

CSS: The Definitive Guide

FIFTH EDITION

Web Layout and Presentation

Eric A. Meyer and Estelle Weyl

CSS: The Definitive Guide

by Eric A. Meyer and Estelle Weyl

Copyright © 2023 Eric A. Meyer and Estelle Weyl. All rights
reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway
North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or
sales promotional use. Online editions are also available for
most titles (http://oreilly.com). For more information, contact
our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn

Development Editor: Rita Fernando

Production Editor: Elizabeth Faerm

Copyeditor: Sharon Wilkey

Proofreader: JM Olejarz

Indexer: Potomac Indexing, LLC

http://oreilly.com/

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

May 2000: First Edition
March 2004: Second Edition
November 2006: Third Edition
November 2017: Fourth Edition
June 2023: Fifth Edition

Revision History for the Fifth
Edition

2023-05-30: First Release

See http://oreilly.com/catalog/errata.csp?
isbn=9781098117610 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media,
Inc. CSS: The Definitive Guide, the cover image, and related trade
dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and
do not represent the publisher’s views. While the publisher and

http://oreilly.com/catalog/errata.csp?isbn=9781098117610

the authors have used good faith efforts to ensure that the
information and instructions contained in this work are
accurate, the publisher and the authors disclaim all
responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual
property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.

978-1-098-11761-0

[LSI]

Preface

If you are a web designer or document author interested in
sophisticated page styling, improved accessibility, and saving
time and effort, this book is for you. All you really need to know
before starting the book is HTML 4.0. The better you know
HTML, the better prepared you’ll be, but it is not a requirement.
You will need to know very little else to follow this book.

This fifth edition of the book was finished at the end of 2022
and does its best to reflect the state of CSS at that time. Anything
covered in detail either had wide browser support at the time
of writing or was known to be coming soon after publication.
CSS features that were still being developed or were known to
have support dropping soon are not covered here.

Conventions Used in This Book

The following typographical conventions are used in this book
(but make sure to read through “Value Syntax Conventions” to
see how some of these are modified):

Italic

Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

Constant width italic

Shows text that should be replaced with user-supplied values
or by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Value Syntax Conventions

Throughout this book, boxes explain a given CSS property’s
details, including which values are permitted. This content has
been reproduced practically verbatim from the CSS
specifications, but some explanation of the syntax is in order.

The allowed values for each property are listed with a syntax
like the following:

Value: < family-name >#

Value: < url > ‖ < color >

Value: < url >? < color > [/ < color >]?

Value: [< length > | thick | thin]{1,4}

Value: [< background >,]* < background-color >

Any italicized words between < and > give a type of value, or
a reference to another property’s values. For example, the
property font accepts values that originally belong to the
property font-family . This is denoted by using the text
< font-family >. Similarly, if a value type like a color is
permitted, it will be represented using < color >.

Any words presented in constant width are keywords that
must appear literally, without quotes. The forward slash (/)

and the comma (,) must also be used literally.

Components of a value definition can be combined in
numerous ways:

Two or more keywords strung together with only space
separating them means that all of them must occur in the
given order. For example, help me would mean that the
property must use those keywords in that order.
If a vertical bar separates alternatives (X | Y), any one of
them must occur, but only one. Given [X | Y | Z] any one
of X , Y , or Z is permitted.
A vertical double bar (X ‖ Y) means that X , Y , or both must
occur, but they may appear in any order. Thus: X , Y , X Y ,
and Y X are all valid interpretations.
A double ampersand (X && Y) means both X and Y must
occur, though they may appear in any order. Thus: X Y or
Y X are both valid interpretations.
Brackets ([…]) are for grouping things together. Thus [please
‖ help ‖ me] do this means that the words please ,
help , and me can appear in any order, though each appear
only once. The words do this must always appear, in that
order. Here are some examples: please help me do this ,
help me please do this , me please help do this .

Every component or bracketed group may (or may not) be
followed by one of these modifiers:

An asterisk (*) indicates that the preceding value or
bracketed group is repeated zero or more times. Thus,
bucket * means that the word bucket can be used any
number of times, including zero. There is no upper limit
defined on the number of times it can be used.
A plus (+) indicates that the preceding value or bracketed
group is repeated one or more times. Thus, mop + means that
the word mop must be used at least once, and potentially
many more times.
A hash sign (#), formally called an octothorpe, indicates that
the preceding value or bracketed group is repeated one or
more times, separated by commas as needed. Thus, floor #
can be floor or floor, floor, floor , and so on. This is
most often used in conjunction with bracketed groups or
value types.
A question mark (?) indicates that the preceding value or
bracketed group is optional. For example, [pine tree]?
means that the words pine tree need not be used (although
they must appear in that order if they are used).
An exclamation point (!) indicates that the preceding value or
bracketed group is required, and thus must result in at least
one value, even if the syntax would seem to indicate

otherwise. For example, [what ? is ? happening ?]! must be
at least one of the three terms marked optional.
A pair of numbers in curly braces ({M,N}) indicates that the
preceding value or bracketed group is repeated at least M
and at most N times. For example, ha {1,3} means that there
can be one, two, or three instances of the word ha .

The following are some examples:

give ‖ me ‖ liberty
At least one of the three words must be used, and they can be
used in any order. For example, give liberty , give me ,
liberty me give , and give me liberty are all valid
interpretations.

[I | am]? the ‖ walrus
Either the word I or am may be used, but not both, and use
of either is optional. In addition, either the or walrus , or
both, must follow in any order. Thus you could construct I
the walrus , am walrus the , am the , I walrus , walrus
the , and so forth.

koo + ka-choo
One or more instances of koo must be followed by ka-choo .
Therefore koo koo ka-choo , koo koo koo ka-choo , and

koo ka-choo are all legal. The number of koo s is potentially
infinite, although there are bound to be implementation-
specific limits.

I really {1,4}? [love | hate] [Microsoft | Firefox |
Opera | Safari | Chrome]
The all-purpose web designer’s opinion expresser. This can
be interpreted as I love Firefox , I really love
Microsoft , and similar expressions. Anywhere from zero to
four really s may be used, though they may not be
separated by commas. You also get to pick between love and
hate , which really seems like some sort of metaphor.

It’s a [mad]# world
This gives the opportunity to put in as many comma-
separated mad s as possible, with a minimum of one mad . If
there is only one mad , no comma is added. Thus: It’s a mad
world and It’s a mad, mad, mad, mad, mad world are
both valid results.

[[Alpha ‖ Baker ‖ Cray],]{2,3} and Delphi
Two to three of Alpha , Baker , and Delta must be followed
by and Delphi . One possible result would be Cray, Alpha,
and Delphi . In this case, the comma is placed because of its
position within the nested bracket groups. (Some older

versions of CSS enforced comma separation this way, instead
of via the # modifier.)

Using Code Examples

Whenever you come across an icon that looks like , it means
there is an associated code example. Live examples are
available at https://meyerweb.github.io/csstdg5figs. If you are
reading this book on a device with an internet connection, you
can click the icon to go directly to a live version of the code
example referenced.

Supplemental material—in the form of the HTML, CSS, and
image files that were used to produce nearly all of the figures in
this book—is available for download at
https://github.com/meyerweb/csstdg5figs. Please be sure to read
the repository’s README.md file for any notes regarding the
contents of the repository.

If you have a technical question or a problem using the code
examples, please send an email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us for

https://meyerweb.github.io/csstdg5figs
https://github.com/meyerweb/csstdg5figs
mailto:bookquestions@oreilly.com

permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several
chunks of code from this book does not require permission.
Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book
and quoting example code does not require permission.
Incorporating a significant amount of example code from this
book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and
ISBN. For example: “CSS: The Definitive Guide by Eric A. Meyer
and Estelle Weyl (O’Reilly). Copyright 2023 Eric A. Meyer and
Estelle Weyl, 978-1-098-11761-0.”

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning

mailto:permissions@oreilly.com

NOTE

For more than 40 years, O’Reilly Media has provided technology and business
training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our
online learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-depth
learning paths, interactive coding environments, and a vast
collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to
the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

https://oreilly.com/
https://oreilly.com/

707-829-0104 (fax)

We have a web page for this book, where we list errata,
examples, and any additional information. You can access this
page at https://oreil.ly/css-the-definitive-guide-5e.

Email bookquestions@oreilly.com to comment or ask technical
questions about this book.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments

Eric Meyer

First, I want to thank all the technical reviewers of this edition,
who lent their time and expertise to the arduous task of finding
out all the places I’d been wrong, and for less recompense than
they deserved. Alphabetically, by family name: Ire Aderinokun,

https://oreil.ly/css-the-definitive-guide-5e
mailto:bookquestions@oreilly.com
https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

Rachel Andrew, Adam Argyle, Amelia Bellamy-Royds, Chen Hui
Jing, Stephanie Eckles, Eva Ferreira, Mandy Michael, Schalk
Neethling, Jason Pamental, Janelle Pizarro, Eric Portis, Miriam
Suzanne, Lea Verou, and Dan Wilson. Any errors are my fault,
not theirs.

Thank you as well to all the technical reviewers of past editions,
who are too many to name here, and all the people who have
helped me understand various bits and bobs of CSS over the
years, who are also far too many to name here. If you ever
explained some CSS to me, please write your name in the
following blank: _______________________, you have my gratitude.

Thank you to all the members of the CSS Working Group, past
and present, who have shepherded an amazing language to
astonishing heights…even as your work means we’ll face a real
production dilemma for the next edition of this book, which is
already pushing the limits of what printing technology can
reasonably manage.

Thank you to all the people who keep the Mozilla Developer
Network (MDN) up and running as well as up-to-date.

Special thanks to all the fine people at Open Web Docs for your
work on MDN, and for asking me to serve as a member of your

steering committee.

To my coauthor, Estelle, thank you for all your contributions,
expertise, and pushes to do what was needed.

To all the assorted friends, colleagues, coworkers,
acquaintances, and passersby who have allowed space for my
odd enthusiasms and strange demeanor, thank you for your
understanding, patience, and kindness.

And as ever, my boundless gratitude to my family—my wife,
Kat, and my children, Carolyn, Rebecca z’’l, and Joshua. You are
the home that shelters me, the suns in my sky, and the stars by
which I steer. Thank you for everything you have taught me.

Cleveland Heights, OH

December 4, 2022

Estelle Weyl

I would like to acknowledge everyone who has worked to make
CSS what it is today and all those who have helped improve
diversity and inclusion in tech.

Many people work tirelessly with browser vendors and
developers in writing the CSS specifications. Without the
members of the CSS Working Group—past, current, and future
—we would have no specifications, no standards, and no cross-
browser compatibility. I am in awe of the thought process that
goes into every CSS property and value added to, and omitted
from, the specification. People like Tab Atkins, Elika Etimad,
Dave Baron, Léonie Watson, and Greg Whitworth not only work
on the specification, but also take their time to answer
questions and explain nuances to the broader CSS public,
notably me.

I also acknowledge all those who, whether they participate in
the CSS Working Group or not, dive deep into CSS features and
help translate the spec for the rest of us, including Sarah
Drasner, Val Head, Sara Souidan, Chris Coyier, Jen Simmons,
and Rachel Andrew. In addition, I thank the people who create
tools that make all CSS developers’ lives easier, especially Alexis
Deveria for creating and maintaining the Can I Use tool.

I also appreciate all those who have contributed their time and
effort to improve diversity and inclusion in all sectors of the
developer community. Yes, CSS is awesome. But it’s important to
work with great people in a great community.

https://caniuse.com/

When I attended my first tech conference in 2007, the lineup
was 93% male and 100% white. The audience had slightly less
gender diversity and only slightly more ethnic diversity. I had
picked that conference because the lineup was more diverse
than most: it actually had a woman on it. Looking around the
room, I knew things needed to change, and I realized it was
something I needed to do. What I didn’t realize then was how
many unsung heroes I would meet over the next 10 years
working for diversity and inclusion in all areas of the tech
sector and life in general.

There are too many people—who work tirelessly, quietly, and
often with little or no recognition—to name them all, but I
would like to highlight some. I cannot express how much of a
positive impact people like Erica Stanley of Women Who Code
Atlanta, Carina Zona of Callback Women, and Jenn Mei Wu of
Oakland Maker Space have had. Groups like The Last Mile,
Black Girls Code, Girls Incorporated, Sisters Code, and so many
others inspired me to create a Feeding the Diversity Pipeline list
to help ensure that the path to a career in web development is
not only for those with privilege.

Thank you to all of you. Thank you to everyone. Because of your
efforts, more has been done than I ever could have imagined
sitting in that conference 10 years ago.

http://www.standardista.com/feeding-the-diversity-pipeline

San Francisco, CA

February 14, 2023

Chapter 1. CSS Fundamentals

Cascading Style Sheets (CSS), a powerful programming language
that transforms the presentation of a document or a collection
of documents, has spread to nearly every corner of the web as
well as many ostensibly nonweb environments. For example,
embedded-device displays often use CSS to style their user
interfaces, many RSS clients let you apply CSS to feeds and feed
entries, and some instant message clients use CSS to format chat
windows. Aspects of CSS can be found in the syntax used by
JavaScript (JS) frameworks and even in JS itself. It’s
everywhere!

A Brief History of (Web) Style

CSS was first proposed in 1994, just as the web was beginning to
really catch on. At the time, browsers gave all sorts of styling
power to the user—the presentation preferences in NCSA
Mosaic, for example, permitted the user to define each
element’s font family, size, and color. None of this was available
to document authors; all they could do was mark a piece of
content as a paragraph, as a heading of some level, as
preformatted text, or one of a dozen other element types. If a
user configured their browser to make all level-one headings

tiny and pink and all level-six headings huge and red, well, that
was their lookout.

It was into this milieu that CSS was introduced. Its goal was to
provide a simple, declarative styling language that was flexible
for web page authors and, most importantly, provided styling
power to authors and users alike. By means of the cascade,
these styles could be combined and prioritized so that both site
authors and readers had a say—though readers always had the
last say.

Work quickly advanced, and by late 1996, CSS1 was finished.
While the newly established CSS Working Group moved
forward with CSS2, browsers struggled to implement CSS1 in an
interoperable way. Although each piece of CSS was fairly simple
on its own, the combination of those pieces created some
surprisingly complex behaviors. Unfortunate missteps also
occurred, such as the infamous discrepancy in box model
implementations. These problems threatened to derail CSS
altogether, but fortunately some clever proposals were
implemented, and browsers began to harmonize. Within a few
years, thanks to increasing interoperability and high-profile
developments such as the CSS-based redesign of Wired
magazine and the CSS Zen Garden, CSS began to catch on.

Before all that happened, though, the CSS Working Group had
finalized the CSS2 specification in early 1998. Once CSS2 was
finished, work immediately began on CSS3, as well as a clarified
version of CSS2 called CSS2.1. In keeping with the spirit of the
times, what was initially coined CSS3 was constructed as a
series of (theoretically) standalone modules instead of a single
monolithic specification. This approach reflected the then-
active XHTML specification, which was split into modules for
similar reasons.

The rationale for modularizing CSS was that each module could
be worked on at its own pace, and particularly critical (or
popular) modules could be advanced along the World Wide
Web Consortium’s (W3C’s) progress track without being held up
by others. Indeed, this has turned out to be the case. By early
2012, three CSS Level 3 modules (along with CSS1 and CSS 2.1)
had reached full Recommendation status—CSS Color Level 3,
CSS Namespaces, and Selectors Level 3. At that same time,
seven modules were at Candidate Recommendation status, and
several dozen others were in various stages of Working Draft-
ness. Under the old approach, colors, selectors, and namespaces
would have had to wait for every other part of the specification
to be done or cut before they could be part of a completed
specification. Thanks to modularization, they didn’t have to
wait.

So while we can’t really point to a single tome and say, “This is
CSS,” we can talk of features by the module name under which
they are introduced. The flexibility permitted by modules more
than makes up for the semantic awkwardness they sometimes
create. (If you want something approximating a single
monolithic specification, the CSS Working Group publishes
yearly “Snapshot” documents.)

With that established, we’re ready to start understanding CSS.
Let’s start by covering the basics of what goes inside a
stylesheet.

Stylesheet Contents

Inside a stylesheet, you’ll find a number of rules that look a little
something like this:

h1 {color: maroon;}
body {background: yellow;}

Styles such as these make up the bulk of any stylesheet—simple
or complex, short or long. But which parts are which, and what
do they represent?

Rule Structure

To illustrate the concept of rules in more detail, let’s break
down the structure.

Each rule has two fundamental parts: the selector and the
declaration block. The declaration block is composed of one or
more declarations, and each declaration is a pairing of a
property and a value. Every stylesheet is made up of a series of
these rules. Figure 1-1 shows the parts of a rule.

Figure 1-1. The structure of a rule

The selector, shown on the left side of the rule, defines which
piece of the document will be selected for styling. In Figure 1-1,
<h1> (heading level 1) elements are selected. If the selector
were p , then all <p> (paragraph) elements would be selected.

The right side of the rule contains the declaration block, which
is made up of one or more declarations. Each declaration is a
combination of a CSS property and a value of that property. In
Figure 1-1, the declaration block contains two declarations. The

first states that this rule will cause parts of the document to
have a color of red , and the second states that part of the
document will have a background of yellow . So, all of the
<h1> elements in the document (defined by the selector) will
be styled in red text with a yellow background.

Vendor Prefixing

Sometimes you’ll see pieces of CSS with hyphens and labels in
front of them, like this: -o-border-image . These vendor
prefixes were a way for browser vendors to mark properties,
values, or other bits of CSS as being experimental or
proprietary (or both). As of early 2023, a few vendor prefixes
are in the wild, with the most common shown in Table 1-1.

Table 1-1. Some common vendor prefixes

Prefix Vendor

-epub- International Digital Publishing Forum
ePub format

-moz- Gecko-based browsers (e.g., Mozilla
Firefox)

-ms- Microsoft Internet Explorer

-o- Opera-based browsers

-webkit- WebKit-based browsers (e.g., Apple
Safari and Google Chrome)

As Table 1-1 indicates, the generally accepted format of a
vendor prefix is a hyphen, a label, and a hyphen, although a
few prefixes erroneously omit the first hyphen.

The uses and abuses of vendor prefixes are long, tortuous, and
beyond the scope of this book. Suffice to say that they started
out as a way for vendors to test out new features, thus helping

speed interoperability without worrying about being locked
into legacy behaviors that were incompatible with other
browsers. This avoided a whole class of problems that nearly
strangled CSS in its infancy. Unfortunately, prefixed properties
were then publicly deployed by web authors and ended up
causing a whole new class of problems.

As of early 2023, vendor-prefixed CSS features are nearly
nonexistent, with old prefixed properties and values being
slowly but steadily removed from browser implementations.
You’ll quite likely never write prefixed CSS, but you may
encounter it in the wild or inherit it in a legacy codebase. Here’s
an example:

-webkit-transform-origin: 0 0;
-moz-transform-origin: 0 0;
-o-transform-origin: 0 0;
transform-origin: 0 0;

That’s saying the same thing four times: once each for the
WebKit, Gecko (Firefox), and Opera browser lines, and then
finally the CSS-standard way. Again, this is no longer necessary.
We’re including it here only to give you an idea of what it might
look like, should you come across this in the future.

Whitespace Handling

CSS is basically insensitive to whitespace between rules, and
largely insensitive to whitespace within rules, although a few
exceptions exist.

In general, CSS treats whitespace just like HTML does: any
sequence of whitespace characters is collapsed to a single space
for parsing purposes. Thus, you can format this hypothetical
rainbow rule in the following ways,

rainbow: infrared red orange yellow green blue

rainbow:
 infrared red orange yellow green blue indigo

rainbow:
 infrared
 red
 orange
 yellow
 green
 blue
 indigo
 violet
 ultraviolet
 ;

as well as any other separation patterns you can think up. The
only restriction is that the separating characters be whitespace:
an empty space, a tab, or a newline, alone or in combination, as
many as you like.

Similarly, you can format series of rules with whitespace in any
fashion you like. These are just five examples out of an
effectively infinite number of possibilities:

html{color:black;}
body {background: white;}
p {
 color: gray;}
h2 {
 color : silver ;
 }
ol
 {
 color
 :
 silver
 ;
}

As you can see from the first rule, whitespace can be largely
omitted. Indeed, this is usually the case with minified CSS, which
is CSS that’s had every last possible bit of extraneous
whitespace removed, usually by an automated server-side
script of some sort. The rules after the first two use
progressively more extravagant amounts of whitespace until, in
the last rule, pretty much everything that can be separated onto
its own line has been.

All of these approaches are valid, so you should pick the
formatting that makes the most sense—that is, is easiest to read
—in your eyes, and stick with it.

CSS Comments

CSS does allow for comments. These are very similar to C/C++
comments in that they are surrounded by / * and * /:

/* This is a CSS comment */

Comments can span multiple lines, just as in C++:

/* This is a CSS comment, and it
can be several lines long without
any problem whatsoever. */

It’s important to remember that CSS comments cannot be
nested. So, for example, this would not be correct:

WARNING

One way to create “nested” comments accidentally is to temporarily comment out a
large block of a stylesheet that already contains a comment. Since CSS doesn’t permit
nested comments, the “outside” comment will end where the “inside” comment ends.

Unfortunately, there is no “rest of the line” comment pattern
such as // or # (the latter of which is reserved for ID selectors
anyway). The only comment pattern in CSS is / * * /. Therefore,
if you wish to place comments on the same line as markup, you
need to be careful about how you place them. For example, this
is the correct way to do it:

/* This is a comment, in which we find
 another comment, which is WRONG
 /* Another comment */
 and back to the first comment, which is not a commen

h1 {color: gray;} /* This CSS comment is several li
h2 {color: silver;} /* long, but since it is alongsid
p {color: white;} /* actual styles, each line needs
pre {color: gray;} /* be wrapped in comment markers.

Given this example, if each line isn’t marked off, most of the
stylesheet will become part of the comment and thus will not
work:

In this example, only the first rule (h1 {color: gray;}) will be
applied to the document. The rest of the rules, as part of the
comment, are ignored by the browser’s rendering engine.

NOTE

CSS comments are treated by the CSS parser as if they do not exist at all, and so do
not count as whitespace for parsing purposes. This means you can put them into the
middle of rules—even right inside declarations!

Markup

There is no markup in stylesheets. This might seem obvious, but
you’d be surprised. The one exception is HTML comment

h1 {color: gray;} /* This CSS comment is several li
h2 {color: silver;} long, but since it is not wrappe

p {color: white;} in comment markers, the last thr
pre {color: gray;} styles are part of the comment.

markup, which is permitted inside <style> elements for
historical reasons:

<style><!--
h1 {color: maroon;}
body {background: yellow;}
--></style>

That’s it, and even that isn’t recommended anymore; the
browsers that needed it have faded into near oblivion.

Speaking of markup, it’s time to take a very slight detour to talk
about the elements that our CSS will be used to style, and how
those can be affected by CSS in the most fundamental ways.

Elements

Elements are the basis of document structure. In HTML, the
most common elements are easily recognizable, such as <p> ,
<table> , , <a> , and <article> . Every single element
in a document plays a part in its presentation.

Replaced and Nonreplaced Elements

Although CSS depends on elements, not all elements are created
equal. For example, images and paragraphs are not the same
type of element. In CSS, elements generally take two forms:
replaced and nonreplaced.

Replaced elements

Replaced elements are used to indicate content that is to be
replaced by something not directly represented in the
document. Probably the most familiar HTML example is the
 element, which is replaced by an image file external to
the document itself. In fact, has no actual content, as you
can see in this simple example:

This markup fragment contains only an element name and an
attribute. The element presents nothing unless you point it to
external content (in this case, an image file whose location is
given by the src attribute). If you point to a valid image file,
the image will be placed in the document. If not, the browser
will either display nothing or will show a “broken image”
placeholder.

Similarly, the input element can also be replaced—by a radio
button, checkbox, text input box, or other, depending on its
type.

Nonreplaced elements

The majority of HTML elements are nonreplaced elements. Their
content is presented by the user agent (generally a browser)
inside a box generated by the element itself. For example,
hi there is a nonreplaced element, and the text
“hi there” will be displayed by the user agent. This is true of
paragraphs, headings, table cells, lists, and almost everything
else in HTML.

Element Display Roles

CSS has two basic display roles: block formatting context and
inline formatting context. Many more display types exist, but
these are the most basic, and the types to which most, if not all,
other display types refer. The block and inline contexts will be
familiar to authors who have spent time with HTML markup
and its display in web browsers. The display roles are
illustrated in Figure 1-2.

Figure 1-2. Block- and inline-level elements in an HTML document

Block-level elements

By default, block-level elements generate an element box that
(by default) fills its parent element’s content area and cannot
have other elements at its sides. In other words, it generates
“breaks” before and after the element box. The most familiar
block elements from HTML are <p> and <div> . Replaced
elements can be block-level elements, but usually they are not.

In CSS, this is referred to as an element generating a block
formatting context. It also means that the element generates a
block outer display type. The parts inside the element may have
different display types.

Inline-level elements

By default, inline-level elements generate an element box within
a line of text and do not break up the flow of that line. The best
inline element example is the <a> element in HTML. Other
candidates are and . These elements do not
generate a “break” before or after themselves, so they can

appear within the content of another element without
disrupting its display.

In CSS, this is referred to as an element generating an inline
formatting context. It also means that the element generates an
inline outer display type. The parts inside the element may have
different display types. (In CSS, there is no restriction on how
display roles can be nested within each other.)

To see how this works, let’s consider the CSS property display .

DISPLAY

Values [< display-outside > ‖ < display-insi

de >] | < display-listitem > | < displa

y-internal > | < display-box > | < disp

lay-legacy >

Definitions See below

Initial
value

inline

Applies to All elements

Computed
value

As specified

Inherited No

Animatable No

< display-outside >
block | inline | run-in

< display-inside >
flow | flow-root | table | flex | grid | ruby

< display-listitem >
list-item && < display-outside >? && [flow | flow-
root]?

< display-internal >
table-row-group | table-header-group | table-footer-
group | table-row | table-cell | table-column-group |
table-column | table-caption | ruby-base | ruby-text
| ruby-base-container | ruby-text-container

< display-box >
contents | none

< display-legacy >
inline-block | inline-list-item | inline-table |
inline-flex | inline-grid

You may have noticed that there are a lot of values here, only
two of which we’ve mentioned: block and inline . Most of
these values are dealt with elsewhere in the book; for example,
grid and inline-grid are covered in Chapter 12, and the
table-related values are all covered in Chapter 13.

For now, let’s concentrate on block and inline . Consider the
following markup:

Here we have two elements (<body> and <p>) that are
generating block formatting contexts, and one element ()
with an inline formatting context. According to the HTML
specification, can descend from <p> , but the reverse is
not true. Typically, the HTML hierarchy works out so that
inlines descend from blocks, but not the other way around.

CSS, on the other hand, has no such restrictions. You can leave
the markup as it is but change the display roles of the two
elements like this:

p {display: inline;}
em {display: block;}

This causes the elements to generate a block box inside an
inline box. This is perfectly legal and violates no part of CSS.

<body>
<p>This is a paragraph with an inline element</em
</body>

While changing the display roles of elements can be useful in
HTML documents, it becomes downright critical for XML
documents. An XML document is unlikely to have any inherent
display roles, so it’s up to the author to define them. For
example, you might wonder how to lay out the following
snippet of XML:

Since the default value of display is inline , the content
would be rendered as inline text by default, as illustrated in
Figure 1-3. This isn’t a terribly useful display.

<book>
 <maintitle>The Victorian Internet</maintitle>
 <subtitle>The Remarkable Story of the Telegraph and
 On-Line Pioneers</subtitle>

 <author>Tom Standage</author>
 <publisher>Bloomsbury Pub Plc USA</publisher>
 <pubdate>February 25, 2014</pubdate>
 <isbn type="isbn-13">9781620405925</isbn>
 <isbn type="isbn-10">162040592X</isbn>
</book>

Figure 1-3. Default display of an XML document

You can define the basics of the layout with display :

We’ve now set five of the seven elements to be block and two to
be inline. This means each of the block elements will generate
its own block formatting context, and the two inlines will
generate their own inline formatting contexts.

We could take the preceding rules as a starting point, add a few
other styles for greater visual impact, and get the result shown
in Figure 1-4.

book, maintitle, subtitle, author, isbn {display: blo
publisher, pubdate {display: inline;}

Figure 1-4. Styled display of an XML document

That said, before learning how to write CSS in detail, we need to
look at how to associate CSS with a document. After all, without
tying the two together, there’s no way for the CSS to affect the
document. We’ll explore this in an HTML setting since it’s the
most familiar.

Bringing CSS and HTML Together

We’ve mentioned that HTML documents have an inherent
structure, and that’s a point worth repeating. In fact, that’s part
of the problem with web pages of old: too many of us forgot
that documents are supposed to have an internal structure,
which is altogether different from a visual structure. In our
rush to create the coolest-looking pages on the web, we bent,
warped, and generally ignored the idea that pages should
contain information with some structural meaning.

That structure is an inherent part of the relationship between
HTML and CSS; without it, there couldn’t be a relationship at
all. To understand it better, let’s look at an example HTML
document and break it down by pieces:

<!DOCTYPE html>
<html lang="en-us">
<head>
 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width">
 <title>Eric's World of Waffles</title>
 <link rel="stylesheet" media="screen, print" href="
 <style>
 /* These are my styles! Yay! */
 @import url(sheet2.css);
 </style>
</head>
<body>
 <h1>Waffles!</h1>
 <p style="color: gray;">The most wonderful of all b
 the waffle—a ridged and cratered slab of home-cooke
 that makes every child's heart soar with joy. And t
 Just a simple waffle-maker and some batter, and you
 of aromatic ecstasy!
 </p>
</body>
</html>

Figure 1-5 shows the result of this markup and the applied
styles.

Figure 1-5. A simple document

Now, let’s examine the various ways this document connects to
CSS.

The <link> Tag

First, consider the use of the <link> tag:

The <link> tag’s basic purpose is to allow HTML authors to
associate other documents with the document containing the
<link> tag. CSS uses it to link stylesheets to the document.

<link rel="stylesheet" href="sheet1.css" media="scree

These stylesheets, which are not part of the HTML document
but are still used by it, are referred to as external stylesheets.
This is because they’re stylesheets that are external to the
HTML document. (Go figure.)

To successfully load an external stylesheet, <link> should be
placed inside the <head> element, though it can also appear
inside the <body> element. This will cause the web browser to
locate and load the stylesheet and use whatever styles it
contains to render the HTML document; Figure 1-6 depicts the
stylesheet called sheet1.css being linked to the document.

Also shown in Figure 1-6 is the loading of the external sheet2.css
via an @import declaration. Imports must be placed at the
beginning of the stylesheet that contains them.

Figure 1-6. A representation of how external stylesheets are applied to documents

And what is the format of an external stylesheet? It’s a list of
rules, just like those you saw in the previous section and in the
example HTML document; but in this case, the rules are saved
into their own file. Just remember that no HTML or any other
markup language can be included in the stylesheet—only style
rules. Here are the contents of an external stylesheet:

h1 {color: red;}
h2 {color: maroon; background-color: white;}
h3 {color: white; background-color: black;
 font: medium Helvetica;}

That’s all there is to it—no HTML markup or comments at all,
just plain-and-simple style declarations. These are saved into a
plain-text file and are usually given an extension of .css, as in
sheet1.css.

WARNING

An external stylesheet cannot contain any document markup at all, only CSS rules
and CSS comments. The presence of markup in an external stylesheet can cause some
or all of it to be ignored.

Attributes

For the rest of the <link> tag, the attributes and values are
fairly straightforward. The rel attribute stands for relation,
and in this case, the relation is stylesheet . Note that the rel
attribute is required. CSS has an optional type attribute whose
default value is text/css , so you can include
type="text/css" or leave it out, whichever you prefer.

These attribute values describe the relationship and type of
data that will be loaded using the <link> tag. That way, the
web browser knows that the stylesheet is a CSS stylesheet, a fact
that will determine how the browser will deal with the data it
imports. (Other style languages may be used in the future. In

such a future, if you are using a different style language, the
type attribute will need to be declared.)

Next, we find the href attribute. The value of this attribute is
the URL of your stylesheet. This URL can be either absolute or
relative—that is, either relative to the URL of the document
containing the URL, or else a complete URL that points to a
unique location on the web. In our example, the URL is relative.
It could have been something absolute, like
http://example.com/sheet1.css.

Finally, we have a media attribute. The value of this attribute is
one or more media descriptors, which are rules regarding
media types and the features of those media, with each rule
separated by a comma. Thus, for example, you can use a linked
stylesheet in both screen and print media:

Media descriptors can get quite complicated and are explained
in detail in Chapter 21. For now, we’ll stick with the basic media
types shown. The default value is all , which means the CSS
will be applied in all media.

<link rel="stylesheet" href="visual-sheet.css" media=

http://example.com/sheet1.css

Note that more than one linked stylesheet can be associated
with a document. In these cases, only those <link> tags with a
rel of stylesheet will be used in the initial display of the
document. Thus, if you wanted to link two stylesheets named
basic.css and splash.css, it would look like this:

<link rel="stylesheet" href="basic.css">
<link rel="stylesheet" href="splash.css">

This will cause the browser to load both stylesheets, combine
the rules from each, and apply them all to the document in all
media types (because the media attribute is omitted, its default
value all is used). For example:

The one attribute that isn’t in this example markup, but could
be, is title . This attribute is not often used but could become

<link rel="stylesheet" href="basic.css">
<link rel="stylesheet" href="splash.css">

<p class="a1">This paragraph will be gray only if sty
stylesheet 'basic.css' are applied.</p>
<p class="b1">This paragraph will be gray only if sty
stylesheet 'splash.css' are applied.</p>

important in the future and, if used improperly, can have
unexpected effects. Why? We’ll explore that in the next section.

Alternate stylesheets

It’s possible to define alternate stylesheets that users can select
in some browsers. These are defined by making the value of the
rel attribute alternate stylesheet , and they are used in
document presentation only if selected by the user.

Should a browser be able to use alternate stylesheets, it will use
the values of the <link> element’s title attributes to
generate a list of style alternatives. So you could write the
following:

Users could then pick the style they want to use, and the
browser would switch from the first one, labeled Default in
this case, to whichever the user picked. Figure 1-7 shows one
way in which this selection mechanism might be accomplished
(and in fact was, early in the resurgence of CSS).

<link rel="stylesheet" href="sheet1.css" title="Defau
<link rel="alternate stylesheet" href="bigtext.css" t
<link rel="alternate stylesheet" href="zany.css" titl

Figure 1-7. A browser offering alternate stylesheet selection

NOTE

As of early 2023, alternate stylesheets are supported in most Gecko-based browsers
like Firefox. The Chromium and WebKit families do not support selecting alternate
stylesheets. Compare this to the build date of the browser shown in Figure 1-7, which
is late 2002.

It’s also possible to group alternate stylesheets together by
giving them the same title value. Thus, you make it possible
for the user to pick a different presentation for your site in both
screen and print media:

<link rel="stylesheet"
 href="sheet1.css" title="Default" media="screen">
<link rel="stylesheet"
 href="print-sheet1.css" title="Default" media="pri
<link rel="alternate stylesheet"
 href="bigtext.css" title="Big Text" media="screen"
<link rel="alternate stylesheet"

If a user selects Big Text from the alternate stylesheet selection
mechanism in a conforming user agent, bigtext.css will be used
to style the document in the screen medium, and print-
bigtext.css will be used in the print medium. Neither sheet1.css
nor print-sheet1.css will be used in any medium.

Why is that? Because if you give a <link> with a rel of
stylesheet a title, you are designating that stylesheet as a
preferred stylesheet. Its use is preferred to alternate stylesheets,
and it will be used when the document is first displayed. Once
you select an alternate stylesheet, however, the preferred
stylesheet will not be used.

Furthermore, if you designate a number of stylesheets as
preferred, all but one of them will be ignored. Consider the
following code example:

<link rel="stylesheet"
 href="sheet1.css" title="Default Layout">
<link rel="stylesheet"
 href="sheet2.css" title="Default Text Sizes">
<link rel="stylesheet"
 href="sheet3.css" title="Default Colors">

<link rel alternate stylesheet
 href="print-bigtext.css" title="Big Text" media="p

All three <link> elements now refer to preferred stylesheets,
thanks to the presence of a title attribute on all three, but
only one of them will actually be used in that manner. The
other two will be ignored completely. Which two? There’s no
way to be certain, as HTML doesn’t provide a method of
determining which preferred stylesheets should be ignored and
which should be used.

If you don’t give a stylesheet a title, it becomes a persistent
stylesheet and is always used in the display of the document.
Often, this is exactly what an author wants, especially since
alternate stylesheets are not widely supported and are almost
completely unknown to users.

The <style> Element

The <style> element is one way to include a stylesheet, and it
appears in the document itself:

<style>...</style>

The styles between the opening and closing <style> tags are
referred to as the document stylesheet or the embedded
stylesheet (because this kind of stylesheet is embedded within

the document). It contains styles that apply to the document,
but it can also contain multiple links to external stylesheets via
the @import directive, discussed in the next section.

You can give <style> elements a media attribute, which
functions in the same manner as it does on linked stylesheets.
This, for example, will restrict an embedded stylesheet’s rules to
be applied in print media only:

<style media="print">…</style>

You can also label an embedded stylesheet with a <title>
element, in the same manner and for the same reasons
discussed in the previous section on alternate stylesheets.

As with the <link> element, the <style> element can use the
attribute type ; in the case of a CSS document, the correct value
is "text/css" . The type attribute is optional in HTML as long
as you’re loading CSS, because the default value for the type
attribute on the <style> element is text/css . It would be
necessary to explicitly declare a type value only if you were
using some other styling language, perhaps in a future where
such a thing is supported. For the time being, though, the
attribute remains wholly optional.

The @import Directive

Now we’ll discuss the stuff that is found inside the <style> tag.
First, we have something very similar to <link> , the @import
directive:

@import url(sheet2.css);

Just like <link> , @import can be used to direct the web
browser to load an external stylesheet and use its styles in the
rendering of the HTML document. The only major difference is
in the syntax and placement of the command. As you can see,
@import is found inside the <style> element. It must be
placed first, before the other CSS rules, or it won’t work at all.
Consider this example:

<style>
@import url(styles.css); /* @import comes first */
h1 {color: gray;}
</style>

As with <link> , a document can have more than one @import
statement. Unlike <link> , however, the stylesheets of every
@import directive will be loaded and used; there is no way to

designate alternate stylesheets with @import . So, given the
following markup:

@import url(sheet2.css);
@import url(blueworld.css);
@import url(zany.css);

…all three external stylesheets will be loaded, and all of their
style rules will be used in the display of the document.

As with <link> , you can restrict imported stylesheets to one or
more media by providing media descriptors after the
stylesheet’s URL:

@import url(sheet2.css) all;
@import url(blueworld.css) screen;
@import url(zany.css) screen, print;

As noted in “The <link> Tag”, media descriptors can get quite
complicated and are explained in detail in Chapter 21.

The @import directive can be highly useful if you have an
external stylesheet that needs to use the styles found in other
external stylesheets. Since external stylesheets cannot contain
any document markup, the <link> element can’t be used—but

@import can. Therefore, you might have an external stylesheet
that contains the following:

Well, maybe not those exact styles, but hopefully you get the
idea. Note the use of both absolute and relative URLs in the
previous example. Either URL form can be used, just as with
<link> .

Note also that the @import directives appear at the beginning
of the stylesheet, as they did in the example document. As we
said previously, CSS requires the @import directives to come
before any rules in a stylesheet, though they can be preceded by
@charset and @layer declarations. An @import that comes
after other rules (e.g., body {color : red;}) will be ignored by
conforming user agents.

@import url(http://example.org/library/layout.css);
@import url(basic-text.css);
@import url(printer.css) print;
body {color: red;}
h1 {color: blue;}

WARNING

Some versions of Internet Explorer for Windows did not ignore any @import
directive, even those that come after other rules, but all modern browsers do ignore
improperly placed @import directives.

Another descriptor that can be added to an @import directive
is a cascade layer identifier. This assigns all of the styles in the
imported stylesheet to a cascade layer, which is a concept we’ll
explore in Chapter 4. It looks like this:

@import url(basic-text.css) screen layer(basic);

That assigns the styles from basic-text.css to the basic cascade
layer. If you want to assign the styles to an unnamed layer, use
layer without the parenthetical naming, like so:

@import url(basic-text.css) screen layer;

Note that this ability is a difference between @import and
<link> , as the latter cannot be labeled with a cascade layer.

HTTP Linking

In another, far more obscure way to associate CSS with a
document, you can link the two via HTTP headers.

Under Apache HTTP Server, this can be accomplished by adding
a reference to the CSS file in a .htaccess file. For example:

This will cause supporting browsers to associate the referenced
stylesheet with any documents served from under that .htaccess
file. The browser will then treat it as if it were a linked
stylesheet. Alternatively, and probably more efficiently, you can
add an equivalent rule to the server’s httpd.conf file:

The effect is exactly the same in supporting browsers. The only
difference is in where you declare the linking.

You probably noticed the use of the term “supporting
browsers.” As of late 2022, the widely used browsers that
support HTTP linking of stylesheets are the Firefox family and

Header add Link "</ui/testing.css>;rel=stylesheet;typ

<Directory /path/to/ /public/html/directory>
Header add Link "</ui/testing.css>;rel=stylesheet;typ
</Directory>

Opera. That restricts this technique mostly to development
environments based on one of those browsers. In such a
situation, you can use HTTP linking on the test server to mark
when you’re on the development site as opposed to the public
site. It’s also an interesting way to hide styles from Chromium
browsers, assuming you have a reason to do so.

NOTE

Equivalents to this linking technique are used in common scripting languages such
as PHP and IIS, both of which allow the author to emit HTTP headers. It’s also
possible to use such languages to explicitly write link elements into the document
based on the server offering up the document. This is a more robust approach in
terms of browser support: every browser supports the link element.

Inline Styles

If you want to just assign a few styles to one individual element,
without the need for embedded or external stylesheets, you can
employ the HTML attribute style :

<p style="color: gray;">The most wonderful of all bre
the waffle—a ridged and cratered slab of home-cooked,
</p>

The style attribute can be associated with any HTML tag
whatsoever, even tags found outside of <body> (<head> or
<title> , for instance).

The syntax of a style attribute is fairly ordinary. In fact, it
looks very much like the declarations found in the <style>
container, except here the curly braces are replaced by double
quotation marks. So <p style="color : maroon; background :
yellow;"> will set the text color to be maroon and the
background to be yellow for that paragraph only. No other part
of the document will be affected by this declaration.

Note that you can place only a declaration block, not an entire
stylesheet, inside an inline style attribute. Therefore, you
can’t put an @import into a style attribute, nor can you
include any complete rules. The only thing you can put into the
value of a style attribute is what might go between the curly
braces of a rule.

Use of the style attribute is discouraged. Many of the primary
advantages of CSS—the ability to organize centralized styles
that control an entire document’s appearance or the
appearance of all documents on a web server—are negated
when you place styles into a style attribute. In many ways,
inline styles are not much better than the ancient tag,

even if they do have a good deal more flexibility in terms of
which visual effects they can apply.

Summary

With CSS, you can completely change the way elements are
presented by a user agent. You can do this at a basic level with
the display property, and in a different way by associating
stylesheets with a document. The user will never know whether
this is done via an external or embedded stylesheet, or even
with an inline style. The real importance of external stylesheets
is the way in which they allow you to put all of a site’s
presentation information in one place, and point all of the
documents to that place. This not only makes site updates and
maintenance a breeze, but also helps to save bandwidth, since
all of the presentation is removed from documents.

To make the most of the power of CSS, you need to know how to
associate a set of styles with the elements in a document. To
fully understand how CSS can do all of this, you need a firm
grasp of the way CSS selects pieces of a document for styling,
which is the subject of the next few chapters.

Chapter 2. Selectors

One of the primary advantages of CSS is its ability to easily
apply a set of styles to all elements of the same type.
Unimpressed? Consider this: by editing a single line of CSS, you
can change the colors of all your headings. Don’t like the blue
you’re using? Change that one line of code, and they can all be
purple, yellow, maroon, or any other color you desire.

This capability lets you, the author, focus on design and user
experience rather than tedious find-and-replace operations. The
next time you’re in a meeting and someone wants to see
headings with a different shade of green, just edit your style
and hit Reload. Voilà! The results are accomplished in seconds
and there for everyone to see.

Basic Style Rules

As stated, a central feature of CSS is its ability to apply certain
rules to an entire set of element types in a document. For
example, let’s say that you want to make the text of all <h2>
elements appear gray. Before we had CSS, you’d have to do this
by inserting ... tags inside all
your <h2> elements. Applying inline styles using the style

attribute, which is also bad practice, would require you to
include style="color: gray;" in all your <h2> elements, like
this:

<h2 style="color: gray;">This is h2 text</h2>

This will be a tedious process if your document contains a lot of
<h2> elements. Worse, if you later decide that you want all
those <h2> s to be green instead of gray, you’d have to start the
manual tagging all over again. (Yes, this is really how it used to
be done!)

CSS allows you to create rules that are simple to change, edit,
and apply to all the text elements you define (the next section
explains how these rules work). For example, you can write this
rule once to make all your <h2> elements gray:

h2 {color: gray;}

Type Selectors

A type selector, previously known as an element selector, is most
often an HTML element, but not always. For example, if a CSS

file contains styles for an XML document, the type selectors
might look something like this:

quote {color: gray;}
bib {color: red;}
booktitle {color: purple;}
myElement {color: red;}

In other words, the elements of the document are the node
types being selected. In XML, a selector could be anything
because XML allows for the creation of new markup languages
that can have just about anything as an element name. If you’re
styling an HTML document, the selector will generally be one of
the many defined HTML elements such as <p> , <h3> , ,
<a> , or even <html> itself. For example:

html {color: black;}
h1 {color: gray;}
h2 {color: silver;}

Figure 2-1 shows the results of this stylesheet.

Figure 2-1. Simple styling of a simple document

Once you’ve globally applied styles directly to elements, you
can shift those styles from one element to another. Let’s say you
decide that the paragraph text, not the <h1> elements, in
Figure 2-1 should be gray. No problem. Just change the h1
selector to p :

html {color: black;}
p {color: gray;}
h2 {color: silver;}

Figure 2-2 shows the results.

Figure 2-2. Moving a style from one element to another

Grouping

So far, you’ve seen fairly simple techniques for applying a
single style to a single selector. But what if you want the same
style to apply to multiple elements? Grouping allows an author
to drastically compact certain types of style assignments, which
makes for a shorter stylesheet.

Grouping Selectors

Let’s say you want both <h2> elements and paragraphs to have
gray text. The easiest way to accomplish this is to use the
following declaration:

h2, p {color: gray;}

By placing the h2 and p selectors at the beginning of the rule,
before the opening curly brace, and separating them with a
comma, you’ve defined a rule indicating that the style inside the
curly braces (color: gray;) applies to the elements
referenced by both selectors. The comma tells the browser that
two different selectors are involved in the rule. Leaving out the
comma would give the rule a completely different meaning,
which we’ll explore in “Defining Descendant Selectors”.

These alternatives produce exactly the same result, but one is a
lot easier to type:

h1 {color: purple;}
h2 {color: purple;}
h3 {color: purple;}
h4 {color: purple;}
h5 {color: purple;}
h6 {color: purple;}

h1, h2, h3, h4, h5, h6 {color: purple;}

The second alternative, with one grouped selector, is also a lot
easier to maintain over time.

The universal selector

The universal selector, displayed as an asterisk (*), matches
any element at all, much like a wildcard. For example, to make
every single element in a document bold, you would write this:

* {font-weight: bold;}

This declaration is equivalent to a grouped selector that lists
every element contained within the document. The universal
selector lets you assign the font-weight value bold to every
element in the document in one efficient stroke. Beware,
however: although the universal selector is convenient because
it targets everything within its declaration scope, it can have
unintended consequences, which are discussed in “Zeroed
Selector Specificity”.

Grouping Declarations

Just as you can group selectors into a single rule, you can also
group declarations. Assuming that you want all <h1> elements
to appear in purple, 18-pixel-high Helvetica text on an aqua
background (and you don’t mind blinding your readers), you
could write your styles like this:

h1 {font: 18px Helvetica;}
h1 {color: purple;}
h1 {background: aqua;}

But this method is inefficient—imagine creating such a list for
an element that will carry 10 or 15 styles! Instead, you can
group your declarations together:

This will have exactly the same effect as the three-line
stylesheet just shown.

Note that using semicolons at the end of each declaration is
crucial when you’re grouping them. Browsers ignore
whitespace in stylesheets, so the user agent must rely on correct
syntax to parse the stylesheet. You can fearlessly format styles
like the following:

h1 {
 font: 18px Helvetica;
 color: purple;

h1 {font: 18px Helvetica; color: purple; background:

 background: aqua;
}

You can also minimize your CSS, removing all unrequired
spaces:

The last three examples are treated equally by the server, but
the second one is generally regarded as the most human-
readable, and is the recommended method of writing your CSS
during development. You might choose to minimize your CSS
for network-performance reasons, but this is usually
automatically handled by a build tool, server-side script,
caching network, or other service, so you’re usually better off
writing your CSS in a human-readable fashion.

If the semicolon is omitted on the second statement, the user
agent will interpret the stylesheet as follows:

h1 {
 font: 18px Helvetica;
 color: purple background: aqua;
}

h1{font:18px Helvetica;color:purple;background:aqua;}

Because background: is not a valid value for color , a user
agent will ignore the color declaration entirely (including the
background: aqua part). You might think the browser would at
least render <h1> s as purple text without an aqua background,
but not so. Instead, they will be the inherited color with a
transparent background. The declaration font: 18px
Helvetica will still take effect since it was correctly terminated
with a semicolon.

TIP

Although following the last declaration of a rule with a semicolon is not technically
necessary in CSS, doing so is generally good practice. First, it will keep you in the
habit of terminating your declarations with semicolons, the lack of which is one of
the most common causes of rendering errors. Second, if you decide to add another
declaration to a rule, you won’t have to worry about forgetting to insert an extra
semicolon.

As with selector grouping, declaration grouping is a convenient
way to keep your stylesheets short, expressive, and easy to
maintain.

Grouping Everything

You now know that you can group selectors and you can group
declarations. By combining both kinds of grouping in single

rules, you can define very complex styles using only a few
statements. Now, what if you want to assign some complex
styles to all the headings in a document, and you want the same
styles to be applied to all of them? Here’s how:

Here we’ve grouped the selectors, so the styles inside the curly
braces will be applied to all the headings listed; grouping the
declarations means that all of the listed styles will be applied to
the selectors on the left side of the rule. Figure 2-3 shows the
result of this rule.

h1, h2, h3, h4, h5, h6 {color: gray; background: whit
 border: 1px solid black; font-family: Charcoal, san

Figure 2-3. Grouping both selectors and rules

This approach is preferable to the drawn-out alternative, which
would begin with something like this:

h1 {color: gray;}
h2 {color: gray;}
h3 {color: gray;}
h4 {color: gray;}
h5 {color: gray;}
h6 {color: gray;}
h1 {background: white;}
h2 {background: white;}
h3 {background: white;}

… and continue for many lines. You can write out your styles the
long way, but we don’t recommend it—editing them would be
about as tedious as using style attributes everywhere!

Grouping allows for some interesting choices. For example, all
the groups of rules in the following example are equivalent—
each merely shows a different way of grouping both selectors
and declarations:

/* group 1 */
h1 {color: silver; background: white;}
h2 {color: silver; background: gray;}
h3 {color: white; background: gray;}
h4 {color: silver; background: white;}
b {color: gray; background: white;}

/* group 2 */
h1, h2, h4 {color: silver;}
h2, h3 {background: gray;}
h1, h4, b {background: white;}
h3 {color: white;}
b {color: gray;}

/* group 3 */
h1, h4 {color: silver; background: white;}
h2 {color: silver;}

h3 {color: white;}
h2, h3 {background: gray;}
b {color: gray; background: white;}

Any of these three approaches to grouping selectors and
declarations will yield the result shown in Figure 2-4.

Figure 2-4. The result of equivalent stylesheets

Class and ID Selectors

So far, we’ve been grouping selectors and declarations together
in a variety of ways, but the selectors we’ve been using are very
simple ones that refer only to document elements. Type
selectors are fine up to a point, but oftentimes you need
something a little more focused.

In addition to type selectors, CSS has class selectors and ID
selectors, which let you assign styles based on HTML attributes
but independent of element type. These selectors can be used
on their own or in conjunction with type selectors. However,
they work only if you’ve marked up your document
appropriately, so using them generally involves a little
forethought and planning.

For example, say a document contains multiple warnings. You
want each warning to appear in boldfaced text so that it will
stand out. However, you don’t know which element types
contain this warning content. Some warnings could be entire
paragraphs, while others could be a single item within a lengthy
list or a few words in a section of text. So, you can’t define a
rule using type selectors of any kind. Suppose you tried this
route:

p {
 font-weight: bold;
 color: red;
}

All paragraphs would be red and bold, not just those that
contain warnings. You need a way to select only the text that
contains warnings—or, more precisely, a way to select only

those elements that are warnings. How do you do it? You apply
styles to parts of the document that have been marked in a
certain way, independent of the elements involved, by using
class selectors.

Class Selectors

The most common way to apply styles without worrying about
the elements involved is to use class selectors. Before you can
use them, however, you need to modify your document markup
so that the class selectors will work. Enter the class attribute:

To associate the styles of a class selector with an element, you
must assign a class attribute the appropriate value. In the
previous code block, a class value of warning is assigned to
two elements: the first paragraph and the element in
the second paragraph.

<p class="warning">When handling plutonium, care must
the formation of a critical mass.</p>
<p>With plutonium, the possibil
very real, and must be avoided at all costs. T
by keeping the various masses separate.</p>

To apply styles to these classed elements, you can use a compact
notation in which the name of the class is preceded by a period
(.):

*.warning {font-weight: bold;}

When combined with the example markup shown earlier, this
simple rule has the effect shown in Figure 2-5. The declaration
font-weight: bold will be applied to every element that
carries a class attribute with a value of warning .

As Figure 2-5 illustrates, the class selector works by directly
referencing a value that will be found in the class attribute of
an element. This reference is always preceded by a period (.),
which marks it as a class selector. The period helps keep the
class selector separate from anything with which it might be
combined, such as a type selector. For example, you may want
boldfaced warning text only when an entire paragraph is a
warning:

p.warning {font-weight: bold;}

Figure 2-5. Using a class selector

The selector now matches any <p> elements that have a class
attribute containing the word warning , but no other elements
of any kind, classed or otherwise. Since the element is
not a paragraph, the rule’s selector doesn’t match it, and it
won’t be displayed using boldfaced text.

If you wanted to assign different styles to the element,
you could use the selector span.warning :

p.warning {font-weight: bold;}
span.warning {font-style: italic;}

In this case, the warning paragraph is boldfaced, while the
warning is italicized. Each rule applies only to a

specific type of element/class combination, so it does not leak
over to other elements.

Another option is to use a combination of a general class
selector and an element-specific class selector to make the
styles even more useful, as in the following markup:

.warning {font-style: italic;}
span.warning {font-weight: bold;}

Figure 2-6 shows the results.

In this situation, any warning text will be italicized, but only the
text within a element with a class of warning will be
both boldfaced and italicized.

Figure 2-6. Using generic and specific selectors to combine styles

TIP

Notice the format of the general class selector used in the previous example: it’s a
class name preceded by a period, and without an element name or universal selector.
If you want to select all elements that share a class name, you can omit the universal
selector from a class selector without any ill effects. Thus, *.warning and .warning
will have exactly the same effect.

Another thing about class names: they should never begin with
a number. Browsers will allow you to get away with this, but
CSS validators will complain, and it’s a bad habit to get into.
Thus, you should write .c8675 in your CSS and
class="c8675" in your HTML, rather than .8675 and
class="8675" . If you must refer to classes that begin with
numbers, put a backslash between the period and the first
number in your class selector, like so: .\8675 .

Multiple Classes

In the previous section, we dealt with class values that
contain a single word. In HTML, it’s possible to have a space-
separated list of words in a single class value. For example, if
you want to mark a particular element as being both urgent
and a warning, you could write this:

<p class="urgent warning">When handling plutonium, ca
avoid the formation of a critical mass </p>

The order of the words doesn’t matter; warning urgent would
also work and would yield precisely the same results no matter
how your CSS is written. Unlike HTML tags and type selectors,
class selectors are case-sensitive.

Now let’s say you want all elements with a class of warning
to be boldfaced, those with a class of urgent to be italic, and
those elements with both values to have a silver background.
This would be written as follows:

.warning {font-weight: bold;}

.urgent {font-style: italic;}

.warning.urgent {background: silver;}

By chaining two class selectors together, you can select only
those elements that have both class names, in any order. As you
can see, the HTML source contains class="urgent warning" ,
but the CSS selector is written .warning.urgent . Regardless,
the rule will still cause the “When handling plutonium… ”
paragraph to have a silver background, as illustrated in

avoid the formation of a critical mass.</p>
<p>With plutonium, the possibil
very real, and must be avoided at all costs. T
by keeping the various masses separate.</p>

Figure 2-7. This happens because the order in which the words
are written in the source document, or in the CSS, doesn’t
matter. (This is not to say the order of classes is always
irrelevant, but we’ll get to that later in the chapter.)

Figure 2-7. Selecting elements with multiple class names

If a multiple class selector contains a name that is not in the
space-separated list, the match will fail. Consider the following
rule:

p.warning.help {background: red;}

As you might expect, the selector will match only those <p>
elements with a class containing the space-separated words

warning and help . Therefore, it will not match a <p> element
with just the words warning and urgent in its class
attribute. It would, however, match the following:

<p class="urgent warning help">Help me!</p>

ID Selectors

In some ways, ID selectors are similar to class selectors, but a
few crucial differences exist. First, ID selectors are preceded by
a hash sign (#)—formally called an octothorpe and also known
as a pound sign (in the United States), number sign, or tic-tac-
toe board—instead of a period. Thus, you might see a rule like
this one:

*#first-para {font-weight: bold;}

This rule produces boldfaced text in any element whose id
attribute has a value of first-para .

The second difference is that instead of referencing values of
the class attribute, ID selectors refer, sensibly enough, to
values found in id attributes. Here’s an example of an ID
selector in action:

*#lead-para {font-weight: bold;}

Note that the value lead-para could have been assigned to any
element within the document. In this particular case, it is
applied to the first paragraph, but we could have applied it just
as easily to the second or third paragraph. Or an unordered list.
Or anything.

The third difference is that a document should have only one
instance of a given ID value. If you find yourself wanting to
apply the same ID to multiple elements in a document, make it
a class instead.

As with class selectors, it is possible (and very much the norm)
to omit the universal selector from an ID selector. In the
previous example, we could also have written this with the
exact same effect:

#lead-para {font-weight: bold;}

<p id="lead-para">This paragraph will be boldfaced.</
<p>This paragraph will NOT be bold.</p>

This is useful when you know that a certain ID value will
appear in a document, but you don’t know the element type on
which it will appear. For example, you may know that in any
given document, there will be an element with an ID value of
mostImportant . You don’t know whether that most important
thing will be a paragraph, a short phrase, a list item, or a
section heading. You know only that it will exist in each
document, occur in an arbitrary element, and appear no more
than once. In that case, you would write a rule like this:

#mostImportant {color: red; background: yellow;}

This rule would match any of the following elements (which, as
noted before, should not appear together in the same document
because they all have the same ID value):

<h1 id="mostImportant">This is important!</h1>
<em id="mostImportant">This is important!
<ul id="mostImportant">This is important!

