multi-cloud environments with Anthos

Migrating your applications and services to Google Cloud is not always going to be possible and you
may need to run some of them in different environments and platforms.

While this is technically possible, it can make things much more complicated, because you will need
to manage different environments with their own capabilities, limitations, and requirements. And on
top of that complexity, trying to have the same level of security, stability, privacy, orchestration, or
compliance may just not be possible or it could be unmanageable for your development, IT support,
and SRE teams.

This is where Anthos comes to your rescue. Anthos (https://cloud.google.com/anthos)
offers a consistent development and operations experience for hybrid and multi-cloud landscapes.
Consider Anthos as an abstraction provider for Kubernetes clusters, making it possible to deploy
containers not only to run on Google Cloud, but also on-premises, on Amazon Web Services (AWS),
or on Microsoft Azure (and the list keeps growing).

Use Anthos to deploy your clusters anywhere you want and manage them all in exactly the same way
from your Google Cloud console. This sounds much better, doesn’t it?

Anthos can be a very convenient tool when it comes to migrating your stuft to the cloud, especially if
you are already using containers or if you confirm that your legacy applications can be containerized.

If you already run your applications using containers, you have three options to choose from. The
first is to attach your existing Kubernetes clusters to Anthos (currently supporting Amazon EKS,
Microsoft AKS, and OpenShift), and use some of the centralization and observability features that
Anthos provides, while you keep on managing and updating your on-premises clusters manually.

The second option involves setting up Anthos locally on-premises, so you can either move your
current clusters to your on-premises Anthos zone, or you may decide to move them to any of the
other supported destination environments compatible with Anthos.

In all cases, you will be modernizing your applications and, once all your clusters are running on
Anthos, you will be free to move the clusters to wherever you prefer at any time while still being able

https://cloud.google.com/anthos

Managing hybrid and multi-cloud environments with Anthos

to centrally manage not only the containers but also the services they provide and the policies that
you want to enforce in all of them.

This second approach is also valid if your legacy applications are not containerized, but can be because
you can decide where to run each after containerizing them in Anthos, and still be able to manage
your complete landscape no matter where each container runs.

The third option is valid for organizations where VMware vSphere is a corporate standard and also
for those who are running their containerized applications on bare-metal servers.

If you are already running VMware vSphere, you can choose to run Anthos clusters on VMware and
migrate your current virtual machines using Migrate to Containers (https: //cloud.google.
com/migrate/containers/docs). If you are running your containerized application on bare-
metal servers, you can choose to install Anthos clusters on bare metal (https://cloud.google.
com/anthos/clusters/docs/bare-metal/latest) and get rid of the supervisor for
lower-than-ever latency and better performance.

In any of the last two scenarios mentioned, remember that you can also move your Anthos clusters
to any other supported environment (Google Cloud, AWS, or Azure) whenever you want.

And once all your applications have been containerized and are managed by Anthos, you can create
logical groups of clusters and containers located in different platforms. These groups are called fleets
and allow you to group your resources, for example, depending on which environment they belong
to. In this example, the group names would be development, test, and production. You can also set up
different regions within a fleet to group resources by geographical location.

Once you create a fleet, you can apply changes to all members at the same time, which can save your
administrators a lot of time and is perfect to integrate modern software practices such as CI/CD.

Some of the benefits that fleet members (https://cloud.google.com/anthos/fleet-
management /docs/fleet-concepts) can provide include the following:

o Form, monitor, and manage a service mesh using Anthos Service Mesh

o Use common workload identity pools to authenticate and authorize workloads uniformly
within a service mesh and to external services

o Anthos Config Management can be used to apply policy and configuration changes and is
fully compatible with core Kubernetes concepts, such as namespaces, labels, and annotations

o Customize load balancing destinations using Multi Cluster Ingress
o Use Cloud Run for Anthos to enjoy all the benefits of Knative
Anthos also introduces the concept of sameness, a normalization process where some Kubernetes

objects such as namespaces with the same name in different clusters are treated as the same thing to
make grouping and administering fleet resources even easier.

37

https://cloud.google.com/migrate/containers/docs
https://cloud.google.com/migrate/containers/docs
https://cloud.google.com/anthos/clusters/docs/bare-metal/latest
https://cloud.google.com/anthos/clusters/docs/bare-metal/latest
https://cloud.google.com/anthos/fleet-management/docs/fleet-concepts
https://cloud.google.com/anthos/fleet-management/docs/fleet-concepts

38

Modern Software Development in Google Cloud

Before finishing this chapter, I would like to elaborate a bit more on the concept of a service mesh,
since it combines many modern software development practices. A service mesh (https://
cloud.google.com/service-mesh/docs/overview) provides a dedicated and uniform
infrastructure layer for managed, observable, and secure communication across services. This sentence,
taken from the Service Mesh documentation page linked previously, means the ultimate abstraction
of the most common points of concern when running an application using hundreds of containerized
microservices: monitoring, networking, and security.

A service mesh has a proxy instance, called a sidecar, which connects to each application container
and obtains information that is then centralized and automatically updated when new instances of
a microservice are created, offering a clear picture of what’s currently going on in your application
and enabling unprecedented levels of observability and security while making global management
possible with ease. All these features are offered at the cost of proxying all service requests, but it can
be a lifesaver when the number of different microservices to manage begins to increase exponentially.

As you can imagine, Service Mesh is a fantastic addition to Anthos and brings modern software
development to the next level of abstraction. Combining the fleet management capabilities of Anthos
with the global observability and security features that a service mesh provides, you can simplify your
processes and use most of your time as a developer for innovation.

Summarizing this last section, Anthos allows your organization to abstract infrastructure from
applications and provides a console where you can group resources logically and manage fleets no
matter where each cluster is running (on-premises, on Google Cloud, on AWS, or on Azure). This
makes administration much easier and gives you total freedom to run each of your containerized
services wherever you want and to move them from one place to another at your will.

Anthos fleets can use Anthos Service Mesh to deploy a dedicated infrastructure layer that provides
centralized capabilities for observability, security, and common management options for all microservices,
making Anthos even more convenient for software developers

As you can imagine, this is the culmination of software development modernization and a perfect
ending scenario, from a software development process point of view, for the digital transformation
of any organization.

Summary

In this chapter, we described what a developer does, according to traditional development workflows,
the associated risks, and how modern development workflows in general and cloud development
mitigate or get rid of those risks. Then, we enumerated the benefits of developing on Google Cloud
and introduced the different elements of the toolbox that the platform offers to help professional
developers like you and me be more productive. Finally, we described the different migration and
development paths that you can take when you start developing or migrating an existing application
to Google Cloud, remarking on how Anthos can help you build and manage hybrid or multicloud
environments and take software modernization to the ultimate level.

https://cloud.google.com/service-mesh/docs/overview
https://cloud.google.com/service-mesh/docs/overview

Further reading

The next chapter will focus on how you can use Google Cloud to write code, deploy and run it, set up
logging, and monitor, profile, and troubleshoot your code, proving that Google Cloud is an amazing
platform to cover all your needs as a developer.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:
o What does a Software Developer Do? (https://www.rasmussen.edu/degrees/
technology/blog/what-does-software-developer-do/)

o 12 Risks in Software Development (https://www.indeed.com/career-advice/
career-development /risks-in-software-development)

o 7 Advantages of Cloud Computing That Developers Can Benefit From (https://datafloq.
com/read/7-advantages-cloud-computing-that-developers-can-
benefit-from/)

o Use fleet Workload Identity (https://cloud.google.com/anthos/fleet-
management /docs/use-workload-identity)

o Choosing between Cloud Run and Cloud Run for Anthos (https://cloud.google.com/
anthos/run/docs/choosing-a-platform)

39

https://www.rasmussen.edu/degrees/technology/blog/what-does-software-developer-do/
https://www.rasmussen.edu/degrees/technology/blog/what-does-software-developer-do/
https://www.indeed.com/career-advice/career-development/risks-in-software-development
https://www.indeed.com/career-advice/career-development/risks-in-software-development
https://datafloq.com/read/7-advantages-cloud-computing-that-developers-can-benefit-from/
https://datafloq.com/read/7-advantages-cloud-computing-that-developers-can-benefit-from/
https://datafloq.com/read/7-advantages-cloud-computing-that-developers-can-benefit-from/
https://cloud.google.com/anthos/fleet-management/docs/use-workload-identity
https://cloud.google.com/anthos/fleet-management/docs/use-workload-identity
https://cloud.google.com/anthos/run/docs/choosing-a-platform
https://cloud.google.com/anthos/run/docs/choosing-a-platform

3

Starting to Develop on
Google Cloud

As we mentioned in the previous chapter, Google Cloud provides a set of tools to help us developers
improve our productivity. This chapter will focus on introducing and describing the key features of
these tools, so you can properly set up your development environment, while the next chapters will
focus on examples and tips on how to make the most out of each tool when you run your code on
Google Cloud. If you have previous experience with Google Cloud, you may want to skim-read or
fully skip this chapter and go straight to the next one for some serverless action.

We'll cover the following main topics in this chapter:

o The first steps with the Google Cloud console

« Introducing Cloud Shell

o Writing code for Google Cloud using Cloud Shell Editor

o Writing code for Google Cloud using Visual Studio Code

« Setting up Cloud Logging

« Monitoring the execution of your code

« Troubleshooting by debugging, tracing, and profiling your code
o Appendix - testing your code on Google Cloud

The first steps with the Google Cloud console

Since some of you may be new to Google Cloud, I decided to include a very brief introduction to the
Google Cloud console, so you can easily find everything in its User Interface (UI).

42

Starting to Develop on Google Cloud

Note

Google Cloud is an ever-changing environment, and this is also applicable to its UL. When you
read this book, the interface may not exactly match the screenshots used in the book, but they
should still help you understand the concepts and find each element.

When we load the main screen of Google Cloud for an existing project (https://console.
cloud.google.com/), we will either see a welcome page or the project dashboard, depending on
our configuration, with quick access to the latest products that we recently used and their associated
information, such as news, tutorials and documentation, platform status, API usage, billing, and
monitoring, as shown in the following screenshot:

= Google Cloud 2 Google Cloud for Developers v ‘ Q Search Products, re...

Y Welcome

You're working in Google Cloud for Developers
Project number: 415511247138 I Project ID: cloud-developers-365616 I

Dashboard Recommendations

Create a VM Run a query in BigQuery E3 Create a GKE cluster Create a storage bucket

Quick access @

RAPI APIs & Services e IAM & Admin & Billing

Privacy Policy - Terms of Service

Figure 3.1 — Project dashboard screen in Google Cloud

There is also a blue ribbon at the top that provides easy access to all services and options:

= Google Cloud 2e Google Cloud for Developers v | Q, Search

Figure 3.2 — The blue ribbon at the top of the Google Cloud Ul

https://console.cloud.google.com/
https://console.cloud.google.com/

Introducing Cloud Shell

Clicking on the hamburger icon (the first one with three horizontal lines) on the left side of the ribbon
will open the services menu. Next to it, after the Google Cloud text, there is a drop-down menu to
choose the project we will be working on. In the center of the ribbon, there is an omni-search box to
easily find any product, resource, or documentation by just typing a few words describing what we
are looking for.

The right side of the ribbon holds, from right to left, the account picture that we can click to switch
accounts, an icon with three dots to access the preferences and settings menu, a question mark icon
to open the help and support page, a bell icon to easily access pending notifications (or a number
showing the number of unread notifications), an icon to open Cloud Shell, which I highlighted with a
red box in the previous figure, and finally, a gift icon that will only appear if you are using free credits.

If you click on the Cloud Shell icon, you will see a message while your Cloud Shell Virtual Machine
(VM) starts and, in a matter of seconds, you will see a Linux console on the bottom side of the screen,
similar to the one you can see in this figure:

L1
“Y Welcome ;

You're working in Google Cloud for Developers
Project number: 415511247138 Ip Project ID: cloud-developers-365616 10

Dashboard Recommendations

Privacy Policy

. .
= (cloud-developers-365616) X —+ - £ Open Editor @ =

Welcome to Cloud Shell! Type "help" to get started.
Your Cloud Platform project in this session is set to cloud-developers—365616.
Use “gcloud config set project [PROJECT ID]|” to change to a different project.

clouddevelopersquide@cloudshell:~ (cloud-developers-365616)5

Figure 3.3 — Google console after opening Cloud Shell

Congratulations, you just opened Cloud Shell! Now, let’s learn how to use it to write, run, and test
code in combination with Cloud Shell Editor.

Introducing Cloud Shell

Cloud Shell (https://cloud.google.com/shell) is an online operations environment
that you can access anywhere using a web browser and is offered at no added cost to Google Cloud

43

https://cloud.google.com/shell

44

Starting to Develop on Google Cloud

customers. In other words, a Linux VM with persistent storage is provided for free to developers
and administrators working on Google Cloud and its command-line console can be accessed from
a web browser.

Cloud Shell is an online Linux terminal with a few preloaded utilities. This terminal, together with Cloud
Shell Editor, can be used to write, deploy, run, and troubleshoot our applications on Google Cloud.

These are some of the key features of Cloud Shell that you should be aware of:

Pre-installed and up-to-date tools: Cloud Shell includes many useful tools that you will often
use, such as the gcloud command-line administration tool (https://cloud.google.
com/sdk/gcloud/) and many other tools to help you manage software such as Kubernetes,
Docker, Skaffold, minikube, MySQL, and so on. Of course, you can also install any other tools
that you regularly use.

Persisting storage: 5 GB of storage is provided and mounted in the home directory of your
Cloud Shell VM, persisting between sessions. This makes Cloud Shell the perfect place to clone
your repositories and then write, test, and deploy your code directly from your browser, and
finally, commit changes back to the original repository.

Online code editor: Write code using Cloud Shell Editor directly from your browser, a
particularly useful feature for developers that deserves its very own section right after this one.

Cloud Shell VM and minikube Kubernetes emulator: Run your code in Cloud Shell and test
it in your browser before deploying it to production.

-

Tip

While Cloud Shell provides persistent storage and is a convenient tool for our development
needs, it should never be used as a replacement for a proper code repository. Your storage will
persist for a few days even if you don't use the Cloud console for a while, but after a few more
days, you will receive an email warning you that your VM will be automatically shut down to
save resources unless you use it again in a few days. If this shutdown happens, your storage will
be gone forever. You can always click on the Cloud Shell icon again and the VM will start up,
but its attached storage will now be empty. You have been warned!

Let’s see how we can write code directly from the Cloud console.

Writing code for Google Cloud using Cloud Shell Editor

Cloud Shell Editor (https://cloud.google.com/shell/docs/editor-overview)is
included as part of Cloud Shell and adds some interesting features to write code, letting us build, test,
and deploy our code, all from our favorite browser.

https://cloud.google.com/sdk/g﻿cloud/
https://cloud.google.com/sdk/g﻿cloud/
https://cloud.google.com/shell/docs/editor-overview

Writing code for Google Cloud using Cloud Shell Editor

Cloud Shell Editor is based on Theia (https://theia-ide.org/), an open, flexible, and extensible
cloud and desktop IDE platform that supports languages such as Go, Python, Java, NET Core, and
Node.js. Among its features, we can enjoy syntax highlighting and context completions, linting, and
code navigation, together with debugging capabilities.

The editor can be opened from Cloud Shell, using the button highlighted in the following figure:

L1
“Y Welcome f

You're working in Google Cloud for Developers
Project number: 415511247138 g Project ID: cloud-developers-365616 IQ

Dashboard Recommendations

Privacy Policy - Terms of Service

. .
= (cloud-developers-365616) X —+ - £ Open Editor @ =

Welcome to Cloud Shell! Type "help" to get started.
Your Cloud Platform project in this session is set to cloud-developers-365616.
Use “gcloud config set project [PROJECT ID]” to change to a different project.

clouddevelopersguide@cloudshell:~ (cloud-developers-365616) 5

Figure 3.4 — Details of the Open Editor button in Cloud Shell

But it isn’t all good news...

(7
Note
Cloud Shell has a limited usage quota per week, which also includes Cloud Shell Editor. Make
sure to check your available quota so you don’t run out of time while you still have pending
tasks. If it is not enough, you can request a quota increase by contacting Cloud Customer
Care (https://cloud.google.com/support).

. J

Let’s go through the features of Cloud Shell Editor in the following section.

45

https://theia-ide.org/
https://cloud.google.com/support

46

Starting to Develop on Google Cloud

Taking a look at the interface

In the top menu of Cloud Shell, you will see a button with a blue icon of a pencil and the Open Editor
text (I highlighted it with a red box in Figure 3.4). Just click that button to open Cloud Shell Editor.
After a few seconds to provision your editor instance, the screen will change, and you will see the editor:

Google Cloud $ Google Cloud for Developers v Q, Search Product:

Y Welcome

You're workina in Gooale Cloud for Develooers

Privacy Policy - Terms of Service

CLOUD SHELL

Editor B OpenTerminal B [3 s B X

File Edit Selection View Go Run Terminal Help

@ EXPLORER --- @ guesthook py x 2
> OPEN EDITORS appengine-guestbook-python > & guestbookpy >
~» CLOUDDEVELOPERSGUIDE () & --- Set as interpreter

> B A Erge #!/usr/bin/env python

1

2

~ B3 appengine-guestbook-python 3 # Copyright 2016 Google Inc.

