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Abstract

Wireless sensor networks (WSNs) are emerging as the key technology to support 
the Internet of Things (IoT) and smart objects. Small devices with low energy con-
sumption and limited computing resources have wide use in many applications and 
different fields. Nodes are deployed randomly without a priori knowledge of their 
location. However, location context is a fundamental feature necessary to provide a 
context-aware framework to information gathered from sensors in many services 
such as intrusion detection, surveillance, geographic routing/forwarding, and cover-
age area management. Nevertheless, only a little number of nodes called anchors are 
equipped with localization components, such as Global Positioning System (GPS) 
chips. Worse still, when sensors are deployed in an indoor environment, GPS serves 
no purpose. This chapter surveys a variety of state-of-the-art existing localization 
techniques and compares their characteristics by detailing their applications, 
strengths, and challenges. The specificities and enhancements of the most popular and 
effective techniques are as well reported. Besides, current research directions in local-
ization are discussed.

Keywords: WSN, localization, GPS, range-free, range-based, anchors, mobile nodes, 
3D localization

1. Introduction

The popularity of wireless sensor networks (WSNs) is taking advantages of
advances in wireless communication and digital electronics [1]. WSN have become an
important and interesting subject of research. It is composed of small devices
equipped with a microcontroller, a low-power radio, and a number of sensors to
observe the environment. The Internet of Things (IoT) is defined as “Simply, the
Internet of Things is made up of devices – from simple sensors to smartphones and
wearables connected together,”Matthew Evans, the IoT program head at techUk, says
[2]. Hence, localization-based services are the most important issues related to the
IoT.

Smart environments constitute an evolutionary development step in many appli-
cations and fields, such as tracking, environmental monitoring, disaster management,
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climate control, health care, human monitoring, and underground mining. Node
localization is essential to provide a physical context to sensor readings for services
such as intrusion detection, surveillance, geographic routing, and coverage area man-
agement [3].

Localization, also known as positioning problem, is a one-time detection tech-
nique, where the position or the location of the unknown sensor is estimated. The
closeness of the estimated location to the real value presents the accuracy of the
technique, and the consistency of the estimated location presents the precision of the
technique. However, a sensor location can be global or relative. A global position is
provided by a global reference such as the Global Positioning System (GPS) or the
Universal Transverse Mercator (UTM) coordinate system. On the other hand, relative
position is based on an arbitrary coordinate system, for instance, a sensor’s location is
obtained as distances to other sensors. Tracking is an on-time method where the
trajectory of an unknown sensor is estimated in real-time applications [4], also known
as connectivity, which indicates whether two sensors can communicate between them
through one hop, that is, a packet transmitted by one sensor can be received by the
other sensor. Reference nodes, also known as anchor nodes, are aware of their posi-
tions in the network, they are used by unknown nodes in the localization process.
Techniques based on anchors are anchor-based, the estimated positions are global
metrics, otherwise, the technique is anchor-free. Localization techniques based on
measurements such as distances or angles between sensors are called range-based
techniques, as opposed to the range-free techniques [3]. This chapter will discuss all
these different techniques as well as their concepts, drawbacks, and advantages, as
well as presenting briefly localization applications.

2. Global positioning system localization

The GPS is one of the well-known and used among global navigation satellite
systems (GNSS). Owned and operated by the U.S. government, GPS provides global
coverage. Using this system and with respect to a reference in time and space, users
estimate accurately and in real time their three-dimensional (3D) position, velocity, and
time [5]. It consists of at least 24 satellites, arranged in six orbital planes with four
satellites per plane, orbiting the earth at altitudes of approximately 11,000 miles. An
unlimited number of users can be positioned by GPS, by using the concept of a one-way
time of arrival (TOA) ranging. The distribution of satellites ensures that at least eight
satellites can be seen simultaneously from almost anywhere on the planet. Each satellite
broadcasts waves containing information on its identity, its location, and the date and
time the signal has been sent. These waves propagate at the known speed of light. The
GPS receiver receives the information transmitted by the satellites and determines the
time difference between the code generation time and the reception time. Then, the
distance separating the satellite to the receiver can be calculated by a simple relation
between speed and time distance ¼ speed� timeð Þ: Using this distance, the receiver is
said to be located on a sphere centered on the satellite with a radius equal to the
computed distance. This process is repeated with two more satellites, then the position
of the receiver is estimated as the intersection of three spheres [3].

However, in WSNs fully GPS-based solution is impractical, since not each sensor
can have its own GPS receiver. This is due to many constraints such as cost, high-
power consumption, and the need for line-of-sight between GPS and satellites. Also,
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GPS  performance  will  deteriorate  considerably  when  deployed  in  hostile  or  very 
severe  environments  [5].  In  addition,  if  indoor  scenarios  are  considered,  the  GPS 
signal  will  become  even  worse  and  therefore  unreliable  for  location.  To  locate  nodes  in
networks  of  mobile  sensors  in  larger  and/or  mobile  networks,  various  techniques  and
localization  algorithms  have  been  proposed.

3. Localization  context-aware  applications

  The  increasingly  reduced  size  of  sensors,  their  low  cost,  the  wide  range  of  types  of
available  sensors,  as  well  as  the  wireless  communication  medium  used  allow  WSN  to 
quickly  invade  several  fields  of  application.  The  diversity  of  applications  is  remark-
able,  among  the  fields  where  they  can  offer  the  best  contributions,  we  can  cite  the 
following  fields:  military,  environmental,  health,  security,  underground  mining,  etc.

3.1  Military  application

  WSN  can  rapidly  be  deployed  and  used  for  military  applications  such  as  battlefield
surveillance,  combat  monitoring,  and  intruder  detection  [6].  The  main  advantage  of 
using  WSN  is  their  capacity  to  be  spontaneously  positioned  since  the  terrain  of  the 
battlefield  is  variable  [6].  In  addition,  enemy  location  can  be  expected  to  use  WSN  in
combat  monitoring,  which  is  the  most  critical  information  to  detect  intruders  [3].

3.2  Health  application

  Using  WSN  in  the  healthcare  domain  allows  providing  real-time  positioning  of 
patients  (patients  with  Parkinson’s  disease,  epilepsy,  patients  with  heart  disease,  and 
the  elderly)  in  a  hospital  or  their  homes  by  using  wearable  hardware  for  example  [7].

3.3  Environmental  application

  Air  monitoring,  water  monitoring,  and  emergency  alerts  are  subcategories  of 
environmental  applications.  An  important  aspect  is  proactive  monitoring  of  common
disastrous  causes  in  real  time  to  lower  or  prevent  damage  [6].  For  example,  the 
integration  of  sensors  in  the  walls  promotes  the  detection  of  alterations  in  the  struc-
ture  of  a  building  following  an  earthquake  or  aging,  and  the  monitoring  of  movements
in  order  to  constitute  a  system  of  detection  of  distributed  intrusions.

3.4  Underground  mining  application

  The  underground  mining  environment  is  one  of  the  most  dangerous  working 
environments.  Many  accidents  occur  in  mines  causing  death  and  loss  of  several  peo-
ple,  and  this  is  due  to  a  lack  of  surveillance  and  detection  of  danger.  WSNs  make 
working  conditions  easier  and  safer,  and  also  facilitate  rescue  operations.  In  fact,
sensors  are  deployed  to  locate  people  in  normal  or  abnormal  situations  such  as  acci-
dents.  Moreover,  sensors  can  be  used  to  locate  holes  that  cause  collapses  [3].  However,
the  mining  environment  is  hostile  for  radio  communications,  which  cause  several 
challenges  during  the  deployment  of  the  WSNs  in  underground  mines;  also,  the 
signals  reach  the  destination  after  having  undergone  several  physical  phenomena,
such  as  reflection,  refraction,  and  dispersion.  Besides,  due  to  the  high  percentage  of
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relative humidity, signal absorption and attenuation are extremely high. Therefore,
the deployment of WSNs in an underground mine must take into account a compro-
mise between the contradictory requirements [3].

4. System model

Consider a WSN with N nodes randomly deployed. Each node i, i∈ 1, 2, … ,Nf g is
characterized by its physical position pi given by:

pi ¼
xi½ � 1Dð Þ
xi, yi
� �T 2Dð Þ
xi, yi, zi
� �T 3Dð Þ

8>><
>>: i ¼ 1, 2, … ,Nf g (1)

The purpose of the localization is to compute the unknown vector pi. A WSN can
be modeled as a graph G:

G ¼ V,Eð Þ (2)

where V ¼ 1, 2, … ,Nf g is a set of vertexes that contains an element for each node,
while the set E contains an edge i, jf g, where i and j are neighbors, that is, they can
exchange radio messages within one hop [8]. Hence, the localization problem is analog
to the problem of embedding a graph in a Euclidean space, and that by finding a
mapping function f such that:

f : V ! d (3)

This function uses constraints derived from the edge to assign each vertex to a
position in d, with d the dimensionality of the embedding space [8].

4.1 Embedding with known edge lengths

Measurements mij are available and are estimates of the distance between two
nodes i and j,when some of the inter-node distances are known. Thus, the embedding
problem searches a mapping f compatible with the obtained data:

f ið Þ � f jð Þk k ¼ mij, ∀ i, jf g∈E (4)

where :k k denotes the Euclidean norm. This approach is used in case of range-
based techniques.

4.2 Embedding using connectivity information

A different approach is used by range-free schemes that only rely on connectivity
information. The model of a network with connectivity constraints can be represented
as an idealized wireless network, where two nodes are neighbors if and only if their
distance is less than the communication range R of nodes.
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ConsProsMethod

AHLoS • Acceptable accuracy in small-scale
networks.

• Poor accuracy in large-scale networks

TPS • Independent TDoA measurements
required.

• Powerful anchors required (may not be valid
in WSN).

MAL • Simple computation.
• No additional distance measurements

required.

• Large latency in large networks.

Table 1.
Range-based algorithms.
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5. Range-based  localization

  Range-based  schemes  are  derived  from  distance  and  angle  estimation
techniques.  They  use  the  distance/angle  between  sensors  to  estimate  the  location.
The  technique  accuracy  depends  on  the  quality  of  signal  measurements.
However,  range-free  techniques  are  based  on  the  connectivity  to  estimate  the
position  of  a  sensor  relative  to  other  sensor  nodes.  Range-free  techniques  are  cost-
effective  solutions;  however,  the  accuracy  is  lower  than  the  accuracy  of  range-based 
techniques.

5.1  Ranging  techniques

  Information  on  distances  or  angles  can  be  obtained  using  many  techniques,
such  as  the  received  signal  strength  (RSS)  [9,  10],  the  ToA  [11,  12],  the  time 
difference  of  arrival  (TDoA)  [13,  14],  and  the  angle  of  arrival  (AoA)  [15,  16].
Range-based  techniques  have  a  high  accuracy  range  compared  to  range-free 
techniques.  However,  they  require  additional  hardware  making  them  expensive  for
large  systems.  Table  1  summarizes  some  range-based  algorithms  as  well  as  their  pros 
and  cons.

5.1.1  Time  of  arrival

  Also  called  time  of  flight,  ToA  is  a  timing-based  technique  that  depends  on 
accurate  measurements  of  transmitting  and  receiving  time  of  signals  between  two 
nodes.  Based  on  the  known  speed  of  the  signal  (acoustic  signal  travels  at  a  velocity
of  343  m/s  and  radio  signal  at  a  velocity  of  300  km/s)  and  on  propagation  time 
obtained  from  these  measurements,  the  distance  separating  these  nodes  is  calculated
[1].  ToA  requires  highly  accurate  synchronization  of  the  clocks  of  the  sender  and 
receiver  at  the  microsecond  level.  All  signals  transmitted  must  incorporate  a 
timestamp  to  accurately  estimate  the  distance  traveled.  There  exist  two  types  of  ToA 
techniques  [3].  The  one-way  ToA  method  measures  the  difference  between  the  send-
ing  time  and  the  signal  arrival  time.  It  requires  highly  accurate  synchronization  of  the
clocks  of  the  sender  and  receiver  (Figure  1a).  The  distance  between  two  nodes  i  and  j
can  be  calculated  as:

dij  ¼  τ  �  v  (5)
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where τ ¼ t2 � t1, t1 and t2 are the sending and receiving times of the signal
respectively, and v is the signal velocity.

The two-way ToA method is preferred, where the round-trip time of a signal is
measured at the sender device (Figure 1b). The distance is calculated as:

dij ¼ τ1 � τ2
2

� v (6)

With τ1 ¼ t4 � t1 and τ2 ¼ t3 � t2, t3 and t4 are the sending and receive times of
the response signal, respectively. ToA techniques require very accurate hardware to
measure the actual received time of the signal by the nodes. Since the propagation
velocity of RF signals is high, any small error in the time measurement results in a
large distance estimate error. Thus, ToA techniques are not practical for traditional
WSNs [1, 3].

5.1.2 Time difference of arrival

TDoA technique is also a timing-based technique that uses two separate signals
traveling with different velocities (like radio/ultrasound or radio/acoustic). The dif-
ference between their receive times can be used to estimate the distance between
nodes. This approach defines a hyperbolic area where a target is possibly located with
two paired sensors as foci [17]. Each node is equipped with a microphone and a

Figure 1.
Ranging techniques: (a) one-way ToA, (b) two-ways ToA, (c) TDoA, and (d) AoA.
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speaker. The transmitter (anchor node) sends a radio message and waits some fixed
interval of time tdelay.

Then, it produces a fixed pattern of “chirps” on its speaker. When a node
receives the radio signal, it notes the current time (tradio) and turn on its
microphone. When this latter detects the chirp, the node notes again the
current time (tacoustic) (Figure 1c). Knowing tradio, tdelay, and tacoustic and given
that radio waves (with velocity vradio) travel faster than sound in air (with
velocity vacoustic), distance dij between two nodes can be calculated as in [18] by
Eq. (7).

dij ¼ vradio � vacousticð Þ tacoustique � tradio � tdelay
� �

(7)

TDoA based approaches do not require synchronization between the clocks of the
sender and the receiver. However, it needs additional hardware (i.e., microphone,
speaker, etc.) [1, 3].

5.1.3 Angle of arrival

The direction of the received signal can also be used for localization. The AoA is
defined as the angle between the propagation direction and some reference direction
known as orientation (Figure 1d) [19]. Data is collected using radio or microphone
arrays. The AoA of the signal αið Þ is calculated by studying the time difference
or the phase between the signal’s arrivals at different microphones. The relationship
between coordinates of an unlocalized sensor x, yð Þ, anchors’ coordinates
xi, yi
� �

, i ¼ 1, 2, … , nð Þ and angles of arrival αi can be expressed by Eq. (8).

dij ¼ vradio � vacousticð Þ tacoustic � tradio � td́elaið Þ: (8)

Knowing the angles of arrival from two or more anchors, sensor’s location can be
estimated using a standard least-squares approach.

AX ¼ b,X ¼
x

y

" #
: (9)

A ¼

1 � tan α1

1 � tan α2

⋮ ⋮

1 � tan αn

0
BBBBB@

1
CCCCCA b ¼

x1 � y1 tan α1

x2 � y2 tan α2

⋮

xn � yn tan αn

0
BBBBB@

1
CCCCCA (10)

Hence, estimated location, X̂ is calculated by:

X̂ ¼ ATA
� ��1

ATb (11)

Depending on the measurements, AoA techniques, directionally based
techniques, provide high localization accuracy. Nevertheless, higher complexity
antenna arrays are essential for measurement, increasing thus the cost of WSN.
Moreover, to offer spatial diversity and to measure accurately the AoA, a space is
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required; however, it may not be possible in WSN, considering the size of sensor
nodes. Besides, these techniques suffer from multipath and scattering as well as
NLoS conditions.

5.1.4 Received signal strength indicator

The most used range-based technique is based on RSS measurements. Each node is
equipped with a radio. Based on theoretical or empirical models, the distance between
two nodes is estimated based on the power of the received signal [1]. Wireless net-
work card drivers export received signal strength indicator (RSSI) values, but the
relationship between RSSI values and the signal’s power levels differ from brand to
brand [3]. In theory, the energy of a radio signal decays with the square of the distance
from the signal’s source [20]. The signal strength measured by a receiver at a given
distance d can be calculated as in Eq. (12).

Pr dð Þ ¼ Pt þ Gt þGr � PL d0ð Þ � 10 n log d=d0

� �þ Xσ

¼ P0 � 10 n log d=d0ð Þ þ Xσ (12)

Pr dð Þ represents the RSS, Pt the transmitted power, and Gt and Gr the gain of the
transmitter and receiver antenna, respectively. The constant term P0 represents in
fact the RSS measured at a distance d0 (reference distance), n is the path loss
exponent, and Xσ is the uncertainty factor due to multipath and shadowing [1].
Whereas, the accuracy of this ranging technique is limited since the RSSI
measurements contain noise on the order of several meters due to the effects of
shadowing and multipath. Another major challenge is in estimating the propagation
model parameters, and the variability of the path loss exponent depending on the
environment [1].

5.2 Nodes’ position estimation

Having enough information (distance and/or angles), a node can compute its
position using one of the nodes’ position estimation techniques, such as trilateration/
multilateration, triangulation, and bounding box.

5.2.1 Trilateration/multilateration

The trilateration technique is the most basic technique. Using the positions of three
neighbor anchors, and the distances separating them from these three nodes, the
unknown node estimates its position (Figure 2a).

In fact, a node must be positioned someplace along the periphery of a circle
centered at the anchor’s position with a radius equal to the distance separating sensor
and anchor [3]. Hence, the node’s position is estimated using the intersection of three
circles formed by the anchors’ positions and anchor-node distances. A simple system
of three equations is built to compute x, yð Þ the unknown node’s position.

5.2.1.1 Atomic multilateration

On the other hand, when the number of reference points (anchors) is more than
three (n), the multilateration technique is called atomic multilateration. However, the
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system of equations presented by Eq. (13) is an overdetermined one and it does not
have a unique solution. Assuming n anchors of locations xi, yi

� �
i ¼ 1, 2, … , nð Þ, the

system of equations is represented as:

x1 � xð Þ2 þ y1 � y
� �2 ¼ d21

x2 � xð Þ2 þ y2 � y
� �2 ¼ d22

⋮

xn � xð Þ2 þ yn � y
� �2 ¼ d2n

8>>>>>><
>>>>>>:

(13)

By making some arrangements, the relation above yields:

Ax ¼ b (14)

with

A ¼

2 xn � x1ð Þ 2 yn � y1
� �

2 xn � x2ð Þ 2 yn � y2
� �

⋮ ⋮

2 xn � xn�1ð Þ 2 yn � yn�1

� �

2
666664

3
777775 (15)

b ¼

d21 � d2n � x21 � y21 þ x2n þ y2n

d22 � d2n � x22 � y22 þ x2n þ y2n
⋮

d2n�1 � d2n � x2n�1 � y2n�1 þ x2n þ y2n

2
666664

3
777775 (16)

This linear system is solved easily (least square approach) as shown below:

x ¼ ATA
� ��1

ATb (17)

However, assuming perfect measurements, this technique fails when the distance
measurements are noisy.

Figure 2.
Estimation nodes’ position: (a) trilateration, (b) triangulation, and (c) bounding box method.
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5.2.1.2 Iterative and collaborative multilateration

Once a node has estimated its position, it becomes an anchor and broadcasts
messages containing its estimated position to other nearby nodes. This process called
iterative multilateration repeats until all nodes have been localized [21]. However, this
technique accumulates localization error with each iteration.