While HTML standards say each id must be unique in a
document, CSS doesn’t care. If we had erroneously included the
HTML shown just now, all three would likely be red with a

yellow background because all three match the
#mostImportant selector.

NOTE

As with class names, IDs should never start with numbers. If you must refer to an ID
that begins with a number and cannot change the ID value in the markup, use a
backslash before the first number, as in #\309 .

Deciding Between Class and ID

You may assign classes to any number of elements, as
demonstrated earlier; the class name warning was applied to
both a <p> and a element, and it could have been
applied to many more elements. ID values, on the other hand,
should be used once, and only once, within an HTML document.
Therefore, if you have an element with an id value of lead-
para , no other element in that document should have an id
value of lead-para .

That’s according to the HTML specification, anyway. As noted
previously, CSS doesn’t care if your HTML is valid or not: it
should find however many elements a selector can match. That
means that if you sprinkle an HTML document with several

elements, all of which have the same value for their ID
attributes, you should get the same styles applied to each.

NOTE

Having more than one of the same ID value in a document makes DOM scripting
more difficult, since functions like getElementById() depend on there being one,
and only one, element with a given ID value.

Unlike class selectors, ID selectors can’t be combined with other
IDs, since ID attributes do not permit a space-separated list of
words. An ID selector can be combined with itself, though:
#warning#warning will match the element with an id value of
warning . This should rarely, if ever, be done, but it is possible.

Another difference between class and id names is that IDs
carry more weight when you’re trying to determine which
styles should be applied to a given element. This is explained in
greater detail in Chapter 4.

Also note that HTML defines class and ID values to be case-
sensitive, so the capitalization of your class and ID values must
match what’s found in your documents. Thus, in the following
pairing of CSS and HTML, the element’s text will not be
boldfaced:

p.criticalInfo {font-weight: bold;}

<p class="criticalinfo">Don't look down.</p>

Because of the change in case for the letter i, the selector will
not match the element shown.

On a purely syntactical level, the dot-class notation (e.g.,
.warning) is not guaranteed to work for XML documents. As of
this writing, the dot-class notation works in HTML, Scalar
Vector Graphics (SVG), and Mathematical Markup Language
(MathML), and it may well be permitted in future languages,
but it’s up to each language’s specification to decide that. The
hash-ID notation (e.g., #lead) should work in any document
language that has an attribute whose value is supposed to be
unique within a document.

Attribute Selectors

With both class and ID selectors, what you’re really doing is
selecting values of elements’ attributes. The syntax used in the
previous two sections is particular to HTML, SVG, and MathML
documents as of this writing. In other markup languages, these

class and ID selectors may not be available (as, indeed, those
attributes may not be present).

To address this situation, CSS2 introduced attribute selectors,
which can be used to select elements based on their attributes
and the values of those attributes. There are four general types
of attribute selectors: simple attribute selectors, exact attribute
value selectors, partial-match attribute value selectors, and
leading-value attribute selectors.

Simple Attribute Selectors

If you want to select elements that have a certain attribute,
regardless of that attribute’s value, you can use a simple
attribute selector. For example, to select all <h1> elements that
have a class attribute with any value and make their text
silver, write this:

h1[class] {color: silver;}

So, given the following markup,

<h1 class="hoopla">Hello</h1>
<h1>Serenity</h1>
<h1 class="fancy">Fooling</h1>

you get the result shown in Figure 2-8.

Figure 2-8. Selecting elements based on their attributes

This strategy is very useful in XML documents, as XML
languages tend to have element and attribute names that are
specific to their purpose. Consider an XML language that is used
to describe planets of the solar system (we’ll call it PlanetML). If
you want to select all <pml-planet> elements with a moons
attribute and make them boldface, thus calling attention to any
planet that has moons, you would write this:

pml-planet[moons] {font-weight: bold;}

This would cause the text of the second and third elements in
the following markup fragment to be boldfaced, but not the
first:

<pml-planet>Venus</pml-planet>
<pml-planet moons="1">Earth</pml-planet>

<pml-planet moons="2">Mars</pml-planet>

In HTML documents, you can use this feature in creative ways.
For example, you could style all images that have an alt
attribute, thus highlighting those images that are correctly
formed:

img[alt] {outline: 3px solid forestgreen;}

This particular example is generally useful more for diagnostic
purposes—determining whether images are indeed correctly
marked up—than for design purposes.

If you wanted to boldface any element that includes title
information, which most browsers display as a tool tip when a
cursor hovers over the element, you could write this:

*[title] {font-weight: bold;}

Similarly, you could style only those anchors (<a> elements)
that have an href attribute, thus applying the styles to any
hyperlink but not to any placeholder anchors.

It is also possible to select elements based on the presence of
more than one attribute. You do this by chaining the attribute

selectors together. For example, to boldface the text of any
HTML hyperlink that has both an href and a title attribute,
you would write the following:

a[href][title] {font-weight: bold;}

This would boldface the first link in the following markup, but
not the second or third:

Selection Based on Exact Attribute Value

You can further narrow the selection process to encompass only
those elements whose attributes are a certain value. For
example, let’s say you want to boldface any hyperlink that
points to a certain document on the web server. This would
look something like the following:

W3C</a
Standards Inf
dead.letter

a[href="http://www.css-discuss.org/about.html"] {font

This will boldface the text of any a element that has an href
attribute with exactly the value http://www.css-
discuss.org/about.html . Any change at all, even dropping the
www. part or changing to a secure protocol with https , will
prevent a match.

Any attribute and value combination can be specified for any
element. However, if that exact combination does not appear in
the document, the selector won’t match anything. Again, XML
languages can benefit from this approach to styling. Let’s return
to our PlanetML example. Suppose you want to select only those
planet elements that have a value of 1 for the attribute
moons :

planet[moons="1"] {font-weight: bold;}

This would boldface the text of the second element in the
following markup fragment, but not the first or third:

<planet>Venus</planet>
<planet moons="1">Earth</planet>
<planet moons="2">Mars</planet>

As with attribute selection, you can chain together multiple
attribute value selectors to select a single document. For

example, to double the size of the text of any HTML hyperlink
that has both an href with a value of https://www.w3.org/
and a title attribute with a value of W3C Home , you would
write this:

This would double the text size of the first link in the following
markup, but not the second or third:

Figure 2-9 shows the results.

a[href="https://www.w3.org/"][title="W3C Home"] {font

W3C</a
<a href="https://developer.mozilla.org"
 title="Mozilla Developer Network">Standards Info</a
co

Figure 2-9. Selecting elements based on attributes and their values

Again, this format requires an exact match for the attribute’s
value. Matching becomes an issue when an attribute selector
encounters values that can, in turn, contain a space-separated
list of values (e.g., the HTML attribute class). For example,
consider the following markup fragment:

<planet type="barren rocky">Mercury</planet>

The only way to match this element based on its exact attribute
value is to write this:

planet[type="barren rocky"] {font-weight: bold;}

If you were to write planet[type="barren"] , the rule would
not match the example markup and thus would fail. This is true
even for the class attribute in HTML. Consider the following:

To select this element based on its exact attribute value, you
would have to write this:

p[class="urgent warning"] {font-weight: bold;}

This is not equivalent to the dot-class notation covered earlier,
as you will see in the next section. Instead, it selects any p
element whose class attribute has exactly the value urgent
warning , with the words in that order and a single space
between them. It’s effectively an exact string match, whereas
when using a class selector, the class order doesn’t matter.

Also, be aware that ID selectors and attribute selectors that
target the id attribute are not precisely the same. In other
words, a subtle but crucial difference exists between h1#page-
title and h1[id="page-title"] . This difference is explained
in Chapter 4.

<p class="urgent warning">When handling plutonium, ca
avoid the formation of a critical mass.</p>

Selection Based on Partial Attribute
Values

Odds are that you’ll sometimes want to select elements based
on portions of their attribute values, rather than the full value.
For such situations, CSS offers a variety of options for matching
substrings in an attribute’s value. These are summarized in
Table 2-1.

Table 2-1. Substring matching with attribute selectors

Type Description

[foo~="ba
r"]

Selects any element with an attribute f
oo whose value contains the word bar
in a space-separated list of words

[foo*="ba
r"]

Selects any element with an attribute f
oo whose value contains the substring
bar

[foo^="ba
r"]

Selects any element with an attribute f
oo whose value begins with bar

[foo$="ba
r"]

Selects any element with an attribute f
oo whose value ends with bar

[foo|="ba
r"]

Selects any element with an attribute f
oo whose value starts with bar
followed by a hyphen (U+002D) or
whose value is exactly equal to bar

The last of these attribute selectors that match on a partial
subset of an element’s attribute value is easier to show than it is
to describe. Consider the following rule:

*[lang|="en"] {color: white;}

This rule will select any element whose lang attribute is equal
to en or begins with en- . Therefore, the first three elements in
the following example markup would be selected, but the last
two would not:

<h1 lang="en">Hello!</h1>
<p lang="en-us">Greetings!</p>
<div lang="en-au">G'day!</div>
<p lang="fr">Bonjour!</p>
<h4 lang="cy-en">Jrooana!</h4>

In general, the form [att|="val"] can be used for any
attribute and its values. Let’s say you have a series of figures in
an HTML document, each of which has a filename like figure-
1.gif or figure-3.jpg. You can match all of these images by using
the following selector:

img[src|="figure"] {border: 1px solid gray;}

Or, if you’re creating a CSS framework or pattern library,
instead of creating redundant classes like "btn btn-small
btn-arrow btn-active" , you can declare "btn-small-arrow-
active" , and target the class of elements with the following:

The most common use for this type of attribute selector is to
match language values, as demonstrated in “The :lang() and
:dir() Pseudo-Classes”.

Matching one word in a space-separated list

For any attribute that accepts a space-separated list of words,
you can select elements based on the presence of any one of
those words. The classic example in HTML is the class
attribute, which can accept one or more words as its value.
Consider our usual example text:

*[class|="btn"] { border-radius: 5px;}

<button class="btn-small-arrow-active">Click Me</butt

<p class="urgent warning">When handling plutonium, ca
avoid the formation of a critical mass.</p>

Let’s say you want to select elements whose class attribute
contains the word warning . You can do this with an attribute
selector:

p[class~="warning"] {font-weight: bold;}

Note the presence of the tilde (~) in the selector. It is the key to
selection based on the presence of a space-separated word
within the attribute’s value. If you omit the tilde, you would
have an exact value-matching attribute selector, as discussed in
the previous section.

This selector construct is equivalent to the dot-class notation
discussed in “Deciding Between Class and ID”. Thus, p.warning
and p[class~="warning"] are equivalent when applied to
HTML documents. Here’s an example that is an HTML version
of the PlanetML markup seen earlier:

Mercury
Venus
Earth

To italicize all elements with the word barren in their class
attribute, you write this:

span[class~="barren"] {font-style: italic;}

This rule’s selector will match the first two elements in the
example markup and thus italicize their text, as shown in
Figure 2-10. This is the same result we would expect from
writing span.barren {font-style: italic;} .

Figure 2-10. Selecting elements based on portions of attribute values

So why bother with the tilde-equals attribute selector in HTML?
Because it can be used for any attribute, not just class . For
example, you might have a document that contains numerous
images, only some of which are figures. You can use a partial-
match value attribute selector aimed at the title text to select
only those figures:

img[title~="Figure"] {border: 1px solid gray;}

This rule selects any image whose title text contains the
word Figure (but not figure , as title attributes are case-
sensitive). Therefore, as long as all your figures have title
text that looks something like “Figure 4. A bald-headed elder
statesman,” this rule will match those images. For that matter,

the selector img[title~="Figure"] will also match a title
attribute with the value “How to Figure Out Who’s in Charge.”
Any image that does not have a title attribute, or whose
title value doesn’t contain the word Figure , won’t be
matched.

Matching a substring within an attribute value

Sometimes you want to select elements based on a portion of
their attribute values, but the values in question aren’t space-
separated lists of words. In these cases, you can use the asterisk-
equals substring matching form [attr*="val"] to match
substrings that appear anywhere inside the attribute values.
For example, the following CSS matches any element
whose class attribute contains the substring cloud , so both
“cloudy” planets are matched, as shown in Figure 2-11:

span[class*="cloud"] {font-style: italic;}

Mercury
Venus
Earth

Figure 2-11. Selecting elements based on substrings within attribute values

Note the presence of the asterisk (*) in the selector. It’s the key
to selecting elements based on the presence of a substring
within an attribute’s value. To be clear, it is not related to the
universal selector, other than it uses the same character.

As you can imagine, this particular capability has many useful
applications. For example, suppose you want to specially style
any links to the W3C’s website. Instead of classing them all and
writing styles based on that class, you could instead write the
following rule:

a[href*="w3.org"] {font-weight: bold;}

You aren’t confined to the class and href attributes. Any
attribute is up for grabs here (title , alt , src , id …); if the
attribute has a value, you can style based on a substring within
that value. The following rule draws attention to any image
with the string space in its source URL:

img[src*="space"] {outline: 5px solid red;}

Similarly, the following rule draws attention to <input>
elements that have a title telling the user what to do, along with

any other input whose title contains the substring format in its
title:

A common use for the general substring attribute selector is to
match a section of a class in pattern library class names.
Elaborating on the preceding example, we can target any class
name that starts with btn followed by a hyphen, and that
contains the substring arrow preceded by a hyphen, by using
the pipe-equals attribute selector:

input[title*="format"] {background-color: #dedede;}

<input type="tel"
 title="Telephone number should be formatted as XX
 pattern="\d{3}\-\d{3}\-\d{4}">

[class|="btn"][class="-arrow"]:after { content: "▼"

<button class="btn-small-arrow-active">Click Me</butt

The matches are exact: if you include whitespace in your
selector, whitespace must also be present in an attribute’s
value. The attribute values are case-sensitive when the
underlying document language requires case sensitivity. Class
names, titles, URLs, and ID values are all case-sensitive, but
enumerated HTML attribute values, such as input type keyword
values, are not:

input[type="CHeckBoX"] {margin-right: 10px;}

Matching a substring at the beginning of an attribute
value

If you want to select elements based on a substring at the
beginning of an attribute value, the caret-equals attribute
selector pattern [att^="val"] is what you’re seeking. This can
be particularly useful when you want to style types of links
differently, as illustrated in Figure 2-12:

a[href^="https:"] {font-weight: bold;}
a[href^="mailto:"] {font-style: italic;}

<input type="checkbox" name="rightmargin" value="10px

Figure 2-12. Selecting elements based on substrings that begin attribute values

In another use case, you may want to style all images in an
article that are also figures, like the figures you see throughout
this text. Assuming that the alt text of each figure begins with
text in the pattern “Figure 5”—which is an entirely reasonable
assumption in this case—you can select only those images with
the caret-equals attribute selector:

The potential drawback here is that any element whose
alt starts with Figure will be selected, whether or not it’s
meant to be an illustrative figure. The likeliness of that
occurring depends on the document in question.

Another use case is selecting all of the calendar events that
occur on Mondays. In this case, let’s assume all of the events
have a title attribute containing a date in the format
“Monday, March 5th, 2012.” Selecting them all is just a simple
matter of using [title^="Monday"] .

img[alt^="Figure"] {border: 2px solid gray; display:

Matching a substring at the end of an attribute value

The mirror image of beginning-substring matching is ending-
substring matching, which is accomplished using the
[att$="val"] pattern. A very common use for this capability is
to style links based on the kind of resource they target, such as
separate styles for PDF documents, as illustrated in Figure 2-13:

a[href$=".pdf"] {font-weight: bold;}

Figure 2-13. Selecting elements based on substrings that end attribute values

Similarly, you could (for whatever reason) select images based
on their image format with the dollar-equals attribute selector:

img[src$=".gif"] {...}
img[src$=".jpg"] {...}
img[src$=".png"] {...}

To continue the calendar example from the previous section, it
would be possible to select all of the events occurring within a
given year by using a selector like [title$="2015"] .

NOTE

You may have noticed that we’ve quoted all the attribute values in the attribute
selectors. Quoting is required if the value includes any special characters, begins
with a hyphen or digit, or is otherwise invalid as an identifier and needs to be quoted
as a string. To be safe, we recommend always quoting attribute values in attribute
selectors, even though it is required only to make strings out of invalid identifiers.

The Case-Insensitivity Identifier

Including an i before the closing bracket of an attribute
selector will allow that selector to match attribute values case-
insensitively, regardless of document language rules. For
example, suppose you want to select all links to PDF documents,
but you don’t know if they’ll end in .pdf, .PDF, or even .Pdf.
Here’s how:

a[href$='.PDF' i]

Adding that humble little i means the selector will match any
a element whose href attribute’s value ends in .pdf ,
regardless of the capitalization of the letters P, D, and F.

This case-insensitivity option is available for all the attribute
selectors we’ve covered. Note, however, that this applies to only
the values in the attribute selectors. It does not enforce case

insensitivity on the attribute names themselves. Thus, in a case-
sensitive language, planet[type*="rock" i] will match all of
the following:

<planet type="barren rocky">Mercury</planet>
<planet type="cloudy ROCKY">Venus</planet>
<planet type="life-bearing Rock">Earth</planet>

It will not match the following element, because the attribute
TYPE isn’t matched by type in XML:

<planet TYPE="dusty rock">Mars</planet>

This is in languages that enforce case sensitivity in the element
and attribute syntax. In languages that are case-insensitive, like
HTML, this isn’t an issue.

NOTE

A proposed mirror identifier, s , enforces case sensitivity. As of early 2023, it is
supported by only the Firefox family of browsers.

Using Document Structure

CSS is so capable because it uses the structure of documents to
determine appropriate styles and how to apply them. Let’s take
a moment to discuss structure before moving on to more
powerful forms of selection.

Understanding the Parent-Child
Relationship

To understand the relationship between selectors and
documents, we need to once again examine how documents are
structured. Consider this very simple HTML document:

<!DOCTYPE html>
<html lang="en-us">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width">
 <title>Meerkat Central</title>
</head>
<body>
 <h1>Meerkat Central</h1>
 <p>
 Welcome to Meerkat Central, the bes
 on the entire Internet<

 We offer:

Much of the power of CSS is based on the parent-child
relationship of elements. HTML documents (and most
structured documents of any kind) are based on a hierarchy of
elements, which is visible in the “tree” view of the document
(see Figure 2-14). In this hierarchy, each element fits
somewhere into the overall structure of the document. Every
element in the document is either the parent or the child of

 Detailed information on how
 Tips for living with a meerkat
 Fun things to do with a meerkat, inc

 Playing fetch
 Digging for food
 Hide and seek

 ...and so much more!

 <p>
 Questions? Con
 </p>
</body>
</html>

another element, and it’s often both. If a parent has more than
one child, those children are siblings.

Figure 2-14. A document tree structure

An element is said to be the parent of another element if it
appears directly above that element in the document hierarchy.
For example, in Figure 2-14, the first <p> element from the left
is parent to the and elements, while
is parent to an anchor (<a>) element, which is itself parent to
another element. Conversely, an element is the child of
another element if it is directly beneath the other element.
Thus, the anchor element on the far right side of Figure 2-14 is

the child of a <p> element, which is in turn child to the <body>
element, and so on.

The terms parent and child are specific applications of the terms
ancestor and descendant, respectively. There is a difference
between them: in the tree view, if an element is exactly one
level above or below another, those elements have a parent-
child relationship. If the path from one element to another is
traced through two or more levels, the elements have an
ancestor-descendant relationship, but not a parent-child
relationship. (A child is also a descendant, and a parent is also
an ancestor.) In Figure 2-14, the uppermost element is
parent to two elements, but the uppermost is also
the ancestor of every element descended from its
element, all the way down to the most deeply nested
elements. Those elements, children of the , are
siblings.

Also, in Figure 2-14, there is an anchor that is a child of
 , but also a descendant of the <p> , <body> , and
<html> elements. The <body> element is an ancestor of
everything that the browser will display by default, and the
<html> element is ancestor to the entire document. For this
reason, in an HTML document, the <html> element is also
called the root element.

Defining Descendant Selectors

The first benefit of understanding this model is the ability to
define descendant selectors. Defining descendant selectors is the
act of creating rules that operate in certain structural
circumstances but not others. As an example, let’s say you want
to style only those elements that are descended from
<h1> elements. To do so, write the following:

h1 em {color: gray;}

This rule will make gray any text in an element that is the
descendant of an <h1> element. Other text, such as that
found in a paragraph or a block quote, will not be selected by
this rule. Figure 2-15 illustrates the result.

Figure 2-15. Selecting an element based on its context

In a descendant selector, the selector side of a rule is composed
of two or more space-separated selectors. The space between
the selectors is an example of a combinator. Each space
combinator can be translated as “found within,” “which is part
of,” or “that is a descendant of,” but only if you read the selector

right to left. Thus, h1 em can be translated as, “Any
element that is a descendant of an <h1> element.”

To read the selector left to right, you might phrase it like, “Any
<h1> that contains an will have the following styles
applied to the .” That’s much more verbose and confusing,
and it’s why we, like the browser, read selectors from right to
left.

You aren’t limited to two selectors. For example:

ul ol ul em {color: gray;}

In this case, as Figure 2-16 shows, any emphasized text that is
part of an unordered list that is part of an ordered list that is
itself part of an unordered list (yes, this is correct) will be gray.
This is obviously a very specific selection criterion.

Figure 2-16. A very specific descendant selector

Descendant selectors can be extremely powerful. Let’s consider
a common example. Assume you have a document with a
sidebar and a main area. The sidebar has a blue background,
the main area has a white background, and both areas include
lists of links. You can’t set all links to be blue because they’d be
impossible to read in the sidebar, and you also can’t set all links
to white because they’d disappear in the main part of the page.

The solution: descendant selectors. In this case, you give the
element that contains your sidebar a class of sidebar and
enclose the main part of the page in a <main> element. Then,
you write styles like this:

.sidebar {background: blue;}
main {background: white;}
.sidebar a:any-link {color: white;}
main a:any-link {color: blue;}

Figure 2-17 shows the result.

Figure 2-17. Using descendant selectors to apply different styles to the same type of
element

NOTE

:any-link refers to both visited and unvisited links. We’ll talk about it in detail in
Chapter 3.

Here’s another example: let’s say that you want gray to be the
text color of any (boldfaced) element that is part of a
blockquote and for any bold text that is found in a normal
paragraph:

blockquote b, p b {color: gray;}

The result is that the text within elements that are
descended from paragraphs or block quotes will be gray.

One overlooked aspect of descendant selectors is that the
degree of separation between two elements can be practically

infinite. For example, if you write ul em , that syntax will select
any element descended from a element, no matter
how deeply nested the may be. Thus, ul em would select
the element in the following markup:

 List item 1

 List item 1-1
 List item 1-2
 List item 1-3

 List item 1-3-1
 List item 1-3-2
 List item 1-3-3

 List item 1-4

A more subtle aspect of descendant selectors is that they have
no notion of element proximity. In other words, the closeness of
two elements within the document tree has no bearing on
whether a rule applies. This is important when it comes to

specificity (which we’ll cover in the next chapter) and when
considering rules that might appear to cancel each other out.

For example, consider the following (which contains :not() , a
selector type we’ll discuss in “The negation pseudo-class”):

div:not(.help) span {color: gray;}
div.help span {color: red;}

What the CSS says, in effect, is “any inside a <div> that
doesn’t have a class containing the word help should be
gray” in the first rule, and “any inside a <div> whose
class contains the word help ” in the second rule. In the given
markup fragment, both rules apply to the shown.

Because the two rules have equal specificity weight and the
red rule is written last, it wins out, and the is red. The
fact that div class="aside" is “closer to” than div
class="help" is irrelevant. Again: descendant selectors have

<div class="help">
 <div class="aside">
 This text contains a span element
 </div>
</div>

no notion of element proximity. Both rules match, only one
color can be applied, and because of the way CSS works, red is
the winner here. (We’ll discuss why that’s so in the next
chapter.)

NOTE

As of early 2023, proposals have been made to add element-proximity awareness to
CSS via selector scoping, but the proposals are still being actively revised and may not
come to fruition.

Selecting Children

In some cases, you don’t want to select an arbitrarily descended
element. Rather, you want to narrow your range to select an
element that is specifically a child of another element. You
might, for example, want to select a element only if it
is a child (as opposed to any other level of descendant) of an
<h1> element. To do this, you use the child combinator, which
is the greater-than symbol (>):

h1 > strong {color: red;}

This rule will make red the element shown in the
first <h1> , but not the second:

Read right to left, the selector h1 > strong translates as,
“Selects any element that is a direct child of an <h1>
element.” The child combinator can be optionally surrounded
by whitespace. Thus, h1 > strong , h1> strong , and
h1>strong are all equivalent. You can use or omit whitespace
as you wish.

When viewing the document as a tree structure, we can see that
a child selector restricts its matches to elements that are
directly connected in the tree. Figure 2-18 shows part of a
document tree.

Figure 2-18. A document tree fragment

<h1>This is very important.</h1>
<h1>This is really very imp

In this tree fragment, you can pick out parent-child
relationships. For example, the <a> element is a parent to
 and is also a child of the <p> element. You could
match elements in this fragment with the selectors p > a and
a > strong , but not p > strong , since is a
descendant of <p> but not its child.

You can also combine descendant and child combinators in the
same selector. Thus, table.summary td > p will select any
<p> element that is a child of a <td> element that is itself
descended from a <table> element that has a class attribute
containing the word summary .

Selecting Adjacent-Sibling Elements

Let’s say you want to style the paragraph immediately after a
heading, or give a special margin to a list that immediately
follows a paragraph. To select an element that immediately
follows another element with the same parent, you use the
adjacent-sibling combinator, represented as a plus symbol (+).
As with the child combinator, the symbol can be surrounded by
whitespace, or not, at your discretion.

To remove the top margin from a paragraph immediately
following an <h1> element, write this:

h1 + p {margin-top: 0;}

The selector is read as, “Select any <p> element that
immediately follows an <h1> element that shares a parent with
the <p> element.”

To visualize how this selector works, let’s once again consider a
fragment of a document tree, shown in Figure 2-19.

Figure 2-19. Another document tree fragment

In this fragment, a pair of lists descends from a <div> element,
one ordered and the other not, each containing three list items.
Each list is an adjacent sibling, and the list items themselves are
also adjacent siblings. However, the list items from the first list
are not siblings of the second, as the two sets of list items do not
share the same parent element. (At best, they’re cousins, and
CSS has no cousin selector.)

Remember that you can select the second of two adjacent
siblings only with a single combinator. Thus, if you write li +
li {font-weight: bold;} , only the second and third items in
each list will be boldfaced. The first list items will be unaffected,
as illustrated in Figure 2-20.

Figure 2-20. Selecting adjacent siblings

To work properly, CSS requires that the two elements appear in
source order. In our example, an element is followed by a
 element. This allows us to select the second element with
ol + ul , but we cannot select the first by using the same
syntax. For ul + ol to match, an ordered list must
immediately follow an unordered list.

Keep in mind that text content between two elements does not
prevent the adjacent-sibling combinator from working.
Consider this markup fragment, whose tree view would be the
same as that shown in Figure 2-18:

<div>

 List item 1
 List item 1
 List item 1

 This is some text that is part of the 'div'.

 A list item
 Another list item
 Yet another list item

</div>

Even though we have text between the two lists, we can still
match the second list with the selector ol + ul . That’s because
the intervening text is not contained within a sibling element,
but is instead part of the parent <div> . If we wrapped that text
in a paragraph element, it would then prevent ol + ul from
matching the second list. Instead, we might have to write
something like ol + p + ul .

As the following example illustrates, the adjacent-sibling
combinator can be used in conjunction with other combinators:

html > body table + ul{margin-top: 1.5em;}

The selector translates as, “Selects any element that
immediately follows a sibling <table> element that is
descended from a <body> element that is itself a child of an
<html> element.”

As with all combinators, you can place the adjacent-sibling
combinator in a more complex setting, such as div#content h1
+ div ol . That selector is read as, “Selects any element
that is descended from a <div> when the <div> is the
adjacent sibling of an <h1> that is itself descended from a
<div> whose id attribute has a value of content .”

Selecting Following Siblings

The general sibling combinator lets you select any element that
follows another element when both elements share the same
parent, represented using the tilde (~) combinator.

As an example, to italicize any that follows an <h2> and
also shares a parent with the <h2> , you’d write h2 ~ ol
{font-style: italic;} . The two elements do not have to be
adjacent siblings, although they can be adjacent and still match
this rule. The result of applying this rule to the following
markup is shown in Figure 2-21:

As you can see, both ordered lists are italicized. That’s because
both of them are elements that follow an <h2> with
which they share a parent (the <div>).

<div>
 <h2>Subheadings</h2>
 <p>It is the case that not every heading can be a m
 must be subheadings. Examples include:</p>

 Headings that are less important
 Headings that are subsidiary to more importan
 Headings that like to be dominated

 <p>Let's restate that for the record:</p>

 Headings that are less important
 Headings that are subsidiary to more importan
 Headings that like to be dominated

</div>

Figure 2-21. Selecting following siblings

Summary

By using selectors based on the document’s language, you can
create CSS rules that apply to a large number of similar
elements just as easily as you can construct rules that apply in
very narrow circumstances. The ability to group together both
selectors and rules keeps stylesheets compact and flexible,
which incidentally leads to smaller file sizes and faster
download times.

Selectors are the one thing that user agents usually must get
right, because the inability to correctly interpret selectors
pretty much prevents a user agent from using CSS at all. On the
flip side, it’s crucial for authors to correctly write selectors
because errors can prevent the user agent from applying the

styles as intended. An integral part of correctly understanding
selectors and how they can be combined is having a strong
grasp of how selectors relate to document structure and how
mechanisms—such as inheritance and the cascade itself—come
into play when determining how an element will be styled.

The selectors we covered in this chapter aren’t the end of the
story, though. They’re not even half the story. In the next
chapter, we’ll dive into the powerful and ever-expanding world
of pseudo-class and pseudo-element selectors.

Chapter 3. Pseudo-Class and -
Element Selectors

In the previous chapter, you saw how selectors can match a
single element or a collection of elements, using fairly simple
expressions that match HTML attributes in the document.
Those are great if your need is just to style based on attributes,
but what if you need to style part of a document based on its
current state or structure? Or if you want to select all the form
elements that are disabled, or those that are required for form
submission to be allowed? For those things, and a great deal
more, CSS has the pseudo-class and pseudo-element selectors.

Pseudo-Class Selectors

Pseudo-class selectors let you assign styles to what are, in effect,
phantom classes inferred by the state of certain elements, or
markup patterns within the document, or even by the state of
the document itself.

The term phantom classes might seem a little odd, but it really is
the best way to think of how pseudo-classes work. For example,
suppose you want to highlight every other row of a data table.

You could do that by marking up every other row with
something like class="even" and then writing CSS to highlight
rows with that class—or (as you’ll soon see) you could use a
pseudo-class selector to achieve the same effect, one that will
act as if you’ve added all those classes to the markup even
though you haven’t.

One aspect of pseudo-classes needs to be made explicit here:
pseudo-classes always refer to the element to which they’re
attached, and to no other. Seems like a weirdly obvious thing to
say, right? The reason we make it explicit is that for some
pseudo-classes, it’s a common error to think they are
descriptors that refer to descendant elements.

To illustrate this, Eric would like to share a personal anecdote:

When my first child was born in 2003, I announced it online,
as one does. A number of people responded with
congratulations and CSS jokes, chief among them the
selector #ericmeyer:first-child (we’ll get to :first-
child in just a bit). But that selector would select me, not
my daughter, and only if I were the first child of my own
parents (which, as it happens, I am). To properly select my
first child, that selector would need to be #ericmeyer >
:first-child .

The confusion is understandable, which is why we’re
addressing it here. Reminders are found throughout the
following sections. Just always keep in mind that the effect of
pseudo-classes is to apply a sort of phantom class to the element
to which they’re attached, and you should be OK.

All pseudo-classes, without exception, are a word or
hyphenated term preceded by a single colon (:), and they can
appear anywhere in a selector.

Combining Pseudo-Classes

Before we really get started, a word about chaining. CSS makes
it possible to combine (chain) pseudo-classes together. For
example, you can make unvisited links red when they’re
hovered and visited links maroon when they are hovered:

a:link:hover {color: red;}
a:visited:hover {color: maroon;}

The order you specify doesn’t matter; you could also write
a:hover:link to the same effect as a:link:hover . It’s also
possible to assign separate hover styles to unvisited and visited
links that are in another language—for example, German:

a:link:hover:lang(de) {color: gray;}
a:visited:hover:lang(de) {color: silver;}

Be careful not to combine mutually exclusive pseudo-classes.
For example, a link cannot be both visited and unvisited, so
a:link:visited doesn’t make any sense and will never match
anything.

Structural Pseudo-Classes

The first set of pseudo-classes we’ll explore are structural in
nature; that is, they refer to the markup structure of the
document. Most of them depend on patterns within the
markup, such as choosing every third paragraph, but others
allow you to address specific types of elements.

Selecting the root element

This is the quintessence of structural simplicity: the pseudo-
class :root selects the root element of the document. In HTML,
this is always the <html> element. The real benefit of this
selector is found when writing stylesheets for XML languages,
as the root element may be different in every language—for
example, in SVG it’s the <svg> element, and in our earlier
PlanetML examples it was the <pml> element—or even when

you have more than one possible root element within a single
language (though not a single document!).

Here’s an example of styling the root element in HTML, as
illustrated in Figure 3-1:

:root {border: 10px dotted gray;}
body {border: 10px solid black;}

Figure 3-1. Styling the root element

In HTML documents, you can always select the <html> element
directly, without having to use the :root pseudo-class. The two
selectors differ in terms of specificity, which we’ll cover in
Chapter 4, but otherwise they’ll have the same effect.

Selecting empty elements

With the pseudo-class :empty , you can select any element that
has no children of any kind, including text nodes, which covers
both text and whitespace. This can be useful in suppressing
elements that a content management system (CMS) has
generated without filling in any actual content. Thus, p:empty
{display: none;} would prevent the display of any empty
paragraphs.

Note that in order to be matched, an element must be, from a
parsing perspective, truly empty—no whitespace, visible
content, or descendant elements. Of the following elements,
only the first and last would be matched by p:empty :

<p></p>
<p> </p>
<p>
</p>
<p><!—-a comment--></p>

The second and third paragraphs are not matched by :empty
because they are not empty: they contain, respectively, a single
space and a single newline character. Both are considered text
nodes and thus prevent a state of emptiness. The last paragraph
matches because comments are not considered content, not

even whitespace. But put even one space or newline to either
side of that comment, and p:empty would fail to match.

You might be tempted to just style all empty elements with
something like *:empty {display: none;} , but there’s a
hidden catch: :empty matches HTML’s empty elements, like
 , <hr> ,
 , and <input> . It could even match
<textarea> , unless you insert some default text into the
<textarea> element.

Thus, in terms of matching elements, img and img:empty are
effectively the same. (They are different in terms of specificity,
which we’ll cover in the next chapter.)

Selecting only children

If you’ve ever wanted to select all the images that are wrapped
by a hyperlink element, the :only-child pseudo-class is for
you. It selects elements when they are the only child element of
another element. So let’s say you want to add a border to any
image that’s the only child of another element. You’d write the
following:

img:only-child {border: 1px solid black;}

This would match any image that meets those criteria.
Therefore, if you had a paragraph that contained an image and
no other child elements, the image would be selected regardless
of all the text surrounding it. If what you’re really after is
images that are sole children and found inside hyperlinks, you
just modify the selector like so (which is illustrated in Figure 3-
2):

a[href] img:only-child {border: 2px solid black;}

 Th
 <e

Figure 3-2. Selecting images that are only children inside links

You should remember two things about :only-child . The first
is that you always apply it to the element you want to be an
only child, not to the parent element, as explained earlier. That
brings up the second thing to remember, which is that when
you use :only-child in a descendant selector, you aren’t
restricting the elements listed to a parent-child relationship.

To go back to the hyperlinked-image example, a[href]
img:only-child matches any image that is an only child and is
descended from an a element, whether or not it’s a child of an
a element. To match, the element image must be the only child
of its direct parent and also a descendant of an a element with
an href attribute, but that parent can itself be a descendant of

the same <a> element. Therefore, all three of the images in the
following would be matched, as shown in Figure 3-3:

a[href] img:only-child {border: 5px solid black;}

Figure 3-3. Selecting images that are only children inside links, redux

<img src="w3.png" alt=

A link to the <img src
 web site

In each case, the image is the only child element of its parent,
and it is also descended from an <a> element. Thus, all three
images are matched by the rule shown. If you want to restrict
the rule so that it matches images that are the only children of
<a> elements, you add the child combinator to yield a[href]
> img:only-child . With that change, only the first of the three
images shown in Figure 3-3 would be matched.

Using only-of-type selection

That’s all great, but what if you want to match images that are
the only images inside hyperlinks, but other elements may be in
there with them? Consider the following:

In this case, we have an a element that has two children:
and . That image, no longer the only child of its parent
(the hyperlink), can never be matched using :only-child .
However, it can be matched using :only-of-type . This is
illustrated in Figure 3-4:

•<img src="w3.png" al

a[href] img:only-of-type {border: 5px solid black;}

Figure 3-4. Selecting images that are the only sibling of their type

The difference is that :only-of-type will match any element
that is the only one of its type among all its siblings, whereas
:only-child will match only if an element has no siblings at
all.

This can be very useful in cases such as selecting images within
paragraphs without having to worry about the presence of
hyperlinks or other inline elements:

p > img:only-of-type {float: right; margin: 20px;}

•<img src="w3.png" al
•<img src="w3.p

As long as there aren’t multiple images that are children of the
same paragraph, the image will be floated to the right.

You can also use this pseudo-class to apply extra styles to an
<h2> when it’s the only one in a given section of a document,
like this:

Given those rules, any <section> that has only one child <h2>
will have that <h2> appear larger than usual. If a section has
two or more <h2> children, neither will be larger than the
other. The presence of other children—whether they are other
heading levels, tables, paragraphs, lists, and so on—will not
interfere with matching.

One more point to make clear is that :only-of-type refers to
elements and nothing else. Consider the following:

p.unique:only-of-type {color: red;}

section > h2 {margin: 1em 0 0.33em; font-size: 1.8rem
 gray;}
section > h2:only-of-type {font-size: 2.4rem;}

<div>
 <p class="unique">This paragraph has a 'unique' cla

In this case, neither of the paragraphs will be selected. Why
not? Because two paragraphs are descendants of the <div> ,
neither can be the only one of their type.

The class name is irrelevant here. We can be fooled into
thinking that type is a generic description, because of the way
we parse language. Type, in the way :only-of-type means it,
refers only to the element type, as with type selectors. Thus,
p.unique:only-of-type means, “Select any <p> element that
is the only <p> element among its siblings if it also has a
class of unique .” It does not mean, “Select any <p> element
whose class attribute contains the word unique when it’s the
only sibling paragraph to meet that criterion.”

Selecting first children

It’s pretty common to want to apply special styling to the first or
last child of an element. A typical example is styling a bunch of
navigation links in a tab bar and wanting to put special visual
touches on the first or last tab (or both). If we didn’t have
structural selectors, this could be done by applying special

p q p g p q
 <p>This paragraph doesn't have a class at all.</p>
</div>

classes to those elements. We have pseudo-classes to carry the
load for us, removing the need to manually figure out which
elements are the first and last.

The pseudo-class :first-child is used to select elements that
are the first children of other elements. Consider the following
markup:

In this example, the elements that are first children are the first
<p> , the first , and the and elements,
which are all the first children of their respective parents.
Given the following two rules,

<div>
 <p>These are the necessary steps:</p>

 Insert key
 Turn key clockwise
 Push accelerator

 <p>
 Do not push the brake at the same time a
 </p>
</div>

p:first-child {font-weight: bold;}
li:first-child {text-transform: uppercase;}

we get the result shown in Figure 3-5.

Figure 3-5. Styling first children

The first rule boldfaces any <p> element that is the first child of
another element. The second rule uppercases any
element that is the first child of another element (which, in
HTML, must be either an or element).

As has been mentioned, the most common error is assuming
that a selector like p:first-child will select the first child of a
<p> element. Remember the nature of pseudo-classes, which is
to attach a sort of phantom class to the anchor element, the
element associated with the pseudo-class. If you were to add
actual classes to the markup, it would look like this:

Therefore, if you want to select those elements that are
the first child of another element, you write em:first-child .

Selecting last children

The mirror image of :first-child is :last-child . If we take
the previous example and just change the pseudo-classes, we
get the result shown in Figure 3-6:

p:last-child {font-weight: bold;}
li:last-child {text-transform: uppercase;}

<div>
 <p class="first-child">These are the necessary step

 <li class="first-child">Insert key
 Turn key <strong class="first-child">clockwis
 Push accelerator

 <p>
 Do <em class="first-child">not push the brak
 accelerator.
 </p>
</div>

<div>

Figure 3-6. Styling last children

The first rule boldfaces any <p> element that is the last child of
another element. The second rule uppercases any
element that is the last child of another element. If you wanted
to select the element inside that last paragraph, you could
use the selector p:last-child em , which selects any

 <p>These are the necessary steps:</p>

 Insert key
 Turn key clockwise
 Push accelerator

 <p>
 Do not push the brake at the same time a
 </p>
</div>

element that descends from a <p> element that is itself the last
child of another element.

Interestingly, you can combine these two pseudo-classes to
create a version of :only-child . The following two rules will
select the same elements:

p:only-child {color: red;}
p:first-child:last-child {background-color: red;}

Either way, we get paragraphs with red foreground and
background colors (not a good idea, to be clear).

Selecting the first and last of a type

In a manner similar to selecting the first and last children of an
element, you can select the first or last of a type of element
within another element. This permits actions like selecting the
first <table> inside a given element, regardless of whatever
elements come before it:

table:first-of-type {border-top: 2px solid gray;}

Note that this does not apply to the entire document; the rule
shown will not select the first table in the document and skip all

the others. It will instead select the first <table> element
within each element that contains one, and skip any sibling
<table> elements that come after the first. Thus, given the
document structure shown in Figure 3-7, the circled nodes are
the ones that are selected.

Figure 3-7. Selecting first-of-type tables

Within the context of tables, a useful way to select the first data
cell within a row regardless of whether a header cell comes
before it in the row is as follows:

td:first-of-type {border-left: 1px solid red;}

That would select the first data cell in each of the following
table rows (that is, the cells containing 7 and R):

<tr>
 <th scope="row">Count</th><td>7</td><td>6</td><td>1
</tr>
<tr>
<td>R</td><td>X</td><td>-</td>

Compare that to the effects of td:first-child , which would
select the first <td> element in the second row, but not in the
first row.

The flip side is :last-of-type , which selects the last instance
of a given type from among its sibling elements. In a way, it’s
just like :first-of-type , except you start with the last
element in a group of siblings and walk backward toward the
first element until you reach an instance of the type. Given the
document structure shown in Figure 3-8, the circled nodes are
the ones selected by table:last-of-type .

Figure 3-8. Selecting last-of-type tables

As was noted with :only-of-type , remember that you are
selecting elements of a type from among their sibling elements;
thus, every set of siblings is considered separately. In other
words, you are not selecting the first (or last) of all the elements

 <td>R</td><td>X</td><td> </td>
</tr>

of a type within the entire document as a single group. Each set
of elements that shares a parent is its own group, and you can
select the first (or last) of a type within each group.

Similar to what was noted in the previous section, you can
combine these two pseudo-classes to create a version of :only-
of-type . The following two rules will select the same elements:

Selecting every nth child

If you can select elements that are the first, last, or only
children of other elements, how about every third child? All
even children? Only the ninth child? Rather than try to define a
literally infinite number of named pseudo-classes, CSS has the
:nth-child() pseudo-class. By filling integers or even basic
algebraic expressions into the parentheses, you can select any
arbitrarily numbered child element you like.

Let’s start with the :nth-child() equivalent of :first-child ,
which is :nth-child(1) . In the following example, the selected
elements will be the first paragraph and the first list item:

table:only-of-type{color: red;}
table:first-of-type:last-of-type {background: red;}

p:nth-child(1) {font-weight: bold;}
li:nth-child(1) {text-transform: uppercase;}

If we change the numbers from 1 to 2 , however, then no
paragraphs will be selected, and the middle (or second) list item
will be selected, as illustrated in Figure 3-9:

p:nth-child(2) {font-weight: bold;}
li:nth-child(2) {text-transform: uppercase;}

<div>
 <p>These are the necessary steps:</p>

 Insert key
 Turn key clockwise

 Push accelerator

 <p>
 Do not push the brake at the same time a
 </p>
</div>

Figure 3-9. Styling second children

You can insert any integer you choose. If you have a use case for
selecting any ordered list that is the 93rd child element of its
parent, ol:nth-child(93) is ready to serve. This will match
the 93rd child of any parent as long as that child is an ordered
list. (This does not mean the 93rd ordered list among its
siblings; see “Selecting every nth of a type” for that.)

Is there a reason to use :nth-child(1) rather than :first-
child ? No. In this case, use whichever you prefer. There is
literally no difference between them.

More powerfully, you can use simple algebraic expressions in
the form a n + b or a n - b to define recurring instances,
where a and b are integers and n is present as itself.
Furthermore, the + b or − b part is optional and thus can be
dropped if it isn’t needed.

Let’s suppose we want to select every third list item in an
unordered list, starting with the first. The following makes that
possible, selecting the first and fourth items, as shown in
Figure 3-10:

Figure 3-10. Styling every third list item

The way this works is that n represents the series 0, 1, 2, 3, 4,
and on into infinity. The browser then solves for 3n + 1 ,
yielding 1, 4, 7, 10, 13, and so on. Were we to drop the + 1 , thus
leaving us with simply 3n , the results would be 0, 3, 6, 9, 12,
and so on. Since there is no zeroth list item—all element
counting starts with 1, to the likely chagrin of array-slingers

ul > li:nth-child(3n + 1) {text-transform: uppercase;

everywhere—the first list item selected by this expression
would be the third list item in the list.

Given that element counting starts with 1, it is a minor trick to
deduce that :nth-child(2n) will select even-numbered
children, and either :nth-child(2n+1) or :nth-child(2n-1)
will select odd-numbered children. You can commit that to
memory, or you can use the two special keywords that :nth-
child() accepts: even and odd . Want to highlight every other
row of a table, starting with the first? Here’s how you do it, with
the results shown in Figure 3-11:

tr:nth-child(odd) {background: silver;}

Figure 3-11. Styling every other table row

Anything more complex than every-other-element requires an
a n + b expression.

Note that when you want to use a negative number for b , you
have to remove the + sign, or else the selector will fail entirely.
Of the following two rules, only the first will do anything. The
second will be dropped by the parser and the entire declaration
block will be ignored:

tr:nth-child(4n - 2) {background: silver;}
tr:nth-child(3n + −2) {background: red;} /* INVALID

You can also use a negative value for a in the expression,
which will effectively count backward from the term you use in
b . Selecting the first five list items in a list can be done like this:

li:nth-child(-n + 5) {font-weight: bold;}

This works because negative n goes 0, –1, –2, –3, –4, and so on.
Add 5 to each of those, and you get 5, 4, 3, 2, 1, and so on. Put in
a negative number for a multiplier on n , and you can get every
second, third, or whatever-number-you-want element, like so:

li:nth-child(-2n + 10) {font-weight: bold;}

That will select the 10th, 8th, 4th, and 2nd list items in a list.

As you might expect, a corresponding pseudo-class is :nth-
last-child() . This lets you do the same thing as :nth-
child() , except with :nth-last-child() you start from the
last element in a list of siblings and count backward toward the
beginning. If you’re intent on highlighting every other table
row and making sure the very last row is one of the rows in the
highlighting pattern, either one of these will work for you:

tr:nth-last-child(odd) {background: silver;}
tr:nth-last-child(2n+1) {background: silver;} /* equi

If the Document Object Model (DOM) is updated to add or
remove table rows, there is no need to add or remove classes.
By using structural selectors, these selectors will always match
the odd rows of the updated DOM.

Any element can be matched using both :nth-child() and
:nth-last-child() if it fits the criteria. Consider these rules,
the results of which are shown in Figure 3-12:

Again, using negative terms for a will essentially count
backward, except since this pseudo-class is already counting
from the end, a negative term counts forward. That is to say,
you can select the last five list items in a list like so:

li:nth-last-child(-n + 5) {font-weight: bold;}

li:nth-child(3n + 3) {border-left: 5px solid black;}
li:nth-last-child(4n - 1) {border-right: 5px solid bl

NOTE

An extension of :nth-child() and :nth-last-child() allows selecting from
among elements matched by a simple or compound selector; for example, :nth-
child(2n + 1 of p.callout) . As of early 2023, this is supported in Safari and
Chrome beta releases. With it being included in Interop 2023, there are plans to have
it fully supported in the near future.

Figure 3-12. Combining patterns of :nth-child() and :nth-last-child()

You also can string these two pseudo-classes together as :nth-
child(1):nth-last-child(1) , thus creating a more verbose
restatement of :only-child . There’s no real reason to do so
other than to create a selector with a higher specificity
(discussed in Chapter 4), but the option is there.

You can use CSS to determine the number of items in a list and
style them accordingly:

In these examples, if a list item is the only list item, the width is
100%. If a list item is the first item as well as the second-from-
the-last item, that means there are two items, and the width is
50%. If an item is the first item as well as the third-from-the-last
item, we make it, and the two sibling list items following it, 33%
wide. Similarly, if a list item is the first item as well as the
fourth-from-the-last item, it means that there are exactly four
items, so we make it, and its three siblings, 25% of the width.

li:only-child {width: 100%;}
li:nth-child(1):nth-last-child(2),
li:nth-child(2):nth-last-child(1) {width: 50%;}
li:nth-child(1):nth-last-child(3),
li:nth-child(1):nth-last-child(3) ~ li {width: 33.33%
li:nth-child(1):nth-last-child(4),
li:nth-child(1):nth-last-child(4) ~ li {width: 25%;}

(Note: this sort of thing is a lot easier with the :has() pseudo-
class, covered in “The :has() Pseudo-Class”.)

Selecting every nth of a type

In what may have become a familiar pattern, the :nth-
child() and :nth-last-child() pseudo-classes have
analogues in :nth-of-type() and :nth-last-of-type() . You
can, for example, select every other hyperlink that’s a child of
any given paragraph, starting with the second, using p >
a:nth-of-type(even) . This will ignore all other elements
(, , etc.) and consider only the links, as
demonstrated in Figure 3-13:

Figure 3-13. Selecting the even-numbered links

p > a:nth-of-type(even) {background: blue; color: whi

If you want to work from the last hyperlink backward, then
you’d use p > a:nth-last-of-type(even) .

As before, these pseudo-classes select elements of a type from
among their sibling elements, not from among all the elements
of a type within the entire document as a single group. Each
element has its own list of siblings, and selections happen
within each group.

The difference between :nth-of-type() and nth-child() is
that :nth-of-type() counts the instances of whatever you’re
selecting, and does its counting within that collection of
elements. Take, for example, the following markup:

<tr>
 <th scope="row">Count</th>
 <td>7</td>
 <td>6</td>
 <td>11</td>
 <td>17</td>
 <td>3</td>
 <td>21</td>
</tr>
<tr>
 <td>R</td>
 <td>X</td>
 <td>-</td>

 <td>C</td>
 <td>%</td>
 <td>A</td>
 <td>I</td>
</tr>

If you wanted to select every table cell in a row when it’s in an
even-numbered column, you would use td:nth-child(even) .
But if you want to select every even-numbered instance of a
table cell, that would be td:nth-of-type(even) . You can see
the difference in Figure 3-14, which shows the result of the
following CSS:

td:nth-child(even) {background: silver;}
td:nth-of-type(even) {text-decoration: underline;}

Figure 3-14. Selecting both nth-child and nth-of-type table cells

In the first row, every other table data cell (td) is selected,
starting with the first cell that comes after the table header cell

(th). In the second row, since all the cells are td cells, that
means all the cells in that row are of the same type and thus the
counting starts at the first cell.

As you might expect, you can use :nth-of-type(1):nth-last-
of-type(1) together to restate :only-of-type , only with
higher specificity. (We will explain specificity in Chapter 4, we
promise.)

Location Pseudo-Classes

With the location pseudo-classes, we cross into the territory of
selectors that match pieces of a document based on something
in addition to the structure of the document—something that
cannot be precisely deduced simply by studying the document’s
markup.

This may sound like we’re applying styles at random, but not so.
Instead, we’re applying styles based on somewhat ephemeral
conditions that can’t be predicted in advance. Nevertheless, the
circumstances under which the styles will appear are, in fact,
well-defined.

Think of it this way: during a sporting event, whenever the
home team scores, the crowd will cheer. You don’t know exactly

when during a game the team will score, but when it does, the
crowd will cheer, just as predicted. The fact that you can’t
predict the exact moment of the cheer doesn’t make it any less
expected.

Now consider the anchor element (<a>), which (in HTML and
related languages) establishes a link from one document to
another. Anchors are always anchors, but some anchors refer
to pages that have already been visited, while others refer to
pages that have yet to be visited. You can’t tell the difference by
simply looking at the HTML markup, because in the markup, all
anchors look the same.

The only way to tell which links have been visited is by
comparing the links in a document to the user’s browser
history. So there are actually two basic types of links: visited
and unvisited.

Hyperlink-specific pseudo-classes

CSS defines a few pseudo-classes that apply only to hyperlinks.
In HTML, hyperlinks are any <a> elements with an href
attribute; in XML languages, a hyperlink is any element that
acts as a link to another resource. Table 3-1 describes the
pseudo-classes you can apply to them.

Table 3-1. Link pseudo-classes

Name Description

:link Refers to any anchor that is a hyperlink
(i.e., has an href attribute) and points
to an address that has not been visited.

:visited Refers to any anchor that is a hyperlink
to an already visited address. For
security reasons, the styles that can be
applied to visited links are severely
limited; see “Visited Links and Privacy”
for details.

:any-link Refers to any element that would be
matched by either :link or :visited .

:local-lin
k

Refers to any link that points at the
same URL as the page being styled. One
example would be skip-links within a
document. Note: not supported as of
early 2023.

The first of the pseudo-classes in Table 3-1 may seem a bit
redundant. After all, if an anchor hasn’t been visited, it must be
unvisited, right? If that’s the case, all we should need is the
following:

a {color: blue;}
a:visited {color: red;}

Although this format seems reasonable, it’s not quite enough.
The first of the rules shown here applies not only to unvisited
links, but also to any <a> element, even those without an href
attribute such as this one:

4. The Lives of Meerkats

The resulting text would be blue, because the <a> element will
match the rule a {color : blue;} . Therefore, to avoid applying
your link styles to placeholder links, use the :link and
:visited pseudo-classes:

a:link {color: blue;} /* unvisited links are blue
a:visited {color: red;} /* visited links are red */

This is a good place to revisit attribute and class selectors and
show how they can be combined with pseudo-classes. For
example, let’s say you want to change the color of links that
point outside your own site. In most circumstances, we can use
the starts-with attribute selector. However, some CMSs set all
links to be absolute URLs, in which case you could assign a class
to each of these anchors. It’s easy:

To apply different styles to the external link, all you need is a
rule like this:

This rule will make the second anchor in the preceding markup
slate blue by default and maroon once visited, while the first
anchor will remain the default color for hyperlinks (usually
blue when not visited and purple once visited). For improved

My About page
An e

a.external:link, a[href^="http"]:link { color: slateb
a.external:visited, a[href^="http"]:visited {color:

usability and accessibility, visited links should be easily
distinguished from unvisited links.

NOTE

Styled visited links enable visitors to know where they have been and what they
have yet to visit. This is especially important on large websites, where it may be
difficult to remember which pages have been visited, especially for those with
cognitive disabilities. Not only is highlighting visited links one of the W3C Web
Content Accessibility Guidelines, but it makes searching for content faster, more
efficient, and less stressful for everyone.

The same general syntax is used for ID selectors as well:

a#footer-copyright:link {background: yellow;}
a#footer-copyright:visited {background: gray;}

If you want to select all links, regardless of whether they’re
visited or not, use :any-link :

a#footer-copyright:any-link {text-decoration: underli

VISITED LINKS AND PRIVACY

For well over a decade, it was possible to style visited links with
any CSS properties available, just as you could unvisited links.
However, in the mid-2000s several people demonstrated that
visual styling and simple DOM scripting could be used to
determine if a user had visited a given page.

For example, given the rule :visited {font-weight: bold;} ,
a script could find all of the boldfaced links and tell the user
which of those sites they’d visited—or, worse still, report those
sites back to a server. A similar, nonscripted tactic uses
background images to achieve the same result.

While this might not seem terribly serious, it can be utterly
devastating for a web user in a country that jails people for
visiting certain sites—opposition parties, unsanctioned
religious organizations, “immoral” or “corrupting” sites, and so
on. These techniques can also be used by phishing sites to
determine which online banks a user has visited. Thus, two
steps were taken.

The first step is that only color-related properties can be applied
to visited links: color , background-color , column-rule-
color , outline-color , border-color , and the individual-side
border color properties (e.g., border-top-color). Attempts to

apply any other property to a visited link will be ignored.
Furthermore, any styles defined for :link will be applied to
visited links as well as unvisited links, which effectively makes
:link “style any hyperlink,” instead of “style any unvisited
hyperlink.”

The second step is that if a visited link has its styles queried via
the DOM, the resulting value will be as if the link were not
visited. Thus, if you’ve defined visited links to be purple rather
than unvisited links’ blue, even though the link will appear
purple onscreen, a DOM query of its color will return the blue
value, not the purple one.

This behavior is present throughout all browsing modes, not
just “private browsing” modes. Even though we’re limited in
how we can use CSS to differentiate visited links from unvisited
links, it is important for usability and accessibility to use the
limited styles supported by visited links to differentiate them
from unvisited links.

Nonhyperlink location pseudo-classes

Hyperlinks aren’t the only elements that can be related to
location. CSS also provides a few pseudo-classes that relate to

the targets of hyperlinks, summarized in Table 3-2.

Table 3-2. Nonlink location pseudo-classes

Name Description

:target Refers to an element whose id
attribute value matches the fragment
selector in the URL used to load the
page—that is, the element specifically
targeted by the URL.

:target-wi
thin

Refers to an element that is the target of
the URL, or that contains an element
that is so targeted. Note: not supported
as of early 2023.

:scope Refers to elements that are a reference
point for selector matching.

Let’s talk about target selection. When a URL includes a
fragment identifier, the piece of the document at which it points
is called (in CSS) the target. Thus, you can uniquely style any

element that is the target of a URL fragment identifier with the
:target pseudo-class.

Even if you’re unfamiliar with the term fragment identifier,
you’ve probably seen them in action. Consider this URL:

http://www.w3.org/TR/css3-selectors/#target-pseudo

The target-pseudo portion of the URL is the fragment
identifier, which is marked by the # symbol. If the referenced
page (http://www.w3.org/TR/css3-selectors/) has an element with
an ID of target-pseudo , that element becomes the target of the
fragment identifier.