> B3 bootstrap 4 %

> B e2e 5 # Licensed under the Apache License, Version 2.8 (the "Licens
6 # you may not use this file except in compliance with the Lic Z
7 # You may obtain a copy of the License at
8 #
9

€ app.yaml
o CONTRIB.md
@ favicon.ico

http://www.apache.org/licenses/LICENSE-2.@
guestbook py 10 # p:// P g/ /

= _indoy himl
& appengine-guestbook-python §° master & ®O0A0 < Cloud Code minikube Ln1,Col1 LF UTF-8 Spaces:4 Python 0 B

Figure 3.5 — The Google Shell Editor screen after clicking on the Open Editor button

The Cloud Shell Editor UI has a button with the Open Terminal text in blue letters to switch between
the editor and the terminal, which, at least in my opinion, is not too comfortable for daily use. If you
agree, there is a maximize icon to the right of the Open Terminal button with an arrow pointing to
the top-right corner that you can click to open the editor in full screen in a new window, where the
terminal will also be available at the bottom. This looks much better and the visual experience is quite
similar to any other IDE:

Writing code for Google Cloud using Cloud Shell Editor

Cloud Shell Editor s B8 20 : O

File Edit Selecton View Go Run Terminal Help X

EXPLORER e @y guestbookpy X

> OPEN EDITORS appengine-guestbook-python > @ guestbook.py >

 CLOUDDEVELOPERSGUIDE {) & --- 40

> P App_Engine 41 def guestbook_key(guestbook_name=DEFAULT_GUESTBOOK_NAME) :
42 """Constructs a Datastore key for a Guestbook entity.

~ appengine-guestbook-python @ e

> B3 bootstrap

44 We use guestbook name as the key.
> e2e 25

app.yaml 46 return ndb.Key('Guestbook', guestbook_name)
CONTRIB.md 47

favicon ico 48

50 class Author(ndb.Model):

B index html

E g W

51 """sub model for representing an author.
£ index.yaml 52 identity = ndb.StringProperty(indexed=False)
= LICENSE 53 email = ndb.StringProperty(indexed=False)
Makefile 54
= README.md 55
£ appengine-guestbook-python Pmas{er O ®7A0 < Cloud Code minikube In1,Col1 LF UTF-8 Spaces:4 Python o B8

@ (cloud-developers-365616) X 4 ~ %

Welcome to Cloud Shell! Type "help" to get started.
Your Cloud Platform project in this session is set to cloud-developers-365616.

Use “gcloud config set project [PROJECT_ID]” to change to a different project.
clouddevelopersguide@cloudshell:~ (cloud-developers-365616)35 D

Figure 3.6 — Cloud Shell Editor in full-screen mode

Tip
If you find Cloud Shell Editor to be an interesting tool that you will use often, you can open it
directly in full screen using this bookmark: https://ide.cloud.google.com/

The main screen in Cloud Shell Editor has a toolbar with icons at the top, a menu right below, an
action bar on the left side, and two panels: a file browser on the left side and the main code editor in
the middle. Finally, there is an outline bar on the right side.

The icons in the toolbar at the top-right side of the screen should already be quite familiar to you and
can be used, respectively, to close the editor, open the terminal panel at the bottom, configure and
launch the web preview, check your usage quota, access uploads, downloads, and other configurations
(using the icon with three dots), and switch accounts.

The activity bar on the left side has a set of icons, each with its own purpose. I have included a
description for the icons in the following figure next to them, so you can have an idea about the
different functionalities that Cloud Shell Editor offers:

47

https://ide.cloud.google.com/

48

Starting to Develop on Google Cloud

@ Explorer

Search

Source Control

Debug

Cloud Code: Cloud Run
Cloud Code: Cloud APIs
Cloud Code: Secret Manager

Cloud Code: Kubernetes

Figure 3.7 — The Cloud Shell Editor icon toolbar with descriptions

Showing the built-in terminal

The built-in terminal is a remarkably interesting feature since it allows you to use Cloud Shell without
leaving the editor, so you can manage your cloud infrastructure, run and test your code, or use it for
any other needs directly from Cloud Shell Editor.

You can even open multiple terminals using the button with the plus (+) sign in the terminal toolbar
or using the Terminal / New Terminal menu item. The former will take you to a Google Cloud project
selection screen before opening the terminal, which makes it possible to open a terminal directly
connected to a different project, which can be useful to compare the configuration among different
projects or other similar cases.

Uploading and downloading files

You will often need to upload or download files to/from the editor, and you can easily do this in two
different ways:

o 'The first one is to right-click on an empty area of the file explorer panel to open a menu that
includes one option to upload one or more files and another to download the current directory
as a TAR file.

« The second way is to use the three-dots icon at the top-left side of the Cloud Shell Editor window,
next to the thumbnail of your account image. Here, you will also see options for uploading
or downloading files. I personally prefer to use this one for downloading files, because it will
let you write the full path to the file or directory of your choice and will let you download it,
which can be useful, for example, if you are using workspaces.

Writing code for Google Cloud using Cloud Shell Editor

Editing and writing code

Cloud Shell Editor is compatible with the concept of workspaces, which means that all files used by a
project are found below a specific root directory level (which is also the root level of the workspace)
so that a download of that directory and all its subdirectories will contain all project files.

The benefit of opening a workspace instead of a single file is that you get instant access in the file panel
to all project files, which is much more comfortable than having to use the browse dialog to locate
each file that we need to open.

There are also more advanced workspace management options that you can read about on this
page: https://cloud.google.com/shell/docs/workspaces

While you can open a file by clicking on it from the left-side file panel, you can also open it directly
from the Cloud Shell terminal using a command like this:

cloudshell edit README-cloudshell.txt

Version control

Cloud Shell Editor supports accessing your existing Git repositories or even creating new ones
using the Source Control button in the activity bar. You can also host your private repositories in
Google Cloud using Cloud Source Repositories (https://cloud.google.com/source-
repositories/docs). From that panel, you will also be able to see existing and staged changes
and merge those changes.

Whenever you choose an action that has to do with your code repositories, Cloud Shell Editor will ask
you to authenticate with your password, if you haven’t done it recently. For this purpose, you should
use a Personal Access Token (PAT), recommended by GitHub as a more secure alternative to standard
passwords (https://docs.github.com/en/github/authenticating-to-github/
keeping-your-account-and-data-secure/creating-a-personal-access-
token). You can also turn on and configure Git credentials helper (https://git-scm.com/
book/en/v2/Git-Tools-Credential -Storage) to make the use of PATs more comfortable
by enabling caching of your PAT and increasing the time it is cached, so it’s not constantly asking you
to enter it again.

Once your setup is ready, you can clone a repository by going to View | Command Palette and running
the "Git: Clone" command. You can also create a branch or switch to another one using the
"Git: Checkout" command.

Now that everything is ready, it's time to code! At this point, the Changes section of the Source Control
panel will display each of the files that have been changed, and opening each file will show you which
lines have been changed but not committed yet. You can also click on a filename to display pending
changes and decide whether to stage or discard them.

49

https://cloud.google.com/shell/docs/workspaces

https://cloud.google.com/source-repositories/docs
https://cloud.google.com/source-repositories/docs
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage
https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage

50

Starting to Develop on Google Cloud

If you decide to stage your changes, the new Staged Changes section in the Source Code panel will
allow you to click on a file and see a d1ff command view showing all the changes after comparing
it with the earlier version.

At all times, an icon will show you which branch you are working on and a summary of the current
status, and you can use the Synchronize Changes action from the Command Palette to push your
local pending changes to the chosen branch and pull recent remote changes.

Finally, you can commit your changes using "Git: Clone" in the Command Palette.

Of course, if you feel more comfortable using a terminal for all Git-related commands, you can use
Cloud Shell to clone your repository, add files, include a comment, and push the changes yourself,
while using the editor just to write code.

Cloud Code support

Cloud Code is directly integrated into Cloud Shell Editor. The last four icons in the Activity Bar provide
access to options for different Google Cloud services, Cloud Run, Cloud APIs, Secret Manager, and
Kubernetes, as you can see in Figure 3.7. A clickable button in the status bar with the text Cloud Code
can be used to open a menu with different options, as you can see in the following figure, where all
UI elements related to Cloud Code have been highlighted in red:

Cloud Shell Editor

File Edit Selection View Go Run Terminal Help

@ Bl Welcome to Cloud Shell x “

Open Welcome Page

/O Cloud Shell Editor </> Use Google Cloud APls
ET New Application

Create, build and deploy your cloud-native applications in an online editor. To get started, open your home foldgr D> Run on Kubemetes

workspace.
@ Debug on Kubernetes
Start I> Run on Cloud Run Emulator
ﬂf> fo) Fold @ Debug on Cloud Run Emulator
pen Folder...

& Deploy to Cloud Run

Open Home Workspace

Recent

() hector_parra /home/hector_parra

Help

Product documentation
Version Control 3

Color themes

é:‘:":}‘ Stack Overflow &

————————
A\ 0 <> Cloud Code minikube

Figure 3.8 — The Cloud Code menu options in Cloud Shell Editor

Writing code for Google Cloud using VS Code

Cloud Code includes sample applications that we can use as templates for faster prototyping and
makes it easier to debug our code by including direct access to a Cloud Run emulator, particularly
useful when testing containerized applications. All these menu options are available by clicking on
the Cloud Code text in the status bar.

There are direct links for debugging an application, either on Kubernetes or on Cloud Run, together
with a last option to deploy our code to Cloud Run once our testing is successfully completed.

Next to the Cloud Code button in the status bar, there is also a minikube button that allows you to
instantly connect to a minikube cluster without leaving the IDE.

In the next chapter, we will see detailed examples of how to use Cloud Shell Editor in all the phases
of our development workflow (write, test, deploy, run, and troubleshoot) for the different options
available to run our code on Google Cloud.

Moving your code to a different IDE

Moving a project from Cloud Shell Editor to your favorite IDE is quite easy. The first step is to copy
your workspace files somewhere else. You can either download your files using the File | Download
menu or commit your latest changes to your code repository, using either the Cloud Shell Editor UI
or some of the standard Git commands run from the terminal window.

Then, open your favorite IDE and either import the downloaded files, preferably by using a workspace-
compatible IDE to make it easier and faster, or clone or import your repository using the Ul of your
chosen IDE. A third option would be to use Git command-line commands to clone the repository
and make the files available in a local directory of your choice.

Once the code is available in your favorite IDE, you can set up and use Cloud Code to make your
development tasks easier. Let’s see an example with Visual Studio Code (VS Code).

Writing code for Google Cloud using VS Code

Cloud Code is a set of plugins that provide support for different IDEs and makes it much easier
to work with Kubernetes and Cloud Run. I have chosen VS Code as an example built on the open
source Code-OSS, but you can follow a similar process with any of the other supported IDEs: Intelli],
PyCharm, GoLand, WebStorm, and, as we have already seen earlier, Cloud Shell Editor.

In order to install VS Code, we should first make sure that all the prerequisites mentioned in the
Google Cloud documentation (https://cloud.google.com/code/docs/vscode/
install) are met:

o Install VS Code (https://code.visualstudio.com/)

« Install and configure the support for the languages that you will be using: Go (https://
marketplace.visualstudio.com/items?itemName=ms-vscode.Go),

51

https://cloud.google.com/code/docs/vscode/install
https://cloud.google.com/code/docs/vscode/install
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.Go
https://marketplace.visualstudio.com/items?itemName=ms-vscode.Go

52

Starting to Develop on Google Cloud

Python (https://marketplace.visualstudio.com/items?itemName=ms-
python.python), Java (https://marketplace.visualstudio.com/
items?itemName=vscjava.vscode-java-debug), and NET (https://
marketplace.visualstudio.com/items?itemName=ms-dotnettools.
vscode-dotnet-pack)

o Install Git (https://git-scm.com/book/en/v2/Getting-Started-Installing-
Git), which is required for copying code to and from your IDE

« You may also need to install the Docker client (https://docs.docker.com/
install/#supported-platforms), unless you will use Cloud Build for building

I will be assuming that you already have access to a Google Cloud project with billing enabled.

Once the installation is complete, and after launching VS Code, you should see a screen similar to
this one:

® main.py - google_cloud_for_developers - Visual Studio Code
File Edit Selection View Go Run Terminal Help
EXPLORER % mainpy 2 @ D~ @ -

v GOOGLE_CLOUD_FOR_DEVELOPERS ? main.py >
Global (instance-wide) scope
instance var = heavy_computation()

@ main.py 2
@® README.md
requirements.txt

1

2

3

4 def scope demo(request):
5 wun

6 HTTP Cloud Function that declares a variable. 1
7 wun

8

9 # Per-function scope
10 function_var = light_computation()
11 return ‘Instance: {}; function: {}'.format(instance_var, function_var ‘
12
PROBLEMS (2 OUTPUT DEBUG CONSOLE =++ Filter (e.g. text, **/*.ts, **/node_modules/**) Y 8 = ~ X

v @ mainpy @

A\, "heavy_computation" is not defined

\ "light_computation" is not defined P rep
> OUTLINE
> TIMELINE

Ln1,Col1 Spaces:4 UTF-8 LF {§ Python 3.10.764-bit &

(44

Figure 3.9 - The VS Code main screen

Installing the plugin

In order to install the plugin, just visit the VS Code Marketplace page for Cloud Code (https://
marketplace.visualstudio.com/items?itemName=GoogleCloudTools.cloudcode)
and click on the Install button. You may be asked to restart VS Code for the plugin to be enabled.

https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.vscode-dotnet-pack
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.vscode-dotnet-pack
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.vscode-dotnet-pack
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://marketplace.visualstudio.com/items?itemName=GoogleCloudTools.cloudcode
https://marketplace.visualstudio.com/items?itemName=GoogleCloudTools.cloudcode

Setting up Cloud Logging

Now;, you should be able to see the familiar Cloud Code icons that we mentioned for Cloud Shell
Editor and can further customize your settings using the top-level menu Code | Preferences | Settings
| Extensions | Cloud Code.

main.py - google_cloud_for_developers - Visual Studio Code

File Edit Selection View Go Run Terminal Help

CLOUD CODE @ mainpy 2 X

nain.py > & scope_demo

> DEVELOPMENT SESSIONS L]

> KUBERNETES 1 # Global (instance-wide) scope ==

3 CLOUD RUN 2 instance var = heavy computation() Pt
3

LSLODDIARE 4 def scope demo(request):

> SECRET MANAGER 5 wun

> COMPUTE ENGINE 6 HTTP Cloud Function that declares a variable.

> APIGEE 7 Ar‘gs;

~ HELP AND FEEDBACK 8 request (flask.Request): The request object.

& Open Walkthrough 9 <http://flask.pocoo.org/docs/1.0/api/#flask.Request>

View Documentation 10 Returns: .

{85 Change Settings 11 The responsg text, or §ny set of valges that can be turned into a

2 12 Response object using "make_response

© Fileissues [Request a feature 13 <http://flask.pocoo.org/docs/1.0/api/#flask.Flask.make response>.

[E) Release Motes 14 wun

¢/> About Cloud Code 15

® Sign Out of Google Cloud (... 16 # Per-function scope
17 function_var = light_computation()
18 return 'Instance: {}; function: {}'.format(instance_var, function_var

310.764-bit &7

®OA2 <¢»CloudCode 2 hectorparra-test Ln12, Col1(211 selected) Spaces:4 UTF-8 LF {§ Python

Figure 3.10 - The VS Code main screen after installing Cloud Code

Please notice that the plugin installs some dependencies automatically by default (kubect]1,
Skaffold, minikube, and the gcloud CLI command). If you prefer, you can disable this option
by visiting Manage | Settings and setting Autodependencies to Off, and then proceed to install them
manually at your convenience.

Now that we have discussed how to write code either in Cloud Shell Editor or in your favorite IDE
(using VS Code as an example), we will start preparing our environment for testing our code.

Setting up Cloud Logging

One of the first tasks to complete is to properly set up Cloud Logging in our cloud project. This will
make it possible for any service and application running on this project to send logging events that
will be centralized in Cloud Logging (https://cloud.google.com/logging), where we
will be able to filter and display a specific list of events whenever we need them.

Cloud Logging, part of the Google Cloud operations suite (https://cloud.google.com/
products/operations), formerly known as Stackdriver, is a managed real-time logging service

53

https://cloud.google.com/logging
https://cloud.google.com/products/operations
https://cloud.google.com/products/operations

54

Starting to Develop on Google Cloud

that allows us to store, search, and analyze our logs and set up alerts when certain events are received.
Logs can be stored in regional log buckets, and inclusion and exclusion filters can be set up to decide
which events we want to capture. Cloud Logging not only includes events generated by our code and
by cloud platform components but also audit-related messages to help us gain visibility about who
did what, when, and where within our cloud project.

You can quickly access Cloud Logging either by searching for Logging in the search box at the
top, or you can have it pinned in the list of services available by clicking the hamburger icon in the
top-left corner of the screen.