Although it is possible that a node does not have three neighboring anchor
nodes. Hence, a method called collaborative multilateration is used [22] by using
location information obtained over multiple hops. This is done by constructing a
graph of participating nodes that are anchors or have at least three participating
neighbors. It estimates its position by solving a corresponding system of quadratic
equations relating the distances between the node and its neighbors [3] as presented in
Eq. (18).

f x, yð Þ ¼ di �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xð Þ2 þ yi � y

� �2q
(18)

where X ¼ x, yð Þ is the position of the unknown node, xi, yi
� �

is the positions of
anchor i, and di is the estimated distance between an unknown node and anchor i.

5.2.2 Triangulation

Based on information on angles instead of distance, the triangulation technique is
used to determine the position of a node by using the geometric properties of triangles
and trigonometric laws (Figure 2b). The distance to the anchor nodes is estimated
using the AoA measurements.

Let α ¼ α1, … , αn½ �T. The bearing measurements from n anchor nodes. In fact, due
to Gaussian noise, δθ, with zero mean the relationship between measured and actual
bearing is:

α ¼ θ Xð Þ þ δθ (19)

with θ Xð Þ ¼ θ1 Xð Þ, … , θn Xð Þ½ �T actual bearings.
The relationship between the bearings of anchors and their locations can be

expressed in Eq. (20).

tan θi xð Þ ¼ yi � y
xi � x (20)

To estimate a sensor’s location, different statistical methods can be applied, such as
the maximum likelihood (ML) estimator.

5.2.3 Bounding box

Another type of position estimation is called bounding box (min-max algorithm).
It was proposed in [23], it uses squares, instead of circles as in trilateration, to bound
the possible positions of a node. This is done by constructing a bounding box for each
anchor using its position and estimated distance, then determining the intersection of
these boxes (Figure 2c). By taking the maximum of the low coordinates and the
minimum of high coordinates of all bounding boxes, the shaded area (Figure 2c) is
expressed by Eq. (21).
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ðx̂,  ŷÞ  ¼  �  max  ðxi  �  diÞ,  max  
�
yi  �  di

��  �  �  min  ðxi  þ  diÞ,  min  
�
yi  þ  di

��  
(21)

  The  final  position  of  the  unknown  node  is  then  computed  as  the  center  of  the 
intersection  of  all  bounding  boxes  [24,  25].

5.3  Range-based  protocols

5.3.1  Ad  hoc  localization  system

  Using  either  RSS  or  ToA  measurement,  the  ad  hoc  localization  system  (AHLoS)
provides  localization  service  [21].  Ranging  measurements  are  executed  by  each  node 
and  then  position  estimation  technique  (discussed  in  Section  5.2)  is  used  to  estimate 
the  location  of  unknown  nodes  in  the  network  [21].

  In  fact,  AHLoS  aims  to  provide  a  distributed  localization  in  WSNs.  Moreover,  it 
does  not  rely  on  a  single  type  of  ranging  technique  [1].  Localization  accuracy  in  the 
range  of  tens  of  centimeters  in  small-scale  networks  is  obtained  while  using  iterative 
multilateration.  However,  in  large-scale  networks,  using  iterative  multilateration 
leads  to  inaccurate  results  since  the  initial  estimation  errors  are  propagated  through 
the  net  [1].

5.3.2  Time-based  positioning  scheme

  The  time-based  positioning  scheme  (TPS)  is  a  distributed  range-based
protocol,  which  exploits  the  TDoA  ranging  technique  [26].  Three  noncollinear 
powerful  anchor  nodes  are  deployed  around  the  sensor  network  and  can  reach  all
the  nodes  in  the  network.  Each  anchor  node  periodically  broadcasts  a  beacon 
message.  An  unknown  node  receives  messages  from  anchors  and  tries  to  estimate
its  location  through  TDoA  measurements.  Likewise,  it  consists  of  two  steps:  range 
detection  (TDoA  measurements)  and  location  computation,  where  trilateration  is 
used  [1].  The  accuracy  of  this  localization  scheme  depends  on  the  accuracy  of  the 
TDoA  measurements.  Anchors  are  not  required  to  be  synchronized  and  the
beacon  messages  can  be  transmitted  at  different  times.  However,  the
requirement  of  having  powerful  anchor  nodes  is  not  always  valid  for  WSN 
architectures.

5.3.3  Mobile-assisted  localization

  Uniform  network  deployment  is  not  feasible  in  practice;  hence,  the  localization 
accuracy  is  basically  limited  depending  on  the  network  topology  and  the  deployment 
strategy.  Mobile-assisted  localization  (MAL)  [27]  uses  mobile  agents  to  improve  the 
localization  accuracy  in  WSNs  [28,  29],  it  travels  throughout  the  network  to  estimate
the  distance  between  sensor  nodes  and  itself  as  well  as  between  these  sensors.  MAL 
localizes  the  nodes  using  multilateration  techniques.

  Sensor  nodes  do  not  need  to  perform  additional  distance  measurements  or  solve 
complex  localization  equations.  However,  the  mobile  agent  required  to  perform  local-
ization  tasks  may  not  be  available  for  most  applications  making  the  MAL  limited  in 
many  applications  [1].  In  addition,  the  performance  is  highly  dependent  on  the  mea-
surements  performed  at  each  single  node;  hence,  any  errors  in  the  measuring
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algorithm affect the whole network. Moreover, in large networks, the localization
latency may be meaningfully large because only one mobile agent is used making the
time to navigate the whole network long time [1].

6. Range-free localization

Range-free techniques estimate location based techniques since they do not require
additional hardware. Table 2 summarizes some range-free algorithms as well as their
pros and cons. Similar to the range-based protocols, anchor nodes may also be used to
provide a reference for localization.

6.1 DV-Hop

DV-Hop localization scheme proposed by Niculescu and Nath [30] is similar to the
traditional routing schemes based on the distance vector. The algorithm can be
described in three steps. First, each anchor node floods a beacon message including its
position and an initial value of hop field equal to zero. Neighbor nodes receive beacons
and record the minimum hops to each anchor node and ignore the message with larger
hops from the same anchor node [31].

Then, beacons are flooded again to their neighbor nodes with one hop increased.
At the end of this step, each node in the network will eventually be able to
compute the shortest path distance (in terms of hop count) from any anchor in the
network [32]. When an anchor node obtains hop counts to other anchors, it
estimates an average distance for one hop, which is subsequently flooded to the
entire network [31]. In the second step, after obtaining hop counts to other anchors,
each anchor calculates the average one-hop size, called the correction factor (e.g.,
anchor i).

Hopsizei ¼
P

i 6¼j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � x j
� �2 þ yi � y j

� �2r
P

i 6¼jhi,j
(22)

Method Pros Cons

DV-Hop • Simple implementation. • Low accuracy in a non-uniform
sensor’s distribution.

APIT • Low complexity.
• Applicable to scenarios where high localization

accuracy is not required.

• Low accuracy.
• Accuracy proportional to the

number of anchors.

Centroid • Simple and basic method. • Heavily affected by the number of
anchors.

MDS • Ability to locate the positions of more than one
node simultaneously.

• Ability to have the network topology diagram in
the absence of anchors.

• High traffic.
• High consumption of energy.
• Low accuracy in large networks.

Table 2.
Range-free algorithms.
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where xi, yi
� �

and x j, y j

� �
are the coordinates of anchor i and anchor j, respec-

tively, hij is the number of hops between anchor i and anchor j, each anchor node
broadcasts its hop-size to network by using controlled flooding. Unknown nodes
receive the information of hop-size and preserve the one received from the nearest
anchor. Simultaneously, they transmit the hop-size to their neighbor nodes. After all,
unknown nodes have received the hop-size from anchor nodes; they compute their
distances to the anchor nodes (Figure 3), with hc the minimum hop count as:

di ¼ hc � hopsizei (23)

Finally, after receiving three or more distance information, unknown nodes
estimate their positions using multilateration or ML estimation [27]. The distribu-
tion of sensor nodes plays a role in the accuracy of the DV-Hop algorithm, that is, if
the inter-node distances are nearly equal, the estimated average hop-size will be
accurate resulting in a low localization error. However, if the node distribution is
uneven, the algorithm’s accuracy is poor [33]. Many improvements are proposed in
the literature to reduce errors introduced in the average hop distance calculation and
multilateration. An improved DV-Hop is presented in [34], where only the third
phase of DV-Hop was altered by making the unknown sensors that need to
trilaterate themselves use, the 2D hyperbolic trilateration. Simulation results showed
that the proposed algorithm can improve location accuracy and coverage than the
original DV-Hop algorithm. Also, it showed that the more regular placement of
anchors, the lower the error and higher location coverage. Work in [35] designed as
well an improved DV-Hop localization algorithm, which can satisfy the node ran-
domly distribution and heterogeneous network. In the nonuniform network distri-
bution, the algorithm uses the weighted average to reduce the location error; the less

Figure 3.
DV-Hop.
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hop-count gives great weight and the more hop-count gives small weights. Simula-
tion and experiment results showed that the improved DV-Hop has higher position-
ing accuracy. A various average hop distance algorithm VAH-DV-hop is proposed in
[36], it can reduce power consumption and omit any extra hardware. The principle
behind this algorithm is using the angle method to reduce the harm caused by
routing void (qualified anchors would execute the calculation) and applying various
average hop distances (AHD) to improve the accuracy of distance estimation. The
simulation results showed that VAH-DV-Hop can apparently improve the position-
ing accuracy, especially in uneven networks. In DV-Hop method, straight-line hop
distance is substituted by hop distance. However, the path between the anchor node
and unknown nodes is not a straight line in a practical network. Authors of [37]
improved the accuracy of DV-Hop method by adding a correction to the distance
between the anchor nodes and unknown nodes, to reduce localization errors intro-
duced by DV-Hop.

The work in [38] proposes to use a threshold value of distance or hop count to
optimize the calculation, and that to protect the dying nodes from energy drain.
Moreover, authors in [39] present an algorithm to select a reasonable maximum hop
count by hop-size comparison, and that by using a single-hop average error function
and a sub-error estimation function to adjust the average hop distance from the source
node. The error generated by using all anchors is reduced; nevertheless, the process
attains a high amount of online and offline calculation.

Multilateration usually causes errors in the last phase of DV-hop. Hence, a
differential evolution (DE) algorithm to rectify the accuracy is proposed in [40].
The DE algorithm uses stochastic search, which demands a highly complex operation.

The inverse distance weighting (IDW) correction method to obtain a more accu-
rate average hop distance is applied in [41]. It is conducted by giving different weights
to anchors based on the distances. In fact, the nearby anchors are assigned high
weights and further away ones with lighter weights.

6.2 Approximate point-in-triangulation protocol

The approximate point-in-triangulation (APIT) protocol proposed in [42] relies
on a network that consists of wireless sensor nodes as well as anchors. It consists of
four phases:

1.Beacon exchange: Each node is informed about the connectivity of each of its
neighbors to the anchors, and it builds up a table and broadcasts it to its
neighbors.

2.PIT test: A node is determined to be inside/outside a triangle formed by three
anchor nodes. It is considered outside the triangle if the distances to the vertexes
of the triangle increase or decrease simultaneously when it moves along any
direction. Otherwise, it is considered inside the triangle.

3.APIT aggregation: This test determines the triangles in which the unknown node
exists. Then, an aggregation is performed to constrain the location and that by
calculating the maximum overlapping area of these triangles.

4.COG: The node estimates its location as the center of gravity of the overlapping
area.
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  The  complexity  of  the  protocol  is  significantly  low  compared  to  range-based  algo-
rithms.  However,  the  localization  accuracy  of  the  algorithm  is  also  low  and  is  propor-
tional  to  the  number  of  nonlinear  anchors  connected  to  unknown  nodes.
Consequently,  the  APIT  protocol  is  applicable  to  scenarios  where  high  localization 
accuracy  is  not  required  [1].

  An  algorithm  based  on  energy  threshold  (ET-APIT)  is  proposed  in  [43]  to  reduce 
the  probabilities  of  In-to-Out  error  and  Out-to-In  error  in  APIT  localization  algorithm.
By  introducing  a  certain  energy  threshold,  the  unknown  nodes  that  are  too  close  to  the
anchor  node  triangles  causing  an  error  in  estimation  are  removed,  and  by  using 
iteration,  the  located  unknown  nodes  are  seen  as  anchor  nodes  to  locate  more 
unknown  nodes.

  Moreover,  when  the  location  of  the  unknown  node  is  near  the  edge,  the  accuracy 
of  the  APIT  is  low;  hence,  a  work  in  [44]  is  proposed  to  eliminate  the  edge  error  effect
by  applying  the  Barycentric  Coordinate  Technique.

6.3  Multidimensional  scaling

  Multidimensional  scaling  (MDS)  is  a  technique  that  has  its  origins  in  psychomet-
rics  and  psychophysics  [45].  MDS  technique,  applied  to  solve  localization  problems  in
WSN,  displays  the  structure  of  distance-like  data  as  a  geometrical  picture  [3].  Its  goal
is  to  implement  a  projection  technique  capable  of  preserving  the  similarities  present  in
the  original  data  set.  Hence,  the  network  can  be  recreated  in  the  multidimensional 
space.  As  a  result  of  MDS  algorithm,  the  network  layout  will  be  an  arbitrarily  rotated 
and  flipped  version  of  the  original  one  [3].

  The  MDS  map  [46]  is  a  proposed  localization  method  based  on  MDS  technique,
which  provides  both  relative  and  absolute  maps.  It  uses  the  connectivity  information 
to  derive  the  location  of  the  nodes  in  the  network.  Initially,  using  inter-node  distances
of  all  nodes,  it  constructs  the  relative  map.  Then,  using  enough  anchors,  it  can  esti-
mate  absolute  coordinates  by  transforming  relative  maps  into  absolute  map.  Since 
MDS-MAP  uses  the  length  of  the  shortest  path  as  Euclidian  distance  between  the 
nodes,  it  is  sensitive  to  the  shape  of  the  network.  Thus,  it  presents  poor  performance 
on  irregular  networks,  since  the  difference  between  shortest  path  distance  and  actual
Euclidian  distance  causes  large  error  [47].  An  improvement  of  MDS-MAP  is  presented
in  [47],  where  the  last  step  is  different  than  the  original  approach  in  order  to  solve  the
problem  of  irregular  networks  by  dividing  the  irregular  network  into  several  sub-
networks.  For  each  sub-network,  distribution  of  the  nodes  is  relatively  uniform.
Therefore,  individual  linear  transformation  can  be  employed  to  separately  map  the 
coordinates  of  each  set  of  nodes  from  the  relative  map  to  their  absolute  coordinates.

  Classical  MDS  localization  algorithm  has  a  low  accuracy  in  large-scale  sensor  net-
work  with  a  lot  of  nodes.  For  this  defect,  the  authors  of  [48]  proposed  an  improved 
algorithm  based  on  fuzzy-c  means.  This  is  done  by  splitting  the  network  by  using  a 
fuzzy  c-means  clustering  algorithm  and  then  applying  an  MDS  localization  algorithm
in  sub-networks.

6.4  Centroid

  One  of  the  simplest  solutions  in  range-free  localization  is  the  centroid  [49].  Its 
scheme  is  mainly  based  on  anchors.  All  anchors  send  their  positions  to  all  nodes  within
their  communication  radius.  These  latter  determine  their  locations  by  computing
the  average  value  of  the  anchor  coordinates  heard,  that  is,  the  center  of  gravity,  of
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a system of masses placed in correspondence of the anchor nodes heard [32]
calculated as:

x ¼
PM

i¼1xi
M

, y ¼
PM

i¼1yi
M

 !
(24)

with x, yð Þ the unknown node’s location, xi, yi
� �

the anchor’s i location, and M the
number of anchors. The centroid localization algorithm is simple, but it is heavily
affected by the number of anchor nodes used. It fits for high anchor density homog-
enous networks.

6.4.1 Improved centroid: Weighted centroid

The work in [50] proposed a weighted centroid algorithm. The reference node is
the nearest to the unknown node. Also, the nodes localized (position estimated) are
called upgrade anchor nodes. We summarize this algorithm in 5 steps:

1.The weight is calculated based on the distance between the reference anchor
node and other anchor nodes.

2.A number of triangles are formed between the reference anchor node and other
anchor nodes.

3.The centroid of these triangles is calculated, then the weight value calculated
above is used to weight the group’s centroid, and then calculate the weighted
centroid.

4.Finally, the node is localized and upgraded to anchor nodes.

5.This algorithm is applied to all unknown remaining unknown nodes.

7. Centralized versus distributed paradigm

In a centralized algorithm, all sensor nodes in the network send their data to
the central receiver and receive their computed locations. It requires plenty of
computational power in order to run their operations on central machines enabling
the algorithms to execute complex mathematical operations (order of O n2ð Þ
and O n3ð Þ) [51], which results in a high precision localization, high energy
consumption, and a robust scaling effect. It requires that a powerful base station
can be deployed among the nodes. However, this process leads to a high
communication cost.

On the other hand, in a distributed algorithm, operations are processed using
the computational power of each node. Thus, massive inter-node communication
and parallelism are required to be able to perform similar to centralized systems [51].
Besides, it is a low-energy consumer, and a robust algorithm when scaling.
However, it presents a limited precision due to noncomplex mathematical operations
used.
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8. Mobile  versus  static  sensors

  According  to  the  application  and  the  field  of  sensor  nodes  in  which  they  are 
deployed,  sensor  nodes  are  either  static  and  fixed  at  one  place  or  mobile.  A  WSN
is  considered  mobile  when  nodes  can  move  and  leave  their  position  to  another
one,  hence,  WSN  topology  changes.  Localization  in  this  case  is  performed  to  track 
them,  or  for  navigational  purposes.  In  fact,  four  combinations  of  mobility  can  be 
discussed:

  1.  Static  sensor  nodes  and  static  anchor  nodes

2.  Static  sensor  nodes  and  mobile  anchor  nodes

3.  Mobile  sensor  nodes  and  static  anchor  nodes

4.  Mobile  sensor  nodes  and  mobile  anchor  nodes

  Three  categories  discuss  the  mobility  in  a  WSN:

1.  Random  mobility:  where  the  sensors  move  randomly  in  the  area  of  deployment.

2.  Predictable  mobility:  where  the  motion  of  sensors  is  known  but  cannot  be  changed.

3.  Controlled  mobility:  where  the  sensors  move  to  definite  destinations  following
  defined  mobility  outlines.

  Many  mobility  models  are  proposed  to  describe  a  node’s  movement,  such  as 
Random  Way  (RW)  [52],  Random  WayPoint  mobility  (RWP)  model  [53],
Gauss-Markov  (GM)  [54],  and  Boundless  Mobility  model  [55].

  In  fact,  localization  techniques  can  vary  the  anchor  node  density.  Hence,  mobile 
anchor  nodes  collaborate  with  the  static  sensor  nodes  to  make  up  the  constraint  of 
localization  in  static  WSNs.  Work  done  in  [56]  reviewed  most  MANAL  (Mobile 
Anchor  Node  Assisted  Localization)  algorithms.  It  divides  the  movement  trajectories 
into  two  types:  the  first  where  the  anchors  move  with  some  already  existing  mobility 
models  without  considering  network  parameters  and  localization,  and  the  second  one
where  they  move  with  some  path  scheduling  outlines  designed  for  WSN  localization.
However,  when  sensors  move  additional  challenges  are  encountered  such  as  localiza-
tion  latency.  If  the  time  to  estimate  the  position  of  the  node  is  too  long,  the  sensor  will
have  changed  its  position.  Also,  mobility  may  impact  the  localization  signal;  the 
frequency  of  the  signal  may  experience  a  Doppler  shift  which  occurs  when  the  trans-
mitter  of  a  signal  is  moving  relative  to  the  receiver.  This  shift  in  frequency  is  corre-
lated  to  the  positions  of  the  two  nodes  [57].  Work  in  [58]  took  this  Doppler  effect  into
account  and  uses  it  to  improve  the  estimated  position.