Thanks to :target , you can highlight any targeted element
within a document, or you can devise different styles for
various types of elements that might be targeted—say, one style
for targeted headings, another for targeted tables, and so on.
Figure 3-15 shows an example of :target in action:

*:target {border-left: 5px solid gray; background: ye
 top right no-repeat;}

Figure 3-15. Styling a fragment identifier target

The :target styles will not be applied in three circumstances:

The page is accessed via a URL that does not have a fragment
identifier.
The page is accessed via a URL that has a fragment identifier,
but the identifier does not match any elements within the
document.
The page’s URL is updated in such a way that a scroll state is
not created, which happens most often via JS shenanigans.
(This isn’t a CSS rule, but it is how browsers behave.)

More interestingly, though, what happens if multiple elements
within a document can be matched by the fragment identifier—
for example, if the author erroneously includes three separate
instances of <div id="target-pseudo"> in the same
document?

The short answer is that CSS doesn’t have or need rules to cover
this case, because all CSS is concerned with is styling targets.
Whether the browser picks just one of the three elements to be
the target or designates all three as coequal targets, :target
styles should be applied to anything that is a valid target.

Closely related to the :target pseudo-class is the :target-
within pseudo-class. The difference is that :target-within
will match not only elements that are targets, but also elements
that are the ancestors of targets. Thus, the following CSS would
match any <p> element containing a target, or that was itself a
target:

Or it would, anyway, if any browser supported it. As of early
2023, this is not the case.

Finally, we consider the :scope pseudo-class. This is quite
widely supported, but at present, it comes in handy only in
scripting situations. Consider the following JS and HTML, which
we’ll explain after the code:

p:target-within {border-left: 5px solid gray; backgro
 top right no-repeat;}

var output = document.getElementById('output');

<section id="output">
 <h3>Results</h3>
 <div></div>
 <div></div>
</section>

The JS portion says, in effect, “Find the element with an ID of
output . Then, find all the <div> elements that are children of
the output element you just found.” (Yes, CSS selectors can be
used in JS!) The :scope in that bit of JS refers to the scope of
the thing that had been found, thus keeping the selection
confined to just that instead of the whole document. The result
is that, in the JS program’s memory, it now has a structure
holding references to the two <div> elements in the HTML.

If you use :scope in straight CSS, it will refer to the scoping
root, which (at present) means the <html> element, assuming
the document is HTML. Neither HTML nor CSS provides a way
to set scoping roots other than the root element of the
document. So, outside of JS, :scope is essentially equivalent to
:root . That may change in the future, but for now, you should
use :scope only in JS contexts.

var registers = output.querySelectorAll(':scope > div

JS AND CSS

CSS has influenced the evolution of JS in a few ways, and one is
the ability to use the CSS selection engine from within JS via
.querySelectorAll() . This method can take any CSS selector
as a string, and will return a collection of all the elements
within the DOM that are matched by the selector. The
.querySelector() method also accepts any CSS selector as a
string, but will return only the first element found, so it’s not
always as useful.

You may come across older JS methods for collecting elements,
such as .getElementByID() and .getElementsByTagName() .
These are from the time before .querySelectorAll() was
added to JS, and while they may be marginally more
performant than .querySelectorAll() in some situations,
they’re mostly found in legacy codebases these days. Both are
now more simply handled with .querySelectorAll() . For
example, the following two lines would have almost the same
result:

var subheads = Document.getElementsByTagName('h2');
var subheads = Document.querySelectorAll('h2');

Similarly, a .getElementById('summary') can be equivalently
replaced with .querySelectorAll('#summary') .

The advantage in .querySelectorAll() is that it can take any
selector, no matter how complex, including grouped selectors.
Thus, you could get all of the level-two and -three headings in a
single call: Document.querySelectorAll('h2, h3') . Or you
could grab a more complex set of elements with something like
.querySelectorAll('h2 + p, pre + p, table + *, thead

th:nth-child(even)') .

Note, though, that the list of elements returned by
.querySelectorAll() is static, and therefore is not updated
when the DOM is dynamically changed. If another part of the JS
adds a section with an <h2> element in it, the elements
previously collected with .querySelectorAll('h2, h3') will
not be updated to include the newly added <h2> . You’d need to
either add it yourself manually or do a new
.querySelectorAll() call.

User Action Pseudo-Classes

CSS defines a few pseudo-classes that can change a document’s
appearance based on actions taken by the user. These dynamic

pseudo-classes have traditionally been used to style hyperlinks,
but the possibilities are much wider. Pseudo-classes are
described in Table 3-3.

Table 3-3. User action pseudo-classes

Name Description

:hover Refers to any element over which the
mouse pointer is placed—e.g., a
hyperlink over which the mouse pointer
is hovering

:active Refers to any element that has been
activated by user input—e.g., a
hyperlink on which a user clicks during
the time the mouse button is held down,
or an element a user has tapped via
touch screen

:focus Refers to any element that currently has
the input focus—i.e., can accept
keyboard input or otherwise be
activated in some way

Name Description

:focus-wit
hin

Refers to any element that currently has
the input focus—i.e., can accept
keyboard input or be activated in some
way—or an element containing an
element that is so focused

:focus-vis
ible

Refers to any element that currently has
the input focus, but only if the user
agent thinks it is an element type that
should have visible focus

Elements that can become :active or have :focus include
links, buttons, menu items, any element with a tabindex value,
and all other interactive elements, including form controls and
elements containing content that can be edited (by having the
attribute, contenteditable , added to the element’s opening
tag).

As with :link and :visited , these pseudo-classes are most
familiar in the context of hyperlinks. Many web pages have
styles that look like this:

a:link {color: navy;}
a:visited {color: gray;}
a:focus {color: orange;}
a:hover {color: red;}
a:active {color: yellow;}

NOTE

The order of the pseudo-classes is more important than it might seem at first. The
usual recommendation is link , visited , focus , hover , and active . The next
chapter explains why this particular order is important and discusses several
reasons you might choose to change or even ignore the recommendation.

Notice that the dynamic pseudo-classes can be applied to any
element, which is good since it’s often useful to apply dynamic
styles to elements that aren’t links. Consider this example:

By using this markup, you could highlight a form element that
is ready to accept keyboard input, as shown in Figure 3-16.

input:focus {background: silver; font-weight: bold;}

Figure 3-16. Highlighting a form element that has focus

Two relatively new additions to the user-action pseudo-classes
are :focus-within and :focus-visible . Let’s take the second
one first.

The :focus-visible pseudo-class

The :focus-visible class is very much like :focus in that it
applies to elements that have focus, but there’s a big difference:
it will match only if the element that has focus is an element
that the user agent thinks should be given visible focus styles in
a given situation.

For example, consider HTML buttons. When a button is clicked
via a mouse, that button is given focus, the same as if we had
used a keyboard interface to move the focus to it. As authors
who care about accessibility and aesthetics, we want the button
to have focus when it’s focused via the keyboard or another
assistive technology, but we might not like it getting focus styles
when it’s clicked or tapped.

We can split this difference by using CSS such as the following:

button:focus-visible {outline: 5px solid maroon;}

This will put a thick dark-red outline around the button when
tabbing to it via keyboard, but the rule won’t be applied when
the button is clicked with the mouse.

The :focus-within pseudo-class

Building on that, :focus-within applies to any element that
has focus, or any element that has a descendant with focus.
Given the following CSS and HTML, we’ll get the result shown in
Figure 3-17:

nav:focus-within {border: 3px solid silver;}
a:focus-visible {outline: 2px solid currentcolor;}

<nav>
 Home
 About
 Contact
</nav>

Figure 3-17. Selecting elements by using :focus-within

The third link currently has focus, having received it by the
user tabbing to that link, and is styled with a 2-pixel outline.
The <nav> element that contains it is also being given focus
styling via :focus-within , because an element within itself
(that is, an element descended from it) currently has focus. This
adds a little more visual weight to that area of the page, which
can be helpful. Be careful of overdoing it, though. Too many
focus styles can create visual overload, potentially confusing
users.

WARNING

While you can style elements with :focus any way you like, do not remove all
styling from focused elements. Differentiating which element currently has focus is
vital for accessibility, especially for those navigating your site or application with a
keyboard.

Real-world issues with dynamic styling

Dynamic pseudo-classes present some interesting issues and
peculiarities. For example, you can set visited and unvisited

links to one font size and make hovered links a larger size, as
shown in Figure 3-18:

a:link, a:visited {font-size: 13px;}
a:hover, a:active {font-size: 20px;}

Figure 3-18. Changing layout with dynamic pseudo-classes

As you can see, the user agent increases the size of the anchor
while the mouse pointer hovers over it—or, thanks to the
:active setting, when a user touches it on a touch screen.
Because we are changing a property that impacts line height, a
user agent that supports this behavior must redraw the
document while an anchor is in the hover state, which could
force a reflow of all the content that follows the link.

UI-State Pseudo-Classes

Closely related to the dynamic pseudo-classes are the user-
interface (UI) state pseudo-classes, which are summarized in

Table 3-4. These pseudo-classes allow for styling based on the
current state of UI elements such as checkboxes.

Table 3-4. UI-state pseudo-classes

Name Description

:enabled Refers to UI elements (such as form
elements) that are enabled—that is,
available for input

:disabled Refers to UI elements (such as form
elements) that are disabled—that is, not
available for input

:checked Refers to radio buttons or checkboxes
that have been selected, either by the
user or by defaults within the document
itself

:indetermi
nate

Refers to radio buttons or checkboxes
that are neither checked nor
unchecked; this state can be set only via
DOM scripting, and not by user input

:default Refers to the radio button, checkbox, or
option that was selected by default

Name Description

:autofill Refers to a user input that has been
autofilled by the browser

:placehold
er-shown

Refers to a user input that has
placeholder (not value) text prefilled

:valid Refers to a user input that meets all of
its data validity requirements

:invalid Refers to a user input that does not
meet all of its data validity
requirements

:in-range Refers to a user input whose value is
between the minimum and maximum
values

:out-of-ra
nge

Refers to a user input whose value is
below the minimum or above the
maximum values allowed by the control

Name Description

:required Refers to a user input that must have a
value set

:optional Refers to a user input that does not need
to have a value set

:read-writ
e

Refers to a user input that is editable by
the user

:read-only Refers to a user input that is not
editable by the user

Although the state of a UI element can certainly be changed by
user action—for example, a user checking or unchecking a
checkbox—UI-state pseudo-classes are not classified as purely
dynamic because they can also be affected by the document
structure or scripting.

Enabled and disabled UI elements

Thanks to both DOM scripting and HTML, you can mark a UI
element (or group of UI elements) as being disabled. A disabled

element is displayed but cannot be selected, activated, or
otherwise interacted with by the user. Authors can set an
element to be disabled either through DOM scripting or by
adding a disabled attribute to the element’s markup.

Any element that can be disabled, but hasn’t been, is by
definition enabled. You can style these two states by using the
:enabled and :disabled pseudo-classes. It’s much more
common to style disabled elements and leave enabled elements
alone, but both have their uses, as illustrated in Figure 3-19:

:enabled {font-weight: bold;}
:disabled {opacity: 0.5;}

Figure 3-19. Styling enabled and disabled UI elements

Check states

In addition to being enabled or disabled, certain UI elements
can be checked or unchecked—in HTML, the input types
checkbox and radio fit this definition. CSS offers a :checked
pseudo-class to handle elements in that state. In addition, the
:indeterminate pseudo-class matches any checkable UI
element that is neither checked nor unchecked. These states are
illustrated in Figure 3-20:

:checked {background: silver;}
:indeterminate {border: red;}

Figure 3-20. Styling checked and indeterminate UI elements

Although checkable elements are unchecked by default, an
HTML author can toggle them on by adding the checked
attribute to an element’s markup. An author can also use DOM
scripting to flip an element’s checked state to checked or
unchecked, whichever they prefer.

As of early 2023, the indeterminate state can be set only
through DOM scripting or by the user agent itself; no markup-
level method exists to set elements to an indeterminate state.
The purpose of styling an indeterminate state is to visually
indicate that the element needs to be checked (or unchecked) by

the user. However, this is purely a visual effect: it does not
affect the underlying state of the UI element, which is either
checked or unchecked, depending on document markup and
the effects of any DOM scripting.

Although the previous examples show styled radio buttons,
remember that direct styling of radio buttons and checkboxes
with CSS is actually very limited. Nevertheless, that shouldn’t
limit your use of the selected-option pseudo-classes. As an
example, you can style the labels associated with your
checkboxes and radio buttons by using a combination of
:checked and the adjacent sibling combinator:

input[type="checkbox"]:checked + label {
 color: red;
 font-style: italic;
}

If you need to select all checkboxes that are not checked, use
the negation pseudo-class (which is covered later in the
chapter) like this: input[type="checkbox"]:not(:checked) .
Only radio buttons and checkboxes can be checked. Note that

<input id="chbx" type="checkbox"> <label for="chbx">I

every element, and these two when not checked, are
:not(:checked) . This approach does not fill the gap left by the
absence of an :unchecked pseudo-class, and such a pseudo-
class should match only elements that should be checkable.

Default-value pseudo-classes

Three pseudo-classes relate to default values and filler text:
:default , :placeholder-shown , and :autofill .

The :default pseudo-class matches the UI elements that are
the default among a set of similar elements. This typically
applies to context menu items, buttons, and select lists/menus.
If there are several same-named radio buttons, the one that was
originally selected (if any) matches :default , even if the UI
has been updated by the user so that it no longer matches
:checked . If a checkbox was checked on page load, :default
matches it. Any initially selected option(s) in a select element
will match:

[type="checkbox"]:default + label { font-style: itali

<input type="checkbox" id="chbx" checked name="foo" v
<label for="chbx">This was checked on page load</labe

The :default pseudo-class will also match a form’s default
button, which is generally the first button element in DOM
order that is a member of a given form. This could be used to
indicate to users which button will be activated if they just hit
Enter, instead of explicitly selecting a button to activate.

The :placeholder-shown pseudo-class is similar in that it will
select any input that has placeholder text defined at the markup
level while that placeholder text is visible. The placeholder is no
longer shown when the input has a value. For example:

By default, the value of a placeholder attribute will be placed
into the input fields in a browser, usually in a lighter color than
normal text. If you want to style those input elements in a
consistent way, you can do something like this:

input:placeholder-shown {opacity: 0.75;}

This selects the input as a whole, not the placeholder text. (To
style the placeholder text itself, see “The Placeholder Text

<input type="text" id="firstName" placeholder="Your f
<input type="text" id="lastName" placeholder="Your l

Pseudo-Element”.)

The :autofill pseudo-class is a little bit different from the
other two: it matches any element that has had its value
automatically filled in or auto-completed by the browser. This
may be familiar to you if you’ve ever filled out a form by having
the browser fill in stored values of your name, email, mailing
address, and so on. The input fields that are filled in usually get
a distinct style, like a yellowish background. You can add to that
using :autofill , perhaps like this:

input:autofill {border: thick solid maroon;}

NOTE

While you can add to default browser styling of autofilled text, overriding the
browser’s built-in styles for things such as background colors is difficult. This is
because the browsers’ styles for autofilled fields are set to override just about
anything else, largely as a way to provide users with a consistent experience of
autofilled content and to protect the user.

Optionality pseudo-classes

The :required pseudo-class matches any user-input element
that is required, as denoted by the presence of the required
attribute. The :optional pseudo-class matches user-input

elements that do not have the required attribute, or whose
required attribute has a value of false .

A user-input element is :required if the user must provide a
value for before submitting the form to which it belongs. All
other user-input elements are matched by :optional . For
example:

input:required { border: 1px solid #f00;}
input:optional { border: 1px solid #ccc;}

The first email input will match the :required pseudo-class
because of the presence of the required attribute. The second
input is optional and therefore will match the :optional
pseudo-class. The same is true for the third input, which has a
required attribute, but the value is false .

Elements that are not user-input elements can be neither
required nor optional. Including the required attribute on a

<input type="email" placeholder="enter an email addre
<input type="email" placeholder="optional email addre
<input type="email" placeholder="optional email addre

non-user-input element won’t lead to an optionality pseudo-
class match.

Validity pseudo-classes

The :valid pseudo-class refers to a user input that meets all of
its data validity requirements. The :invalid pseudo-class, on
the other hand, refers to a user input that does not meet all of
its data validity requirements.

The validity pseudo-classes :valid and :invalid apply only
to elements having the capacity for data validity requirements:
a <div> will never match either selector, but an <input>
could match either, depending on the current state of the
interface.

In the following example, an image is dropped into the
background of any email input that has focus, with one image
being used when the input is invalid and another used when
the input is valid, as illustrated in Figure 3-21:

input[type="email"]:focus {
 background-position: 100% 50%;
 background-repeat: no-repeat;
}
input[type="email"]:focus:invalid {

 background-image: url(warning.jpg);
}
input[type="email"]:focus:valid {
 background-image: url(checkmark.jpg);
}

<input type="email">

Figure 3-21. Styling valid and invalid UI elements

Keep in mind that these pseudo-class states may not act as you
might expect. For example, as of late 2022, any empty email
input that isn’t required matches :valid . Even though a null
input is not a valid email address, failing to enter an email
address is a valid response for an optional input. If you try to
fill in a malformed address or just some random text, that will
be matched by :invalid because it isn’t a valid email address.

Range pseudo-classes

The range pseudo-classes include :in-range , which refers to a
user input whose value is between the minimum and
maximum values set by HTML’s min and max attributes, and
:out-of-range , which refers to a user input whose value is
below the minimum or above the maximum values allowed by
the control.

For example, consider a number input that accepts numbers in
the range 0 to 1,000:

input[type="number"]:focus {
 background-position: 100% 50%;
 background-repeat: no-repeat;
}
input[type="number"]:focus:out-of-range {
 background-image: url(warning.jpg);
}
input[type="number"]:focus:in-range {
 background-image: url(checkmark.jpg);
}

In this example, a value from 0 to 1,000, inclusive, would mean
the input element is matched by :in-range . Any value

<input id="grams" type="number" min="0" max="1000" />

outside that range, whether input by the user or assigned via
the DOM, will cause the input to match :out-of-range
instead.

The :in-range and :out-of-range pseudo-classes apply only
to elements with range limitations. User inputs that don’t have
range limitations, like links for inputs of type tel , will not be
matched by either pseudo-class.

HTML also has a step attribute. If a value is invalid because it
does not match the step value, but is still between or equal to
the min and max values, it will match :invalid while also still
matching :in-range . A value can be in range while also being
invalid.

Thus, in the following scenario, the input’s value will be both
red and boldfaced, because the value 23 is in range but is not
evenly divisible by 10:

input[type="number"]:invalid {color: red;}
input[type="number"]:in-range {font-weight: bold;}

<input id="by-tens" type="number" min="0" max="1000"

Mutability pseudo-classes

The mutability pseudo-classes include :read-write , which
refers to a user input that is editable by the user; and :read-
only , which matches user inputs that are not editable,
including radio buttons and checkboxes. Only elements that can
have their values altered by user input can match :read-
write .

For example, in HTML, a nondisabled, non-read-only input
element is :read-write , as is any element with the
contenteditable attribute. Everything else matches :read-
only .

By default, neither of the following rules would ever match,
because <textarea> elements are read-write, and <pre>
elements are read-only:

textarea:read-only {opacity: 0.75;}
pre:read-write:hover {border: 1px dashed green;}

However, each can be made to match as follows:

<textarea disabled></textarea>
<pre contenteditable>Type your own code!</pre>

Because <textarea> is given a disabled attribute, it becomes
read-only, and so will have the first rule apply. Similarly, the
<pre> here has been made editable via the contenteditable
attribute, so now it is a read-write element. This will be
matched by the second rule.

The :lang() and :dir() Pseudo-Classes

When you want to select an element based on its language, you
can use the :lang() pseudo-class. In terms of its matching
patterns, this pseudo-class is similar to the |= attribute selector
(see “Selection Based on Partial Attribute Values”). For example,
to italicize elements whose content is written in French, you
could write either of the following:

*:lang(fr) {font-style: italic;}
*[lang|="fr"] {font-style: italic;}

The primary difference between the pseudo-class selector and
the attribute selector is that language information can be
derived from multiple sources, some of which are outside the
element itself. For the attribute selector, the element must have
the attribute present to match. The :lang() pseudo-class, on

the other hand, matches descendants of an element with the
language declaration. As Selectors Level 3 states:

In HTML, the language is determined by a combination of
the lang attribute, and possibly information from the meta
elements and the protocol (such as HTTP headers). XML
uses an attribute called xml:lang , and there may be other
document language-specific methods for determining the
language.

The pseudo-class will operate on all of that information,
whereas the attribute selector can work only if a lang attribute
is present in the element’s markup. Therefore, the pseudo-class
is more robust than the attribute selector and is probably a
better choice in most cases where language-specific styling is
needed.

CSS also has a :dir() pseudo-class, which selects elements
based on the HTML direction of an element. So you could, for
example, select all the elements whose direction is right to left
like this:

*:dir(rtl) {border-right: 2px solid;}

https://www.w3.org/TR/selectors-3/#lang-pseudo

The thing to watch out for here is that the :dir() pseudo-class
selects elements based on their directionality in HTML, and not
the value of the direction property in CSS that may be applied
to them. Thus, the only two values you can really use for
selection are ltr (left to right) and rtl (right to left) because
those are the only direction values that HTML supports.

Logical Pseudo-Classes

Beyond structure and language, some pseudo-classes are
intended to bring a touch of logic and flexibility to CSS selectors.

The negation pseudo-class

Every selector we’ve covered thus far has had one thing in
common: they’re all positive selectors. They are used to identify
the things that should be selected, thus excluding by implication
all the things that don’t match and are thus not selected.

For those times when you want to invert this formulation and
select elements based on what they are not, CSS provides the
negation pseudo-class, :not() . It’s not quite like any other
selector, fittingly enough, and it does have some restrictions on
its use, but let’s start with an example.

Let us suppose you want to apply a style to every list item that
does not have a class of moreinfo , as illustrated in Figure 3-
22. That used to be very difficult, and in certain cases
impossible, to make happen. Now we can declare the following:

li:not(.moreinfo) {font-style: italic;}

Figure 3-22. Styling list items that don’t have a certain class

The way :not() works is that you attach it to a selector, and
then in the parentheses you fill in a selector or group of
selectors describing what the original selector cannot match.

Let’s flip around the previous example and select all elements
with a class of moreinfo that are not list items. This is

illustrated in Figure 3-23:

.moreinfo:not(li) {font-style: italic;}

Figure 3-23. Styling elements with a certain class that aren’t list items

Translated into English, the selector would say, “Select all
elements with a class whose value contains the word moreinfo
as long as they are not elements.” Similarly, the
translation of li:not(.moreinfo) would be, “Select all
elements as long as they do not have a class whose value
contains the word moreinfo .”

You can also use the negation pseudo-class at any point in a
more complex selector. Thus, to select all tables that are not
children of a <section> element, you would write
*:not(section) > table . Similarly, to select table header cells
that are not part of the table header, you’d write something like

table *:not(thead) > tr > th , with a result like that shown
in Figure 3-24.

Figure 3-24. Styling header cells outside the table’s head area

What you cannot do is nest negation pseudo-classes; thus,
p:not(:not(p)) is not valid and will be ignored. It’s also,
logically, the equivalent of just writing p , so there’s no point
anyway. Furthermore, you cannot reference pseudo-elements
(which we’ll cover shortly) inside the parentheses.

Technically, you can put a universal selector into the
parentheses, but there’s little point. After all, p:not(*) would
mean “select any <p> element as long as it isn’t any element,”
and there’s no such thing as an element that is not an element.

Similarly, p:not(p) would also select nothing. It’s also possible
to write things like p:not(div) , which will select any <p>
element that is not a <div> element—in other words, all of
them. Again, there is little reason to do this.

On the other hand, it’s possible to chain negations together to
create a sort of “and also not this” effect. For example, you
might want to select all elements with a class of link that are
neither list items nor paragraphs:

*.link:not(li):not(p) {font-style: italic;}

That translates to “select all elements with a class whose value
contains the word link as long as they are neither nor
<p> elements.” This used to be the only way to exclude a group
of elements, but CSS (and browsers) support selector lists in
negations. That allows us to rewrite the previous example like
so:

*.link:not(li, p) {font-style: italic;}

Along with this came the ability to use more complex selectors,
such as those using descendant combinators. If you need to
select all elements that are descended from a <form> element

but do not immediately follow a <p> element, you could write
it as follows:

form *:not(p + *)

Translated, that’s “select any element that is not the adjacent
sibling <p> element, and is also the descendant of a <form>
element.” And you can put these into groups, so if you also want
to exclude list items and table-header cells, it would go
something like this:

form *:not(p + *, li, thead > tr > th)

WARNING

The ability to use complex selectors in :not() came to browsers in only early 2021,
so exercise caution when using it, especially in legacy settings.

One thing to watch out for with :not() is that in some
situations rules can combine in unexpected ways, mostly
because we’re not used to thinking of selection in the negative.
Consider this test case:

div:not(.one) p {font-weight: normal;}
div.one p {font-weight: bold;}

<div class="one">
 <div class="two">
 <p>I'm a paragraph!</p>
 </div>
</div>

The paragraph will be boldfaced, not normal weight. This is
because both rules match: the <p> element is descended from
a <div> whose class does not contain the word one (<div
class="two">), but it is also descended from a <div> whose
class contains the word one . Both rules match, so both apply.
Since a conflict exists, the cascade (which is explained in
Chapter 4) is used to resolve the conflict, and the second rule
wins. The structural arrangement of the markup, with the
div.two being “closer” to the paragraph than div.one , is
irrelevant.

The :is() and :where() pseudo-classes

CSS has two pseudo-classes that allow for group matching
within a complex selector, :is() and :where() . These are
almost identical to each other, with just a minor difference that

we’ll cover once you understand how they work. Let’s start with
:is() .

Suppose you want to select all list items, whether or not they
are part of an ordered or an unordered list. The traditional way
to do that is shown here:

ol li, ul li {font-style: italic;}

With :is() , we can rewrite that like so:

:is(ol, ul) li {font-style: italic;}

The matched elements will be exactly the same: all list items
that are part of either ordered or unordered lists.

This might seem slightly pointless: the syntax is not only slightly
less clear, but also one character longer. And it’s true that in
simple situations like that, :is() isn’t terribly compelling. The
more complex the situation, though, the more likely :is() will
really shine.

For example, what if we want to style all list items that are at
least two levels deep in nested lists, no matter what
combination of ordered and unordered lists are above them?

Compare the following rules, both of which will have the effect
shown in Figure 3-25, except one uses the traditional approach
and the other uses :is() :

Figure 3-25. Using :is() to select elements

ol ol li, ol ul li, ul ol li, ul ul li {font-style: i

:is(ol, ul) :is(ol, ul) li {font-style: italic;}

Now consider what the traditional approach would look like for
three, four, or even more levels deep of nested lists!

The :is() pseudo-class can be used in all sorts of situations;
selecting all links inside lists that are themselves inside headers,
footers, and <nav> elements could look like this:

Even better: the list of selectors inside :is() is what’s called a
forgiving selector list. By default, if any one thing in a selector is
invalid, the whole rule is marked invalid. Forgiving selector
lists, on the other hand, will throw any part that’s invalid and
honor the rest.

So, given all that, what’s the difference between :is() and
:where() ? The sole difference is that :is() takes the
specificity of the most-specific selector in its selector list,
whereas :where() has zero specificity. If that last sentence
didn’t make sense to you, don’t worry! We haven’t discussed
specificity yet but will in the next chapter.

:is(header,footer,nav,#header,#footer) :is(ol,ul) a[h

WARNING

:is() and :where() came to browsers in only early 2021, so exercise caution when
using them, especially in legacy settings.

Selecting defined elements

As the web has advanced, it’s added more and more
capabilities. One of the more recent is the ability to add custom
HTML elements to your markup in a standardized way. This
happens a lot with pattern libraries, which often define Web
Components based on elements that are specific to the library.

One thing such libraries do to be more efficient is hold off on
defining an element until it’s needed, or it’s ready to be
populated with whatever content is supposed to go into it. Such
a custom element might look like this in markup:

<mylib-combobox>options go here</mylib-combobox>

The actual goal is to fill that combobox (a drop-down list that
also allows users to enter arbitrary values) with whatever
options the backend CMS provides for it, downloaded via a
script that requests the latest data in order to build the list
locally, and removing the placeholder text in the process.

However, what happens if the server fails to respond, leaving
the custom element undefined and stuck with its placeholder
text? Without taking steps, the text “options go here” will get
inserted into the page, probably with minimal styling.

That’s where :defined comes in. You can use it to select any
defined element, and combine it with :not() to select
elements that aren’t yet defined. Here’s a simple way to hide
undefined comboboxes, as well as to apply styles to defined
comboboxes:

The :has() Pseudo-Class

The :has() pseudo-class is a little bit tricky, because it doesn’t
quite follow all the rules we’ve been working under until now—
but as a result, it’s also insanely powerful.

Imagine you want to apply special styles to any <div> element
that contains an image. In other words, if a <div> element has

mylib-combobox:not(:defined) {display: none;}
mylib-combobox:defined {display: inline-block;}
mylib-combobox {font-size: inherit; border: 1px solid
 outline: 1px solid silver;}

an element inside it, you want to apply certain styles to
the <div> . And that’s exactly what :has() makes possible.

The previous example would be written something like this,
with the result illustrated in Figure 3-26:

div:has(img) {
 border: 3px double gray;
}

<div>

</div>
<div>
 <p>No image here!</p>
</div>
<div>
 <p>This has text and <img src="redbox.gif" alt="an
</div>

Figure 3-26. Using :has() to select elements

The second <div> , which does not have an element as a
descendant, doesn’t get the border. If you wanted only the first
<div> to get the border, because you actually wanted to style
only <div> elements that have images as direct children, just
modify the selector to use the child combinator, like this:
div:has(> img) . That would prevent the third <div> from
getting the border.

The :has() pseudo-class is, in one real sense, the mythical
“parent selector” CSS authors have wished for since the
beginning of CSS itself. Except it isn’t just for parent selection,
because you can select based on siblings, or make the selection
happen as far up the ancestry chain as you like. And if all that
didn’t quite make sense to you, hang on: we’ll explain further.

We have two facts to note right off the bat:

Inside the parentheses of :has() , you can provide a comma-
separated list of selectors, and each of those selectors can be
simple, compound, or complex.
Those selectors are considered relative to the anchor
element, the element to which :has() is attached.

Let’s take those in order. All of the following are valid :has()
uses:

That last example might be a bit overwhelming, so let’s break it
down a bit further. We could restate in a longer way, like this:

table:has(tbody th) {…}
/* tables whose body contains table headers */

a:any-link:has(img:only-child) {…}
/* links containing only an image */

header:has(nav, form.search) {…}
/* headers containing either nav or a form classed se

section:has(+ h2 em, table + table, ol ul ol ol) {…}
/* sections immediately followed by an 'h2' that cont
 OR that contain a table immediately followed by an
 OR that contain an 'ol' inside an 'ol' inside a 'u

section:has(+ h2 em),
section:has(table + table),
section:has(ol ul ol ol) {…}

And here are two examples of the markup patterns that would
be selected:

<section>(…section content…)</section>
<h2>I’m an h2 with an emphasis element insid

 the section right before me gets selected!</h2>

<section>
<h2>This h2 doesn’t get the section selected, because
 the section, not its immediately following siblin
<p>This paragraph is just here.</p>
<aside>
<h3>Q1 Results</h3>
<table>(…table contents…)</table>
<table>(…table contents…)</table>
</aside>
<p>Those adjacent-sibling tables mean this paragraph’
 DOES get selected!</p>
</section>

In the first example, the selection isn’t based on parentage or
any other ancestry; instead, the <section> is selected because
its immediate sibling (the <h2>) has an element as one of
its descendants. In the second, the <section> is selected
because it has a descendant <table> that’s immediately
followed by another <table> , both of which happen in this
case to be inside an <aside> element. That makes this specific
example one of grandparent selection, not parent selection,
because the <section> is a grandparent to the tables.

Right, so that’s the first point that we raised earlier. The second
is that the selectors inside the parentheses are relative to the
element bearing the :has() . That means, for example, that the
following selector is never going to match anything:

div:has(html body h1)

That’s because while an <h1> can certainly be a descendant of
a <div> , the <html> and <body> elements cannot. What that
selector means, translated into English, is “select any <div>
that has a descendant <html> which itself has a descendant
<body> which has a descendant <h1> .” The <html> element
will never be a descendant of <div> , so this selector can’t
match.

To pick something a little more realistic, here’s a bit of markup
showing lists nested inside one another, which has the
document structure shown in Figure 3-27:

List item
List item

 List item
 List item
 List item

List item
List item
List item

 List item
 List item

 List item
 List item
 List item

 List item

Figure 3-27. A fragment of a document’s structure

To that structure, we’ll apply the following rules. Spoiler alert:
one of them will match an element, and the other will not:

ul:has(li ol) {border: 1px solid red;}
ul:has(ol ul ol) {font-style: italic;}

The first causes the browser to look at all the elements.
For any it finds, it looks at the structure of the elements
that descend from that . If it finds an li ol relationship
in the elements that descend from the , then the is
matched, and in this case will be given a red border.

If we study the markup structure, either in the code or in
Figure 3-27, we can see two elements. The first has
descendants but not any descendants, so it won’t be
matched. The second also has descendants, and one
of them has an descendant. It’s a match! The will be
given a red border.

The second rule also causes the browser to look at all the
elements. In this case, for any it finds, the browser looks
for an ol ul ol relationship within the descendants of the
 . Elements outside the don’t count: only those
within it are considered. Of the two elements in the
document, neither has an inside a that’s inside
another that is itself descended from the being
considered. There’s no match, so neither of the elements
will be italicized.

Even more powerfully, you’re free to mix :has() with other
pseudo-classes. You might, for example, want to select any

heading level if it has an image inside. You can do this in two
ways: the long, clumsy way or the compact way. Both are shown
here:

The two selectors have the same outcome: if an element is one
of the listed heading elements, and that element has among its
descendant elements an element, then the heading will
be selected.

For that matter, you could select any headings that don’t have
images inside:

:is(h1, h2, h3, h4, h5, h6):not(:has(img))

Here, if an element is one of the listed heading levels, but an
 element is not one of the descendants it has, then the
heading will be selected. If we bring them together and apply
them to numerous headings, we get the results shown in
Figure 3-28.

h1:has(img), h2:has(img), h3:has(img), h4:has(img), h

:is(h1, h2, h3, h4, h5, h6):has(img)

Figure 3-28. To has and has not

As you can already see, this selector has a lot of power. Dangers
also exist: it is entirely possible to write selectors that cause
major performance hits to the browser, especially in settings
where scripting may be used to modify the document structure.
Consider the following:

div:has(*.popup) {…}

This is saying, “Apply these styles to any <div> that has an
element with a class of popup as a descendant.” When the page
is loaded into the browser, it has to check all the <div>
elements to see if they match this selector. That could mean a
few trips up and down the document’s structural tree, but
ideally it would resolve in a few milliseconds, and the page can
then be displayed.

But suppose we have a script that can add .popup to an
element, or even several elements, on the page. As soon as the
class values change, the browser has to check not only whether
any styles apply to .popup elements and their descendants, but
also whether any ancestor or sibling elements are affected by
this change. Instead of looking only down the document tree,
the browser now has to look up as well. And any change
triggered by this could mean changes all throughout the page’s
layout, both when an element is marked as .popup and
whenever a .popup element loses that class value, potentially
affecting elements in entirely different parts of the document.

This sort of performance hit is why there hasn’t been a “parent
selector” or anything like it before. Computers are getting fast
enough, and browser engines smart enough, that this is much
less of a worry than it was in the past—but it’s still something to
keep in mind and test out thoroughly.

NOTE

It is not possible to nest pseudo-elements like ::first-line or ::selection in
has() . (We’ll discuss pseudo-elements shortly.)

Other Pseudo-Classes

Even more pseudo-classes are defined in the CSS Selectors
specification, but they are partially supported in browsers, or in
some cases not supported at all as of early 2023, or else are
things we’ll cover elswhere in the book. We’re listing them in
Table 3-5 for the sake of completeness, and to point you toward
pseudo-classes that might be supported between this edition of
the book and the next one. (Or could be replaced with an
equivalent pseudo-class with a different name; that happens
sometimes.)

Table 3-5. Other pseudo-classes

Name Description

:nth-col() Refers to table cells or grid items that
are in an nth column, which is found
using the an + b pattern; essentially the
same as :nth-child() , but refers
specifically to table or grid columns

:nth-last-
col()

Refers to table cells or grid items that
are in an nth-last column, which is
found using the an + b pattern;
essentially the same as :nth-last-chi
ld() , but refers specifically to table or
grid columns

:left Refers to any lefthand page in a printed
document; see Chapter 21 for more

:right Refers to any righthand page in a
printed document; see Chapter 21 for
more

Name Description

:fullscree
n

Refers to an element that is being
displayed full-screen (e.g., a video that’s
in full-screen mode)

:past Refers to an element that appeared
before (in time) an element being
matched by :current

:current Refers to an element, or the ancestor of
an element, that is currently being
displayed in a time-based format like a
video (e.g., an element containing
closed-caption text)

:future Refers to an element that will appear
after (in time) an element being
matched by :current

Name Description

:paused Refers to any element that can have the
states “playing” or “paused” (e.g., audio,
video, etc.) when it is in the “paused”
state

:playing Refers to any element that can have the
states “playing” or “paused” (e.g., audio,
video, etc.) when it is in the “playing”
state

:picture-i
n-picture

Refers to an element that is used as a
picture-in-picture display

Pseudo-Element Selectors

Much as pseudo-classes assign phantom classes to anchors,
pseudo-elements insert fictional elements into a document in
order to achieve certain effects.

Unlike the single colon of pseudo-classes, pseudo-elements
employ a double-colon syntax, like ::first-line . This is

meant to distinguish pseudo-elements from pseudo-classes. This
was not always the case—in CSS2, both selector types used a
single colon—so for backward compatibility, browsers may
accept some single-colon pseudo-type selectors. Don’t take this
as an excuse to be sloppy, though! Use the proper number of
colons at all times to future-proof your CSS; after all, there is no
way to predict when browsers will stop accepting single-colon
pseudo-type selectors.

Styling the First Letter

The ::first-letter pseudo-element styles the first letter, or a
leading punctuation character and the first letter (if the text
starts with punctuation), of any non-inline element. This rule
causes the first letter of every paragraph to be colored red:

p::first-letter {color: red;}

The ::first-letter pseudo-element is most commonly used
to create an initial-cap or drop-cap typographic effect. You could
make the first letter of each <p> twice as big as the rest of the
heading, though you may want to apply this styling to only the
first letter of the first paragraph:

p:first-of-type::first-letter {font-size: 200%;}

Figure 3-29 illustrates the result of this rule.

Figure 3-29. The ::first-letter pseudo-element in action

This rule effectively causes the user agent to style a fictional, or
faux, element that encloses the first letter of each <p> . It would
look something like this:

The ::first-letter styles are applied only to the contents of
the fictional element shown in the example. This <p-first-
letter> element does not appear in the document source, nor
even in the DOM tree. Instead, its existence is constructed on
the fly by the user agent and is used to apply the ::first-
letter style(s) to the appropriate bit of text. In other words,
<p-first-letter> is a pseudo-element. Remember, you don’t
have to add any new tags. The user agent styles the first letter
for you as if you had encased it in a styled element.

<p><p-first-letter>T</p-first-letter>his is a p eleme
 letter</h2>

The first letter is defined as the first typographic letter unit of
the originating element, if it is not preceded by other content,
like an image. The specifications use the term letter unit
because some languages have letters made up of more than one
character, like œ in Old West Norse. Punctuation that precedes
or follows the first letter unit, even if there are several such
symbols, should be included in the ::first-letter pseudo-
element. The browser does this for you.

Styling the First Line

Similarly, ::first-line can be used to affect the first line of
text in an element. For example, you could make the first line of
each paragraph in a document large and purple:

p::first-line {
 font-size: 150%;
 color: purple;
}

In Figure 3-30, the style is applied to the first displayed line of
text in each paragraph. This is true no matter how wide or
narrow the display region is. If the first line contains only the
first five words of the paragraph, only those five words will be

big and purple. If the first line contains the first 30 words of the
element, all 30 will be big and purple.

Figure 3-30. The ::first-line pseudo-element in action

Because the text from “This” to “only” should be big and purple,
the user agent employs a fictional markup that looks something
like this:

If the first line of text were edited to include only the first seven
words of the paragraph, the fictional </p-first-line> would
move back and occur just after the word “that.” If the user were
to increase or decrease the font-size rendering, or expand or
contract the browser window causing the width of the text to
change, thereby causing the number of words on the first line
to increase or decrease, the browser automatically sets only the

<p>
<p-first-line>This is a paragraph of text that has on
one stylesheet applied to it. That style causes the f
be big and purple. No other line will have those styl
</p>

words in the currently displayed first line to be both big and
purple.

The length of the first line depends on multiple factors,
including the font size, letter spacing, and width of the parent
container. Depending on the markup and the length of that first
line, the end of the first line could come in the middle of a
nested element. If the ::first-line breaks up a nested
element, such as an em or a hyperlink, the properties attached
to the ::first-line will apply to only the portion of that
nested element that is displayed on the first line.

Restrictions on ::first-letter and ::first-line

The ::first-letter and ::first-line pseudo-elements
currently can be applied only to block-display elements such as
headings or paragraphs, and not to inline-display elements such
as hyperlinks. There are also limits on the CSS properties that
may be applied to ::first-line and ::first-letter .
Table 3-6 gives an idea of these limitations. Like all pseudo-
elements, neither can be included in :has() or :not() .

Table 3-6. Properties permitted on pseudo-elements

::first-letter ::first-line

All font properties
All background
properties
All text decoration
properties
All inline typesetting
properties
All inline layout
properties
All border properties
box-shadow

color

opacity

All font properties
All background
properties
All margin properties
All padding properties
All border properties
All text decoration
properties
All inline typesetting
properties
color

opacity

The Placeholder Text Pseudo-Element

As it happens, the restrictions on what styles can be applied via
::first-line are exactly the same as the restrictions on styles

applied via ::placeholder . This pseudo-element matches any
placeholder text placed into text inputs and textareas. You
could, for example, italicize text input placeholder text and turn
textarea placeholder text a dusky blue like this:

input::placeholder {font-style: italic;}
textarea::placeholder {color: cornflowerblue;}

For both <input> and <textarea> elements, this text is
defined by the placeholder attribute in HTML. The markup
will look something very much like this:

If text is prefilled using the value attribute on <input>
elements, or by placing content inside the <textarea> element,
that will override the value of any placeholder attribute, and
the resulting text won’t be selected with the ::placeholder
pseudo-element.

The Form Button Pseudo-Element

<input type="text" placeholder="(XXX) XXX-XXXX" id="p
<textarea placeholder="Tell us what you think!"></tex

Speaking of form elements, it’s also possible to directly select
the file-selector button—and only the file-selector button—in an
<input> element that has a type of file . This gives you a
way to call attention to the button a user needs to click to open
the file-selection dialog, even if no other part of the input can be
directly styled.

If you’ve never seen a file-selection input, it usually looks like
this:

That second line gets replaced with a control whose appearance
is dependent on the combination of operating system and
browser, so it tends to look at least a little different (sometimes
a lot different) from one user to the next. Figure 3-31 shows one
possible rendering of the input, with the button styled by the
following CSS:

input::file-selector-button {
 border: thick solid gray;
 border-radius: 2em;
}

<label for="uploadField">Select file from computer</l
<input id="uploadField" type="file">

Figure 3-31. Styling the button in a file-submission input

Generating Content Before and After
Elements

Let’s say you want to preface every <h2> element with a pair of
silver square brackets as a typographical effect:

h2::before {content: "]]"; color: silver;}

CSS lets you insert generated content, and then style it directly
using the pseudo-elements ::before and ::after . Figure 3-32
illustrates an example.

Figure 3-32. Inserting content before an element

The pseudo-element is used to insert the generated content and
to style it. To place content at the end of an element, right
before the closing tag, use the pseudo-element ::after . You
could end your documents with an appropriate finish:

body::after {content: "The End.";}

Conversely, if you want to insert some content at the beginning
of an element, right after the opening tag, use ::before . Just
remember that in either case, you have to use the content
property in order to insert something to style.

Generated content is its own subject, and the entire topic
(including more detail on ::before , ::after , and content) is
covered more thoroughly in Chapter 16.

Highlight Pseudo-Elements

A relatively new concept in CSS is the ability to style pieces of
content that have been highlighted, either by user selection or
by the user agent itself. These are summarized in Table 3-7.

Table 3-7. Highlight pseudo-elements

Name Description

::selectio
n

Refers to any part of a document that
has been highlighted for user operation
(e.g., text that has been drag-selected
with a mouse)

::target-t
ext

Refers to the text of a document that has
been targeted; this is distinct from the :
target pseudo-class, which refers to a
targeted element as a whole, not a
fragment of text

::spelling
-error

Refers to the part of a document that
has been marked by the user agent as a
misspelling

::grammar-
error

Refers to the part of a document that
has been marked by the user agent as a
grammar error

Of the four pseudo-elements in Table 3-7, only one,
::selection , has any appreciable support as of early 2023. So
we’ll explore it and leave the others for a future edition.

When someone uses a mouse pointer to click-hold-and-drag in
order to highlight some text, that’s a selection. Most browsers
have default styles set for text selection. Authors can apply a
limited set of CSS properties to such selections, overriding the
browser’s default styles, by styling the ::selection pseudo-
element. Let’s say you want selected text to be white on a navy-
blue background. The CSS would look like this:

The primary use cases for ::selection are specifying a color
scheme for selected text that doesn’t clash with the rest of the
design, or defining different selection styles for different parts
of a document. For example:

Be careful in styling selection highlights: users generally expect
text they select to look a certain way, usually defined by settings

::selection {color: white; background-color: navy;}

::selection {color: white; background-color: navy;}
form::selection {color: silver; background-color: mar

in their operating system. Thus, if you get too clever with
selection styling, you could confuse users. That said, if you
know that selected text can be difficult to see because your
design’s colors tend to obscure it, defining more obvious
highlight styles is probably a good idea.

Note that selected text can cross element boundaries, and that
multiple selections can occur within a given document. Imagine
that a user selects text starting from the middle of one
paragraph to the middle of the next. In effect, each paragraph
will get its own selection pseudo-element nested inside, and
selection styling will be handled as appropriate for the context.
Given the following CSS and HTML, you’ll get a result like that
shown in Figure 3-33:

.p1::selection {color: silver; background-color: blac

.p2::selection {color: black; background-color: silve

<p class="p1">This is a paragraph with some text that
 one of two.</p>
<p class="p2">This is a paragraph with some text that
 two of two.</p>

Figure 3-33. Selection styling

This underscores a point made earlier: be careful with your
selection styling. It is all too easy to make text unreadable for
some users, particularly if your selection styles interact badly
with the user’s default selection styles.

Furthermore, for user privacy reasons, you can apply only a
limited number of CSS properties to selections: color ,
background-color , text-decoration and related properties,
text-shadow , and the stroke properties (in SVG).

NOTE

As of early 2023, selections do not have their styles inherited: selecting text
containing some inline elements will apply the selection styling to the text outside
the inline elements, but not within the inline elements. It is not clear if this behavior
is intended, but it is consistent across major browsers.

Beyond ::selection , there will likely be increasing support
for ::target-text . As of early 2023, this is supported in only
Chromium browsers, which introduced a feature that needs it.
With this feature, text can be added to the end of a URL as part

of the fragment identifier for highlighting, in order to draw
attention to one or more parts of the page.

For example, a URL might look something like:
https://example.org/#:~:text=for%20use%20in%20illustrat

ive%20examples . The part at the end says to the browser, “Once
you’ve loaded the page, highlight any examples of this text.”
The text is encoded for use in URLs, which is why it’s filled with
%20 strings—they represent spaces. The result will look
something like Figure 3-34.

Figure 3-34. Targeted text styling

If you wanted to suppress this content highlighting on your own
pages, you might do something like this:

As for ::spelling-error and ::grammar-error , these are
meant to apply highlighting of some sort to any spelling or

::target-text {color: inherit; background-color: inhe

grammar errors within a document. You can see the utility for
something like Google Docs or the editing fields of CMSs like
WordPress or Craft. For most other applications, though, they
seem unlikely to be very popular. Regardless, as of this writing,
there is no browser support for either, and the Working Group
is still hashing out the details of how they should work.

The Backdrop Pseudo-Element

Suppose you have an element that’s being presented full-screen,
like a video. Furthermore, suppose that element doesn’t neatly
fill the screen all the way to the edges, perhaps because the
aspect ratio of the element doesn’t match the aspect ratio of the
screen. What should be filled in for the parts of the screen that
the element doesn’t cover? And how would you select that non-
element region with CSS?

Enter the ::backdrop pseudo-element. This represents a box
that’s the exact size of the full-screen viewport, and it is always
drawn beneath a full-screen element. So you might put a dark-
gray backdrop behind any full-screen video like this:

video::backdrop {background: #111;}

CSS doesn’t restrict which styles can be applied to backdrops,
but since they’re essentially empty boxes placed behind a full-
screen element, most of the time you’ll probably be setting
background colors or images.

An important thing to remember is that backdrops do not
participate in inheritance. They can’t inherit styles from
ancestor elements, nor do they pass any of their styles on to any
children. Whatever styles you apply to the backdrop will exist
in their own little pocket universe.

The Video-Cue Pseudo-Element

On the subject of videos, videos often have Web Video Text
Tracks (WebVTT) data containing the text captions enabling
accessibility. These captions are known as cues and can be
styled with the ::cue pseudo-element.

Let’s say you have a video that’s mostly dark, with a few light
segments. You might style the cues to be a lightish-gray text on a
translucent dark background, as follows:

::cue {
 color: silver;

 background: rgba(0,0,0,0.5);
}

This will always apply to the currently visible cue.

You can also select parts of individual cues by using a selector
pattern inside parentheses. This can be used to style specific
elements defined in the WebVTT data, drawn from a small list
allowed by the WebVTT specification. For example, any
italicized cue text could be selected as follows:

::cue(i) {…}

You could use structural pseudo-classes like :nth-child , but
these will apply only within a given cue, not across cues. You
can’t select every other cue for styling, but you can select every
other element within a given cue. Assume the following
WebVTT data:

00:00:01.500 --> 00:00:02.999
<v Hildy>Tell me, is the lord of the universe in?</v>

00:00:03.000 --> 00:00:04.299
- Yes, he's in.
- In a bad humor.

The second cue includes two lines of text. These are treated as
separate elements, in effect, even though no elements are
specified. Thus, we could make the line Hildy says (indicated
with <v Hildy> , which is the WebVTT equivalent of <v
voice="Hildy">) boldface, and give alternate colors to the two
lines of dialog in the second cue, like so:

::cue(v[voice="Hildy"]) {font-weight: bold;}
::cue(:nth-child(odd)) {color: yellow;}
::cue(:nth-child(even)) {color: white;}

As of early 2023, a limited range of properties can be applied to
cues:

color

background and its associated longhand properties (e.g.,
background-color)
text-decoration and its associated longhand properties
(e.g., text-decoration-thickness)
text-shadow

text-combine-upright

font and its associated longhand properties (e.g., font-
weight)
ruby-position

opacity

visibility

white-space

outline and its associated longhand properties (e.g.,
outline-width)

Shadow Pseudo-Classes and -
Elements

Another recent innovation in HTML has been the introduction
of the shadow DOM, which is a deep and complex subject we
don’t have the space to explore here. At a basic level, the
shadow DOM allows developers to create encapsulated markup,
style, and scripting within the regular (or light) DOM. This keeps
the styles and scripts of one shadow DOM from affecting any
other part of the document, whether those parts are in the light
or shadow DOM.

We’re bringing this up here because CSS does provide ways to
hook into shadow DOMs, as well as to reach up from within a
shadow DOM to select the piece of the light DOM that hosts the
shadow. (This all sounds very panel-van artistic, doesn’t it?)

Shadow Pseudo-Classes

To see what this means, let’s bring back the combobox example
from earlier in the chapter. It looks like this:

<mylib-combobox>options go here</mylib-combobox>

All the CSS (and JS) within this custom element apply only to the
<mylib-combobox> element. Even if the CSS within the custom
element says something like li {color: red;} , that will apply
to only elements constructed within the <mylib-
combobox> . It can’t leak out to turn list items elsewhere on the
page red.

That’s all good, but what if you want to style the host element in
a certain way from within the custom element? The host
element, more generally called the shadow host, is in this case
<mylib-combobox> . From within the shadow host, CSS can
select the host by using the :host pseudo-class. For example:

:host {border: 2px solid red;}

That will reach up, so to speak, “pierce through the shadow
boundary” (to use an evocative phrase from the specification),
and select the <mylib-combobox> element, or whatever the
name of the custom element containing the shadow DOM CSS is.

Now, suppose there can be different kinds of comboboxes, each
with its own class. Something like this:

You might want to style each class of combobox differently. For
that, the :host() pseudo-class exists:

:host(.countries) {border: 2px solid red;}
:host(.regions) {border: 1px solid silver;}
:host(.cities) {border: none; background: gray;}

These rules could then be included in the styles that are loaded
by all comboboxes, using the presence of classes on the shadow
hosts to style as appropriate.

But wait! What if, instead of latching on to classes, we want to
style our shadow hosts based on where they appear in the light
DOM? In that case, :host-context() has you covered. Thus,
we can style our comboxes one way if they’re part of a form,
and a different way if they’re part of a header navigation
element:

<mylib-combobox class="countries">options go here</my
<mylib-combobox class="regions">options go here</myli
<mylib-combobox class="cities">options go here</mylib

The first of these means “if the shadow host is the descendant of
a <form> element, apply these styles.” The second means “if the
shadow host is the descendant of a <nav> element that is itself
descended from a <header> element, apply these styles.” To be
clear, form and <nav> are not the shadow hosts in these
situations! The selector in :host-context() is describing only
the context in which the host needs to be placed in order to be
selected.

NOTE

The four selectors that cross the shadow DOM/light DOM boundary— :host ,
:host() , and :host-content() , along with the :slotted() selector discussed next
—are supported only when declared within the context of the shadow DOM. As of
early 2023, :host-context() isn’t supported in Safari or Firefox and is at risk of
being removed from the specification.

Shadow Pseudo-Elements

In addition to having hosts, shadow DOMs can also define slots.
These are elements that are meant to have other things slotted
into them, much as you would place an expansion card into an

:host-context(form) {border: 2px solid red;}
:host-context(header nav) {border: 1px solid silver;}

expansion slot. Let’s expand the markup of the combobox a
little bit:

<mylib-combobox>
 Country
 ["shadow-tree"]
 <slot name="label"></slot>
 [/"shadow tree"]
</mylib-combobox>

Now, to be clear, the shadow tree isn’t actual markup. It’s just
there to represent the shadow DOM that gets constructed by
whatever script builds it. So please don’t go writing square-
bracketed quoted element names into your documents; they
will fail.

That said, given a setup like the preceding one, would
be slotted into the slot element, because the names match.
You could try applying styles to the slot, but what if you’d rather
style the thing that got plugged into the slot? That’s represented
by the ::slotted() pseudo-element, which accepts a selector
as needed.

Thus, if you want to style all slotted elements one way and then
add some extra style if the slotted element is a , you

would write something like this:

::slotted(*) {outline: 2px solid red;}
::slotted(span) {font-style-italic;}

More practically, you could style all slots red, and then remove
that red from any slot that’s been slotted with content, thus
making the slots that failed to get any content stand out.
Something like this:

slot {color: red;}
::slotted(*) {color: black;}

NOTE

The shadow DOM and its use is a complex topic, and one that we have not even
begun to scratch the surface of in this section. Our only goal is to introduce the
pseudo-classes and -elements that pertain to the shadow DOM, not explain the
shadow DOM or illustrate best practices.

Summary

As you saw in this chapter, pseudo-classes and pseudo-elements
bring a whole lot of power and flexibility to the table. Whether
selecting hyperlinks based on their visited state, matching

elements based on their placement in the document structure,
or styling pieces of the shadow DOM, there’s a pseudo selector
for nearly every taste.

In this chapter and the preceding one, we’ve mentioned the
concepts of specificity and the cascade a few times and
promised to talk about them soon. Well, soon is now. That’s
exactly what we’ll do in the next chapter.

Chapter 4. Specificity, Inheritance,
and the Cascade

Chapters 2 and 3 showed how document structure and CSS
selectors allow you to apply a wide variety of styles to elements.
Knowing that every valid document generates a structural tree,
you can create selectors that target elements based on their
ancestors, attributes, sibling elements, and more. The structural
tree is what allows selectors to function and is also central to a
similarly crucial aspect of CSS: inheritance.

Inheritance is the mechanism by which some property values
are passed on from an element to a descendant element. When
determining which values should apply to an element, a user
agent must consider not only inheritance but also the specificity
of the declarations, as well as the origin of the declarations
themselves. This process of consideration is what’s known as
the cascade.

We will explore the interrelation between these three
mechanisms—specificity, inheritance, and the cascade—in this
chapter. For now, the difference between the latter two can be
summed up this way: when we write h1 {color: red; color:
blue;} , the <h1> becomes blue because of the cascade, and

any inside the <h1> also becomes blue because of
inheritance.

Above all, regardless of how abstract things may seem, keep
going! Your perseverance will be rewarded.

Specificity

You know from Chapters 2 and 3 that you can select elements
by using a wide variety of means. In fact, the same element can
often be selected by two or more rules, each with its own
selector. Let’s consider the following three pairs of rules.
Assume that each pair will match the same element:

Only one of the two rules in each pair can be applied, or “win,”
since the matched elements can be only one color at a time.

h1 {color: red;}
body h1 {color: green;}

h2.grape {color: purple;}
h2 {color: silver;}

html > body table tr[id="totals"] td ul > li {color:
li#answer {color: navy;}

How do we know which one will win?

The answer is found in the specificity of each selector. For every
rule, the user agent (i.e., a web browser) evaluates the
specificity of the selector and attaches the specificity to each
declaration in the rule within the cascade layer that has
precedence. When an element has two or more conflicting
property declarations, the one with the highest specificity will
win out.

NOTE

This isn’t the whole story in terms of conflict resolution, which is a bit more
complicated than a single paragraph can cover. For now, just keep in mind that
selector specificity is compared only to other selectors that share the same origin and
cascade layer. We’ll cover those terms, and more in “The Cascade”.

A selector’s specificity is determined by the components of the
selector itself. A specificity value can be expressed in three
parts, like this: 0,0,0 . The actual specificity of a selector is
determined as follows:

For every ID attribute value given in the selector, add 1,0,0 .
For every class attribute value, attribute selection, or pseudo-
class given in the selector, add 0,1,0 .

For every element and pseudo-element given in the selector,
add 0,0,1 .
Combinators do not contribute anything to the specificity.
Anything listed inside a :where() pseudo-class, and the
universal selector, adds 0,0,0 . (While they do not
contribute anything to the specificity weight, they do match
elements, unlike combinators.)
The specificity of an :is() , :not() , or :has() pseudo-class
is equal to the specificity of the most specific selector in its
selector list argument.