Once you have accessed it, you should see a screen like this:

Google Cloud g anthos-boutique v Q Search loggi
= Logs Explorer "l REFINE SCOPE GO SHARELINK ®) LEARN
= Query Recent (0) Saved (0) Suggested (8) Library save Streamlogs
" ® Last 1 hour Q, Search all fields Resource ~ Logname ~ Severity ~ 10 Show query
HH
1D Log fields I Histogram Actions ~
th
Query results Q_ Find in results (Ctrl F) Correlate by ~ & Download ol
e
: SEVERITY ~ TIMESTAMP CET ~ SUMMARY # EDIT
E > 2822-11-28 11:39:82.897 CET == main GET /cart 545 14(2.57%) | 4846 1 18853 606 | 6.10 0.80
> 2022-11-26 11:39:082.897 CET =2 main POST /cart 558 11(1.97%) | 5796 1 18673 6068 | 6.30 6.68
= > 2822-11-28 11:39:82.897 CET =2 main POST /cart/checkout 186 5(2.69%) | 5408 2 18146 6100 | 6.00 8.00
> 2022-11-26 11:39:082.897 CET 22 main GET /product/BPUK6VBEVE 271 5(1.85%) | 4487 2 15842 3060 | ©.00 8.08
> 2622-11-28 11:39:82.897 CET = main GET /product/1YMWANIN4O 247 4(1.62%) | 4459 1 15848 3000 | 0.0 0.08
> 2622-11-28 11:39:82.897 CET == main GET /product/2ZYFJ3GM2N 276 11(3.99%) | 4166 2 18841 3068 | 0.20 0.80
> 2622-11-28 11:39:82.897 CET = main GET /product/66VCHSJNUP 271 7(2.58%) | 4565 2 18848 3000 | 0.10 8.08
> 20822-11-28 11:39:82.898 CET =2 main GET /product/6E92ZMYYFZ 295 8(2.71%) | 4232 2 15848 3000 | 0.00 0.98
> 2822-11-20 11:39:82.898 CET = main GET /product/9SIQT8TOJO 283 7(2.47%) | 4588 2 15861 3100 | 0.090 8.08
> 20822-11-28 11:39:82.898 CET == main GET /product/L9ECAV7KIM 257 2(@.78%) | 4129 2 15841 3608 | 8.08 0.80
> 2022-11-26 11:39:082.898 CET =2 main GET /product/LS4PSXUNUM 282 4(1.42%) | 4793 2 18040 6060 | ©.00 8.08
> 2822-11-28 11:39:82.898 CET == main GET /product/OLJCESPC7Z 228 7(3.87%) | 4194 1 15842 3600 | 8.00 0.80
> 2022-11-26 11:39:082.898 CET =2 main POST /setCurrency 397 18(2.52%) | 613 2 3849 44 | ©.30 8.60
B > 2022-11-28 11:39:82.898 CET g main -------- e et LR P L P E PPt -
> 2622-11-28 11:39:82.898 CET == main Aggregated 4283 186(2.47%) | 4168 1 18146 3000 | 1.00 0.80
> > % 2022-11-26 11:39:82.898 CET 28 onlineboutique k8s.io -0.k8s.coordination.v1.leases.update .aces/kube-system/leases

Figure 3.11 - The Cloud Logging main screen

Lucky for us, by default all platform logs are automatically ingested and stored with no previous setup
required. GKE workload logs are also automatically captured too and, if we deployed Ops Agent in our
VMs, their workload logs will also be automatically captured. Of course, we can use exclude and include
filters to discard messages that we don’t want or to choose exactly what we want to see in our logs.

Setting up Cloud Logging

Event filtering can be done in two different ways:

o Using include filters, where you specify patterns just for the events that you want to keep, while
the rest are discarded. While this can seem an easy way for keeping only the events that you
are interested in, it can also be a trap since you may be leaving out very important events or
you can miss new important patterns that start being written to Cloud Logging after an update.

o Using exclude filters, where you define patterns for those messages that you don’t want to see, is
the method that I always recommend. While building the list of unwanted patterns can take a
while and will require periodical reviews, any rare or new messages will be captured, providing
better chances of identifying critical issues.

Now that Cloud Logging is ready, let’s discuss some of the best practices for sending the most useful
logging events from our application or service.

Best practices for logging

Implementing proper logging in our applications and services can make a difference when monitoring
and troubleshooting our code since it can help us find the root cause for an issue much faster by
identifying which part of our code failed and what the symptoms were.

First of all, it’s important to adjust the verbosity level, that is, what kind of events we send and how
often we do it. This is because logging too many events or doing it too frequently can also have a
negative performance impact on our application, fill our logs with noise, and increase the cost if the
volume is huge, especially when the application is working as expected, due to the unnecessary use
of resources to write events that nobody will probably ever care to take a look at.

For this reason, having the option to temporarily increase the verbosity of the logger without having to
make changes in the code or even recompile it can be very beneficial once an issue has been detected.
Using either a debug enabled flag, which you can set to true to increase the verbosity, or a
variable that allows customizing the minimum level of logging that will be sent to Cloud Logging (i.e.,
if the logging level is set to warning, then only events of severity warning and critical will
be logged) can help us troubleshoot in both a faster and more efficient way.

In the world of microservices, changing the verbosity level should be a trivial change that can be
applied just to a specific microservice by changing a configuration parameter, and be deployed and
live in a matter of minutes, when we should start seeing more events almost immediately in our Cloud
Logging console.

Another key topic is to make sure that each logging event sent contains all the information needed
to make it useful. A good line of logging should include the following:

o A complete timestamp, including time zone information, especially for architectures distributed
across data centers in different parts of the world

o The name of the microservice or component that sent the event

55

56

Starting to Develop on Google Cloud

o The ID of the process, service, or instance the event refers to, which allows tracing back by
looking at all events sent from that specific component

o A descriptive name of the part of the code that is running, such as a module, function, or
action name

« Information about either the input or output variables, or the intermediate or final status of
the operations being run by the portion of code the event is referring to

A generic line such as the following provides very few details about an error and is virtually useless:
2023-03-24 Data Reader error

But working just a bit to properly format the line and to make sure that all required information is
present can make it much more useful for troubleshooting:

2023-03-24 23:09:14 CET [cache-loader] PID: 12217, File:
12217-cache.txt (Load Cache) Error reading file: Cache file
does not exist

This second example tells us when the issue happened (and in which time zone), what file was affected
(12217-cache. txt), in which component (cache -1oader), which operation was running at
that time (Load Cache), and what was exactly the issue detected (Cache file does not
exist). This information can help us understand where the error happened and start tracing back
in the code to try to identify its root cause and either mitigate it or fix it.

Generating this kind of log event is very easy if you write a small function with parameters that
generates the text for each event and combine it with a global on/off debug or a minimum severity
flag to define in which specific cases an event will be sent. We will see a practical example of this
implementation in the next chapter.

Once our code is ready and our logging configuration is complete, it’s time to start testing it. Since
the testing process is more complex than the rest of the steps covered in this chapter, I moved it to an
appendix at the end of this chapter.

Monitoring the execution of your code

Monitoring is defined in this Google Cloud documentation page (https://cloud.google.
com/monitoring) as the process of gaining visibility into the performance, availability, and health
of your applications and infrastructure.

Introducing observability

In my professional career, I have met quite a few developers who thought that their work was done
when the last system tests were passed, only expecting issues to be reported and fixed as part of the

https://cloud.google.com/monitoring
https://cloud.google.com/monitoring

Monitoring the execution of your code

maintenance phase. They couldn’t be more wrong, because once you test and deploy your code, you
need to put in place a proper monitoring system to ensure that you can answer the following three
questions at any time:

o Isyour code actually running? If the process crashes and you never noticed, then you have a
serious problem for sure.

o Does the performance of my code meet the requirements? Code running doesn’t mean code
running efficiently. You should define and measure Service-Level Indicators (SLIs) (what to
measure) and establish Service-Level Objectives (SLOs) (what those measures should look
like) so you can detect and quickly take action when an issue that is affecting the performance
of your service is detected.

o Isyour code really providing the expected services? Since a running process doesn’t guarantee
that the service it should be providing is actually working, there should be tests in place that
periodically check the end-to-end availability of each service.

Observability, also known as visibility, is a key topic in the area of monitoring because we aim to
obtain the information required to be able to answer these three questions at any moment in time. This
connects with the principles of Site Reliability Engineering (SRE), where being able to detect potential
issues and fix them before our users are affected can make our applications and services better as we
make changes to improve their availability and performance, thus improving their overall reliability.

Gathering information about your services

In order to achieve observability, we need to understand our code and the services it provides and
identify the key metrics that can be used to detect performance bottlenecks, integration issues, or
global availability problems.

For example, if our service analyzes pictures of documents, extracts the text using Optical Character
Recognition (OCR), and stores the result in a text file for each document, we could use the number
of documents pending to be analyzed as a key performance metric, together with the ratio of errors
returned by the Cloud Vision API (used to implement OCR) every 1,000 calls, or the number of output
text files pending to be written to storage.

We could also measure memory and CPU utilization, and how many microservice instances are
running every 5 minutes. This, together with the number of requests analyzed every hour, can provide
us with a basic level of visibility of our service.

In an example like this, there would be different metrics involved:

« Internal metrics, such as the size of the document queue, the number of text files pending to
be written to storage, or the number of hourly errors returned by the API, which can be logged
periodically or obtained by parsing the logs externally.

57

58

Starting to Develop on Google Cloud

Service metrics, such as requests handled hourly, can be obtained by parsing log files externally.

Infrastructure metrics, such as resource utilization, number of processes running, or number
of instances of a microservice. These should be obtained by either using an agent running on
the system or reading metrics provided by a hypervisor or a management API.

As you can see from the list, we need a few components to build a decent monitoring system:

Periodical internal statistics and metrics measured and exported by our own code regarding
health and performance

System statistics and metrics provided by an agent running on the host OS

Infrastructure statistics and metrics provided by a management API or a hypervisor

All this data, stored in a centralized database, will allow us to analyze trends, define a threshold, and
set up alerts when the value of a metric is outside the usual range.

Google Cloud provides a set of tools to make this process easier:

Cloud Monitoring (https://cloud.google.com/monitoring/) is also part of the
Google Cloud operations suite and lets you access over 1,500 cloud monitoring metrics from
Google Cloud and Amazon Web Services using its API (https://cloud.google. com/
monitoring/api/v3), alist that can be extended by adding your own custom metrics. You

can also use it to generate alerts when the value of one or more of your key metrics exceeds a
defined threshold.

Cloud Monitoring also provides predefined and custom monitoring dashboards (https://
cloud.google.com/monitoring/dashboards) that let you combine data from
different sources in the same context and create a visualization of the health of a service or
application. These charts can be useful for operations and troubleshooting teams (including
SREs) in order to quickly identify issues and their root cause, so the Mean Time to Recovery
(MTTR) of the service can be kept to a minimum.

Ops Agent (https://cloud.google.com/monitoring/agent/ops-agent)
is the software that can obtain log events and metrics from Compute Engine instances, thus
improving our global visibility of Linux and Windows VMs.

If you have a big architecture or want a more powerful monitoring system, Google Cloud
Managed Service for Prometheus (https://cloud.google.com/stackdriver/
docs/managed-prometheus) provides a fully managed multi-cloud solution that is
compatible with open source monitoring and dashboarding solutions, including Prometheus
(https://prometheus.io/)and Grafana (https://grafana.com/grafana/).
The benefits of using Managed Service for Prometheus are that you can monitor the whole
infrastructure with a unified solution, centralize all the data gathered from the different sources,
and use powerful queries to obtain and visualize the exact information and insights that help

https://cloud.google.com/monitoring/
https://cloud.google.com/monitoring/api/v3
https://cloud.google.com/monitoring/api/v3
https://cloud.google.com/monitoring/dashboards
https://cloud.google.com/monitoring/dashboards
https://cloud.google.com/monitoring/agent/ops-agent
https://cloud.google.com/stackdriver/docs/managed-prometheus
https://cloud.google.com/stackdriver/docs/managed-prometheus
https://prometheus.io/
https://grafana.com/grafana/

Troubleshooting by debugging, tracing, and profiling your code

you achieve observability, and then set up alerts to be the first one to know when there is
an issue. This solution works for both Kubernetes and VM workloads and has 24 months of
data retention.

As you can see, monitoring our applications and services is very useful, but can also become quite
complicated, especially as the number of microservices and components in use starts to grow exponentially.

While there are numerous third-party solutions specialized in cloud monitoring, Google Cloud
offers a good set of tools that can help us set up our monitoring architecture and, ultimately, use it to
achieve observability of our workloads and ensure that both availability and performance are within
reasonable limits, and get alerted when something wrong happens, so that we can troubleshoot our
code and find out what’s going on.

Troubleshooting by debugging, tracing, and profiling
your code

Our code can have issues of different types. For example, it may just not run as expected due to a bug,
or it may be running apparently fine, but have some operations lasting much longer than initially
expected. In situations like these, we will need to dig deep into our code, follow the execution flow
step by step, and ultimately identify what is wrong and put together a fix.

While this can be easy to do locally, it may become quite complicated in cloud environments, especially
with technologies such as clusters, where observability is limited, and you usually need to resort to
remote debugging techniques if you want to have some visibility. Fortunately, Google Cloud provides a
set of tools that makes these tasks much easier, helping us avoid tedious tasks such as port forwarding,
even if our workload is running on a different cloud provider.

With Cloud Code, for example, you can debug remote containers in the same way as if they were
running locally. Isn’t that great? Let’s describe how debugging works, and well see some real examples
in the next chapter.

As we already discussed, we can either use Cloud Shell Editor or our favorite supported IDE to enjoy
the features of Cloud Code, one of them being to help us debug our code. In the case of container
debugging, all we need to do is to have a local copy of the code running on the container, run the
container in debug mode, and attach our remote debugger to the corresponding Artifact Registry
or pod, including support for Google Cloud, Amazon AWS, and Microsoft Azure registries, and we
will be able to see the real-time execution logs, inspect variables, and set breakpoints as if we were
working with a local container.

Cloud Code will help us through all the steps, including the configuration, if it wasn't already completed,
of both the Skaffold (https://cloud.google.com/skaffold) and the cloudcode.
kubernetes launch configuration.

59

https://cloud.google.com/skaffold

60

Starting to Develop on Google Cloud

Debugging our code can be very helpful because we can check the value of all related variables
around the portion of code where an error is reported, and start tracing back in our code until we
find the line where one or more variables get a wrong value. Since we have access to the source code
locally, we can take study the code, compare it with the original requirements, and, fingers crossed,
ultimately identify what is wrong. We can even change the value of the affected variable in real time,
after setting a breakpoint on the offending line, and verify that it works fine before starting to write
a patch to fix the issue.

This is what a debugging session looks like using VS Code:

® main.py - google_cloud_for_developers - Visual Studio Code

File Edit Selection View Go Run Terminal Help
RUNA.. P NoConv {8 -- @ mainpy @ i el m >~ @ -

\/ VARIABLES @ main.py > & scope_demo

Vv Locals

7 # Global (instance-wide) scope
8

request: 'test' instance_var = heavy computation()

> Globals 9
10 def scope_demo(request):
11 | wwm
12 HTTP Cloud Function that declares a variable.
> WATCH iz win L
' CALLSTACK Paused on breakpoint 14
scope_demo mainpy (234 15 | # Per-function scope
<module> nainpy @R © 16 function var = light CDHIDUt?tan()
17 | return 'Instance: {}; function: {}'.format(instance_var, function_var
18

19 scope_demo("test")

PROBLEMS ~ OUTPU DEBUG CONSOLE + Filter (e.g. text, **/%.ts, **/node_modules/** Y 9

“ BREAKPOINTS No problems have been detected in the workspace.
[Raised Exceptions
Uncaught Exceptions
[0 User Uncaught Exceptions
nair
®@0A0 £ ¢ CloudCode

2 hectorparra-test Ln17,Col26 Spaces:4 UTF-8 LF {§ Python 310.764-bit & [

Figure 3.12 - Debugging in VS Code

There is even a wat ch mode that detects any changes that you perform locally on the code and
automatically redeploys a new version of the container and reconnects to it, making it even faster to
verify that the changes in the code actually fix the problem by testing it on a live cluster. This mode
can, of course, be disabled if you are not comfortable with this process and prefer to decide when
changes should be applied remotely.

If we detect a performance issue, sometimes, we may be able to apply a quick fix by reordering our
code or optimizing loops, but there will be cases where we will need a deeper understanding of which
parts of our code take longer to run, so we can focus on improving their performance. This is when
Cloud Trace and Cloud Profiler come to the rescue!

As we can read on its documentation page, Cloud Trace (https://cloud.google.com/trace)
is a distributed tracing system that collects latency data from our applications and displays it in the

https://cloud.google.com/trace

Appendix - testing your code on Google Cloud

Google Cloud console. We can track how requests propagate through our application and receive
detailed near real-time performance insights.

Cloud Trace automatically analyzes all of our application’s traces to generate in-depth latency reports
to surface performance degradations and can capture traces from all of our VMs, containers, or App
Engine projects.

Indeed, all Cloud Run, Cloud Functions, and App Engine standard applications are automatically
traced and it’s very easy to enable tracing for applications running elsewhere.

Cloud Profiler (https://cloud.google.com/profiler/docs) is a statistical, low-overhead
profiler that continuously gathers CPU usage and memory-allocation information from our production
applications. It attributes that information to the application’s source code, helping us identify the
parts of the application consuming the most resources.

The main benefit of combining these two tools is that they provide performance observability, helping
us understand which parts of our architecture in general and our code in particular are degrading
the global performance or eating too many resources. This information is especially valuable in a
cloud environment because we can easily differentiate which performance issues are being caused by
infrastructure components, and take strategic decisions to mitigate them, and which ones are caused
by our code, and in that case, work on replacing specific libraries or improving the performance of
specific portions of code to make more reasonable use of the allocated resources.

A well-performing application will not only provide a faster service but also help our organization
save money by reducing the number of resources required, being able to serve more users with the
same resources it used before being optimized.

We will see practical examples of debugging, tracing, and profiling for each of the options to run our

code on Google Cloud in the next chapter.

Appendix - testing your code on Google Cloud

I added this section as an appendix because testing is a harder concept that requires more thought
and customization, so I consider this as an extra effort that will be worth your while.

When we speak about testing, there are a few basic concepts that we should take into account, as this
Google Cloud documentation page mentions: https://cloud.google.com/functions/
docs/testing/test-basics.

We should ensure that our code works properly from different perspectives. Let’s introduce the three
types of tests.

Types of tests

An important concept to keep in mind is that a portion of code, even if it implements a full service,
needs to be tested from different points of view before we can say that it fully works as expected. And

61

https://cloud.google.com/profiler/docs
https://cloud.google.com/functions/docs/testing/test-basics
https://cloud.google.com/functions/docs/testing/test-basics

62

Starting to Develop on Google Cloud

for this to be possible, we need to put together a list of tests that, when passed, will confirm that our
code is functional in three different scenarios: on its own, as part of a bigger workflow, and as part
of a whole system.

First, unit tests help us test code on its own, just taking into account its expected functionality, the
edge cases, and assumptions that we considered at the time when the code was written. We can verify
this by providing inputs to the code and comparing the results obtained against those expected.

Unit tests are defined by developers to ensure that changes in code don’t break basic functionalities.
In this phase, we do not integrate our code with other components, but we rather replace them with
mocks and emulators.