  Sensor’s  mobility  causes  distance  variations  and  environmental  interference.  How-
ever,  a  well-designed  localization  technique  can  reduce  the  number  of  reference 
anchors  required.  Also,  the  network  performance  is  enhanced  in  terms  of  packet 
delay,  coverage  (better  deployment)  [59],  and  connectivity  [60].  Moreover,  the  com-
munication  overhead  is  reduced  as  well  as  the  energy  consumption,  which  increases 
the  durability  of  the  whole  network.  However,  the  localization  estimation  error  is  a 
function  of  the  speed  of  the  anchor  nodes  and  sensor  nodes.
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9. Fingerprinting technique

Another category of localization techniques is fingerprinting technique or scene
analysis. It uses the signatures or fingerprints and is based on a study campaign
conducted in the environment where the location system is deployed. It consists of
two phases: the off-line phase where a signature database is built and the real-time
phase where the location of the node is estimated by comparing the current
signature with those cataloged previously. Several types of signatures [61] can be
used: the power of the received signal, the AoA, the arrival time, the delay spread,
or the number of reflected paths of received signals. A pattern-matching
algorithm is used such as K-Nearest-Neighbor, KNN [62], Kernel-based [63],
histogram method, support vector machines (SVM) [64], smallest M-vertex
polygon (SMP), random forest [65], decision trees [66], and artificial neural
networks [67]. Database building is a relatively simple process: (1) It does not
require the receiver to connect to the transmitter and exchange messages. (2) It is
not necessary to know the transmitters’ position information. However, this
technique suffers from noise, and any change in the environment decreases
localization accuracy. However, the requirement for generating a signal signature
database makes this technique unachievable for the most scenarios of the WSNs,
especially in complex environments.

The level of obtained accuracy depends on how many access points and reference
points are used. Localization accuracy is enhanced with access points number, also,
the resolution is enhanced with reference nodes number; however, this will cost more
labor work. Another known drawback of this approach is the need for regular updates
for the collected data as well as the built map [68].

10. Three-dimensional localization aspect additional challenges

The majority of localization techniques have been proposed considering only
two-dimensional (2D) networks. Henceforth, localization in 3D is an interesting prob-
lem in the research community. Landscape-3D [69] is one of the first proposed tech-
niques for 3D localization, where unknown nodes measure a set of distances to mobile
location assistants (LAs) using RSSI, then they use unscented Kalman filter to estimate
their own position. Also, in [70], RSSI is used for distance measurements while particle
filter is used for node positioning. On the other hand, an improved centroid localiza-
tion method is presented in [71], where each unknown node randomly chooses four
anchor nodes in range to form a sequence of tetrahedrons used to calculate its position.
In [72], a range-free algorithm is proposed based on flying anchors. In fact, mobile
anchor nodes keep transmitting a beacon message along with their location informa-
tion to unknown nodes and choose three further anchor nodes to form a triangle. Then,
the distance is calculated by the link quality induction against each anchor node.
Finally, a centroid algorithm is used to estimate the node’s position.

However, some difficulties are faced in 3D localization algorithms [73] such as:

• More anchor nodes are needed for localization; in fact, at least three anchor nodes
are required in a 2D space, whereas, in a 3D space, it needs at least four anchor
nodes to locate the unknown nodes. Hence, the node density increases as well as
the complexity of the algorithm.
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• Transmitted  signals  are  affected  by  the  terrain  obstacles,  affecting  the  distance 
estimation  between  nodes,  which  will  affect  the  positioning  accuracy.

11. Fundamental  limitations  impacting  localization

11.1  Number  of  anchors

  It  has  been  shown  that  the  localization  accuracy  increases  with  the  number  of 
anchors  [74,  75].  Nevertheless,  in  some  scenarios  the  number  of  available  anchors  is 
low  for  different  reasons  such  as  battery  exhaustion  or  limited  communication  range
[76].  Hence,  the  localization  is  limited  in  these  cases.

11.2  Distribution  of  anchors

  The  distribution  and  deployment  of  anchor  nodes  play  an  important  role  in  the 
localization  algorithm.  If  the  anchors  are  placed  only  in  some  portion  of  the  area  of 
interest,  it  does  not  guarantee  that  all  unknown  nodes  reside  inside  the  convex  hull 
formed  by  the  anchors  resulting  in  a  low  localization  accuracy  [76].  The  geometric 
dilution  of  precision  (GDOP)  is  a  parameter  used  to  interpret  the  relation  between 
anchor  distribution  and  accuracy  which  increases  as  the  value  of  GDOP  decreases
[77].  The  GDOP  is  used  in  optimizing  the  deployment  of  the  sensors.

11.3  Nonline  of  sight

  The  nonline  of  sight  is  defined  when  the  propagation  path,  between  the  transmit-
ter  and  receivers,  is  obstructed.  Hence,  the  communication  between  nodes  may  be 
lost,  limiting  the  localization  accuracy.  The  effects  of  this  phenomenon  are  more 
important  when  the  elements  in  the  environment  are  regularly  changing.  If  there 
exists  information  on  the  NLOS  links,  it  can  be  used  to  improve  the  localization 
accuracy  [76].

11.4  Multipath  propagation

  Multipath  propagation  occurs  when  the  transmitted  signal  arrives  at  the  receiver 
by  two  or  more  paths.  It  causes  constructive  and  destructive  interferences,  altering  the
signal-related  measurements  and  hence  affecting  the  localization  accuracy.  For  exam-
ple,  in  the  RSS-based  localization;  the  transmitter  sensor  seems  to  be  farther  away 
than  where  it  is  in  reality.  An  Optimal  Multi-Channel  Trilateration  positioning  algo-
rithm  (OMCT)  is  presented  in  [78].  It  first  uses  an  adaptive  Kalman  filter  to  remove 
the  RSS  measurement  noise  and  the  optimal  node  position  estimates  are  obtained  from
a  multiobjective  evolutionary  algorithm.

12. Localization  performance  indicator

12.1  Accuracy  of  localization

  The  error  of  localization  defined  as  the  Euclidean  distance  between  the  real  and 
estimated  positions  of  nodes  is  the  most  important  feature  in  localization  evaluation.
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To increase the accuracy of the localization, algorithm has to minimize this error.
However, factors affecting the hardware, the processor, and the energy (such as size
and cost) must be taken into consideration.

12.2 Complexity

A localization algorithm must be fast, noncomplex, and its development does not
require large calculations and large memory storage capacity. For instance, if the
complexity is the major property to take into consideration in a localization algorithm,
the trilateration method is suitable; however, it is susceptible to inaccurate distances’
estimations.

12.3 Energy constraints

The only energy source of a sensor node is its battery. Hence, careful energy
management is required in a WSN to avoid wasting it, it is necessary that the algo-
rithm communicates the least possible via radio. Schemes based on hop-count require
high communication cost. Thus, the localization scheme should minimize the amount
of node-to-node communication.

12.4 Scalability

Localization technique must ensure appropriate estimation of position when WSN
deployment gets larger. In fact, when the distance between nodes increases, the
performance of range-based techniques decreases. Moreover, in dense network sig-
nals are subject to congestion requiring complex infrastructure.

13. Research directions and challenges

In order to obtain more accurate and better performance of localization
algorithms, multimodal localization is more investigated, where, multiple localization
techniques are used simultaneously. Work in [79] exploited a hybrid TOA/RSS range
estimator combined with an iterative least-squares procedure to localize nodes. The
proposed hybrid approach outperformed state-of-the-art techniques. Another hybrid
approach is proposed in [80], where a localization based on TOA/AOA techniques is
presented. Elevation AoA estimations are combined with ToA measurements, then
applied to a weighted least square algorithm to solve the nonlinear problem. Simula-
tion results show that the proposed method outperforms the conventional methods,
by adjusting different parameters such as transmit power, signal bandwidth, and the
number of anchors. Authors in [81] proposed an approach using hybrid RSS and AOA
to resolve a source localization problem in a 3D WSN. RSS model integrates the
Gaussian-shaped radiation pattern, and the technique adopts the second-order cone
relaxation and alternating optimization techniques. Simulation results demonstrate
the efficacy of the presented algorithm.

Another aspect of research directions is the heterogenous WSN. The work in [82]
proposed a fault filtering method used with an existing hop-based algorithm. First, it
normalizes the distance estimations using the communication radius of nodes and
then uses the Jenks Natural Breaks algorithm for filtering out the nodes producing
unreliable distance estimations. The approach is tested in 2D/3D, isotropic/anisotropic
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networks.  Localization  accuracy  shows  an  improvement  of  14  and  52%  when  tested 
with  DV-Hop,  Weighted  DV-Hop.  Another  approach  [83]  is  a  priority-based  algo-
rithm,  which  gives  priority  to  a  few  anchors  based  on  their  AHD.  Unknown  nodes  are
then  localized  with  weighted  centroid  method  using  high  priority  anchors.  Results 
show  that  algorithm  outperforms  existing  weighted  centroid  methods  in  anisotropic 
fields.

  An  additional  research  direction  considered  localization  in  irregular  field.
Irregularities  present  challenges  in  nodes  localization,  and  they  can  be  signified  in 
terms  of  irregular  radio  propagation  pattern  of  nodes,  noisy  environment,  network 
holes,  and  irregular  fields  [84].  It  is  useful  and  important  in  environmental 
applications  such  as  forest  fire  monitoring,  however,  forest  areas  are  usually  not  plain
uniform  fields.  Hence,  considering  irregularities  increase  localization  accuracy  [85].  In
fact,  RSS-based  localization  techniques  are  affected  by  irregularities,  since  RSS  values
between  a  pair  of  transmitters  and  receivers  at  fixed  distance  varied  when  the  receiver
was  placed  at  different  propagation  directions  from  the  transmitter  [86].  Hence,  a 
novel  technique  where  node  segmentation  with  improved  particle  swarm  optimiza-
tion  (NS-IPSO)  is  proposed  in  [87].  It  divides  sensor  nodes  into  segments  to  improve 
the  accuracy  of  the  estimated  distances  between  pairs  of  anchor  nodes  and  unknown 
nodes.  Similarly,  irregularities  add  a  positive  bias  for  the  TOA  and  TDOA  measure-
ments  [88],  resulting  in  overestimation  of  distance  between  nodes  and  higher  locali-
zation  errors.  A  neural  network-based  localization  algorithm  called  LPSONN  was 
described  in  [89],  it  is  a  centralized  algorithm  implemented  and  simulated  in  isotropic
networks  with  and  without  coverage  holes  or  shadowing  zones,  and  anisotropic  net-
works.  A  neural  network  using  the  received  information  is  trained.  Results  show  that
the  proposed  algorithm  has  less  localization  error  rate  and  storage  requirements  than 
the  analogous  methods.

14. Future  scopes

  The  evolution  of  WSN,  technologies,  as  well  as  localization  applications  create
the  necessity  of  more  advanced  research  exploiting  intelligent  surfaces  as  well
as  advanced  millimeter-wave  systems.  Future  scopes  and  studies  are  concerned  by  a 
new  concept  that  emerged  recently  called  Reconfigurable  Intelligent  Surfaces  (RISs).
In  fact,  future  WSN  will  not  only  allow  people  and  devices  localization  but  will
be  turned  into  a  distributed  intelligent  communication,  sensing,  and  computing 
platform  [90].

  RIS  may  be  able  to  propose  dense  networks  for  sensing  the  environment  and  to 
offer  a  platform  that  provides  highly  accurate  localization  services  in  outdoor  and 
indoor  scenarios,  by  taking  advantages  of  realizing  large-size  smart  surfaces.  Also,
RISs  can  offer  a  possibility  to  acquire  a  fully  electromagnetic-based  computing  plat-
form  and  that  thanks  to  the  possibility  of  performing  algebraic  operations  and  func-
tions  directly  on  the  incident  radio  waves  [90].  In  addition,  RIS  can  present  important
advantages  in  terms  of  performance,  energy  consumption,  and  cost  for  localization 
and  mapping  [91].

  Besides,  systems  where  antenna  arrays,  are  deployed  as  a  large  intelligent  surface
(LIS)  are  a  prospective  field  for  positioning  and  coverage  enlargement  of  wireless 
networks  [92].

  More  interesting  future  scopes  and  studies  will  be  based  on  the  joint  usage  of  RISs
and  millimeter  wave  MIMO  systems  for  the  fifth  generation  (5G)  [93],  where
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evaluation of the impact of the number of LIS elements are studied and the theoretical
performance for localizing are compared to the conventional scheme with one direct
link and one non-line-of-sight path [93].

Hence, several researchers have started investigating several scopes and opportu-
nities offered by RIS as well as the envisioned 6G platform, which is expected to sense
the environment, store and process information to provide network applications.

15. Conclusion

Localization in WSN is an important and challenging task, it is essential for many
applications and network management. This chapter surveys the most popular range-
based and range-free techniques. It presents the basics of each one as well as the
research directions. Readers can profit from this chapter to well understand the
concepts of localization in WSN. Different works are summarized in this work,
allowing readers and researchers to be positioned with respect to enhancements and
ideas presented in the literature.

Nevertheless, localization and mapping algorithms discussed and detailed in this
chapter can benefit from using RIS facilities, in which position and orientation are
known a priori [91], improving, hence, the accuracy and extending radio coverage.

Moreover, this concept has high potential approaches for next-generation locali-
zation, and more importantly when investigations consider beyond 5G localization.
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Chapter 2

IoT-Based Decision Support System
for Health Monitoring of Induction
Motors
A. Pravin Renold and B. Venkatalakshmi

Abstract

An electrical motor is a common device that is used for a variety of electrical 
purposes. Because of their wide range of applications, motors that are both reliable 
and long-lasting are in high demand. Motors are prone to a variety of faults, including 
rotor bar breaking faults, short turn faults, bearing outrace faults, and so on. Unex-
pected faults or failures in these motors reduce workplace productivity. The time it 
takes to resolve the issues reduces the organization’s profit. Bearing failures account 
for approximately 42% of all faults. Due to continuous operation, the shape of the 
majority of electrical motors with rolling bearings becomes disproportional. This 
causes the motor’s elastic limit to be exceeded, as well as fractures, vibrations, and a 
rise in temperature. A good solution is to switch from scheduled maintenance to 
predictive maintenance, which is based on monitoring the motor’s operating condi-
tion. This chapter proposes an Internet of Things (IoT)-based solution that continu-
ously monitors and records the vibration from the induction motor. A decision 
support system analyzes the impact of vibration using log data and the Naïve Bayes 
classifier. The proposed decision support system detects the critical level of vibration 
and notifies the user of the motor’s abnormal working condition.

Keywords: health management, induction motor, mitigation measures, decision 
support system, Naïve Bayes classifier

1. Introduction

In this third era of computing, the access of predictive information from remote
locations becomes essential for optimal business solutions. This is applicable for every
field of applications such as agriculture, manufacturing, healthcare, education, etc.
The thumb rule for the achievement of the above information access is the develop-
ment of an interface between recent technologies along with proven techniques of
prediction and communication. This chapter presents one such effort of interfacing
Internet of Things (IoT) technology along with conventional sensing and prediction
techniques. The potential solution presented in the chapter can find its role in all
possible fields, which uses induction motors.
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The chapter framework is composed of four major sections. The following
section is an introductory part highlighting the fundamentals of various induction
motor faults and the basics of IoT technology. Section 2 of the chapter describes
the problem statement along with the solution using the IoT architecture. The
predictive maintenance designed as a decision support system using Naïve Bayes
classifier algorithm has been elaborated in Section 3. Section 4 of the chapter
highlights the chapter’s outcomes and the performance metrics for the proposed
IoT-based solution.

1.1 Fundamentals

The chapter deals with optimal solution of induction motors and smart monitoring
and precaution effects of induction motors. The key fundamentals required for such
architecture are the induction motor fundamentals and the Internet of Things
fundamentals. So in this section, let us review the basics of them.

1.1.1 Construction of single-phase induction motor

The single-phase induction motor has a stationary part called stator and the rotat-
ing part called rotor. The stator made up of stampings carries the winding called stator
winding. It is excited by a single-phase AC supply. The number of poles (P) for which
stator winding wound decides the synchronous speed of the motor. The synchronous
speed is given by Ns.

Ns ¼ 120f=Pr:p:m: (1)

where f is the frequency. The induction motor always rotates at a speed that is
slightly less than the synchronous speed. The rotor is a rotating part of induction
motor. The rotor is connected to the mechanical load through the shaft. The rotor of
the three-phase induction motors is further classified as:

i. Squirrel cage rotor

ii. Slip ring rotor or wound rotor or phase-wound rotor

Depending upon the type of rotor used, the three-phase induction motor are
classified as:

i. Squirrel cage induction motor

ii. Slip ring induction motor or wound induction motor or phase-wound
induction motor.

1.1.2 Working principle of induction motor and different types of faults

When AC supply is given to stator winding, it carries an alternating current, which
produces the alternating flux. This flux links with the rotor conductors and due to
mutual induction, the rotor experiences induced e.m.f. The rotor current produces
another flux called as rotor flux, which is required for motoring action.
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  Like  every  machine,  the  electrical  motors  are  also  prone  to  various  faults  under 
different  operating  factors  and  lifetime.  The  commonly  arising  problems  in  electrical 
motors  are  [1]  as  follows:

i. Stator  faults

  ii.  Broken  rotor  bar  or  cracked  rotor  end-rings

iii.  Air-gap  irregularities

iv.  Shorted  rotor  field  winding  and

  v.  Bearing  failures

  Most  of  the  electrical  motors  use  rolling  bearing,  which  is  used  for  the  smooth 
rotational  movement  of  the  rotor.  A  bearing  consists  of  two  rings,  one  inner  and  the 
other  outer.  A  set  of  balls  placed  in  raceways  rotates  inside  these  rings  [2].  The 
bearings  are  affected  by  the  stress  caused  by  vibration,  eccentricity,  and  bearing 
currents  [3].  Around  40–50%  faults  in  electrical  motors  are  bearings-related  [2].
Energy  consumption,  revolutions  per  minute,  temperature,  air  gap  eccentricity,
vibration,  and  bearing  health  are  some  of  the  useful  data  claimed  by  various  sensor 
manufacturers  in  relation  to  electric  motors.  This  type  of  information  can  be  useful  in
troubleshooting  failed  motors,  inspecting  the  condition  of  operational  motors,  and 
determining  when  a  motor  requires  a  closer  look  or  maintenance  and  to  reduce  the 
electric  motor  downtime.

  The  usage  of  IoT  to  collect  data  and  analyze  the  sensed  data  helps  to  obtain 
knowledge  from  the  raw  data.  Such  information  can  be  used  to  achieve  predictive 
maintenance  of  electric  motors.  Some  of  the  applications  are  turbines,  paper  mills,
refrigeration,  to  name  but  a  few.

1.1.3  Wireless  sensor  network  (WSN)

  Wireless  sensor  network  (WSN)  is  one  of  the  enabling  technologies  of  Internet  of
Things.  WSN  is  defined  as  a  network  of  distributed  sensor  nodes  which  performs  the
task  of  sense,  compute,  and  communicate.  The  WSN  is  an  example  of  infrastruc-
tureless,  short-range,  personal  area  network.  The  communication  standard  for  WSN  is
IEEE802.15.4.  The  WSN  supports  different  types  of  topology  such  as  star  and  mesh.
The  network  comprises  source  nodes  to  monitor  the  environmental  factors  and  for-
ward  the  sensed  data  toward  the  sink  node  via  multihop  communication.