For example, the following rules’ selectors result in the
indicated specificities:

If an element is matched by both the second and fifth
rules in this example, that element will be maroon because the

h1 {color: red;} /* specificity =
p em {color: purple;} /* specificity =
.grape {color: purple;} /* specificity =

.bright {color: yellow;} / specificity =
p.bright em.dark {color: maroon;} /* specificity =
#id216 {color: blue;} /* specificity =
:is(aside#warn, code) {color: red;} / specificity =
div#sidebar *[href] {color: silver;} /* specificity =

sixth rule’s specificity outweighs the second’s.

Take special note of the next-to-last selector, *:is(aside#warn,
code) . The :is() pseudo-class is one of a small group of
pseudo-classes for which the specificity is equal to the most
specific selector in the selector list. Here, the selector list is
aside#warn, code . The aside#warn compound selector has a
specificity of 1,0,1 , and the code selector has a specificity of
0,0,1 . Thus, the whole :is() portion of the selector is set to
the specificity of the aside#warn selector.

Now, let’s return to the pairs of rules from earlier in the section
and fill in the specificities:

h1 {color: red;} /* 0,0,1 */
body h1 {color: green;} /* 0,0,2 (winner)*/

h2.grape {color: purple;} /* 0,1,1 (winner) */

h2 {color: silver;} /* 0,0,1 */

html > body table tr[id="totals"] td ul > li {color:
li#answer {color: navy;}
 (winner) */

We’ve indicated the winning rule in each pair; in each case, it’s
because the specificity is higher. Notice how they’re listed and
that the order of the rules doesn’t matter here.

In the second pair, the selector h2.grape wins because it has
an extra class: 0,1,1 beats out 0,0,1 . In the third pair, the
second rule wins because 1,0,1 wins out over 0,1,7 . In fact,
the specificity value 0,1,0 would win out over the value
0,0,13 .

This happens because the values are compared from left to
right. A specificity of 1,0,0 will win out over any specificity
that begins with a 0 , no matter what the rest of the numbers
might be. So 1,0,1 wins over 0,1,7 because the 1 in the first
value’s first position beats the 0 in the second value’s first
position.

Declarations and Specificity

Once the specificity of a selector has been determined, the
specificity value will be conferred on all of its associated
declarations. Consider this rule:

h1 {color: silver; background: black;}

For specificity purposes, the user agent must treat the rule as if
it were “ungrouped” into separate rules. Thus, the previous
example would become the following:

h1 {color: silver;}
h1 {background: black;}

Both have a specificity of 0,0,1 , and that’s the value conferred
on each declaration. The same splitting-up process happens
with a grouped selector as well. Given the rule,

h1, h2.section {color: silver; background: black;}

the user agent treats it as if it were the following:

h1 {color: silver;} /* 0,0,1 */
h1 {background: black;} /* 0,0,1 */
h2.section {color: silver;} /* 0,1,1 */
h2.section {background: black;} /* 0,1,1 */

This becomes important when multiple rules match the same
element and some of the declarations clash. For example,
consider these rules:

h1 + p {color: black; font-style: italic;}

When applied to the following markup, the content will be
rendered as shown in Figure 4-1:

p {color: gray; background: white; font-style: normal
*.callout {color: black; background: silver;}

<h1>Greetings!</h1>
<p class="callout">
It's a fine way to start a day, don't you think?
</p>

<p>
There are many ways to greet a person, but the words
as the act of greeting itself.
</p>
<h1>Salutations!</h1>
<p>
There is nothing finer than a hearty welcome from one
</p>
<p class="callout">
Although a steaming pot of fresh-made jambalaya runs
</p>

Figure 4-1. How different rules affect a document

In every case, the user agent determines which rules match a
given element, calculates all of the associated declarations and
their specificities, determines which rules win out, and then
applies the winners to the element to get the styled result. These
machinations must be performed on every element, selector,
and declaration. Fortunately, the user agent does it all
automatically and nearly instantly. This behavior is an
important component of the cascade, which we’ll discuss later
in this chapter.

Resolving Multiple Matches

When an element is matched by more than one selector in a
grouped selector, the most specific selector is used. Consider the
following CSS:

li, /* 0,0,1 */
.quirky, /* 0,1,0 */
#friendly, /* 1,0,0 */
li.happy.happy.happy#friendly { /* 1,3,1 */
 color: blue;
}

Here we have one rule with a grouped selector, and each of the
individual selectors has a very different specificity. Now
suppose we find this in our HTML:

Every one of the selectors in the grouped selector applies to the
list item! Which one is used for specificity purposes? The most
specific. Thus, in this example, the blue is applied with a
specificity of 1,3,1 .

You might have noticed that we repeated the happy class name
three times in one of the selectors. This is a bit of hack that can
be used with classes, attributes, pseudo-classes, and even ID
selectors to increase specificity. Do be careful with it, since
artificially inflating specificity can create problems in the

<li class="happy quirky" id="friendly">This will be b

future: you might want to override that rule with another, and
that rule will need even more classes chained together.

Zeroed Selector Specificity

The universal selector does not contribute to specificity. It has a
specificity of 0,0,0 , which is different from having no
specificity (as we’ll discuss in “Inheritance”). Therefore, given
the following two rules, a paragraph descended from a <div>
will be black, but all other elements will be gray:

div p {color: black;} /* 0,0,2 */
* {color: gray;} /* 0,0,0 */

This means the specificity of a selector that contains a universal
selector along with other selectors is not changed by the
presence of the universal selector. The following two selectors
have exactly the same specificity:

div p /* 0,0,2 */
body * strong /* 0,0,2 */

The same is true for the :where() pseudo-class, regardless of
whatever selectors might be in its selector list. Thus,
:where(aside#warn, code) has a specificity of 0,0,0 .

Combinators, including ~ , > , + , and the space character, have
no specificity at all—not even zero specificity. Thus, they have
no impact on a selector’s overall specificity.

ID and Attribute Selector Specificity

It’s important to note the difference in specificity between an ID
selector and an attribute selector that targets an id attribute.
Returning to the third pair of rules in the example code, we find
the following:

The ID selector (#answer) in the second rule contributes 1,0,0
to the overall specificity of the selector. In the first rule,
however, the attribute selector ([id="totals"]) contributes
0,1,0 to the overall specificity. Thus, given the following rules,
the element with an id of meadow will be green:

#meadow {color: green;} /* 1,0,0 */
[id="meadow"] {color: red;} / 0,1,0 */

Importance

html > body table tr[id="totals"] td ul > li {color:
li#answer {color: navy;}

Sometimes a declaration is so important that it outweighs all
other considerations. CSS calls these important declarations (for
hopefully obvious reasons) and lets you mark them by inserting
the flag !important just before the terminating semicolon in a
declaration:

Here, the color value of #333 is marked with the !important
flag, whereas the background value of white is not. If you wish
to mark both declarations as important, each declaration needs
its own !important flag:

You must place the !important flag correctly, or the
declaration may be invalidated: !important always goes at the
end of a declaration, just before the semicolon. This placement
is especially critical when it comes to properties that allow
values containing multiple keywords, such as font :

p.dark {color: #333 !important; background: white;}

p.dark {color: #333 !important; background: white !im

p.light {color: yellow; font: smaller Times, serif !i

If !important were placed anywhere else in the font
declaration, the entire declaration would likely be invalidated
and none of its styles applied.

NOTE

We realize that to those of you who come from a programming background, the
syntax of this token instinctively translates to “not important.” For whatever reason,
the bang (!) was chosen as the delimiter for important flags, and it does not mean
“not” in CSS, no matter how many other languages give it that very meaning. This
association is unfortunate, but we’re stuck with it.

Declarations that are marked !important do not have a special
specificity value, but are instead considered separately from
unimportant declarations. In effect, all !important
declarations are grouped together, and specificity conflicts are
resolved within that group. Similarly, all unimportant
declarations are considered as a group, with any conflicts
within the unimportant group as described previously. Thus, in
any case where an important and an unimportant declaration
conflict, an important declaration will always win (unless the
user agent or user have declared the same property as
important, which you’ll see later in the chapter).

Figure 4-2 illustrates the result of the following rules and
markup fragment:

h1 {font-style: italic; color: gray !important;}
.title {color: black; background: silver;}
* {background: black !important;}

<h1 class="title">NightWing</h1>

Figure 4-2. Important rules always win

WARNING

It’s generally bad practice to use !important in your CSS, and it is rarely needed. If
you find yourself reaching for !important , stop and look for other ways to get the
same result without using !important . Cascade layers are one such possibility; see
“Sorting by Cascade Layer” for more details.

Inheritance

Another key concept in understanding how styles are applied to
elements is inheritance. Inheritance is the mechanism by which
some styles are applied not only to a specified element, but also
to its descendants. If a color is applied to an <h1> element, for

example, that color is applied to all text inside the <h1> , even
the text enclosed within child elements of that <h1> :

h1 {color: gray;}

<h1>Meerkat Central</h1>

Both the ordinary <h1> text and the text are colored gray
because the element inherits the value of color from the
<h1> . If property values could not be inherited by descendant
elements, the text would be black, not gray, and we’d
have to color the elements separately.

Consider an unordered list. Let’s say we apply a style of color:
gray; for elements:

ul {color: gray;}

We expect that style applied to a will also be applied to its
list items, as well as to any content of those list items, including
the marker (i.e., the bullet next to each list item). Thanks to
inheritance, that’s exactly what happens, as Figure 4-3
demonstrates.

Figure 4-3. Inheritance of styles

It’s easier to see how inheritance works by turning to a tree
diagram of a document. Figure 4-4 shows the tree diagram for a
document much like the very simple document shown in
Figure 4-3.

Figure 4-4. A simple tree diagram

When the declaration color: gray; is applied to the
element, that element takes on that declaration. The value is
then propagated down the tree to the descendant elements and
continues on until no more descendants remain to inherit the
value. Values are never propagated upward; an element never
passes values up to its ancestors.

NOTE

The upward propagation rule in HTML has a notable exception: background styles
applied to the <body> element can be passed to the <html> element, which is the
document’s root element and therefore defines its canvas. This happens only if the
<body> element has a defined background and the <html> element does not. A few
other properties share this body-to-root behavior, such as overflow , but it happens
only with the <body> element. No other elements risk inheriting properties from a
descendant.

Inheritance is one of those things about CSS that is so basic that
you almost never think about it unless you have to. However,
you should still keep a couple of things in mind.

First, note that many properties are not inherited—generally in
order to avoid undesirable outcomes. For example, the property
border (which is used to set borders on elements) does not
inherit. A quick glance at Figure 4-5 reveals why this is the case.
If borders were inherited, documents would become much
more cluttered—unless the author took the extra effort to turn
off the inherited borders.

Figure 4-5. Why borders aren’t inherited

As it happens, most of the box-model properties—including
margins, padding, backgrounds, and borders—are not inherited
for the same reason. After all, you likely wouldn’t want all of
the links in a paragraph to inherit a 30-pixel left margin from
their parent element!

Second, inherited values have no specificity at all, not even zero
specificity. This seems like an academic distinction until you
work through the consequences of the lack of inherited
specificity. Consider the following rules and markup fragment
and compare them to the result shown in Figure 4-6:

* {color: gray;}
h1#page-title {color: black;}

Figure 4-6. Zero specificity defeats no specificity

<h1 id="page-title">Meerkat Central</h1>
<p>
Welcome to the best place on the web for meerkat info
</p>

Since the universal selector applies to all elements and has zero
specificity, its color declaration’s value of gray wins out over
the inherited value of black , which has no specificity at all.
(And now you may understand why we listed :where() and
the universal selector as having 0,0,0 specificity: they add no
weight, but do match elements.) Therefore, the element is
rendered gray instead of black.

This example vividly illustrates one of the potential problems of
using the universal selector indiscriminately. Because it can
match any element or pseudo-element, the universal selector
often has the effect of short-circuiting inheritance. This can be
worked around, but it’s usually more sensible to avoid the
problem in the first place by not using the universal selector by
itself indiscriminately.

The complete lack of specificity for inherited values is not a
trivial point. For example, assume that a stylesheet has been
written such that all text in a toolbar is to be white on black:

#toolbar {color: white; background: black;}

This will work so long as the element with an id of toolbar
contains nothing but plain text. If, however, the text within this
element is all hyperlinks (a elements), then the user agent’s

styles for hyperlinks will take over. In a web browser, this
means they’ll likely be colored blue, since the browser’s
internal stylesheet probably contains an entry like this:

a:link {color: blue;}

To overcome this problem, you must declare something like
this:

#toolbar {color: white; background: black;}
#toolbar a:any-link {color: white;}

By targeting a rule directly at the a elements within the
toolbar, you’ll get the result shown in Figure 4-7.

Figure 4-7. Directly assigning styles to the relevant elements

Another way to get the same result is to use the value inherit ,
covered in the next chapter. We can alter the previous example
like so:

#toolbar {color: white; background: black;}
#toolbar a:link {color: inherit;}

This also leads to the result shown in Figure 4-7, because the
value of color is explicitly inherited thanks to an assigned rule
whose selector has specificity.

The Cascade

Throughout this chapter, we’ve skirted one rather important
issue: what happens when two rules of equal specificity apply
to the same element? How does the browser resolve the
conflict? For example, consider the following rules:

h1 {color: red;}
h1 {color: blue;}

Which one wins? Both have a specificity of 0,0,1 , so they have
equal weight and should both apply. That can’t be the case
because the element can’t be both red and blue. So which will it
be?

At last, the name Cascading Style Sheets comes into focus: CSS is
based on a method of causing styles to cascade together, which
is made possible by combining inheritance and specificity with
a few rules. The cascade rules for CSS are as follows:

1. Find all rules containing a selector that matches a given
element.

2. Sort all declarations applying to the given element by explicit
weight.

3. Sort all declarations applying to the given element by origin.
There are three basic origins: author, reader, and user agent.
Under normal circumstances, the author’s styles (that is, your
styles as the author of the page) win out over the reader’s
styles, and both author and reader styles override the user
agent’s default styles. This is reversed for rules marked
!important , where user agent styles override author styles,
and both override reader styles.

4. Sort all declarations applying to the given element by
encapsulation context. If a style is assigned via a shadow
DOM, for example, it has an encapsulation context for all
elements within that same shadow DOM and does not apply
to elements outside that shadow DOM. This allows
encapsulated styles to override styles that are inherited from
outside the shadow DOM.

5. Sort all declarations by whether they are element attached.
Styles assigned via a style attribute are element attached.
Styles assigned from a stylesheet, whether external or
embedded, are not.

6. Sort all declarations by cascade layer. For normal-weight
styles, the later a cascade layer first appears in the CSS, the
greater the precedence. Styles without a layer are considered
to be part of a “default” final pseudo-layer, one that has
higher precedence than styles in explicitly created layers. For
important-weight styles, the earlier a cascade layer appears
in the CSS, the greater its precedence, and all important-
weight styles in explicitly created layers win out over styles
in the default layer, important or otherwise. Cascade layers
can appear in any origin.

7. Sort all declarations applying to the given element by
specificity. Those elements with a higher specificity have
more weight than those with lower specificity.

8. Sort all declarations applying to the given element by order of
appearance. The later a declaration appears in the stylesheet
or document, the more weight it is given. Declarations that
appear in an imported stylesheet are considered to come
before all declarations within the stylesheet that imports
them.

To be clear about how this all works, let’s consider examples
that illustrate some of the cascade rules.

Sorting by Importance and Origin

If two rules apply to an element, and one is marked
!important , the important rule wins out:

p {color: gray !important;}

Even though a color is assigned in the style attribute of the
paragraph, the !important rule wins out, and the paragraph is
gray. This occurs because sorting by !important has higher
precedence than sorting by element-attached styles (style="").
The gray is inherited by the element as well.

Note that if !important is added to the inline style in this
situation, it will be the winner. Thus, given the following, the
paragraph (and its descendant element) will be black:

p {color: gray !important;}

If the importance is the same, the origin of a rule is considered.
If an element is matched by normal styles in both the author’s

<p style="color: black;">Well, hello there!<

<p style="color: black !important;">Well, hello</

stylesheet and the reader’s stylesheet, the author’s styles are
used. For example, assume that the following styles come from
the indicated origins:

p em {color: black;} /* author's stylesheet */

p em {color: yellow;} /* reader's stylesheet */

In this case, emphasized text within paragraphs is colored
black, not yellow, because the author styles win out over the
reader styles. However, if both rules are marked !important ,
the situation changes:

Now the emphasized text in paragraphs will be yellow, not
black.

As it happens, the user agent’s default styles—which are often
influenced by the user preferences—are figured into this step.
The default style declarations are the least influential of all.
Therefore, if an author-defined rule applies to anchors (e.g.,

p em {color: black !important;} /* author's styles

p em {color: yellow !important;} /* reader's styles

declaring them to be white), then this rule overrides the user
agent’s defaults.

To sum up, CSS has eight basic levels to consider in terms of
declaration precedence. In order of most to least precedence,
these are as follows:

1. Transition declarations (see Chapter 18)
2. User agent important declarations
3. Reader important declarations
4. Author important declarations
5. Animation declarations (see Chapter 19)
6. Author normal declarations
7. Reader normal declarations
8. User agent declarations

Thus, a transition style will override all other rules, regardless
of whether those other rules are marked !important or from
what origin the rules come.

Sorting by Element Attachment

Styles can be attached to an element by using a markup
attribute such as style . These are called element-attached

styles, and they are outweighed only by considerations of origin
and weight.

To understand this, consider the following rule and markup
fragment:

h1 {color: red;}

<h1 style="color: green;">The Meadow Party</h1>

Given that the rule is applied to the <h1> element, you would
still probably expect the text of the <h1> to be green. This
happens because every inline declaration is element attached,
and so has a higher weight than styles that aren’t element
attached, like the color: red rule.

This means that even elements with id attributes that match a
rule will obey the inline style declaration. Let’s modify the
previous example to include an id :

h1#meadow {color: red;}

<h1 id="meadow" style="color: green;">The Meadow Part

Thanks to the inline declaration’s weight, the text of the <h1>
element will still be green.

Just remember that inline styles are generally a bad practice, so
try not to use them if at all possible.

Sorting by Cascade Layer

Cascade layers allow authors to group styles together so that
they share a precedence level within the cascade. This might
sound like !important ; in some ways they are similar—but in
others, very different. This is easier to demonstrate than it is to
describe. The ability to create cascade layers means authors can
balance various needs, such as the needs of a component
library, against the needs of a specific page or part of a web app.

NOTE

Cascade layers were introduced to CSS at the end of 2021, so browser support for
them exists only in browsers released from that point forward.

If conflicting declarations apply to an element and all have the
same explicit weight and origin, and none are element
attached, they are next sorted by cascade layer. The order of
precedence for layers is set by the order in which the layers are

first declared or used, with later declared layers taking
precedence over earlier declared layers for normal styles.
Consider the following:

@layer site {
 h1 {color: red;}
}
@layer page {
 h1 {color: blue;}
}

These <h1> elements will be colored blue. This is because the
page layer comes later in the CSS than the site layer, and so
has higher precedence.

Any style not part of a named cascade layer is assigned to an
implicit “default” layer, one that has higher precedence than
any named layer for unimportant rules. Suppose we alter the
previous example as follows:

h1 {color: maroon;}
@layer site {
 h1 {color: red;}
}
@layer page {

 h1 {color: blue;}
}

The <h1> elements will now be maroon, because the implicit
“default” layer to which the h1 {color: maroon;} belongs has
higher precedence than any named layer.

You can also define a specific precedence order for named
cascade layers. Consider the following CSS:

@layer site, page;

@layer page {
 h1 {color: blue;}
}

@layer site {
 h1 {color: red;}
}

Here, the first line defines an order of precedence for the
layers: the page layer will be given higher precedence than the
site layer for normal-weight rules like those shown in the
example. Thus, in this case, <h1> elements will be blue,
because when the layers are sorted, page is given more
precedence than site . For important-flagged rules, the order

of precedence is reversed. Thus, if both rules were marked
!important , the precedence would flip and <h1> elements
would be red.

Let’s talk a little bit more about how cascade layers specifically
work, especially since they’re so new to CSS. Let’s say you want
to define three layers: one for the basic site styles, one for
individual page styles, and one for a component library whose
styles are imported from an external stylesheet. The CSS might
look like this:

This ordering will have normal-weight components styles
override and page and site normal-weight styles, and
normal-weight page styles will override only site normal-
weight styles. Conversely, important site styles will override
all page and components styles, whether they’re important or
normal weight, and page important styles will override all
components styles.

Here’s a small example of how layers might be managed:

@layer site, page;
@import url(/assets/css/components.css) layer(compone

@layer site, component, page;
@import url(/c/lib/core.css) layer(component);
@import url(/c/lib/widgets.css) layer(component);
@import url(/c/site.css) layer(site);

@layer page {
 h1 {color: maroon;}
 p {margin-top: 0;}
}

@layer site {
 body {font-size: 1.1rem;}
 h1 {color: orange;}
 p {margin-top: 0.5em;}
}

p {margin-top: 1em;}

This example has three imported stylesheets, one of which is
assigned to the site layer and two of which are in the
component layer. Then some rules are assigned to the page
layer, and a couple of rules are placed in the site layer. The
rules in the @layer site {} block will be combined with the
rules from /c/site.css into a single site layer.

After that, there’s a rule outside the explicit cascade layers,
which means it’s part of the implicit “default” layer. Rules in
this default layer will override the styles of any of the other
layers. So, given the code shown, paragraphs will have top
margins of 1em .

But before all of that, a directive sets the precedence order of
the named layers: page overrules component and site , and
component overrules site . Here’s how those various rules are
grouped as far as the cascade is concerned, with comments to
describe their placement in the sorting:

/* 'site' layer is the lowest weighted */
@import url(/c/site.css) layer(site);
@layer site {
 body {font-size: 1.1rem;}
 h1 {color: orange;}
 p {margin-top: 0.5em;}
}

/* 'component' layer is the next-lowest weighted */
@import url(/c/lib/core.css) layer(component);
@import url(/c/lib/widgets.css) layer(component);

/* 'page' layer is the next-highest weighted */
@layer page {
 h1 {color: maroon;}

As you can see, the later a layer comes in the ordering of the
layers, the more weight it’s given by the cascade’s sorting
algorithm.

To be clear, cascade layers don’t have to be named. Naming just
keeps things a lot clearer in terms of setting an order for them,
and it also enables adding styles to the layer. Here are some
examples of using unnamed cascade layers:

@import url(base.css) layer;

p {margin-top: 1em;}

@layer {
 h1 {color: maroon;}
 body p {margin-top: 0;}
}

{ ;}
 p {margin-top: 0;}
}

/* the implicit layer is the highest weighted */
p {margin-top: 1em;}

In this case, the rules imported from base.css are assigned to an
unnamed layer. Even though this layer doesn’t actually have a
name, let’s think of it as CL1. Then a rule outside the layers sets
paragraph top margins to 1em . Finally, an unnamed layer block
has a couple of rules; let’s think of this layer as CL2.

So now we have rules in three layers: CL1, CL2, and the implicit
layer. And that’s the order they’re considered in, so in the case
of any conflicting normal rules, the rules in the implicit default
layer (which comes last in the ordering) will win over
conflicting rules in the other two layers, and rules in CL2 will
win over conflicting rules in CL1.

At least, that’s the case for normal-weight rules. For
!important rules, the order of precedence is flipped, so those
in CL1 will win over conflicting important rules in the other
two layers, and important rules in CL2 win over conflicting
important rules in the implicit layer. Strange but true!

This sorting by order will come up again in just a little bit, but
first let’s bring specificity into the cascade.

Sorting by Specificity

If conflicting declarations apply to an element and those
declarations all have the same explicit weight, origin, element
attachment (or lack thereof), and cascade layer, they are then
sorted by specificity. The most specific declaration wins out, like
this:

@layer page {
 p#bright#bright#bright {color: grey;}
}
p#bright {color: silver;}
p {color: black;}

<p id="bright">Well, hello there!</p>

Given these rules, the text of the paragraph will be silver, as
illustrated in Figure 4-8. Why? Because the specificity of
p#bright (1,0,1) overrides the specificity of p (0,0,1) , even
though the latter rule comes later in the stylesheet. The styles
from the page layer, even though they have the strongest
selector (3,0,1), aren’t even compared. Only the declarations
from the layer with precedence are in contention.

Figure 4-8. Higher specificity wins out over lower specificity

Remember that this rule applies only if the rules are part of the
same cascade layer. If not, specificity doesn’t matter: a 0,0,1
selector in the implicit layer will win over any unimportant rule
in an explicitly created cascade layer, no matter how high the
latter’s specificity gets.

Sorting by Order

Finally, if two rules have exactly the same explicit weight,
origin, element attachment, cascade layer, and specificity, then
the one that appears later in the stylesheet wins out, similar to
the way cascade layers are sorted in order so that later layers
win over earlier layers.

Let’s return to an earlier example, where we find the following
two rules in the document’s stylesheet:

body h1 {color: red;}
html h1 {color: blue;}

In this case, the value of color for all <h1> elements in the
document will be blue , not red . This is because the two rules
are tied with each other in terms of explicit weight and origin,
are in the same cascade layer, and the selectors have equal
specificity, so the last one declared is the winner. It doesn’t
matter how close together the elements are in the document
tree; even though <body> and <h1> are closer together than
<html> and <h1> , the later one wins. The only thing that
matters (when the origin, cascade layer, layer, and specificity
are the same) is the order in which the rules appear in the CSS.

So what happens if rules from completely separate stylesheets
conflict? For example, suppose the following:

@import url(basic.css);
h1 {color: blue;}

What if h1 {color: red;} appears in basic.css? In this case,
since there are no cascade layers in play, the entire contents of
basic.css are treated as if they were pasted into the stylesheet at
the point where the @import occurs. Thus, any rule contained
in the document’s stylesheet occurs later than those from the
@import . If they tie in terms of explicit weight and specificity,
the document’s stylesheet contains the winner. Consider the
following:

In this case, the second rule wins out over the imported rule
because it is the last one specified, and both are in the implicit
cascade layer.

Order sorting is the reason behind the often-recommended
ordering of link styles. The recommendation is that you write
your link styles in the order link , visited , focus , hover ,
active , or LVFHA, like this:

a:link {color: blue;}
a:visited {color: purple;}
a:focus {color: green;}
a:hover {color: red;}
a:active {color: orange;}

Thanks to the information in this chapter, you now know that
the specificity of all of these selectors is the same: 0,1,1 .
Because they all have the same explicit weight, origin, and
specificity, the last one that matches an element will win out. An
unvisited link that is being clicked or otherwise activated, such

p em {color: purple;} /* from imported stylesheet */

p em {color: gray;} /* rule contained within the d

as via the keyboard, is matched by four of the rules— :link ,
:focus , :hover , and :active —so the last one of those four
will win out. Given the LVFHA ordering, :active will win,
which is likely what the author intended.

Assume for a moment that you decide to ignore the common
ordering and alphabetize your link styles instead. This would
yield the following:

a:active {color: orange;}
a:focus {color: green;}
a:hover {color: red;}
a:link {color: blue;}
a:visited {color: purple;}

Given this ordering, no link would ever show :hover , :focus ,
or :active styles because the :link and :visited rules
come after the other three. Every link must be either visited or
unvisited, so those styles will always override the others.

Let’s consider a variation on the LVFHA order that an author
might want to use. In this ordering, only unvisited links will get
a hover style; visited links will not. Both visited and unvisited
links will get an active style:

a:link {color: blue;}
a:hover {color: red;}
a:visited {color: purple;}
a:focus {color: green;}
a:active {color: orange;}

Such conflicts arise only when all the states attempt to set the
same property. If each state’s styles address a different property,
the order does not matter. In the following case, the link styles
could be given in any order and would still function as
intended:

a:link {font-weight: bold;}
a:visited {font-style: italic;}
a:focus {color: green;}
a:hover {color: red;}
a:active {background: yellow;}

You may also have realized that the order of the :link and
:visited styles doesn’t matter. You could order the styles
LVFHA or VLFHA with no ill effect.

The ability to chain pseudo-classes together eliminates all these
worries. The following could be listed in any order without any

overrides, as the specificity of the latter two is greater than that
of the first two:

a:link {color: blue;}
a:visited {color: purple;}
a:link:hover {color: red;}
a:visited:hover {color: gray;}

Because each rule applies to a unique set of link states, they do
not conflict. Therefore, changing their order will not change the
styling of the document. The last two rules do have the same
specificity, but that doesn’t matter. A hovered unvisited link will
not be matched by the rule regarding hovered visited links, and
vice versa. If we were to add active-state styles, order would
start to matter again. Consider this:

a:link {color: blue;}
a:visited {color: purple;}
a:link:hover {color: red;}
a:visited:hover {color: gray;}
a:link:active {color: orange;}
a:visited:active {color: silver;}

If the active styles were moved before the hover styles, they
would be ignored. Again, this would happen because of

specificity conflicts. The conflicts could be avoided by adding
more pseudo-classes to the chains, like this:

a:link:hover:active {color: orange;}
a:visited:hover:active {color: silver;}

This does have the effect of raising the specificity of the
selectors—both have a specificity value of 0,3,1 —but they
don’t conflict because the actual selection states are mutually
exclusive. A link can’t be both a visited hovered active link and
an unvisited hovered active link: only one of the two rules will
match.

Working with Non-CSS Presentational
Hints

A document could contain presentational hints that are not CSS
—for example, the deprecated element, or the still very
much used height , width , and hidden attributes. Such
presentational hints will be overridden by any author or reader
styles, but not by the user agent’s styles. In modern browsers,
presentational hints from outside CSS are treated as if they
belong to the user agent’s stylesheet.

Summary

Perhaps the most fundamental aspect of Cascading Style Sheets
is the cascade itself—the process used to sort out conflicting
declarations and determine the final document presentation.
Integral to this process is the specificity of selectors and their
associated declarations, and the mechanism of inheritance.

Chapter 5. Values and Units

In this chapter, we’ll tackle features that are the basis for
almost everything you can do with CSS: the units that affect the
colors, distances, and sizes of a whole host of properties, as well
as the units that help define those values. Without units, you
couldn’t declare that an image should have 10 pixels of blank
space around it, or that a heading’s text should be a certain size.
By understanding the concepts put forth here, you’ll be able to
learn and use the rest of CSS much more quickly.

Keywords, Strings, and Other Text
Values

Everything in a stylesheet is text, but certain value types
directly represent strings of text as opposed to, say, numbers or
colors. Included in this category are URLs and, interestingly
enough, images.

Keywords

For those times when a value needs to be described with a word
of some kind, CSS has keywords. A common example is the

keyword none , which is distinct from 0 (zero). Thus, to
remove the underline from links in an HTML document, you
would write the following:

a[href] {text-decoration: none;}

Similarly, if you want to force underlines on the links, you
would use the keyword underline instead of none .

If a property accepts keywords, its keywords will be defined
only for the scope of that property. If two properties use the
same word as a keyword, the behavior of the keyword for one
property will not necessarily be shared with the other. As an
example, normal , as defined for letter-spacing , means
something very different from the normal defined for font-
style .

Global keywords

CSS defines five global keywords that are accepted by every
property in the specification: inherit , initial , unset ,
revert , and revert-layer .

inherit

The keyword inherit makes the value of a property on an
element the same as the value of that property on its parent
element. In other words, it forces inheritance to occur even in
situations where it would not normally operate. In many cases,
you don’t need to specify inheritance, since many properties
inherit naturally. Nevertheless, inherit can still be useful.

For example, consider the following styles and markup:

The <div> itself will have a blue background and a white
foreground, but the links will be styled according to the
browser’s preference settings. They’ll most likely end up as blue
text on a blue background, with white vertical bars between
them.

You could write a rule that explicitly sets the links in the toolbar
to be white, but you can make things a little more robust by

#toolbar {background: blue; color: white;}

<div id="toolbar">
One | Two</

Three
</div>

using inherit . You just add the following rule to the stylesheet:

#toolbar a {color: inherit;}

This will cause the links to use the inherited value of color in
place of the user agent’s default styles.

Ordinarily, directly assigned styles override inherited styles, but
inherit can undo that behavior. It might not always be a good
idea—for example, here links might blend into surrounding
text too much, and become a usability and accessibility concern
—but it can be done.

Similarly, you can pull a property value down from a parent
even if it wouldn’t happen normally. Take border , for example,
which is (rightfully) not inherited. If you want a to
inherit the border of its parent, all you need is span {border:
inherit;} . More likely, though, you just want the border on a
 to use the same border color as its parent. In that case,
span {border-color: inherit;} will do the trick.

initial

The keyword initial sets the value of a property to the
defined initial value, which, in a way, means it “resets” the

value. For example, the default value of font-weight is
normal . Therefore, declaring font-weight: initial is the
same as declaring font-weight: normal .

This might seem a little bit silly until you consider that not all
values have explicitly defined initial values. For example, the
initial value for color “depends on user agent.” That’s not a
funky keyword you should type! What it means is that the
default value of color depends on things like the preference
settings in a browser. While almost nobody changes the default
text color setting from black, someone might set it to a dark
gray or even a bright red. By declaring color: initial; ,
you’re telling the browser to set the color of the element to
whatever the user’s default color is set to be.

Another benefit of initial is that you can set a property back
to its initial value without having to know that initial value.
This can be especially useful when resetting a lot of properties
all at once, either via JS or CSS.

unset

The keyword unset acts as a universal stand-in for both
inherit and initial . If the property is inherited, unset has
the same effect as if inherit were used. If the property is not

inherited, unset has the same effect as if initial were used.
This makes unset useful for resetting a property by canceling
out any other styles that might be applied to it.

revert

The keyword revert sets the value of a property to the value
the property would have had if no changes had been made by
the current style origin. In effect, revert lets you say, “All
property values for this element should be as if the author
styles don’t exist, but user agent and user styles do exist.”

Thus, given the following basic example, p elements will be
rendered as gray text with a transparent background:

p {background: lime; color: gray;}
p {background: revert;}

This does mean that any property whose value is inherited will
be given the same value as that of its parent. The revert
keyword is useful when you have a bunch of site-wide styles
applying to an element, and you want to strip them all away so
as to apply a set of one-off styles to just that element. Rather
than having to override all those properties, you can revert

them to defaults—and you can do it with a single property,
all , which is the topic of the next section.

revert-layer

If you’re using cascade layers (see “Sorting by Cascade Layer”)
and want to “undo” whatever styles might be applied by the
current layer, the revert-layer value is here to help. The
difference here is that revert-layer effectively means, “All
property values for this element should be as if the author
styles in the current cascade layer don’t exist, but other author
cascade layers (including the default), user agent, and user
styles do exist.”

Thus, given the following, paragraphs with a class containing
the word example will be rendered as red text on a yellow
background:

@layer site, system;

p {color: red;}
@layer system {
 p {background: yellow; color: fuchsia;}
}
@layer site {
 p {background: lime; color: gray;}

p.example {background: revert; color: revert;

For the background, the browser looks at the assigned values in
previous cascade layers and picks the one with the highest
weight. Only one layer (system) sets a background color, so
that’s what’s used instead of lime . The same is done for the
foreground color, and since a color is assigned in the default
layer, and the default layer overrides all explicitly created
layers, red is used instead of gray .

NOTE

As of late 2023, only Firefox supports revert-layer , but we anticipate it being
widely supported in the near future.

The all Property

These global values are usable on all properties, but one special
property accepts only the global keywords: all .

 p.example {background: revert; color: revert;
}

ALL

Values inherit | initial | unset | revert

Initial value See individual properties

The all property is a stand-in for all properties except
direction , unicode-bidi , and any custom properties (see
“Custom Properties”). Thus, if you declare all: inherit on an
element, you’re saying that you want all properties except
direction , unicode-bidi , and custom properties to inherit
their values from the element’s parent. Consider the following:

<section>
 <div id="example">This is a div.</div>
</section>

You might think this causes the <div> element to inherit the
values of color , background , and font-weight from the

section {color: white; background: black; font-weight
#example {all: inherit;}

<section> element. And it does do that, yes—but it will also
force inheritance of the values of every single other property in
CSS (minus the two exceptions) from the <section> element.

Maybe that’s what you want, in which case, great. But if you just
want to inherit the property values you wrote out for the
<section> element, the CSS would need to look more like this:

Odds are that what you really want in these situations is all:
unset , but your stylesheet may vary.

Strings

A string value is an arbitrary sequence of characters wrapped
in either single or double quotes, and is represented in value
definitions with < string >. Here are two simple examples:

"I like to play with strings."
'Strings are fun to play with.'

section {color: white; background: black; font-weight
#example {color: inherit; background: inherit; font-w

Note that the quotes balance, which is to say that you always
start and end with the same kind of quotes. Getting this wrong
can lead to all kinds of parsing problems, since starting with
one kind of quote and trying to end with the other means the
string won’t actually be terminated. You could accidentally
incorporate subsequent rules into the string that way!

If you want to put quote marks inside strings, that’s OK, as long
as they’re either not the kind you used to enclose the string or
are escaped using a backslash:

Note that the only acceptable string delimiters are ' and " ,
sometimes called straight quotes. That means you can’t use
curly or smart quotes to begin or end a string value. You can use
them inside a string value, as in this code example, though, and
they don’t have to be escaped:

"I've always liked to play with strings."
'He said to me, "I like to play with strings."'
"It's been said that \"haste makes waste.\""
'There\'s never been a "string theory" that I\'ve lik

"It’s been said that “haste makes waste.”"
'There’s never been a “string theory” that I’ve liked

This requires that you use Unicode encoding (using the Unicode
standard) for your documents, but you should be doing that
regardless.

If you have some reason to include a newline in your string
value, you can do that by escaping the newline itself. CSS will
then remove it, making things as if it had never been there.
Thus, the following two string values are identical from a CSS
point of view:

"This is the right place \
for a newline."
"This is the right place for a newline."

If, on the other hand, you actually want a string value that
includes a newline character, use the Unicode reference \A
where you want the newline to occur:

"This is a better place \Afor a newline."

Identifiers

One-word, case-sensitive strings that should not be quoted are
known as identifiers, represented in the CSS syntax as < ident >
or < custom-ident >, depending on the specification and

http://www.unicode.org/standard/standard.html

context. Identifiers are used as animation names, grid-line
names, and counter names, among others. In addition,
< dashed-ident > is used for custom properties. Rules for
creating a custom identifier include not starting the word with
a number, a double hyphen, or a single hyphen followed by a
number. Other than that, really any character is valid, including
emojis, but if you use certain characters, including a space or a
backslash, you need to escape them with a backslash.

Identifiers themselves are words and are case-sensitive; thus,
myID and MyID are, as far as CSS is concerned, completely
distinct and unrelated to each other. If a property accepts both
an identifier and one or more keywords, the author should take
care to never define an identifier that is identical to a valid
keyword, including the global keywords initial , inherit ,
unset , and revert . Using none is also a really bad idea.

URLs

If you’ve written web pages, you’re almost certainly familiar
with uniform resource locators (URLs). Whenever you need to
refer to one—as in the @import statement, which is used when
importing an external stylesheet—here is the general format:

url(protocol://server/pathname/filename)
()

This example defines an absolute URL. This URL will work no
matter where (or rather, in what page) it’s found, because it
defines an absolute location in web space. Let’s say that you
have a server called web.wa�es.org. On that server is a
directory called pix, and in this directory is an image
wa�e22.gif. In this case, the absolute URL of that image would
be as follows:

https://web.waffles.org/pix/waffle22.gif

This URL is valid no matter where it is written, whether the
page containing it is located on the server web.wa�es.org or
web.pancakes.com.

The other type of URL is a relative URL, so named because it
specifies a location that is relative to the document that uses it.
If you’re referring to a relative location, such as a file in the
same directory as your web page, the general format is as
follows:

url("<string>") /* can use single or double quotes

url(pathname)
url("<string>") /* can use single or double quotes

This works only if the image is on the same server as the page
that contains the URL. For argument’s sake, assume that you
have a web page located at http://web.wa�es.org/syrup.html and
that you want the image wa�e22.gif to appear on this page. In
that case, the URL would be the following:

pix/waffle22.gif

This path works because the web browser knows it should start
with the place it found the web document and then add the
relative URL. In this case, the pathname pix/wa�e22.gif added
to the server name http://web.wa�es.org equals
http://web.wa�es.org/pix/wa�e22.gif. You can almost always use
an absolute URL in place of a relative URL; it doesn’t matter
which you use, as long as it defines a valid location.

In CSS, relative URLs are relative to the stylesheet itself, not to
the HTML document that uses the stylesheet. For example, you
may have an external stylesheet that imports another
stylesheet. If you use a relative URL to import the second
stylesheet, it must be relative to the first stylesheet. In fact, if
you have a URL in any imported stylesheet, it needs to be
relative to the imported stylesheet.

As an example, consider an HTML document at
http://web.wa�es.org/toppings/tips.html, which has a <link> to
the stylesheet http://web.wa�es.org/styles/basic.css:

Inside the file basic.css is an @import statement referring to
another stylesheet:

@import url(special/toppings.css);

This @import will cause the browser to look for the stylesheet
at http://web.wa�es.org/styles/special/toppings.css, not at
http://web.wa�es.org/toppings/special/toppings.css. If you have a
stylesheet at the latter location, the @import in basic.css should
read one of the two following ways:

<link rel="stylesheet" type="text/css"
 href="http://web.waffles.org/styles/basic.css">

@import url(http://web.waffles.org/toppings/special/t

@import url("../special/toppings.css");

Note that there cannot be a space between the url and the
opening parenthesis:

If the space is present, the entire declaration will be invalidated
and thus ignored.

NOTE

As of late 2022, the CSS Working Group is planning to introduce a new function called
src() , which will accept only strings and not unquoted URLs. This is meant to allow
custom properties to be used inside src() , which will let authors define which file
should be loaded based on the value of a custom property.

Images

An image value is a reference to an image, as you might have
guessed. Its syntax representation is < image >.

At the most basic level of support, which is to say the one every
CSS engine on the planet would understand, an < image > value
is a < url > value. In more modern user agents, < image > stands
for one of the following:

body {background: url(http://www.pix.web/picture1.jpg
body {background: url (images/picture2.jpg);}

< url >
A URL identifier of an external resource—in this case, the
URL of an image.

< gradient >
Refers to either a linear, radial, or conic gradient image,
either singly or in a repeating pattern. Gradients are fairly
complex and are covered in detail in Chapter 9.

< image-set >
A set of images, chosen based on a set of conditions
embedded into the value, which is defined as image-set()
but is more widely recognized with the -webkit- prefix. For
example, -webkit-image-set() could specify that a larger
image be used for desktop layouts, whereas a smaller image
(both in pixel size and file size) be used for a mobile design.
This value is intended to at least approximate the behavior of
the srcset attribute for <picture> elements. As of early
2023, -webkit-image-set is basically universally supported,
with most browsers other than Safari also accepting image-
set() (without the prefix).

< cross-fade >
Used to blend two (or more) images together, with a specific
transparency given to each image. Use cases include blending

two images together, blending an image with a gradient, and
so on. As of early 2023, this is supported as -webkit-cross-
fade() in Blink- and WebKit-based browsers, and not
supported at all in the Firefox family, with or without the
prefix.

There are also the image() and element() functions, but as of
early 2023, neither is supported by any browser, except for a
vendor-prefixed version of element() supported by Firefox.
Finally, paint() refers to an image painted by CSS Houdini’s
PaintWorklet. As of early 2023, this is supported in only a basic
form by Blink-based browsers like Chrome.

Numbers and Percentages

Numbers and percentages serve as the foundation for many
other values types. For example, font sizes can be defined using
the em unit (covered later in this chapter) preceded by a
number. But what kind of number? Understanding the types of
numbers here will help you better grasp defining other value
types later.

Integers

An integer value is about as simple as it gets: one or more
numbers, optionally prefixed by a + or – (plus or minus) sign
to indicate a positive or negative value. That’s it. Integer values
are represented in value syntax as < integer >. Examples
include 712 , 13 , −42 , and 1066 .

Some properties define a range of acceptable integer values.
Integer values that fall outside a defined range are, by default,
considered invalid and cause the entire declaration to be
ignored. However, some properties define behavior that causes
values outside the accepted range to be set to the accepted
value closest to the declared value, known as clamping.

In cases (such as the property z-index) where there is no
restricted range, user agents must support values up to
±1,073,741,824 (±2).

Numbers

A number value is either an < integer > or a real number, which
is to say an integer followed by a dot and then some number of
following integers. Additionally, it can be prefixed by either +
or - to indicate positive or negative values. Number values are
represented in value syntax as < number >. Examples include 5 ,

30

2.7183 , −3.1416 , 6.2832 , and 1.0218e29 (scientific
notation).

The reason a < number > can be an < integer > and yet they are
separate value types is that some properties will accept only
integers (e.g., z-index), whereas others will accept any real
number (e.g., flex-grow).

As with integer values, number values may have limits imposed
on them by a property definition; for example, opacity
restricts its value to be any valid < number > in the range 0 to
1 , inclusive. Some properties define behavior that causes
values outside the accepted range to be clamped to an
acceptable value closest to the declared value; e.g., opacity:
1.7 would be clamped to opacity: 1 . For those that do not,
number values that fall outside a defined range are considered
invalid and cause the entire declaration to be ignored.

Percentages

A percentage value is a < number > followed by a percentage sign
(%), and is represented in value syntax as < percentage >.
Examples include 50% and 33.333% . Percentage values are
always relative to another value, which can be anything—the
value of another property of the same element, a value

inherited from the parent element, or a value of an ancestor
element. Properties that accept percentage values will define
any restrictions on the range of allowed percentage values, as
well as the way in which the percentage is relatively calculated.

Fractions

A fraction value (or flexible ratio) is a < number > followed by the
fr unit label. Thus, one fractional unit is 1fr . The fr unit
represents a fraction of the leftover space, if any, in a grid
container.

As with all CSS dimensions, there is no space between the unit
and the number. Fraction values are not lengths (nor are they
compatible with < length > values, unlike some < percentage >
values), so they cannot be used with other unit types in calc()
functions.

NOTE

Fraction values are mostly used in grid layout (see Chapter 12), but there are plans to
use it in more contexts, such as the planned (as of early 2023) stripes() function.

Distances

Many CSS properties, such as margins, depend on length
measurements to properly display various page elements. It’s
likely no surprise, then, CSS provides multiple ways to measure
length.

All length units can be expressed as either positive or negative
numbers followed by a label, although note that some
properties will accept only positive numbers. You can also use
real numbers—that is, numbers with decimal fractions, such as
10.5 or 4.561.

All length units are followed by a short abbreviation that
represents the actual unit of length being specified, such as in
(inches) or pt (points). The only exception to this rule is a
length of 0 (zero), which need not be followed by a unit when
describing lengths.

These length units are divided into two types: absolute length
units and relative length units.

Absolute Length Units

We’ll start with absolute units because they’re easiest to
understand. The seven types of absolute units are as follows:

Inches (in)

As you might expect, this notation refers to the inches you’d
find on a ruler in the US. (The fact that this unit is in the
specification, even though almost the entire world uses the
metric system, is an interesting insight into the pervasiveness
of US interests on the internet—but let’s not get into virtual
sociopolitical theory right now.)

Centimeters (cm)
Refers to the centimeters that you’d find on rulers the world
over. There are 2.54 centimeters to an inch, and one
centimeter equals 0.394 inches.

Millimeters (mm)
For those Americans who are metric challenged, 10
millimeters are in 1 centimeter, so an inch equals 25.4
millimeters, and a millimeter equals 0.0394 inches.

Quarter-millimeters (Q)
There are 40 Q units in a centimeter; thus, setting an element
to be 1/10 of a centimeter wide—which is also a millimeter
wide—would mean a value of 4Q .

Points (pt)
Points are standard typographical measurements that have
been used by printers and typesetters for decades and by

word processing programs for many years. Traditionally,
there are 72 points to an inch. Therefore the capital letters of
text set to 12 points should be one-sixth of an inch tall. For
example, p {font-size : 18pt;} is equivalent to p {font-
size : 0.25in;} .

Picas (pc)
A pica, which is another typographical term, is equivalent to
12 points, which means there are 6 picas to an inch. As just
shown, the capital letters of text set to 1 pica should be one-
sixth of an inch tall. For example, p {font-size : 1.5pc;}
would set text to the same size as the example declarations
found in the definition of points.

Pixels (px)
A pixel is a small box onscreen, but CSS defines pixels more
abstractly. In CSS terms, a pixel is defined to be the size
required to yield 96 pixels per inch. Many user agents ignore
this definition in favor of simply addressing the pixels on the
screen. Scaling factors are brought into play when page
zooming or printing, where an element 100px wide can be
rendered more than 100 device dots wide.

These units are really useful only if the browser knows all the
details of the screen on which your page is displayed, the

printer you’re using, or whatever other user agent might apply.
On a web browser, display is affected by the size of the screen
and the resolution to which the screen is set; there isn’t much
that you, as the author, can do about these factors. If nothing
else, measurements should be consistent in relation to each
other—that is, a setting of 1.0in should be twice as large as
0.5in , as shown in Figure 5-1.

Figure 5-1. Setting absolute-length left margins

Let’s make the (fairly suspect) assumption that your computer
knows enough about its display system to accurately reproduce
real-world measurements. You could make sure every
paragraph has a top margin of half an inch by declaring p
{margin-top : 0.5in;} in that case.

Absolute units are much more useful in defining stylesheets for
printed documents, where measuring things in terms of inches,
points, and picas is common.

Pixel lengths

On the face of things, pixels are straightforward. If you look at a
screen closely enough, you can see that it’s broken into a grid of

tiny little boxes. Each box is a pixel. Say you define an element
to be a certain number of pixels tall and wide, as in the
following markup:

Then it follows that the element will be that many screen
elements tall and wide, as shown in Figure 5-2.

Figure 5-2. Using pixel lengths

The problem is, thanks to high-density displays like those found
on mobile devices and modern laptops, the individual screen
elements aren’t treated as pixels anymore. Instead, the pixels
used in your CSS are translated into something that aligns with
human expectations, which is covered in the next section.

Pixel theory

In its discussion of pixels, the CSS specification recommends
that, when a display’s resolution density is significantly

<p>
The following image is 20 pixels tall and wide: <img
 style="width: 20px; height: 20px;" alt="" />
</p>

different from 96 pixels per inch (ppi), user agents should scale
pixel measurements to a reference pixel.

The W3C defines reference pixel as follows:

The visual angle of one pixel on a device with a device pixel
density of 96dpi and a distance from the reader of an arm’s
length. For a nominal arm’s length of 28 inches, the visual
angle is therefore about 0.0213 degrees. For reading at arm’s
length, 1px thus corresponds to about 0.26 mm (1/96 inch).

On most modern displays, the actual number of pixels per inch
(ppi) is higher than 96—sometimes much higher. The Retina
display on an iPhone 13, for example, is physically 326 ppi, and
the display on the iPad Pro is physically 264 ppi. As long as a
browser on one of those devices sets the reference pixel such
that an element set to be 10px tall appears to be 2.6 millimeters
tall on the screen, the physical display density isn’t something
you have to worry about, any more than having to worry about
the number of dots per inch on a printout.

Resolution Units

Some unit types are based on display resolution:

Dots per inch (dpi)

https://www.w3.org/TR/css-values-4/#reference-pixel

The number of display dots per linear inch. This can refer to
the dots on a paper printer’s output, the physical pixels on an
LED screen or other device, or the elements in an e-ink
display such as that used by a Kindle.

Dots per centimeter (dpcm)
Same as dpi , except the linear measure is 1 centimeter
instead of 1 inch.

Dots per pixel unit (dppx)
The number of display dots per CSS px unit, with 1dppx
being equivalent to 96dpi because CSS defines pixel units at
that ratio. Just bear in mind that ratio could change in future
versions of CSS.

These units are most often used in the context of media queries.
As an example, an author can create a media block to be used
only on displays that have higher than 500 dpi:

@media (min-resolution: 500dpi) {
 /* rules go here */
}

Again, it’s important to remember that CSS pixels are not device
resolution pixels. Text with font-size: 16px will be a

relatively consistent size whether the device has 96 dpi or 470
dpi. While a reference pixel is defined to appear to be 1/96th of
an inch in size, when a device has more than 96 dpi, the content
will not look smaller. Zooming is created by expanding CSS
pixels as much as is needed; an image will appear larger, but
the image size doesn’t actually change: rather, the width of the
screen, in terms of reference pixels, gets smaller.

Relative Length Units

Relative units are so called because they are measured in
relation to other things. The actual (or absolute) distance they
measure can change because of factors beyond their control,
such as screen resolution, the width of the viewing area, the
user’s preference settings, and a whole host of other things. In
addition, for some relative units, their size is almost always
relative to the element that uses them and will thus change
from element to element.

First, let’s consider the character-based length units, including
em , ex , and ch , which are closely related. Two other font-
relative units, cap and ic , are discussed later in the chapter.

The em unit

In CSS, 1em is defined to be the value of font-size for a given
font. If the font-size of an element is 14 pixels, then for that
element, 1em is equal to 14 pixels.

As you may suspect, this value can change from element to
element. For example, let’s say you have an <h1> with a font
size of 24 pixels, an <h2> element with a font size of 18 pixels,
and a paragraph with a font size of 12 pixels. If you set the left
margin of all three at 1em , they will have left margins of 24
pixels, 18 pixels, and 12 pixels, respectively:

h1 {font-size: 24px;}
h2 {font-size: 18px;}
p {font-size: 12px;}
h1, h2, p {margin-left: 1em;}
small {font-size: 0.8em;}

<h1>Left margin = <small>24 pixels</small></h1>
<h2>Left margin = <small>18 pixels</small></h2>
<p>Left margin = <small>12 pixels</small></p>

When setting the size of the font, on the other hand, the value
of em is relative to the font size of the parent element, as
illustrated in Figure 5-3.

Figure 5-3. Using em for margins and font sizing

In theory, 1em is equal to the width of a lowercase m in the font
used—that’s where the name comes from, in fact. It’s an old
typographer’s term. However, this is not assured in CSS.

The ex unit

The ex unit refers to the height of a lowercase x in the font
being used. Therefore, if two paragraphs use text that is 24
points in size, but each paragraph uses a different font, then the
value of ex could be different for each paragraph. This is
because different fonts have different heights for x, as you can
see in Figure 5-4. Even though the examples use 24-point text—
and therefore each example’s em value is 24 points—the x-
height for each is different.

Figure 5-4. Varying x heights

The ch unit

The ch unit is broadly meant to represent one character. CSS
Values and Units Level 4 defines ch as follows:

Equal to the advance measure of the “0” (ZERO, U+0030)
glyph found in the font used to render it.

https://www.w3.org/TR/css-values-4/#ch

The term advance measure is a CSS-ism that corresponds to the
term advance width in Western typography. CSS uses the term
measure because some scripts are not right to left or left to
right, but instead top to bottom or bottom to top, and so may
have an advance height rather than an advance width.

Without getting into too many details, a character glyph’s
advance width is the distance from the start of a character
glyph to the start of the next. This generally corresponds to the
width of the glyph itself plus any built-in spacing to the sides
(although that built-in spacing can be either positive or
negative).

The easiest way to demonstrate the ch unit is to run a bunch of
zeros together and then set an image to have a width with the
same number of ch units as the number of zeros, as shown in
Figure 5-5:

img {height: 1em; width: 25ch;}

Given a monospace font like Courier, all characters are by
definition 1ch wide. In any proportional face type, which is
what the vast majority of Western typefaces are, characters
may be wider or narrower than the 0 and so cannot be assumed
to be exactly 1ch wide.

Figure 5-5. Character-relative sizing

Other relative length units

We have a few other relative length units to mention:

ic

The advance measure of 水 glyph (Chinese, Japanese, and
Korean water ideograph, U+6C34) found in the first font that
can render it. This is like ch in that it uses an advance
measure, but defines a measure more useful for ideographic
languages than the 0 character. If ic can’t be calculated for
a given situation, it’s assumed to be equal to 1em .

cap

The cap-height is approximately equal to the height of a
capital Latin letter, even in fonts that do not contain Latin
letters. If it can’t be calculated for a given situation, it’s
assumed to be equal to the font’s ascent height.

lh

Equal to the computed value of the line-height property of
the element on which it is used.

At the time of this writing, only Firefox supports cap , and only
Chromium-based browsers support lh .

Root-Relative Length Units

Most of the character-based length units discussed in the
previous section have a corresponding root-relative value. A
root-relative value is one that is calculated with respect to the
root element of the document, and thus provides a uniform
value no matter what context it’s used in. We will discuss the
most widely supported such unit and then summarize the rest.

The rem unit

The rem unit is calculated using the font size of the document’s
root element. In HTML, that’s the <html> element. Thus,
declaring any element to have font-size: 1rem; sets it to
have the same font-size value as the root element of the
document.

As an example, consider the following markup fragment. It will
have the result shown in Figure 5-6:

<p> This paragraph has the same font size as the root
 inheritance.</p>
<div style="font-size: 30px; background: silver;">
 <p style="font-size: 1em;">This paragraph has the s
 element.</p>
 <p style="font-size: 1rem;">This paragraph has the
 element.</p>
</div>

Figure 5-6. Using the em unit (middle sentence) versus the rem unit (bottom)

In effect, rem acts as a reset for font size: no matter what
relative font sizing has happened to the ancestors of an
element, giving it font-size: 1rem; will put it right back
where the root element is set. This will usually be the user’s
default font size, unless you (or the user) have set the root
element to a specific font size.

For example, given this declaration, 1rem will always be
equivalent to 13px :

html {font-size: 13px;}

However, given this declaration, 1rem will always be
equivalent to three-quarters the user’s default font size:

html {font-size: 75%;}

In this case, if the user’s default is 16 pixels, 1rem will equal
12px . If the user has set their default to 12 pixels—and yes,

some people do this—then 1rem will equal 9px . If the default
setting is 20 pixels, 1rem equals 15px . And so on.

You are not restricted to the value 1rem . Any real number can
be used, just as with the em unit, so you can do fun things like
set all of your headings to be multiples of the root element’s
font size:

h1 {font-size: 2rem;}
h2 {font-size: 1.75rem;}
h3 {font-size: 1.4rem;}
h4 {font-size: 1.1rem;}
h5 {font-size: 1rem;}
h6 {font-size: 0.8rem;}

NOTE

font-size: 1rem is equivalent to font-size: initial as long as no font size is set
for the root element.

Other root-relative units

As mentioned previously, rem is not the only root-relative unit
defined by CSS. Table 5-1 summarizes the other root-relative
units.

Table 5-1. Root-relative equivalent units

Length
Root-
relative
unit

Relative to

em rem Computed font-size

ex rex Computed x-height

ch rch Advance measure of the
0 character

cap rcap Height of a Roman
capital letter

ic ric Advance measure of the
水 ideograph

lh rlh Computed line-height

Of all the root-relative units, only rem is supported as of late
2022, but it is supported by essentially all browsers.

Viewport-Relative Units

CSS provides six viewport-relative size units. These are
calculated with respect to the size of the viewport—browser
window, printable area, mobile device display, etc.:

Viewport width unit (vw)
Equal to the viewport’s width divided by 100. Therefore, if
the viewport is 937 pixels wide, 1vw is equal to 9.37px . If
the viewport’s width changes (say, by dragging the browser
window wider or narrower), the value of vw changes along
with it.