If we think of a car, a unit test would involve testing a tire or the brake pedal separately from the rest
of the car, even those parts that usually interact with them.

Then, integration tests help us verify that our code integrates correctly with other services and
components, which means that mocking must be kept to a minimum and we need to build end-to-
end tests involving any other components and cloud services that are used to provide its functionality.

Integration tests help us validate code for a microservice as a part of a bigger workflow, service, or
operation, and verify that it communicates properly with the rest of the microservices and components
involved. The integration with any external platform services and components used by the code to
be tested is also validated by identifying end-to-end operations where parameters are provided and
a final response is provided after following a specific workflow, making it possible to detect whether
either an issue in our code or an issue or change in another component made the whole operation
fail or provide a response different from the one expected.

In the example of a car, an integration test could be used to validate the integration of all the components
of the braking system, including the expected response of a car when we hit the brake pedal until the
expected outcome happens (wheels no longer move and the car stops).

Finally, system tests validate the whole functionality of an application or service. We can understand
system tests as a series of integration tests run together, and sometimes involving connections between
the operations validated using integration tests. These tests help us validate that the whole system,
including all its services, meets the defined business requirements.

In the case of Cloud Code, some components may be reused in a different part of the architecture,
and system tests would validate each of these uses, to make sure that all of these components are
working as expected.

In the example of a car, we should run tests for all elements and features of the car: lights, speed and
power, security, safety, and many others. As you can see, as we move from unit to integration, and
from integration to system tests the complexity increases, as does the number of components involved
and the time required to complete them.

Appendix - testing your code on Google Cloud

Recommendations and best practices for testing your code

As you can see after reading the previous section, testing can become quite complicated as our
architectures begin to grow, and automating the testing process can help us save a lot of time and
eliminate human errors, helping us detect issues faster.

But before we are able to actually implement this automation for tests, we should take a few tips and
best practices into account.

When possible, separate code and configuration. The main reason for this suggestion is that sometimes
issues can be fixed just by making a change in the value of one or more configuration parameters,
and it can be much more time-consuming if you need to rebuild the code than if you can just make a
change in a JSON or XML file, or an environment variable and restart the service (or even make the
service reload its configuration without having to restart it).

Since some of the configuration parameters may include passwords and other information that should
be properly protected, you can use Secret Manager (https://cloud.google.com/secret-
manager) to securely store sensitive information and retrieve it.

Another good practice is to use hermetic builds (https://sre.google/sre-book/release-
engineering/#hermetic-builds-ngslhnid), meaning that your builds are consistent
and repeatable, that is, not dependent on the version of the tools running on the build machine, but
depending only on known versions of compilers and libraries. This will provide a controlled environment,
where the same build process for the same code version in two different build machines will provide
identical results. This type of environment makes testing much easier because we avoid failures caused
by external components, often not under our control, that may complicate troubleshooting a lot.

It’s also strongly recommended to implement a proper retry strategy (https://cloud.google.
com/storage/docs/retry-strategy) in your code. An API call failing once doesn’t mean
that our code doesn’t work and, as we discussed earlier in the book, all code in general, but code to
be run on the cloud in particular, should be ready for failures and configured to retry any operation
that fails, whether it’s an idempotent operation or not. Concepts such as exponential backoff, where
the waiting time between consecutive retries grows exponentially, can help our code elegantly handle
temporary failures while eventually passing all tests and being resilient when deployed in production.

Finally, all the aforementioned suggestions will make it easier for you to implement Continuous
Integration and Deployment (CI/CD) pipelines to complete both your unit tests and your integration
tests on Google Cloud, implementing what is known as continuous testing. Cloud Build (https://
cloud.google.com/build) can run your tests on an ongoing basis, helping you to ensure that
your code keeps on working as expected and that all dependencies are up to date.

We will discuss practices such as exponential backoff and concepts such as continuous testing, as
well as go through practical examples, in the next chapters of the book, where we will look into the
different options to test, run, and troubleshoot code on Google Cloud.

63

https://cloud.google.com/secret-manager
https://cloud.google.com/secret-manager
https://sre.google/sre-book/release-engineering/#hermetic-builds-nqslhnid
https://sre.google/sre-book/release-engineering/#hermetic-builds-nqslhnid
https://cloud.google.com/storage/docs/retry-strategy
https://cloud.google.com/storage/docs/retry-strategy
https://cloud.google.com/build
https://cloud.google.com/build

64

Starting to Develop on Google Cloud

Summary

In this chapter, we covered the tools that Google Cloud provides for the different phases of software
development, and discussed their features and how they can be of help when writing, running, testing,
and debugging code to be run on the cloud.

First, we introduced Cloud Shell and Cloud Shell Editor and mentioned how Cloud Code can help us
integrate code writing and testing for different Google Cloud products. We also covered alternative
IDEs, such as VS Code, that Cloud Code is also compatible with, and then talked about Cloud Logging
and the importance of setting up proper logging in our applications.

Then, we talked about the need for proper monitoring to achieve observability and closed the chapter
by explaining the available tools for troubleshooting issues, including debugging, tracing, and profiling
our code in order to fix availability issues or to improve its performance. Finally, we enumerated the
different types of tests and provided some tips on how to set up a good test environment.

This is the last chapter with a more theoretical focus. Starting with the next one, we will deep dive
into the different options for running code on Google Cloud, with a lot of practical examples where
we will put into action all of the topics that we covered in these first three chapters.

Further reading
To learn more about the topics covered in this chapter, please visit the following links:

o Tips and Tricks for using Google Cloud Shell as a Cloud IDE (https://dev.to/ndsn/
tips-and-tricks-for-using-google-cloud-shell-as-a-cloud-ide-4cek)

o Building idempotent functions (https://cloud.google.com/blog/products/
serverless/cloud-functions-pro-tips-building-idempotent-functions)

o Concepts in service monitoring (https://cloud.google.com/stackdriver/docs/
solutions/slo-monitoring)

o Setting SLOs: a step-by-step guide (https://cloud.google.com/blog/products/
management-tools/practical-guide-to-setting-slos)

o Observability in Google Cloud (https://services.google.com/fh/files/misc/
observability in google cloud one pager.pdf)

https://dev.to/ndsn/tips-and-tricks-for-using-google-cloud-shell-as-a-cloud-ide-4cek
https://dev.to/ndsn/tips-and-tricks-for-using-google-cloud-shell-as-a-cloud-ide-4cek
https://cloud.google.com/blog/products/serverless/cloud-functions-pro-tips-building-idempotent-functions
https://cloud.google.com/blog/products/serverless/cloud-functions-pro-tips-building-idempotent-functions
https://cloud.google.com/stackdriver/docs/solutions/slo-monitoring
https://cloud.google.com/stackdriver/docs/solutions/slo-monitoring
https://cloud.google.com/blog/products/management-tools/practical-guide-to-setting-slos
https://cloud.google.com/blog/products/management-tools/practical-guide-to-setting-slos
https://services.google.com/fh/files/misc/observability_in_google_cloud_one_pager.pdf
https://services.google.com/fh/files/misc/observability_in_google_cloud_one_pager.pdf

Part 2:
Basic Google Cloud Services
for Developers

One of the benefits of running our code on Google Cloud is that we no longer need to use servers. This
part of the book will cover three different options for running your code using a serverless approach.

We will then deep-dive into the concept of containers and how they can be used to abstract even more
of our code from the underlying infrastructure.

Finally, we will explore how Anthos can make it easy to design hybrid and multi-cloud architectures,
while at the same time, it provides global observability and the ability to move any workload from
one provider to another, including private on-premises clusters and multiple public cloud providers,
so that you can make the most out of each option.

This part contains the following chapters:

o Chapter 4, Running Serverless Code on Google Cloud - Part 1

o Chapter 5, Running Serverless Code on Google Cloud - Part 2

o Chapter 6, Running Containerized Applications with Google Kubernetes Engine
o Chapter 7, Managing the Hybrid Cloud with Anthos

4

Running Serverless Code on
Google Cloud - Part 1

After three chapters without having written a single line of code, you will probably be looking forward
to some hands-on action happening as soon as possible. As you will see, it was worth the wait, since
I introduced a lot of concepts that we will be using in this and the following chapters.

This chapter will cover two of the serverless options available for running your code on Google Cloud,
while the next will cover the third. You will learn what serverless means and then I'll introduce each
of the serverless options, together with an example that we will make run in each option so that we
can compare the implementation, as well as tips for running your code on Google Cloud using either
Cloud Functions or App Engine in this chapter, or Cloud Run in the next one.

Finally, we will discuss their similarities and differences and when you should choose each.
We'll cover the following main topics in this chapter:
o Introducing serverless architectures

o Using Cloud Functions to run your code

o Using App Engine to run your code

Let’s get started!

Technical requirements

If you want to complete the exercises included in this chapter, all you will need is access to the Google
Cloud console, a Google Cloud project with either billing enabled or some available free credits, and
the code files for this chapter, which are available in the code repository for this book: https://
github.com/PacktPublishing/Google-Cloud-for-Developers.

https://github.com/PacktPublishing/Google-Cloud-for-Developers
https://github.com/PacktPublishing/Google-Cloud-for-Developers

68

Running Serverless Code on Google Cloud - Part 1

Introducing serverless architectures

For decades, the infrastructure required to run code included an Operating System (OS) running on
top of dedicated hardware, leading to a tremendous waste of computing resources.

While virtualization started in the late 1960s for mainframes, it wasn't until the early 2000s that it
became generally available and users could finally share resources, which started to simplify the
original scenario. Virtualization created multiple logical servers on top of a shared pool of computing
power, allowing for allocated resources to be better adjusted, and providing services to more users
with the same or less hardware.

The use of containers, whose predecessors we've been using since the 1970s, exploded in popularity
when Docker emerged in the early 2010s. Using containers reduces the contents of a deployment
package to just the OS libraries and the dependencies that our code requires, making packaged
applications much smaller and also portable, with a higher level of abstraction because a common
host OS is shared by all the applications or services running in containers.

The use of these and similar technologies led to the appearance of different levels of abstraction
of hardware and OSs, eliminating the complexity of setting up and maintaining the underlying
infrastructure, among which I would like to highlight the following:

» Function as a Service (FaaS): Runs a function of code in an environment that scales according
to the traffic

« Platform as a Service (PaaS): Runs a frontend or backend application and adjusts the resources
according to the traffic and the load

o Container as a Service (CaaS): Runs a container and adjusts the number of instances depending
on the load

Google Cloud offers three different products to run our code using serverless architectures, where we
care about packaging and deploying our code and Google Cloud takes care of all the rest. Patching,
maintenance windows, and updates are no longer taking most of our time, and we can now dedicate
our efforts to writing even better code, focusing on innovation at its best. Doesn’t this ring a bell? I
hope it does...

Let’s discuss each of the three options available to run your code using a Google Cloud serverless
product: Cloud Functions, App Engine, and Cloud Run.

Using Cloud Functions to run your code

Using Cloud Functions (https://cloud.google.com/functions) is one of the simplest
ways to run your code on Google Cloud, using the benefits of a Faa$ platform. Let’s explain what it
is and how it works.

https://cloud.google.com/functions

Using Cloud Functions to run your code

Introducing Cloud Functions

The concept of Cloud Functions, and the reason for its name, is that you can create a code function
in your favorite programming language and use a trigger to execute it on demand. Personally, I love
the idea of packing my code, specifying the dependencies in a text file, deploying it, and... voila, it is
ready to run in a matter of minutes with no hassle.

The choice of programming language is quite extensive, including Node.js, Python, Go, Java, .NET,
Ruby, and PHP at the time of writing. You can see the full list of supported languages and versions
here: https://cloud.google.com/functions/docs/concepts/execution-
environmentfruntimes.

There are different triggers available to get your code to run:

o HTTP/HTTPS: Make our function react to HTTP requests.

o Cloud Storage: Run our function when a file is uploaded or updated in Google Cloud
Storage (GCS).

o Pub/Sub: React to a new message being received.
o Cloud Scheduler: Integrate our functions with a modern version of cron.

o Cloud Tasks: A great option for repetitive actions with high volumes that supports parallel
calls to Cloud Functions to process noticeably big queues with thousands or even millions of
invocations. Service requests are sent to Cloud Tasks, which handles multiple threads with
automated retries and configurable exponential back-off.

You can read the full up-to-date list of triggers in this section of the official Google Cloud
documentation: https://cloud.google.com/functions/docs/calling.

As you can see, the combination of the most used programming languages and a complete set of
triggers makes Cloud Functions a valid solution for many frontend and backend scenarios.

Let’s list some of the most common combinations, so you can better understand what we can do
with them:

o Run a basic web service: For instance, we can get some parameters from the HT'TP request,
run an operation with them, and return a JSON file with the results. Or, we can even implement
a small web server and return HTML.

o Process files as soon as they are uploaded or modified in GCS: For example, generate a
thumbnail automatically for each new image that is uploaded to a GCS bucket. We can also
use triggers for files being updated, archived, or deleted.

o Handle a queue of requests: For instance, we can translate each of the comments received in
any other language to English during the last hour. We can send hundreds of asynchronous
requests using Pub/Sub messages from another microservice and each of them will be shortly

69

https://cloud.google.com/functions/docs/concepts/execution-environment#runtimes
https://cloud.google.com/functions/docs/concepts/execution-environment#runtimes
https://cloud.google.com/functions/docs/calling

70

Running Serverless Code on Google Cloud - Part 1

processed by a different instance of a cloud function. There are other more efficient architectures
for this kind of situation, as we will discuss a bit later in this chapter.

« Run a workload periodically: For example, train a machine learning model weekly, every
Monday morning. Using Cloud Scheduler to schedule the trigger, we can either use HT'TP
or send a Pub/Sub message every Monday at 6 A.M. to start the cloud function and use the
Vertex AI API to re-train our model.

Note

There are currently two generations of Cloud Functions coexisting at the time of writing
this chapter. I will focus code and comments on the second generation since it is much more
powerful and it’s constantly receiving new features, while the first generation is more limited
and will probably not be updated any longer. You can read more about the differences between
these two generations in this section of the documentation site: https: //cloud.google.
com/functions/docs/concepts/version-comparison.

. J

Now that we have a clearer picture of what Cloud Functions is, let’s discuss how it works and what
the key technical aspects are that you need to know so that you can decide whether it is the best fit
for your development needs.

The following paragraph from the documentation page perfectly describes the inner workings of
Cloud Functions and can lead us to a few interesting discussions (https://cloud.google.
com/functions/docs/building):

When you deploy your function’s source code to Cloud Functions, that source is stored in a Cloud Storage
bucket. Cloud Build then automatically builds your code into a container image and pushes that image to
the Artifact Registry. Cloud Functions accesses this image when it needs to run the container to execute
your function.

So, in summary, we write a function in our favorite programming language, it gets automatically
containerized and associated with a trigger on deployment, and it ultimately becomes a cloud function
that runs on demand when the configured trigger is detected.

Note

Cloud Functions is billed based on how many times it is executed, apart from the costs of any
other Google Cloud products that we may invoke from our code or use as part of the architecture
used to invoke Cloud Functions.

Since its code is run on demand, if we don’t use our Cloud Functions instance for a while, it will be
shut down to save resources (and cost) unless we specify to keep a specific number of instances always
running. This is called zero-instance scaling and means that when we use it again, the first execution
may take a bit longer because the container needs to be cold-started again. You should take this into

https://cloud.google.com/functions/docs/concepts/version-comparison
https://cloud.google.com/functions/docs/concepts/version-comparison
https://cloud.google.com/functions/docs/building
https://cloud.google.com/functions/docs/building

Using Cloud Functions to run your code

account, especially if you will be using Cloud Functions in real-time scenarios, where you should either
define a minimum number of instances to always be running or use some less elegant alternatives.
An example is periodically invoking your Cloud Functions instance to awaken or keep it running, for

example, using a parameter that just wakes up the Cloud Functions instance.

When we deploy a cloud function, there is a set of parameters that we can configure and that will be
key to its performance:

The region where the container will run, which can affect the latency of our users. Of course,
we can replicate cloud functions in different regions.

The programming language chosen to write the code of the function.

The amount of memory to be allocated (and, as we will see later, this also decides the associated
amount of vCPU). The defaults are 256 MiB and .167 vCPU, which is a sixth part of a 2.4
GHz CPU.

The timeout, in seconds, before each execution is automatically killed. The default is 60 seconds.

The maximum number of instances running in parallel, so we can limit the maximum scaling.

When our cloud function needs to handle multiple requests, there are at least two different ways of
doing it:

The first one is quite simple: we just let each instance of our cloud function handle exactly one
request. This makes the design much simpler but may increase the costs since we are billed
by the number of executions and, depending on the scenario, with this approach, there may
be millions.

The second choice is to take advantage of the maximum execution time, which is 540 seconds
for first- and second-generation cloud functions, except for second-generation HTTP-triggered
functions, where they can run for up to 60 minutes and try to run as many complete operations
as possible during that time. This requires a bit more complexity because we should treat each
operation as a transaction and only remove it from the queue, marking it as complete, once
the whole transaction has been successfully executed. But on the other side, it can speed up the
execution time required to process the whole queue, and make your code more cost-effective.

Which of the two approaches should you use? Well, it will depend on your use case and the number

of expected runs every month. You will probably need to make some calculations and compare the
simple approach against the more complex one and decide whether it's worth the extra effort.

Before getting to the example, let’s discuss the concept of a service account, which we will use constantly

in all serverless products.

71

72

Running Serverless Code on Google Cloud - Part 1

Running code using service accounts

When we log in to the Google Cloud console, we have a set of roles and permissions granted to our
account by the admin using Identity and Access Management (IAM), which defines what we can
and cannot do while we interact with the Google Cloud console.