  An  approach  for  routing  IPV6  packets  over  zigbee-based  WSN  is  called  the 
6lowpan  (IPV6  over  low-power  wireless  personal  area  networks)  [4].  The  IP  packets 
are  compressed  using  the  adaptation  layer  to  make  it  suitable  for  the  personal  area 
network.  With  the  help  of  border  gateway,  which  acts  as  an  interface  between  inter-
net  and  the  nodes  in  the  sensor  networks,  the  packets  have  been  adapted  suitable  for 
Internet  and  wireless  sensor  networks.

1.1.4  Internet  of  Things  (IoT)

  Research  trends  in  pervasive  computing  technologies  have  the  principle  of  inte-
grating  the  paradigm  of  many  recent  technological  solutions  for  developing  anytime,
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anywhere accessible devices and systems. This requires a major backbone technology
as IoT. The master’s and doctoral learning community, while exploring the design and
applications of IoT, needs to establish new frameworks and integrate various ideas.

Internet of Things (IoT) leads in the world news today due to its wider potential of
applications such as smart cities, smart homes, wearables, automobile industries, etc.
Research in the field of IoT cannot be confined to a specific area [5]. It is enabled by
handshaking of several domains of research such as sensors, networking, cloud com-
puting, edge computing, big data, machine learning, and deep learning. As IoT is a
technology outcome of multidisciplinary research, today’s researchers are in need to
develop Proof-of-Concept (POC) solutions on various aspects of IoT. There exists a
significant tool for the design and development of IoT networks and solutions. For
example, Contiki OS is a platform that has well-structured functions and modules
supporting various design aspects of IoT networks. Usage of the features of commu-
nication stack of such tools provides extended IoT applications. The network layer of
IoT can be enhanced with scheme of use of network coding at packet level to improve
the throughput performance of IoT networks. Similarly, the security in the network
layer of IoT can be enhanced by developing privacy homomorphism. Also such design
can be enhanced with improvised Routing Protocol for Low-Power and Lossy Net-
work (RPL) in the network layer for higher performances. Various applications can
also be developed by generating new suitable functions of various algorithms as
embedded solutions. Figure 1 shows the architecture of Internet of Things where the
hardware components are interconnected by the means of Internet. The following are
the various benefits of IoT:

a. Communication between devices: IoT achieves the communication between
devices, also famously known as Machine-to-Machine (M2M) communication.
The devices are connected to a network, and hence, the control and
transparency are available with greater efficiencies and quality.

b. Automation and control in working: As the devices are connected to a network,
the devices can be controlled in a centralized manner with a widely used
wireless technology called Wireless Fidelity (Wi-Fi).

c. Improved quality in monitoring of devices: IoT allows automating the tasks with
less human intervention. The continuous monitoring leads to improved quality
in decision-making, transparency, and quick decision-making during
emergency situations.

Figure 1.
Architecture of IoT.
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2. Fault  recovery  analysis  of  induction  motors

  The  induction  motor  finds  application  in  most  of  the  industries.  Bearing  fault  in 
induction  motor  leads  to  more  severity  if  not  rectified  in  the  initial  stage  [6].  The 
occurrence  of  bearing  fault  causes  increased  vibration  and  temperature  of  the  motor.
When  the  vibration  goes  beyond  a  certain  level,  it  affects  the  air  gap  between  stator 
and  rotor  and  induces  faulty  frequency  into  the  stator  current.  Many  researchers  have
analyzed  the  faults  in  induction  motors  and  proposed  different  strategies  for 
monitoring  and  diagnosis.  The  following  are  few  such  existing  solutions.

2.1  Online  motor  condition  monitoring  system  for  abnormality  detection

  An  online  motor  condition  monitoring  system  based  on  Cortex-M4  microcontrol-
ler  with  a  graphic  user  interface  is  used  for  abnormality  detection  [7].  The  system 
monitors  the  electrical  and  vibration  signal  for  fault  detection.  The  parameters  moni-
tored  are  voltage,  current,  and  vibration.  The  captured  signals  are  given  to  an  infinite
impulse  file,  and  then  fast  Fourier  transform  is  applied  for  spectral  analysis  to  identify
any  abnormality  in  the  captured  signals  pattern.

2.2  An  analytical  approach  of  parametric  monitoring  of  induction  motor  using
  GSM

  An  embedded  system  based  on  ATMEGA-16  with  Global  System  for  Mobile  Com-
munication  (GSM)  has  been  used  to  protect  the  induction  motor  against  overvoltage,
overcurrent,  and  over-temperature  [8].  The  components  such  as  timer,  contactor,
voltage,  and  current  relays  are  used.  The  parameters  used  for  finding  the  fault  in  the 
system  are  voltage,  current,  speed,  and  temperature.  The  parameters  associated  with 
the  induction  motor  are  collected  for  every  periodical  interval,  the  data  are  transmit-
ted  over  GSM,  and  the  messages  are  displayed  in  a  Liquid  Crystal  Display  (LCD)  on 
the  receiver  end.  Also  the  values  are  displayed  on  the  mobile  phone  associated  with 
the  devices.

2.3  Acoustic  based  on  fault  diagnosis  in  induction  motor

  The  work  in  [9]  discusses  an  acoustic-based  condition  monitoring  and  fault 
diagnosis-based  review  to  detect  four  different  types  of  faults  such  as  bearings,  rotors,
stators,  and  compounds.  Various  datasets  are  being  analyzed  using  various  machine 
learning  algorithms.  The  type  of  fault  determination  in  the  induction  motor  is  affected
by  environmental  noise.

2.4  IoT-based  vibration  monitoring

  The  accelerometer  sensor,  which  was  mounted  on  the  engine’s  rod  axis  and  linked
to  a  wireless  RF  device,  was  carried  in  different  environments  for  different  rotational
speeds  [10].  Furthermore,  various  types  of  vibration  signals  with  varying  amplitudes 
and  frequencies  are  injected  directly  on  the  engine’s  axis  to  test  and  prove  device 
reliability.  Allan’s  variance  technique  allows  for  the  successful  detection,  definition,
and  localization  of  vibration  signatures.

5
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2.5 Health monitoring using IoT and machine learning

A real-time machine health monitoring system that can analyze the supply
balancing condition on a three-phase system by combining machine learning and IoT
technology is proposed in [11]. This system is built with current transformer to
capture and send electrical data from the load to the server. The server processes data
by artificial neural network to train the data and for load classification.

2.6 Case study on fault diagnosis in induction motor

Incorporation of machine learning algorithms to aid or to take decision on its own
on different types of faults in induction motor. In [12], different artificial intelligence
algorithms and its suitability for fault identification have been discussed.

• Neural network, after the training phase, is used to classify the incoming data.
The value that lies outside the range is named as a potential motor fault. To avoid
false fault diagnosis, the alarm is raised when fault value ranges are observed
persistently. It is suitable to diagnose bearing and unbalanced rotor faults of
induction motors.

• Fuzzy-logic-based systems have been used to classify broken-bar-related. A set of
nine rules are used to determine the two sideband components. The broken bars
are identified based on the sideband components.

• A spectral kurtosis and envelope spectrum to identify different types of faults in
rolling element bearings [13]. The dataset [14] contains an acceleration signal
“gs,” sampling rate “sr,” shaft speed “rate,” load weight “load,” and four critical
frequencies representing different fault locations such as ballpass frequency
outer race, ballpass frequency inner race, fundamental train frequency, and ball
spin frequency.

2.7 Inference

Fault detection and diagnosis are an aiding tool for the accurate determination of
different types of fault in induction motor. The efficiency of the fault diagnosis system
depends on the system or algorithm accuracy. Fault prediction is capable of predicting
early possible development of fault in the induction motor. It leads to reduced main-
tenance cost and less shut down time of the equipment. Fault prediction system in
association with Internet of Things could be an effective method to continuously track
the status of the equipment and allocate periodical prior schedule of the equipment
from a remote location.

3. Fault prediction model

The prediction model is designed with Naïve Bayes algorithm. Naïve Bayes classi-
fier predicts that the presence (or absence) of a particular feature of a class is
unrelated to the presence (or absence) of any other feature [15]. This classifier is very
simple, efficient, and is having a good performance. Sometimes it often outperforms
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Figure 2.
Overall system setup.
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more  sophisticated  classifiers  even  when  the  assumption  of  independent  predictors  is
far.  This  advantage  is  especially  pronounced  when  the  number  of  predictors  is  large.

3.1  Overall  system

  The  system  is  designed  with  the  objective  of  identifying  the  fault  condition  in  the 
induction  motor  and  informing  the  status  of  the  induction  motor  to  the  lab  in-charge
in  a  remote  fashion.  The  advantage  of  this  approach  is  that  the  induction  motors 
located  at  different  premises  are  monitored,  and  periodical  maintenance  is  allocated  in
a  centralized  manner  as  shown  in  Figure  2.  The  induction  motor  equipped  with 
accelerometer  to  monitor  the  vibration  data  and  the  data  are  sent  to  the  gateway  node
in  a  wireless  fashion.  The  gateway  node  forwards  the  data  to  the  control  room  for 
every  periodical  interval.  The  decision-making  software  runs  the  Naïve  Bayes  algo-
rithm  on  the  received  data.  The  algorithm  predicts  the  possible  occurrence  of  fault.
The  alarm  will  be  given  to  the  lab  in  charge  for  further  maintenance  if  any.

  Figure  3  shows  the  proposed  prediction  technique.  The  induction  motor  is 
connected  with  accelerometer.  The  accelerometer  data  are  forwarded  to  the  gateway 
and  to  the  control  room  server.  The  server  runs  the  Naïve  Bayes  algorithm  for  the 
purpose  of  occurrences  of  fault.  The  acceleration  data  are  processed  by  the  application
created  by  python  programming  language.  The  Naïve  Bayes  algorithm  implemented 
in  python  language  has  been  trained  with  the  accelerometer  data.  After  testing  with 
different  samples  of  data  with  both  normally  working  machine  and  with  faulty 
induction  motor,  the  predictor  module  predicts  the  status  of  the  machine  from 
incoming  real  data  after  during  the  real-time  running  of  the  motor.  The  outcome  of 
the  predictor  is  divided  into  two  classes,  namely  normal  and  faulty  class.  If  faulty  class
is  predicted,  then  an  alert  is  given  to  the  lab  in-charges.  Hence,  preventive  mainte-
nance  is  carried  out  to  avoid  long  time  stoppage  of  the  motor,  thus  improving  the 
production  time  of  the  induction  motors.
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3.2 Modules of prediction model

Figure 4 shows the module of the proposed technique. The detailed explanation of
the modules is given in this section.

Figure 5 shows the experimental setup for measuring the vibration of the induc-
tion motor. An embedded base board with Wi-Fi support known as Intel Edison is
connected with the accelerometer using the Arduino’s Uno board, which acts as data
acquisition unit. The vibration data from the induction motor are collected for every
periodical interval. The sensed data are forwarded to the lab in-charge, to know the
status of the machine. Also, the data are processed with Naïve Bayes algorithm for the
determination of bearing fault.

Based on the outcome of the decision-making module, which runs the Naïve Bayes
algorithm, the lab in-charge decides whether to allow the motor to run or to stop or
halt the motor for a specific period of time. The hardware and software used for the
implementation are tabulated in Table 1.

The embedded device we have used in the work is Sparkfun Intel Edison board [16].
It is a lightweight board designed to support Internet of Things, and the base board
consists of 70 pins. It has inbuilt Wi-Fi and bluetooth, it supports Yocto Linux operating
system. The operating voltage of the board is 3.3–4.5 V. The application development
could be done by Python, Jjava, Node.js, C, C++. The application development on the
Intel Edison could be done by performing the connection via putty software.

The Intel Edison board is connected with Arduino Uno using Inter Integrated
Circuit (I2C) protocol as shown in Figure 6. The Intel Edison board is the master, and
the Arduino Uno is the slave. The reason for adapting Arduino Uno is its easy inter-
facing support with sensors. I2C is a synchronous serial protocol, the clock signal is
controlled by the master as shown in Figure 6. The serial data (SDA) line is used for
the master and slave to send data. The serial clock (SCL) line carries the serial clock. In
I2C, the messages are broken into frames. Each message has an address frame that
contains the binary address of the slave, and one or more data frames that contain the
data being transmitted. The message also includes start and stop conditions, read/
write bits, and ACK/NACK bits between each data frame.

Figure 7 shows the interfacing of ADXL335 with Arduino. ADXL335 has physical
vibrations as input and the three-axes analog output is taken via the X, Y, and Z pins
from the accelerometer. The Arduino UNO has A1, A2, and A3 as analog input/output

Figure 3.
Proposed decision-making technique.
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pins. Accelerometer output is given as input to the Arduino by connecting X, Y, and Z
to A1, A2, and A3, respectively. The Aref pin of the Arduino is shorted with the 3.3 V
pin of the Arduino itself. Accelerometer receives supply from the Arduino by
connecting the Vcc and GND pins of the both with each other.

Figure 5.
Experimental setup.

Figure 4.
Modules of proposed technique.
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Figure 8 shows the interfacing of Arduino Uno with Intel Edison. The accelerometer
values are taken to the Intel Edison board via I2C protocol. A4 and A5 pins of the Uno
are the analog input/output pins. I2C board block of the Intel Edison block has SCL and
SDA pins for serial communication. A4 and A5 of the Arduino are connected to SDA and
SCL, respectively. The GND-GND connection of both the board needs to be ensured.

• Prediction analysis and solution: Naïve Bayes classifier

Predictive maintenance is a method to predict the occurrence of fault in the system
in advance. The advantage of such approach is the time and cost involved in

Hardware Software

Single-phase induction motor Python (Application and Device Driver)

ADXL 335 3-axis Accelerometer Arduino Code (Dialect of C/C++)

Arduino UNO HTML

Sparkfun Intel Edison Naïve Bayes algorithm

Table 1.
Components for vibration monitoring.

Figure 6.
I2C communication between master and slave.

Figure 7.
Interfacing accelerometer sensor with Arduino Uno.
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overcoming the fault is less compared with the traditional approaches such as run to
failure and preventive maintenance. There are different prediction algorithms used to
determine the fault or anomaly in advance. In [17], comparison of supervised machine
learning algorithms for IoT data has been performed. Algorithms such as Naïve Bayes,
decision tree, random forest, k-nearest neighbor, and logistic regression are being
used for different datasets. The summary is as follows:

• The Naïve Bayes is suitable for moderate size of dataset.

• As the number of features increases, the time taken for the result is increased in
all algorithms.

• For better performance, the number of classes needs to be kept minimal
in Naïve Bayes, whereas in decision tree, random forest, and k-nearest
neighbor, the number of classes do not have impact on the performance.

• Naïve Bayes performs well even with missing values in the dataset.

The advantages of Naïve Bayes algorithm are as follows:

i. Simple and fast

ii. Requires less training data

iii. Suitable for continuous and discrete data

iv. Suitable to make probabilistic predictions

The Naïve Bayes classifier is based on Bayes theorem and is used to find the
probability of each instance belongs to a specific class. It operates on dataset X with
attribute values x1, x2, … , xnf g and determines the target function Y(X) from a
predefined set S ¼ s1, s2, ::, snf g

P SjXð Þ ¼ P XjSð ÞP Sð Þ
p Xð Þ (2)

Figure 8.
Interfacing Arduino Uno with Intel Edison.
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P(S) is the prior probability about the class S. P XjSð Þ is the posterior probability of
X when the class S has given. The probability of obtaining result X without knowing S
has occurred is p Xð Þ, and P SjXð Þ is the posteriori probability of X.

4. Simulation results

To evaluate the performance of the prediction system, we use python to develop
the application for Internet of things, device driver code, and also the Naïve Bayes
algorithm. To conduct the simulation, we used the dataset with and without fault. The
dataset has been prepared by running the induction motor with and without bearing
faults for different time intervals. The acceleration data were collected for an interval
of 20 s. Some of the collected data are used for training to determine the threshold
using Naïve Bayes model.

To classify the class from the new data, we have chosen the faulty value (1 or 0)

classifier x1, x2, … , xnð Þ ¼ argmax
s∈ 0, 1f g

P x1, x2, … , xnjSð Þ (3)

The relative frequency counting according to multinomial Naïve Bayes is given as

P XjSð Þ ¼ Nxi,si þ a
Nsi þ ad

(4)

where Nxi,si is the number of times the features xi appears in class si; a is the
parameter for additive smoothing; d is the dimensionality of the feature vector.

4.1 Data collection setup

The vibration data are collected using accelerometers, the vibration at different
positions of the motor housing is studied. The position near the shaft is chosen for
measuring the vibration. The vibration values are collected for different scenarios such
as no load and moderate load. The accelerometer data are collected and forwarded to
the server using the Intel Edison embedded board. Ten datasets are used in this study,
which includes normal and faulty scenario. The faults may be any of the types such as
inner race, ball defect, train defect, and outer race. All the 10 datasets are separated to
form the new dataset in a fixed length of 800 after performing data cleanup. The label
of the samples Y ¼ 0, 1f g and the definition of the element are shown in Table 2.

4.2 Results

Table 3 shows the overall accuracy of the prediction algorithm to predict the
possibility of fault in induction motor. Under no load scenario, the fault prediction is

Label Status

0 Normal

1 Possibility of fault

Table 2.
Labels for classes.

12

Emerging Trends in Wireless Sensor Networks

42



accurate, whereas during running condition, the accuracy is reduced, it could have
been avoided by increasing the training samples and to have dataset collection for
different variants of load, as we focus on the presence of fault or not, we are done with
a moderate level of data for training and prediction.

Figure 9 shows the status of the motor in a web page using a dedicated address.
The web page is updated with the status of motor running; if any fault is expected, an
update is given to the server and the web page of the lab in-charge is automatically
updated.

5. Conclusions

This chapter presented the design and validation of an IoT system for monitoring
the health of induction motors in a laboratory setting. The system incorporates the use
of a sensor in the IoT board that wirelessly transmits the sensed data, and the status of
the induction motor after evaluation with the machine learning algorithm known as
Naïve Bayes is made available on the web page. The accuracy of the developed system
was evaluated under no load and load conditions.

Future work in this domain is to extend the work with more nodes and to consider
many induction motor parameters to predict the fault in the induction motors by
using a bag of learning model.

LoadNo load

93.2%100%Accuracy

Table 3.
Accuracy.

Figure 9.
Status of motor observed using an URL.
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Chapter 3

Network Slicing for Industrial IoT
and Industrial Wireless Sensor
Network: Deep Federated Learning
Approach and Its Implementation
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Abstract

5G networks are envisioned to support heterogeneous Industrial IoT (IIoT) and 
Industrial Wireless Sensor Network (IWSN) applications with a multitude Quality of 
Service (QoS) requirements. Network slicing is being recognized as a beacon technol-
ogy that enables multi-service IIoT networks. Motivated by the growing computa-
tional capacity of the IIoT and the challenges of meeting QoS, federated reinforcement 
learning (RL) has become a propitious technique that gives out data collection and 
computation tasks to distributed network agents. This chapter discuss the new feder-
ated learning paradigm and then proposes a Deep Federated RL (DFRL) scheme to 
provide a federated network resource management for future IIoT networks. Toward 
this goal, the DFRL learns from Multi-Agent local models and provides them the 
ability to find optimal action decisions on LoRa parameters that satisfy QoS to IIoT 
virtual slice. Simulation results prove the effectiveness of the proposed framework 
compared to the early tools.