Viewport height unit (vh)
Equal to the viewport’s height divided by 100. Therefore, if
the viewport is 650 pixels tall, 1vh is equal to 6.5px . If the
viewport’s height changes (say, by dragging the browser
window taller or shorter), the value of vh changes along
with it.

Viewport block unit (vb)
Equal to the size of the viewport along the block axis, divided
by 100. The block axis is explained in Chapter 6. In top-to-
bottom languages like English or Arabic, vb will be equal to
vh by default.

Viewport inline unit (vi)
Equal to the size of the viewport along the inline axis,
divided by 100. The inline axis is explained in Chapter 6. In
horizontally written languages like English or Arabic, vi will
be equal to vw by default.

Viewport minimum unit (vmin)
Equal to 1/100th of the viewport’s width or height, whichever
is less. Thus, given a viewport that is 937 pixels wide by 650
pixels tall, 1vmin is equal to 6.5px .

Viewport maximum unit (vmax)
Equal to 1/100th of the viewport’s width or height, whichever
is greater. Thus, given a viewport that is 937 pixels wide by
650 pixels tall, 1vmax is equal to 9.37px .

Because these are length units like any other, they can be used
anywhere a length unit is permitted. You can scale the font size
of a heading in terms of the viewport height, for example, with
something like h1 {font-size: 10vh;} . This sets the font size
to be 1/10th the height of the viewport—a technique potentially
useful for article titles and the like.

These units can be particularly handy for creating full-viewport
interfaces, such as those we expect to find on a mobile device,

because the units allow elements to be sized compared to the
viewport and not to any of the elements within the document
tree. It’s thus very simple to fill up the entire viewport, or at
least major portions of it, and not have to worry about the
precise dimensions of the actual viewport in any particular
case.

A basic example of viewport-relative sizing is illustrated in
Figure 5-7:

div {width: 50vh; height: 33vw; background: gray;}

An interesting (though perhaps not useful) fact about these
units is that they aren’t bound to their own primary axis. Thus,
for example, you can declare width: 25vh; to make an
element as wide as one-quarter the height of the viewport.

Figure 5-7. Viewport-relative sizing

Variants of these units accommodate the vagaries of viewports
and how they can be sized, particularly on devices where the UI
may expand and contract based on user input. These variants
are based on four viewport types:

Default
The default viewport size, as defined by the user agent
(browser). This viewport type is expected to correspond to
the units vw , vh , vb , vi , vmin , and vmax . The default
viewport may correspond to one of the other viewport types;
e.g., the default viewport could be the same as the large
viewport, but that’s up to each browser to decide.

Large
The largest possible viewport after any user-agent interfaces
are contracted to their fullest extent. For example, on a
mobile device, the browser chrome (the browser’s address
bar, navigation bar, and so on) may be minimized or hidden
most of the time so that the maximum screen area can be
used to show page content. This is the state described by the
large viewport. If you want an element’s size to be
determined by the full viewport area, even if that will lead to
it being overlapped by the UI, the large-viewport units are
the way to go. The units corresponding to this viewport type
are lvw , lvh , lvb , lvi , lvmin , and lvmax .

Small
The smallest possible viewport after any user-agent
interfaces are expanded to their fullest extent. In this state,
the browser’s chrome takes up as much screen space as it
possibly can, leaving a minimum space for the page content.
If you want to be sure an element’s sizing will take into
account any possible interface actions, use these units. The
units corresponding to this viewport type are svw , svh ,
svb , svi , svmin , and svmax .

Dynamic
The area in which content is visible, which can change as the
UI expands or contracts. As an example, consider how the
browser interface can appear or disappear on mobile
devices, depending on how the content is scrolled or where
on the screen the user taps. If you want to set lengths based
on the size of the viewport at every moment, regardless of
how it changes, these are the units for you. The units
corresponding to this viewport type are dvw , dvh , dvb ,
dvi , dvmin , and dvmax .

As of late 2022, scrollbars (if any) are ignored for the purposes
of calculating all of the previous units. Thus, the calculated size
of svw or dvw will not change if scrollbars appear or
disappear, or at least shouldn’t.

Function Values

One of the more recent developments in CSS is an increase in
the number of values that are effectively functions. These
values can range from doing math calculations to clamping
value ranges to pulling values out of HTML attributes. CSS has,
in fact, a lot of these, listed here:

abs()

acos()

annotation()

asin()

atan()

atan2()

attr()

blur()

brightness()

calc()

character-variant()

circle()

clamp()

color-contrast()

color-mix()

color()

conic-gradient()

contrast()

cos()

counter()

counters()

cross-fade()

device-cmyk()

drop-shadow()

element()

ellipse()

env()

exp()

fit-content()

grayscale()

hsl()

hsla()

hue-rotate()

hwb()

hypot()

image-set()

image()

inset()

invert()

lab()

lch()

linear-gradient()

log()

matrix()

matrix3d()

max()

min()

minmax()

mod()

oklab()

oklch()

opacity()

ornaments()

paint()

path()

perspective()

polygon()

pow()

radial-gradient()

rem()

repeat()

repeat-conic-gradiant()

repeating-linear-gradiant()

repeating-radial-gradient()

rgb()

rgba()

rotate()

rotate3d()

rotateX()

rotateY()

rotateZ()

round()

saturate()

scale()

scale3d()

scaleX()

scaleY()

scaleZ()

sepia()

sign()

sin()

skew()

skewX()

skewY()

sqrt()

styleset()

stylistic()

swash()

symbols()

tan()

translate()

translate3d()

translateX()

translateY()

translateZ()

url()

var()

That’s 97 different function values. We’ll cover some in the rest
of this chapter. The rest are covered in other chapters, as
appropriate for their topics (e.g., the filter functions are
described in Chapter 20).

Calculation Values

When you need to do a little math, CSS provides a calc()
value. Inside the parentheses, you can construct simple
mathematical expressions. The permitted operators are +
(addition), - (subtraction), * (multiplication), and /
(division), as well as parentheses. These follow the traditional
precedence order of parentheses, exponents, multiplication,
division, addition, and subtraction (PEMDAS), although in this

case it’s really just PMDAS since exponents are not permitted in
calc() .

As an example, suppose you want your paragraphs to have a
width that’s 2 em less than 90% the width of their parent
element. Here’s how you express that with calc() :

p {width: calc(90% - 2em);}

The calc() value can be used with any property that permits
one of the following value types: < length >, < frequency >,
< angle >, < time >, < percentage >, < number >, or < integer >.
You can also use all these unit types within a calc() value,
though CSS has some limitations to keep in mind.

The basic limitation is that calc() does basic type checking to
make sure that units are, in effect, compatible. The checking
works like this:

1. To either side of a + or – sign, both values must have the
same unit type, or be a < number > and < integer > (in which
case, the result is a < number >). Thus, 5 + 2.7 is valid, and
results in 7.7 . On the other hand, 5em + 2.7 is invalid,
because one side has a length unit and the other does not.

Note that 5em + 20px is valid, because em and px are both
length units.

2. Given a * , one of the values involved must be a < number >
(which, remember, includes integer values). So 2.5rem * 2
and 2 * 2.5rem are both valid, and each results in 5rem .
On the flip side, 2.5rem * 2rem is not valid, because the
result would be 5rem , and length units cannot be area units.

3. Given a / , the value on the right side must be a < number >. If
the left side is an < integer >, the result is a < number >.
Otherwise, the result is of the unit type used on the left side.
This means that 30em / 2.75 is valid, but 30 / 2.75em is
not.

4. Furthermore, any circumstance that yields division by zero is
invalid. This is easiest to see in a case like 30px/0 , but there
are other ways to get there.

One more notable limitation is that whitespace is required on
both sides of the + and - operators, while it is not for * and
/ . This was done to allow future development of calc()
values to support keywords that contain hyphens (e.g., max-
content).

Furthermore, it’s valid (and supported) to nest calc()
functions inside each other. Thus you can say something like
this:

2

p {width: calc(90% - calc(1em + 0.1vh));}

Beyond that, the CSS specification requires that user agents
support a minimum of 20 terms inside any single calc()
function, where a term is a number, percentage, or dimension
(e.g., a length). If the number of terms somehow exceeds the
user agent’s term limits, the entire function is treated as invalid.

Maximum Values

Calculation is nice, but sometimes you just want to make sure a
property is set to one of a number of values, whichever is
smallest. In those cases, the min() function value comes in
very handy. Yes, this is confusing at first, but give us a minute
and hopefully it will make sense.

Suppose you want to make sure that an element is never wider
than a certain amount; say, an image should be one-quarter the
width of the viewport or 200 pixels wide, whichever is smaller.
This allows it to be constrained to 200 pixels of width on wide
viewports, but take up to a quarter the width of smaller
viewports. For that, you’d say the following:

.figure {width: min(25vw, 200px);}

The browser will compute the width of 25vw and compare that
to 200px , and use whichever is smaller. If 200px is smaller
than 25% the width of the viewport, then 200px will be used.
Otherwise, the element will be 25% as wide as the viewport,
which could easily be smaller than 1em . Note that smaller in
this case means closest to negative infinity, not closest to zero.
Thus, if you compare two terms that compute to (say) -1500px
and -2px , min() will pick -1500px .

You can nest min() inside min() , or throw a mathematical
expression in there for one of the values, without having to
wrap it in calc() . For that matter, you can put in max() and
clamp() , which we haven’t even discussed yet. You can supply
as many terms as you like: if you want to compare four ways of
measuring something and then pick the minimum, just separate
them with commas. Here’s a slightly contrived example:

Whichever of those values is computed to be the minimum
(closest to negative infinity) will be used, thus defining a
maximum for the width value. The order you list them in
doesn’t matter, since the minimum value will always be picked
regardless of where it appears in the function.

.figure {width: min(25vw, 200px, 33%, 50rem - 30px);}

In general, min() can be used in any property value that
permits < length >, < frequency >, < angle >, < time >,
< percentage >, < number >, or < integer >.

WARNING

Remember that setting a maximum value on font sizes is an accessibility concern.
You should never set a maximum font size using pixels, because that would likely
prevent text zooming by users. You probably shouldn’t use min() for font sizing in
any case, but if you do, keep px lengths out of the values!

Minimum Values

The mirror image of min() is max() , which can be used to set
a minimum value for a property. It can appear in the same
places and can be nested in the same ways as min() , and is
generally just the same except that it picks the largest (closest to
positive infinity) value from among the alternatives given.

As an example, perhaps the top of a page’s design should be a
minimum of 100 pixels tall, but it can be taller if conditions
permit. In that case, you could use something like this:

header {height: max(100px, 15vh, 5rem);}

Whichever of the values is largest will be used. For a desktop
browser window, that would probably be 15vh , unless the base
size text is really enormous. For a handheld display, it’s more
likely that 5rem or 100px will be the largest value. In effect,
this sets a minimum size of 100 pixels tall, since getting either
15vh or 5rem below that value is easily possible.

Remember that setting even a minimum value on font sizes can
create an accessibility problem, since a too-small minimum is
still too small. A good way to handle this is to always include
1rem in your max() expressions for font sizes. Use something
like this:

.sosumi {font-size: max(1vh, 0.75em, 1rem);}

Alternatively, you could not use max() for font sizing at all. It’s
probably best left to box sizing and other such uses.

Clamping Values

If you’ve already been thinking about ways to nest min() and
max() to set upper and lower bounds on a value, there’s a way
to not only do that, but set an “ideal” value as well: clamp() .
This function value takes three parameters representing, in

order, the minimum allowed value, preferred value, and
maximum allowed value.

For example, consider some text you want to be about 5% the
height of the viewport, while keeping its minimum the base
font size and its maximum three times the text around it. That
would be expressed like so:

footer {font-size: clamp(1rem, 2vh, 3em);}

Given those styles and assuming the base font size is 16 pixels,
as it is by default in most browsers, then the footer text will be
equal to the base font size up to a viewport height of 800 pixels
(16 divided by 0.02). If the viewport gets taller, the text will start
to get bigger, unless doing so would make it bigger than 3em . If
the text ever gets to the same size as 3em , it will stop growing.
(This is fairly unlikely, but one never knows.)

If the maximum value of a clamp() is ever computed to be
smaller than the minimum value, the maximum is ignored and
the minimum value is used instead.

You can use clamp() anywhere you can use min() and max() ,
including nesting them inside each other. For example:

footer {font-size: clamp(1rem max(2vh 1 5em) 3em);

This is basically the same as the previous example, except in
this case the preferred value is either 2% the height of the
viewport or 1.5 times the size of the parent element’s text,
whichever is larger.

Attribute Values

In a few CSS properties, it’s possible to pull in the value of an
HTML attribute defined for the element being styled. You do
this with the attr() function.

For example, with generated content, you can insert the value
of any attribute. It looks something like this (don’t worry about
understanding the exact syntax, which we’ll explore in
Chapter 16):

p::before {content: "[" attr(id) "]";}

That expression would prefix any paragraph that has an id
attribute with the value of that id , enclosed in square brackets.
Therefore, applying the previous style to the following
paragraphs would have the result shown in Figure 5-8:

footer {font-size: clamp(1rem, max(2vh, 1.5em), 3em);

Figure 5-8. Inserting attribute values

While attr() is supported in the content property value, it
isn’t parsed. In other words, if the attr() returns an image
URL from an attribute value, the generated content will be the
URL written out as text, and not the image that lives at that
URL. This is true as of late 2022, anyway; there are plans for
changes such that attr() can be parsed (and also be used for
all properties, not just content).

Color

One of the first questions every starting web author asks is,
“How do I set colors on my page?” Under HTML, you have two
choices: you could use one of a large but limited number of
colors with names, such as red or purple , or employ a
vaguely cryptic method using hexadecimal codes. Both methods

<p id="leadoff">This is the first paragraph.</p>
<p>This is the second paragraph.</p>
<p id="conclusion">This is the third paragraph.</p>

for describing colors remain in CSS, along with several—and,
we think, more intuitive—methods.

Named Colors

Over the years, CSS has added a set of 148 colors that are
identified by human-readable names like red or
firebrickred . CSS calls these, logically enough, named colors.
In the early days, CSS used only the 16 basic color keywords
defined in HTML 4.01:

aqua

gray

navy

silver

black

green

olive

teal

blue

lime

purple

white

fuchsia

maroon

red

yellow

So, let’s say you want all first-level headings to be maroon. The
best declaration would be as follows:

h1 {color: maroon;}

Simple enough, isn’t it? Figure 5-9 shows a few more examples:

h1 {color: silver;}
h2 {color: gray;}
h3 {color: black;}

Figure 5-9. Named colors

You’ve probably seen (and maybe even used) color names other
than the ones listed earlier. For example, you could say

h1 {color: lightgreen;}

and get a light-green (but not exactly lime) color applied to
<h1> elements.

The CSS color specification includes those original 16 named
colors in a longer list of 148 color keywords. This extended list
is based on the standard X11 RGB values that have been in use
for decades and recognized by browsers for many years, with
the addition of some color names from SVG (mostly involving
variants of “gray” and “grey”) and a memorial color.

Color Keywords

CSS has two special keywords that can be used anywhere a
color value is permitted: transparent and currentcolor .

As its name suggests, transparent defines a completely
transparent color. The CSS Color Module defines it to be
equivalent to rgb(0 0 0 / 0%) , and that’s its computed value.
This keyword is not often used to set text color, for example, but
it is the default value for element background colors. It can also
be used to define element borders that take up space but are
not visible, and is often used when defining gradients— all
topics we’ll cover in later chapters.

By contrast, currentcolor means “whatever the computed
value of color is for this element.” Consider the following:

main {color: gray; border-color: currentcolor;}

The first declaration causes any <main> elements to have a
foreground color of gray . The second declaration uses
currentcolor to copy the computed value of color —in this
case gray —and apply it to any borders the <main> elements
might have. Incidentally, currentcolor is actually the default
value for border-color , which we’ll cover in Chapter 7.

As with all the named colors, these color names are case-
insensitive. We show currentcolor with mixed capitalization
because it is generally written that way for legibility.

Fortunately, CSS has more detailed and precise ways to specify
colors. The advantage is that, with these methods, you can
specify any color in the color spectrum, not just a limited list of
named colors.

Colors by RGB and RGBa

Computers create colors by combining different levels of the
primary colors red, green, and blue—a combination often
referred to as RGB color. So, it makes sense that you should be
able to specify your own combinations of these primary colors
in CSS. That solution is a bit complex, but possible, and the
payoffs are worth it because CSS has very few limits on which

colors you can produce. You can produce color in this manner
in four ways, detailed in this section.

Functional RGB colors

Two color value types use functional RGB notation as opposed to
hexadecimal notation. The generic syntax for this type of color
value is rgb(color) , where color is expressed using a triplet
of either percentages or numbers. The percentage values can be
in the range 0% – 100% , and the integers can be in the range 0 –
255 .

Thus, to specify white and black, respectively, using percentage
notation, the values would be as follows:

rgb(100%,100%,100%)
rgb(0%,0%,0%)

Using the integer-triplet notation, the same colors would be
represented as follows:

rgb(255,255,255)
rgb(0,0,0)

An important thing to remember is that you can’t mix integers
and percentages in the same color value. Thus,
rgb(255,66.67%,50%) would be invalid and thus ignored.

NOTE

In more recent browsers, the separating commas in RGB values can be replaced with
simple whitespace. Thus, black can be represented as rgb(0 0 0) or rgb(0% 0%
0%) . This is true of all the color values that allow commas that we’ll see throughout
the chapter. Bear in mind that some of the newer color functions do not allow
commas.

Assume you want your <h1> elements to be a shade of red that
lies between the values for red and maroon. The red value is
equivalent to rgb(100%,0%,0%) , whereas maroon is equal to
(50%,0%,0%) . To get a color between those two, you might try
this:

h1 {color: rgb(75%,0%,0%);}

This makes the red component of the color lighter than maroon ,
but darker than red . If, on the other hand, you want to create a
pale-red color, you would raise the green and blue levels:

h1 {color: rgb(75%,50%,50%);}

The closest equivalent color using integer-triplet notation is
shown here:

h1 {color: rgb(191,127,127);}

The easiest way to visualize how these values correspond to
color is to create a table of gray values. The result is shown in
Figure 5-10:

p.one {color: rgb(0%,0%,0%);}
p.two {color: rgb(20%,20%,20%);}
p.three {color: rgb(40%,40%,40%);}
p.four {color: rgb(60%,60%,60%);}
p.five {color: rgb(80%,80%,80%);}
p.six {color: rgb(0,0,0);}
p.seven {color: rgb(51,51,51);}
p.eight {color: rgb(102,102,102);}
p.nine {color: rgb(153,153,153);}
p.ten {color: rgb(204,204,204);}

Figure 5-10. Text set in shades of gray

Since we’re dealing in shades of gray, all three RGB values are
the same in each statement. If any one were different from the
others, a color hue would start to emerge. If, for example,
rgb(50%,50%,50%) were modified to be rgb(50%,50%,60%) ,
the result would be a medium-dark color with just a hint of
blue.

You can use fractional numbers in percentage notation. You
might, for some reason, want to specify that a color be exactly
25.5% red, 40% green, and 98.6% blue:

h2 {color: rgb(25.5%,40%,98.6%);}

Values that fall outside the allowed range for each notation are
clipped to the nearest range edge, meaning that a value that is
greater than 100% or less than 0% will default to those allowed

extremes. Thus, the following declarations would be treated as
if they were the values indicated in the comments:

Conversion between percentages and integers may seem
arbitrary, but there’s no need to guess at the integer you want—
there’s a simple formula for calculating them. If you know the
percentages for each of the RGB levels you want, you need only
apply them to the number 255 to get the resulting values. Let’s
say you have a color of 25% red, 37.5% green, and 60% blue.
Multiply each of these percentages by 255, and you get 63.75,
95.625, and 153. Round these values to the nearest integers, and
voilà: rgb(64,96,153) .

If you already know the percentage values, there isn’t much
point in converting them into integers. Integer notation is more
useful for people who use programs such as Adobe Photoshop,
which can display integer values in the Info dialog, or for those
who are so familiar with the technical details of color
generation that they normally think in values of 0–255.

P.one {color: rgb(300%,4200%,110%);} /* 100%,100%,
P.two {color: rgb(0%,-40%,-5000%);} /* 0%,0%,0% *
p.three {color: rgb(42,444,-13);} /* 42,255,0 */

RGBa colors

RGB notations can include a fourth parameter defining the
alphatransparency value. By adding an alpha value at the end
of the RGB triplet, rgb() accepts a red-green-blue-alpha, or
RGBa, value, with the alpha value being a measurent of opacity.

While the rgb() notation allows for three or four values, the
alpha value must be present in the legacy rgba() function to
be valid.

For example, suppose you want an element’s text to be half-
opaque white. That way, any background color behind the text
would “shine through,” mixing with the half-transparent white.
You could write one of the following two values:

To make a color completely transparent, you set the alpha value
to 0 ; to be completely opaque, the correct value is 1 . Thus
rgb(0,0,0) and rgba(0,0,0,1) will yield precisely the same
result (black). Figure 5-11 shows a series of paragraphs set in
increasingly transparent black, which is the result of the
following rules:

rgb(255 255 255 / 0.5)
rgba(100% 100% 100% / 0.5) /* commas would also be a

p.one {color: rgb(0,0,0,1);}
p.two {color: rgba(0%,0%,0%,0.8);}
p.three {color: rgb(0 0 0 / 0.6);}
p.four {color: rgba(0% 0% 0% / 0.4);}
p.five {color: rgb(0,0,0,0.2);}

Figure 5-11. Text set in progressive translucency

Alpha values are always real numbers in the range 0 to 1 , or
percentages in the range 0% to 100% . Any value outside that
range will either be ignored or reset to the nearest valid alpha
value.

Hexadecimal RGB colors

CSS allows you to define a color using the same hexadecimal
color notation so familiar to old-school HTML web authors:

h1 {color: #FF0000;} /* set H1s to red */
h2 {color: #903BC0;} /* set H2s to a dusky purple *
h3 {color: #000000;} /* set H3s to black */
h4 {color: #808080;} /* set H4s to medium gray */

Computers have been using hex notation for quite some time
now, and programmers are typically either trained in its use or
pick it up through experience. Their familiarity with
hexadecimal notation likely led to its use in setting colors in
HTML. That practice was carried over to CSS.

Here’s how it works: by stringing together three hexadecimal
numbers in the range 00 through FF , you can set a color. The
generic syntax for this notation is #RRGGBB . Note that there are
no spaces, commas, or other separators between the three
numbers.

Hexadecimal notation is mathematically equivalent to integer-
pair notation. For example, rgb(255,255,255) is precisely
equivalent to #FFFFFF , and rgb(51,102,128) is the same as
#336680 . Feel free to use whichever notation you prefer—it
will be rendered identically by most user agents. If you have a
calculator that converts between decimal and hexadecimal,
making the jump from one to the other should be pretty simple.

For hexadecimal numbers that are composed of three matched
pairs of digits, CSS permits a shortened notation. The generic
syntax of this notation is #RGB :

h1 {color: #000;} /* set H1s to black */
h2 {color: #666;} /* set H2s to dark gray */
h3 {color: #FFF;} /* set H3s to white */

As you can see from the markup, each color value has only
three digits. However, since hexadecimal numbers between 00
and FF need two digits each, and you have only three total
digits, how does this method work?

The answer is that the browser takes each digit and replicates
it. Therefore, #F00 is equivalent to #FF0000 , #6FA would be
the same as #66FFAA , and #FFF would come out #FFFFFF ,
which is the same as white . Not every color can be represented
in this manner. Medium gray, for example, would be written in
standard hexadecimal notation as #808080 . This cannot be
expressed in shorthand; the closest equivalent would be #888 ,
which is the same as #888888 .

Hexadecimal RGBa colors

Hexadecimal notation can have a fourth hex value to represent
the alpha channel value. The following rules style the series of
paragraphs in Figure 5-12, which are set in increasingly
transparent black, just as you saw in the previous section:

p.one {color: #000000FF;}
p.two {color: #000000CC;}
p.three {color: #00000099;}
p.four {color: #00000066;}
p.five {color: #00000033;}

Figure 5-12. Text set in progressive translucency, redux

As with non-alpha hexadecimal values, you can shorten a value
composed of matched pairs to a four-digit value. Thus, a value
of #663399AA can be written as #639A . If the value has any
pairs that are not repetitive, the entire eight-digit value must be
written out: #663399CA cannot be shortened to #639CA .

HSL and HSLa Colors

Hue, saturation, and lightness (HSL) color notation is similar to
hue, saturation, and brightness (HSB), the color system in image
editing software like Photoshop, and just as intuitive. The hue is
expressed as an angle value, saturation is a percentage value
from 0% (no saturation) to 100% (full saturation), and lightness

is a percentage value from 0% (completely dark) to 100%
(completely light). If you’re intimately familiar with RGB, HSL
may be confusing at first. (But then, RGB is confusing for people
familiar with HSL.)

The hue angle is expressed in terms of a circle around which
the full spectrum of colors progresses. It starts with red at 0
degrees and then proceeds through the rainbow until it comes
to red again at 360 degrees. When the hue value is a unitless
number, it is interpreted as degrees.

Saturation measures the intensity of a color. A saturation of 0%
always yields a shade of gray, no matter what hue angle you
have set, and a saturation of 100% creates the most vivid
possible shade of that hue (in the HSL color space) for a given
lightness.

Similarly, lightness defines how dark or light the color appears.
A lightness of 0% is always black, regardless of the other hue
and saturation values, just as a lightness of 100% always yields
white. Consider the results of the following styles, illustrated on
the left side of Figure 5-13.

p.one {color: hsl(0,0%,0%);}
p.two{color: hsl(60 0% 25%);}

p.three {color: hsl(120deg,0%,50%);}
p.four {color: hsl(180deg 0% 75%);}
p.five {color: hsl(0.667turn,0%,0%);}
p.six {color: hsl(0.833turn 0% 25%);}
p.seven {color: hsl(400grad 0% 50%);}

NOTE

Remember that in more recent browsers, the commas in hsl() values can be
replaced with whitespace.

The gray you see on the left side isn’t just a function of the
limitations of print: every one of those paragraphs is a shade of
gray, because every color value has 0% in the saturation
(middle) position. The degree of lightness or darkness is set by
the lightness (third) position. In all seven examples, the hue
angle changes, and in none of them does it matter.

Figure 5-13. Varying lightness and hues

But that’s only so long as the saturation remains at 0% . If that
value is raised to, say, 50% , then the hue angle will become very
important, because it will control what sort of color you see.
Consider the same set of values that we saw before, but all set
to 50% saturation; this is illustrated on the right side of
Figure 5-13, although the color is not visible in the print version
of this book.

Just as RGB has a legacy RGBa counterpart, HSL has an HSLa
counterpart. This is an HSL triplet followed by an alpha value in
the range 0–1. The following HSLa values are all black with
varying shades of transparency, just as in “Hexadecimal RGBa
colors” (and illustrated in Figure 5-12):

p.one {color: hsl(0,0%,0%,1);}
p.two {color: hsla(0,0%,0%,0.8);}
p.three {color: hsl(0 0% 0% / 0.6);}
p.four {color: hsla(0 0% 0% / 0.4);}
p.five {color: hsl(0rad 0% 0% / 0.2);}

Colors with HWB

Colors can also be represented in terms of their hue, white level,
and black level by using the hwb() functional value. This
function value accepts hue values expressed as an angle value.

After the hue angle, instead of lightness and saturation,
whiteness and blackness values are specified as percentages.

Unlike HSL, however, there is no legacy hwba() function.
Instead, the value syntax for hwb() allows an opacity to be
defined after the HWB values, separated from them by a
forward slash (/). The opacity can be expressed either as a
percentage or as a real value from 0 to 1, inclusive. Also unlike
HSL, commas are not supported: the HWB values can only be
separated by whitespace.

Here are some examples of using HWB notation:

/* Varying shades of red */
hwb(0 40% 20%)
hwb(360 50% 10%)
hwb(0deg 10% 10%)
hwb(0rad 60% 0%)
hwb(0turn 0% 40%)

/* Partially translucent red */
hwb(0 10% 10% / 0.4)
hwb(0 10% 10% / 40%)

Lab Colors

Historically, all CSS colors were defined in the sRGB color space,
which encompassed more colors than older display monitors
could represent. Modern displays, on the other hand, can
handle about 150% of the sRGB color space, which still isn’t the
full range of color humans can perceive, but it’s a lot closer.

In 1931, the Commission Internationale de l’Éclairage
(International Commission on Illumination, or CIE) defined a
scientific system for defining colors created via light, as
opposed to those created with paint or dyes. Now, almost a
century later, CSS has brought the work of the CIE into its
repertoire.

It does this using the lab() function value to express color in
the CIE L*a*b* (hereafter shortened as Lab) color space. Lab is
designed to represent the entire range of color that humans can
see. The lab() function accepts three to four parameters:
lab(L a b / A) . Similar to HWB, the parameters must be
space-separated (no commas allowed) and a forward slash (/)
precedes the alpha value, if provided.

The L (Lightness) component specifies the CIE lightness, and is
a < percentage > from 0% representing black to 100%
representing white, or a < number > from 0 to 1 . The second
component, a , is the distance along the a-axis in the Lab color

space. This axis runs from a purplish red in the positive
direction to a shade of green in the negative direction. The third
component, b , is the distance along the b-axis in the Lab color
space. This axis runs from a yellow in the positive direction to a
blue-violet in the negative direction.

The fourth, optional parameter is the opacity, with a value from
0 to 1 inclusive, or 0% to 100% inclusive. If omitted, the opacity
defaults to 1 (100%), or full opacity.

Here are some examples of Lab color expressed in CSS:

lab(29.2345% 39.3825 -20.0664);
lab(52.2345% 40.1645 59.9971);
lab(52.2345% 40.1645 59.9971 / .5);

The main reason to bring Lab (and LCH, which we’ll discuss in
a moment) colors into CSS is that they are systematically
designed to be perceptually uniform: color values that share a
given coordinate will seem consistent in terms of that
coordinate. Two colors with different hues but the same
lightness will appear to have similar lightnesses. Two colors
with the same hue but different lightnesses will appear to be
shades of a single hue. This is often not the case with RGB and
HSL values, so Lab and LCH represent a big improvement.

They’re also defined to be device independent, so you should be
able to specify colors in these color spaces and get a visually
consistent result from one device to another.

WARNING

As of late 2022, only WebKit supports lab() .

LCH Colors

Lightness Chroma Hue (LCH) is a version of Lab designed to
represent the entire spectrum of human vision. It does this
using a different notation: lch(L C H / A) . The main
difference is that C and H are polar coordinates, rather than
linear values along color axes.

The L (Lightness) component is the same as the CIE Lightness,
and is a <percentage> from 0% representing black to 100%
representing white.

The C (Chroma amount) component roughly represents the
amount of color. Its minimum value is 0 , and no maximum is
defined. Negative C values are clamped to 0.

The H (Hue angle) component is essentially a combination of
the a and b values in lab() . The value 0 points along the

positive a-axis (toward purplish red), 90 points along the
positive b-axis (toward mustard yellow), 180 points along the
negative a-axis (toward greenish cyan), and 270 points along
the negative b-axis (toward sky blue). This component loosely
corresponds to HSL’s Hue, but the hue angles differ.

The optional A (alpha) component can be a < number > from 0
to 1, or else a < percentage >, where the number 1 corresponds
to 100% (full opacity). If present, it is preceded by a forward
slash (/). Here are some examples:

lch(56% 132 331)
lch(52% 132 8)
lch(52% 132 8 / 50%)

To give an example of the capabilities of LCH, lch(52% 132 8)
is a very bright magenta equivalent to rgb(118.23% -46.78%
40.48%) . Notice the large red value and the negative green
value, which places the color outside the sRGB color space. If
you supplied that RGB value to a browser, it would clamp the
value to rgb(100% 0% 40.48%) . This is within the sRGB color
space, but it is visually quite distinct from the color that is
defined by lch(52% 132 8) .

WARNING

As of late 2022, only Safari supports lch() values.

Oklab and Oklch

Improved versions of Lab and LCH, called Oklab and Oklch, will
be supported by CSS via the oklab() and oklch() functional
values. Oklab was developed by taking a large set of visually
similar colors and performing a numerical optimization on
them, yielding a color space with better hue linearity and
uniformity, and better chroma uniformity, than the CIE color
spaces. Oklch is a polar-coordinate version of Oklab, just as LCH
is to Lab.

Because of this improved uniformity, Oklab and Oklch will be
the default for color-interpolation calculations in CSS going
forward. However, as of late 2022, only Safari supports the
oklab() and oklch() CSS functional values.

Using color()

The color() function value allows a color to be specified in a
named color space rather than the implicit sRGB color space. It

accepts four space-separated parameters, as well as an optional
fifth opacity value preceded by a forward slash (/).

The first parameter is a predefined, named color space. Possible
values as of late 2022 include srgb , srgb-linear , display-
p3 , a98-rgb , prophoto-rgb , rec2020 , xyz , xyz-d50 , and
xyz-d65 . The three values that follow are specific to the color
space declared in the first parameter. Some color spaces may
allow these values to be percentages, while others may not.

As an example, the following values should yield the same
color:

#7654CD
rgb(46.27% 32.94% 80.39%)
lab(44.36% 36.05 -58.99)
color(xyz-d50 0.2005 0.14089 0.4472)
color(xyz-d65 0.21661 0.14602 0.59452)

You could easily declare a color that lies outside the gamut of a
given color space. For example, color(display-p3 -0.6112
1.0079 -0.2192); is outside the display-p3 gamut. It’s still a
valid color, just not one that can be expressed in that color
space. When a color value is valid but outside the gamut, it will

be mapped to the closest color that lies inside the color space’s
gamut.

If a color’s value is straight-up invalid, opaque black is used.

WARNING

As of late 2022, only Safari supports color() .

Applying Color

Since we’ve just gone through all the possible color formats,
let’s take a brief detour to talk about the property that uses
color values the most often: color . This property sets the color
of an element’s text and the value of currentcolor .

COLOR

Values < color >

Initial value User-agent specific

Applies to All elements

Computed value As specified

Inherited Yes

Animatable Yes

This property accepts as a value any valid color type, such as
#FFCC00 or rgb(100% 80% 0% / 0.5) .

For nonreplaced elements like paragraphs or elements,
color sets the color of the text in the element. The following
code results in Figure 5-14:

<p style="color: gray;">This paragraph has a gray for
<p>This paragraph has the default foreground.</p>

Figure 5-14. Declared color versus default color

In this example, the default foreground color is black. That
doesn’t have to be the case, since the user might have set their
browser (or other user agent) to use a different foreground
(text) color. If the browser’s default text color was set to green ,
the second paragraph in the preceding example would be
green, not black—but the first paragraph would still be gray.

You need not restrict yourself to such basic operations. There
are plenty of ways to use color . You might have some
paragraphs that contain text warning the user of a potential
problem. To make this text stand out more than usual, you
might decide to color it red. Just apply a class of warn to each
paragraph that contains warning text (<p class="warn">) and
the following rule:

p.warn {color: red;}

In the same document, you might decide that any unvisited
hyperlinks within a warning paragraph should be green:

p.warn {color: red;}
p.warn a:link {color: green;}

Then you change your mind, deciding that warning text should
be dark red, and that unvisited links in such text should be
medium purple. The preceding rules need only be changed to
reflect the new values. The following code results in Figure 5-
15:

p.warn {color: #600;}
p.warn a:link {color: #400040;}

Figure 5-15. Changing colors

https://meyerweb.github.io/csstdg5figs/05-values-and-units/changing-colors.html

Another use for color is to draw attention to certain types of
text. For example, boldfaced text is already fairly obvious, but
you could give it a different color to make it stand out even
further—let’s say, maroon:

b, strong {color: maroon;}

Then you decide that you want all table cells with a class of
highlight to contain light yellow text:

td.highlight {color: #FF9;}

If you don’t set a background color for any of your text, you run
the risk that a user’s setup won’t combine well with your own.
For example, if a user has set their browser’s background to be
a pale yellow, like #FFC , then the previous rule would generate
light-yellow text on a pale-yellow background. Far more likely is
that it’s still the default background of white, against which
light yellow is still going to be hard to read. It’s therefore
generally a good idea to set foreground and background colors
together. (We’ll talk about background colors shortly.)

Affecting Form Elements

Setting a value for color should (in theory, anyway) apply to
form elements. Declaring <select> elements to have dark-gray
text should be as simple as this:

select {color: rgb(33%,33%,33%);}

This might also set the color of the borders around the edge of
the <select> element, or it might not. It all depends on the
user agent and its default styles.

You can also set the foreground color of input elements—
although, as you can see in Figure 5-16, doing so would apply
that color to all inputs, from text to radio buttons to checkbox
inputs:

select {color: rgb(33%,33%,33%);}
input {color: red;}

Figure 5-16. Changing form element foregrounds

Note in Figure 5-16 that the text color next to the checkboxes is
still black. This is because the rules shown assign styles only to
elements like <input> and <select> , not normal paragraph
(or other) text.

Also note that the checkmark in the checkbox is black. This is
due to the way form elements are handled in some web
browsers, which typically use the form widgets built into the
base operating system. Thus, when you see a checkbox and
checkmark, they really aren’t content in the HTML document—
they’re UI widgets that have been inserted into the document,
much as an image would be. In fact, form inputs are, like
images, replaced elements. In theory, CSS does not style the
contents of form elements (though this may change in the
future).

In practice, the line is a lot blurrier than that, as Figure 5-16
demonstrates. Some form inputs have the color of their text and
even portions of their UI changed, while others do not. And
since the rules aren’t explicitly defined, behavior is inconsistent
across browsers. In short, form elements are deeply tricky to
style and should be approached with extreme caution.

Inheriting Color

As the definition of color indicates, the property is inherited.
This makes sense, since if you declare p {color: gray;} , you
probably expect that any text within that paragraph will also be
gray, even if it’s emphasized or boldfaced or whatever. If you
want such elements to be different colors, that’s easy enough.
The following code, for example, results in Figure 5-17:

em {color: red;}
p {color: gray;}

Figure 5-17. Different colors for different elements

Since color is inherited, it’s theoretically possible to set all of the
ordinary text in a document to a color, such as red, by declaring
body {color: red;} . This should make all text that is not
otherwise styled (such as anchors, which have their own color
styles) red.

Angles

Since we just recently finished talking about hue angles in a
number of color value types, this is a good time to talk about
angle units. Angles in general are represented as < angle >,
which is a < number > followed by one of four unit types:

deg

Degrees, of which there are 360 in a full circle.

grad

Gradians, of which there are 400 in a full circle. Also known
as grades or gons.

rad

Radians, of which there are 2π (approximately 6.28) in a full
circle.

turn

Turns, of which there is one in a full circle. This unit is
mostly useful when animating a rotation and you wish to
have it turn multiple times, such as 10turn to make it spin
10 times. (Sadly, the pluralization turns is invalid, at least as
of early 2023, and will be ignored.)

To help understand the relationships among these angle types,
Table 5-2 shows how some angles are expressed in the various

angle units. Unlike for length values, when including angles, the
unit is always required, even if the value is 0deg .

Time and Frequency

When a property needs to express a period of time, the value is
represented as < time > and is a < number > followed by either s
(seconds) or ms (milliseconds.) Time values are most often used

Table 5-2. Angle equivalents

Degrees Gradians Radians Turns

0deg 0grad 0rad 0turn

45deg 50grad 0.785rad 0.125turn

90deg 100grad 1.571rad 0.25turn

180deg 200grad 3.142rad 0.5turn

270deg 300grad 4.712rad 0.75turn

360deg 400grad 6.283rad 1turn

in transitions and animations, either to define durations or
delays. The following two declarations will have exactly the
same result:

a[href] {transition-duration: 2.4s;}
a[href] {transition-duration: 2400ms;}

Time values are also used in aural CSS, again to define
durations or delays, but support for aural CSS is extremely
limited as of this writing.

Another value type historically used in aural CSS is
< frequency >, which is a < number > followed by either Hz
(hertz) or kHz (kilohertz). As usual, the unit identifiers are case-
insensitive, so Hz and hz are equivalent. The following two
declarations will have exactly the same result:

h1 {pitch: 128hz;}
h1 {pitch: 0.128khz;}

Unlike with length values, for time and frequency values the
unit type is always required, even when the value is 0s or
0hz .

Ratios

When you need to express a ratio of two numbers, you use a
< ratio > value. These values are represented as two positive
< number > values separated by a forward slash (/), plus
optional whitespace.

The first integer refers to the width (inline size) of an element,
and the second to the height (block size). Thus, to express a
height-to-width ratio of 16 to 9, you can write 16/9 or 16 / 9 .

As of late 2022, there is no facility to express a ratio as a single
real number (e.g., 1.777 instead of 16/9), nor to use a colon
separator instead of a forward slash (e.g., 16:9).

Position

You use a position value, represented as < position >, to specify
the placement of an origin image in a background area. Its
syntactical structure is rather complicated:

[
 [left | center | right | top | bottom | <percenta
 [left | center | right | <percentage> | <length>
 [top | center | bottom | <percentage> | <length>

That might seem a little nutty, but it’s all down to the subtly
complex patterns that this value type has to allow.

If you declare only one value, such as left or 25% , the second
value is set to center . Thus, left is the same as left center ,
and 25% is the same as 25% center .

If you declare two values (either implicitly, as in the previous
example, or explicitly), and the first one is a < length > or
< percentage >, then it is always considered to be the horizontal
value. Therefore, given 25% 35px , the 25% is a horizontal
distance and the 35px is a vertical distance. If you swap them
to say 35px 25% , then 35px is horizontal and 25% is vertical. If
you write 25% left or 35px right , the entire value is invalid
because you have supplied two horizontal distances and no
vertical distance. (Similarly, a value of right left or top
bottom is invalid and will be ignored.) On the other hand, if you
write left 25% or right 35px , there is no problem because
you’ve given a horizontal distance (with the keyword) and a
vertical distance (with the percentage or length).

 [center | [left | right] [<percentage> | <leng
 [center | [top | bottom] [<percentage> | <leng
]

If you declare four values (we’ll deal with three in just a
moment), you must have two lengths or percentages, each of
which is preceded by a keyword. In this case, each length or
percentage specifies an offset distance, and each keyword
defines the edge from which the offset is calculated. Thus,
right 10px bottom 30px means an offset of 10 pixels to the
left of the right edge, and an offset of 30 pixels up from the
bottom edge. Similarly, top 50% left 35px means a 50% offset
from the top and a 35-pixels-to-the-right offset from the left.

You can declare only three position values with the
background-position property. If you declare three values, the
rules are the same as for four, except the fourth offset is set to
be 0 (no offset). Thus right 20px top is the same as right
20px top 0 .

Custom Properties

If you’ve used a preprocessor like Less or Sass, you’ve probably
created variables to hold values. CSS itself has this capability as
well. The technical term for this is custom properties, even
though what these really do is create something like variables
in your CSS.

Here’s a basic example, with the result shown in Figure 5-18
(though color won’t be visible in the printed version):

html {
 --base-color: #639;
 --highlight-color: #AEA;
}

h1 {color: var(--base-color);}
h2 {color: var(--highlight-color);}

Figure 5-18. Using custom values to color headings

There are two things to absorb here. The first is the definition of
the custom values --base-color and --highlight-color .
These are not some sort of special color types. They’re just
names that we picked to describe what the values contain. We
could just as easily have said this:

html {
 --alison: #639;
 --david: #AEA;
}

h1 {color: var(--alison);}
h2 {color: var(--david);}

You probably shouldn’t do that sort of thing, unless you’re
literally defining colors that specifically correspond to people
named Alison and David. (Perhaps on an “About Our Team”
page.) It’s always better to define custom identifiers that are
self-documenting—things like main-color or accent-color or
brand-font-face .

The important point is that any custom identifier of this type
begins with two hyphens (--). It can then be invoked later by
using a var() value type. Note that these names are case-

sensitive, so --main-color and --Main-color are completely
separate identifiers.

These custom identifiers are often referred to as CSS variables,
which explains the var() pattern. An interesting feature of
custom properties is their ability to scope themselves to a given
portion of the DOM. If that sentence made any sense to you, it
probably gave a little thrill. If not, here’s an example to
illustrate scoping, with the result shown in Figure 5-19:

html {
 --base-color: #666;
}
aside {
 --base-color: #CCC;
}

h1 {color: var(--base-color);}

<body>

<h1>Heading 1</h1><p>Main text.</p>

<aside>
 <h1>Heading 1</h1><p>An aside.</p>
</aside>

<h1>Heading 1</h1><p>Main text.</p>

</body>

Figure 5-19. Scoping custom values to certain contexts

Notice that the headings are a dark gray outside the <aside>
element and a light gray inside. That’s because the variable --
base-color was updated for <aside> elements. The new
custom value applies to any <h1> inside an <aside> element.

A great many patterns are possible with CSS variables, even if
they are confined to value replacement. Here’s an example
suggested by Chriztian Steinmeier combining variables with the
calc() function to create a regular set of indents for
unordered lists:

This particular example is basically the same as writing the
following:

ul li {margin-left: 3ch;}
ul ul li {margin-left: 6ch;}
ul ul ul li {margin-left: 9ch;}

html {
 --gutter: 3ch;
 --offset: 1;
}
ul li {margin-left: calc(var(--gutter) * var(--offset
ul ul li {--offset: 2;}
ul ul ul li {--offset: 3;}

The difference is that with variables, it’s simple to update the -
-gutter multiplier in one place and have everything adjust
automatically, rather than having to retype three values and
make sure all the math is correct.

Custom Property Fallbacks

When you’re setting a value by using var() , you can specify a
fallback value. For example, you could say that if a custom
property isn’t defined, you want a regular value used instead,
like so:

ol li {margin-left: var(--list-indent, 2em);}

Given that, if --list-indent isn’t defined, is determined to be
invalid, or is explicitly set to initial , 2em will be used
instead. You get just the one fallback, and it can’t be another
custom property name.

That said, it can be another var() expression, and that nested
var() can contain another var() as its fallback, and so on to
infinity. So let’s say you’re using a pattern library that defines
colors for various interface elements. If those aren’t available
for some reason, you could fall back to a custom property value
defined by your basic site stylesheet. Then, if that’s also not

available, you could fall back to a plain color value. It would
look something like this:

The thing to watch out for here is that if you manage to create
an invalid value, the whole thing gets blown up and the value is
either inherited or set to its initial value, depending on whether
the property in question is usually inherited or not, as if it were
set to unset (see “unset”).

Suppose we wrote the following invalid var() values:

.popup {color: var(--pattern-modal-color, var(--highl

:root {
 --list-color: hsl(23, 25%, 50%);
 --list-indent: 5vw;

}

li {
 color: var(--list-color, --base-color, gray);
 margin-left: var(--list-indent, --left-indent
}

In the first case, the fallback is --base-color, gray as a single
string, not something that’s parsed, so it’s invalid. Similarly, in
the second case, the fallback --left-indent was never
declared. In either case, if the first custom property is valid, the
invalid fallback doesn’t matter, because the browser never gets
to it. But if, say, --list-indent doesn’t have a value, the
browser will go to the fallback, and here that’s invalid. So what
happens next?

For the color, since the property color is inherited, the list
items will inherit their color from their parent, almost certainly
an or element. If the parent’s color value is
fuchsia , the list items will be fuchsia. For the left margin, the
property margin-left is not inherited, so the left margins of
the list items will be set to the initial value of margin-left ,
which is 0 . So the list items will have no left margin.

This also happens if you try to apply a value to a property that
can’t accept those kinds of values. Consider the following:

:root {
 --list-color: hsl(23, 25%, 50%);
 --list-indent: 5vw;
}

li {

 color: var(--list-indent, gray);
 margin-left: var(--list-color, 2em);
}

Here, everything looks fine at first glance, except the color
property is being given a length value, and the margin-left
property is being given a color value. As a result, the fallbacks
of gray and 2em are not used. This is because the var()
syntax is valid, so the result is the same as if we declared
color: 5vw and margin-left: hsl(23, 25%, 50%) , both of
which are tossed out as invalid.

This means the outcome will be the same as we saw before: the
list items will inherit the color value from their parents, and
their left margins will be set to the initial value of 0, just as if
the given values were unset .

Summary

As you’ve seen, CSS provides a wide range of value and unit
types. These units can have advantages and drawbacks,
depending on the circumstances in which they’re used. You’ve
already seen some of those circumstances, and their nuances

will be discussed throughout the rest of the book, as
appropriate.

Chapter 6. Basic Visual Formatting

You’ve likely experienced the frustration of having your
intended layout not render as expected. After adding 27 style
rules to get it perfect, you still might not know which rule
solved your problem. With a model as open and powerful as
that contained within CSS, no book could hope to cover every
possible way of combining properties and effects. You will
undoubtedly go on to discover new ways of using CSS. With a
thorough grasp of how the visual rendering model works,
however, you’ll be better able to determine whether a behavior
is a correct (if unexpected) consequence of the rendering
engine CSS defines.

Basic Boxes

At its core, CSS assumes that every element generates one or
more rectangular boxes, called element boxes. (Future versions
of the specification may allow for nonrectangular shapes, and
indeed changes have been proposed, but for now all boxes are
still rectangular.)

Each element box has a content area at its center. This content
area is surrounded by optional amounts of padding, borders,

outlines, and margins. These areas are considered optional
because they could all be set to a size of 0, effectively removing
them from the element box. Figure 6-1 shows an example
content area, along with the surrounding regions of padding,
borders, and margins.

Figure 6-1. The content area and its surroundings

Before looking at the properties that can alter the space taken
up by elements, let’s cover the vocabulary needed to fully
understand how elements are laid out and take up space.

A Quick Primer

First, we’ll quickly review the kinds of boxes we’ll be
discussing, as well as some important terms that are needed to
understand the explanations to come:

Block flow direction

Also known as the block axis, this is the direction along
which block-level element boxes are stacked. In many
languages, including all European and European-derived
languages, this direction is from top to bottom. In
Chinese/Japanese/Korean (CJK) languages, this can be either
right to left or top to bottom. The actual block flow direction
is set by the writing mode, which is discussed in Chapter 15.

Inline base direction
Also known as the inline axis, this is the direction along
which lines of text are written. In Romanic languages, among
others, this is left to right. In languages such as Arabic or
Hebrew, the inline base direction is right to left. In CJK
languages, this can be either top to bottom or left to right. As
with block flow, the inline base direction is set by the writing
mode.

Normal flow
The default system by which elements are placed inside the
browser’s viewport, based on the parent’s writing mode.
Most elements are in the normal flow, and the only way for
an element to leave the normal flow is to be floated,
positioned, or made into a flexible box, grid layout, or table
element. The discussions in this chapter cover elements in
the normal flow, unless otherwise stated.

Block box
This is a box generated by an element such as a paragraph,
heading, or <div> . These boxes generate blank spaces both
before and after their boxes when in the normal flow so that
block boxes in the normal flow stack along the block flow
axis, one after another. Pretty much any element can be
made to generate a block box by declaring display: block ,
though there are other ways to make elements generate
block boxes (e.g., float them or make them flex items).

Inline box
This is a box generated by an element such as or
 . These boxes are laid out along the inline base
direction, and do not generate line breaks before or after
themselves. An inline box longer than the inline size of its
element will (by default, if it’s nonreplaced) wrap to multiple
lines. Any element can be made to generate an inline box by
declaring display: inline .

Nonreplaced element
This is an element whose content is contained within the
document. For example, a paragraph (<p>) is a nonreplaced
element because its textual content is found within the
element itself.

Replaced element
This is an element that serves as a placeholder for something
else. The classic example of a replaced element is ,
which simply points to an image file that is inserted into the
document’s flow at the point where the element itself
is found. Most form elements are also replaced (e.g., <input
type="radio">).

Root element
This is the element at the top of the document tree. In HTML
documents, this is the element <html> . In XML documents, it
can be whatever the language permits: for example, the root
element of RSS files is <rss> , whereas in an SVG document,
the root element is <svg> .

The Containing Block

We need to examine one more kind of box in detail, and in this
case enough detail that it merits its own section: the containing
block.

Every element’s box is laid out with respect to its containing
block. In a very real way, the containing block is the layout
context for a box. CSS defines a series of rules for determining a
box’s containing block.

For a given element, the containing block forms from the
content edge of the nearest ancestor element that generates a
list item or block box, which includes all table-related boxes
(e.g., those generated by table cells). Consider the following:

<body>
 <div>
 <p>This is a paragraph.</p>
 </div>
</body>

In this simple markup, the containing block for the <p>
element’s block box is the <div> element’s block box, as that is
the closest ancestor element box that has a block or a list item
box (in this case, it’s a block box). Similarly, the <div> ’s
containing block is the <body> ’s box. Thus, the layout of the
<p> is dependent on the layout of the <div> , which is in turn
dependent on the layout of the <body> element.

And above that in the document tree, the layout of the <body>
element is dependent on the layout of the <html> element,
whose box creates what is called the initial containing block. It’s
unique in that the viewport—the browser window in screen
media, or the printable area of the page in print media—
determines the dimensions of the initial containing block, not

the size of the content of the root element. This matters because
the content can be shorter, and usually longer, than the size of
the viewport. Most of the time it doesn’t make a difference, but
when it comes to things such as fixed positioning or viewport
units, the difference is real.

Now that you understand some of the terminology, we can
address the properties that make up Figure 6-1. The various
margin, border, and padding features, such as border-style ,
can be set using various side-specific longhand properties, such
as margin-inline-start or border-bottom-width . (The
outline properties do not have side-specific properties; a change
to an outline property affects all four sides.)

The content’s background—a color or tiled image, for example
—is applied within the padding and border areas by default,
but this can be changed. The margins are always transparent,
allowing the background(s) of any parent element(s) to be
visible. Padding and borders cannot be of a negative length, but
margins can. We’ll explore the effects of negative margins in
“Negative Margins and Collapsing”.

Borders are most often generated using defined styles, with a
border-style such as solid , dotted , or inset , and their
colors are set using the border-color property. If no color is

set, the value defaults to currentcolor . Borders can also be
generated from images. If a border style has gaps of some type,
as with border-style: dashed or with a border generated
from a partially transparent image, then the element’s
background is visible through those gaps by default, though it is
possible to clip the background to stay inside the border (or the
padding).

Altering Element Display

You can affect the way a user agent displays by setting a value
for the display property.

DISPLAY

Values [< display-outside > ‖ < display-insi

de >] | < display-listitem > | < displa

y-internal > | < display-box > | < disp

lay-legacy >

Definitions See below

Initial
value

inline

Applies to All elements

Computed
value

As specified

Inherited No

Animatable No

< display-outside >
block | inline | run-in

< display-inside >
flow | flow-root | table | flex | grid | ruby

< display-listitem >
list-item && < display-outside >? && [flow | flow-
root]?

< display-internal >
table-row-group | table-header-group | table-footer-
group | table-row | table-cell | table-column-group |
table-column | table-caption | ruby-base | ruby-text
| ruby-base-container | ruby-text-container

< display-box >
contents | none

< display-legacy >
inline-block | inline-list-item | inline-table |
inline-flex | inline-grid

We’re going to ignore the ruby - and table -related values,
since they’re far too complex for this chapter. We’ll also
temporarily ignore the value list-item , since it’s very similar
to block boxes and is explored in detail in Chapter 16. For now,

we’ll spend a moment talking about how altering an element’s
display role can alter layout.

Changing Roles

When it comes to styling a document, it’s sometimes handy to
be able to change the type of box an element generates. For
example, suppose we have a series of links in a <nav> that we’d
like to lay out as a vertical sidebar:

<nav>
 WidgetCo Home
 Products
 Services
 Widgety Fun!
 Support
 About Us
 Contact
</nav>

By default, the links will generate inline boxes, and thus get sort
of mushed together into what looks like a short paragraph of
nothing but links. We could put all the links into their own
paragraphs or list items, or we could just make them all block-
level elements, like this:

nav a {display: block;}

This will make every <a> element within the navigation
element <nav> generate a block box, instead of its usual inline
box. If we add on a few more styles, we could have a result like
that shown in Figure 6-2.

Figure 6-2. Changing the display role from inline to block

Changing display roles can be useful when you want the
navigation links to be inline elements if the CSS isn’t available
(perhaps by failing to load), but to lay out the same links as
block-level elements in CSS-aware contexts. You could also
present the links as inline on desktop displays and block on
mobile devices, or vice versa. With the links laid out as blocks,
you can style them as you would <div> or <p> elements, with
the advantage that the entire element box becomes part of the
link.

You may also want to take elements and make them inline.
Suppose we have an unordered list of names:

<ul id="rollcall">
 Bob C.
 Marcio G.
 Eric M.
 Kat M.
 Tristan N.
 Arun R.
 Doron R.
 Susie W.

Given this markup, say we want our display to show a series of
inline names with vertical bars between them (and on each end

of the list). The only way to do so is to change their display role.
The following rules will have the effect shown in Figure 6-3:

Figure 6-3. Changing the display role from list-item to inline

Understand that you are, for the most part, changing the display
role of elements—not changing their inherent nature. In other
words, causing a paragraph to generate an inline box does not
turn that paragraph into an inline element. In HTML, for
example, some elements are block while others are inline.
While a can easily be placed inside a paragraph, a
 should not be wrapped around a paragraph.

We say “for the most part” because while CSS mostly impacts
presentation and not content, CSS properties can impact
accessibility in more ways than just color contrast. For example,
changing the display value can impact the way an element is
perceived by assistive technologies. Setting an element’s
display property to none removes the element from the
accessibility tree. Setting the display property on a <table>

#rollcall li {display: inline; border-right: 1px soli
#rollcall li:first-child {border-left: 1px solid;}

to grid may cause the table to be interpreted as something
other than a data table, removing normal table keyboard
navigation, and making the table inaccessible as a data table to
screen-reader users. (This shouldn’t happen, but it does in some
browsers.)

This can be mitigated by setting the Accessible Rich Internet
Applications (ARIA) role attribute for the table and all its
descendants. However, in general, anytime a change you make
in CSS forces you to make changes in ARIA roles, you should
take a moment to consider whether there isn’t a better way to
accomplish your goal.

Handling Block Boxes

Block boxes behave in predictable, yet sometimes surprising,
ways. The handling of box placement along the block and inline
axes can differ, for example. To fully understand how block
boxes are handled, you must clearly understand several aspects
of these boxes. They are shown in detail in Figure 6-4, which
illustrates placement in two different writing modes.

Figure 6-4. The complete box model in two different writing modes

As shown in Figure 6-4, CSS deals with the block directions and
inline directions, as well as block sizes and inline sizes. Block
and inline sizes are descriptions of the size of the content area
(by default) along the block and inline axes.

By contrast, the width (sometimes referred to as the physical
width) of a block box is defined as the distance between the
inner edges of the content area (again, by default) along the
horizontal axis (left to right), regardless of the writing direction,
and the height (physical height) is the distance along the vertical
axis (top to bottom). Properties are available to set all these
sizes, which we’ll talk about shortly.

Something important to note in Figure 6-4 is the use of start and
end to describe various parts of the element box. For example,
you’ll see a block-start margin and a block-end margin. The
start edge is the edge that you come to first as you move along
an axis.

This may be clearer if you look at Figure 6-5 and trace your
finger along each axis from arrow tail to tip. As you move along
a block axis, the first edge you come to for each element is that
element’s block-start edge. As you pass out of the element, you
move through the block-end edges. Similarly, as you move along
an inline axis, you go through the inline-start edges, across the

inline dimension of the content, and then out the inline-end
edges. Try it for each of the three examples.