When we need to run code or start a virtual machine, we will need to associate it to an account too,
for the same reason. If we used our own account, it would be inheriting our roles and permissions,
and this could be a source of trouble for different reasons:

o We would be breaking the principle of least security, running code with more permissions than
required, which would be an important security risk

o Ifthe user leaves the organization, we will need to transfer the ownership of all the code running
from the original account, probably update the roles and permissions of the receiver, and finally
redeploy all assets, which would be really inconvenient

Service accounts were created to solve both problems. They are non-interactive accounts that we
use to run services and deployments and that can have roles and permissions assigned to them too.

For example, if we want to run a cloud function, we can configure it to run using a specific service
account. In that case, our code will run authenticated as this service account, and we can use IAM to
grant additional roles that will allow our cloud function to access any additional resources required
to complete its tasks. In this case, the service account would be the identity of the application, and the
associated roles would be used to control which resources the application can access.

A default service account is automatically created with a limited set of permissions in each Google Cloud
project, and it is assigned by default to all deployments. However, those permissions will often not be
enough, and in that case, we can create our own service account, use IAM to grant it the minimum
set of permissions required by our code to complete its tasks, and redeploy the cloud function using
this new service account. This same approach can be used with any other serverless product.

There are some differences between service accounts and user accounts that you should be aware of:

o While user accounts must have a password set (and should have a second authentication factor
enabled for a higher security level), service accounts don't use passwords and cannot be used
to log in using a browser or cookies.

Instead, we can generate public and private RSA key pairs to authenticate service accounts
and sign data.

« Users or service accounts can impersonate another service account if they are granted specific
permission to do so, which can significantly simplify permission and account management.

Using Cloud Functions to run your code

o Service accounts are totally separated from Google Workspace domains, which means that
globally shared assets in a domain will not be shared with service accounts and, vice versa,
assets created by a service account will not be created in your Workspace domain.

You can read more about service accounts on this page of the official documentation site: https: //
cloud.google.com/iam/docs/service-accounts

Now, finally, it’s time to start writing our first cloud function.

Writing, deploying, and running a cloud function

I will be running away from “Hello world!” examples in this book and will try to include instead useful
examples that can run using the Free Tier.

(R
Note

Google Cloud provides Free Trial and Free Tier (https://cloud.google.com/free)
options for some of its services, free of charge every month. Knowing the details about these
can be very interesting, since you can use them to run the examples provided in this book, test
new services, reduce your costs, or host your resume for free!

. J

In the case of Cloud Functions, the following services are included in the monthly Free Tier:

« 2 million invocations per month (including both background and HTTP invocations)
o 400,000 GB-seconds and 200,000 GHz-seconds of compute time

o 5 GB network egress per month

Now, let’s make use of our Free Tier to learn how Cloud Function works.

The example that I mentioned earlier was a website that uses parameters to send a response, but I also
mentioned that it could be used as a web server. Let’s combine both ideas and build a cloud function
to host our resume so that we can share it with anyone interested and provide a certain degree of
personalization for each recipient.

You can use this example to highlight your knowledge of Google Cloud. What would be a better way
to do so than using a cloud function to share your resume with interviewers and hiring managers? We
will later implement this example with the other serverless products too, so we can see the similarities
and differences between platforms.

If you remember the concept, a cloud function has an entry point, a function, which is run when it is
triggered by an event. Taking this information into account, we can organize our code so that it can
be compatible not only with the deployment of a Cloud Function but also with unit tests.

73

https://cloud.google.com/iam/docs/service-accounts
https://cloud.google.com/iam/docs/service-accounts
https://cloud.google.com/free

74

Running Serverless Code on Google Cloud - Part 1

For this, we can include a main function that will never be executed on the cloud but will allow testing
the code using the command line. We can also divide our code into functions that implement a separate
part of the whole process so that we can later test one or more of those parts whenever we need to.

Let me show you how to do this using our example about resumes, which includes the following actions:

1. Load an existing HTML resume template from GCS.

2. Check passed parameters and build a customized header message.

3. Replace the placeholder in the resume template with a customized message.
4

Return the full resume to the requestor.

So, if we split the code into four functions, each taking care of one of these topics, we can have different
functionalities that we can test separately. We can even include unit tests as part of the cloud function
in our repository. They will be used for local testing purposes. A main function in the Python file
will enable us to run the full code, or just a part of it, using the command line, which can speed up
testing even more.

I will now show you how I got to the files included in the repository for this chapter. You may refer
to the Cloud Functions directory to see the whole code, which I will reference in the next part
of this section.

First, let’s create an HTML file for the resume. I will name it english.html and include a few lines
and an externally hosted picture. This is just a simple example. 'm sure you can design a much better
resume, in terms of both content and design. I have included a placeholder tagged as ##RESUME
HEAD## at the top of the HTML file that we will replace with a proper title right before returning
the full resume to the requestor.

The HTML file looks like this when loaded on a browser. Notice how the first line has been personalized
for a fictional interviewer:

Using Cloud Functions to run your code

(Specially prepared for John Smith from StarTalent)

Jane Doe

211, Short St
New Jersey 07070
USA

Skills

s Expert developer on Google Cloud.
¢ Certified Red Hat System Administrator.
+ Team Player and good Leadership skills.

Education

e MBA at BizzNezz School.
s Bachelor of Science at Kalsh University.

Professional Experience

s 2021 - Today: Cloud Admin at Storming Systems.
e 2018 - 2021: IT Specialist at Loyal Bank.
e 2017 - 2018: Trainee at Computer Land.

Figure 4.1 - A preview of the resume in a web browser

Our cloud function will read the HTML template from GCS, customize the header depending on the
parameters received, and return the final HTML to the caller, acting as a web server. This is a portion
of the code that we should use for that purpose inside main . py:

def return resume (template, name, company) :
resume_html = load resume (template)
resume header = build resume header (name, company)
resume html = replace resume_ header (resume html,
resume_ header)

return resume html

75

76 Running Serverless Code on Google Cloud - Part 1

We will now code three more functions to load the resume, build the customized header, and replace
it in the raw HTML:

Imports the Google Cloud client library

from google.cloud import storage

Name of the bucket storing the template files
BUCKET NAME = "resume_ xew878wée"

def load resume (template) :
Instantiate a Cloud Storage client

storage client = storage.Client ()

Open the bucket
bucket = storage client.bucket (BUCKET NAME)

And get to the blob containing our HTML template
blob = bucket.blob(template)

Open the blob and return its contents
with blob.open("r") as resume file:

return (resume file.read())

def build resume header (name, company) :
custom header = ""
if name or company:
custom _header = " (Specially prepared for "
if name:
custom _header = custom header + "" + name +
""
if company:
if not name:

custom_header = custom header + "" + company
+ ""

else:

Using Cloud Functions to run your code

custom header = custom header + " from " +
company + ""
custom header = custom header + ")"

return custom_ header

def replace resume header (resume html, header text):
return resume html.replace ("##RESUME HEAD##", header text)

Now, all we need is to add the function that will be triggered by each HTTP request, together with
amain function. I have written the trigger function as a wrapper so we can also run unit tests for
each functionality, and added the main function so we can test the code just by running it from the
command line:

import functions framework

DEFAULT TEMPLATE = "english.html"

@functions framework.http

def return resume trigger (request) :
template = request.args.get ('template', DEFAULT TEMPLATE)
name = request.args.get ('name', None)
company = request.args.get ('company', None)

resume_html = return resume (template, name, company)

def main() :
template = "english.html"
name = "John Smith"
company = "StarTalent"
resume_html = return resume (template, name, company)

print (resume html)

if mname == " main ":
main ()
Using this code, we can run quick checks from the command line and also write and run unit tests,

checking for the expected output of each function separately or all of them in sequence, in order to
verify that all the functionality is intact after making changes to our code.

Once all tests are successfully passed, our cloud function should be ready for testing.

77

78

Running Serverless Code on Google Cloud - Part 1

Testing a cloud function

As we will see shortly, deploying a cloud function can take a few minutes. While it’s a straightforward
process, if you want to follow a typical development cycle, first testing your code, then identifying
issues, then getting them fixed in your code and re-iterating, it can become quite frustrating and
ineflicient because you will be spending more time staring at the screen waiting for the deployment
to complete rather than coding or testing your code.

To make this process easier, Google Cloud provides a Cloud Functions emulator, which allows us to
set up a local server that will simulate what the actual product does and enable fast testing by directly
using our local code to serve requests. This way we can run tests and just deploy the final version
once all of them pass locally. This doesn’t mean that we should bypass tests on the cloud but will just
make the first iterations much faster.

Installing the emulator is extremely easy. Just use the following pip command:
pip install functions-framework

Once the installation process is completed, you can change to the directory where the main source
code file for your cloud function is located and run the emulator using this command:

functions-framework --target=return resume trigger

This will start a local server on port 8080 (we can customize the port, of course) that will execute the
return resume_ trigger function on each connection and will return the results to the caller.

We can invoke the cloud function, if it is triggered using HTTP, as was the case for our resume example,
running the following command and using double quotes to enclose the URL:

curl "http://localhost:8080?template=english.
html&name=John+Smith&company=StarTalent"

If you need to trigger background cloud functions that use Pub/Sub or GCS events, you can read how
to do it on the following documentation page: https://cloud.google.com/functions/
docs/running/calling

Notice how I'm passing the values for both name and company by double quoting the full URL so
that all the parameters are passed to the server. If you don’t use double quotes, your server will only
receive the first parameter because the ampersand will be interpreted by the shell as the end of the
command and no user or company name will be printed.

You should now see the HTML content of your resume printed on your screen, which you can validate
by loading the URL in a browser. If there are any issues or you see anything that you don’t like, just
make the appropriate changes and try again. Once you are happy with the resume, we will be ready
to deploy the cloud function to Google Cloud.

https://cloud.google.com/functions/docs/running/calling

https://cloud.google.com/functions/docs/running/calling

Using Cloud Functions to run your code

Important note

Each time you make changes to your code, you will need to stop and restart the test server for
the code to be refreshed. Having a script to do this could be quite convenient.

If you are using other Google Cloud services, such as Pub/Sub, my recommendation is to find out
whether an emulator exists from the documentation website before using real services for your tests,
especially if your code triggers a service hundreds or thousands of times, so you don't incur significant
costs. For example, if your code makes use of Pub/Sub, you can read more about its emulator in this
section of the documentation: https://cloud.google.com/pubsub/docs/emulator.

Deploying a cloud function

The last step before having a cloud function ready for use is deploying it and we will need a deployment
package to do it.

A deployment package will include at least one file with the source code, or multiple ones if we are
using modules. We can also structure our code in subdirectories, and it will also work as soon as the
imports are properly specified and resolved in the code.

We should also include any external or added files that our cloud function is using, such as the HTML
file for the resume in our previous example. Please notice that these files will not be directly exposed
with a public URL but we will need to read them from our code, instead.

Finally, when using Python as the programming language for Cloud Functions, as I will do for the
examples in this book, we should use a file named requirements . txt to specify which external
libraries we are using, so they can be installed before our function is executed. If we miss any libraries,
the code will just fail to run because the Python interpreter will not be able to resolve that dependency.

Since pip is used to install the updates, the requirements file should contain one line per package,
each including the package name and, optionally, the requested version. If a version is not specified,
the latest one available will be installed.

The following is an example of a requirements . txt file for a cloud function requiring the use
of the latest version of the GCS library and version 2.20.0 of requests:

requests==2.20.0

google-cloud-storage

79

https://cloud.google.com/pubsub/docs/emulator

80

Running Serverless Code on Google Cloud - Part 1

(1
Note

If you are wondering whether and why you should be including the required version for all
libraries in your requirements file, you can have two different scenarios: first, if you don’t
specify the versions, each deployment will always use the latest versions of all libraries. While
this can seem to be beneficial for the sake of security or to get bugfixes and optimizations
deployed as soon as they are available, it can also mean breaking changes in major version
updates, including changes in the list of expected parameters and other scenarios that you will
probably prefer to avoid.

On the other hand, specifying the requested version for all libraries guarantees that the code
will always be using the same version of the libraries, but will force you to periodically test the
newest versions and update the requirements file to prevent the versions used becoming out
of date and even no longer being available.

In my experience, a version freeze will cause you fewer headaches because issues due to updated
libraries can happen at any time and they may surprise you in the worst moment when you don’t
have time or resources to deal with them. Freezing the versions will allow you to decide how
often and when you will perform the library updates. This is an added reason why having a nice

set of automated tests can help you quickly verify whether, after updating your requirements
file to use the latest versions of the libraries, your code still passes all the tests.

. J

You can read more about specifying dependencies, including the list of packages preinstalled in Cloud
Functions using Python, on the following documentation website: ht tps://cloud.google.
com/functions/docs/writing/specifying-dependencies-python.

Our example uses GCS to host the HTML templates, so the first thing that we need to do is to create a
new bucket and upload the template file there. You can use the following address and then select your
project using the drop-down menu at the top, if required: ht tps: //console.cloud.google.
com/storage/browser. Once there, just click on the Create button, and choose a unique name
for your bucket, such as resume xew878w6e, which I used in my example. Bucket names are
globally unique, so sometimes it can take a while until you find a name that is not in use. Write down
the name because you will need to fill it in the Cloud Function’s main. py file.

Once you confirm the name, you can select Region hosting, since the simpler option will work for our
test, and leave all the other options at their default values. Click on the Create button and confirm the
prevention of public access, since we will use the bucket to store files internally. Now, you can use the
Upload files button to select and upload the english.html template file from the source directory.

Once the template has been uploaded, in order to deploy the cloud function, we will just need a
directory containing the main.py and requirements. txt files. Edit main. py and replace
the value of BUCKET NAME at the top of the file with the name of the bucket that you just created.
Save the file and now it’s time to prepare our environment for the deployment.

https://cloud.google.com/functions/docs/writing/specifying-dependencies-python
https://cloud.google.com/functions/docs/writing/specifying-dependencies-python
https://console.cloud.google.com/storage/browser
https://console.cloud.google.com/storage/browser

Using Cloud Functions to run your code

First, we will need gcloud, the Google Cloud command-line utility, to be installed. It comes
preinstalled in Cloud Shell but if you use any other environment where it is not installed yet, just run
this command or a similar one compatible with your development environment:

sudo apt-get update && sudo apt-get install google-cloud-cli
If gcloud was already installed, you can search for available updates by running this command:
gcloud components update

Now, it’s time to authenticate ourselves and set the default Google Cloud project for the gcloud utility
by running the following two commands and following any instructions that they specify:

gcloud auth login

gcloud config set project <your project name>

If we have any extra files in our Cloud Function’s directory, we can prevent them from being deployed
to the cloud using a . gcloudignore file, so that unit tests, temporary files, and similar examples
never get deployed. Each line of this file contains either a complete file or directory name or a pattern
that will be checked against each filename before deciding whether it will be deployed or not.

This would be the sample content of a . gcloudignore file to filter out Git files:

.git

.gitignore

You can read more about this feature by running the following command:
gcloud topic gcloudignore

Check whether gcloudignore is enabled by running this other one:
gcloud config list

Finally, enable it, if it wasn’t already, using this final one:
gcloud config set gcloudignore/enabled true

Now, we are ready to deploy the cloud function using the following multi-line deployment command,
which includes default values for the most common parameters:

gcloud functions deploy resume-server \
--gen2 \

--runtime=python310 \
--region=us-centrall \

--memory=256MB \

81

82 Running Serverless Code on Google Cloud - Part 1

--gsource=. \
--entry-point=return resume trigger \
--trigger-http \

--allow-unauthenticated

Please take a look at the command, so you can understand the different configuration options we are
setting here:

« The function name will be resume-server

« It’s a second-generation function

o It will be running from the us-centrall region
o It will be limited to 256 MiB and .167 vCPU

« The source code to be deployed will be in the same directory from where we are running the
deploy command

« The function to be executed by the trigger will be return resume trigger
o This is an HTTP-triggered function

« Weare allowing unauthenticated users to run this cloud function, that is, making it public and
open for anyone to run it if they know the URL to use

All these options, and many more, can be customized using the different command-line parameters
of the build command, as described in the corresponding documentation section: https://
cloud.google.com/sdk/gcloud/reference/functions/deploy

The first time that we run a deploy command, we will be requested to enable the APIs for Cloud
Functions, Cloud Build, Artifact Registry, and Cloud Run if they weren't already so that the deployment
can be completed. Just answer y for each of the requests and the deployment will begin:

API [artifactregistry.googleapis.com] not enabled on project
[<your project name>].

Would you like to enable and retry (this will take a few
minutes)? (y/N)? y

Once you answer positively, you will see how Cloud Run is containerizing your cloud function and
the console will keep you informed about each step until the trigger URL will be displayed.

We will be using the Free Tier to store our cloud functions without additional costs unless you already
have many other cloud functions deployed in your project and exceed the free quota. An excerpt of
the output should look like the following:

foool

Preparing function...done.

https://cloud.google.com/sdk/gcloud/reference/functions/deploy

https://cloud.google.com/sdk/gcloud/reference/functions/deploy

Using Cloud Functions to run your code

OK Deploying function...
[...]Done.

You can view your function in the Cloud Console here:
[...]

timeoutSeconds: 60

uri: https://python-http-function-4slsbxpeoa-uc.a.run.app

As you can see in the preceding code, my external URL for the cloud function would be https: //
python-http-function-4slsbxpeoa-uc.a.run.app. But since it’s unique for each
project, you will get a different one for yours, and loading that URL in a browser will actually display
our sample resume:

@@ My Resume X +

= C { @& python-hitp-function-4slsbxpeca-ucaru. v [l @ Incognito (2)

(Specially prepared for John Smith from StarTalent)

Jane Doe

211, Short St

New Jersey 07070
US4

Skills

+ Expert developer on Google Cloud.
» Certified Red Hat System Administrator.
* Team Player and good Leadership skills.

Education

* MBA at BizzNezz School.
s Bachelor of Science at Kalsh University.

Professional Experience
s 2021 - Today: Cloud Admin at Storming Systems.

s 2018 - 2021: IT Specialist at Loval Bank.
o 2017 - 2018: Trainee at Computer Land.