Keywords: federated learning, industrial IoT, network slicing, QoS

1. Introduction

In the last decade, industrial manufacturing such as healthcare, smart grids based
on Cyber-Physical Internet of Thing Systems (CPIoTS) has been widespread [1]. In
this context, IIoT network, which is characterized by the unified network physical
layer, the QoS constraints, the autonomous connection requirements, is considered
one of the key issues. The rapid increase in data amounts with diverse QoS require-
ments [2] brings several challenges in order to meet the complex requirements, as well
as resource and QoS requirements with high data rate and low latency. In fact, the
advanced 5G technology has a significant potential to provide IIoT QoS satisfactory
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[3]. With their architectural approaches which are founded on a unified physical
layer, addressing the diverging performance requirements in terms scalability and
availability still a hot challenges topic. Today’s drastic digital transformations
empowered by emerging technology like Edge Computing, Software Defined Net-
working (SDN), Network Function Virtualization (NFV), and LoRaWAN can bring
smart services for network candidates [4]. Network slicing (NS) is the key solution
that provides smart service’s connectivity with diverse QoS requirements. Using deep
RL at each LoRa agent in the environment. Each agent considered to be a Deep Q-
learning (DQL) brain interacts with the environment to find the best action on their
parameters that brings the best reward. In addition, it introduces the FL approach to
provide better RL based action on each agent, to maximize QoS, and hence through-
put revenue. However, NS provides the network availability as a service following the
slice instances exploiting NFV and SDN [5]. In this context, a Mini Batch GD and
GMM framework is proposed in [6] to provides radio resources for the virtual slice
member. In addition, a LoRa network slicing technique based on Maximum Likeli-
hood Estimation proposed, in [7], to allocate network resources in inter and intra
mode. Meanwhile, recently supervised learning approach-based resource allocation is
also proposed to manage network resources, but due to the training data unavailability
or the high computational training process, are not appropriate for large-scale net-
work and cannot satisfy dynamic slices requirements.

RL technique can improve efficient resource management by interacting with the
environment, inwhichQ-learning is thewidely used. The RL agent learns the association
between taken action and the received feedback in terms of reward. It follows a policy,
which is updated according to the maximized revenue via several action series. There-
fore, high-quality policies building in a centralized network architecture faces a major
challenge, especially when the space of state features is restricted. To deal with these
issues, Federated Learning (FL) has been suggested as a decentralized tool for machine
learning, which is designed to be a global learning system. In this context, the aim of this
work is to propose a deep federated reinforcement learning (DFRL), to equip the slice
member with the required channel resources, by tuning LoRa TP and SF parameters [8].

The leftover of this chapter is organized in six sections. Section 2 presents the related
work of this chapter. In Section 3, we give a brief overview on the Industrial IoT, the
federated learning, and the network slicing. We highlight, in Section 5, the proposed
slicing architecture and the system model. After that, in Section 6, the relation between
wireless sensor network (WSN) and the IIoT is well highlighted. Next, the proposed
slicing resource reservation-based DFRL framework is presented in Section 6. Section 7
evaluates the simulation results. Finally, Section 8 concludes the chapter.

2. Related works

Recently, several articles have investigated the many challenges typical of the
network slicing approach. In particular, in [9] the authors propose an online auction
algorithm to realize a resource allocation framework, capable of guaranteeing the
diversity of services to users and high levels of social welfare. Differently, the work in
[10] deals with a new resource allocation framework to automatically and automati-
cally size the capacity and size of network slices. In this chapter, resource partitioning
is done based on both available network bandwidth and LoRa configurations param-
eters resulting in an optimal trade-off between traffic and network aspects. The
authors of [11] focus on the design and implementation of a dynamic slicing sharing
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system  to  ensure  minimum  user  throughput  requirements.  Therefore,  it  addresses 
three  sub-issues:  admission  control,  resource  allocation,  and  user  abandonment  issues.
The  contextualization  of  the  placement  of  VNFs  to  the  network  slicing  problem  is 
presented  in  [12],  where,  in  particular,  the  topological  information  of  the  network  is 
exploited  to  provide  an  appropriate  deployment  of  functions,  with  regard  to  different
service  classes.  Moreover,  the  placement  problem  of  VNFs  has  also  been  addressed  in
[13],  which  considers  the  function  decomposition  and  the  sub-functions  sharing,  a 
profitable  heuristic  algorithm  is  proposed  based  on  Linear  integer  programming  for-
mulation  of  the  VNF  placement  problem.  Further,  in  the  work  [14],  a  formulation  of 
mixed  integer  linear  program  is  exploited  to  process  the  number  identification  of 
VNFs  to  use,  which  aims  to  meet  specific  service  requirements.  To  solve  the  placing 
VNFs  problem  in  a  federated  cloud,  the  coalition  formation  game  is  proposed  in  [14].
Alternatively,  a  Pareto  analysis  of  the  VNF  placement  problem  is  the  subject  of  [15].  In
[16],  a  network  partitioning  policy  is  developed  to  take  into  account  the  social  well-
being  and  the  supplier  profit  of  the  network.  Finally,  special  cases  for  the  VNF 
placement  problem  are  discussed  and  analyzed  in  [17].

  The  problem  of  bandwidth  slicing  in  software-defined  networks  is  studied  in  [18],
where  price  spikes  are  exploited  to  indicate  the  presence  of  traffic  spikes  and  network 
congestion.  This  work  provides  a  time-based  price  analysis  combined  with  a  Stackelberg
game,  in  which  the  gain  of  SP  Internet  is  the  gain  of  income.  In  a  different  way,  the 
work  cited  in  [19]  studies  the  correlation  between  the  network  slices  size  and  the 
resource  pricing  strategy.  In  addition,  an  algorithm  to  vary  the  prices  is  proposed  by  the
authors  in  [19],  with  the  aim  of  maximizing  both  the  customer  profit  and  the  SP.
Although  FL  has  not  been  used  in  the  field  of  network  slicing  research,  FL  has  recently
reached  attention  and  several  papers  have  presented  its  use,  the  methods  cited  in
[20,  21]  being  prime  examples  of’such  a  branch  of  literature.  In  [20],  a  new  aggregation
data  scheme  for  wireless  computation  is  proposed.  The  strategy  exploits  the  signal 
overlay  property  of  the  wireless  channels.  Differently,  articles  [20,  22]  focus  on  maxi-
mizing  the  number  of  devices  involved  in  the  aggregation  process,  also  taking  into 
account  the  minimization  of  aggregation  error.  Thus,  it  contextualize  the  FL  in  an  MEC
system  and  apply  the  distributed  gradient  descent  method  to  identify  the  best  compro-
mise  between  local  updates  and  global  aggregations,  aiming  to  minimize  the  loss  func-
tion,  in  taking  into  account  certain  resource  constraints.  Likewise,  the  article  in  [21]
analyzes  the  MEC  environment  and  presents  the  application  of  hybrid  filtering  on 
stacked  encoders  to  predict  fluctuation  in  file  popularity  in  the  content  caching  prob-
lem.  Moreover,  the  article  cited  [23]  modifies  the  proposed,  federated  averaging  algo-
rithm  with  the  stochastic  gradient  descent  algorithm,  to  train  the  data  in  a  distributed 
way,  thus  reducing  communication  costs.  The  multitasking  learning  problem  is  studied
in  the  work  cited  in  [24],  authors  proposed  a  new  Mocha  contextual  optimization 
approach  that  used  in  combination  with  the  FL  system.  The  work  cited  in  [25]  analyzed
the  End-to-end  delay  in  a  blockchain  framework,  in  which  an  FL  blockchain  structure  is
developed  to  perform  a  distributed  consensus  strategy.  In  order  to  improve  the  trans-
mission  and  computational  costs  in  a  hybrid  IoT-MEC  network,  authors  in  [26]  pro-
posed  to  use  the  FL  powered  by  the  multiple  deep  reinforcement  learning  agents.  In 
addition,  ultra-dense  scenarios  are  also  considered  in  [27],  where  an  approach  based  on
the  technique  of  deep  learning  of  short-term  long-term  memory  is  applied  to  forecast 
local  network  traffic  in  order  to  avoid  congestion.

  This  chapter  aims  to  address  the  problem  of  network  slicing  using  deep  federated  RL
at  each  LoRa  agent  in  the  environment.  Each  agent  considered  to  be  a  Deep  Q-learning
(DQL)  brain  interacts  with  the  environment  to  find  the  best  action  on  their  parameters
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that brings the best reward. In addition, it introduces the FL approach to provide better
RL-based action on each agent, to maximize QoS, and hence throughput revenue.

3. Overview on industrial IoT, federated learning and network slicing

The development and evolution of modern information and communication tech-
nologies lead us to the Fourth Industrial Revolution, in which the Industrial Internet of
Things (IIoT) is supposed to be one of the key aspects to realize the industry 4.0. With
an unprecedented increase in the number of Internet of Things (IoT) devices and
emerging applications, a large amount of traffic is created every day. Such an increase
represents a heavy load on the Internet network and also requires significant invest-
ments for the upgrade of the infrastructure. However, with the development of big data
analysis and artificial intelligence (AI) techniques such as deep learning (DL) and
machine learning (ML), the data collected can be effectively exploited for many pur-
poses. From a communication point of view, the last few years have seen the emergence
of AI applications in various fields. For example, ML is used to study efficient antenna
selection in multi-antenna wireless systems [28], DL is used to handle the computa-
tional offload problem in IoT systems with edge computing [29], and Deep reinforce-
ment learning (DRL) is used to optimize resource allocation issues at the edge of the
network, such as traffic classification, edge caching, network security, and data offload
[30]. However, conventional AI models generally require central processing of the data
collected from all users on the network, i.e. users have to upload their own data to a
central server to train the learning model. However, a key concern with central learning
is data privacy, i.e., some users want to keep track of their local data and do not want to
transmit their local data to the central server. Training the learning model centrally
requires a central cloud with extremely powerful compute and storage capabilities.
Meanwhile, recent advancements in computer hardware and the proliferation of smart
devices in our daily lives have shown that every IoT device can be equipped with
reasonable levels of compute and storage, which is closely comparable to a desktop
computer there was. is 10 years old [31]. Therefore, the standard MLmodel is not easily
applicable to large scale IoT networks and cannot exploit the availability of distributed
computing. This requires a new learning model that leaves training data distributed
across individual IoT devices instead of being centralized.

Motivated by this problem, Google invented the concept of federated learning
(FL) for on-device learning and data privacy preservation [32]. Using the FL
approach, each IoT device can train its model based on locally collected data. Local
data from IoT devices does not need to be sent to the centralized cloud. The central-
ized cloud only needs to collect the updated local training model from individual
users. Due to its characteristics, FL has been adopted in many applications, for exam-
ple FL for improving Google keyboard suggestions [33], FL for healthcare [34], and
FL for smart city detection [35]. To illustrate the concept of FL, an overview of FL in
IoT systems is shown in Figure 1. In general, each IoT device has its own set of data
and the aggregation server can either be located at the edge of the network or in a
virtual cloud in the remote cloud computing system [36]. Each FL model has its own
advantages and disadvantages, depending on various factors. For example, FL with
the server at the edge of the network is suitable for applications requiring low latency,
location awareness and contextual information on the network while cloud-based FL
is suitable for applications with IoT devices massive over multiple regions and com-
puting power requirements/storage capacities.

4
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Recently, the integration of DL models with IoT and edge devices has become
more popular, which provides real-time analytics with limited resources. Thus, Fed-
erated DL (FDL) allows Industry 4.0 companies to integrate DL into IoT devices and
provides a secure framework using FL, as shown in Figure 2. DL is computationally
expensive, which requires resources and an expensive framework. Thus, the decen-
tralization of DL models is a multidimensional problem that requires a framework of
new technologies to integrate DL with advanced computing and the IIoT. The main
goal of FDL is to provide the IIoT with advanced capabilities using optimized DL that
would turn Industry 4.0 factories into smart factories. Some of the parameters
required to create the FDL model in IIoT are the FDL model, FDL networking, FDL
security, and FDL optimization.

Figure 1.
An overview of FL in IoT systems.

Figure 2.
Federated DL in IIoT.
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An FDLmodel can be implemented on both client side and server side. On the client
side, private networks are defined, the DLmodel of which is tuned and optimized from
the general model present in the cloud. Optimized and fitted models are then deployed
on the client side, where the model is trained with data generated locally from the end
device. Finally, the final device contains a highly quantized and compressed FDLmodel.
On the server side, the model in the cloud is continuously updated by differentially
integrating the gradients of each private network. Each local DL network in turn is
responsible for continuously uploading and uploading the currently updated gradients to
the cloud model. Thus, a distributed selective stochastic gradient descent approach is
presented in [37] which can be applied in the cloud model to frequently update the local
private model. The first decentralized model called”Model chain” uses blockchain tech-
nology [38, 39] to allow the preservation of confidentiality in the transfer of data. In
addition to this, asynchronous stochastic gradient descent can also be used when a single
model can be trained in parallel among all devices, aggregated and processed.

Regarding FDL communication and networking, is that the main benefit of using
FDL is to run DL models in IoT devices and involve the model in the decision making
process. This type of decentralized DL process improves the robustness, operational
efficiency and reliability of IoT devices. FDL provides two types of communication,
namely intra-communication channel and inter-communication channel. Train trans-
mits data between all levels of the framework. FDL communicates between the IoT and
the cloud tier where the cloud-optimized model is deployed on the end device. How-
ever, security and confidentiality must be maintained in the FDL during communica-
tion. In inter communication channels, the components of each layer communicate with
each other in three different ways, such as cloud, edge, and end device. The main
objective of FDL is to minimize intra-communication and to maximize inter-
communication, which would greatly reduce the cost of communication. By the way, to
maintain privacy and security, FDL builds DL models that do not expose information
about the data to the cloud. Security issue on the server side includes sharing of DL
models on the cloud that leads to confidentiality and security risk. Security issue on the
client side is done by encrypting the data during the training process before sending it to
the cloud server. Some mechanisms and homomorphic encryption technique controls
the amount of data to be shared on the cloud. Since peripherals have limited memory
and computational requirements, DL models must be optimized so that they can be
deployed to IoT or peripherals efficiently. In terms of hardware optimization, the GPU
provides low-power computation that reduces computation time. The FPGA and
Google’s Tensor Processing Unit [40] are other DL devices that enhance DL network
processing. In terms of memory optimization, algorithms such as shared memory allo-
cation algorithms for DL models can be used. Dynamic scheduling [41] is one of the
main processes used to improve performance on a cloud server.

4. Wireless sensor networks and its relation to industrial internet
of things

4.1 Relation between IIoT and IWSN

At the heart of the IIoT are theWSNs, that include of multi-functional nodes, low-
cost, along with sensing, have both communication and processing capabilities. In order
to communicate wirelessly over short distances, these little, inexpensive sensor nodes
have built-in transceivers and processors. They are densely exploited in an area of
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interest  to  collect  sensory  data,  by  coordinating  and  collaboratively  exchanging  infor-
mation  by  training  ad  hoc  wireless  networks.  Due  to  the  small  size  and  the  batteries  use,
Sensor  nodes  are  limited  in  processing,  communication,  and  power.  A  unique  feature  of
WSNs  is  their  network  processing  attribute,  whereby  sensor  nodes  do  not  send  raw  sense
data  directly  to  the  gateway  but  merge  it  locally  to  make  it  more  consistent  and  save 
significant  communication  costs.  Their  application  field  is  multiple  and  they  are  now 
ubiquitous  components  of  intelligent  environments,  due  to  their  unique  attributes.  Their
various  area  of  application  covers  home,  surveillance,  military,  smart  city,  patient  health
monitoring,  automation,  etc.  WSNs  are  used  in  telehealth  applications  in  patient 
healthcare  monitoring  scenarios.  As  example,  to  monitor  patients  with  chronic  diseases 
and  regularly  check  their  various  parameters  such  as  heart  rate,  blood  sugar  and  send  this
information  wirelessly  to  a  doctor  remotely  for  further  diagnosis.  In  order  to  help  the 
elderly  and  disabled  in  their  daily  tasks,  the  WSNs  are  also  used.

  Indeed,  they  have  seen  major  deployments  in  a  diversity  of  applications,  including
agriculture,  industrial  process  automation  and  control,  transportation,  and  supply 
chain  management  over  the  past  decades.  Due  to  their  ubiquitous  presence  and  con-
sidering  the  potential  benefits  of  these  networks,  such  as  simple  deployment,  cheap 
installation  cost,  no  cabling  cost,  less  complexity  and  mobility,  they  are  increasingly 
used.  in  IIoT  applications,  which  gave  rise  to  IWSNs.  WSNs  can  be  used  in  an  IIoT 
environment  such  as  automation  and  control,  process  monitoring,  and  safety  and 
emergency  applications.  In  automation  and  process  control  applications,  several  tasks
may  require  active  nodes  named  actuators,  which  have  the  capability  to  act  autono-
mously  on  the  physical  environment  based  on  the  detected  measurements.  For  exam-
ple,  in  the  automation  and  control  of  feedback-based  chemical  processes,  sensors 
measure  temperature;  if  the  temperature  crosses  a  certain  threshold  value,  they 
inform  the  actuators  to  reduce  the  temperature  to  a  desired  value  so  that  the  process 
remains  in  a  stable  state.  Such  applications  place  strict  constraints  on  low  latency  and
reliability  because  the  sensor  measurements  must  reach  the  actuator  in  a  timely  and 
reliable  manner  in  order  for  the  valve  control  action  to  be  performed  on  time  [42].

  Today’s  sensor  nodes  have  more  processing  power,  longer  battery  life  and  memory,
due  to  recent  technological  improvements  compared  to  the  first  resource-constrained 
sensor  nodes.  This  allowed  them  to  be  used  in  IIoT  applications  and  resulted  in  IWSN.
IWSN  makes  processes  independent  and  autonomous,  especially  in  difficult  areas,  to  get
actuation  and  control  information,  sensory.  Sensor  nodes  in  the  WSN  field  detect  pro-
cess  variables  (e.g.  temperature,  pressure,  etc.)  and  pass  them  to  the  well  or  gateway.
The  sink  then  passes  it  to  the  process  controller  whose  job  is  to  control  the  process 
variable  under  some  required  value.  The  receiver  is  responsible  for  the  sensor  network 
management  and  is  controlled  and  managed  by  the  host  application  management.  The 
Network  and  Security  Manager  is  responsible  for  entire  network  monitoring  and  ensur-
ing  security  against  attacks.  Therefore,  WSN  has  the  potential  to  improve  production 
processes  and  quality  of  products  without  compromising  the  IIoT  QoS.  Actuation  and 
control,  and  sensing,  are  also  imperative  in  majority  industrial  applications.  In  these 
applications,  the  sensors  detect  the  data  and  the  actuators  act  on  the  data  based  on 
certain  control  decisions  made  by  the  process  controller.

4.2  Federated  learning  implementation  challenges  in  IIoT  and  IWSN

  To  implement  FL’s  full  potential  in  IIoT  and  IWSN,  there  are  still  several 
fundamental  challenges  that  need  to  be  addressed.  In  this  section,  we  describe  the 
challenges  followed  by  very  promising  opportunities  to  meet  those  challenges.

7
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4.2.1 Limited computational resources

Indeed, the FL deployment on IIoT and IWSN networks relies deeply on the
computational resources and memory of edge devices. Consequently, people often
focus only on the IoT devices capabilities to gather data while ignoring their
limited memory and compute resources, which makes it hard for most IoT and
sensor devices to finish local computation with massive data or sophisticated models.
In order to address this challenge, lightweight AI techniques have been explored,
which can be implemented in resource-constrained FL-IoT and WSN environments,
such as improved resource management approaches to accelerate FL training on
devices.

4.2.2 Device heterogeneity

In the multi-device settings, participants under the FL framework have various
system resources, such as compute and memory resources. As the trend in machine
learning is for larger and deeper models, the hardware heterogeneity within the IIoT
and IWSN systems pose several challenges for the FL structure. They could easily
train large models as devices with powerful memory and computing resources while
other devices with limited resources could only train smaller models. Reader speed
will also vary across devices, even for the same model size, which can trigger the
problem of asynchronous communication discussed above. Due to the availability of
the resources, an FL framework for IIoT and IWSN should provide a graceful
adaptation of data and compute load on diverse devices.