Figure 6-5. The block- and inline-axis directions for three common writing modes

Logical Element Sizing

Because CSS recognizes block and inline axes for elements, it
provides properties that let you set an explicit element size
along each axis.

BLOCK-SIZE, INLINE-SIZE

Values < length > | < percentage > | min-cont
ent | max-content | fit-content | a
uto

Initial
value

auto

Applies to All elements except nonreplaced inline
elements, table rows, and row groups

Percentages Calculated with respect to the length of
the element’s containing block along
the block-flow axis (for block-size) or
inline-flow axis (for inline-size)

Computed
value

For auto and percentage values, as
specified; otherwise, an absolute length,
unless the property does not apply to
the element (then auto)

Inherited No

Animatable Yes

These properties allow you to set the size of an element along
its block axis, or to constrain the lengths of lines of text along
the inline axis, regardless of the direction of text flow. If you
write block-size: 500px , the element’s block size will be 500
pixels wide, even if that leads to content spilling out of the
element box. (We’ll discuss that in more detail later in the
chapter.)

Consider the following, which has the results shown in Figure 6-
6 when applied in various writing modes:

p {inline-size: 25ch;}

Figure 6-6. Sizing elements along their inline axis

As seen in Figure 6-6, the elements are sized consistently along
their inline axis, regardless of the writing direction. If you tilt
your head to the side, you can see that the lines wrap in exactly
the same places. This yields a consistent line length across all
writing modes.

Similarly, you can set a block size for elements. This is used a bit
more often for replaced elements like images, but it can be used
in any circumstance that makes sense. Take this as an example:

p img {block-size: 1.5em;}

Having done that, any element found inside a <p>
element will have its block size set to one and a half times the
size of the surrounding text. (This works on images because
they’re inline replaced elements; it wouldn’t work on inline
nonreplaced elements.) You could also use block-size to
constrain the block length of grid layout items to be a minimum
or maximum size, such as this:

It should be said that usually block size is determined
automatically, because elements in the normal flow often don’t

#maingrid > nav {block-size: clamp(2rem, 4em, 25vh);}

have an explicitly set block size. For example, if an element’s
block flow is top to bottom and it’s 8 lines long, and each line is
1/8th of an inch tall, then its block size will be 1 inch. If it’s 10
lines tall, the block size is instead 1.25 inches. In either case, as
long as block-size is auto , the block size is determined by
the content of the element, not by the author. This is usually
what you want, particularly for elements containing text. When
block-size is explicitly set and there isn’t enough content to
fill the box, empty space will appear inside the box; if there is
more content than can fit, the content may overflow the box or
scrollbars may appear.

Content-Based Sizing Values

Beyond the lengths and percentages you saw previously for
setting block and inline sizes, a few keywords provide content-
based sizing:

max-content

Take up the most space possible to fit in the content, even
suppressing line wrapping in the case of text content.

min-content

Take up the least space possible to fit in the content.

fit-content

Take up the amount of space determined by calculating the
values of max-content , min-content , and regular content
sizing, taking the maximum of min-content and regular
sizing, and then taking the minimum of max-content and
whichever value was the greater of min-content and
regular sizing. Yes, that all sounds a bit confusing, but we’ll
explain it in a moment.

If you’ve worked at all with CSS Grid (covered in Chapter 12),
you may recognize these keywords, as they were originally
defined as ways to size grid items. Now they’re making their
way into other areas of CSS. Let’s consider the first two
keywords, which are demonstrated in Figure 6-7.

Figure 6-7. Content sizing

The paragraph on the left is set to max-content , and that’s
what happens: the paragraph is made as wide as needed to fit

all of the content. It’s as narrow as it is only because there isn’t
much content. Had we added another three sentences, the
single line of text would have just kept going and going with no
line wrapping, even if it ran right off the page (or out of the
browser window).

In the paragraph on the right, the content is as narrow as
possible without forcing breaks or hyphens inside words. In
this particular case, the element is just wide enough to fit the
word “paragraph,” which is the longest word in the content. For
every other line of text in the example, the browser places as
many words as will fit into the space needed for “paragraph,”
and goes to the next line when it runs out of room. If we added
“antidisestablishmentarianism” to the text, the element would
become just wide enough to fit that word, and every other line
of text would very likely contain multiple words.

Notice that, at the end of the min-content example in Figure 6-
7, the browser took advantage of the presence of the hyphen in
min-content to trigger a line wrap there. Had it not made that
choice, min-content would almost certainly have been the
longest piece of content in the paragraph, and the element’s
width would have been set to that length. This means that if
your content contains symbols that browsers understand to be
natural line-wrapping points (e.g., spaces and hyphens), they’ll

likely be considered in the min-content calculations. If you
want to squeeze the element width even further, you can
enable auto-hyphenating of words with the hyphens property
(see Chapter 15).

For some more examples of min-content sizing, see Figure 6-8.

Figure 6-8. Minimum content sizing

The third keyword, fit-content , is interesting in that it does
its best to fit the element to the content. What that means in
practice is that if you have only a little content, the element’s
inline size (usually its width) will be just big enough to enclose
it, as if max-content were used. If there’s enough content to
wrap to multiple lines or otherwise threaten to overflow the
element’s container, the inline size stops there. This is
illustrated in Figure 6-9.

Figure 6-9. Fit-content sizing

In each case, the element is fit to the content without
overspilling the element’s container. At least, that’s what
happens with elements in the normal flow. The behavior can be
quite different in flexbox and grid contexts, and is further
explored in later chapters.

Minimum and Maximum Logical Sizing

If you’d like to set minimum and maximum bounds on block or
inline sizes, CSS has some properties to help you out.

MIN-BLOCK-SIZE, MAX-BLOCK-SIZE, MIN-INLINE-SIZE, MAX-INLINE-SIZE

Values Same as for block-size and inline
-size

Initial value 0

Applies to Same as for block-size and inline
-size

Percentages Same as for block-size and inline
-size

Computed
value

Same as for block-size and inline
-size

Inherited No

Animatable Yes

These properties can be very useful when you know you want
upper and lower bounds on the sizing of an element’s box, and
are willing to allow the browser to do whatever it wants as long

as it obeys those restrictions. As an example, you might set part
of a layout like so:

That keeps the <main> element from getting any narrower
than the widest bit of inline content, whether that’s a long word
or an illustration or something else. It also keeps the <main>
element from getting any wider than around 75 characters,
thus keeping line lengths to a readable amount.

It’s also possible to set bounds on block sizing. A good example
is limiting any image embedded in the normal flow to be its
intrinsic size up to a certain point. The following CSS would
have the effects shown in Figure 6-10:

#cb1 img {max-block-size: 2em;}
#cb2 img {max-block-size: 1em;}

main {min-inline-size: min-content; max-inline-size:

Figure 6-10. Maximum block sizing

Height and Width

If you’ve used CSS for a while or are maintaining legacy code,
you’re probably used to thinking of “top margin” and “bottom
margin.” That’s because, originally, all box model aspects were
described in terms of their physical directions: top, right,
bottom, and left. You can still work with the physical directions!
CSS has simply added new directions to the mix.

If you were to change inline-size to width in the previous
code example, you’d get a result more like that shown in
Figure 6-11 (in which the vertical writing modes are clipped off
well short of their full height).

Figure 6-11. Sizing elements’ width

These elements are made 40ch wide horizontally, regardless of
their writing mode. Each element’s height has been
automatically determined by the content, the specifics of the
writing mode, and so on.

TIP

If you use block and inline properties like block-size instead of physical directions
like height , and your design is applied to content translated to other languages, the
layout will automatically adjust to your intentions.

HEIGHT, WIDTH

Values < length > | < percentage > | min-cont
ent | max-content | fit-content | a
uto

Initial
value

auto

Applies to All elements except nonreplaced inline
elements, table rows, and row groups

Percentages Calculated with respect to the vertical
height (for height) or horizontal width
(for width) of the containing block; for
height , set to auto if the height of
its containing block is auto

Computed
value

For auto and percentage values, as
specified; otherwise, an absolute length,
unless the property does not apply to
the element (then auto)

Inherited No

Animatable Yes

The height and width properties are known as physical
properties. They refer to physical directions, as opposed to the
writing-dependent directions of block size and inline size. Thus,
height really does refer to the distance from the top to the
bottom of the element’s inner edge, regardless of the direction
of the block axis.

In writing with a horizontal inline axis, such as English or
Arabic, if both inline-size and width are set on the same
element, the one declared later will take precedence over the
first one declared. The same is true if block-size and height
are both declared; if origin, layer, and specificity are the same,
the one declared last takes precedence. In vertical writing
modes, inline-size corresponds to height , and block-size
to width .

Setting a block box’s height or width as a < length > means it
will be that length tall or wide, regardless of the content within
it. If you set an element that generates a block box to width:
200px , it will be 200 pixels wide, even if it has a 500-pixel-wide
image inside it.

Setting the value of width to a < percentage > means the width
of the element will be that percentage of its containing block’s
width. If you set a paragraph to width: 50% and its containing
block is 1,024 pixels wide, then the paragraph’s width will be
computed to 512 pixels.

Setting height to a < percentage > works similarly, except this
works only if the containing block has an explicitly set height. If
the containing block’s height is automatically set, a percentage
value is treated as auto instead, as seen in the #cb4 example
in Figure 6-12.

NOTE

The handling of auto top and bottom margins is different for positioned elements,
as well as flexible-box and grid elements. The differences are covered in Chapters 11
and 12.

Here are some examples of these values and combinations,
with the result shown in Figure 6-12:

[id^="cb"] {border: 1px solid;} /* "cb" for "contain
#cb1 {width: auto;} #cb1 p {width: auto;}
#cb2 {width: 400px;} #cb2 p {width: 300px;}
#cb3 {width: 400px;} #cb3 p {width: 50%;}

#cb4 {height: auto;} #cb4 p {height: 50%;}

Figure 6-12. Heights and widths

You can also use max-content and min-content with the
height property, but in top-to-bottom block flows, both are the
same as height: auto . In writing modes using a horizontal
block axis, setting these values for height will have similar
effects as setting them for width in vertical block flows.

In addition, these properties don’t apply to inline nonreplaced
elements. For example, if you try to declare a height and
width for a hyperlink that’s in the normal flow and generates

#cb4 {height: auto;} #cb4 p {height: 50%;}
#cb5 {height: 300px;} #cb5 p {height: 200px;}
#cb6 {height: 300px;} #cb6 p {height: 50%;}

an inline box, CSS-conformant browsers must ignore those
declarations. Assume the following rules:

You’ll end up with red unvisited links on silver backgrounds
whose height and width are determined by the content of the
links. The links will not have content areas that are 15 pixels
tall by 60 pixels wide, as these must be ignored when applied to
inline nonreplaced elements. If, on the other hand, you add a
display value, such as inline-block or block , then height
and width will set the height and width of the links’ content
areas.

Altering Box Sizing

If it seems a little weird to use height and width (and block-
size and inline-size) to describe the sizing of the element’s
content area instead of its visible area, you can make that sizing
more intuitive by using the property box-sizing .

a:any-link {color: red; background: silver; height: 1

BOX-SIZING

Values content-box | border-box

Initial value content-box

Applies to All elements that accept width or hei
ght values

Computed
value

As specified

Inherited No

Animatable No

This property changes what the values of the height , width ,
block-size , and inline-size properties do.

If you declare inline-size: 400px and don’t declare a value
for box-sizing , the element’s content area will be 400 pixels in
the inline direction, and any padding, borders, and so on will be
added to that. If, on the other hand, you declare box-sizing:

border-box , the element box will be 400 pixels from the inline-
start border edge to the inline-end border edge; any inline-start
or -end border or padding will be placed within that distance,
thus shrinking the inline size of the content area. This is
illustrated in Figure 6-13.

Figure 6-13. The effects of box-sizing

Put another way, if you declare width: 400px and don’t
declare a value for box-sizing , the element’s content area will
be 400 pixels wide, and any padding, borders, and so on will be
added to that. If, on the other hand, you declare box-sizing:
border-box , the element box will be 400 pixels from the left
outer border edge to the right outer border edge; any left or
right border or padding will be placed within that distance,
thus shrinking the width of the content area (again, as seen in
Figure 6-13).

We’re talking about the box-sizing property here because, as
stated, it applies to “all elements that accept width or height

values” (because it was defined before logical properties were
commonplace). That’s most often elements generating block
boxes, though it also applies to replaced inline elements like
images, as well as inline-block boxes.

Having established how to size elements in both logical and
physical ways, let’s widen our scope and look at all the
properties that affect block sizing.

Block-Axis Properties

In total, block-axis formatting is affected by seven related
properties: margin-block-start , border-block-start ,
padding-block-start , height , padding-block-end , border-
block-end , and margin-block-end . These properties are
diagrammed in Figure 6-14. These properties are all covered in
detail in Chapter 7; here, we will talk about the general
principles and behavior of these properties before looking at
the details of their values.

The block-start and -end padding and borders must be set to
specific values, or else they default to a width of 0, assuming no
border style is declared. If border-style has been set, the
thickness of the borders is set to medium , which is 3 pixels wide

in all known browsers. Figure 6-14 depicts the block-axis
formatting properties in two writing modes and indicates
which parts of the box may have a value of auto and which
may not.

Figure 6-14. The seven properties of block-axis formatting, and which can be set to
auto

Interestingly, if either margin-block-start or margin-block-
end is set to auto for a block box in the normal flow, but not
both, they both evaluate to 0 . A value of 0 , unfortunately,
prevents easy block-direction centering of normal-flow boxes in
their containing blocks (though such centering is fairly
straightforward in flexbox or grid layout).

The block-size property must be set to auto or to a
nonnegative value of some type; it can never be less than 0.

Auto Block Sizing

In the simplest case, a normal-flow block box with block-size:
auto is rendered just tall enough to enclose the line boxes of its
inline content (including text). If an auto-block-size, normal-
flow block box has only block-level children and has no block-
edge padding or borders, the distance from its first child’s
border-start edge to its last child’s border-end edge will be the
box’s block size. This is the case because the margins of the
child elements can “stick out” of the element that contains them
thanks to what’s known as margin collapsing, which we’ll talk
about in “Collapsing Block-Axis Margins”.

However, if a block-level element has either block-start or -end
padding, or block-start and -end borders, its block size will be
the distance from the block-start margin edge of its first child to
the block-end margin edge of its last child:

<div style="block-size: auto; background: silver;">
 <p style="margin-block-start: 2em; margin-block-e
</div>
<div style="block-size: auto; border-block-start: 1px
 border-block-end: 1px solid; background: silver;

Figure 6-15 demonstrates both of these behaviors.

If we changed the borders in the previous example to be
padding instead, the effect on the block size of the <div> would
be the same: it would still enclose the paragraph’s margins
within it.

Figure 6-15. Auto block sizes with block-level children

Percentage Heights

You saw earlier how length-value block sizes are handled, so
let’s spend a moment on percentages. If the block size of a
normal-flow block box is set to a percentage value, that value is
taken as a percentage of the block size of the box’s containing
block, assuming the container has an explicit, non- auto block

 <p style="margin-block-start: 2em; margin-block-e
 Another paragraph!</p>
</div>

size of its own. Given the following markup, the paragraph will
be 3 em long along the block axis:

<div style="block-size: 6em;">
 <p style="block-size: 50%;">Half as tall</p>
</div>

If the block size of the containing block is not explicitly
declared, percentage block sizes are reset to auto . If we change
the previous example so that the block-size of the <div> is
auto , the paragraph will now have its block size determined
automatically:

Figure 6-16 illustrates these two possibilities. (The spaces
between the paragraph borders and the <div> borders are the
block-start and -end margins on the paragraphs.)

Figure 6-16. Percentage block sizes in different circumstances

<div style="block-size: auto;">
 <p style="block-size: 50%;">NOT half as tall; blo
</div>

Before we move on, take a closer look at the first example in
Figure 6-16, the half-as-tall paragraph. It may be half as tall, but
it isn’t centered along the block axis. That’s because the
containing <div> is 6 em tall, which means the half-as-tall
paragraph is 3 em tall. It has block-start and -end margins of 1
em thanks to the browser’s default styles, so its overall block
size is 5 em. That means there is actually 2 em of space between
the block end of the paragraph’s visible box and the <div> ’s
block-end border, not 1 em. Figure 6-17 illustrates this in detail.

Figure 6-17. Block-axis sizing and placement in detail

Handling Content Overflow

Given that it’s possible to set elements to specific sizes, it
becomes possible to make an element too small for its content
to fit inside. This is more likely to arise if block sizes are
explicitly defined, but it can also happen with inline sizes, as
you’ll see in later sections. If this sort of thing does happen, you
can exert some control over the situation with the overflow
shorthand property.

OVERFLOW

Values [visible | hidden | clip | scroll
| auto]{1,2}

Initial
value

visible

Applies to Block-level and replaced elements

Computed
value

As specified

Inherited No

Animatable No

The default value of visible means that the element’s content
may be visible outside the element’s box. Typically, this leads to
the content running outside its own element box, but not
altering the shape of that box. The following markup would
result in Figure 6-18:

If overflow is set to hidden , the element’s content is clipped at
the edges of the element box. With the hidden value, there is
no way to get at the parts of the content that are clipped off.

If overflow is set to clip , the element’s content is also clipped
—that is, hidden—at the edges of the element box, with no way
to get at the parts that are clipped off.

If overflow is set to scroll , the overflowing content is
clipped, but the content can be made available to the user via
scrolling methods, including a scrollbar (or set of them).
Figure 6-18 depicts one possibility.

If scroll is used, the panning mechanisms (e.g., scrollbars)
should always be rendered. To quote the specification, “this
avoids any problem with scrollbars appearing or disappearing
in a dynamic environment.” Thus, even if the element has
sufficient space to display all its content, the scrollbars may still
appear and take up space (though they may not).

In addition, when printing a page or otherwise displaying the
document in a print medium, the content may be displayed as
though the value of overflow were declared to be visible .

div#sidebar {block-size: 7em; background: #BBB; overf

Figure 6-18 illustrates these overflow values, with two of them
combined in a single example.

Figure 6-18. Methods for handling overflowing content

Finally, overflow: auto allows user agents to determine
which of the previously described behaviors to use, although
user agents are encouraged to provide a scrolling mechanism
whenever necessary. This is a potentially useful way to use
overflow, since user agents could interpret it to mean “provide
scrollbars only when needed.” (They may not, but generally do.)

Single-axis overflow

Two properties make up the overflow shorthand. You can
define the overflow behavior along the x (horizontal) and y
(vertical) directions separately, either by setting them both in
overflow , or by using the overflow-x and overflow-y
properties.

OVERFLOW-X, OVERFLOW-Y

Values visible | hidden | clip | scroll
| auto

Initial value visible

Applies to Block-level and replaced elements

Computed
value

As specified

Inherited No

Animatable No

By setting the overflow behavior separately along each axis,
you’re essentially deciding where scrollbars will appear and
where they won’t. Consider the following, which is rendered in
Figure 6-19:

div.one {overflow-x: scroll; overflow-y: hidden;}
div.two {overflow-x: hidden; overflow-y: scroll;}

Figure 6-19. Setting overflow separately for x- and y-axes

In the first case, an empty scrollbar is set up for the x-axis
(horizontal), but none for the y-axis (vertical), even though the
content overflowed along the y-axis. This is the worst of both
worlds: a scrollbar that’s empty because it isn’t needed, and no
scrollbar where it is needed.

The second case is the much more useful inverse: no scrollbar is
set along the x-axis, but one is available for the y-axis, so the
overflowed content can be accessed by means of scrolling.

In the third case, scroll is set for both axes, so access to the
overflowing content is available via scrolling, but we also have
an unnecessary scrollbar (which is empty) for the x-axis. This is
equivalent to simply declaring overflow: scroll .

div.three {overflow-x: scroll; overflow-y: scroll;}

This brings us to the true nature of overflow : it’s a shorthand
property that brings overflow-x and overflow-y together
under one roof. The following is exactly equivalent to the
previous example and will have the same result shown in
Figure 6-19:

As you see, you can give overflow two keywords, which are
always in the order x, then y. If only one value is given, it’s used
for both the x- and y-axes. This is why scroll and scroll
scroll are the same thing as values of overflow . Similarly,
hidden would be the same as saying hidden hidden .

Negative Margins and Collapsing

Believe it or not, negative margins are possible. The base effect
is to move the margin edge inward toward the center of the
element’s box. Consider this:

div.one {overflow: scroll hidden;}
div.two {overflow: hidden scroll;}
div.three {overflow: scroll;} /* 'scroll scroll' woul

p.neg {margin-block-start: -50px; margin-block-end: 0
 border: 3px solid gray;}

As we see in Figure 6-20, the paragraph has been pulled upward
by its negative block-start margin. Note that the content of the
<div> that follows the paragraph in the markup has also been
pulled up the block axis by 50 pixels.

Figure 6-20. The effects of a negative block-start margin

Now compare the following markup to the situation shown in
Figure 6-21:

<div style="width: 420px; background-color: silver; p
 margin-block-start: 50px; border: 1px sol
 <p class="neg">
 A paragraph.
 </p>
 A div.
</div>

p.neg {margin-block-end: -50px; margin-block-end: 0;
 border: 3px solid gray;}

Figure 6-21. The effects of a negative block-end margin

What’s happening? The elements following the <div> are
placed according to the location of the block-end margin edge of
the <div> , which is 50 pixels higher than it would be without
the negative margin. As Figure 6-21 shows, the block-end of the
<div> is actually above the visual block-end of its child
paragraph. The next element after the <div> is the appropriate
distance from the block-end of the <div> .

Collapsing Block-Axis Margins

An important aspect of block-axis formatting is the collapsing of
adjacent margins, which is a way of comparing adjacent
margins in the block direction, and then using only the largest

<div style="width: 420px; margin-block-start: 50px;">
 <p class="neg">
 A paragraph.
 </p>
</div>
<p>
 The next paragraph.
</p>

of those margins to set the distance between the adjacent block
elements. Note that collapsing behavior applies only to margins.
Padding and borders never collapse.

An unordered list, with list items that follow one another along
the block axis, is a perfect environment for studying margin
collapsing. Assume that the following is declared for a list that
contains three items:

Each list item has a 10-pixel block-start margin and a 15-pixel
block-end margin. When the list is rendered, however, the
visible distance between adjacent list items is 15 pixels, not 25.
This happens because, along the block axis, adjacent margins
are collapsed. In other words, the smaller of the two margins is
eliminated in favor of the larger. Figure 6-22 shows the
difference between collapsed and uncollapsed margins.

li {margin-block-start: 10px; margin-block-end: 15px;

Figure 6-22. Collapsed versus uncollapsed margins

User agents will collapse block-adjacent margins as shown in
the first list in Figure 6-22, so that 15-pixel spaces appear
between each list item. The second list shows what happens if
browsers don’t collapse margins, resulting in 25-pixel spaces
between list items.

Another word to use, if you don’t like “collapse,” is “overlap.”
Although the margins are not really overlapping, you can
visualize what’s happening by using the following analogy.

Imagine that each element, such as a paragraph, is a small piece
of paper with the content of the element written on it. Around
each piece of paper is a certain amount of clear plastic, which
represents the margins. The first piece of paper (say an <h1>
piece) is laid down on the canvas. The second (a paragraph) is
laid below it along the block axis and then slid upward along
that axis until the edge of one piece’s plastic touches the edge of
the other’s paper. If the first piece of paper has half an inch of
plastic along its block-end edge, and the second has a third of
an inch along its block-start, then when they slide together, the
first piece’s block-end plastic will touch the block-start edge of
the second piece of paper. The two are now done being placed
on the canvas, and the plastic attached to the pieces is
overlapping.

Collapsing also occurs where multiple margins meet, such as at
the end of a list. Adding to the earlier example, let’s assume the
following rules apply:

ul {margin-block-end: 15px;}
li {margin-block-start: 10px; margin-block-end: 20px;
h1 {margin-block-start: 28px;}

The last item in the list has a block-end margin of 20 pixels, the
block-end margin of the is 15 pixels, and the block-start
margin of a succeeding <h1> is 28 pixels. So once the margins
have been collapsed, the distance between the end of the last
 in the list and the beginning of the <h1> is 28 pixels, as
shown in Figure 6-23.

Figure 6-23. Collapsing in detail

If you add a border or padding to a containing block, this causes
the margins of its child elements to be entirely contained within
it. We can see this behavior in operation by adding a border to
the element in the previous example:

ul {margin-block-end: 15px; border: 1px solid;}
li {margin-block-start: 10px; margin-block-end: 20px;
h1 {margin-block-start: 28px;}

With this change, the block-end margin of the element is
now placed inside its parent element (the). Therefore, the
only margin collapsing that takes place is between the
and the <h1> , as illustrated in Figure 6-24.

Figure 6-24. Collapsing (or not) with borders added to the mix

Negative margin collapsing is slightly different. When a
negative margin participates in margin collapsing, the browser
takes the absolute value of the negative margin and subtracts it
from any adjacent positive margins. In other words, the
negative length is added to the positive length(s), and the
resulting value is the distance between the elements, even if
that distance is a negative length. Figure 6-25 provides some
concrete examples.

Figure 6-25. Examples of negative block-axis margins

Now let’s consider an example where the margins of a list item,
an unordered list, and a paragraph are all collapsed. In this
case, the unordered list and paragraph are assigned negative
margins:

li {margin-block-end: 20px;}
ul {margin-block-end: -15px;}
h1 {margin-block-start: -18px;}

The negative margin of the greatest magnitude (-18px) is
added to the largest positive margin (20px), yielding 20px –
18px = 2px . Thus, we have only 2 pixels between the block-

end of the list item’s content and the block-start of the <h1> ’s
content, as we can see in Figure 6-26.

Figure 6-26. Collapsing margins and negative margins, in detail

When elements overlap each other because of negative
margins, it’s hard to tell which elements are on top of others.
You may also have noticed that very few of the examples in this
section use background colors. If they did, the background color
of a following element might overwrite the content of a
preceding element. This is expected behavior, since browsers
usually render elements in order from beginning to end, so a
normal-flow element that comes later in the document can
generally be expected to overwrite an earlier element,
assuming the two end up overlapping.

Inline-Axis Formatting

Laying out elements along the inline axis can be more complex
than you’d think. Part of the complexity has to do with the

default behavior of box-sizing . With the default value of
content-box , the value given for inline-size affects the
inline width of the content area, not the entire visible element
box. Consider the following example, where the inline axis runs
left to right:

<p style="inline-size: 200px;">wideness?</p>

This makes the paragraph’s content area 200 pixels wide. If we
give the element a background, this will be quite obvious.
However, any padding, borders, or margins you specify are
added to the width value. Suppose we do this:

The visible element box is now 220 pixels in inline size, since
we’ve added 10 pixels of padding to every side of the content.
The margins will now extend another 20 pixels to both inline
sides for an overall element inline size of 260 pixels. This is
illustrated in Figure 6-27.

<p style="inline-size: 200px; padding: 10px; margin:

Figure 6-27. Additive padding and margin

If we change the styles to use box-sizing: border-box , the
results will be different. In that case, the visible box will be 200
pixels wide along the inline axis with a content inline size of
180 pixels, and a total of 40 pixels of margin on the inline sides,
giving an overall box inline size of 240 pixels, as illustrated in
Figure 6-28.

Figure 6-28. Subtractive padding

In either case, the CSS specification has a rule that says the sum
of the inline components of a block box in the normal flow
always equals the inline size of the containing block (which is
why, as you’ll see in just a bit, margin: auto centers content in
the inline direction). Let’s consider two paragraphs within a
<div> whose margins have been set to 1em , and whose box-
sizing value is the default content-box . The content size (the
value of inline-size) of each paragraph in this example, plus
its inline-start and -end padding, borders, and margins, will
always add up to the inline size of the <div> ’s content area.

Let’s say the inline size of the <div> is 30em . That makes the
sum total of the content size, padding, borders, and margins of
each paragraph 30 em. In Figure 6-29, the “blank” space around
the paragraphs is actually their margins. If the <div> had any
padding, even more blank space would be present, but that isn’t
the case here.

Figure 6-29. Element boxes are as wide as the inline width of their containing block

Inline-Axis Properties

The seven properties of inline formatting— margin-inline-

start , border-inline-start , padding-inline-start ,
inline-size , padding-inline-end , padding-inline-end ,
and padding-inline-end —are diagrammed in Figure 6-30.

The values of these seven properties must add up to the inline
size of the element’s containing block, which is usually the
value of inline-size for a block element’s parent (since block-
level elements nearly always have block-level elements for
parents).

Of these seven properties, only three may be set to auto : the
inline size of the element’s content, and the inline-start and -
end margins. The remaining properties must either be set to
specific values or default to a width of 0. Figure 6-30 shows
which parts of the box can take a value of auto and which
cannot. (That said, CSS is forgiving: if any part that can’t accept
auto is erroneously set to auto , it will default to 0 .)

Figure 6-30. The seven properties of inline-axis formatting, and which can be set to
auto

The inline-size property must either be set to auto or a
nonnegative value. When you do use auto in inline-axis
formatting, different effects can occur.

Using auto

In certain situations, it makes a lot of sense to explicitly set one
or more of the inline margins and size to auto . By default, the
two inline margins are set to 0 , and the inline size is set to
auto . Let’s explore how moving the auto around can have
different effects, and why.

Only one auto

If you set one of inline-size , margin-inline-start , or
margin-inline-end to a value of auto , and give the other two
properties specific values, then the property that is set to auto
is set to the length required to make the element box’s overall
inline size equal to the parent element’s content inline size.

Let’s say the sum of the seven inline-axis properties must equal
500 pixels, no padding or borders are set, the inline-end margin
and inline size are set to 100px , and the inline-start margin is
set to auto . The inline-start margin will thus be 300 pixels
wide:

In a sense, auto can be used to make up the difference
between everything else and the required total. However, what
if all three of these properties (both inline margins and the
inline size) are set to 100px and none of them are set to auto ?

If all three properties are set to something other than auto —
or, in CSS parlance, when these formatting properties have
been overconstrained—then the margin at the inline end is

div {inline-size: 500px;}
p {margin-inline-start: auto; margin-inline-end: 100p
 inline-size: 100px;} /* inline-start margin evalu

always forced to be auto . This means that if both inline
margins and the inline size are set to 100px , the user agent will
reset the inline-end margin to auto . The inline-end margin’s
width will then be set according to the rule that one auto value
“fills in” the distance needed to make the element’s overall
inline size equal to that of its containing block’s content inline
size. Figure 6-31 shows the result of the following markup in
left-to-right languages like English:

Figure 6-31. Overriding the inline-end margin’s value

If both side margins are set explicitly, and inline-size is set to
auto , then inline-size will be whatever value is needed to
reach the required total (which is the content inline size of the
parent element). The results of the following markup are shown
in Figure 6-32:

div {inline-size: 500px;}
p {margin-inline-start: 100px; margin-inline-end: 100
 inline-size: 100px;} /* inline-end margin forced

This type of formatting is the most common, since it is
equivalent to setting the margins and not declaring anything
for the inline-size . The result of the following markup is
exactly the same as that shown in Figure 6-32:

Figure 6-32. Automatic inline sizing

You might be wondering what happens if box-sizing is set to
padding-box . In that case, all the same principles described
here apply, which is why this section discussed only inline-
size and the inline-side margins without introducing any
padding or borders.

p {margin-inline-start: 100px; margin-inline-end: 100
 inline-size: auto;}

p {margin-inline-start: 100px; margin-inline-end: 100

In other words, the handling of inline-size: auto in this
section and the following sections is the same regardless of the
value of box-sizing . The details of what gets placed where
inside the box-sizing -defined box may vary, but the treatment
of auto values does not, because box-sizing determines what
inline-size refers to, not how it behaves in relation to the
margins.

More than one auto

Now let’s see what happens when two of the three properties
(inline-size , margin-inline-start , and margin-inline-
end) are set to auto . If both margins are set to auto but the
inline-size is set to a specific length, then both margins are
set to equal lengths, thus centering the element within its
parent along the inline axis. The following code creates this
layout, illustrated in Figure 6-33:

div {inline-size: 500px;}
p {inline-size: 300px; margin-inline-start: auto; mar
 /* each margin is 100 pixels, because (500-300)/2 =

Figure 6-33. Setting an explicit inline size

Another way of sizing elements along the inline axis is to set
one of the inline margins and inline-size to auto . In this
case, the margin set to auto is reduced to 0:

The inline-size property is then set to the value necessary to
make the element fill its containing block; in the preceding
example, it would be 400 pixels, as shown in Figure 6-34.

Figure 6-34. What happens when both inline-size and the inline-start margin are
auto

div {inline-size: 500px;}
p {margin-inline-start: auto; margin-inline-end: 100p
 /* inline-start margin evaluates to 0; inline-size

Too many autos

Finally, what happens when all three properties are set to
auto ? The answer: both margins are set to 0, and the inline-
size is made as wide as possible. This result is the same as the
default situation, when no values are explicitly declared for
margins or the inline size. In such a case, the margins default to
0 and inline-size defaults to auto .

Note that since inline margins do not collapse (unlike block
margins, as discussed earlier), the padding, borders, and
margins of a parent element can affect the inline layout of its
children. The effect is indirect in that the margins (and so on) of
an element can induce an offset for child elements. The results
of the following markup are shown in Figure 6-35:

div {padding: 50px; background: silver;}
p {margin: 30px; padding: 0; background: white;}

Figure 6-35. Offset is implicit in the parent’s margins and padding

Negative Margins

As you’ve seen with block-axis margins, it’s possible to set
negative values for inline-axis margins. Setting negative inline
margins can result in some interesting effects.

Remember that the total of the seven inline-axis properties
always equals the inline size of the content area of the parent
element. As long as all inline properties are 0 or greater, an
element’s inline size can never be greater than its parent’s
content area inline size. However, consider the following
markup, depicted in Figure 6-36:

Figure 6-36. Wider children through negative margins

Yes indeed, the child element is wider than its parent along the
inline axis! This is mathematically correct. Let’s solve for inline
size:

div {inline-size: 500px; border: 3px solid black;}
p.wide {margin-inline-start: 10px; margin-inline-end:

 inline-size: auto;}

10 px + 0 + 0 + 540 px + 0 + 0 – 50 px = 500 px

The 540px is the evaluation of inline-size: auto , which is
the number needed to balance out the rest of the values in the
equation. Even though it leads to a child element sticking out of
its parent, it all works because the values of the seven
properties add up to the required total.

Now, let’s add some borders to the mix:

The resulting change will be a reduction in the evaluated width
of inline-size :

10 px + 3 px + 0 + 534 px + 0 + 3 px – 50 px = 500 px

Or, we can rearrange the equation to solve for the content size
instead of for the width of the parent:

500 px – 10 px – 3 px – 3 px + 50 px = 534 px

div {inline-size: 500px; border: 3px solid black;}
p.wide {margin-inline-start: 10px; margin-inline-end:
 inline-size: auto; border: 3px solid gray;}

If we were to introduce padding, the value of inline-size
would drop even more (assuming box-sizing: content-box).

Conversely, it’s possible to have auto inline-end margins
evaluate to negative amounts. If the values of other properties
force the inline-end margin to be negative in order to satisfy the
requirement that elements be no wider than their containing
block, that’s what will happen. Consider the following:

The equation works out like this:

500 px – 10 px – 600 px – 3 px – 3 px = –116 px

In this case, the inline-end margin evaluates to -116px . No
matter what explicit value it’s given in the CSS, this margin will
still be forced to -116px because of the rule stating that when
an element’s dimensions are overconstrained, the inline-end
margin is reset to whatever is needed to make the numbers
work out correctly.

div {inline-size: 500px; border: 3px solid black;}
p.wide {margin-inline-start: 10px; margin-inline-end:
 inline-size: 600px; border: 3px solid gray;}

Let’s consider another example, illustrated in Figure 6-37, in
which the inline-start margin is set to be negative:

Figure 6-37. Setting a negative inline-start margin

With a negative inline-start margin, the paragraph not only
spills beyond the borders of the <div> , but also spills beyond
the edge of the browser window itself!

Remember: padding, borders, and content widths (and heights)
can never be negative. Only margins can be less than 0.

Percentages

When it comes to percentage values for the inline size, padding,
and margins, the same basic rules we discussed in previous
sections apply. It doesn’t really matter whether the values are
declared with lengths or percentages.

div {inline-size: 500px; border: 3px solid black;}
p.wide {margin-inline-start: -50px; margin-inline-end
 inline-size: auto; border: 3px solid gray;}

Percentages can be very useful. Suppose we want an element’s
content to be two-thirds the inline size of its containing block,
the padding sides to be 5% each, the inline-start margin to be
5%, and the inline-end margin to take up the slack. That would
be written something like this:

The inline-end margin would evaluate to 18% (100% – 67% – 5%
– 5% – 5%) of the width of the containing block.

Mixing percentages and length units can be tricky, however.
Consider the following example:

In this case, the element’s box can be defined like this:

5 em + 0 + 2 em + 67% + 2 em + 0 + auto = containing block
width

<p style="inline-size: 67%;
 padding-inline-end: 5%; padding-inline-start: 5%
 margin-inline-end: auto; margin-inline-start: 5%
 playing percentages</p>

<p style="inline-size: 67%; padding-inline-end: 2em;
 margin-inline-end: auto; margin-inline-start: 5e

In order for the inline-end margin’s inline size to evaluate to 0,
the element’s containing block must be 27.272727 em wide
(with the content area of the element being 18.272727 em wide)
along the inline axis. Any wider than that, and the inline-end
margin will evaluate to a positive value. Any narrower, and the
inline-end margin will be a negative value.

The situation gets even more complicated if we start mixing
length-value unity types, like this:

And, just to make things more complex, borders cannot accept
percentage values, only length values. The bottom line is that it
isn’t really possible to create a fully flexible element based
solely on percentages unless you’re willing to avoid using
borders or use approaches such as flexible box layout. That
said, if you do need to mix percentages and length units, using
the calc() and minmax() value functions can be a life
changer, or at least a layout changer.

Replaced Elements

<p style="inline-size: 67%;
 padding-inline-end: 15px; padding-inline-start:
 margin-inline-end: auto; margin-inline-start: 5e

So far, we’ve been dealing with the inline-axis formatting of
nonreplaced block boxes in the normal flow of text. Replaced
elements are a bit simpler to manage. All of the rules given for
nonreplaced blocks hold true, with one exception: if inline-
size is auto , the inline-size of the element is the content’s
intrinsic width. (Intrinsic means the original size—the size of
the element by default when no external factors are applied to
it.) The image in the following example will be 20 pixels wide
because that’s the width of the original image:

If the actual image were 100 pixels wide instead, the element
(and thus the image) would be laid out as 100 pixels wide.

We can override this rule by assigning a specific value to
inline-size . Suppose we modify the previous example to
show the same image three times, each with a different width
value:

<img src="smile.svg" style="display: block; inline-si
 alt="smile">

<img src="smile.svg" style="display: block; inline-si
 alt="small smile" role="img">
<img src="smile.svg" style="display: block; inline-si
 alt="medium smile" role="img">

Figure 6-38 illustrates the result.

Figure 6-38. Changing replaced element inline sizes

Note that the block size of the elements also increases. When a
replaced element’s inline-size is changed from its intrinsic
width, the value of block-size is scaled to match, maintaining
the object’s initial aspect ratio, unless block-size has been set
to an explicit value of its own. The reverse is also true: if
block-size is set, but inline-size is left as auto , then the
inline size is scaled proportionately to the change in block size.

List Items

List items have a few special rules of their own. They are
typically preceded by a marker, such as a round bullet mark or

<img src="smile.svg" style="display: block; inline-si
 alt="large smile" role="img">

a number.

The marker attached to a list item element can be either outside
the content of the list item or treated as an inline marker at the
beginning of the content, depending on the value of the
property list-style-position , as illustrated in Figure 6-39.

Figure 6-39. Markers outside and inside the list

If the marker stays outside the content, it is placed a specified
distance from the inline-start content edge of the content. No
matter how the list’s styles are altered, the marker stays the
same distance from the content edge.

Remember that list-item boxes define containing blocks for
their descendant boxes, just like regular block boxes.

NOTE

List markers are discussed in more detail, including how to create and style them
using the ::marker pseudo-element, in Chapter 16.

Box Sizing with Aspect Ratios

Sometimes you’ll want to size an element by its aspect ratio,
which means its block and inline sizes exist in a specific ratio.
Old TVs used to have a 4:3 width-to-height ratio, for example;
HD video resolutions have a 16:9 aspect ratio. You might want
to force elements to be square while still letting their sizes flex.
In these cases, the aspect-ratio property can help.

ASPECT-RATIO

Values auto ‖ < ratio >

Initial
value

auto

Applies to All elements except inline boxes and
internal table and Ruby boxes

Computed
value

If < ratio >, a pair of numbers;
otherwise, auto

Inherited No

Animatable Yes

Let’s say we know we’ll have a bunch of elements, and we don’t
know how wide or tall each will be, but we want them all to be
squares. First, pick an axis you want to size on. We’ll use
height here. Make sure the other axis is autosized, and set an
aspect ratio:

.gallery div {width: auto; aspect-ratio: 1/1;}

Figure 6-40 shows the same set of HTML, both with and without
the previous CSS applied.

Figure 6-40. A gallery with and without aspect ratios defined

The ratio is maintained over the distances defined by box-
sizing (see “Altering Box Sizing”), so given the following CSS,
the result will be an element whose outer border distances are
in an exact 2:1 ratio:

The default value, auto , means that boxes that have an
intrinsic aspect ratio—boxes generated by images, for example
—will use that aspect ratio. For elements that don’t have an
intrinsic aspect ratio, such as most HTML elements like <div> ,
<p> , and so on, the axis sizes of the box will be determined by
the content.

.cards div {height: auto; box-sizing: border-box; asp

Inline Formatting

Inline formatting isn’t as simple as formatting block-level
elements, which just generates block boxes and usually doesn’t
allow anything to coexist with them. By contrast, look inside a
block-level element, such as a paragraph. You may well ask,
how was the size and wrapping of each line determined? What
controls the lines’ arrangement? How can I affect it?

Line Layout

To understand how lines are generated, first consider an
element containing one very long line of text, as shown in
Figure 6-41. Note that we’ve put a border around the line by
wrapping the entire line in a element and then
assigning it a border style:

span {border: 1px dashed black;}

Figure 6-41. A single-line inline element

Figure 6-41 shows the simplest case of an inline element
contained by a block-level element.

To get from this simplified state to something more familiar, all
we have to do is determine how wide (along the inline axis) the
element should be, and then break up the line so that the
resulting pieces will fit into the content inline size of the
element. Therefore, we arrive at the state shown in Figure 6-42.

Figure 6-42. A multiple-line inline element

Nothing has really changed. All we did was take the single line
and break it into pieces, and then stack those pieces one after
the other along the direction of the block flow.

In Figure 6-42, the borders for each line of text also happen to
coincide with the top and bottom of each line. This is true only
because no padding has been set for the inline text. Notice that
the borders overlap each other slightly; for example, the bottom
border of the first line is just below the top border of the second
line. This is because the border is drawn on the next pixel to the
outside of each line. Since the lines are touching each other,
their borders overlap as shown in Figure 6-42.

NOTE

For simplicity, we use terms such as top and bottom when talking about the edges of
line boxes. In this context, the top of a line box is the one closest to the block-start,
and the bottom of a line box is the one closest to the block-end. Similarly, tall and
short refer to the size of line boxes along the block axis.

If we alter the span styles to have a background color, the
actual placement of the lines becomes clearer. Consider
Figure 6-43, which shows four paragraphs in each of two
writing modes, and the effects of different values of text-
align (see Chapter 15), by each paragraph having the
backgrounds of its lines filled in.

Figure 6-43. Showing lines in different alignments and writing modes

As Figure 6-43 shows, not every line reaches to the edge of its
parent paragraph’s content area, which has been denoted with
a dashed gray border. For the left-aligned paragraph, the lines
are all pushed flush against the left content edge of the
paragraph, and the end of each line happens wherever the line
is broken. The reverse is true for the right-aligned paragraph.
For the centered paragraph, the centers of the lines are aligned
with the center of the paragraph.

In the last case, where the value of text-align is justify ,
each line (except the last) is forced to be as wide as the
paragraph’s content area so that the line’s edges touch the
content edges of the paragraph. The difference between the
natural length of the line and the width of the paragraph’s
content area is made up by altering the spacing between letters
and words in each line. Therefore, the value of word-spacing
can be overridden when the text is justified. (The value of
letter-spacing cannot be overridden if it is a length value.)

That pretty well covers how lines are generated in the simplest
cases. As you’re about to see, however, the inline formatting
model is far from simple.

Basic Terms and Concepts

Before we go any further, let’s review some terms of inline
layout, which will be crucial in navigating the following
sections:

Anonymous text
Any string of characters that is not contained within an inline
element. Thus, in the markup <p> I'm so happy!
</p> , the sequences “ I’m ” and “ happy!” are anonymous
text. Note that the spaces are part of the text, since a space is
a character like any other.

Em box
This is defined in the given font, otherwise known as the
character box. Actual glyphs can be taller or shorter than
their em boxes. In CSS, the value of font-size determines
the height of each em box.

Content area
In nonreplaced elements, the content area can be one of two
things, and the CSS specification allows user agents to choose
which one. The content area can be the box described by the
em boxes of every character in the element, strung together;
or it can be the box described by the character glyphs in the
element. In this book, we use the em box definition for
simplicity, and that’s what is used by most browsers. In

replaced elements, the content area is the intrinsic height of
the element plus any margins, borders, or padding.

Leading
Leading (pronounced “led-ing”) is the difference between the
values of font-size and line-height . This difference is
divided in half, with one half applied to the top and one half
to the bottom of the content area. These additions to the
content area are called, perhaps unsurprisingly, half-leading.
Leading is applied only to nonreplaced elements.

Inline box
This is the box described by the addition of the leading to the
content area. For nonreplaced elements, the height of the
inline box of an element will be exactly equal to the value of
the line-height property. For replaced elements, the height
of the inline box of an element will be exactly equal to the
content area, since leading is not applied to replaced
elements.

Line box
This is the shortest box that bounds the highest and lowest
points of the inline boxes that are found in the line. In other
words, the top edge of the line box is placed along the top of
the highest inline-box top, and the bottom of the line box is

placed along the bottom of the lowest inline-box bottom.
Remember that “top” and “bottom” are considered with
respect to the block flow direction.

CSS also contains a set of behaviors and useful concepts that fall
outside of the preceding list of terms and definitions:

The content area of an inline box is analogous to the content
box of a block box.
The background of an inline element is applied to the content
area plus any padding.
Any border on an inline element surrounds the content area
plus any padding.
Padding, borders, and margins on nonreplaced inline
elements have no vertical effect on the inline elements or the
boxes they generate; they do not affect the height of an
element’s inline box (and thus the line box that contains the
element).
Margins and borders on replaced elements do affect the
height of the inline box for that element and, by implication,
the height of the line box for the line that contains the
element.

One more thing to note: inline boxes are vertically aligned
within the line according to their values for the property

vertical-align (see Chapter 15).

Before moving on, let’s look at a step-by-step process for
constructing a line box, which you can use to see how the
various pieces of a line fit together to determine its height.
Determine the height of the inline box for each element in the
line by following these steps:

1. Find the values of font-size and line-height for each
inline nonreplaced element and text that is not part of a
descendant inline element and combine them. This is done
by subtracting the font-size from the line-height , which
yields the leading for the box. The leading is split in half and
applied to the top and bottom of each em box.

2. Find the value of height , along with the values for the
margins, padding, and borders along the block-start and
block-end edges of each replaced element, and add them
together.

3. Figure out, for each content area, how much of it is above the
baseline for the overall line and how much of it is below the
baseline. This is not an easy task: you must know the position
of the baseline for each element and piece of anonymous text
and the baseline of the line itself, and then line them all up.
In addition, the block-end edge of a replaced element sits on
the baseline for the overall line.

4. Determine the vertical offset of any elements that have been
given a value for vertical-align . This will tell you how far
up or down that element’s inline box will be moved along the
block axis, and that will change how much of the element is
above or below the baseline.

5. Now that you know where all of the inline boxes have come
to rest, calculate the final line box height. To do so, just add
the distance between the baseline and the highest inline-box
top to the distance between the baseline and the lowest
inline-box bottom.

Let us consider the whole process in detail, which is the key to
intelligently styling inline content.

Line Heights

First, know that all elements have a line-height , whether it’s
explicitly declared or not. This value greatly influences the way
inline elements are displayed, so let’s give it due attention.

A line’s height (or the height of a line box) is determined by the
height of its constituent elements and other content, such as
text. It’s important to understand that line-height affects
inline elements and other inline content, not block-level
elements—at least, not directly. We can set a line-height

value for a block-level element, but the value will have a visual
impact only as it’s applied to inline content within that block-
level element. Consider the following empty paragraph, for
example:

<p style="line-height: 0.25em;"></p>

Without content, the paragraph won’t have anything to display,
so we won’t see anything. The fact that this paragraph has a
line-height of any value—be it 0.25em or 25in —makes no
difference without some content to create a line box.

We can set a line-height value for a block-level element and
have that apply to all of the content within the block, whether
it’s contained in an inline element or anonymous text. In a
certain sense, then, each line of text contained within a block-
level element is its own inline element, whether or not it’s
surrounded by tags. If you like, picture a fictional tag sequence
like this:

<p>
<line>This is a paragraph with a number of</line>
<line>lines of text that make up the</line>
<line>contents.</line>
</p>

Even though the line tags don’t actually exist, the paragraph
behaves as if they did, and each line of text “inherits” styles
from the paragraph. You bother to create line-height rules
for block-level elements only so you don’t have to explicitly
declare a line-height for all of their inline elements, fictional
or otherwise.

The fictional line element clarifies the behavior that results
from setting line-height on a block-level element. According
to the CSS specification, declaring line-height on a block-level
element sets a minimum line-box height for the content of that
block-level element. Declaring p.spacious {line-height:
24pt;} means that the minimum height for each line box is 24
points. Technically, content can inherit this line height only if
an inline element does so. Most text isn’t contained by an inline
element. If you pretend that each line is contained by the
fictional line element, the model works out very nicely.

Inline Nonreplaced Elements

Building on our formatting knowledge, let’s move on to the
construction of lines that contain only nonreplaced elements
(or anonymous text). Then you’ll be in a good position to
understand the differences between nonreplaced and replaced
elements in inline layout.

NOTE

In this section, we use top and bottom to label where half-leading is placed and how
line boxes are placed together. Always remember that these terms are in relation to
the direction of block flow: the top edge of an inline box is the one closest to the
block-start edge, and the bottom edge of an inline box is closest to its block-end edge.
Similarly, height means the distance along the inline box’s block axis, and width is the
distance along its inline axis.

Building the Boxes

First, for an inline nonreplaced element or piece of anonymous
text, the value of font-size determines the height of the
content area. If an inline element has a font-size of 15px , the
content area’s height is 15 pixels because all of the em boxes in
the element are 15 pixels tall, as illustrated in Figure 6-44.

Figure 6-44. Em boxes determine content area height

The next thing to consider is the value of line-height for the
element, and the difference between it and the value of font-
size . If an inline nonreplaced element has a font-size of

15px and a line-height of 21px , the difference is 6 pixels.
The user agent splits the 6 pixels in half and applies half (3
pixels) to the top and half (3 pixels) to the bottom of the content
area, which yields the inline box. Figure 6-45 illustrates this
process.

Figure 6-45. Content area plus leading equals inline box

Now, let’s break stuff so we can better understand how line
height works. Assume the following is true:

In this example, most of the text has a font-size of 12px ,
while the text in one inline nonreplaced element has a size of

<p style="font-size: 12px; line-height: 12px;">
This is text, some of which is emphasized, p
that is <strong style="font-size: 24px;">strongly emp

and that is

larger than the surrounding text.
</p>

24px . However, all of the text has a line-height of 12px
since line-height is an inherited property. Therefore, the
 element’s line-height is also 12px .

Thus, for each piece of text where both font-size and line-
height are 12px , the content height does not change (since the
difference between 12px and 12px is 0), so the inline box is 12
pixels high. For the strong text, however, the difference
between line-height and font-size is -12px . This is
divided in half to determine the half-leading (-6px), and the
half-leading is added to both the top and bottom of the content
height to arrive at an inline box. Since we’re adding a negative
number in both cases, the inline box ends up being 12 pixels
tall. The 12-pixel inline box is centered vertically within the 24-
pixel content height of the element, so the inline box is smaller
than the content area.

So far, it sounds like we’ve done the same thing to each bit of
text, and that all the inline boxes are the same size, but that’s
not quite true. The inline boxes in the second line, although
they’re the same size, don’t line up because the text is all
baseline aligned (see Figure 6-46), a concept we’ll discuss later
in the chapter.

Since inline boxes determine the height of the overall line box,
their placement with respect to one another is critical. The line
box is defined as the distance from the top of the highest inline
box in the line to the bottom of the lowest inline box, and the
top of each line box butts up against the bottom of the line box
for the preceding line.

In Figure 6-46, three boxes are being laid out for a single line of
text: the two anonymous text boxes to either side of the
 element, and the element itself. Because
the enclosing paragraph has a line-height of 12px , each of
the three boxes will have a 12-pixel-tall inline box. These inline
boxes are centered within the content area of each box. The
boxes then have their baselines lined up, so the text all shares a
common baseline.

But because of where the inline boxes fall with respect to those
baselines, the inline box of the element is a little bit
higher than the inline boxes of the anonymous text boxes. Thus,
the distance from the top of the ’s inline box to the
bottoms of the anonymous inline boxes is more than 12 pixels,
while the visible content of the line isn’t completely contained
within the line box.

Figure 6-46. Inline boxes within a line

After all that, the middle line of text is placed between two
other lines of text, as depicted in Figure 6-47. The bottom edge
of the first line of text is placed against the top edge of the line
of text we saw in Figure 6-46. Similarly, the top edge of the third
line of text is placed against the bottom edge of the middle line
of text. Because the middle line of text has a slightly taller line
box, the result is that the lines of text look irregular, because
the distances between the three baselines are not consistent.

Figure 6-47. Line boxes within a paragraph

NOTE

In just a bit, we’ll explore ways to cope with this irregular separation of baselines and
methods for achieving consistent baseline spacing. (Spoiler: Unitless values for the
win!)

Setting Vertical Alignment

If we change the vertical alignment of the inline boxes, the
same height determination principles apply. Suppose that we
give the element a vertical alignment of 4px :

That small change raises the element 4 pixels, which
pushes up both its content area and its inline box. Because the
 element’s inline-box top was already the highest in
the line, this change in vertical alignment also pushes the top of
the line box upward by 4 pixels, as shown in Figure 6-48.

Figure 6-48. Vertical alignment affects line-box height

NOTE

A formal definition for vertical-align can be found in Chapter 15.

<p style="font-size: 12px; line-height: 12px;">
This is text, some of which is emphasized, p
that is <strong style="font-size: 24px; vertical-alig
emphasized and that is

larger than the surrounding text.
</p>

Let’s consider another situation. Here, we have another inline
element in the same line as the strong text, and its alignment is
other than the baseline:

Now we have the same result as in our earlier example, where
the middle line box is taller than the other line boxes. However,
notice how the “tall” text is aligned in Figure 6-49.

Figure 6-49. Aligning an inline element to the line box

In this case, the top of the “tall” text’s inline box is aligned with
the top of the line box. Since the “tall” text has equal values for
font-size and line-height , the content height and inline
box are the same. However, consider this:

<p style="font-size: 12px; line-height: 12px;">
This is text, some of which is emphasized,<b
plus other text that is <strong style="font-size: 24p
strong and <span style="vertical-align: top;
larger than the surrounding text.
</p>

Since the line-height for the “tall” text is less than its font-
size , the inline box for that element is smaller than its content
area. This tiny fact changes the placement of the text itself,
because the top of its inline box must be aligned with the top of
the line box for its line. Thus, we get the result shown in
Figure 6-50.

Figure 6-50. Text protruding from the line box (again)

In relation to the terms we’ve been using in this chapter, the
effects of the assorted keyword values of vertical-align are
as follows:

top

<p style="font-size: 12px; line-height: 12px;">
This is text, some of which is emphasized,<b
plus other text that is <strong style="font-size: 24p
strong and <span style="vertical-align: top;
tall and is
 larger than the surrounding te
</p>

Aligns the top (block-start edge) of the element’s inline box
with the top of the containing line box.

bottom

Aligns the bottom (block-end edge) of the element’s inline
box with the bottom of the containing line box.

text-top

Aligns the top (block-start edge) of the element’s inline box
with the top of the parent’s content area.

text-bottom

Aligns the bottom (block-end edge) of the element’s inline
box with the bottom of the parent’s content area.

middle

Aligns the vertical midpoint of the element’s inline box with
0.5ex above the baseline of the parent.

super

Moves the content area and inline box of the element
upward along the block axis. The distance is not specified
and may vary by user agent.

sub

The same as super , except the element is moved downward
along the block axis instead of upward.

< percentage >
Shifts the element up or down the block axis by the distance
defined by taking the declared percentage of the element’s
value for line-height .

Managing the Line Height

In previous sections, you saw that changing the line-height
of an inline element can cause text from one line to overlap
another. In each case, though, the changes were made to
individual elements. So how can you affect the line-height of
elements in a more general way in order to keep content from
overlapping?

One way to do this is to use the em unit in conjunction with an
element whose font-size has changed. For example:

p {line-height: 1em;}
strong {font-size: 250%; line-height: 1em;}

<p>
Not only does this paragraph have "normal" text, but
contains a line in which some big text</stron
This large text helps illustrate our point.
</p>

By setting a line-height for the element, we
increase the overall height of the line box, providing enough
room to display the element without overlapping any
other text and without changing the line-height of all lines in
the paragraph. We use a value of 1em so that the line-height
for the element will be set to the same size as
 ’s font-size . Remember, line-height is set in
relation to the font-size of the element itself, not the parent
element. Figure 6-51 shows the results.

Figure 6-51. Assigning the line-height property to inline elements

Make sure you really understand the previous sections, because
readable formatting of the text gets trickier when we try to add
borders. Let’s say we want to put 5-pixel borders around any
hyperlink:

a:any-link {border: 5px solid blue;}

If we don’t set a large-enough line-height to accommodate
the border, it will be in danger of overwriting other lines. We

could increase the size of the inline box for hyperlinks by using
line-height , as we did for the element in the
earlier example; in this case, we’d just need to make the value
of line-height 10 pixels larger than the value of font-size
for those links. However, that will be difficult if we don’t
actually know the size of the font in pixels.

Another solution is to increase the line-height of the
paragraph. This will affect every line in the entire element, not
just the line in which the bordered hyperlink appears:

p {line-height: 1.8em;}
a:link {border: 5px solid blue;}

Because extra space is added above and below each line, the
border around the hyperlink doesn’t impinge on any other line,
as shown in Figure 6-52.

Figure 6-52. Increasing line-height to leave room for inline borders

This approach works because all of the text is the same size. If
the line contained other elements that changed the height of the

line box, our border situation might also change. Consider the
following:

p {font-size: 14px; line-height: 24px;}
a:link {border: 5px solid blue;}
strong {font-size: 150%; line-height: 1.5em;}

Given these rules, the height of the inline box of a
element within a paragraph will be 31.5 pixels (14 × 1.5 × 1.5),
and that will also be the height of the line box. To keep baseline
spacing consistent, we must make the <p> element’s line-
height equal to or greater than 32px .