Figure 4.2 — The resume returned by the cloud function

83

84

Running Serverless Code on Google Cloud - Part 1

We can customize the header by passing the parameters, building a URL like this: https://
python-http-function-4slsbxpeoa-uc.a.run.app/?template=english.
html &name=John&company=StarTalent. And voila, our cloud-based resume server is
now online!

Of course, this sample cloud function could benefit from a lot of improvements. These are just some
of the ideas I can think of, but I'm sure you will have many more:

o Encoded URLs, so that people won’t see their name passed as a parameter,
for example, using Base64 to hash the parameters and hide them in a
URL like this: https://hostname/?resumekey=dGVtcGxhd
GU9ZW5nbGlzaC50dG1lsIm5hbWU9SmMO0biZjb21wYW55PVNOYXJUYWx1bnQ=. This
sample URL contains the exact same parameters used in the preceding example and would
display the resume customized for John Smith from StarTalent using the English template.

o Allow online real-time What You See Is What You Get (WYSIWYG) editing of the content
of the resume, using GCS to store each different template and revision.

Note

Second-generation Cloud Functions URLSs are non-deterministic at the time I'm writing this,
but this is on the roadmap and is quite useful since you can guess the URL just by knowing the
region, the name of the Google Cloud project, and the name of the cloud function.

Once a cloud function has been deployed, we can see a lot of information about it in the Google
Cloud console. The Cloud Functions section can always be accessed using the direct link https://
console.cloud.google.com/functions/list, or we can use the direct link that appears
when we deploy a function, after the text You can view your function in the Cloud Console here:.

Once you open the preceding link, you will see a list of all the cloud functions deployed, including
information such as the function name, the region, the runtime version, memory allocated, or which
function is executed once it’s triggered. At the end of each line on the list, there is an icon with three
dots that allows quick access to see the logs, allows you to make a copy of a cloud function, and can
also take you to the Cloud Run-associated service.

Clicking on a function name will take you to another screen with a tabbed interface. Let’s summarize
what you can see in each of those tabs since they can be extremely useful.

The Metrics tab will show you some interesting numbers about your cloud function, such as the
number of invocations per second or the number of active instances, which is useful to see the traffic
in real time.

In order to simulate real traffic, I used the hey command-line tool, which is available in Cloud Shell
and can be used for this purpose. Just invoking it by passing a URL as a parameter will generate 200
requests, but you can customize it using many other options. For my test, I used this Bash one liner,

https://console.cloud.google.com/functions/list
https://console.cloud.google.com/functions/list

Using Cloud Functions to run your code 85

which generates random traffic, and left it running. If you want to use it, just replace <YOUR-CLOUD-
FUNCTION-URL> with the URL to your cloud function:

while sleep $[(SRANDOM % 300) + 1]s; do hey https://<YOUR-
CLOUD-FUNCTION-URL>/; done

These were the metrics I got after an hour:

= GoogleCloud 32+ Google Cloud for Developers v | Q Search Products, res..
(] Cloud Functions < Function details 2 EDIT @ DELETE [coPY S®LEARRN C
@ resume-server (Deployed at Nov 26, 2022, 9:48:34 AM) » Powered by Cloud Run @

resume-server
URL: https://resume-server-4slsbxpeoa-uc.a.run.app [4 ﬁ °

METRICS DETAILS SOURCE VARIABLES TRIGGER PERMISSIONS LOGS TESTING
« Thour 6hours 12hours 1day 2days 4days 7days 14days 30days | Confioure dashboard - W
Execution time : Memory utilization :
Milliseconds/call MB/call
500ms 75MiB

g Ay,

T T T T T T
UTC+1 10:20AM 10:30AM 10:40 AM 1050 AM UTC+1 10220AM 10:30 AM 10:4D0AM 10:50 AM 11:00 AM

—® 50% 3.27ms —H 95%: 20.8ms —& 50%: 69.2MiB —H 95%: 73.13MiB
—® 99% 29.76ms —® 99%: 73.76MiB
Active instances Qo= 1

30

20

IR eI

T T T T T T
utc+ 10:15 AM 10:20 AM 10:25 AM 10:30 AM 10:35 AM 10:40 AM 10:45 AM 10:50 AM 10:55 AM 11:00 AM 11:05 AM

—® uys-centrall: 18

Figure 4.3 - The metrics information for our resume cloud function

The preceding graphs are interesting because you can see how Cloud Functions is scaling up when
the 200 requests are received and then goes back to 0. You can also see how long requests take and

86

Running Serverless Code on Google Cloud - Part 1

how much memory is used: there is some variability in the numbers due to Cloud Run warming up
after a cool-down. All this can help us better understand how our code runs, and what we can do to
improve its behavior.

There are two quite useful metrics to look at: execution time and memory utilization. Execution time
allows us to understand whether our cloud function is well designed and runs to completion before
the configured timeout is triggered; otherwise, we should redeploy our function, increasing its value.
In second-generation Cloud Functions, the maximum timeout duration is 60 minutes (3,600 seconds)
for HTTP functions and 9 minutes (540 seconds) for event-driven functions.

Finally, memory utilization allows us to see how much memory our cloud functions are using in each
execution. Each deployment configures the amount of memory and vCPU allocated to run, with a
default of 256 MiB and .167 vCPU, a sixth part of a 2.4 GHz CPU. In the preceding screenshot, you can
see that our resume-serving function uses less than 100 MiB in each run, so we could even decrease
the amount of allocated memory to 128 MiB and save costs even more.

On the other end, if our cloud function tries to use more than the allocated amount of memory, it
will crash, so this graph can help us detect this situation and redeploy the cloud function, this time
increasing the amount of memory using the - -memory flag. The list of available memory and CPU
tiers is available on this documentation page: https://cloud.google.com/functions/
docs/configuring/memory.

The second tab, Details, offers information about the deployment, including region, timeout, minimum,
and maximum configured instances, service account, or networking settings. You can modify any
of these parameters by redeploying the cloud function with an updated deployment command. You
can see the full list of parameters on this documentation page: ht tps: //cloud.google. com/
sdk/gcloud/reference/functions/deploy.

In the third tab, Source, you can see the deployed code, which is read-only by default. But you can
also click on the EDIT button at the top and proceed to make changes on the fly and redeploy by just
clicking the Deploy button once you are finished. Beware of using this option too frequently, since
any changes applied locally may leave your deployed code out of sync with the one stored in your
code repository. However, this option can still be a lifesaver if you need a very quick fix to be applied.

The next tab, Variables, contains all information about the Runtime and Build environment variables,
together with any secrets that your cloud function may be using. You can pass environment variables
to your cloud function, which will be read on execution time and used in a similar way to any
other parameters.

If any of these variables include sensitive information, you should use secrets instead, which will be
both safely stored and retrieved, thus reducing the chances of unwanted leaks.

https://cloud.google.com/functions/docs/configuring/memory
https://cloud.google.com/functions/docs/configuring/memory
https://cloud.google.com/sdk/gcloud/reference/functions/deploy
https://cloud.google.com/sdk/gcloud/reference/functions/deploy

Using Cloud Functions to run your code

You can pass environment variables using the - -set -build-env-vars= [KEY=VALUE, ...] build
parameter or use - -build-env-vars-file=FILE PATH and pass the path to a YAML file
including a key and value pair in each line. For secrets, you can use - -set-secrets=[SECRET ENV_
VAR=SECRET VALUE REF,/secret path=SECRET VALUE REF, /mount path:/secret
file path=SECRET VALUE REF,..] to define the secrets or - -update-secrets= [SECRET _
ENV_VAR=SECRET VALUE REF, /secret path=SECRET VALUE REF, /mount path:/
secret file path=SECRET VALUE REF,..]] toupdate them.

The next tab, Trigger, allows us to see how we can trigger our cloud function, either using HTTP or
an event, including a direct link to invoke our cloud function.

Then, the next one, Permissions, summarizes all security entries defined for our cloud function, both
by Principals (who can do what) or by Role (which groups can do what). Unless a cloud function
has been deployed enabling anonymous invocation, only users with invoke permission will be able to
run a cloud function. You should be extremely careful and only open anonymous access if you really
want your functions to be publicly accessible. Otherwise, your cloud function could be triggered by
anyone, and this may not only lead to security issues but also increase your costs since you will be
charged by the number of runs and online scanners and bots may increase your numbers and you
may have a nasty surprise when the billing cycle ends.

Note

Properly securing your serverless deployments is a key step that you should include in your
development cycles, sprints, or iterations.

There are just two more tabs in the interface: the first is the Logs tab, which provides us with access
to the latest log entries. Personally, I prefer to open a link to the Logs Viewer on a new screen from
the three-dots icon on the Cloud Functions list page, but this can also be useful to identify any recent
issues when our cloud function fails.

Finally, the Testing tab can be useful for fast tests, since it will help us quickly build a payload and
trigger our cloud function, so we can then switch back to the Logs tab and check that everything
works as expected.

Tests can also be done using the command line, with a snippet like the one following this paragraph,
which I used to test an HTTP function. This code is also available in the book’s repository, so you can
try it if you want to. Notice how, in the following screenshot, the name parameter is passed in the
URL and the HTML response is customized for that specific name in the line containing “(Specially
prepared for...)”. An authorization token is also included so that the testing is also compatible with
Cloud Functions not allowing anonymous invocations:

87

88 Running Serverless Code on Google Cloud - Part 1

CLOUD SHELL
= Terminal (cloud-developers-365616) X (cloud-developers-365616) X =+ ~

clouddevelopersguide@cloudshell:~ (cloud-developers-365616)5 \
curl \
—X POST "https://resume-server-4slsbxpeoa-uc.a.run.app/?name=John"™ \
—H "Authorization: bearer $(gcloud auth print-identity-token)™
<html>
<head>
<title>My Resume</title>
</head>
<body>
<p>
(Specially prepared for John)
</p>
<p>
<img
src="https://images2.imgbox.com/2f/4e/AX8cRgXL o.png"
alt="Resume Picture”
width="300"
height="200"/>
</ em>
</p>
<p>
Jdane Doe
</em

Figure 4.4 - Using curl to test the cloud function from the command line

Note

The preceding example uses POST to send the payload data, and your code may only be ready
to handle GET data. It’s up to you whether you implement support for both methods or just
one, depending on your use case and how the HT TP function will be invoked. GET exposes
the parameters in the URL while POST sends them as data.

. J

You can use similar commands to send Pub/Sub messages or to generate any other type of events in
production, but it is a good practice to use emulators during our internal tests. You can read more
about this topic in the following documentation section: https://cloud.google.com/
functions/docs/testing/test-overview.

Debugging a cloud function

As1did in the section about testing, I will cover Cloud Functions debugging considering two different
environments: local debugging before deployment and remote debugging, once our cloud function
is running on Google Cloud.

In the first case, for local debugging, we can use the function’s framework in debug mode to help us
have a better understanding of what’s happening during the execution of a cloud function. When

https://cloud.google.com/functions/docs/testing/test-overview
https://cloud.google.com/functions/docs/testing/test-overview

Using Cloud Functions to run your code

the framework has started adding the - - debug flag, it will log all requests and logging events to
the local console, which can be very useful if we developed our application including a flag to enable
verbose logging, so we can follow the execution by looking at the events and better understand where
our code is failing.

Once we have deployed our cloud function in Google Cloud, we can also use Stackdriver to connect
to the running container and be able to debug it. This process is not as simple as the others described,
but it can be a lifesaver once you get used to it.

If you are interested in this topic, I added some detailed articles about testing and debugging Cloud
Functions in the Further reading section, at the end of the chapter.

Tips and tricks for running your code using Cloud Functions

I have put together some tips for getting the most out of Cloud Functions.

Whenever it’s possible, you should code cloud functions to minimize their memory usage. Since
the cost is proportional to the memory and vCPU allocated, loading big structures in memory will
increase costs. If you can implement your use case in a simpler way and not require processing huge
amounts of data in each execution, Cloud Functions will be not only the best technical fit but also
the most affordable one.

Also, if you need to test your cloud function in production, you can directly execute it from the console
using the gcloud utility as follows:

gcloud functions call python-http-function --data
"{"template":"english.html", "name":"John Smith",
"company":"StarTalent"}"

As you will have noticed, this is an example of testing our resume server. Please take into account that
when using the gcloud command, the data is passed using POST, so you may need to make some
small changes in the source code to also support this method besides GET.

You can read more about direct invocation on the following documentation page: https://cloud.
google.com/functions/docs/running/direct.

Another interesting tip is that we can deploy a cloud function directly from source code located in
Cloud Source Repositories, also enabling us to use GitHub or Bitbucket, thus reducing the complexity
of our development and testing workflows because we no longer need to check out our code before
deploying it.

For this to work, we must first set up a repository and, optionally, connect it to our GitHub or Bitbucket
repository if we want to use them as sources. Then, we can use the following URL in the - - source flag:

https://source.developers.google.com/projects/PROJECT ID/repos/
REPOSITORY NAME

89

https://cloud.google.com/functions/docs/running/direct
https://cloud.google.com/functions/docs/running/direct

90

Running Serverless Code on Google Cloud - Part 1

You can read more about this feature and other advanced deployment techniques on this page of the
official documentation: https://cloud.google.com/functions/docs/deploy

How much does it cost to run a cloud function?

One of the most common questions about running our code on any cloud provider is how to accurately
estimate how much we will be paying at the end of the month. While this can be easy for some services,
it becomes more complicated with others, as is the case with Cloud Functions.

The fact that a cloud function is just a piece of architecture, meaning that it will be using other services
most of the time, complicates finding an answer.

For example, imagine that you have a thumbnail generation service where you schedule your cloud
function to run every 10 minutes using Cloud Scheduler and use it to get information about the latest
image uploads by querying a BigQuery table, and then loading the image from GCS, finally generating
and storing a thumbnail in another directory of the bucket.

This small example has made use of the following Google Cloud services:

+ Cloud Functions
+ Cloud Scheduler
« BigQuery

« GCS

So, you will be charged for each of them, depending on your usage and whether you exceeded the free
tier, where available. Please take this into account and make sure you consider any external services
that you are using when you try to calculate your total costs.

Considering just Cloud Functions, you will highly likely incur the following charges:

o Artifact Registry: For storing your function (but this has a free tier).
o Cloud Build: Used to build an executable image containing your function.
« Eventarc: Used for event delivery.

« Cloud Functions invocations: Charged by every million invocations, with the first two included
in the free tier.

o Compute time: There is a free tier, too.

o Internet egress traffic: Charged by GB. The first 5 GB are included in the free tier.

https://cloud.google.com/functions/docs/deploy

Using App Engine to run your code

As you can see, cost calculations can become complicated, and that’s why the detailed documentation
page for Cloud Functions pricing (https://cloud.google.com/functions/pricing)
includes a couple of real-world examples that can be useful to estimate costs in different scenarios:

o A simple event-driven function with 128 MB of memory and a 200 MHz CPU, invoked 10
million times per month and running for 300 ms each time using only Google APIs (no billable
egress), will cost $7,20 every month

« A medium-complexity HTTP function with 256 MB of memory and a 400 MHz CPU, invoked
50 million times per month via HT'TP, running for 500 ms each time and sending 5 KB of data
back to the caller (5 KB egress per invocation) will cost $159.84

In my own experience, using Cloud Functions has always been an affordable option for short and
repetitive operations, and, even with millions of invocations every month, I never saw costs over a
few hundred dollars a month. Also, since the cost is proportional to the number of invocations, Cloud
Functions can be an interesting alternative for services where more invocations also mean more
revenue, so that monthly costs are just a small fraction of the benefits they provide.

However, there are other alternatives for running your code where costs can be more stable and
predictable. Let’s introduce App Engine.

Using App Engine to run your code

Now, it’s time to move from FaaS$ to PaaS and introduce the second option for our serverless
deployments: App Engine.

Introducing App Engine

App Engine (https://cloud.google.com/appengine) is a serverless PaaS product for
developing and hosting our web applications. We can choose among many popular programming
languages and use any framework or library to build our application, and Google Cloud will handle
the infrastructure, including a demand-based scaling system to ensure that you always have enough
capacity for our users.

This product is a very good fit for microservices-based architectures and requires zero server management
and zero configuration deployment tasks, so we can focus on developing amazing applications. Indeed,
we can use App Engine to host different versions of our app and use this feature to create separate
environments for development, testing, staging, and production.

It’s important that you know that there can only be one App Engine instance in each Google Cloud
project and that whatever region you choose when you create it will become permanent, so please
make that choice wisely.

An App Engine application (https://cloud.google.com/appengine/docs/legacy/
standard/python/an-overview-of -app-engine) is made up of one or more services,

91

https://cloud.google.com/functions/pricing
https://cloud.google.com/appengine
https://cloud.google.com/appengine/docs/legacy/standard/python/an-overview-of-app-engine
https://cloud.google.com/appengine/docs/legacy/standard/python/an-overview-of-app-engine

92

Running Serverless Code on Google Cloud - Part 1

each of which can use different runtimes, each of which can have customized performance settings.
Each of our services can have multiple versions deployed that will run within one or more instances,
depending on the amount of traffic that we configured it to handle.

All the resources of an application will be created in the region that we choose when we create our
App Engine app, including code, settings, credentials, and all the associated metadata. Our application
will include one or more services but must have at least what is called the default service, which can
also have multiple versions deployed.

Each version of a service that we deploy in our app will contain both the source code that we want to
run and the required configuration files. An updated version may contain changes in the code, the
configuration, or both, and a new version will be created when redeploying the service after making
changes to any of these elements.

The ability to have multiple versions of our application within each service will make it easier to
switch between versions for cases such as rollbacks or testing and can also be very useful when we
are migrating our service, allowing us to set up traffic splits to test new versions with a portion of the
users before rolling them out to all of them.

The different deployed versions of our services will run on one or more instances depending on the
load at each time. AppEngine will scale our resources automatically, up if required to maintain the
performance level, or down to avoid resource waste and help reduce costs.