4.2.3 Limited networking bandwidth

Communication overload is considered to be one of the main challenges in FL-
based IIoT and IWSN environments. Currently, most IoT and WSN devices commu-
nicate using wireless networks that have a much lower bandwidth than the wired
network bandwidth. As more and more devices join the system, the communication
problem arises when the clients have different resource allocations. The limited net-
work bandwidth not only makes the communication between clients and the server
inefficient, but also triggers the presence of late clients, which fail to share their local
update with the server during the communication cycle. To meet this challenge, some
key ideas can be used, such as decentralized training, data compression and partici-
pant selection.

4.2.4 Adversarial attack and defense

The IoT devices prevalence also poses an attractive target in the real-world
deployment for adversaries seeking to launch attacks, such as identity theft, phishing,
and distributed denial of service (DDoS). Many IoT and ISN devices do not have the
compute resources to do so, although these attacks can be easily defended by installing
security patches. It is critical for the IIoT andd IWSN systems to detect the malicious
or broken IoT devices that will ruin the model training with limited resource. To
address this challenge, one of the promising directions is to implement a lightweight
security protocol in the IIoT andd IWSN systems for the detection of broken and
malicious devices.

8

Emerging Trends in Wireless Sensor Networks

54



Figure 3.
Reconfigurable edge computing system based on FPGA SoC.
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4.2.5  Expected  future  solutions

  Undeniably,  the  IIoT  and  IWSN  ecosystems  continue  to  evolve  at  a  breakneck 
pace,  exceeding  all  growth  expectations  and  ubiquity  barriers.  From  sensor  to  cloud,
this  giant  network  keeps  breaking  technological  bounds  in  several  domains,  and 
wireless  sensor  nodes  are  expected  to  be  predominant  as  the  number  of  IoT  devices 
grows  toward  the  trillions  to  connect  the  unconnected  world  and  things.  However,
their  future  in  the  IIoT  and  IWSN  ecosystems  still  seems  foggy,  where  several  chal-
lenges,  such  as  device’s  connectivity,  artificial  intelligence  (AI)  at  the  edge,  security 
and  privacy  concerns,  growing  energy  needs,  the  right  technologies  to  be  used  and 
keep  pulling  in  opposite  directions.  To  address  these  issues,  which  are  caused  by  the 
complexity  and  variability  of  the  environment,  advanced  computing  related  technol-
ogies  are  widely  applied.  However,  the  edge  computing  is  limited  by  cost,  volume,
power  consumption,  and  other  conditions,  so  the  capacity  of  edge  computing  cannot 
be  fully  exploited.  So  that  edge  computing  fully  exploits  its  characteristics  of  flexible 
management,  federated  and  collaborative  execution  and  heterogeneous  environment,
the  reconfigurable  real-time  computer  system  based  on  FPGA  SoC  is  strongly
recommended.  The  system,  as  depicted  in  Figure  3  can  be  built  in  real  time  as  needed,
by  the  characteristics  of  the  FPGA  SoC,  including  its  reconfigurability,  partial  and 
total  and  precise  clock  control.

  A  multi-threaded  huge  number,  computing  requirements,  and  parallel  heteroge-
neous  data  processing  are  persistently  proposed  in  many  environments  of 
manufacturing.  However,  depending  on  the  multi-environment’s  requirements  with 
different  multiple  tasks  and  several  scenes,  a  single  algorithm  can  no  longer  face  the
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requirements so that numerous complicated tasks require the algorithm to be
reconfigured and replaced. Without a doubt, the FPGA employment gratifies this
multitude of requirements. However, it can rebuild the logic of the chip by means of
configuration and reconfiguration of the resources inside the chip to form hardware
with different functions by means of software. Therefore, in addition to the program-
mability and flexibility of the software, the FPGA also exhibits high throughput, low
power, and low latency characteristics. In addition, due to its rich In-Output, FPGA
SoCs are also very relevant for use On-chip protocols applications and interface
conversion. The main benefits from employing FPGA for the edge computing are as
follows:

• A constant throughput can be provided by the FPGA with a constant load size-
based application, so that can integrate multiple service requests from several
sensors in the IoT.

• Large-scale temporal and spatial parallelism is provided by the FPGA with fine
granularity, so that ensures a high concurrency and high dependency algorithm
with high acceleration performance.

• Compared with the processor, the FPGA has the lower power consumption and
faster computing speed, which can provide the stability and lower task energy
consumption.

5. Network slicing architecture and system model

5.1 Network slicing architecture

The 5G network infrastructure design should focus on attentive consideration of
software control, hardware infrastructure, and interconnection between them. In this
context, we consider a network slicing architecture consisting of a set of IIoT slices
J ¼ 1, … , jf g, where j represents the slice number. These slices are built on a unified
physical infrastructure and share the same network resources. The proposed architec-
ture, which is denoted in Figure 4, consists of three virtual slices. The urgent slice is
the UCLE which yields more significance to the QoS and the efficiency. Thereafter,
the HCLE slice that donates less importance to the latency. The last one is defined as
the LCLE, which has the lowest slice priorities with unsecured QoS. The table denoted
in the work [6] represents the slice’s QoS requirements adopted for our architecture.
This architecture consists of a set of K ¼ 1, … , kf g gateways, where k is the number of
gateways. Then, gateways take over the task of providing radio resources to the
substrate network layer, which contains a set of I ¼ 1, … , if g IIoT devices, affected to
the slice that meets its QoS demands.

5.2 Slicing system model

This slice set j∈ J is integrated virtually on a Gateways (GWs) set k∈K. However,
the physical resources of each GW consist of a set of C ¼ 1, … , cf g channels, in which
each one includes a bandwidth b∈B ¼ 1, … , bf g. The goal of this work is to provide,
for slices member, dynamic channel management based on TP and SF tuning. IN this
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context, αi ∈ 0, 1f g is denoted as the binary value that indicate the admission
success of device i∈ I to slice j on GW k. Therefore, we define the Throughput ϕi and
Delay di models, based on SF and TP parameters for each device i j,k, as in (1), (2),
respectively [7].

ϕi ¼ SF:
Rc

2SF
:CR ¼ SF:

b j,k

2SF
:CR, ∀i∈ I j,k (1),

di ¼ Li

ϕi
, ∀i∈ I j,k, (2)

where Rc is the chip rate, bi,j denotes the bandwidth assigned for slice j on LoRa
GW k, CR represents the coding rate, and Li is denoted as the packet size. Following
the ultimate goal that seek to manage slice’s QoS demands, energy efficiency (EE),
given in (3), is considered as the second objective that should be maximized for IIoT
devices assigned to each slice on each GW.

maxu j,k
EE ¼

X
i∈ I j,k

αi
ϕi

PT
j þ Pc

, ∀i∈ I j,k, (3)

however, pti denotes the allocation power for each IIoT device. u j,k
EE is the EE

metric that provides the efficiency of energy efficiency of each slice. While, Pc

denotes the power consumption of the circuit and PT
j ¼

P
i∈ I j,k

pti is the TP. Finally,
we define the multi-objective problem, as in (4), aiming to maximize the slice utility
revenues U j,k

rm .

maxU j,k
rm ¼

X
j, k

u j,k
QoS þ u j,k

EE þ u j,k
REL

� �
, ∀k∈K, ∀j∈ J, (4)

Figure 4.
Deep federated RL-based network slicing architecture.
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6. The proposed DFRL for network slicing framework

We assume that agents, by sharing its self models based on the Q-network experi-
ences, collaborate to receive global rewards from the federated orchestrator. While
the orchestrator collects these models to builds a global network model that provides
an optimal actions, on LoRa parameters, that maximize QoS revenue [43, 44].

The considered network consists of two agents, called as agent α and agent β, that
play in Markov environment. In this context, we denote the reply memory for agent α

by Dα ¼ sα, aα, s0α, rα
� �

and the reply memory for agent β by Dβ ¼ sβ, aβ, s0β, rβ
n o

.

These memories are used to store transitions parameters which will be collected,
during interaction, to build an optimal policy (π ∗

α and π ∗
β ). The notations of

Q-functions, states, actions, and policy are denoted, respecting to agents α and β,

respectively, as Qα, sα ∈S, aα ∈Aα, π ∗
α

� �
and Qβ, sβ ∈S, aβ ∈Aβ, π ∗

β

n o
. Thereby,

assuming that states spaces (sα and sβ), transitions parameters (Dα and Dβ), and the
Q-network functions (Qα and Qβ) are different for the defined agents α and β. Each
agent builds its own Q-network (Qα or Qβ), and θ (θα or θβ) parameters. These agents
interacts with the DFL model with the aim is to build a global federated model that
satisfy dynamic slice’s QoS demands exploiting local agents experiences Qα and Qβ.

Figure 5.
Training and testing phases.
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MSEt
α θα, θg
� � ¼  Yt �Qα

f stα, a
t
α,Cβ; θα, θg

� �� �2

 �

(6)

MSEt
β θβ, θg
� � ¼  Yt �Qβ

f stβ, a
t
β,Cα; θβ, θg

� �� �2

 �

(7),

while Yt ¼ rt sð Þ þ γmax
a∈A

Qα
f stα, a

t
α,Cβ; θα, θg

� �
is attributed for agent α only, as a

condition to start training. Figure 5 depicts the DFRL framework process.

Figure 6.
PLR of UCLE.
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Therefore,  based  on  the  Q-networks  models,  (5)  represents  the  DFL  (based  on  DNN)
Q-network  output  as  Q  f  

�
θα,  θβ;  θg

�
.

Q  f  
�
θα,  θβ;  θg

�  ¼  DNN
��
Qαðsα,  aα;  θαÞjQβ

�
sβ,  aβ;  θβ

�	
;  θg

�
,  (5)

  where  ½:j:�  denotes  the  concatenation  symbol  and  θg  denotes  the  DNN  (DFL)
parameter  shared  between  agents.

  At  this  stage,  the  Mean  Square  Error  (MSE),  is  defined  for  agents  α  and  β,  as  a  Loss
function  denoted  in  formulas  (6),  (7)  [6].  These  formulas  are  used  to  train  the 
proposed  framework,  by  updating  the  parameters  (θα,  θβ,  θg),  to  build  federated
model  that  will  be  able  to  find,  then,  an  optimal  action  decision  on  TP  and  SF  that 
maximize  slice’s  QoS  rewards.
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7. Experiment results

The proposed framework has been implemented in Python language using
TensorFlow-gpu package on Intel Xeon E5-2620 v4 2x 8-Core with 64 GB RAM. Also,
the NVIDIA GK110BGL [Tesla K40c] is used to improve speed during the training
phase.

We provide, in this section, the mean percentage of Packet Loss Rate (PLR) for
IIoT devices, as denoted in Figures 6–8, and compare it to the PLR within MBGD
scheme [6].

However, by increasing the devices, PLR will increase subsequently. This return to
the data rate, that when increase, the number of successful transmitted packet
increase accordingly. While it is not the case when throughput is low. We remark also,
in Figures 6–8, that UCLE and HCLE slices have a reduced PLR compared to LCLE.
However, this due to the reliability and efficiency constraints dedicated for this slice
which is not the case in LCLE slice that consider only the load. Compared with the
slice results using the MBGD technique, we could obviously note the efficiency of the
proposed federated scheme in supporting dynamic slicing strategy by reducing PLR
over than 9%. This improvement return to the shared experience between agents that
can improve the action decision on TP and SF to slices.

Figure 7.
PLR of HCLE.
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8. Conclusion

This prospective chapter presents a future outlook on low-end motes in the IIoT
and IWSN eras. Following a detailed discussion of the trends and challenges posed by
the IIoT and IWSN paradigm to low-end devices, it discusses how modern
reconfigurable platforms are the perfect candidate to meet the ever-evolving indus-
trial environments. Indeed, in this chapter, we proposed a federated network slicing
based on deep reinforcement learning techniques for channels and bandwidth man-
agement based LoRa promising technology that meet IIoT and IWSN network service
requirements based on the SDN, NFV, network slicing, and deep reinforcement
learning techniques. Each LoRa GW plays an agent role, in the environment, and
profits from the learning experience provided by the other coexist agents via the
global federated model.

In the case of future studies, this chapter introduced comprehensive review
and several research lines, especially one attractive future line is related to the
integration of FPGA SoC at the edge to build a smart factory as well as IIoT and
IWSN environments with environmentally friendly capabilities and functionalities.
In addition, future research is needed to fully embrace cloud services and new
ways of connectivity in order to get the full benefits of the new Edge FPGA SoC
technology.

Figure 8.
PLR of LCLE.

15

Network  Slicing  for  Industrial  IoT  and  Industrial  Wireless  Sensor  Network:  Deep  Federated…
DOI:  http://dx.doi.org/10.5772/102472

61



Nomenclature

J ¼ 1, … , jf g IIoT network slices set
K ¼ 1, … , kf g LoRa gateways (agents) set
I ¼ 1, … , if g IIoT devices set associated to each slice
B ¼ 1, … , bf g channel bandwidth set
C ¼ 1, … , cf g LoRa-GW’s channels set
αi ∈ 0, 1f g,∀i∈ I j,k device’s admission and association index to slice
∀i∈ I j,k device i assigned to slice j on gateway k
TP transmission power
SF spreading factor
ϕi, ∀i∈ I j,k throughput of device i
di, ∀i∈ I j,k delay of device i

u j,k
QoS

quality of service metric for slice j on GW k

pti, ∀i∈ I j,k the power allocated for each device i

u j,k
EE

energy efficiency metric for slice j on GW k

pri the received power

u j,k
REL

reliability metric for slice j on GW k

U j,k
rm ,∀k∈K, ∀j∈ J the global slice utility revenues metric
S,A, T ,ℛf g state, action, transition function, reward

α and β agent α and agent β
γ discount factor
θα, θβ DQL network parameters (weights)
θg DNN network parameters (weights)
Dα,Dβ reply memories to store transitions

Abbreviations

IoT internet of things
IIoT industrial IoT
IWSN industrial wireless sensor network
AI artificial intelligence
ML machine learning
DL deep learning
QoS quality of service
RL reinforcement learning
DRL deep reinforcement learning
FL federated learning
DFL deep federated learning
DFRL deep federated reinforcement learning
CPIToS cyber-physical internet of thing systems
5G fifth generation network
SDN software defined network
NFV network function virtualization
NS network slicing
DQL deep Q-learning
GD gradient descent

16

Emerging Trends in Wireless Sensor Networks

62



gaussian mixture modelGMM
service provideSP
mobile edge computingMEC
graphic processor unitGPU
field programmable gate arrayFPGA
ultra critical of latency and efficiencyUCLE
high critical of latency and efficiencyHCLE
low critical of latency and efficiencyLCLE
gatewayGW
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Chapter 4

Resource Allocation in Wireless
Body Area Networks: A Smart City
Perspective
Beom-Su Kim, Babar Shah and Ki-Il Kim

Abstract

Healthcare is an essential service in smart cities. To deploy healthcare systems in 
such cities, personal health monitoring systems, infrastructure for collecting and 
delivering individual data, and a system for diagnosing symptoms are required. For 
the first requirement, wireless body area networks (WBANs) have recently received 
considerable attention from research communities. Owing to their main distinguish-
able features from general wireless sensor networks, research challenges regarding 
WBANs have been focused on network topology around the body and implanted 
nodes, efficient resource allocation, and power control. In this chapter, we provide a 
comprehensive discussion on the emerging research trends in the area of wireless 
sensor networks and a discussion of WBANs in terms of their resource allocation.

Keywords: wireless body area networks, resource allocation, radio resource control, 
transmission power control, smart city

1. Introduction

A smart city can be defined as a converged IT-based infrastructure that can pro-
vide information to civilians whenever required, as well as efficiently manage its
elements as illustrated in Figure 1. As many studies have previously mentioned [1–3],
the key technological needs of smart cities include the collection of diverse sensor’
data and the monitoring and management of community services. In addition, there
are five elements for a smart city based on the layer concept:

1.hardware infrastructure, that is, physical components, such as transportation
and buildings;

2.sensors, that is, sensors and terminal nodes;

3.networks, that is, wired and wireless networks including WiFi and metropolitan
area networks;
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4.data and support, that is, application support through data collection, storage,
and analysis;

5.applications, service elements, such as a smart economy, healthcare, education,
and government.

Especially, applications combined with the Internet of Things (IoT) have been
consistently mentioned in the smart city. They include city lighting, city transit,
environmental and wastewater management, and privacy-preserving. Among these
important services, healthcare is essential for efficiently collecting patient information
and diagnosing any symptoms in a proactive way, as addressed in refs. [4, 5]. In
addition, prompt treatment is also available from doctors without a direct examina-
tion through healthcare applications.

To deploy these services in a smart city, a personal health monitoring system and
infrastructure networks are required. For the former, a new type of wireless sensor
network called a wireless body area network (WBAN) has been proposed. In
addition, IEEE 802.15.6 [6] has been established as an international standard for a
WBAN.

In the aspects of telecommunications technology, WBAN is one of the special types
of general wireless sensor networks in that wearable and implantable sensor nodes are
supposed to detect and reports pre-determined events toward the sink node, called
coordinator. In typical sensor networks, nodes are usually spatially distributed in the
target area with a communications interface. This implies that they build the networks
in an autonomous way. These tiny sensors naturally have resource problems, such as

Figure 1.
Illustration of smart city architecture.

2

Emerging Trends in Wireless Sensor Networks

68



Resource  Allocation  in  Wireless  Body  Area  Networks:  A  Smart  City  Perspective
DOI:  http://dx.doi.org/10.5772/102325

power  consumption,  limited  computing  capability,  communication  range,  and  avail-
able  bandwidth.  To  protect  the  limitation  of  a  sensor  node,  efficient  and  smart  usage 
of  available  resources  is  more  important  than  typical  wireless  networks.

  Although  a  WBAN  can  be  considered  a  type  of  wireless  sensor  network,  its  main 
features  are  significantly  different  from  those  of  a  general  wireless  sensor  network
(WSN)  in  that  the  sensor  nodes  are  implanted  or  deployed  on  the  body.  This  implies 
that  a  more  careful  network  design  should  be  taken  such  that  the  sensor  nodes  cannot
harm  the  tissue  of  an  individual  through  an  increase  in  the  temperature.  In  addition,
more  severe  conditions  for  operations  in  WBANs  require  intelligent  resource  alloca-
tion  to  efficiently  monitor  and  collect  patients’  health  information.  The  main  condi-
tions  to  be  considered  for  resource  allocation  in  a  WBAN  are  as  follows:

1.  Body  movement:  In  a  WBAN,  the  sensors  are  attached  to  the  surface  of,  or
  inserted  inside,  the  body;  thus,  body  movement  causes  significant  channel  fading
  between  the  coordinator  and  sensor.  Channel  fading  from  body  movement  is
  referred  to  as  body  shadowing,  and  a  device  that  aggregates  physical  data  and
  transmits  them  to  a  medical  server  is  called  a  coordinator.  Because  body
  shadowing  causes  packet  loss,  the  link  quality  between  the  coordinator  and  the
  sensor  is  a  key  factor  that  should  be  considered  for  resource  allocation.

2.  Heterogeneous  sensor  types:  Depending  on  the  user’s  health  condition,  a  WBAN
  can  be  composed  of  various  types  of  medical  sensors.  In  addition,  the  IEEE
  802.15.6  standard  specifies  device  priorities  from  0  to  7  according  to  the
  application  type.  This  means  that  a  differentiated  quality  of  service  (QoS)  must
  be  guaranteed  for  a  node  collecting  important  body  data;  hence,  resource
  allocation  techniques  must  consider  device  priorities.