Understanding baselines and line heights

The actual height of each line box depends on the way its
component elements line up with one another. This alignment
tends to depend very much on where the baseline falls within
each element (or piece of anonymous text) because that
location determines how the inline boxes are arranged
vertically.

Consistent baseline spacing tends to be more of an art than a
science. If you declare all of your font sizes and line heights by
using a single unit, such as ems, you have a good chance of

consistent baseline spacing. If you mix units, however, that feat
becomes a great deal more difficult, if not impossible.

As of late 2022, proposals call for properties that would let
authors enforce consistent baseline spacing regardless of the
inline content, which would greatly simplify certain aspects of
online typography. None of these proposed properties have
been implemented, which makes their adoption a distant hope
at best.

Scaling line heights

The best way to set line-height , as it turns out, is to use a raw
number as the value. This method is best because the number
becomes the scaling factor, and that factor is an inherited, not a
computed, value. Let’s say we want the line-height of all
elements in a document to be one and a half times their font-
size . We would declare the following:

body {line-height: 1.5;}

This scaling factor of 1.5 is passed down from element to
element, and, at each level, the factor is used as a multiplier of
the font-size of each element. Therefore, the following
markup would be displayed as shown in Figure 6-53:

In this example, the line height for the <small> element turns
out to be 15 pixels, and for the element, it’s 45 pixels.
If we don’t want our big text to generate too much
extra leading, we can give it its own line-height value, which
will override the inherited scaling factor:

p {font-size: 15px; line-height: 1.5;}
small {font-size: 66%;}
strong {font-size: 200%; line-height: 1em;}

Figure 6-53. Using a scaling factor for line-height

p {font-size: 15px; line-height: 1.5;}
small {font-size: 66%;}
strong {font-size: 200%;}

<p>This paragraph has a line-height of 1.5 times its
any elements within it <small>such as this small elem
line-heights 1.5 times their font-size...and that inc
element right here. By using a scaling facto
to match the font-size of any element.</p>

Adding Box Properties to Nonreplaced
Elements

As you may recall from previous discussions, while padding,
margins, and borders may all be applied to inline nonreplaced
elements, these properties have no impact on the height of the
inline element’s line box.

The border edge of inline elements is controlled by font-size ,
not line-height . In other words, if a element has a
font-size of 12px and a line-height of 36px , its content
area is 12px high, and the border will surround that content
area.

Alternatively, we can assign padding to the inline element,
which will push the borders away from the text itself:

span {padding: 4px;}

This padding does not alter the actual shape of the content
height, and so it will not affect the height of the inline box for
this element. Similarly, adding borders to an inline element will
not affect the way line boxes are generated and laid out, as
illustrated in Figure 6-54 (both with and without the 4-pixel
padding).

Figure 6-54. Padding and borders do not alter line height

As for margins, they do not, practically speaking, apply to the
block edges of an inline nonreplaced element, as they don’t
affect the height of the line box. The inline ends of the element
are another story.

Recall the idea that an inline element is basically laid out as a
single line and then broken into pieces. So, if we apply margins
to an inline element, those margins will appear at its beginning
and end: these are the inline-start and inline-end margins,
respectively. Padding also appears at these edges. Thus,
although padding and margins (and borders) do not affect line
heights, they can still affect the layout of an element’s content
by pushing text away from its ends. In fact, negative inline-start
and -end margins can pull text closer to the inline element, or
even cause overlap.

So, what happens when an inline element has a background
and enough padding to cause the lines’ backgrounds to overlap?
Take the following situation as an example:

All of the text within the element will have a content
area 15 pixels tall, and we’ve applied 10 pixels of padding to the
top and bottom of each content area. The extra pixels won’t
increase the height of the line box, which would be fine, except
there is a background color. Thus, we get the result shown in
Figure 6-55.

Figure 6-55. Padding and margins on inline elements

CSS explicitly states that the line boxes are drawn in document
order: “This will cause the borders on subsequent lines to paint
over the borders and text of previous lines.” The same principle
applies to backgrounds as well, as Figure 6-55 shows.

Changing Breaking Behavior

p {font-size: 15px; line-height: 1em;}
p span {background: #FAA;
 padding-block-start: 10px; padding-block-end: 10

In the previous section, you saw that when an inline
nonreplaced element is broken across multiple lines, it’s treated
as if it were one long single-line element that’s sliced into
smaller boxes, one slice per line break. That’s just the default
behavior, and it can be changed via the property box-
decoration-break .

BOX-DECORATION-BREAK

Values slice | clone

Initial value slice

Applies to All elements

Computed value As specified

Inherited No

Animatable No

The default value, slice , is what you saw in the previous
section. The other value, clone , causes each fragment of the
element to be drawn as if it were a standalone box. What does
that mean? Compare the two examples in Figure 6-56, in which
exactly the same markup and styles are treated as either sliced
or cloned.

Many of the differences may be apparent, but a few are perhaps
more subtle. Among the effects are the application of padding to
each element’s fragment, including at the ends where the line
breaks occur. Similarly, the border is drawn around each
fragment individually, instead of being broken up.

Figure 6-56. Sliced and cloned inline fragments

More subtly, notice how the background-image positioning
changes between the two. In the sliced version, background
images are sliced along with everything else, meaning that only
one of the fragments contains the origin image. In the cloned
version, however, each background acts as its own copy, so each
has its own origin image. This means, for example, that even if

we have a nonrepeated background image, it will appear once
in each fragment instead of in only one fragment.

The box-decoration-break property will most often be used
with inline boxes, but it applies anytime there’s a break in an
element—for example, when a page break interrupts an
element in paged media. In such a case, each fragment is a
separate slice. If we set box-decoration-break: clone , each
box fragment will be treated as a copy when it comes to
borders, padding, backgrounds, and so on. The same holds true
in multicolumn layout: if an element is split by a column break,
the value of box-decoration-break will affect how it is
rendered.

Glyphs Versus Content Area

Even when you try to keep inline nonreplaced element
backgrounds from overlapping, it can still happen, depending
on which font is in use. The problem lies in the difference
between a font’s em box and its character glyphs. Most fonts, as
it turns out, don’t have em boxes whose heights match the
character glyphs.

That may sound abstract, but it has practical consequences. The
“painting area” of an inline nonreplaced element is left to the

user agent. If a user agent takes the em box to be the height of
the content area, the background of an inline nonreplaced
element will be equal to the height of the em box (which is the
value of font-size). If a user agent uses the maximum
ascender and descender of the font, the background may be
taller or shorter than the em box. Therefore, you could give an
inline nonreplaced element a line-height of 1em and still
have its background overlap the content of other lines.

Inline Replaced Elements

Inline replaced elements, such as images, are assumed to have
an intrinsic height and width; for example, an image will be a
certain number of pixels high and wide. Therefore, a replaced
element with an intrinsic height can cause a line box to become
taller than normal. This does not change the value of line-
height for any element in the line, including the replaced
element itself. Instead, the line box is made just tall enough to
accommodate the replaced element, plus any box properties. In
other words, the entirety of the replaced element—content,
margins, borders, and padding—is used to define the element’s
inline box. The following styles lead to one such example, as
shown in Figure 6-57:

p {font-size: 15px; line-height: 18px;}

Figure 6-57. Replaced elements can increase the height of the line box but not the
value of line-height

Despite all the blank space, the effective value of line-height
has not changed, either for the paragraph or the image itself.
The line-height value has no effect on the image’s inline box.
Because the image in Figure 6-57 has no padding, margins, or
borders, its inline box is equivalent to its content area, which is,
in this case, 30 pixels tall.

Nonetheless, an inline replaced element still has a value for
line-height . Why? In the most common case, it needs the
value in order to correctly position the element if it’s been
vertically aligned. Recall that, for example, percentage values
for vertical-align are calculated with respect to an element’s
line-height . Thus:

p {font-size: 15px; line-height: 18px;}
img {vertical-align: 50%;}

img {block-size: 30px; margin: 0; padding: 0; border:

The inherited value of line-height causes the image to be
raised 9 pixels instead of some other number. Without a value
for line-height , it wouldn’t be possible to perform
percentage-value vertical alignments. The height of the image
itself has no relevance when it comes to vertical alignment; the
value of line-height is all that matters.

However, for other replaced elements, it might be important to
pass on a line-height value to descendant elements within
that replaced element. An example would be an SVG image,
which can use CSS to style text found within the image.

Adding Box Properties to Replaced
Elements

After everything we’ve just been through, applying margins,
borders, and padding to inline replaced elements seems almost
simple.

Padding and borders are applied to replaced elements as usual;
padding inserts space around the actual content, and the

<p>The image in this sentence <img src="test.gif" alt
will be raised 9 pixels.</p>

border surrounds the padding. What’s unusual about the
process is that the padding and border actually influence the
height of the line box because they are part of the inline box of
an inline replaced element (unlike with inline nonreplaced
elements). Consider Figure 6-58, which results from the
following styles:

Note that the first line box is made tall enough to contain the
image, whereas the second is tall enough to contain the image,
its padding, and its border.

Figure 6-58. Adding padding, borders, and margins to an inline replaced element
increases its inline box

img {block-size: 50px; inline-size: 50px;}
img.one {margin: 0; padding: 0; border: 3px dotted;}
img.two {margin: 10px; padding: 10px; border: 3px sol

Margins are also contained within the line box, but they have
their own wrinkles. Setting a positive margin is no mystery; it
will make the inline box of the replaced element taller. Setting
negative margins has a similar effect: it decreases the size of the
replaced element’s inline box. This is illustrated in Figure 6-59,
where we can see that a negative top margin is pulling down
the line above the image:

img.two {margin-block-start: -10px;}

Negative margins operate the same way on block-level
elements, as shown earlier in the chapter. In this case, the
negative margins make the replaced element’s inline box
smaller than ordinary. Negative margins are the only way to
cause inline replaced elements to bleed into other lines, and it’s
why the boxes that replaced inline elements generate are often
assumed to be inline-block.

Figure 6-59. The effect of negative margins on inline replaced elements

Replaced Elements and the Baseline

You may have noticed by now that, by default, inline replaced
elements sit on the baseline. If you add bottom (block-end)
padding, a margin, or a border to the replaced element, then
the content area will move upward along the block axis.
Replaced elements do not have baselines of their own, so the
next best thing is to align the bottom of their inline boxes with
the baseline. Thus, it is actually the outer block-end margin
edge that is aligned with the baseline, as illustrated in Figure 6-
60.

Figure 6-60. Inline replaced elements sit on the baseline

This baseline alignment leads to an unexpected (and
unwelcome) consequence: an image placed in a table cell all by
itself should make the table cell tall enough to contain the line
box containing the image. The resizing occurs even if no actual
text, not even whitespace, is in the table cell with the image.

Therefore, the common sliced-image and spacer-GIF designs of
years past can fall apart quite dramatically in modern
browsers. (We know that you don’t create such things, but this
is still a handy context in which to explain this behavior.)
Consider the simplest case:

td {font-size: 12px;}

Under the CSS inline formatting model, the table cell will be 12
pixels tall, with the image sitting on the baseline of the cell. So
we might have 3 pixels of space below the image and 8 above it,
although the exact distances would depend on the font family
used and the placement of its baseline.

This behavior is not confined to images inside table cells; it will
also happen anytime an inline replaced element is the sole
descendant of a block-level or table-cell element. For example,
an image inside a <div> will also sit on the baseline.

Here’s another interesting effect of inline replaced elements
sitting on the baseline: if we apply a negative bottom (block-
end) margin, the element will get pulled downward because the

<td><img src="spacer.gif" height="1" width="10" alt="

bottom of its inline box will be higher than the bottom of its
content area. Thus, the following rule would have the result
shown in Figure 6-61:

p img {margin-block-end: -10px;}

Figure 6-61. Pulling inline replaced elements down with a negative block-end margin

This can easily cause a replaced element to bleed into following
lines of text, as Figure 6-61 shows.

Inline-Block Elements

As befits the hybrid look of the value name inline-block ,
inline-block elements are indeed a hybrid of block-level and
inline elements.

An inline-block element relates to other elements and content
as an inline box just as an image would: inline-block elements
are formatted within a line as a replaced element. This means
the bottom (block-end) edge of the inline-block element will rest

on the baseline of the text line by default and will not line break
within itself.

Inside the inline-block element, the content is formatted as
though the element were block-level. The properties width and
height apply to the element (and thus so does box-sizing), as
they do to any block-level or inline replaced element, and those
properties will increase the height of the line if they are taller
than the surrounding content.

Let’s consider some example markup that should help make
this clearer:

<div id="one">
 This text is the content of a block-level element.
 block-level element is another block-level element
 block-level paragraph.</p> Here's the rest of the
 block-level.
</div>
<div id="two">
 This text is the content of a block-level element.
 block-level element is an inline element. <p>Look
 paragraph.</p> Here's the rest of the DIV, which
</div>
<div id="three">
 This text is the content of a block-level element.
 block-level element is an inline-block element. <

To this markup, we apply the following rules:

Figure 6-62 depicts the result of this stylesheet.

Figure 6-62. The behavior of an inline-block element

Notice that in the second <div> , the inline paragraph is
formatted as normal inline content, which means width and
text-align get ignored (since they do not apply to inline
elements). For the third <div> , however, the inline-block
paragraph honors both properties, since it is formatted as a

 paragraph.</p> Here's the rest of the DIV, which
</div>

div {margin: 1em 0; border: 1px solid;}
p {border: 1px dotted;}
div#one p {display: block; inline-size: 6em; text-ali
div#two p {display: inline; inline-size: 6em; text-al
div#three p {display: inline-block; inline-size: 6em;

block-level element. That paragraph’s margins also force its line
of text to be much taller, since it affects line height as though it
were a replaced element.

If an inline-block element’s width is not defined or explicitly
declared auto , the element box will shrink to fit the content.
The element box is exactly as wide as necessary to hold the
content, and no wider. Inline boxes act the same way, although
they can break across lines of text, whereas inline-block
elements cannot. Thus, we have the following rule, when
applied to the previous markup example:

This will create a tall box that’s just wide enough to enclose the
content, as shown in Figure 6-63.

Figure 6-63. Autosizing of an inline-block element

Flow Display

div#three p {display: inline-block; block-size: 4em;}

The display values flow and flow-root deserve a moment
of explanation. Declaring an element to be laid out using
display: flow means that it should use block-and-inline
layout, the same as normal—that is, unless it’s combined with
inline , in which case it generates an inline box.

In other words, the first two of the following rules will result in
a block box, whereas the third will yield an inline box:

#first {display: flow;}
#second {display: block flow;}
#third {display: inline flow;}

The reason for this pattern is that CSS is (very) slowly moving to
a system that supports two kinds of display: the outer display
type and the inner display type. Value keywords like block and
inline represent the outer display type, which determines
how the display box interacts with its surroundings. The inner
display (in this case, flow), describes what should happen
inside the element.

This approach allows for declarations like display: inline
block to indicate that an element should generate a block-
formatting context within, but relate to its surrounding content

as an inline element. (The new two-term display value has the
same effect as the fully supported inline-block value.)

Using display: flow-root , on the other hand, always
generates a block box, with a new block formatting context
inside itself. This is the sort of thing that would be applied to the
root element of a document, like <html> , to say, “This is where
the formatting root lies.”

The old display values you may be familiar with are still
available. Table 6-1 shows how the old values will be
represented using the new values.

Table 6-1. Equivalent display values

Old values New values

block block flow

inline inline flow

inline-block inline flow-root

list-item list-item block flow

inline-list-item list-item inline flow

table block table

inline-table inline table

flex block flex

inline-flex inline flex

grid block grid

inline-grid inline grid

Content Display

A fascinating new addition to display is the value contents .
When applied to an element, display: contents causes the
element to be removed from page formatting, and effectively
“elevates” its child elements to its level. As an example, consider
the following basic CSS and HTML:

ul {border: 1px solid red;}
li {border: 1px solid silver;}

The first list item.
List Item II: The Listening.
List item the third.

This yields an unordered list with a red border, and three list
items with silver borders.

If we then apply display: contents to the element, the
user agent will render the list as if the and lines
had been deleted from the document source. Figure 6-64 shows
the difference between the regular result and the contents
result.

Figure 6-64. A regular unordered list, and one with display: contents

The list items are still list items, and act like them, but visually,
the is gone, as if it had never been. Not only does the list’s
border go away, but also the top and bottom margins that
usually separate the list from surrounding content. This is why
the second list in Figure 6-64 appears higher up than the first.

Other Display Values

We haven’t covered a great many more display values in this
chapter, and won’t. The various table-related values will come
up in Chapter 13, and we’ll talk about list items again in
Chapter 16.

The values we won’t really talk about are the Ruby-related
values, which need their own book and are poorly supported as
of late 2022.

Element Visibility

In addition to everything we’ve discussed in the chapter, you
can also control the visibility of an entire element.

VISIBILITY

Values visible | hidden | collapse

Initial
value

visible

Applies to All elements

Computed
value

As specified

Inherited Yes

Animatable A visibility

Note No, really, that’s what the specification
says: “A visibility”

If an element is set to have visibility: visible , it is, as you
might expect, visible. If an element is set to visibility:
hidden , it is made “invisible” (to use the wording in the
specification). In its invisible state, the element still affects the
document’s layout as though it were visible . In other words,
the element is still there—you just can’t see it.

Note the difference between this and display: none . In the
latter case, the element is not displayed and is removed from
the document altogether so that it doesn’t have any effect on
document layout. Figure 6-65 shows a document in which an
inline element inside a paragraph has been set to hidden ,
based on the following styles and markup:

em.trans {visibility: hidden; border: 3px solid gray;
 margin: 2em; padding: 1em;}

<p>
 This is a paragraph that should be visible. Nulla
 city, mutationem dolore. <em class="trans">Humani
 ut lorem. Doug dieken dolor possim south euc
</p>

Figure 6-65. Making elements invisible without suppressing their element boxes

Everything visible about a hidden element—such as content,
background, and borders—is made invisible. The space is still
there because the element is still part of the document’s layout.
We just can’t see it.

We can set the descendant element of a hidden element to be
visible . This causes the element to appear wherever it
normally would, even though the ancestor is invisible. To do so,
we explicitly declare the descendant element visible , since
visibility is inherited:

p.clear {visibility: hidden;}
p.clear em {visibility: visible;}

As for visibility: collapse , this value is used in CSS table
rendering and flexible box layout, where it has an effect very
similar to display: none . The difference is that in table
rendering, a row or column that’s been set to visibility:
hidden is hidden and the space it would have occupied is

removed, but any cells in the hidden row or column are used to
determine the layout of intersecting columns or rows. This
allows you to quickly hide or show rows and columns without
forcing the browser to recalculate the layout of the whole table.

If collapse is applied to an element that isn’t a flex item or
part of a table, it has the same meaning as hidden .

Animating Visibility

If you want to animate a change from visible visibility to one of
the other values of visibility , that is possible. The catch is
that you won’t see a slow fade from one to the other. Instead,
the browser calculates where in the animation a change from
0 to 1 (or vice versa) would reach the end value, and instantly
changes the value of visibility at that point. Thus, if an
element is set to visibility: hidden and then animated to
visibility: visible , the element will be completely invisible
until the end point is reached, at which time it will become
instantly visible. (See Chapters 18 and 19 for more information
on animating CSS properties.)

TIP

If you want to fade from being invisible to visible, don’t animate visibility .
Animate opacity instead.

Summary

Although some aspects of the CSS formatting model may seem
counterintuitive at first, they begin to make sense the more you
work with them. In many cases, rules that seem nonsensical or
even idiotic turn out to exist in order to prevent bizarre or
otherwise undesirable document displays. Block-level elements
are in many ways easy to understand, and affecting their layout
is typically a simple task. Inline elements, on the other hand,
can be trickier to manage, as multiple factors come into play,
not the least of which is whether the element is replaced or
nonreplaced.

Chapter 7. Padding, Borders,
Outlines, and Margins

In Chapter 6, we talked about the basics of element display. In
this chapter, we’ll look at the CSS properties and values you can
use to affect how element boxes are drawn and separated from
one another. These include the padding, borders, and margins
around an element, as well as any outlines that may be added.

Basic Element Boxes

As discussed in the preceding chapter, all document elements
generate a rectangular box called the element box, which
describes the amount of space that an element occupies in the
layout of the document. Therefore, each box influences the
position and size of other element boxes. For example, if the
first element box in the document is an inch tall, the next box
will begin at least an inch below the top of the document. If the
first element box is changed and made to be 2 inches tall, every
following element box will shift downward an inch, and the
second element box will begin at least 2 inches below the top of
the document.

By default, a visually rendered document is composed of
numerous rectangular boxes that are distributed so that they
don’t overlap. Boxes can overlap if they have been manually
positioned or placed on a grid, and visual overlap can occur if
negative margins are used on normal-flow elements.

To understand how margins, padding, and borders are handled,
you must understand the box model, illustrated in Figure 7-1.

Figure 7-1. The CSS box model

The diagram in Figure 7-1 intentionally omits outlines, for
reasons that will hopefully be clear once we discuss outlines.

NOTE

The height and width of the content area, as well as the sizing of the content area
along the block and inline directions, are covered in Chapter 6. If you find some of
the rest of this chapter a little confusing because of the way height, width, block axis,
and inline axis are discussed, refer to that chapter for a detailed explanation.

Padding

Just beyond the content area of an element, we find its padding,
nestled between the content and any borders. The simplest way
to set padding is by using the property padding .

PADDING

Values [< length > | < percentage >]{1,4}

Initial
value

Not defined for shorthand elements

Applies to All elements except internal table
elements other than table cells

Percentages Refer to the width of the containing
block

Computed
value

See individual properties (padding-to
p , etc.)

Inherited No

Animatable Yes

Note padding can never be negative

This property accepts any length value or a percentage value.
So if you want all <h2> elements to have 2 em of padding on all
sides, it’s this easy (see Figure 7-2):

h2 {padding: 2em; background-color: silver;}

Figure 7-2. Adding padding to elements

As Figure 7-2 illustrates, the background of an element extends
into the padding by default. If the background is transparent,
setting padding will create extra transparent space around the
element’s content, but any visible background will extend into
the padding area (and beyond, as you’ll see in a later section).

NOTE

Visible backgrounds can be prevented from extending into the padding by using the
property background-clip (see Chapter 8).

By default, elements have no padding. The separation between
paragraphs, for example, has traditionally been enforced with
margins alone (as you’ll see later). On the other hand, without
padding, the border of an element will come very close to the

content of the element itself. Thus, when putting a border on an
element, it’s usually a good idea to add some padding as well, as
Figure 7-3 illustrates.

Figure 7-3. The effect of padding on bordered block-level elements

Any length value is permitted, from ems to inches. The simplest
way to set padding is with a single length value, which is
applied equally to all four padding sides. At times, however, you
might desire a different amount of padding on each side of an
element. If you want all <h1> elements to have a top padding
of 10 pixels, a right padding of 20 pixels, a bottom padding of 15
pixels, and a left padding of 5 pixels, you can just say this:

h1 {padding: 10px 20px 15px 5px;}

The order of the values is important and follows this pattern:

padding: top right bottom left

A good way to remember this pattern is to keep in mind that the
four values go clockwise around the element, starting from the
top. The padding values are always applied in this order, so to
get the effect you want, you have to arrange the values
correctly.

An easy way to remember the order in which sides must be
declared, other than thinking of it as being clockwise from the
top, is to keep in mind that getting the sides in the correct order
helps you avoid “TRouBLe”—that is, TRBL, for top, right,
bottom, left.

This ordering reveals that padding , like height and width , is
a physical property: it refers to the physical directions of the
page, such as top or left, rather than being based on writing
direction. (CSS does have writing-mode padding properties, as
you’ll see in a bit.)

It’s entirely possible to mix up the types of length values you
use. You aren’t restricted to using a single length type in a given
rule, but can use whatever makes sense for a given side of the
element, as shown here:

h2 {padding: 14px 5em 0.1in 3ex;} /* value variety! *

Figure 7-4 shows you, with a little extra annotation, the results
of this declaration.

Figure 7-4. Mixed-value padding

Replicating Values

Sometimes the values you enter can get a little repetitive:

You don’t have to keep typing in pairs of numbers like this,
though. Instead of the preceding rule, try this:

p {padding: 0.25em 1em;}

These two values are enough to take the place of four. But how?
CSS defines a few rules to accommodate fewer than four values
for padding (and many other shorthand properties):

If the value for left is missing, use the value provided for
right.

p {padding: 0.25em 1em 0.25em 1em;} /* TRBL - Top Ri

If the value for bottom is also missing, use the value provided
for top.
If the value for right is also missing, use the value provided
for top.

If you prefer a more visual approach, take a look at Figure 7-5.

Figure 7-5. Value-replication pattern

In other words, if three values are given for padding , the
fourth (left) is copied from the second (right). If two values are
given, the fourth is copied from the second, and the third
(bottom) from the first (top). Finally, if only one value is given,
all the other sides copy that value.

This mechanism allows you to supply only as many values as
necessary, as shown here:

h1 {padding: 0.25em 0 0.5em;} /* same as '0.25em 0 0.
h2 {padding: 0.15em 0.2em;} /* same as '0.15em 0.2e
p {padding: 0.5em 10px;} /* same as '0.5em 10px
p.close {padding: 0.1em;} /* same as '0.1em 0.1em

The method presents a small drawback, which you’re bound to
eventually encounter. Suppose you want to set the top and left
padding for <h1> elements to be 10 pixels, and the bottom and
right padding to be 20 pixels. You’d have to write the following:

You get what you want, but it takes a while to get it all in.
Unfortunately, there is no way to cut down on the number of
values needed in such a circumstance. Let’s take another
example, one where you want all of the padding to be 0—except
for the left padding, which should be 3 em:

h2 {padding: 0 0 0 3em;}

Using padding to separate the content areas of elements can be
trickier than using the traditional margins, although it’s not
without its rewards. For example, to keep paragraphs the
traditional “one blank line” apart with padding, you’d have to
write this:

p {margin: 0; padding: 0.5em 0;}

h1 {padding: 10px 20px 20px 10px;} /* can't be any sh

The half-em top and bottom padding of each paragraph butt up
against each other and total an em of separation. Why would
you bother to do this? Because then you could insert separation
borders between the paragraphs, and the side borders will
touch to form the appearance of a solid line. The following code
defines these effects, illustrated in Figure 7-6:

Figure 7-6. Using padding instead of margins

Single-Side Padding

CSS provides a way to assign a value to the padding on a single
side of an element. Four ways, actually. Let’s say you want to set
only the left padding of <h2> elements to be 3em . Rather than
writing out padding: 0 0 0 3em , you can take this approach:

p {margin: 0; padding: 0.5em 0; border-bottom: 1px so
 border-left: 3px double black;}

h2 {padding-left: 3em;}

The padding-left option is one of four properties devoted to
setting the padding on each of the four sides of an element box.
Their names will come as little surprise.

PADDING-TOP, PADDING-RIGHT, PADDING-BOTTOM, PADDING-LEFT

Values < length > | < percentage >

Initial
value

0

Applies to All elements

Percentages Refer to the width of the containing
block

Computed
value

For percentage values, as specified; for
length values, the absolute length

Inherited No

Animatable Yes

Note Padding values can never be negative

These properties operate in a manner consistent with their
names. For example, the following two rules will yield the same
amount of padding (assuming no other CSS):

h1 {padding: 0 0 0 0.25in;}
h2 {padding-left: 0.25in;}

Similarly, these rules will create equal padding:

For that matter, so will these rules:

h1 {padding: 0 0.25in;}
h2 {padding-right: 0.25in; padding-left: 0.25in;}

It’s possible to use more than one of these single-side properties
in a single rule; for example:

h2 {padding-left: 3em; padding-bottom: 2em;
 padding-right: 0; padding-top: 0;
 background: silver;}

h1 {padding: 0.25in 0 0;} /* left padding is copied
h2 {padding-top: 0.25in;}

As you can see in Figure 7-7, the padding is set as we wanted. In
this case, it might have been easier to use padding after all, like
so:

h2 {padding: 0 0 2em 3em;}

Figure 7-7. More than one single-side padding

In general, once you’re trying to set padding for more than one
side, it’s easier to use the shorthand padding . From the
standpoint of your document’s display, however, it doesn’t
really matter which approach you use, so choose whichever is
easiest for you.

Logical Padding

As you’ll see throughout this chapter, physical properties have
logical counterparts, with names that follow a consistent
pattern. For height and width , we have block-size and
inline-size . For padding, we have a set of four properties

that correspond to the padding at the start and end of the block
direction and the inline direction. These are called logical
properties, because they use a little logic to determine which
physical side they should be applied to.

PADDING-BLOCK-START, PADDING-BLOCK-END, PADDING-INLINE-START,
PADDING-INLINE-END

Values < length > | < percentage >

Initial
value

0

Applies to All elements

Percentages Refer to the width of the containing
block

Computed
value

For percentage values, as specified; for
length values, the absolute length

Inherited No

Animatable Yes

Note Padding values can never be negative

These properties are handy when you want to make sure your
text has padding that has a consistent effect regardless of the
writing direction. For example, you might want a little bit of
padding to set the background edges away from the start and
end of each block element, and more padding to the sides of
each line of text. Here’s a way to make that happen, with the
result shown in Figure 7-8:

p {
 padding-block-start: 0.25em;
 padding-block-end: 0.25em;
 padding-inline-start: 1em;
 padding-inline-end: 1em;
}

Figure 7-8. Logical padding

WARNING

Percentage values for these logical padding properties are always calculated with
respect to the physical width or height of the element’s container, not its logical width
or height. Thus, for example, padding-inline-start: 10% will calculate to 100
pixels when the container has width: 1000px , even in a vertical writing mode. This
may change going forward, but that is the consistent (and specified) behavior as of
late 2022.

It’s a little tedious to explicitly declare a padding value for each
side of an element individually, and two shorthand properties
can help: one for the block axis, and one for the inline axis.

PADDING-BLOCK, PADDING-INLINE

Values [< length > | < percentage >]{1,2}

Initial
value

0

Applies to All elements

Percentages Refer to the width of the containing
block

Computed
value

For percentage values, as specified; for
length values, the absolute length

Inherited No

Animatable Yes

Note Padding values can never be negative

With these shorthand properties, you can set block padding in
one go, and inline padding in another. The following CSS would
have the same result as that shown in “Logical Padding”:

p {
 padding-block: 0.25em;
 padding-inline: 1em;
}

Each property accepts one or two values. If there are two
values, they’re always in the order start end. If there’s only one
value, as shown before, the same value is used for both the start
and end sides. Thus, to give an element 10 pixels of block-start
padding and 1 em of block-end padding, you could write this:

p {
 padding-block: 10px 1em;
}

A more compact shorthand doesn’t exist for logical padding,
unfortunately—no padding-logical that accepts four values,
the way padding does. Proposals have been made to extend the
padding property with a keyword value (such as logical) to
allow it to set logical padding instead of physical padding, but
as of late 2022, those proposals have not been adopted. As of

this writing, the most compact you can get with logical padding
is to use padding-block and padding-inline .

Percentage Values and Padding

We can set percentage values for the padding of an element.
Percentages are computed in relation to the width of the parent
element’s content area, so they change if the parent element’s
width changes in some way.

For example, assume the following, which is illustrated in
Figure 7-9:

p {padding: 10%; background-color: silver;}

<div style="width: 600px;">
 <p>
 This paragraph is contained within a DIV that
 so its padding will be 10% of the width of th
 element. Given the declared width of 600 pixe
 pixels on all sides.
 </p>
</div>
<div style="width: 300px;">
 <p>
 This paragraph is contained within a DIV with

it ddi ill till b 10% f th idth

Figure 7-9. Padding, percentages, and the widths of parent elements

You may have noticed something odd about the paragraphs in
Figure 7-9. Not only did their side padding change according to
the width of their parent elements, but so did their top and
bottom padding. That’s the desired behavior in CSS. Refer back
to the property definition, and you’ll see that percentage values

 so its padding will still be 10% of the width
 There will, therefore, be half as much paddin
 on the first paragraph.
 </p>
</div>

are defined to be relative to the width of the parent element.
This applies to the top and bottom padding as well as to the left
and right. Thus, given the following styles and markup, the top
padding of the paragraph will be 50 pixels:

div p {padding-top: 10%;}

If all this seems strange, consider that most elements in the
normal flow are (as we are assuming) as tall as necessary to
contain their descendant elements, including padding. If an
element’s top and bottom padding were a percentage of the
parent’s height, an infinite loop could result where the parent’s
height was increased to accommodate the top and bottom
padding, which would then have to increase to match the new
height, and so on.

<div style="width: 500px;">
 <p>
 This is a paragraph, and its top margin is 10
 element.
 </p>
</div>

Rather than ignore percentages for top and bottom padding, the
specification authors decided to make it relate to the width of
the parent’s content area, which does not change based on the
width of its descendants. This allows authors to get a consistent
padding all the way around an element by using the same
percentage on all four sides.

By contrast, consider elements without a declared width. In
such cases, the overall width of the element box (including
padding) is dependent on the width of the parent element. This
leads to the possibility of fluid pages, where the padding on
elements enlarges or reduces to match the actual size of the
parent element. If you style a document so that its elements use
percentage padding, then as the user changes the width of a
browser window, the padding will expand or shrink to fit. The
design choice is up to you.

You also can mix percentages with length values. Thus, to set
<h2> elements to have top and bottom padding of one-half em,
and side padding of 10% the width of their parent elements,
you can declare the following, illustrated in Figure 7-10:

h2 {padding: 0.5em 10%;}

Figure 7-10. Mixed padding

Here, although the top and bottom padding will stay constant in
any situation, the side padding will change based on the width
of the parent element.

Padding and Inline Elements

You may have noticed that the discussion so far has been solely
about padding set for elements that generate block boxes.
When padding is applied to inline nonreplaced elements, the
effects are a little different.

Let’s say you want to set top and bottom padding on strongly
emphasized text:

strong {padding-top: 25px; padding-bottom: 50px;}

This is allowed in the specification, but since you’re applying
the padding to an inline nonreplaced element, it will have
absolutely no effect on the line height. Since padding is
transparent when there’s no visible background, the preceding

declaration will have no visual effect whatsoever. This happens
because padding on inline nonreplaced elements doesn’t
change the line height of an element.

Be careful: an inline nonreplaced element with a background
color and padding can have a background that extends above
and below the element, like this:

Figure 7-11 gives you an idea of what this might look like.

Figure 7-11. Top padding on an inline nonreplaced element

The line height isn’t changed, but since the background color
does extend into the padding, each line’s background ends up
overlapping the lines that come before it. That’s the expected
result.

The preceding behaviors are true only for the top and bottom
sides of inline nonreplaced elements; the left and right sides are
a different story. We’ll start by considering the case of a small,
inline nonreplaced element within a single line. Here, if you set

strong {padding-top: 0.5em; background-color: silver;

values for the left or right padding, they will be visible, as
Figure 7-12 makes clear (so to speak):

strong {padding-left: 25px; background: silver;}

Figure 7-12. An inline nonreplaced element with left padding

Note the extra space between the end of the word just before
the inline nonreplaced element and the edge of the inline
element’s background. You can add that extra space to both
ends of the inline if you want:

As expected, Figure 7-13 shows a little extra space on the right
and left sides of the inline element, and no extra space above or
below it.

Figure 7-13. An inline nonreplaced element with 25-pixel side padding

strong {padding-left: 25px; padding-right: 25px; back

Now, when an inline nonreplaced element stretches across
multiple lines, the situation changes a bit. Figure 7-14 shows
what happens when an inline nonreplaced element with
padding is displayed across multiple lines:

strong {padding: 0 25px; background: silver;}

The left padding is applied to the beginning of the element, and
the right padding to the end of it. By default, padding is not
applied to the right and left side of each line. Also, you can see
that, if not for the padding, the line may have broken after
“background” instead of where it did. The padding property
affects line breaking only by changing the point at which the
element’s content begins within a line.

Figure 7-14. An inline nonreplaced element with 25-pixel side padding displayed
across two lines of text

NOTE

The way padding is (or isn’t) applied to the ends of each line box can be altered with
the property box-decoration-break . See Chapter 6 for more details.

Padding and Replaced Elements

It is possible to apply padding to replaced elements. The most
surprising case for most people is that you can apply padding to
an image, like this:

img {background: silver; padding: 1em;}

Regardless of whether the replaced element is block-level or
inline, the padding will surround its content, and the
background color will fill into that padding, as shown in
Figure 7-15. You can also see that padding will push a replaced
element’s border (dashed, in this case) away from its content.

Figure 7-15. Padding, borders, and background on a replaced element

Now, remember all that stuff about how padding on inline
nonreplaced elements doesn’t affect the height of the lines of
text? You can throw it all out for replaced elements, because

they have a different set of rules. As you can see in Figure 7-16,
the padding of an inline replaced element very much affects the
height of the line.

Figure 7-16. Padding an inline replaced element

The same goes for borders and margins, as you’ll soon see.

Note that if the image in Figure 7-16 had not loaded, or had
somehow been set to have 0 height and width, the padding
would still be rendered around the spot where the element
should have been displayed, even if that spot has no height or
width.

WARNING

As of late 2022, uncertainty remains over what to do about styling form elements
such as <input> , which are replaced elements. It is not entirely clear where the
padding of a checkbox resides, for example. Therefore, as of this writing, some
browsers ignore padding (and other forms of styling) for form elements, while others
apply the styles as best they can.

Borders

Beyond the padding of an element are its borders. The border of
an element is just one or more lines that surround the content
and padding of an element. By default, the background of the
element stops at the outer border edge, since the background
does not extend into the margins, and the border is just inside
the margin, and is thus drawn “underneath” the border. This
matters when parts of the border are transparent, such as with
dashed borders.

Every border has three aspects: its width, or thickness; its style,
or appearance; and its color. The default value for the width of
a border is medium , which was explicitly declared to be 3 pixels
wide in 2022. Despite this, the reason you don’t usually see
borders is that the default style is none , which prevents them
from existing at all. (This lack of existence can also reset the
border-width value, but we’ll get to that in a little while.)

Finally, the default border color is currentcolor , the
foreground color of the element itself. If no color has been
declared for the border, it will be the same color as the text of
the element. If, on the other hand, an element has no text—let’s
say it has a table that contains only images—the border color

for that table will be the text color of its parent element
(because color is inherited). Thus, if a table has a border, and
the <body> is its parent, given this rule

body {color: purple;}

then, by default, the border around the table will be purple
(assuming the user agent doesn’t set a color for tables).

The CSS specification defines the background area of an
element to extend to the outside edge of the border, at least by
default. This is important because some borders are
intermittent—for example, dotted and dashed borders—so
the element’s background should appear in the spaces between
the visible portions of the border.

NOTE

Visible backgrounds can be prevented from extending into the border area by using
the property background-clip . See Chapter 8 for details.

Borders with Style

We’ll start with border styles, which are the most important
aspect of a border—not because they control the appearance of

the border (although they certainly do that) but because
without a style, there wouldn’t be any border at all.

BORDER-STYLE

Values [none | hidden | solid | dotted |
dashed | double | groove | ridge |
inset | outset]{1,4}

Initial
value

Not defined for shorthand properties

Applies to All elements

Computed
value:

See individual properties (border-top-
style , etc.)

Inherited No

Animatable No

CSS defines 10 distinct styles for the property border-style ,
including the default value of none . Figure 7-17 demonstrates
these styles. This property is not inherited.

The style value hidden is equivalent to none , except when
applied to tables, where it has a slightly different effect on
border-conflict resolution.

Figure 7-17. Border styles

As for double , it’s defined such that the width of the two lines
it creates, plus the width of the space between them, is equal to
the value of border-width (discussed in the next section).
However, the CSS specification doesn’t say whether one of the

lines should be thicker than the other, or if they should always
be the same width, or if the space should be thicker or thinner
than the lines. All of these options are left up to the user agent
to decide, and the author has no reliable way to influence the
final result.

All the borders shown in Figure 7-17 are based on a color
value of gray , which makes all of the visual effects easier to
see. The look of a border style is always based in some way on
the color of the border, although the exact method may vary
among user agents. The way browsers treat colors in the border
styles inset , outset , groove , and ridge can and does vary.
For example, Figure 7-18 illustrates two ways a browser could
render an inset border.

Figure 7-18. Two valid ways of rendering an inset

In this example, one browser takes the gray value for the
bottom and right sides, and a darker gray for the top and left;
the other makes the bottom and right lighter than gray and the
top and left darker, but not as dark as the first browser.

Now let’s define a border style for images that are inside any
unvisited hyperlink. We might make them outset , so they

have a “raised button” look, as depicted in Figure 7-19:

a:link img {border-style: outset;}

Figure 7-19. Applying an outset border to a hyperlinked image

By default, the color of the border is based on the element’s
value for color , which in this circumstance is likely to be
blue . This is because the image is contained with a hyperlink,
and the foreground color of hyperlinks is usually blue . If you
so desired, you could change that color to silver, like this:

a:link img {border-style: outset; color: silver;}

The border will now be based on the light-grayish silver ,
since that’s now the foreground color of the image—even
though the image doesn’t actually use it, it’s still passed on to
the border. We’ll talk about another way to change border
colors in “Border Colors”.

Remember, though, that the color-shifting in borders is up to
the user agent. Let’s go back to the blue outset border and
compare it in two browsers, as shown in Figure 7-20.

Again, notice that one browser shifts the colors to the lighter
and darker, while another just shifts the “shadowed” sides to be
darker than blue. This is why, if a specific set of colors is
desired, authors usually set the exact colors they want instead
of using a border style like outset and leaving the result up to
the browser. You’ll soon see just how to do that.

Figure 7-20. Two outset borders

Multiple styles

We can define more than one style for a given border. For
example:

p.aside {border-style: solid dashed dotted solid;}

The result is a paragraph with a solid top border, a dashed right
border, a dotted bottom border, and a solid left border.

Again we see the TRBL order of values, just as we saw in our
discussion of setting padding with multiple values. All the
same rules about value replication apply to border styles, just
as they did with padding. Thus, the following two statements
would have the same effect, as depicted in Figure 7-21:

p.new1 {border-style: solid none dashed;}
p.new2 {border-style: solid none dashed none;}

Figure 7-21. Equivalent style rules

Single-side styles

Sometimes you might want to set border styles for just one side
of an element box, rather than all four. That’s where the single-
side border style properties come in.

BORDER-TOP-STYLE, BORDER-RIGHT-STYLE, BORDER-BOTTOM-STYLE,
BORDER-LEFT-STYLE

Values none | hidden | dotted | dashed |
solid | double | groove | ridge |
inset | outset

Initial
value

none

Applies to All elements

Computed
value

As specified

Inherited No

Animatable No

Single-side border style properties are fairly self-explanatory. If
you want to change the style for the bottom border, for
example, you use border-bottom-style .

It’s not uncommon to see border used in conjunction with a
single-side property. Suppose you want to set a solid border on
three sides of a heading, but not have a left border, as shown in
Figure 7-22.

Figure 7-22. Removing the left border

You can accomplish this in two ways, each one equivalent to the
other:

h1 {border-style: solid solid solid none;}
/* the above is the same as the below */
h1 {border-style: solid; border-left-style: none;}

What’s important to remember is that if you’re going to use the
second approach, you have to place the single-side property
after the shorthand, as is usually the case with shorthand. This
is because border-style: solid is actually a declaration of
border-style: solid solid solid solid . If you put border-
style-left: none before the border-style declaration, the
shorthand’s value will override the single-side value of none .

Logical styles

If you want your borders to be styled in relation to where they
sit in the writing mode’s flow, rather than be pinned to physical
directions, the following are the border-styling properties for
you.

BORDER-BLOCK-START-STYLE, BORDER-BLOCK-END-STYLE, BORDER-
INLINE-START-STYLE, BORDER-INLINE-END-STYLE

Values none | hidden | dotted | dashed |
solid | double | groove | ridge |
inset | outset

Initial
value

none

Applies to All elements

Computed
value

As specified

Inherited No

Animatable No

BORDER-BLOCK-STYLE, BORDER-INLINE-STYLE

Values [none | hidden | dotted | dashed |
solid | double | groove | ridge |
inset | outset]{1,2}

Initial
value

none

Applies to All elements

Computed
value

As specified

Inherited No

Animatable No

As with padding-block and padding-inline , border-block-
style and border-inline-style each accept one or two
values. If two values are given, they are taken in the order of
start end. Given the following CSS, you’ll get a result like that
shown in Figure 7-23:

Figure 7-23. Logical border styles

You could get the same result in the following, more verbose
manner:

p {
 border-block-start-style: solid;
 border-block-end-style: double;
 border-inline-start-style: dashed;
 border-inline-end-style: dotted;
}

The only difference between the two patterns is the number of
characters you have to type, so really, which one you use is up
to you.

p {border-block-style: solid double; border-inline-st

Border Widths

Once you’ve assigned a border a style, the next step is to give it
some width, most easily by using the property border-width
or one of its cousin properties.

BORDER-WIDTH

Values [thin | medium | thick | < length >
]{1,4}

Initial value Not defined for shorthand properties

Applies to All elements

Computed
value

See individual properties (border-top-
style , etc.)

Inherited No

Animatable Yes

BORDER-TOP-WIDTH, BORDER-RIGHT-WIDTH, BORDER-BOTTOM-WIDTH,
BORDER-LEFT-WIDTH

Values thin | medium | thick | < length >

Initial
value

medium

Applies to All elements

Computed
value

An absolute length, or 0 if the style of
the border is none or hidden

Inherited No

Animatable Yes

Each of these properties is used to set the width on a specific
border side, just as with the margin properties.

NOTE

As of early 2023, border widths still cannot be given percentage values, which is
rather a shame.

There are four ways to assign width to a border: you can give it
a length value such as 4px or 0.1em , or use one of three
keywords. These keywords are thin , medium (the default
value), and thick . According to the specification, thick is 5px,
wider than medium ’s 3px, which is wider than the 1-px thin —
which makes sense.

Figure 7-24 illustrates these three keywords, and how they
relate to one another and to the content they surround.

Figure 7-24. The relation of border-width keywords to each other

Let’s suppose a paragraph has a background color and a border
style set:

p {background-color: silver;
 border-style: solid;}

The border’s width is, by default, medium . We can change that
easily enough:

p {background-color: silver;
 border-style: solid; border-width: thick;}

Border widths can be taken to fairly ridiculous extremes, such
as setting 1,000-pixel borders, though this is rarely necessary
(or advisable). It is important to remember that borders, and
therefore border-width values, participate in the box model,
impacting an element’s size.

It’s possible to set widths for individual sides, using two
familiar methods. The first is to use any of the specific
properties mentioned at the beginning of the section, such as
border-bottom-width . The other way is to use value
replication in border-width , following the usual TRBL pattern,
which is illustrated in Figure 7-25:

Figure 7-25. Value replication and uneven border widths

Logical border widths

h1 {border-style: dotted; border-width: thin 0px;}
p {border-style: solid; border-width: 15px 2px 8px 5p

That said, if you want to set border widths based on writing
direction, you can use the usual complement of logical
counterparts to go with the physical properties.

BORDER-BLOCK-WIDTH, BORDER-INLINE-WIDTH

Values [thin | medium | thick | < length >
]{1,2}

Initial value Not defined for shorthand properties

Applies to All elements

Computed
value

See individual properties (border-top-
style , etc.)

Inherited No

Animatable Yes

BORDER-BLOCK-START-WIDTH, BORDER-BLOCK-END-WIDTH, BORDER-
INLINE-START-WIDTH, BORDER-INLINE-END-WIDTH

Values thin | medium | thick | < length >

Initial
value

medium

Applies to All elements

Computed
value

An absolute length, or 0 if the style of
the border is none or hidden

Inherited No

Animatable Yes

As you saw with the border widths, these can either be set one
side at a time, or compressed into the border-block-width and
border-inline-width properties. The following two rules will
have exactly the same effect:

p {
 border-block-width: thick thin;
 border-inline-width: 1em 5px;
}
p {
 border-inline-start-width: 1em;
 border-inline-end-width: 5px;
 border-block-start-width: thick;
 border-block-end-width: thin;
}

No border at all

So far, we’ve talked only about using a visible border style such
as solid or outset . Let’s consider what happens when you set
border-style to none :

p {border-style: none; border-width: 20px;}

Even though the border’s width is 20px , the style is set to
none . In this case, not only does the border’s style vanish, so
does its width. The border just ceases to be. Why?

As you may remember, the terminology used earlier in the
chapter indicated that a border with a style of none does not

exist. Those words were chosen very carefully, because they
help explain what’s going on here. Since the border doesn’t
exist, it can’t have any width, so the width is automatically set
to 0 (zero), no matter what you try to define.

After all, if a drinking glass is empty, you can’t really describe it
as being half-full of nothing. You can discuss the depth of a
glass’s contents only if it has actual contents. In the same way,
talking about the width of a border makes sense only in the
context of a border that exists.

This is important to keep in mind because it’s a common
mistake to forget to declare a border style. This leads to all
kinds of developer frustration because, at first glance, the styles
appear correct. Given the following rule, though, no <h1>
element will have a border of any kind, let alone one that’s 20
pixels wide:

h1 {border-width: 20px;}

Since the default value of border-style is none , failure to
declare a style is exactly the same as declaring border-style:
none . Therefore, if you want a border to appear, you need to
declare a border style.

Border Colors

Compared to the other aspects of borders, setting the color is
pretty easy. CSS uses the physical shorthand property border-
color , which can accept up to four color values at one time.
(See “Color” for the valid value formats of colors.)

BORDER-COLOR

Values < color >{1,4}

Initial value Not defined for shorthand properties

Applies to All elements

Computed
value

See individual properties (border-top-
color , etc.)

Inherited No

Animatable Yes

If there are fewer than four values, value replication takes
effect as usual. So if you want <h1> elements to have thin gray
top and bottom borders with thick green side borders, and
medium gray borders around <p> elements, the following
styles will suffice, with the result shown in Figure 7-26:

Figure 7-26. Borders have many aspects

A single color value will be applied to all four sides, as with
the paragraph in the previous example. On the other hand, if
you supply four color values, you can get a different color on
each side. Any type of color value can be used, from named
colors to hexadecimal and HSL values:

h1 {border-style: solid; border-width: thin thick; bo
p {border-style: solid; border-color: gray;}

p {border-style: solid; border-width: thick;
 border-color: black hsl(0 0% 25% / 0.5) #808080 s

If you don’t declare a color, the default is currentcolor , which
is always the foreground color of the element. Thus, the
following declaration will be displayed as shown in Figure 7-27:

Figure 7-27. Border colors based on the element’s foreground and the value of the
border-color property

The result is that the first paragraph has a gray border, having
used the foreground color of the paragraph. The second
paragraph, however, has a black border because that color was
explicitly assigned using border-color .

Physical single-side border color properties exist as well. They
work in much the same way as the single-side properties for
border style and width. One way to give headings a solid black
border with a solid gray right border is as follows:

p.shade1 {border-style: solid; border-width: thick; c
p.shade2 {border-style: solid; border-width: thick; c
 border-color: black;}

BORDER-TOP-COLOR, BORDER-RIGHT-COLOR, BORDER-BOTTOM-COLOR,
BORDER-LEFT-COLOR

Values < color >

Initial
value

The element’s currentcolor

Applies to All elements

Computed
value

If no value is declared, use the
computed value of currentcolor ;
otherwise, as declared

Inherited No

Animatable Yes

Logical border colors

h1 {border-style: solid; border-color: black; border-

Just as with border styles and widths, logical properties shadow
the physical properties: two shorthand, four longhand.

BORDER-BLOCK-COLOR, BORDER-INLINE-COLOR

Values < color >{1,2}

Initial
value

Not defined for shorthand properties

Applies to All elements

Computed
value

See individual properties (border-bloc
k-start-color , etc.)

Inherited No

Animatable Yes

BORDER-BLOCK-START-COLOR, BORDER-BLOCK-END-COLOR, BORDER-
INLINE-START-COLOR, BORDER-INLINE-END-COLOR

Values < color >

Initial
value

The element’s currentcolor

Applies to All elements

Computed
value

If no value is declared, use the
computed value of currentcolor ;
otherwise, as declared

Inherited No

Animatable Yes

Thus, the following two rules would have the exact same
outcome:

p {
 border-block-color: black green;
 border-inline-color: orange blue;

}
p {
 border-inline-start-width: orange;
 border-inline-end-width: blue;
 border-block-start-width: black;
 border-block-end-width: green;
}

Transparent borders

As you may recall, if a border has no style, it has no width. In
some situations, however, you’ll want to create an invisible
border that still has width. This is where the border color value
transparent comes in.

Let’s say we want a set of three links to have borders that are
invisible by default, but look inset when the link is hovered. We
can accomplish this by making the borders transparent in the
nonhovered case:

This will have the effect shown in Figure 7-28.

a:link, a:visited {border-style: inset; border-width:
 border-color: transparent;}
a:hover {border-color: gray;}

In a sense, transparent lets you use borders as if they were
extra padding. Should you want to make them visible, the space
is reserved, preventing a reflow of content when visible
borders are added in.

Figure 7-28. Using transparent borders

Single-Side Shorthand Border Properties

It turns out that shorthand properties such as border-color
and border-style aren’t always as helpful as you’d think. For
example, you might want to apply a thick, gray, solid border to
all <h1> elements, but only along the bottom. If you limit
yourself to the properties we’ve discussed so far, you’ll have a
hard time applying such a border. Here are two examples:

h1 {border-bottom-width: thick; /* option #1 */
 border-bottom-style: solid;
 border-bottom-color: gray;}
h1 {border-width: 0 0 thick; /* option #2 */
 border-style: none none solid;
 border-color: gray;}

Neither is really convenient, given all the typing involved.
Fortunately, a better solution is available:

h1 {border-bottom: thick solid rgb(50% 40% 75%);}

This will apply the values to the bottom border alone, as shown
in Figure 7-29, leaving the others to their defaults. Since the
default border style is none , no borders appear on the other
three sides of the element.

Figure 7-29. Setting a bottom border with a shorthand property

As you may have guessed, CSS has four physical shorthand
properties and four logical shorthand properties.

BORDER-TOP, BORDER-RIGHT, BORDER-BOTTOM, BORDER-LEFT,
BORDER-BLOCK-START, BORDER-BLOCK-END, BORDER-INLINE-START,
BORDER-INLINE-END

Values [< border-width > ‖ < border-style > ‖
< border-color >]

Initial
value

Not defined for shorthand properties

Applies to All elements

Computed
value

See individual properties (border-widt
h , etc.)

Inherited No

Animatable See individual properties

We can use these properties to create some complex borders,
such as those shown in Figure 7-30:

h1 {border-left: 3px solid gray;
 border-right: green 0.25em dotted;

 border-top: thick goldenrod inset;
 border-bottom: double rgb(13% 33% 53%) 10px;}

Figure 7-30. Very complex borders

As you can see, the order of the actual values doesn’t really
matter. The following three rules will yield exactly the same
border effect:

h1 {border-bottom: 3px solid gray;}
h2 {border-bottom: solid gray 3px;}
h3 {border-bottom: 3px gray solid;}

You can also leave out some values and let their defaults kick in,
like this:

h3 {color: gray; border-bottom: 3px solid;}

Since no border color is declared, the default value
(currentcolor) is applied instead. Just remember that if you
leave out a border style, the default value of none will prevent
your border from existing.

By contrast, if you set only a style, you will still get a border.
Let’s say you want a top border style of dashed and you’re
willing to let the width default to medium and the color be the
same as the text of the element itself. All you need in such a
case is the following markup (shown in Figure 7-31):

p.roof {border-top: dashed;}

Figure 7-31. Dashing across the top of an element

Also note that since each of these border-side properties applies
only to a specific side, there isn’t any possibility of value
replication—it wouldn’t make any sense. There can be only one
of each type of value: that is, only one width value, only one
color value, and only one border style. So don’t try to declare
more than one value type:

h3 {border-top: thin thick solid purple;} /* two widt

This entire statement is invalid, and a user agent will ignore it.

Global Borders

Now, we come to the shortest shorthand border property of all:
border , which affects all four sides of the element equally.

BORDER

Values [< border-width > ‖ < border-style > ‖
< border-color >]

Initial
value

Refer to individual properties

Applies to All elements

Computed
value

As specified

Inherited No

Animatable See individual properties

This property has the advantage of being very compact,
although that brevity introduces a few limitations. Before we
worry about that, let’s see how border works. If you want all
<h1> elements to have a thick silver border, the following
declaration would display as shown in Figure 7-32:

h1 {border: thick silver solid;}

Figure 7-32. A really short border declaration

The drawback with border is that you can define only a single
global style, width, and color. The values you supply for
border will apply to all four sides equally. If you want the
borders to be different for a single side, use some of the other
border properties. Then again, it’s possible to turn the cascade
to your advantage:

h1 {border: thick goldenrod solid;
 border-left-width: 20px;}

The second rule overrides the width value for the left border
assigned by the first rule, thus replacing thick with 20px , as

you can see in Figure 7-33.

Figure 7-33. Using the cascade to your advantage

You still need to take the usual precautions with shorthand
properties: if you omit a value, the default will be filled in
automatically. This can have unintended effects. Consider the
following:

h4 {border: medium green;}

Here, we’ve failed to assign a border-style , which means that
the default value of none will be used, and thus no <h4>
elements will have any border at all.

Borders and Inline Elements

Dealing with borders and inline elements should sound pretty
familiar, since the rules are largely the same as those that cover
padding and inline elements, as we discussed earlier. Still, we’ll
briefly touch on the topic again.

First, no matter how thick you make your borders on inline
elements, the line height of the element won’t change. Let’s set

block-start and block-end borders on boldfaced text:

As seen before, adding borders to the block start and end will
have absolutely no effect on the line height. However, since
borders are visible, they’ll be drawn—as illustrated in Figure 7-
34.

Figure 7-34. Borders on inline nonreplaced elements

The borders have to go somewhere. That’s where they went.
They get painted over the preceding line of text and under the
next line of text if need be.

Again, all of this is true only for the block-start and -end sides of
inline elements; the inline sides are a different story. If you
apply a border along an inline side, not only will they be visible,
but they’ll displace the text around them, as you can see in
Figure 7-35:

strong {border-block-start: 10px solid hsl(216,50%,50
 border-block-end: 5px solid #AEA010;}

strong {border-inline-start: 25px double hsl(216 50%

Figure 7-35. Inline nonreplaced elements with inline-start borders

With borders, just as with padding, the browser’s calculations
for line breaking are not directly affected by any box properties
set for inline nonreplaced elements. The only effect is that the
space taken up by the borders may shift portions of the line
over a bit, which may in turn change which word is at the end
of the line.

NOTE

The way borders are (or aren’t) drawn at the ends of each line box can be altered
with the property box-decoration-break . See Chapter 6 for more details.

With replaced elements such as images, on the other hand, the
effects are very much like those we saw with padding: a border
will affect the height of the lines of text, in addition to shifting
text around to the sides. Thus, assuming the following styles, we
get a result like that seen in Figure 7-36:

img {border: 1em solid rgb(216,108,54);}

Figure 7-36. Borders on inline replaced elements

Rounding Border Corners

We can soften the square corners of element borders—and
actually, the entire background area—by using the property
border-radius to define a rounding distance (or two). In this
particular case, we’re going to start with the shorthand physical
property and then mention the individual physical properties at
the end of the section, after which we’ll check out the logical
equivalents.