Each deployed version of a service must have a unique name, which can be used to target and route
traffic to a specific resource. These names are built using URLs that follow this naming convention:

https://<VERSION>-dot-<SERVICE>-dot-<PROJECT ID>.<REGION
ID>.r.appspot.com

Note

The maximum length of <VERSION>-dot -<SERVICE>-dot-<PROJECT ID> is 63
characters, where VERSION is the name of our version, SERVICE is the name of our service,
and PROJECT _ID is our project ID, or a DNS lookup error will occur. Another limitation is
that the name of the version and the service cannot start or end with a hyphen. Any requests
that our application receives will be routed only to those versions of our services that have been
configured to handle the traffic. We can also use the configuration to define which specific
services and versions will handle a request depending on parameters such as the URL path.

App Engine environment types

App Engine offers two different environment types.

The App Engine standard environment is the simplest offering, aimed at applications running
specific versions of the supported programming languages. At the time of writing this chapter, you

Using App Engine to run your code

can write your application in Node.js, Java, Ruby, C#, Go, Python, or PHP. You can see the up-to-
date list on this documentation page: https://cloud.google.com/appengine/docs/
the-appengine-environments.

In a standard environment, our application will run on a lightweight instance inside of a sandbox,
which means that there will be a few restrictions that you should consider. For example, we can only
run a limited set of binary libraries, restricting access to external Google Cloud services only to
those available using the App Engine API, instead of the standard ones. Other particularly important
limitations are that App Engine standard applications cannot write to disk and that the options of CPU
and memory to choose from are limited. For all these reasons, App Engine standard is a genuinely
precise fit for stateless web applications that respond to HT TP requests quickly, that is, microservices.

App Engine standard is especially useful in scenarios with sudden changes in traffic because this
environment can scale very quickly and supports scaling up and down. This means that it can scale
up your application quickly and effortlessly to thousands of instances to handle sudden peaks, and
scale it down to zero if there is no traffic for some time.

If the mentioned limitations are not a problem for your use case, this can be a remarkably interesting
choice to run your code, because you will pay close to nothing (or literally nothing).

App Engine standard instances are charged based on instance hours, but the good news is that all
customers get 28 instances in a standard environment free per day, not charged against our credits,
which is great for testing and even for running a small architecture virtually for free.

The second type is called the App Engine flexible environment. This one will give us more power, more
options... and more responsibilities, at a higher cost. In this case, our application will be containerized
with Docker and run inside a virtual machine. This is a perfect fit for applications that are expecting
a reasonably steady demand and need to scale more gradually. The cons of this environment are that
the minimum number of instances in App Engine flexible is 1 and that scaling in response to traffic
will take significantly longer in comparison with standard environments.

On the list of pros, flexible environments allow us to choose any Compute Engine machine type to
run our containerized application, which means that we have access to many more combinations of
CPU, memory, and storage than in the case of a standard environment.

Besides, flexible environments have fewer requirements about which versions of the supported
programming languages we can use, and they even offer the possibility of building custom runtimes,
which we can use to add support for any other programming languages or versions that we may
specifically need. This will require additional effort to set it up but also opens the door to running
web applications written in any version of any language.

Flexible App Engine instances are billed based on resource usage, including vCPU, memory, and
persistent disks.

93

https://cloud.google.com/appengine/docs/the-appengine-environments
https://cloud.google.com/appengine/docs/the-appengine-environments

94

Running Serverless Code on Google Cloud - Part 1

Finally, most of the restrictions that affect App Engine standard instances do not apply to flexible
environments: we can write to disk, use any library of our choice, run multiple processes, and use
standard cloud APIs to access external services.

(1
Note

Standard and flexible App Engine environments should not be mutually exclusive, but
complementary. The idea is that we run simple microservices using fast scaling and cost-efficient
standard environments whenever possible and complement them with flexible environments
used for those microservices that will not work under the limitations of a standard environment.
Specific requirements such as needing more CPU or memory, requiring disk access, or making
API calls to use cloud services will justify the use of flexible instances. When combining both
instance types, inter-service communication can be implemented using Pub/Sub, HT TP, or
Cloud Tasks, which makes App Engine a great choice to create architectures combining always-
on and on-demand microservices.
. J

You can read an interesting comparison table detailing the similarities and key differences between
both environment instances in the following documentation section: https://cloud.google.
com/appengine/docs/flexible/flexible-for-standard-users.

Scaling strategies in App Engine

App Engine applications are built on top of one or more instances, which are isolated from one another
using a security layer. Received requests are balanced across any available instances.

We can choose whether we prefer a specific number of instances to run despite the traffic, or we can let
App Engine handle the load by creating or shutting down instances as required. The scaling strategy
can be customized using a configuration file called app . yaml. Automatic scaling will be enabled
by default, letting App Engine optimize the number of idle instances.

The following is a list of the three different scaling strategies available for App Engine:

o Manual scaling: A fixed number of instances will run despite changes in the amount of traffic
received. This option makes sense for complex applications using a lot of memory and requiring
a fast response.

« Basic scaling: As its name suggests, this option will make things simple by creating new instances
when requests are received and shutting them down when instances have been idle for some
time. This is a nice choice for applications with occasional traffic.

o Automatic scaling: This is the most advanced option, suitable for applications needing to fine-
tune their scaling to prevent performance issues. Automatic scaling will let us define multiple
metrics with their associated thresholds in our YAML configuration file. App Engine will use
these metrics to decide when it’s the best time to create new instances or shut down idle ones

https://cloud.google.com/appengine/docs/flexible/flexible-for-standard-users

https://cloud.google.com/appengine/docs/flexible/flexible-for-standard-users

Using App Engine to run your code

so that there is no visible effect on performance. We can also optionally use the automatic
scaling parameter to define the minimum number of instances to always keep running.

You can find a table comparing these scaling strategies in the documentation page about App Engine
instance management: https://cloud.google.com/appengine/docs/legacy/
standard/python/how-instances-are-managed

The differences between the different strategies are quite simple to explain. In basic scaling, App
Engine prioritizes cost savings over performance, even at the expense of increasing latency and
hurting performance in some scenarios, for example, after it scales to 0. If low latency is an important
requirement for your application, this option will probably not work for you.

Automatic scaling, however, uses an individual queue for each instance, whose length is periodically
monitored and used to detect traffic peaks, deciding when new instances should be created. Also,
instances with queues detected to be empty for a while will be turned off, but not destroyed, so they
can be quickly reloaded if they are needed again later. While this process will reduce the time needed
to scale up, it may still increase latency up to an unacceptable level for some users. However, we can
mitigate this side effect by specifying a minimum number of idle instances to always keep running,
so we can handle sudden peaks without seeing our performance hurt.

Using App Engine in microservice architectures

When we build an application using a microservice architecture, each of these microservices implements
full isolation of code, which means that the only communication method that we can use to execute
their code is using HTTP or a RESTful API call. One service will otherwise never be able to directly
execute code running on another. Indeed, it's common that different services are written using different
programming languages too. Besides, each service has its own custom configuration, so we may be
combining multiple scaling strategies.

However, there are some App Engine resources, such as Cloud Datastore, Memcached, or Task
Queues, which are shared between all services running in the same App Engine project. While this
may have advantages, it may be a risk since a microservices-based application must maintain code
and data isolation between its microservices.

While there are some architectural patterns that can help mitigate unwanted sharing, enforced separation
can be achieved by using multiple App Engine projects at the expense of worse performance and more
administrative overhead. A hybrid approach can also be a very valid option.

The App Engine documentation contains more information about microservices, including a
comparison of service and project isolation approaches, so you can make a better choice for your
architecture: https://cloud.google.com/appengine/docs/legacy/standard/
python/microservices-on-app-engine.

95

https://cloud.google.com/appengine/docs/legacy/standard/python/how-instances-are-managed

https://cloud.google.com/appengine/docs/legacy/standard/python/how-instances-are-managed

https://cloud.google.com/appengine/docs/legacy/standard/python/microservices-on-app-engine
https://cloud.google.com/appengine/docs/legacy/standard/python/microservices-on-app-engine

96

Running Serverless Code on Google Cloud - Part 1

Before getting to the example, let’s introduce configuration files, which are key for deploying App
Engine applications.

Configuring App Engine services

Each version of an App Engine service has an associated . yaml file, which includes the name of the
service and its version. For consistency, this file usually takes the same name as the service it defines,
while this is not required. When we have multiple versions of a service, we can create multiple YAML
files in the same directory, one for each version.

Usually, there is a separate directory for each service, where both its YAML and the code files are
stored. There are some optional application-level configuration files, such as dispatch.yaml,
cron.yaml, index.yaml, and queue . yaml, which will be located in the top-level directory
of the app. However, if there is only one service or multiple versions of the same service, we may just
prefer to use a single directory to store all configuration files.

Each service’s configuration file is used to define the configuration of the scaling type and instance class
for a specific combination of service and version. Different scaling parameters will be used depending
on the chosen scaling strategy, or otherwise automatic scaling will be used by default.

As we mentioned earlier, the YAML can also be used to map URL paths to specific scripts or to identify
static files and apply a specific configuration to improve the overall efficiency.

There are four additional configuration files that control optional features that apply to all the services
in an app:
o dispatch.yaml overrides default routing rules by sending incoming requests to a specific
service based on the path or hostname in the URL
« cron.yaml configures regularly scheduled tasks that operate at defined times or regular intervals
« index.yaml specifies which indexes your app needs if using Datastore queries

« queue.yaml configures push and pull queues

After covering all the main topics related to App Engine, it’s time to deploy and run some code to see
all the discussed concepts in action.

Writing, deploying, and running code with App Engine

We will now deploy our resume-serving application in App Engine and see the differences between
this implementation and the one using Cloud Functions.

Using App Engine to run your code

The first file that we will create for our application is app . yaml, which can be used to configure a

lot of settings. In our case, it will include the following contents:

runtime: python38

service: resume-server

handlers:
- url: /favicon\.ico
static _files: favicon.ico

upload: favicon\.ico

First, we will define which runtime we want to use. In this case, it will be a Python 3.8 module. Then,
we will define a service name. I chose resume - server just in case you were already using the
default service for any other purposes. Please remember that if this parameter is not defined in

the file, the app will be deployed to the default service.

Since App Engine is a full application server, I'm taking the chance to include a favicon, that is, an
icon that the web browser will show next to the page title. In this case, we just add the icon file, called
favicon.ico, and add a rule to serve the icon when it is requested. The runtime will forward the rest
of the requests by default to a file called main . py, which will be the next file that we will talk about.

As its name may suggest, main . py contains the core of the code and it is indeed quite similar to
the version that we created as a cloud function. There are some differences at the beginning of the
file because we will be using Flask to handle the requests and an instance of Cloud Logging when the

app is deployed in production:

from flask import request, current app,

from google.cloud import storage
import google.cloud.logging
import logging

BUCKET NAME = "<YOUR BUCKET NAME>"
DEFAULT TEMPLATE NAME = "english.html"

app = Flask(_ name)
app.debug = False
app.testing = False

Configure logging
if not app.testing:

Flask

97

98

Running Serverless Code on Google Cloud - Part 1

logging.basicConfig(level=1logging.INFO)

client = google.cloud.logging.Client ()

Attaches a Cloud Logging handler to the root logger
client.setup logging ()

After these lines, you will see the same functions that we already covered earlier in this chapter, until
we get to the last few lines of the file. Notice how now we have one line for routing requests to the root
URL and how the last line runs the app, making it listen on the loopback interface for local executions:

DEFAULT TEMPLATE = "english.html"
@app.route ('/")
def get () :
template = request.args.get('template', DEFAULT TEMPLATE)
name = request.args.get ('name', None)
company = request.args.get ('company', None)
resume_html = return resume (template, name, company)

return resume html

This is only used when running locally. When running live,
gunicorn runs the application.
if name == ' main ':

app.run (host='127.0.0.1"', port=8080, debug=True)
The deployment package also includes a requirements. txt file. In this case, these are its contents:

Flask==2.2.2
google-cloud-storage==2.5.0
google-cloud-logging==3.2.4

Notice how all three imported packages have their version frozen, for the sake of stability in future
deployments, as we already discussed.

Now we are ready for testing, and the four files have been copied to the same working directory: app .
yaml, favicon.ico,main.py, and requirements. txt

Pythons virtualenvand pytest can be used for local fast testing, and they are indeed recommended
as the first option, rather than using dev_appserver, which is the local development server that
Google Cloud SDK provides. However, if you are still interested, there’s information about it in this
section of the official documentation: https://cloud.google.com/appengine/docs/
standard/tools/using-local-server

https://cloud.google.com/appengine/docs/standard/tools/using-local-server
https://cloud.google.com/appengine/docs/standard/tools/using-local-server

Using App Engine to run your code

Please notice that simulated environments may not have exactly the same restrictions and limitations
as the sandbox. For example, available system functions and runtime language modules may be
restricted, but timeouts or quotas may not.

The local development server will also simulate calls to services such as Datastore, Memcached, and
task queues by performing their tasks locally. When our application is running in the development
server, we can still make real remote API calls to the production infrastructure using the Google
API's HTTP endpoints.

Another option to simulate a production App Engine environment is to use a Web Server Gateway
Interface (WSGI) server locally by installing gunicorn in Cloud Shell using the following command:

pip install gunicorn
Then, we will just run it using our app as an entry point, as in the following example:
gunicorn -b :$PORT main:app

Here, $PORT is the port number we defined for our application, 8080 by default, and main:get
is the name of the Python file and the function to execute when a request is received.

In my example, I invoked it using the following command line in Cloud Shell, so that it runs in
the background:

/home/<user>/.local/bin/gunicorn -b :8080 main:app &

Now, we can send requests using curl and validate the output as part of our unit tests. For example,
our usual test URL would now be triggered using the following command. Please don’t forget the
double quotes, or otherwise only the first parameter will be received:

curl "http://127.0.0.1:8080/?template=english.
html&name=John&company=StarTalent"

Applications designed for flexible environments can also be directly executed for testing, given that
they will have direct access to cloud services. Using emulators is often recommended in cases like this
in order to avoid incurring excessive costs while running the tests.

After successfully passing all local tests, the application will be ready for deployment. And it couldn’t
be any simpler than running the following command in the console from the working directory
containing all the files previously mentioned:

gcloud app deploy app.yaml

99

100 Running Serverless Code on Google Cloud - Part 1

This deployment command supports other flags, such as the following:

o --version to specify a custom version ID
o --no-promote to prevent traffic from being automatically routed to the new version

o --project to deploy to a specific Google Cloud project

As it happened with Cloud Functions, you may be asked to authenticate yourself during the deployment,
and you could also be asked to enable any required APIs the first time that you deploy an app. In the
case of App Engine, this is an example of the output of a deployment command:

Services to deploy:

descriptor: [/home/clouddevelopersguide/App
Engine/app.yaml]

source: [/home/clouddevelopersguide/App
Engine]

target project: [cloud-developers-365616]

target service: [resume-server]

target version: [20221021t201413]

target url: [http://resume-server.cloud-
developers-365616.uc.r.appspot.com]

target service account: [App Engine default service
account]

Do you want to continue (Y/n)? Y

Beginning deployment of service [resume-server]...
Uploading 1 file to Google Cloud Storage

100%

100%

File upload done.

Updating service [resume-server]...done.

Setting traffic split for service [resume-server]...done.

Deployed service [resume-server] to [http://resume-server.
cloud-developers-36561l6.uc.r.appspot.com]

You can stream logs from the command line by running:

$ gcloud app logs tail -s resume-server

Using App Engine to run your code

To view your application in the web browser run:

$ gcloud app browse -s resume-server

Notice how we can use the last section of the output to get the URL to the application, and the one
right above it to print the logs in the command-line console. The deployment process involves copying
our files to GCS, and then updating the service and setting its traffic split.

Once we obtain the URL, we can again append the parameters to test the application. In my case, this
was the complete URL:

https://resume-server-dot-cloud-developers-36561l6.uc.r.appspot.
com/?template=english.html&name=John+Smith&company=StarTalent

You can read more about testing and deploying your applications in App Engine in this section of the
official documentation site: https://cloud.google.com/appengine/docs/standard/
testing-and-deploying-your-app.

Debugging in App Engine

Luckily for us, App Engine is compatible with many of the tools that we already introduced for testing
and debugging our cloud functions. With App Engine, we can also use Cloud Monitoring and Cloud
Logging to monitor the health and performance of our app, and Error Reporting to diagnose and fix
bugs quickly. Cloud Trace can also help us understand how requests propagate through our application.

Cloud Debugger can help us inspect the state of any of our running services without interfering with
their normal behavior. Besides, some IDEs, such as Intelli], allow debugging App Engine standard
applications by connecting to a local instance of dev_appserver. You can find more information
in this section of the official documentation site: https://cloud.google.com/code/docs/
intellij/deploy-local.

After completing the whole development cycle when using App Engine, it’s the perfect time to explain
how we will be billed if we decide to use App Engine.

How much does it cost to run your code on App Engine?

App Engine pricing scales with our app’s usage, and there are a few basic components that will be
included in the App Engine billing model, such as standard environment instances, flexible environment
instances, and App Engine APIs and services.

As I mentioned earlier, flexible App Engine instances are billed based on resource utilization, including
vCPU, memory, persistent disks, and outgoing network traffic. Standard App Engine instances follow
a much simpler model based on the number of hours they have been running for. Any other APIs
and services used should be also added to the bill, such as Memcached, task queue, or the Logs API.

101

https://cloud.google.com/appengine/docs/standard/testing-and-deploying-your-app
https://cloud.google.com/appengine/docs/standard/testing-and-deploying-your-app
https://cloud.google.com/code/docs/intellij/deploy-local
https://cloud.google.com/code/docs/intellij/deploy-local

102

Running Serverless Code on Google Cloud - Part 1

For more details about the pricing, you can refer to this documentation section: https://cloud.
google.com/appengine/pricing

Regarding the free tier, users get 28 standard frontend instances and 9 backend instances for free every
day, and new customers get $300 in free credits to spend on App Engine. You may find all the details
about quotas in the following section of the documentation website: https://cloud.google.
com/appengine/docs/standard/quotas.