3.  Non-rechargeable  battery:  Because  most  sensors  are  inserted  into  the  body,  it  is
  difficult  to  replace  or  recharge  their  batteries.  To  extend  the  lifetime  of  a  node,  it
  is  necessary  to  minimize  the  duty  cycle  or  reduce  resource  waste  owing  to
  retransmission.

  These  conditions  are  the  key  factors  distinguishing  a  WBAN  from  general  sensor 
networks  and  have  led  to  the  development  of  network  architecture  and  resource 
allocation  techniques  specialized  for  WBANs.  In  this  chapter,  we  provide  an  overview
of  network  architectures  for  WBANs  and  their  design  strategies.  Next,  we  survey 
resource  allocation  techniques  for  WBANs  and  classify  them  into  two  categories—
radio  resource  control  and  transmission  power  control.  By  clarifying  their  operating 
mechanisms  and  research  objectives,  we  provide  a  comprehensive  research  trend  and
discussion  of  WBANs  in  terms  of  their  resource  allocation.

2. Overview  of  IEEE  802.15.6  based  WBANs

  In  general,  WBANs  are  specific  networks  for  personal  health  monitoring,  as  illus-
trated  in  Figure  2.  It  is  called  intra-WBAN  by  being  distinguished  from  inter-WBANs.
The  coordinator  is  located  at  the  center  of  the  body  and  is  interconnected  with  the 
sensor  nodes  in  a  one-hop  star  topology.  The  coordinator  aggregates  the  data  received
from  the  nodes  and  transmits  them  to  the  medical  server  through  an  external  wireless
network.

3
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The coordinator allocates available resources to nodes through centralized control.
To manage the available resources, the IEEE 802.15.6 standard provides unique
resource allocation mechanisms, such as association, access mode, and access phase. In
this section, we provide an overview of the major components of the IEEE 802.15.6
standard used for resource allocation.

2.1 Access mode

According to the IEEE 802.15.6 standard, the coordinator operates in one of three
access modes—beacon mode with superframes, non-beacon mode with superframes,
and non-beacon mode without superframes. The coordinator can select an appropri-
ate access mode considering the application requirements, channel conditions, and
policy regulations to save available resources. It should be noted that the resource
allocation techniques described in this chapter adopt beacon mode with superframes
as the channel access mechanism.

2.2 Access phase

As shown in Figure 3, three types of access phases [i.e., random access phase
(RAP), exclusive access phase (EAP) and managed access phase (MAP)] can be
arranged in the superframe. Each node contends for channel acquisition in the RAP
and EAP using carrier-sense multiple-access with collision avoidance (CSMA/CA).
The contention window (CW) boundary in CSMA/CA is determined by a predefined
value between and based on the device priority. As given in Table 1, the device

Figure 2.
Illustration of WBAN architecture.

Figure 3.
Beacon mode with superframes.
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priorities for CSMA/CA are divided into eight levels (i.e., 0–7), giving a higher value
to a node that collects important body data.

In RAP, all nodes are accessible, whereas only high-priority nodes can access EAP.
In MAP, the coordinator can contain scheduled uplink allocation intervals, scheduled
downlink allocation intervals, and scheduled bi-link allocation intervals. To obtain a
scheduled allocation interval, each node must establish an association with the coor-
dinator. The association process is described in the following subsections.

2.3 Connection-oriented resource allocation

The IEEE 802.15.6 standard specifies that each sensor must notify its QoS require-
ments through an association with the coordinator. To establish an association, an
unconnected node sends a connection request frame to the coordinator. The connec-
tion request frame includes the device priority and the requested number of timeslots.
Upon receiving the connection request frame, the coordinator conducts timeslot
scheduling and then notifies the scheduling information through a connection
assignment frame.

After establishing an association, each node sends a data frame to the coordinator
with the default output power. To change the scheduling information or adjust the
transmission power level after the initial association, the coordinator unicasts the
changed information to the corresponding node through a new connection assignment
frame. Because the IEEE 802.15.6 standard does not define a specific header for
transmission power control, the protocol designer must define a reserved space in the
connection assignment frame to notify the transmission power level.

2.4 Acknowledgment policy

The IEEE 802.15.6 MAC supports two types of ACK policies to achieve energy-
saving and scheduling efficiency. A source node can set the ACK policy field of the
control frame. A receiver sends an immediate acknowledgment (I-ACK) or block
acknowledgment (B-ACK) frame when it receives a data frame. For example, if the
coordinator adopts the B-ACK mode, the control overhead and transmission delay for
a continuous data stream can be reduced, whereas, in a situation in which packet loss
owing to body shadowing frequently occurs, the I-ACK mode can improve the
transmission reliability.

Priority (0–7) CWmin CWmax

0 1 4

1 2 8

2 4 8

3 4 16

4 8 16

5 8 32

6 16 32

7 16 64

Table 1.
Contention window bounds for CSMA/CA specified in the IEEE 802.15.6 standard.

5

Resource  Allocation  in  Wireless  Body  Area  Networks:  A  Smart  City  Perspective
DOI:  http://dx.doi.org/10.5772/102325

71



3. Resource allocation in WBANs

As described in the previous section, the IEEE 802.15.6 standard specifies the
network architecture, access mode, and frame structure for WBANs; however, it does
not define specific algorithms for radio resource control and transmit power control.
To complement the IEEE 802.15.6 standard, various resource allocation techniques
based on the IEEE 802.15.6 standard have been proposed. As previously described,
they aim to satisfy the inherent constraints of a WBAN, such as body movement,
heterogeneous sensor types, and non-rechargeable batteries. In this section, we clas-
sify the resource allocation techniques into radio resource control and transmission
power control and then describe their operating mechanisms.

3.1 Radio resource control

In beacon mode with superframes, the coordinator can use time-division multiple-
access (TDMA) or CSMA/CA as a channel access mechanism. In this subsection, we
introduce TDMA-, CSMA/CA-, and hybrid-based approaches for allocating radio
resources to sensor nodes.

3.1.1 TDMA-based approaches

Alam et al. [7] proposed an adaptive scheduling scheme to reduce idle energy
consumption. To minimize energy waste through idle listening and overhearing, the
coordinator creates a traffic register and records the sampling interval of the nodes.
The coordinator then allocates a timeslot based on the sampling interval of the nodes
using the traffic register. Each node can minimize the consumption of idle energy by
waking up according to its own wake-up schedule.

In addition, Zhang et al. [8] proposed a data-rate-aware scheduling algorithm to
improve energy efficiency. The authors pointed out that when allocating more
timeslots to nodes with high data rates, a differentiated QoS can be supported; how-
ever, the energy is quickly consumed. To deal with this problem, the coordinator
allocates the same number of timeslots to all nodes but adds additional timeslots to
high-data-rate nodes when abnormal conditions are detected.

Ambigavathi et al. [9] proposed a priority-based scheduling technique to minimize
delays in emergency data. Basically, the coordinator allocates timeslots in the order of
device priority. The coordinator divides the data received into low- and high-
threshold data to guarantee a differentiated QoS for emergency data occurring at
runtime. The coordinator then preferentially allocates timeslots to a node with a
higher criticality among nodes with the same device priority.

Liu et al. [10] also proposed a dynamic scheduling technique to reduce the packet loss
owing to body movement. The authors used a Markov decision-making process to rec-
ognize body movement. The proposed Markov model is defined in two states, that is, a
“good state” and a “bad state.” Each state is determined based on the link quality between
the coordinator and the sensor. For example, a good state indicates that the transmission
has been successful, and a bad state indicates that the transmission has failed. For each
TDMA round, the coordinator preferentially allocates timeslots to nodes in a good state.

Zhang et al. [11] proposed a dynamic scheduling technique using temporal autocor-
relation to reduce the packet loss owing to body shadowing. The authors pointed out
that when defining the state of an on-body link as good or bad, the channel condition

6

Emerging Trends in Wireless Sensor Networks

72



Figure 4.
Scheduling order calculation using the MCDM method.

Figure 5.
Scheduling-order calculation using fuzzy logic.
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cannot  be  accurately  recognized.  To  overcome  this  limitation,  the  proposed  scheme 
predicts  the  channel  condition  in  the  next  TDMA  round  after  analyzing  the  temporal 
autocorrelation  using  historical  data  on  the  link  quality.  The  coordinator  then  prefer-
entially  allocates  timeslots  to  nodes  with  high  autocorrelation  coefficients  because  the 
higher  the  autocorrelation  coefficient,  the  more  uniform  the  movement  pattern.

  Kim  et  al.  [12]  proposed  a  scheduling  order  optimization  technique  using  multiple
cognitive  metrics  to  achieve  multi-objective  optimization,  such  as  a  differentiated  QoS
and  energy  saving.  The  authors  used  the  multi-criteria  decision-making  (MCDM)
method  [13]  to  combine  the  three  cognitive  metrics  (i.e.,  packet  error  rate,  power 
consumption  ratio,  and  user  priority)  into  a  single  metric  called  the  critical  index.
Specifically,  the  proposed  MCDM  model  derives  a  weighted  normalized  value  (i.e.,
critical  index)  after  determining  the  relative  importance  of  multiple  metrics  through  a
pairwise  comparison  matrix.  As  shown  in  Figure  4,  the  pairwise  comparison  matrix 
should  be  determined  in  advance  by  the  decision-maker  based  on  the  network  condi-
tions.  The  coordinator  then  ranks  the  nodes  based  on  the  critical  index  and  determines
the  scheduling  order.  A  similar  study  was  conducted  by  Roy  et  al.  1  [14].

  Pushpan  et  al.  [15]  proposed  an  adaptive  scheduling  scheme  to  support  energy 
efficiency  and  a  differentiated  QoS.  As  illustrated  in  Figure  5,  the  authors  used  fuzzy
logic  [16]  to  unify  multiple  cognitive  metrics.  The  proposed  fuzzy  model  uses  the 
packet  delivery  ratio,  energy  consumption  ratio,  and  buffer  ratio  as  input  values  and 
normalizes  them  using  linguistic  terms  (e.g.,  low,  medium,  and  high).  After  defining  a
fuzzy  inference  rule  through  an  if-else  conditional  statement,  a  fuzzy  index  can  be 
derived.  For  example,  a  node  with  a  “high”  packet  delivery  ratio  and  “low”  energy 
consumption  ratio  may  acquire  a  higher  fuzzy  index  using  the  fuzzy  inference  rule.
The  coordinator  then  determines  the  scheduling  order  based  on  the  fuzzy  index.
Similar  concepts  can  be  found  in  refs.  [17–19].

  Chowdhury  et  al.  [20]  proposed  a  dynamic  scheduling  scheme  to  jointly  improve 
the  energy  efficiency  and  network  QoS.  The  authors  derived  the  optimal  scheduling 
policy  through  trial  and  error  using  Q-learning.  The  coordinator  (i.e.,  agent)  defines 
the  state  space  as  a  combination  of  the  sum  rate  and  response  time  and  the  action
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space as the number of timeslots. The reward function is defined as a combination of
the sum rate, response time, and average delay. The coordinator then finds a schedul-
ing policy that maximizes the reward function while randomly allocating timeslots to
nodes based on the epsilon-greedy algorithm (Table 2).

Chen et al. [21] proposed a joint optimization scheme using a deep Q-network
(DQN). When a state space is defined through a combination of cognitive metrics, the
coordinator has numerous state-action combinations. Thus, the scheduling technique
using Q-learning has a problem in that the volume of the Q-table increases. To solve
this problem, as shown in Figure 6, the authors used the DQN to learn the optimal
scheduling policy. The proposed DQN model defines a state space as a combination of
device priority, battery level, average delay, link quality, and access time as an action
space. The reward function is defined as a combination of the energy consumption
ratio, average delay, and received signal strength. The coordinator creates transitions
using Q-learning and stores them in the replay memory. The coordinator then trains
the neural network by randomly sampling transitions from this memory. Similar
concepts can be found in refs. [22, 23].

3.1.2 CSMA/CA-based approaches

Saboor et al. [24] proposed a dynamic backoff algorithm for increasing the
superframe utilization and energy efficiency. A typical binary exponential backoff

Reference Research objective Major consideration Cognitive metric

[7] Energy-saving Heterogeneous traffic flow Sampling rate

[8] Energy-saving Heterogeneous traffic flow Abnormal condition

[9] Differentiated QoS Heterogeneous traffic flow Traffic criticality

[10] Energy-saving Body shadowing On-body link quality

[11] Transmission reliability Body shadowing On-body link quality

[12] Energy efficiency,
differentiated QoS

Heterogeneous traffic flow,
body shadowing

Packet error rate, priority, power
consumption ratio

[15] Energy efficiency,
differentiated QoS

Heterogeneous traffic flow,
body shadowing

Packet delivery ratio, energy ratio,
buffer ratio

[20] Energy efficiency,
network QoS

Heterogeneous traffic flow,
body shadowing

Sum rate, response time

[21] Energy efficiency,
differentiated QoS

Heterogeneous traffic flow,
body shadowing

priority, battery level, delay

Table 2.
Summary of TDMA-based radio resource control.

Figure 6.
DQN training for time-slot scheduling.
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Cognitive metricMajor considerationResearch objectiveReference

Traffic priorityHeterogeneous traffic flowEnergy-saving[24]

Starvation indexHeterogeneous traffic flowDifferentiated QoS[25]

Channel clear rate, sampling rateHeterogeneous traffic flowTransmission reliability[18]

Number of backoff rate, data rateBody shadowingTransmission reliability[19]

Table 3.
Summary of CSMA/CA-based radio resource control.
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mechanism  doubles  the  CW  size  when  an  even  number  of  collisions  occur;  however,
this  mechanism  reduces  the  superframe  utilization.  To  solve  this  problem,  the  pro-
posed  backoff  algorithm  employs  an  additional  sliding  window.  Specifically,  the
backoff  number  is  randomly  initialized  within  the  range  given  in  Table  1.  If  the 
channel  is  idle,  the  backoff  number  is  decreased  by  1,  and  when  it  becomes  zero,  the 
node  transmits  a  data  frame.  If  an  even  number  of  collisions  occur,  instead  of  dou-
bling,  it  is  replaced  with  the  value  of  the  sliding  window.  Here,  the  value  of  the  sliding
window  was  set  to  a  non-overlapping  value  between  the  nodes.  By  using  non-
overlapping  contention  windows  between  nodes,  the  collision  probability  is  reduced 
and  superframe  utilization  is  increased.

  In  addition,  Fourati  et  al.  [25]  proposed  a  dynamic  backoff  algorithm  to  support  a 
differentiated  QoS.  In  a  binary  exponential  backoff  mechanism  using  the  given  CW
size  shown  in  Table  1,  low-priority  nodes  have  a  longer  waiting  time  when  an  even 
number  of  collisions  occur.  To  solve  this  problem,  the  proposed  algorithm  uses  a 
starvation  index  and  continuously  changes  the  CW  boundary  at  runtime.  Specifically,
the  starvation  index  is  initialized  to  zero  and  increased  by  1  when  the  channel  is  busy
or  retransmission  occurs.  If  an  even  number  of  collisions  occur,  the  CW  boundary  is 
recalculated  based  on  the  starvation  index.  By  estimating  the  latency  of  a  given
packet,  the  proposed  scheme  can  maintain  a  balance  between  low  priority  and
critical  traffic.

  Mouzehkesh  et  al.  [18]  also  proposed  a  dynamic  backoff  algorithm  using  fuzzy 
logic  to  improve  the  network  reliability  and  overall  latency.  To  ensure  a  balance 
between  the  channel  condition  and  waiting  time,  the  proposed  fuzzy  model  uses  the 
channel  clear  rate  (CCR)  and  sample  rate  (SR)  as  input  variables.  The  fuzzy  inference
rule  gives  a  higher  fuzzy  index  to  a  node  having  a  “high”  CCR  and  a  “medium”  SR.
The  backoff  delay  is  then  determined  based  on  the  fuzzy  index.

  Nekooei  et  al.  [19]  proposed  a  dynamic  backoff  exponent  algorithm  using  fuzzy 
logic  to  increase  the  network  reliability.  The  proposed  algorithm  represents  the  busy-
ness  of  the  channel  as  a  backoff  rate  and  calculates  the  backoff  exponent  using  a 
combination  of  the  history  of  the  channel  condition  and  the  data  rate  of  the  node.
Specifically,  the  backoff  rate  and  data  rate  are  used  as  the  input  variables  for  the  fuzzy
model.  The  fuzzy  index  is  divided  into  four  levels,  and  a  node  with  the  lowest  fuzzy
level  has  a  relatively  high  probability  of  acquiring  a  channel  (Table  3).

3.1.3  Hybrid-based  approaches

  Contention-free  and  contention-based  approaches  aim  to  improve  the  efficiency  of
radio  resource  control;  however,  their  mechanisms  have  clear  advantages  and  disad-
vantages.  For  example,  although  TDMA-based  approaches  can  easily  support  a  dif-
ferentiated  QoS,  they  cannot  cope  with  packet  loss  owing  to  body  shadowing.  By
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contrast, CSMA/CA-based approaches do not guarantee a differentiated QoS,
although they can increase the utilization of superframes. To overcome the limitations
of individual approaches, hybrid-based approaches have been proposed.

Ramachandran et al. [26] proposed a link-quality-aware hybrid MAC protocol. The
authors argue that body shadowing itself occurs instantaneously; however, the effec-
tiveness of shadowing increases when the body is active for a long period of time. This
effect weakens the communication between the implantable sensor nodes, increasing
the likelihood of missing life-critical data. In the proposed scheme, the nodes are
classified as high- and low-priority nodes. The superframe is divided into three parts:
EAP, RAP, and MAP. In MAP, the coordinator decides to apply TDMA to high-
priority nodes, whereas low-priority nodes use EAP and RAP. The proposed scheme
uses the received signal strength indicator (RSSI) and packet delivery ratio to predict
the dynamics of human activity to improve reliability and energy efficiency. In a
TDMA period, the coordinator preferentially allocates a timeslot to a node that has a
high packet delivery ratio and moves periodically. In addition, long-term body
shadowing increases the chances of missing life-threatening medical data and can
increase latency. The authors argue that most medical sensors are unable to signifi-
cantly increase the output power, and thus temporarily using a relay node may be the
optimal solution to overcome this situation. In the proposed scheme, the relay node is
used when a low packet delivery ratio is detected; otherwise, it is disabled. This
relaying mechanism reduces unnecessary energy waste.

Choi et al. [27] proposed an energy-efficient hybrid MAC protocol. The
superframe structure of the IEEE 802.15.6 standard consists of EAP, RAP, and MAP.
The authors pointed out that the nodes are always active in MAP, resulting in constant
energy consumption. To solve the energy waste problem, the proposed mechanism
aims to minimize the MAP length. Specifically, EAP2 and RAP2 are arranged after
EAP1 and RAP1, and MAP is arranged at the end of the superframe. If a node finishes
its transmission in EAP1, it can go into sleep mode to save energy. Each node provides
transmission information to the coordinator such that it can synchronize with all
nodes.

Wang et al. [28] proposed a dynamic MAC protocol. With the proposed
mechanism, the superframe is divided into RAP and MAP, and the lengths of the two
phases are dynamically adjusted according to the data rate and data type. Note that
CSMA/CA is used in RAP, whereas TDMA is used in MAP. The coordinator allocates
timeslots to nodes in the MAP based on the device priority; that is, high-priority nodes
have more timeslots. Nodes with no data to send in the buffer save energy by entering
a sleep state. Specifically, three priority levels are defined, from 0 to 2, depending on
the criticality. A node that has a high data rate and generates emergency data is given
priority 0, whereas normal nodes are given priority 2. Initially, the coordinator gives
all nodes the highest priority and then sets the threshold ratio to adjust the priority. If
the data rate of a node is greater than the threshold, it is classified as a high-priority
node, and the remaining nodes are classified as normal nodes. The threshold value was
adjusted dynamically to accommodate heterogeneous traffic. To support a differenti-
ated QoS, the coordinator grants a small range of CWs to the node with the highest
priority.