To get an estimate of our bill, we can use the Google Cloud Pricing Calculator available in the
following section of the documentation: https://cloud.google.com/products/
calculator#tab=app-engine.

Tips and tricks for running your code on App Engine

If you read the Limits section at the end of the App Engine Overview section of the documentation
(https://cloud.google.com/appengine/docs/legacy/standard/python/
an-overview-of -app-engine), you will see that there are different limits for the number of
services and instances depending on the application type (free or paid) and whether the app is hosted
in us-central or in any other region. You should take these numbers into account when you decide
which application type to use.

If our app uses automatic scaling, it will take approximately 15 minutes of inactivity for the idle
instances to start shutting down. To keep one or more idle instances running, we should set the value
ofmin idle_instances to 1 or higher.

Regarding security, a component called the App Engine firewall can be used to set up access rules.
Managed SSL/TLS certificates are included by default on custom domains at no additional cost.

This was all the information we need to know about App Engine. Now, it’s time to wrap up.

Summary

In this chapter, we discussed how Cloud Functions and App Engine work, what their requirements
are, and how much they cost. We also covered how we can use them to run our code and how we
can test and troubleshoot our applications and services when they use these products. Finally, we
implemented the same example using both options.

In the next chapter, we will cover Cloud Run, the third option to run serverless code on Google Cloud
using a CaaS model.

https://cloud.google.com/appengine/pricing

https://cloud.google.com/appengine/pricing

https://cloud.google.com/appengine/docs/standard/quotas
https://cloud.google.com/appengine/docs/standard/quotas
https://cloud.google.com/products/calculator#tab=app-engine
https://cloud.google.com/products/calculator#tab=app-engine
https://cloud.google.com/appengine/docs/legacy/standard/python/an-overview-of-app-engine
https://cloud.google.com/appengine/docs/legacy/standard/python/an-overview-of-app-engine

Further reading

Further reading

To learn more about the topics that were covered in this chapter, take a look at the following resources:

What is virtualization? (https : / /www.redhat .com/en/topics/virtualization/
what-is-virtualization)

What are Cloud Computing Services [laaS, CaaS, PaaS, Faa$, SaaS] (https://medium.
com/@nnilesh7756/what-are-cloud-computing-services-iaas-caas-
paas-faas-saas-ac0f6022d36e)

How to Develop, Debug and Test your Python Google Cloud Functions on Your Local Development
Environment (https://medium.com/ci-t/how-to-develop-debug-and-test-
your-python-google-cloud-functions-on-your-local-dev-environment-
ds56ef94cb409)

103

https://www.redhat.com/en/topics/virtualization/what-is-virtualization
https://www.redhat.com/en/topics/virtualization/what-is-virtualization
mailto:https://medium.com/@nnilesh7756/what-are-cloud-computing-services-iaas-caas-paas-faas-saas-ac0f6022d36e
mailto:https://medium.com/@nnilesh7756/what-are-cloud-computing-services-iaas-caas-paas-faas-saas-ac0f6022d36e
mailto:https://medium.com/@nnilesh7756/what-are-cloud-computing-services-iaas-caas-paas-faas-saas-ac0f6022d36e
https://medium.com/ci-t/how-to-develop-debug-and-test-your-python-google-cloud-functions-on-your-local-dev-environment-d56ef94cb409
https://medium.com/ci-t/how-to-develop-debug-and-test-your-python-google-cloud-functions-on-your-local-dev-environment-d56ef94cb409
https://medium.com/ci-t/how-to-develop-debug-and-test-your-python-google-cloud-functions-on-your-local-dev-environment-d56ef94cb409

5

Running Serverless Code on
Google Cloud - Part 2

After covering Cloud Functions and App Engine in the previous chapter, this one will introduce the
third serverless option to run our code on Google Cloud, this time using containers: Cloud Run.

First, I will introduce its basic concepts and describe the two different execution environments available.
Then, we will see together how we can run our code using Cloud Run and what the best practices for
debugging it are. Next, I will show you how much Cloud Run costs and include some tips and tricks
to help you get the most out of it.

Finally, we will discuss the similarities and differences between the three serverless products covered
in this and the previous chapter, so you can better decide when you should use each.

We'll cover the following main topics in this chapter:

o Using Cloud Run to run your code

« Choosing the best serverless option for each use case

Let’s get started!

Using Cloud Run to run your code

Cloud Run is the third and last option for serverless code execution that we will discuss in this chapter.
This is the CaaS option, and you should keep an eye on it because, as we will see in the next couple of
chapters, containers are the biggest bet for portable development as of today, and the base for Google’s
hybrid and multi-cloud offering.

Introducing Cloud Run

Cloud Run (https://cloud.google.com/run/docs/overview/what-is-cloud-
run) is the third serverless option for running our code on Google Cloud. In this case, our code

https://cloud.google.com/run/docs/overview/what-is-cloud-run
https://cloud.google.com/run/docs/overview/what-is-cloud-run

106

Running Serverless Code on Google Cloud - Part 2

will be running on containers on top of Google’s scalable infrastructure, once again forgetting about
everything to do with operational tasks or scaling our architecture, since Google’s CaaS compute
platform will take care of it for us.

This also means that Google will decide when to stop sending requests and even when to terminate an
instance, and since each of them will be ephemeral and disposable, our code should be well prepared
for imminent disposal.

Cloud Run offers some interesting features for developers, which can help us accommodate specific
use cases very easily:

« First, we can run virtually any kind of code written in our preferred programming language,
using Cloud Run, as long as it can be containerized. For our code to work, we can either build
our own container image, using any programming language, as long as we include all libraries
and dependencies and even binaries if we need them, or we can use a feature called source-
based deployment, where Cloud Run will build the container image for us, ready to run code
written on one of the supported languages: Go, Node.js, Python, Java, Kotlin, .NET, or Ruby.

o Second, since we will be charged based either on the number of requests it served or the
resources it used while running, we can run it continuously as a service, so it can respond to
HTTP requests or events but may be idling quite often, or we can run it as a job, meaning that
it will perform a specific task and then quit once it has finished.

The service option can help us save costs and it can be a great fit both for single-use tasks, such as
a migration or installation job, and for repetitive maintenance tasks, such as data clean-ups, daily
aggregations, or similar scenarios that are scheduled to run periodically, but not too frequently.

In order to be a good fit for Cloud Run, our application will need to meet all the following criteria:

o Either it serves requests, streams, or events delivered via HT'TP, HTTP/2, WebSockets, or
gRPC, or it executes to completion

« Does not require a local persistent filesystem
o It’s built to handle multiple instances of the app running simultaneously
+ Does not require more than 8 CPUs and 32 GiB of memory per instance

o Meets one of the following criteria:

= Is containerized

* Iswritten in Go, Java, Node.js, Python, or .NET

We can otherwise containerize it.

Now, let’s take a look at some of the basic concepts that can help us understand how Cloud Run works.

Using Cloud Run to run your code

Basic concepts of Cloud Run

Looking at Cloud Run’s resource model (https://cloud.google.com/run/docs/
resource-model), there are some interesting concepts that we should be familiarized with before
we start working on some examples:

A service is the main resource of Cloud Run. Each service is located in a specific Google Cloud
Platform (GCP) region. For redundancy and failover, services are automatically replicated across
multiple zones in that same region. Each service exposes a unique HTTPS endpoint on a unique
subdomain of * . run.app domain and automatically scales the underlying infrastructure to
handle incoming requests.

Similarly to what we just mentioned in the case of App Engine, each new deployment of a service in
Cloud Run makes a new revision of that service to be created, which includes a specific container
image, together with configuration settings such as environment variables or memory limits. Revisions
are immutable, so any minor change will create a new revision, even if the container image remains
intact and only an environment variable was updated.

We must take into account the following requirements when we develop a service using Cloud Run:

o The listening port must be customizable using the PORT environment variable. Our code
will be responsible for detecting the optional use of this variable and updating the port used
to listen for requests, in order to maximize portability. The service must be stateless. It cannot
rely on a persistent local state.

o If the service performs background activities outside the scope of request handling, it must
use the CPU always allocated setting.

o Ifour service uses a network filesystem, it must use the second-generation execution environment.

Regarding concurrency (https://cloud.google.com/run/docs/about -concurrency),
Cloud Run behaves similarly to App Engine with autoscaling: each revision will be automatically
scaled to the number of container instances needed to handle the queue of pending requests, but will
also be scaled down if there is less or no traffic. Indeed, Cloud Run is also a zero-scaling service,
which means that, by default, it will dispose of even the last remaining instance if there is no traffic
to serve for a specific amount of time. We can change this behavior and eliminate cold starts by using
the min-instance setting at the expense of increasing costs. You can read more details about how
autoscaling works for Cloud Run at this link: https://cloud.google.com/run/docs/
about-instance-autoscaling.

(R
Note

A container instance can receive many requests at the same time, and this will lead to more
resources being used, which also will mean higher costs. To give us more control over the limits
of the scaling process, we can set the maximum number of requests that can be sent in parallel
to a given container instance.

107

https://cloud.google.com/run/docs/resource-model
https://cloud.google.com/run/docs/resource-model
https://cloud.google.com/run/docs/about-concurrency
https://cloud.google.com/run/docs/about-instance-autoscaling
https://cloud.google.com/run/docs/about-instance-autoscaling

108

Running Serverless Code on Google Cloud - Part 2

By default, each Cloud Run container instance can receive up to 80 requests at the same time. This is
the maximum number of requests, and other metrics will be considered, such as CPU usage, to decide
the final number, which could be lower than this maximum.

If our microservice can handle more queries, we can increase this to a maximum of 1,000. Although
it is recommended to use the default value, we can also lower it in certain situations. For example, if
our code cannot process parallel requests or if a single request will need to use all the CPU resources
allocated, we can set the concurrency to 1 and our microservice will then only attend to one request
at a time.

Requests are routed by default to the latest healthy service revision as soon as possible. The health
of a service is probed by the load balancer, and a revision may be marked as unhealthy if it does not
respond successfully a separately configurable number of times. For this reason, testing and debugging
each service properly is especially important, in order to properly configure startup and liveness probes
to detect when a service is not starting or suddenly stops working, so that it can be automatically
restarted, thus reducing downtime.

We can also split traffic to multiple revisions at the same time, in order to reduce the risk while
deploying a new revision. We can start by sending 1% of requests to a new revision and increase that
percentage progressively while closely testing that everything works as expected until we complete
the rollout, with a final scenario where 100% of the requests are sent to the latest revision.

As I mentioned previously, Cloud Run also supports the execution of jobs. Each Cloud Run job runs
in a specific Google Cloud region and consists of one or multiple independent tasks that are executed
in parallel in each job execution. Each task runs one container instance to completion and might retry
it if it fails. All tasks in a job execution must complete for the job execution to be successful.

We can set timeouts for the tasks and even specify the number of retries in case of failure. If any task
exceeds its maximum number of retries, it will be marked as failed and the parent job will be, too. By
default, tasks execute in parallel up to a maximum of 100, but we can define a lower maximum if the
level of usage of resources requires it.

Besides, Cloud Run introduces the concept of array jobs, where repetitive tasks within a job can be
split among different instances to be run in parallel, thus reducing the time required for the full job
to complete. This turns App Engine into a remarkably interesting choice if we need to process objects
in batches, such as cropping lots of images, translating an extensive list of documents, or processing
a big set of log files.

Considering the concepts that we just introduced, there are different options for triggering the execution
of our code on Cloud Run. Let’s enumerate them and provide a link with more information about each:

o Using HTTPS requests (https://cloud.google.com/run/docs/triggering/
https-request)

» Using gRPC to enjoy the benefits of protocol buffers (https://cloud.google.com/
run/docs/triggering/grpc)

https://cloud.google.com/run/docs/triggering/https-request
https://cloud.google.com/run/docs/triggering/https-request
https://cloud.google.com/run/docs/triggering/grpc
https://cloud.google.com/run/docs/triggering/grpc

Using Cloud Run to run your code

o Using WebSockets (https://cloud.google.com/run/docs/triggering/
websockets)

o Using Pub/Sub push (https://cloud.google.com/run/docs/triggering/
pubsub-push)

o Using Cloud Scheduler to run services at a specific time (https://cloud.google.com/
run/docs/triggering/using-scheduler)

o Using Cloud Tasks to execute them asynchronously (https://cloud.google.com/
run/docs/triggering/using-tasks)

o Using Eventarc events as triggers (https://cloud.google.com/run/docs/
triggering/trigger-with-events)

o Using workflows as a part of a pipeline (https://cloud.google.com/workflows)

Now that we have covered the basic concepts, let’s take a look at the two execution environments that
Cloud Run provides.

The two different execution environments to choose from

As is the case with Cloud Functions, Cloud Run has two different generations of execution environments
(https://cloud.google.com/run/docs/about -execution-environments). Cloud
Run services, by default, operate within the first-generation execution environment, which features
fast cold-start times and emulation of most, but not all, operating system calls.

Originally, this was the only execution environment available to services in Cloud Run. This generation
is the best choice for either bursty traffic that requires scaling out fast, or for the opposite case with
infrequent traffic where our service frequently scales out from 0. If our services use less than 512 MiB
of memory, which is the minimum for second-generation instances, we may also benefit from cost
savings by choosing the first generation.

The second-generation execution environment for Cloud Run instances provides faster CPU and
network performance, the latter especially in the presence of packet loss, and full Linux compatibility
instead of system call emulation, including support for all system calls, namespaces, and cgroups,
together with the support of network filesystem. These features make it the best choice for steady
traffic, where scaling and cold starts are much less frequent, and for services that are intensive in CPU
usage or make use of any of the new specific features provided by this generation.

Second-generation Cloud Run instances are in the preview phase at the time of writing this, and
while the second-generation execution environment generally performs faster under sustained load,
it has longer cold-start times than the first generation, which is something to consider when making
a choice, depending on the specifics of your application or service.

We can specify the execution environment for our Cloud Run service when we deploy either a new
service or a new revision of it. If we don’t specify an execution environment, the first generation is used

109

https://cloud.google.com/run/docs/triggering/websockets
https://cloud.google.com/run/docs/triggering/websockets
https://cloud.google.com/run/docs/triggering/pubsub-push
https://cloud.google.com/run/docs/triggering/pubsub-push
https://cloud.google.com/run/docs/triggering/using-scheduler
https://cloud.google.com/run/docs/triggering/using-scheduler
https://cloud.google.com/run/docs/triggering/using-tasks
https://cloud.google.com/run/docs/triggering/using-tasks
https://cloud.google.com/run/docs/triggering/trigger-with-events
https://cloud.google.com/run/docs/triggering/trigger-with-events
https://cloud.google.com/workflows
https://cloud.google.com/run/docs/about-execution-environments

110

Running Serverless Code on Google Cloud - Part 2

by default. Cloud Run jobs, however, automatically use second-generation execution environments,
and this cannot be changed in the case jobs.

Now that we are done with the basic concepts of Cloud Run, let's move on and clarify a few requirements
before we start developing a Cloud Run example service.

Writing and running code using Cloud Run

There are a few requirements for our Cloud Run services that are included in the container runtime
contract (https://cloud.google.com/run/docs/container-contract) and we
should take them into consideration before actually starting to write our code.

The code running in our Cloud Run container must listen for requests on IP address 0.0.0.0 on
the port to which requests are sent. By default, requests are sent to port 8080, but we can configure
Cloud Run to send requests to another port of our choice, as long as it is not already in use.

Cloud Run injects the PORT environment variable into the container. Inside Cloud Run container
instances, the value of the PORT environment variable always reflects the port to which requests are
sent. Again, it defaults to 8080.

A particularly important note to make, and a common reason for early errors among beginners, is,
our container should not implement any Transport Layer Security (TLS) directly. TLS is terminated
by Cloud Run for HTTPS and gRPC. Then, requests are proxied as HTTP/1 or gRPC to the container
without TLS. If you configure a Cloud Run service to use HTTP/2 from end to end, your container
must handle requests in HTTP/2 cleartext (h2c) format because TLS is still ended automatically.

For Cloud Run services, our container instance must send a response within the time specified in
the request timeout setting after it receives a request, including the container instance startup time.
Otherwise, the request is ended and a 504 error is returned.

With these requirements in mind, it’s time to start building our first Cloud Run service, which we will
use to implement our resume server using a container.

First of all, we will create a file called . dockerignore, which will contain a list of patterns of
filenames that will not be copied to the container in any case:

Dockerfile
README . md

* . pyc

* . pyo

* .pyd
__pycache
.pytest cache

https://cloud.google.com/run/docs/container-contract

Using Cloud Run to run your code

Then, we will use the slim Dockerfile template, which contains the following lines:

Use the official lightweight Python image.
https://hub.docker.com/ /python
FROM python:3.10-slim

Allow statements and log messages to immediately appear in
the Knative logs

ENV PYTHONUNBUFFERED True

Copy local code to the container image.
ENV APP_HOME /app

WORKDIR $APP_HOME

corYy . ./

Install production dependencies.

RUN pip install --no-cache-dir -r requirements.txt

Run the web service on container startup. Here we use the
gunicorn webserver, with one worker process and 8 threads.
For environments with multiple CPU cores, increase the
number of workers to be equal to the cores available.

Timeout is set to 0 to disable the timeouts of the workers

H OH H HF H H*

to allow Cloud Run to handle instance scaling.

CMD exec gunicorn --bind :$PORT --workers 1 --threads 8
--timeout 0 main:app

Since we will be running our application from a container, we must include the resume template
directly in the working directory, in this case, called english.html.

There will also be a requirements. txt file, but this time the number of lines will be shorter:

Flask==2.2.2
gunicorn==20.1.0

Finally, main . py will be very similar to other versions, so let’s just take a look at the last few lines of
code. As y