Huq et al. [29] proposed a hybrid MAC protocol to provide a differentiated QoS.
The propagation of emergency messages requires high reliability and minimal channel
access delays. The authors pointed out that neither RAP nor EAP can be used for
emergency traffic because of the potential for data loss owing to channel collisions. To
address this issue, the proposed scheme dynamically inserts a listening window within
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a contention-free period (MAP). The frequency of the insertion of the listening
window was determined by the minimum delay tolerance. The proposed scheme also
uses idle timeslots to insert an additional listening window for emergency traffic
without impacting the network throughput. Emergency devices can use guaranteed
access periods to send data in the listening window without notifying their QoS
requirements to the coordinator. This process can improve the reliability and access
times. Note that the duration of the access phase is dynamically adjusted based on the
QoS requirements of each node (Table 4).

3.2 Transmission power control

Quwaider et al. [30] proposed a body-posture-based transmission power control
scheme to strike a balance between energy consumption and reliable transmission.
Specifically, the authors proposed a dynamic posture position inference algorithm that
recognizes the current posture position using on-body link characteristics. The pro-
posed system infers the current body posture based on RSSI measurements on the
receiver side. In addition, the authors set a range of RSSI thresholds to balance a
reliable transmission and energy consumption through quantitative experiments
based on a real WBAN testbed. The proposed algorithm recognizes the current body
posture by defining the relationship between the power-level index and RSSI as a
linear equation. Once the linear equation for the new position is obtained, the optimal
transmission power level can be derived (Table 5).

Zang et al. [31] proposed an accelerometer-assisted transmission power control
algorithm to improve energy efficiency. The authors pointed out that energy-efficient
communication can be achieved by optimizing the output power required for suc-
cessful transmission. The existing approaches determine the transmission power level
based on the received signal strength; however, there is a possibility that the current
link information is already out of date owing to dynamic on-body link conditions. To

Cognitive metricMajor considerationReference Hybrid type

TDMA + CSMA/CA Heterogeneous traffic flow, body[26]
shadowing

Device priority, RSSI, packet
delivery ratio

Device priorityTDMA + CSMA/CA Heterogeneous traffic flow[27]

CriticalityTDMA + CSMA/CA Heterogeneous traffic flow[28]

Device priorityTDMA + CSMA/CA Heterogeneous traffic flow[29]

Table 4.
Summary of hybrid-based radio resource control.

Cognitive metricMajor considerationResearch objectiveReference

Gait-cycleBody shadowingEnergy-saving, transmission reliability[30]

Gait-cycleBody shadowingEnergy-saving, transmission reliability[31]

On-body link qualityBody shadowingEnergy-saving, transmission reliability[32]

On-body link qualityBody shadowingEnergy-saving, transmission reliability[33]

Table 5.
Summary of transmission power control techniques.
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solve this problem, the authors used periodic link-quality fluctuations. The proposed
algorithm defines the relationship between body posture and channel periodicity and
then recognizes the current body movement using an accelerometer. This means that
the acceleration signal and received signal strength of the packet have the same cycle.
Each node then sends a packet with the minimum output power when the link quality
is the best or increases the transmission power level using feedback information to
prevent a delay violation.

Zhang et al. [32] proposed a joint transmission power control and scheduling
scheme to provide a flexible trade-off between transmission reliability and energy
consumption. Initially, each node is assigned its own scheduled uplink interval (SUI)
with the same number of timeslots to satisfy the fairness constraint. To avoid packet
loss from body movement, the authors proposed a temporal autocorrelation model in
which the coordinator tracks the link conditions of all sensor nodes based on the RSSI
measurements and predicts the channel state in the next TDMA round. The coordi-
nator uses the predicted channel conditions to adjust the SUI order and the transmis-
sion power level. For example, the coordinator rearranges the SUI according to the
node-link quality to increase the probability of successful transmission. In addition,
the output power is determined to be higher than the reception sensitivity, consider-
ing the channel fluctuations in the next TDMA round.

Finally, Zhang et al. [33] proposed a relay-aided transmission power control
scheme to increase transmission reliability and energy efficiency. The authors pointed
out that the transmission power level should be adaptively adjusted to cope with
changes in the on-body link conditions. The coordinator recognizes the channel state
using the RSSI records of the packets received in the previous TDMA round. The
coordinator then calculates the optimal transmission power level required for suc-
cessful transmission based on the channel state and informs the transmission power
level to nodes through a beacon frame. In addition, the authors proposed an adaptive
transmission scheme using a relay node to improve the reliability of transmission. If
the current channel condition between the coordinator and the source node is
expected to be bad, the coordinator notifies the source node to apply a relay-assisted
two-hop transmission.

4. Research challenges

In this section, we present further research challenges and open issues in resource
allocation in WBANs.

4.1 Advanced/smart resource management for multi-objective optimization

This chapter introduced various resource management techniques to achieve
specific objectives (i.e., differentiated QoS, reliability, and energy-saving). Most
approaches aim to achieve a single objective; however, WBANs include serious
restrictions different from general WSNs and thus must satisfy different service
requirements simultaneously. Therefore, it is important to provide flexible trade-offs
between optimization criteria rather than achieving a single-objective optimization.
That is, advanced/smart resource management techniques that can adaptively make
decisions according to changes in network conditions are required to achieve
multi-objective optimization.

12
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4.2  Reliable  simulation  systems

  Various  resource  management  techniques  have  been  proposed  to  satisfy  the  ser-
vice  requirements  of  WBANs;  however,  the  development  of  simulation  systems  to 
verify  their  performance  has  not  been  adequately  followed.  Although  some  simulation
tools  (e.g.,  OMNet++,  OPNET,  and  NS-3)  for  building  a  WBAN  environment  have 
been  proposed,  they  do  not  provide  the  necessary  middleware  or  framework  to  import
the  latest  technologies  (e.g.,  DRL).  The  lack  of  a  simulation  system  is  a  major  factor  in
reducing  the  reliability  of  modern  resource  management  schemes;  hence,  the  devel-
opment  of  reliable  simulation  systems  remains  one  of  the  challenging  tasks  in 
WBANs.

4.3  Deployment  for  real  WBAN  system

  To  satisfy  the  service  requirements  of  WBANs,  various  resource  management 
techniques  have  been  proposed  in  intra-WBANs.  However,  for  the  proposed  mecha-
nisms  to  be  applied  to  an  actual  WBAN  system,  it  is  necessary  to  solve  the  mutual 
interference  problem  between  adjacent  WBANs  in  a  public  place.  In  addition,  a 
unified  network  architecture  conforming  to  the  IEEE  802.15.6  standard  is  required  to
improve  the  scalability  of  the  resource  management  techniques;  however,  most 
resource  management  schemes  did  not  consider  the  IEEE  802.15.6  standard.  Hence,
bridging  the  performance  gap  between  a  simulation  system  and  a  real  WBAN  system
by  fully  complying  with  the  specifications  presented  in  the  IEEE  802.15.6  standard  is 
one  of  the  major  challenges  in  WBANs.

4.4  Security

  It  is  essential  to  provide  high-level  security  services  because  WBANs  collect 
physiological  data  of  the  human  body.  The  IEEE  802.15.6  standard  specifies 
encryption  algorithms  (e.g.,  DES  and  AES)  that  can  be  used  at  the  MAC  level,  and 
thus  protocol  designers  should  implement  a  security  model  to  protect  private  data.
However,  these  encryption  algorithms  are  outdated  to  defend  against  various  types
of  attacks.  Therefore,  it  is  necessary  to  develop  a  simple  and  effective  security  model 
that  can  respond  to  various  types  of  attacks  considering  the  limited  resources  of 
WBANs.

5.  Conclusions

  A  WBAN  has  unique  characteristics  that  distinguish  it  from  general  wireless  sensor
networks,  which  has  led  to  the  development  of  new  network  architecture  and 
resource  allocation  technique.  In  particular,  resource  allocation  techniques  have 
become  increasingly  intelligent  to  meet  the  significant  constraints  of  WBANs.  In  this 
chapter,  we  provided  comprehensive  research  trends  and  a  discussion  of  WBANs  in 
terms  of  resource  allocation.  Specifically,  we  first  introduced  the  network  architecture
of  a  WBAN  and  outlined  the  major  components  of  the  IEEE  802.15.6  standard  used  for
resource  allocation.  Next,  we  classified  the  resource  allocation  techniques  into  radio 
resource  control  and  transmission  power  control  and  then  described  their  operating 
mechanisms.
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Chapter 5

Energy Management in Wireless 
Sensor Network
Tareq Alhmiedat

Abstract

Usually, wireless sensor networks (WSNs) are installed in large areas to monitor 
various physical conditions of the environment and forward the collected sensed data 
to a base station (central node), for instance: gas monitoring, intrusion detection, 
tracking objects, etc. However, sensor nodes are usually deployed unattended and 
battery-powered with no external power source. Therefore, WSNs face the challenge 
of limited energy source available onboard, where packet transmission and sensing 
functions are the most power consumption factors in WSN. Therefore, to overcome 
the energy depletion in sensor nodes, it is important to study the energy manage-
ment issue in WSN. In this chapter, the significance of energy management issue is 
discussed first, and then the possible energy management strategies for WSN are 
presented and illustrated.

Keywords: energy management, wireless sensor networks (WSNs), power 
consumption, energy management strategies, data aggregation, clustering

1. Introduction

A wireless sensor network (WSN) is made up of a set of sensor devices (nodes),
which are usually powered by batteries to operate and interconnected through radio 
links to assure data transmission, processing, and reception. In general, WSNs have 
a significant potential in different applications in the areas of medical sciences, 
telecommunications, agriculture, environmental sciences, military services, and 
surveillance. The increasing demand on the deployment of autonomous sensor nodes 
and extending the sensor network lifetime can therefore be considered among the 
main objectives through examining interesting methods and research studies, which 
optimize the WSN energy consumption, and proposing methods to improve it. These 
methods can include several action levels that can range from the deployment stage to 
the information processing and manipulation stage [1].

In general, WSN is a combination of distributed self-governing sensor nodes, 
which monitor environmental and physical certain conditions, for instance: monitor-
ing humidity, temperature, pressure, etc., and transfer such data through multihop 
network to the base station. WSN is considered as attractive solutions for many 
applications in fields [2–9]. Figure 1 depicts an environmental sensor nodes deployed 
in a forest area, where sensor nodes may transmit the sensed data through multihop 
communication to the sink node (base station). The energy capability for the sensor 
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nodes allows them to work autonomously and can communicate with other nodes 
through radio waves through the establishment of the routing mechanisms [10].

Recently, an intensive research has studied and addressed the energy consump-
tion issue in WSNs, as the sensor networks have been employed in various types of 
applications, where it is difficult in certain cases to replace or recharge the attached 
battery source. In addition, sensor nodes are expected to work from months to a 
few years. Therefore, it is significant to develop an energy efficient hardware and 
software components to allow the WSNs to operate for the maximum period of time. 
This chapter focuses on the power management issue in WSNs and discusses several 
power management schemes that aim to minimize the power consumption for 
sensor nodes.

The rest of this chapter is organized as follows: Section 2 discusses the energy 
management issue in WSNs, whereas Section 3 presents the energy management 
strategies that can be adopted to minimize the power consumption for sensor nodes in 
the WSN. And, finally, Section 4 concludes the work presented in this chapter.

2. Energy management in WSNs

This section discusses the main energy management considerations when design-
ing or developing an algorithm for WSNs. In general, a sensor network consists of a 
sensor nodes linked to each other using wireless communication protocol. Usually, a 
sensor network involves various types of nodes with different capabilities (memory 
size, on-board battery capacity, and processor speed). For instance, Figure 2 shows 
a sensor network with three different types of nodes (coordinator, router, and end-
device) that exist in the ZigBee communication protocol. Usually, a single coordinator 
is required to start and coordinate the WSN, whereas a number of active routers are 
required to forward sensed data in the WSN through multihop communication, and 
a large number of end-device nodes are expected in the WSN, where end-device node 
may go to sleep mode.

According to the different energy consumption levels in the WSN based on the 
type of sensor node that employed in the area of interest, it is important to study 

Figure 1. 
Energy management.
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the field of energy management to minimize the power consumption for sensor 
network. As presented in Figure 3, the energy management is based on two main 
considerations: energy consumption and energy provision. The former focuses on 
the operations and devices that deplete the energy through performing transmission, 
reception, and data processing, whereas the later intends to discover different meth-
ods for supplying the sensor node with the required energy source in order to allow 
the WSN to operate as long as possible.

The energy provision is further classified into: battery-driven, transference, and 
harvesting. The battery-driven classification is based on the deployment of a bat-
tery source for powering the sensor node, whereas the battery might be replaceable, 
fixed, or rechargeable. The transference classification employs such methods for 
transferring energy from the source to the sensor node (destination), for instance, 
the employment of microwaves and radio frequency energy. The harvesting-based 
classification uses for instance energy from solar, wind, thermal, etc.

Coordinator

Router

End-device

Figure 2. 
Mesh WSN with three different sensor nodes.

Figure 3. 
Energy management in WSN.
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On the other hand, there are huge efforts have been made to design and implement 
an efficient energy management schemes to save the limited energy available for each 
sensor node. The energy consumption can be further classified into: duty-cycling, 
mobility-based, and data-driven. Through the duty cycle method, the sensor node can 
alternate between sleep and active modes in order to minimize the power consumed in 
the active mode. In the mobility-based method, a mobile node is employed to collect the 
sensed data from stationary sensor nodes, and therefore minimize the power consumed 
in multi-hop forwarding of data. The data-driven methods are based on prediction and 
aggregation algorithms to minimize the power consumed in the transmission process.

3. Energy management schemes in WSNs

Energy management involves saving the onboard energy of sensor nodes in order 
to allow the sensor node to operate for the maximum lifetime possible. Through 
studying and analyzing the available literature, it is important to categorize the 
energy management schemes into four main categories as presented in Figure 4.

3.1 Battery management schemes

Battery management includes exploiting the internal characteristics of batteries 
to evoke their charge in order to maximize the sensor node lifetime. Therefore, in this 
section the battery management schemes are considered in two ways of views: node 
energy management and energy balancing.

Node energy management aims to allow sensor nodes to operate permanently in 
the WSN. Authors of [11] explored the Dynamic Power Management (DPM) strategy 
in WSNs that established the sleep and active modes for power management. DPM 
minimizes the energy consumption for each sensor node with the help of micro-
operating embedded system. Moreover, several research works [12–17] have focused 
on the DPM in order to reduce the energy consumption for each sensor node, hence 
maximizing the WSN throughput.

The energy balancing schemes on the other hand achieve a balance between 
the energy generation and the energy consumption. For longer WSN lifetime, the 
efficient and balanced power consumption is highly important. For instance, authors 
of [18] presented a solution for insufficient energy problem in the sensing unit and 
excessive usage of power in transmission unit for sensor nodes through setting up a 
decent harmony among them to prolong throughput up to some extent. In addition, 
several research works have focused on the energy balancing scheme [19–22].

Figure 4. 
Classification of different management energy methods for WSNs.

87



5

Energy Management in Wireless Sensor Network
DOI: http://dx.doi.org/10.5772/104618

3.2 Transmission power management schemes

  In general, data transmission is considered as the most power consumption mod-
ule with comparison to sensor node’s other modules. The transmission power man-
agement schemes can be categorized into three main categories as follows: Medium 
Access Control (MAC) layer management, routing policies.
  The MAC layer management schemes are adopted the MAC protocol to minimize 
the power consumption for the sensor nodes. MAC protocol is considered as the 
bottom segment protocol for network communication in WSNs. Several research 
works [23–27] have explored the divergent MAC protocols for enormous applications
of WSNs.
  The routing protocols on the other hand aim to set up the best link between the 
source node and the destination node, without compromising some major perfor-
mance character tics. Routing protocols focus on the power saving, where several 
routing protocols and systems [28–39] have been developed and implemented for 
forwarding data in WSN to reach the destination or the sink node.

3.3 System management schemes

  The system power management schemes are accomplished in the processor unit 
using power and device management strategies. The substantial dropping in power 
consumption offers efficient hardware design. Moreover, the power consumption 
might be further minimized by some other features including turning-off the sensor 
node over idle situations or operating in power-saving mode. The system manage-
ment schemes involve processor power management and device management.
  Generally, the power consumption of the sensor node’s processor is affected by 
several parameters including: processor clock speed and the number of command 
executed per unit time. The processor power management strategy tries to minimize 
the number of performed calculations and the processor’s power consumption.
Several research works [40–42] have adopted various power management methods,
for instance: employing the power saving mode to minimize the power consumption 
of a certain sensor node in the WSN.
  On the other hand, using intelligent mobile sensor nodes, the power management 
can minimize power usage considerably. The design and development of the sensor 
node hardware have been proposed for device management schemes, which minimize
the energy consumption. Through this management technology, the intelligent device
employs an operating system that aims to reduce the power consumption using vari-
ous power saving modes according to the sensor node’s energy usage. Several device 
management systems for WSNs have been proposed recently [43–48] with various 
functionalities and outcomes.

3.4 Other power management schemes

  This subsection discusses other WSN management systems including: load balanc-
ing, duty cycling, and mobility-based systems.

  Load balancing includes managing power usage of the transmission segment.
Several data clustering approaches [49–53] have been developed to extend the WSN 
lifetime and enhance the network throughput, where a cluster head is elected in order
to collect, aggregate, and then transmit the sensed data to the base station. In general,
cluster-based approaches significantly minimize the power consumption for WSNs.
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Sensor node

Sink node

Mobile robot

Figure 6. 
Employment of mobile nodes to collect the sensed data.
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Figure 5. 
Clustering concept in WSN.
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Figure 5  shows the concept of dividing the sensor nodes in a WSN into groups, where 
a cluster head is selected to each sensor group. The role of the cluster head is to collect
data from sensor nodes in its group, aggregate, and transmit the collected data to the 
sink node (base station).

  Duty cycling management schemes manage the power consumption to extend
the WSN lifetime. Duty cycling approaches play a key role in enhancing the energy 
consumption and the WSN lifetime. Several algorithms have been proposed [54–59]
that estimate the duty cycle for each sensor node by switching among wakeup and 
sleep modes in order to minimize the total power consumption for each sensor node.
  The mobility-based approaches consider employing mobile sensor nodes to attain 
energy conservation in the WSN. In WSNs, the mobile nodes are employed to collect 
the sensed data from stationary sensor nodes distributed over the area of interest.
Many research works [60–68] have conducted employing mobile sensor nodes in
their studies, with the aim of minimizing the power consumption for fixed sensor
nodes and minimize the multihop commination over the WSN.  Figure 6  presents the 
concept of employing a mobile robot node in the WSN field.

4.  Conclusion

  A  WSN is  made  up  of  a  set of  sensor  nodes  that  are  supplied by  batteries  to  oper-
ate  and interconnected using radio  links  to  guarantee  reception, processing, and 
transmission. Energy  consumption  is  a critical issue  in  WSNs.  Various  significant 
challenges  have  been  overcome  to  maximize  the WSN lifetime, and hence  increase
the WSN throughput.  This  chapter  discusses  several energy  management  solutions
for WSNs, ranging from  deployment  and connectivity  to  routing and securing 
information. In  this chapter, the  energy  management  schemes were  divided into  four 
main  categories: battery  management, system  management, transmission  power 
management, and other  management  schemes. Each  energy  management  scheme was
discussed, in  addition  to  presenting several research work  that  support  the  discussed 
energy  management  scheme.
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