BORDER-RADIUS

Values [< length > | < percentage >]{1,4} [/ [
< length > | < percentage >]{1,4}]?

Initial
value

0

Applies to All elements, except internal table
elements

Computed
value

Two absolute < length > or < percenta

ge > values

Percentages Calculated with respect to the relevant
dimension of the border box

Inherited No

Animatable Yes

The radius of a rounded border corner is the radius of a circle
or ellipse, one-quarter of which is used to define the path of the
border’s rounding. We’ll start with circles, because they’re a
little easier to understand.

Suppose we want to round the corner of an element so that
each corner is pretty obviously rounded. Here’s one way to do
that:

#example {border-radius: 2em;}

That will have the result shown in Figure 7-37, where circle
diagrams have been added to two of the corners. (The same
rounding is done in all four corners.)

Figure 7-37. How border radii are calculated

Focus on the top-left corner. There, the border begins to curve 2
em below the top of the border, and 2 em to the right of the left
side of the border. The curve follows along the outside of the 2-
em-radius circle.

If we were to draw a box that contained just the part of the top-
left corner that is curved, that box would be 2 em wide and 2
em tall. The same would happen in the bottom- right corner.

With single length values, we get circular corner-rounding
shapes. If a single percentage is used, the results are far more
oval. For example, consider the following, illustrated in
Figure 7-38:

#example {border-radius: 33%;}

Figure 7-38. How percentage border radii are calculated

Again, let’s focus on the top-left corner. On the left edge, the
border curve begins at the point 33% of the element box’s
height down from the top. In other words, if the element box is
100 pixels tall from the top border edge to the bottom border
edge, the curve begins 33 pixels from the top of the element
box.

Similarly, on the top edge, the curve begins at the point 33% of
the element box’s width from the left edge. So if the box is (say)
600 pixels wide, the curve begins 198 pixels from the left edge,
because 600 × 0.33 = 198.

The shape of the curve between those two points is identical to
the top-left edge of an ellipse whose horizontal radius is 198
pixels long, and whose vertical radius is 33 pixels long. (This is
the same as an ellipse with a horizontal axis of 396 pixels and a
vertical axis of 66 pixels.)

The same thing is done in each corner, leading to a set of corner
shapes that mirror each other, rather than being identical.

Supplying a single length or percentage value for border-
radius means all four corners will have the same rounding
shape. As you may have spotted in the syntax definition, you
can supply border-radius with up to four values. Because

border-radius is a physical property, the values go in
clockwise order from top left to bottom left, like so:

#example {border-radius:
 1em /* Top Left */
 2em /* Top Right */
 3em /* Bottom Right */
 4em; /* Bottom Left */
}

This TL-TR-BR-BL can be remembered with the mnemonic
“TiLTeR BuRBLe,” if you’re inclined to such things. The
important thing is that the rounding starts in the top left and
works its way clockwise from there.

If a value is omitted, the missing values are filled in using a
pattern like that used for padding , and so on. If there are three
values, the fourth is copied from the second. If there are two,
the third is copied from the first, and the fourth from the
second. If there’s just one, the missing three are copied from the
first. Thus, the following two rules are identical and will have
the result shown in Figure 7-39:

#example {border-radius: 1em 2em 3em 2em;}
#example {border-radius: 1em 2em 3em; /* BL copied fr

Figure 7-39. A variety of rounded corners

There’s an important aspect to Figure 7-39: the rounding of the
content area’s background along with the rest of the
background. See how the silver curves, and the period sits
outside it? That’s the expected behavior when the content area’s
background is different from the padding background (you’ll
see how to do that in Chapter 8) and the curving of a corner is
large enough to affect the boundary between content and
padding.

This is because while border-radius changes the way the
border and background(s) of an element are drawn, it does not
change the shape of the element box. Consider the situation
depicted in Figure 7-40.

Figure 7-40. Elements with rounded corners are still boxes

Here, we have an element that’s been floated to the left, and
other text flowing past it. The border corners are completely
round, using border-radius: 50% on a square element. Some
of its text is sticking out past the rounded corners. Beyond the
rounded corners, the page background is visible where the
corners would have been, were they not rounded.

So at a glance, you might assume that the element has been
reshaped from box to circle (technically to ellipse), and the text
just happens to stick out of it. But look at the text flowing past
the float. It doesn’t flow into the area the rounded corners “left
behind.” That’s because the corners of the floated element are
still there. They’re just not visibly filled by border and
background, thanks to border-radius .

Rounded corner clamping

What happens if a radius value is so large that it would spill
into other corners? For example, what happens with border-
radius: 100% ? Or border-radius: 9999px on an element
that’s nowhere near 10,000 pixels tall or wide?

In any such case, the rounding is “clamped” to the maximum it
can be for a given quadrant of the element. Making sure that
buttons always look like round-ended-pill shapes can be done
like so:

.button {border-radius: 9999em;}

That will just cap off the shortest ends of the element (usually
the left and right sides, but no guarantees) to be smooth
semicircular caps.

More complex corner shaping

Now that you’ve seen how assigning a single radius value to a
corner shapes it, let’s talk about what happens when corners
get two values—and, more importantly, how they get those
values.

For example, suppose we want corners to be rounded by 3
character units horizontally, and 1 character unit vertically. We

can’t just use border-radius: 3ch 1ch because that will
round the top-left and bottom-right corners by 3ch , and the
other two corners by 1ch each. Inserting a forward slash will
get us what we’re after:

#example {border-radius: 3ch / 1ch;}

This is functionally equivalent to saying the following:

The way this syntax works, the horizontal radius of each
corner’s rounding ellipse is given, and then after the slash, the
vertical radius of each corner is given. In both cases, the values
are in TiLTeR BuRBLe order.

Here’s a simpler example, illustrated in Figure 7-41:

#example {border-radius: 1em / 2em;}

#example {border-radius: 3ch 3ch 3ch 3ch / 1ch 1ch 1c

Figure 7-41. Elliptical corner rounding

Each corner is rounded by 1 em along the horizontal axis, and 2
em along the vertical axis, in the manner you saw in detail in
the previous section.

Here’s a slightly more complex version, providing two lengths
to either side of the slash, as depicted in Figure 7-42:

#example {border-radius: 2.5em 2em / 1.5em 3em;}

Figure 7-42. Different elliptical rounding calculations

In this case, the top-left and bottom-right corners are curved 2.5
em along the horizontal axis, and 1.5 em along the vertical axis.
The top-right and bottom-left corners, on the other hand, are
curved 2 em along the horizontal and 3 along the vertical.

Remember, you use horizontal values before the slash, and
vertical after. If we’d wanted to make the top-left and bottom-
right corners rounded 1 em horizontally and 1 em vertically (a
circular rounding), the values would have been written like so:

#example {border-radius: 1em 2em / 1em 3em;}

Percentages are also fair game here. If we want to round the
corners of an element so that the sides are fully rounded but

extend only 2 character units into the element horizontally,
we’d write it like so:

#example {border-radius: 2ch / 50%;}

Corner blending

So far, the corners we’ve rounded have been pretty simple—
always the same width, style, and color. That won’t always be
the case, though. What happens if a thick, red, solid border is
rounded into a thin, dashed green border?

The specification directs that the rounding cause as smooth a
blend as possible when it comes to the width. When rounding
from a thicker border to a thinner border, the width of the
border should gradually shrink throughout the curve of the
rounded corner.

When it comes to differing styles and colors, the specification is
less clear about how this should be accomplished. Consider the
various samples shown in Figure 7-43.

Figure 7-43. Rounded corners up close

The first is a simple rounded corner, with no variation in color,
width, or style. The second shows rounding from one thickness
to another. You can visualize this second case as defining a
circular shape on the outer edge and an elliptical shape on the
inner edge.

In the third case, the color and thickness stay the same, but the
corner curves from a solid style on the left to a double-line style
on top. The transition between styles is abrupt and occurs at the
halfway point in the curve.

The fourth example shows a transition from a thick solid to a
thinner double border. Note the placement of the transition,
which is not at the halfway point. It is instead determined by
taking the ratio of the two borders’ thicknesses and using that
to find the transition point. Let’s assume the left border is 10
pixels thick, and the top border 5 pixels thick. By summing the
two to get 15 pixels, the left border gets 2/3 (10/15), and the top
border 1/3 (5/15). Thus, the left border’s style is used in two-
thirds of the curve, and the top border’s style in one-third the
curve. The width is still smoothly changed over the length of the
curve.

The fifth and sixth examples show what happens with color
added to the mix. Effectively, the color stays linked to the style.

This hard transition between colors is common behavior among
browsers as of late 2022, but it may not always be so. The
specification explicitly states that user agents may blend from
one border color to another by using a linear gradient. Perhaps
one day they will, but for now, the changeover is sharp.

The seventh example in Figure 7-43 shows a case we haven’t
really discussed: “What happens if the borders are equal to or
thicker than the value of border-radius ?” In this case, the
outside of the corner is rounded, but the inside is not, as shown.
This would occur with code like the following:

#example {border-style: solid;
 border-color: tan red;
 border-width: 20px;
 border-radius: 20px;}

Individual rounding properties

After that tour of border-radius , you might be wondering
whether you can just round one corner at a time. Yes, you can!
First, let’s consider the physical corners, which are what
border-radius brings together.

BORDER-TOP-LEFT-RADIUS, BORDER-TOP-RIGHT-RADIUS, BORDER-
BOTTOM-RIGHT-RADIUS, BORDER-BOTTOM-LEFT-RADIUS

Values [< length > | < percentage >]{1,2}

Initial
value

0

Applies to All elements, except internal table
elements

Computed
value

Two absolute < length > or < percenta

ge > values

Percentages Calculated with respect to the relevant
dimension of the border box

Inherited No

Animatable Yes

Each property sets the curve shape for its corner and doesn’t
affect the others. The fun part is that if you supply two values,

one for the horizontal radius and one for the vertical radius,
there is no slash separating them. Really. This means that the
following two rules are functionally equivalent:

#example {border-radius:
 1.5em 2vw 20% 0.67ch / 2rem 1.2vmin 1cm 10%;
 }
#example {
 border-top-left-radius: 1.5em 2rem;
 border-top-right-radius: 2vw 1.2vmin;
 border-bottom-right-radius: 20% 1cm;
 border-bottom-left-radius: 0.67ch 10%;
}

The individual corner border radius properties are mostly
useful for setting a common corner rounding and then
overriding just one. Thus, a comic-book-like word balloon shape
could be done as follows, with the result shown in Figure 7-44:

.tabs {border-radius: 2em;
 border-bottom-left-radius: 0;}

Figure 7-44. Links shaped like word balloons

In addition to the physical corners, CSS also has logical corners.

BORDER-START-START-RADIUS, BORDER-START-END-RADIUS, BORDER-
END-START-RADIUS, BORDER-END-END-RADIUS

Values [< length > | < percentage >]{1,2}

Initial
value

0

Applies to All elements, except internal table
elements

Computed
value

Two absolute < length > or < percenta

ge > values

Percentages Calculated with respect to the relevant
dimension of the border box

Inherited No

Animatable Yes

You might be thinking, “Hold on, that’s not what the other
logical properties looked like!” And that’s true: these are a fair
bit different. That’s because if we had a property like border-
block-start-radius , it would apply to both corners along the
block-start edge. But if you also had border-inline-start-
radius , it would apply to both corners on the inline-start edge,
one of which is also on the block-start edge.

So the way the logical border radius properties work is they’re
labeled in the pattern border-block-inline-radius. Thus, border-
start-end-radius sets the radius of the corner that’s at the
junction of the block-start and inline-end edges. Take the
following example, which is illustrated in Figure 7-45:

p {border-start-end-radius: 2em;}

Figure 7-45. Rounding the block-start, inline-end corner

Remember that you can use the same space-separated value
pattern for defining an elliptical corner radius, as shown earlier
in the section for border-top-left-radius and friends.
However, the value is still in the pattern of horizontal radius,
then vertical radius, instead of being relative to the block and
inline flow directions. This seems like a bit of an oversight in
CSS, but it is how things are as of late 2022.

One thing to keep in mind is that, as you’ve seen, corner
shaping affects the background and (potentially) the padding
and content areas of the element, but not any image borders.
Wait a minute, image borders? What are those? Glad you asked!

Image Borders

The various border styles are nice enough but are still fairly
limited. What if you want to create a really complicated,
visually rich border around some of your elements? Back in the
day, we’d create complex multirow tables to achieve that sort of
effect, but thanks to image borders, there’s almost no limit to
the kinds of borders you can create.

Loading and slicing a border image

If you’re going to use an image to create the borders of an
image, you’ll need to define it or fetch it from somewhere. The
border-image-source property is how you tell the browser
where to look for it.

BORDER-IMAGE-SOURCE

Values none | < image >

Initial
value

none

Applies to All elements, except internal table
elements when border-collapse is co
llapse

Computed
value

none , or the image with its URL made
absolute

Inherited No

Animatable No

Let’s load an image of a single circle to be used as the border
image, using the following styles, whose result is shown in
Figure 7-46:

border: 25px solid;
border-image-source: url(i/circle.png);

Figure 7-46. Defining a border image’s source

There are a few points to note here. First, without the border:
25px solid declaration, there would have been no border at
all. Remember, if the value of border-style is none , the width
of the border is 0. So to make a border image appear, you need
to have a border, which means declaring a border-style value
other than none or hidden . It doesn’t have to be solid .
Second, the value of border-width determines the actual
width of the border images. Without a declared value, it will

default to medium , which is 3 pixels. If the border image fails to
load, the border is the border-color value.

OK, so we set up a border area 25 pixels wide and then applied
an image to it. That gave us the same circle in each of the four
corners. But why did it appear only there and not along the
sides? The answer is found in the way the physical property
border-image-slice is defined.

BORDER-IMAGE-SLICE

Values [< number > | < percentage >]{1,4} &&
fill ?

Initial
value

100%

Applies to All elements, except internal table
elements when border-collapse is co
llapse

Percentages Refer to size of the border image

Computed
value

As four values, each a number or
percentage, and optionally the fill
keyword

Inherited No

Animatable < number >, < percentage >

What border-image-slice does is establish a set of four slice-
lines that are laid over the image, and where they fall
determines how the image will be sliced up for use in an image
border. The property takes up to four values, defining (in order)
offsets from the top, right, bottom, and left edges. Yep, there’s
that TRBL pattern again, which pegs border-image-slice as a
physical property. And value replication is also in effect here, so
a single value will be used for all four offsets. Figure 7-47 shows
a small sampling of offset patterns, all based on percentages.

Figure 7-47. Various slicing patterns

NOTE

As of late 2022, no logical-property equivalent exists for border-image-slice . If the
proposed logical keyword, or something equivalent, is ever adopted and
implemented, using border-image-slice in a writing-flow-relative fashion will be
possible. There are also no single-side properties; that is, there is no such thing as
border-left-image-slice .

Now let’s take an image that has a 3 × 3 grid of circles, each a
different color, and slice it up for use in an image border.
Figure 7-48 shows a single copy of this image and the resulting
image border:

border: 25px solid;
border-image-source: url(i/circles.png);
border-image-slice: 33.33%;

Yikes! That’s…interesting. The stretchiness of the sides is the
default behavior, and it makes a fair amount of sense, as you’ll
see (and find out how to change) in “Altering the repeat
pattern”. Beyond that effect, you can see in Figure 7-48 that the
slice-lines fall right between the circles, because the circles are
all the same size and so one-third offsets place the slice-lines
right between them. The corner circles go into the corners of
the border, and each side’s circle is stretched out to fill its side.

Figure 7-48. An all-around image border

(“Wait, what happened to the gray circle in the middle?” you
may wonder. It’s an interesting question! For now, just accept it
as one of life’s little mysteries, albeit a mystery that will be
explained later in this section.)

All right, so why did our first border image example, back at the
beginning of the section, place images only in the corners of the
border area instead of all the way around it?

Anytime the slice-lines meet or go past each other, the corner
images are created but the side images are made empty. This is
easiest to visualize with border-image-slice: 50% . In that

case, the image is sliced into four quadrants, one for each
corner, with nothing remaining for the sides.

However, any value above 50% has the same basic result, even
though the image isn’t sliced into neat quadrants anymore.
Thus, for border-image-slice: 100% —which is the default
value—each corner gets the entire image, and the sides are left
empty. A few examples of this effect are shown in Figure 7-49.

That’s why we had to have a 3 × 3 grid of circles when we
wanted to go all the way around the border area, corners, and
sides.

Figure 7-49. Various patterns that prevent side slices

In addition to using percentage offsets, we also can define the
offsets by using a number. Not a length, as you might assume,

but a bare number. In raster images like PNGs or JPEGs, the
number corresponds to pixels in the image on a 1:1 basis. If you
have a raster image and want to define 25-pixel offsets for the
slice-lines, this is how to do that, as illustrated in Figure 7-50:

border: 25px solid;
border-image-source: url(i/circles.png);
border-image-slice: 25;

Figure 7-50. Number slicing

Yikes again! What happened there is that the raster image is
150 × 150 pixels, so each circle is 50 × 50 pixels. Our offsets,
though, were only 25 , as in 25 pixels. So the slice-lines were
placed on the image as shown in Figure 7-51.

This begins to give us an idea of why the default behavior for
the side images is to stretch them. Note how the corners flow
into the sides, visually speaking.

If you change the image to one that has a different size,
numeric offsets don’t adapt to the new size, whereas
percentages do. The interesting thing about number offsets is
that they work just as well on nonraster images, like SVGs, as
they do on rasters. So do percentages. In general, it’s probably
best to use percentages for your slicing offsets whenever
possible, even if that means doing a little math to get exactly the
right percentages.

Figure 7-51. Slice-lines at 25 pixels

Now let’s address the curious case of the image’s center. In the
previous examples, a circle is at the center of the 3 × 3 grid of
circles, but it disappears when the image is applied to the
border. In the preceding example, in fact, not only the middle
circle was missing, but the entire center slice. This dropping of
the center slice is the default behavior for image slicing, but you
can override it by adding a fill keyword to the end of your
border-image-slice value. If we add fill to the previous
example, as shown here, we’ll get the result shown in Figure 7-
52:

border: 25px solid;
border-image-source: url(i/circles.png);
border-image-slice: 25 fill;

There’s the center slice, filling up the element’s background
area. In fact, it’s drawn over the top of whatever background
the element might have, including any background images or
color, so you can use it as a substitute for the background or as
an addition to it.

Figure 7-52. Using the fill slice

You may have noticed that all our border areas have been a
consistent width (usually 25px). This doesn’t have to be the
case, regardless of how the border image is actually sliced up.
Suppose we take the circles border image we’ve been using,

slice it by thirds as we have, but make the border widths
different:

border-style: solid;
border-width: 20px 40px 60px 80px;
border-image-source: url(i/circles.png);
border-image-slice: 50;

This would have a result like that shown in Figure 7-53. Even
though the slice-lines are intrinsically set to 50 pixels (via 50),
the resulting slices are resized to fit into the border areas they
occupy.

Figure 7-53. Uneven border image widths

Altering the image widths

Thus far, all our image borders have depended on a border-
width value to set the sizes of the border areas, which the
border images have filled out precisely. That is, if the top border
side is 25 pixels tall, the border image that fills it will be 25

pixels tall. If you want to make the images a different size than
the area defined by border-width , you can use the physical
property border-image-width .

BORDER-IMAGE-WIDTH

Values [< length > | < percentage > | < numbe

r > | auto]{1,4}

Initial
value

1

Applies to All elements, except table elements
when border-collapse is collapse

Percentages Relative to width/height of the entire
border image area—that is, the outer
edges of the border box

Computed
value

Four values: each a percentage,
number, auto keyword, or < length >
made absolute

Inherited No

Animatable Yes

Note Values can never be negative

The basic fact to understand about border-image-width is that
it’s very similar to border-image-slice , except that border-
image-width slices up the border box itself.

To understand what this means, let’s start with length values.
We’ll set up 1-em border widths like so:

border-image-width: 1em;

That pushes slice-lines 1 em inward from each of the border
area’s sides, as shown in Figure 7-54.

Figure 7-54. Placing slice-lines for the border image’s width

So the top and bottom border areas are 1 em tall, the right and
left border areas are 1 em wide, and each corner is 1 em tall
and wide. Given that, the border images created with border-
image-slice are filled into those border areas in the manner
prescribed by border-image-repeat (which we’ll get to
shortly). Therefore, in Figure 7-55, we could have had a
border-width of 0 and still made the border images show up,
by using border-image-width . This is useful if you want to
have a solid border as a fallback in case the border image
doesn’t load, but don’t want to make it as thick as the image
border would be. You could use something like this:

border: 2px solid;
border-image-source: url(stars.gif);
border-image-width: 12px;
border-image-slice: 33.3333%;
padding: 12px;

Figure 7-55. A border with and without its border image

This allows for a 12-pixel star border to be replaced with a 2-
pixel solid border if border images aren’t available. Remember
that if the image border does load, you’ll need to leave enough
space for it to show up without overlapping the content (by
default, that is). You’ll see how to mitigate this problem in the
next section.

Now that we’ve established how the width slice-lines are
placed, the way percentage values are handled should make
sense, as long as you keep in mind that the offsets are with
respect to the overall border box, not each border side. For
example, consider the following declaration, illustrated in
Figure 7-56:

border-image-width: 33%;

Figure 7-56. Placement of percentage slice-lines

As with length units, the lines are offset from their respective
sides of the border box. The distance they travel is with respect
to the border box. A common mistake is to assume that a
percentage value is with respect to the border area defined by
border-width ; that is, given a border-width value of 30px ,
the result of border-image-width: 33.333%; will be 10 pixels.
But no! It’s one-third the overall border box along that axis.

One way in which the behavior of border-image-width differs
from border-image-slice is in how it handles slices passing
each other, such as in this situation:

border-image-width: 75%;

As you may recall, for border-image-slice , if the slices pass
each other, then the side areas (top, right, bottom, and/or left)
are made empty. With border-image-width , the values are
proportionally reduced until they no longer pass each other. So,
given the preceding value of 75% , the browser will treat that as
if it were 50% . Similarly, the following two declarations will
have equivalent results:

border-image-width: 25% 80% 25% 40%;
border-image-width: 25% 66.6667% 25% 33.3333%;

Note that in both declarations, the right offset is twice the left
value. That’s what is meant by proportionally reducing the
values until they don’t overlap: in other words, until they no
longer add up to more than 100%. The same would be done
with top and bottom, were they to overlap.

When it comes to number values for border-image-width ,
things get even more interesting. If you set border-image-
width: 1 , the border image areas will be determined by the
value of border-width . That’s the default behavior. Thus, the
following two declarations will have the same result:

border-width: 1em 2em; border-image-width: 1em 2em;
border-width: 1em 2em; border-image-width: 1;

You can increase or reduce the number values to get a certain
multiple of the border area that border-width defines.
Figure 7-57 shows a few examples.

In each case, the number has been multiplied by the border
area’s width or height, and the resulting value indicates the
inward distance that the offset is placed from the relevant side.
Thus, for an element that has border-top-width set to 3 pixels,
border-image-width: 10 will create a 30-pixel offset from the
top of the element. Change border-image-width to 0.333 , and
the top offset will be a lone pixel.

Figure 7-57. Various numeric border image widths

The last value, auto , is interesting in that its resulting values
depend on the state of two other properties. If border-image-
source has been explicitly defined by the author, border-

image-width: auto uses the values that result from border-
image-slice . Otherwise, it uses the values that result from
border-width . These two declarations will have the same
result:

Note that you can mix up the value types for border-image-
width . The following are all valid, and would be quite
interesting to try out in live web pages:

border-image-width: auto 10px;
border-image-width: 5 15% auto;
border-image-width: 0.42em 13% 3.14 auto;

NOTE

As with border-image-slice , no logical-property equivalent exists for border-
image-width as of late 2022.

Creating a border overhang

Well, now that we can define these great big image slices and
widths, how do we keep them from overlapping the content?

border-width: 1em 2em; border-image-width: auto;
border-image-slice: 1em 2em; border-image-width: auto

We could add lots of padding, but that would leave huge
amounts of space if the image fails to load, or if the browser
doesn’t support border images. Handling such scenarios is what
the physical property border-image-outset is built to manage.

BORDER-IMAGE-OUTSET

Values [< length > | < number >]{1,4}

Initial
value

0

Applies to All elements, except internal table
elements when border-collapse is co
llapse

Percentages N/A

Computed
value

Four values, each a number or < lengt

h > made absolute

Inherited No

Animatable Yes

Note Values can never be negative

Regardless of whether you use a length or a number, border-
image-outset pushes the border image area outward, beyond
the border box, in a manner similar to the way slice-lines are
offset. The difference is that here, the offsets are outward, not
inward. Just as with border-image-width , number values for
border-image-outset are a multiple of the width defined by
border-width —not border-image-width .

NOTE

As with border-image-slice and border-image-width , no logical-property
equivalent exists for border-image-outset as of late 2022.

To see how this could be helpful, imagine that we want to use a
border image but have a fallback of a thin solid border if the
image isn’t available. We might start out like this:

border: 2px solid;
padding: 0.5em;
border-image-slice: 10;
border-image-width: 1;

In this case, we have half an em of padding; at default browser
settings, that will be about 8 pixels. That plus the 2-pixel solid
border make a distance of 10 pixels from the content edge to

the outer border edge. So if the border image is available and
rendered, it will fill not only the border area, but also the
padding, bringing it right up against the content.

We could increase the padding to account for this, but then if
the image doesn’t appear, we’ll have a lot of excess padding
between the content and the thin solid border. Instead, let’s
push the border image outward, like so:

border: 2px solid;
padding: 0.5em;
border-image-slice: 10;
border-image-width: 1;
border-image-outset: 8px;

This is illustrated in Figure 7-58, and is compared to having no
outset nor border image.

Figure 7-58. Creating an image border overhang

In the first case, the image border has been pushed out far
enough that rather than overlapping the padding area, the
images actually overlap the margin area! We can also split the

difference so that the image border is roughly centered on the
border area, like this:

What you have to watch out for is pulling the image border too
far outward, to the point that it overlaps other content or gets
clipped off by the edges of the browser window (or both). If it
does so, the image border will be painted between the previous
element’s content and background, hiding the background, but
will be partially obscured if subsequent content has a
background or border.

Altering the repeat pattern

So far, you’ve seen a lot of stretched-out images along the sides
of our examples. The stretching can be handy in some
situations but a real eyesore in others. With the physical
property border-image-repeat , you can change the way those
sides are handled.

border: 2px solid;
padding: 0.5em;
border-image-slice: 10;
border-image-width: 1;
border-image-outset: 2; /* twice the `border-width`

BORDER-IMAGE-REPEAT

Values [stretch | repeat | round | space]
{1,2}

Initial
value

stretch

Applies to All elements, except internal table
elements when border-collapse is co
llapse

Computed
value

Two keywords, one for each axis

Inherited No

Animatable No

NOTE

As with the previous border image properties, no logical-property equivalent exists
for border-image-repeat as of late 2022.

Let’s see these values in action and then discuss each in turn.
You’ve already seen stretch , so the effect is familiar. Each side
gets a single image, stretched to match the height and width of
the border side area the image is filling.

The repeat value tiles the image until it fills up all the space in
its border side area. The exact arrangement is to center the
image in its side box, and then tile copies of the image outward
from that point, until the border side area is filled. This can lead
to some of the repeated images being clipped at the sides of the
border area, as seen in Figure 7-59.

Figure 7-59. Various image-repeat patterns

The round value is a little different. With this value, the
browser divides the length of the border side area by the size of
the image being repeated inside it. It then rounds to the nearest

whole number and repeats that number of images. In addition,
it stretches or squashes the images so that they just touch each
other as they repeat.

As an example, suppose the top border side area is 420 pixels
wide, and the image being tiled is 50 pixels wide. Dividing 420
by 50 results in 8.4, so that’s rounded to 8. Thus, eight images
are tiled. However, each is stretched to be 52.5 pixels wide (420
÷ 8 = 52.5). Similarly, if the right border side area is 280 pixels
tall, a 50-pixel-tall image will be tiled six times (280 ÷ 50 = 5.6,
rounded to 6) and each image will be squashed to 46.6667 pixels
tall (280 ÷ 6 = 46.6667). If you look closely at Figure 7-59, you
can see the top and bottom circles are stretched a bit, whereas
the right and left circles show some squashing. The last value,
space , starts out similar to round , in that the border side
area’s length is divided by the size of the tiled image and then
rounded. The differences are that the resulting number is
always rounded down, and images are not distorted but instead
distributed evenly throughout the border area.

Thus, given a top border side area 420 pixels wide and a 50-
pixel-wide image to be tiled, there will still be 8 images to
repeat (8.4 rounded down is 8). The images will take up 400
pixels of space, leaving 20 pixels. That 20 pixels is divided by 8,
which is 2.5 pixels. Half of that is put to each side of each image,

meaning each image gets 1.25 pixels of space to either side. That
puts 2.5 pixels of space between each image, and 1.25 pixels of
space before the first and after the last image (see Figure 7-60
for examples of space repeating).

Figure 7-60. A variety of space repetitions

Shorthand border image

The single shorthand physical property for border images is
(unsurprisingly enough) border-image . The way it’s written is
a little unusual, but it offers a lot of power without a lot of
typing.

BORDER-IMAGE

Values < border-image-source > ‖ < border-im

age-slice >
[/ < border-image-width > | / < border-

image-width >? /
< border-image-outset >]? ‖ < border-

image-repeat >

Initial
value

See individual properties

Applies to See individual properties

Computed
value

See individual properties

Inherited No

Animatable See individual properties

This property value has, it must be admitted, a somewhat
unusual syntax. To get all the various properties for slices and
widths and offsets, and be able to tell which is which, the
decision was made to separate them by forward-slash symbols
(/) and require them to be listed in a specific order: slice, then
width, then offset. The image source and repeat values can go
anywhere outside of that three-value chain. Therefore, the
following rules are equivalent:

The shorthand clearly means less typing, but also less clarity at
a glance.

As is usually the case with shorthand properties, leaving out
any of the individual pieces means that the defaults will be

.example {
 border-image-source: url(eagles.png);
 border-image-slice: 40% 30% 20% fill;
 border-image-width: 10px 7px;
 border-image-outset: 5px;
 border-image-repeat: space;
}
.example {border-image: url(eagles.png) 40% 30% 20% f
.example {border-image: url(eagles.png) space 40% 30%
.example {border-image: space 40% 30% 20% fill / 10px

supplied. For example, if we supply just an image source, the
rest of the properties will be set to their default values. Thus,
the following two declarations will have exactly the same effect:

border-image: url(orbit.svg);
border-image: url(orbit.svg) stretch 100% / 1 / 0;

Some examples

Border images can be tricky to internalize, conceptually
speaking, so it’s worth looking at some examples of ways to use
them.

First, let’s set up a border with scooped-out corners and a raised
appearance, like a plaque, with a fallback to a simple outset
border of similar colors. We might use something like these
styles and an image, which is shown in Figure 7-61, along with
both the final result and the fallback result:

#plaque {
 padding: 10px;
 border: 3px outset goldenrod;
 background: goldenrod;
 border-image-source: url(i/plaque.png);
 border-image-repeat: stretch;
 border-image-slice: 20 fill;

 border-image-width: 12px;
 border-image-outset: 9px;
}

Figure 7-61. A simple plaque effect and its older-browser fallback

Notice that the side slices are perfectly set up to be stretched—
everything about them is just repeated strips of color along the
axis of stretching. They could also be repeated or rounded in
this instance, but stretching works just fine. And since that’s the
default value, we could have omitted the border-image-
repeat declaration altogether.

Next, let’s try to create something oceanic: an image border that
has waves marching all the way around. Since we don’t know
how wide or tall the element will be ahead of time, and we
want the waves to flow from one to another, we’ll use round to
take advantage of its scaling behavior while getting in as many
waves as will reasonably fit. You can see the result in Figure 7-
62, along with the image that’s used to create the effect:

Figure 7-62. A wavy border

You should be wary of one issue here, which is what happens if
you add in an element background. Just to make the situation
clear, we’ll add a red background to this element, with the
result shown in Figure 7-63:

#oceanic {
 border: 2px solid blue;
 border-image:
 url(waves.png) 50 fill / 20px / 10px round;
}

#oceanic {
 background: red;
 border: 2px solid blue;
 border-image:
 url(waves.png) 50 fill / 20px / 10px round;
}

See how the background color is visible between the waves?
That’s because the wave image is a PNG with transparent bits,
and the combination of image-slice widths and outset enable
some of the background area to be visible through the
transparent parts of the border. This can be a problem, because
in some cases you’ll want to use a background color in addition
to an image border—for the fallback case where the image fails
to appear, if nothing else. Generally, this is a problem best
addressed by either not needing a background for the fallback
case, using border-image-outset to pull the image out far
enough that no part of the background area is visible, or using
background-clip: padding-box (see “Clipping the
Background”).

As you can see, border images have a lot of power. Be sure to
use them wisely.

Figure 7-63. The background area, visible through the image border

Outlines

CSS defines a special sort of element decoration called an
outline. In practice, outlines are often drawn just beyond the
borders, though (as you’ll see) this is not the whole story. As the
specification puts it, outlines differ from borders in three basic
ways:

Outlines are visible but do not take up layout space.
User agents often render outlines on elements in the :focus
state, precisely because they do not take up layout space and
so do not change the layout.
Outlines may be nonrectangular.

To these, we’ll add a fourth:

Outlines are an all-or-nothing proposition: you can’t style one
side of a border independently from the others.

Let’s start finding out exactly what all that means. First, we’ll
run through the various properties, comparing them to their
border-related counterparts.

Outline Styles

Much as with border-style , you can set a style for your
outlines. In fact, the values will seem familiar to anyone who’s
styled a border before.

OUTLINE-STYLE

Values auto | none | solid | dotted | das
hed | double | groove | ridge | ins
et | outset

Initial
value

none

Applies to All elements

Computed
value

As specified

Inherited No

Animatable No

The two major differences are that outlines cannot have a
hidden style, as borders can; and outlines can have the auto
style. This style allows the user agent to get extra-fancy with the
appearance of the outline, as explained in the CSS specification:

The auto value permits the user agent to render a custom
outline style, typically a style which is either a user interface
default for the platform, or perhaps a style that is richer
than can be described in detail in CSS—e.g., a rounded edge
outline with semitranslucent outer pixels that appears to
glow.

It’s also the case that auto allows browsers to use different
outlines for different elements; e.g., the outline for a hyperlink
may not be the same as the outline for a form input. When
using auto , the value for outline-width may be ignored.

Beyond those differences, outlines have all the same styles that
borders have, as illustrated in Figure 7-64.

The less obvious difference is that unlike border-style ,
outline-style is not a shorthand property. You can’t use it to
set a different outline style for each side of the outline, because
outlines can’t be styled that way. There is no outline-top-
style . This is true for all the rest of the outline properties.
Because of this aspect of outline-style , the one property
serves both physical and logical layout needs.

Figure 7-64. Various outline styles

Outline Width

Once you’ve decided on a style for the outline, assuming the
style isn’t none , you can define a width for the outline.

OUTLINE-WIDTH

Values < length > | thin | medium | thick

Initial
value

medium

Applies to All elements

Computed
value

An absolute length, or 0 if the style of
the outline is none

Inherited No

Animatable Yes

There’s little to say about outline width that we didn’t already
say about border width. If the outline style is none , the
outline’s width is set to 0 . The thick value is wider than
medium , which is wider than thin , but the specification
doesn’t define exact widths for these keywords. Figure 7-65
shows a few outline widths.

Figure 7-65. Various outline widths

As before, the real difference here is that outline-width is not
a shorthand property, and serves both physical and logical
layout needs. You can set only one width for the whole outline,
and cannot set different widths for different sides. (The reasons
for this will soon become clear.)

Outline Color

Does your outline have a style and a width? Great! Let’s give it
some color!

OUTLINE-COLOR

Values < color > | invert

Initial value invert

Applies to All elements

Computed value As specified

Inherited No

Animatable Yes

This is pretty much the same as border-color , with the caveat
that it’s an all-or-nothing proposition—for example, there’s no
outline-left-color .

The one major difference is the default value, invert . What
invert is supposed to do is perform a “color conversion” on all
pixels within the visible parts of the outline. The advantage to
color inversion is that it can make the outline stand out in a
wide variety of situations, regardless of what’s behind it.

However, as of late 2022, literally no browser engines support
invert . (Some did for a while, but that support was removed.)
Given this, if you use invert , it will be rejected by the browser,
and the color keyword currentcolor will be used instead. (See
“Color Keywords” for details.)

The only outline shorthand

So far, you’ve seen three outline properties that look like
shorthand properties but aren’t. It’s time for the one outline
property that is a shorthand: outline .

OUTLINE

Values [< outline-color > ‖ < outline-style >
‖ < outline-width >]

Initial
value

none

Applies to All elements

Computed
value

As specified

Inherited No

Animatable See individual properties

It probably comes as little surprise that, like border , this is a
convenient way to set the overall style, width, and color of an
outline. Figure 7-66 illustrates a variety of outlines.

Figure 7-66. Various outlines

Thus far, outlines seem very much like borders. So how are
they different?

How They Are Different

The first major difference between borders and outlines is that
outlines, like outset border images, don’t affect layout at all. In
any way. They’re purely presentational.

To understand what this means, consider the following styles,
illustrated in Figure 7-67:

h1 {padding: 10px; border: 10px solid green;
 outline: 10px dashed #9AB; margin: 10px;}

Figure 7-67. Outline over margin

Looks normal, right? What you can’t see is that the outline is
completely covering up the margin. If we put in a dotted line to
show the margin edges, they’d run right along the outside edge
of the outline. (We’ll deal with margins in the next section.)

This is what’s meant by outlines not affecting layout. Let’s
consider another example, this time with two elements
that are given outlines. You can see the results in Figure 7-68:

span {outline: 1em solid rgba(0,128,0,0.5);}
span + span {outline: 0.5em double purple;}

Figure 7-68. Overlapping outlines

The outlines don’t affect the height of the lines, but they also
don’t shove the s to one side or another. The text is laid
out as if the outlines aren’t even there.

This raises an even more interesting feature of outlines: they
are not always rectangular, nor are they always contiguous.
Consider this outline applied to a element that
breaks across two lines, as illustrated in two scenarios in
Figure 7-69:

strong {outline: 2px dotted gray;}

Figure 7-69. Discontinuous and nonrectangular outlines

The first case has two complete outline boxes, one for each
fragment of the element. In the second case, with the
longer element causing the two fragments to be
stacked together, the outline is “fused” into a single polygon
that encloses the fragments. You won’t find a border doing that.

This is why CSS has no side-specific outline properties like
outline-right-style : if an outline becomes nonrectangular,
which sides are the right sides?

WARNING

As of late 2022, not every browser combines the inline fragments into a single
contiguous polygon. In those that do not support this behavior, each fragment is still
a self-contained rectangle, as in the first example in Figure 7-69. Also, Firefox and
Chrome have outlines follow border-radius rounding, whereas Safari keeps the
corners rectangular.

Margins

The separation between most normal-flow elements occurs
because of element margins. Setting a margin creates extra
blank space around an element. Blank space generally refers to
an area in which other elements cannot also exist and in which
the parent element’s background is visible. Figure 7-70 shows
the difference between two paragraphs without any margins
and the same two paragraphs with margins.

Figure 7-70. Paragraphs with, and without, margins

The simplest way to set a margin is by using the physical
property margin .

MARGIN

Values [< length > | < percentage > | auto]
{1,4}

Initial
value

Not defined

Applies to All elements

Percentages Refer to the width of the containing
block

Computed
value

See individual properties

Inherited No

Animatable Yes

Note The effects of auto margins are not
discussed here; see “Automatic flex
basis” for a full explanation

Suppose you want to set a quarter-inch margin on <h1>
elements (a background color has been added so you can
clearly see the edges of the content area):

h1 {margin: 0.25in; background-color: silver;}

This sets a quarter-inch of blank space on each side of an <h1>
element, as illustrated in Figure 7-71. Here, dashed lines
represent the margin’s outer edge, but the lines are purely
illustrative and would not actually appear in a web browser.

Figure 7-71. Setting a margin for <h1> elements

The margin property can accept any length of measure,
whether in pixels, inches, millimeters, or ems. However, the
default value for margin is effectively 0 , so if you don’t declare
a value, by default, no margin should appear.

In practice, however, browsers come with preassigned styles
for many elements, and margins are no exception. For example,
in CSS-enabled browsers, margins generate the “blank line”
above and below each paragraph element. Therefore, if you

don’t declare margins for the <p> element, the browser may
apply some margins on its own. Whatever you declare will
override the default styles.

Finally, it’s possible to set a percentage value for margin . The
details of this value type are discussed in “Percentages and
Margins”.

Length Values and Margins

Any length value can be used in setting the margins of an
element. It’s easy enough, for example, to apply 10 pixels of
whitespace around paragraph elements. The following rule
gives paragraphs a silver background, 10 pixels of padding, and
a 10-pixel margin:

This adds 10 pixels of space to each side of every paragraph,
just beyond the outer border edge. You can just as easily use
margin to set extra space around an image. Let’s say you want
1 em of space surrounding all images:

img {margin: 1em;}

p {background-color: silver; padding: 10px; margin: 1

That’s all it takes.

At times, you might desire a different amount of space on each
side of an element. That’s easy as well, thanks to the value
replication behavior we’ve used before. If you want all <h1>
elements to have a top margin of 10 pixels, a right margin of 20
pixels, a bottom margin of 15 pixels, and a left margin of 5
pixels, here’s all you need:

h1 {margin: 10px 20px 15px 5px;}

It’s also possible to mix up the types of length values you use.
You aren’t restricted to using a single length type in a given
rule, as shown here:

Figure 7-72 shows, with a little extra annotation, the results of
this declaration.

Figure 7-72. Mixed-value margins

h2 {margin: 14px 5em 0.1in 3ex;} /* value variety! */

Percentages and Margins

We can set percentage values for the margins of an element. As
with padding, percentage margin values are computed in
relation to the width of the parent element’s content area, so
they can change if the parent element’s width changes in some
way. For example, assume the following, which is illustrated in
Figure 7-73:

p {margin: 10%;}

<div style="width: 200px; border: 1px dotted;">
 <p>
 This paragraph is contained within a DIV that
 so its margin will be 10% of the width of the
 DIV). Given the declared width of 200 pixels,
 pixels on all sides.
 </p>
</div>
<div style="width: 100px; border: 1px dotted;">
 <p>
 This paragraph is contained within a DIV with
 so its margin will still be 10% of the width
 parent. There will, therefore, be half as muc
 as on the first paragraph.

Figure 7-73. Parent widths and percentages

Note that the top and bottom margins are consistent with the
right and left margins; in other words, the percentage of top
and bottom margins is calculated with respect to the element’s
width, not its height. You’ve seen this before—in “Padding”, in
case you don’t remember—but it’s worth reviewing again, just
to see how it operates.

Single-Side Margin Properties

 </p>
</div>

As you’ve seen throughout the chapter, CSS has properties that
let you set the margin on a single side of the box, without
affecting the others. There are four physical side properties,
four logical side properties, and two logical shorthand
properties.

MARGIN-TOP, MARGIN-RIGHT, MARGIN-BOTTOM, MARGIN-LEFT, MARGIN-
BLOCK-START, MARGIN-BLOCK-END, MARGIN-INLINE-START, MARGIN-
INLINE-END

Values < length > | < percentage > | auto

Initial
value

0

Applies to All elements

Percentages Refer to the width of the containing
block

Computed
value

For percentages, as specified;
otherwise, the absolute length

Inherited No

Animatable Yes

MARGIN-BLOCK, MARGIN-INLINE

Values [< length > | < percentage > | auto]
{1,2}

Initial
value

0

Applies to All elements

Percentages Refer to the width of the containing
block

Computed
value

For percentages, as specified;
otherwise, the absolute length

Inherited No

Animatable Yes

These properties operate as you’d expect. For example, the
following two rules will give the same amount of margin:

h2 {margin: 0 0 0 0.25in;}
h2 {margin: 0; margin-left: 0.25in;}

Similarly, the following two rules will have the same outcome:

h2 {
 margin-block-start: 0.25in;
 margin-block-end: 0.5em;
 margin-inline-start: 0;
 margin-inline-end: 0;
}
h2 {margin-block: 0.25in 0.5em; margin-inline: 0;}

Margin Collapsing

An interesting and often overlooked aspect of the block-start
and block-end margins on block boxes is that they collapse in
normal-flow layout. This is the process by which two (or more)
margins that interact along the block axis will collapse to the
largest of the interacting margins.

The canonical example of this is the space between paragraphs.
Generally, that space is set using a rule like this:

p {margin: 1em 0;}

That sets every paragraph to have block-start and -end margins
of 1em . If margins didn’t collapse, then whenever one
paragraph followed another, there would be 2 ems of space
between them. Instead, there’s only 1; the two margins collapse
together.

To illustrate this a little more clearly, let’s return to the
percentage-margin example. This time, we’ll add dashed lines
to indicate where the margins fall, as shown in Figure 7-74.

Figure 7-74. Collapsing margins

The example shows the separation distance between the
contents of the two paragraphs. It’s 60 pixels, because that’s the

wider of the two margins that are interacting. The 30-pixel
block-start margin of the second paragraph is collapsed, leaving
the first paragraph’s block-end margin in charge.

So in a sense, Figure 7-74 is lying: if you take the CSS
specification strictly at its word, the block-start (top) margin of
the second paragraph is actually reset to 0. It doesn’t stick into
the block-end margin of the first paragraph because once it
collapses, it isn’t there anymore. The end result is the same,
though.

Margin collapsing also explains some oddities that arise when
one element is inside another. Consider the following styles and
markup:

header {background: goldenrod;}
h1 {margin: 1em;}

<header>
 <h1>Welcome to ConHugeCo</h1>
</header>

The margin on the <h1> will push the edges of the header
away from the content of the <h1> , right? Well, not entirely.
See Figure 7-75.

What happened? The inline-side margins took effect—we can
see that from the way the text is moved over—but the block-
start and block-end margins are gone!

Only they aren’t gone. They’re just sticking out of the header
element, having interacted with the (zero-width) block-start
margin of the header element. The magic of dashed lines in
Figure 7-76 shows us what’s happening.

Figure 7-75. Margins collapsing with parents

Figure 7-76. Margins collapsing with parents, revealed

There the block-axis margins are—pushing away any content
that might come before or after the <header> element, but not
pushing away the edges of the <header> itself. This is the
intended result, even if it’s often not the desired result. As for
why it’s intended, imagine what happens if you put a paragraph
in a list item. Without the specified margin-collapsing behavior,
the paragraph’s block-start (in this case, the top) margin would

shove it downward, where it would be far out of alignment
with the list item’s bullet (or number).

NOTE

Margin collapsing can be interrupted by factors such as padding and borders on
parent elements. For more details, see the discussion in “Collapsing Block-Axis
Margins”.

Negative Margins

It’s possible to set negative margins for an element. This can
cause the element’s box to stick out of its parent or to overlap
other elements. Consider these rules, which are illustrated in
Figure 7-77:

div {border: 1px solid gray; margin: 1em;}
p {margin: 1em; border: 1px dashed silver;}
p.one {margin: 0 -1em;}
p.two {margin: -1em 0;}

Figure 7-77. Negative margins in action

In the first case, the math works out such that the paragraph’s
computed width plus its inline-start and inline-end margins are
exactly equal to the width of the parent <div> . So the
paragraph ends up 2 ems wider than the parent element.

In the second case, the negative block-start and block-end
margins move the paragraph’s block-start and -end outer edges
inward, which is how it ends up overlapping the paragraphs
before and after it.

Combining negative and positive margins is actually very
useful. For example, you can make a paragraph “punch out” of
a parent element by being creative with positive and negative
margins, or you can create a Mondrian effect with several
overlapping or randomly placed boxes, as shown in Figure 7-78:

{ () }

Thanks to the negative bottom margin for the mond paragraph,
the bottom of its parent element is pulled upward, allowing the
paragraph to stick out of the bottom of its parent.

div {background: hsl(42,80%,80%); border: 1px solid;}
p {margin: 1em;}
p.punch {background: white; margin: 1em -1px 1em 25%;
 border: 1px solid; border-right: none; text-align:
p.mond {background: rgba(5,5,5,0.5); color: white; ma

Figure 7-78. Punching out of a parent

Margins and Inline Elements

Margins can also be applied to inline elements. Let’s say you
want to set block-start and block-end margins on strongly
emphasized text:

t { i bl k t t 25 i bl k d 5

This is allowed in the specification, but on an inline
nonreplaced element, they will have absolutely no effect on the
line height (the same as for padding and borders). And since
margins are always transparent, you won’t even be able to see
that they’re there. In effect, they’ll have no effect at all.

As with padding, the layout effects change a bit when you apply
margins to the inline-start and inline-end sides of an inline
nonreplaced element, as illustrated in Figure 7-79:

Figure 7-79. An inline nonreplaced element with an inline-start margin

Note the extra space between the end of the word just before
the inline nonreplaced element and the edge of the inline
element’s background. You can add that extra space to both
ends of the inline element if you want:

strong {margin: 25px; background: silver;}

strong {margin-block-start: 25px; margin-block-end: 5

strong {margin-inline-start: 25px; background: silver

As expected, Figure 7-80 shows a little extra space on the inline-
start and -end sides of the inline element, and no extra space
above or below it.

Figure 7-80. An inline nonreplaced element with 25-pixel side margins

Now, when an inline nonreplaced element stretches across
multiple lines, the situation changes. Figure 7-81 shows what
happens when an inline nonreplaced element with a margin is
displayed across multiple lines:

strong {margin: 25px; background: silver;}

Figure 7-81. An inline nonreplaced element with 25-pixel side margin displayed
across two lines of text

The inline-start margin is applied to the beginning of the
element, and the inline-end margin to the end of it. Margins are
not applied to the inline-start and -end side of each line
fragment. Also, you can see that, if not for the margins, the line
may have broken a word or two sooner. Margins affect line
breaking only by changing the point at which the element’s
content begins within a line.

TIP

You can alter the way margins are (or aren’t) applied to the ends of each line box by
using the property box-decoration-break . See Chapter 6 for more details.

The situation gets even more interesting when we apply
negative margins to inline nonreplaced elements. The block-
start and block-end of the element aren’t affected, and neither
are the heights of lines, but the inline-start and inline-end sides
of the element can overlap other content, as depicted in
Figure 7-82:

strong {margin: -25px; background: silver;}

Figure 7-82. An inline nonreplaced element with a negative margin

Replaced inline elements represent yet another story: margins
set for them do affect the height of a line, either increasing or
reducing it, depending on the value for the block-start and
block-end margin. The inline-side margins of an inline replaced
element act the same as for a nonreplaced element. Figure 7-83
shows a series of effects on layout from margins set on inline
replaced elements.

Figure 7-83. Inline replaced elements with differing margin values

Summary

The ability to apply margins, borders, and padding to any
element allows you to manage the separation and appearance
of elements in a detailed way. Understanding how they interact
with each other is the foundation of design for the web.

Chapter 8. Backgrounds

By default, the background area of an element consists of the
content box, padding box, and border box, with the borders
drawn on top of the background. (You can change that to a
degree with CSS, as you’ll see in this chapter.)

CSS lets you apply one solid opaque or semitransparent color to
the background of an element, as well as apply one or more
images to the background of a single element, or even describe
your own color gradients of various shapes to fill the
background area.

Setting Background Colors

To declare a color for the background of an element, you use
the property background-color , which accepts any valid color
value.

BACKGROUND-COLOR

Values < color >

Initial value transparent

Applies to All elements

Computed value As specified

Inherited No

Animatable Yes

If you want the color to extend out a little bit from the content
area of the element, add some padding to the mix, as shown in
the following code and illustrated in Figure 8-1:

p {background-color: #AEA;}
p.padded {padding: 1em;}

<p>A paragraph.</p>
<p class="padded">A padded paragraph.</p>

Figure 8-1. Background color and padding

You can set a background color for any element, from <body>
all the way down to inline elements such as and <a> . The
value of background-color is not inherited.

Its default value is the keyword transparent , which should
make sense: if an element doesn’t have a defined color, its
background should be transparent so that the background and
content of its ancestor elements will be visible.

One way to picture what that means is to imagine a clear (i.e.,
transparent) plastic sign mounted to a textured wall. The wall is
still visible through the sign, but this is not the background of
the sign; it’s the background of the wall (in CSS terms, anyway).
Similarly, if you set the page canvas to have a background, it
can be seen through all of the elements in the document that
don’t have their own backgrounds.

They don’t inherit the background; it is visible through the
elements. This may seem like an irrelevant distinction, but as
you’ll see when we discuss background images, it’s a critical
difference.

Explicitly Setting a Transparent
Background

Most of the time, you’ll have no reason to use the keyword
transparent , since that’s the default value. On occasion,
though, it can be useful.

Imagine that a third-party script you have to include has set all
images to have a white background, but your design includes a
few transparent PNG images, and you don’t want the
background on those images to be white. To make sure your
design choice prevails, you would declare the following:

img.myDesign {background-color: transparent;}

Without this (and adding classes to your images), your
semitransparent images would not appear semitransparent;
rather, they would look like they had a solid white background.

While the right color background on a semitransparent image is
a nice-to-have, good contrast between text and the text’s
background color is a must-have. If the contrast between text
and any part of the background isn’t great enough, the text will
be illegible. Always ensure that the contrast between the text
and background is greater than or equal to 4.5:1 for small text
and 3:1 for large text.

Declaring both a color and a background color, with a good
contrast, on your root element is generally considered a good
practice. Not declaring a background color when declaring a
color will lead the CSS validator to generate warnings such as,
“You have no background-color with your color ” to remind
you that author-user color interaction can occur, and your rule
has not taken this possibility into account. Warnings do not
mean your styles are invalid: only errors prevent validation.

Background and Color Combinations

By combining color and background-color , you can create
interesting effects:

h1 {color: white; background-color: rgb(20% 20% 20%);
 font-family: Arial, sans-serif;}

Figure 8-2 depicts this example.

Figure 8-2. A reverse-text effect for <h1> elements

There are as many color combinations as there are colors, and
we can’t show all of them here. Still, we’ll try to give you some
idea of what you can do.

This stylesheet is a little more complicated, as illustrated by
Figure 8-3:

body {color: black; background-color: white;}
h1, h2 {color: yellow; background-color: rgb(0 51 0);
p {color: #555;}
a:link {color: black; background-color: silver;}
a:visited {color: gray; background-color: white;}

Figure 8-3. The results of a more complicated stylesheet

And then there’s the question of what happens when you apply
a background to a replaced element. We already discussed
images with transparent portions, like a PNG or WebP. Suppose,
though, you want to create a two-tone border around a JPEG.
You can pull that off by adding a background color and a little
bit of padding to your image, as shown in the following code
and illustrated in Figure 8-4:

img.twotone {background-color: red; padding: 5px; bor

Figure 8-4. Using background and border to two-tone an image

Technically, the background goes to the outer border edge, but
since the border is solid and continuous, we can’t see the
background behind it. The 5 pixels of padding allow a thin ring
of background to be seen between the image and its border,
creating the visual effect of an “inner border.” This technique
could be extended to create more complicated effects with box
shadows (discussed at the end of the chapter) and background
images like gradients (discussed in Chapter 9).

Clipping the Background

When you apply a background to a replaced element, such as
an image, the background will show through any transparent
portions. Background colors, by default, go to the outer edge of
the element’s border, showing behind the border if the border

is itself transparent, or if it has transparent areas such as the
spaces between dots, dashes, or lines when border style
dotted , dashed , or double is applied.

To prevent the background from showing behind
semitransparent or fully transparent borders, we can use
background-clip . This property defines how far out an
element’s background will go.

BACKGROUND-CLIP

Values [border-box | padding-box | conten
t-box | text]#

Initial
value

border-box

Applies to All elements

Computed
value

As declared

Inherited No

Animatable No

The default value border-box indicates that the background
painting area (which is what background-clip defines) extends
out to the outer edge of the border. Given this value, the
background will always be drawn behind the visible parts of
the border, if any.

If you choose the value padding-box , the background will
extend to only the outer edge of the padding area (which is also
the inner edge of the border). Thus, the background won’t be
drawn behind the border. The value content-box , on the other
hand, restricts the background to just the content area of the
element.

The effects of these three values are illustrated in Figure 8-5,
which is the result of the following code:

Figure 8-5. The three box-oriented types of background clipping

That might seem pretty simple, but several caveats exist. First,
background-clip has no effect on the root element (in HTML,
that’s either the <html> element, or the <body> element if you

div[id] {color: navy; background: silver;
 padding: 1em; border: 0.5em dashed;}
#ex01 {background-clip: border-box;} /* default valu
#ex02 {background-clip: padding-box;}
#ex03 {background-clip: content-box;}

haven’t defined any background styles on <html>). This has to
do with how the background painting of the root element has to
be handled.

Second, the exact clipping of the background area can be
reduced if the element has rounded corners, thanks to the
border-radius property (see Chapter 7). This is basically
common sense, since if you give your element significantly
rounded corners, you want the background to be clipped by
those corners instead of stick out past them. The way to think of
this is that the background painting area is determined by
background-clip , and then any corners that have to be further
clipped by rounded corners are appropriately clipped.

Third, the value of background-clip can interact poorly with
some of the more interesting values of background-repeat ,
which we’ll get to later.

Fourth, background-clip defines the clipping area of the
background. It doesn’t affect other background properties.
When it comes to flat background colors, that’s a distinction
without meaning; but when it comes to background images,
which we’ll talk about in the next section, it can make a great
deal of difference.

There is one more value, text , which clips the background to
the text of the element. In other words, the text is “filled in”
with the background, and the rest of the element’s background
area remains transparent. This is a simple way to add textures
to text, by “filling in” the text of an element with its background.

The kicker is that to see this effect, you have to remove the
foreground color of the element. Otherwise, the foreground
color obscures the background. Consider the following, which
has the result shown in Figure 8-6:

Figure 8-6. Clipping the background to the text

For the first example, the foreground color is made completely
transparent, and the blue background is visible only where it

div {color: rgb(255,0,0); background: rgb(0,0,255);
 padding: 0 1em; margin: 1.5em 1em; border: 0.5em
 font-weight: bold;}
#ex01 {background-clip: text; color: transparent;}
#ex02 {background-clip: text; color: rgba(255 0 0 / 0
#ex03 {background-clip: text;}

intersects with the text shapes in the element’s content. It is not
visible through the image inside the paragraph, since an
image’s foreground can’t be set to transparent .

In the second example, the foreground color has been set to
rgba(255 0 0 0.5) , which is a half-opaque red. The text there
is rendered purple, because the half-opaque red combines with
the blue underneath. The borders, on the other hand, blend
their half-opaque red with the white background behind them,
yielding a light red.

In the third example, the foreground color is a solid, opaque
red. The text and borders are both fully red, with no hint of the
blue background. It can’t be seen in this instance, because it’s
been clipped to the text. The foreground just completely
obscures the background.

This technique works for any background, including gradient
and image backgrounds, topics that we’ll cover in a bit.
Remember, however: if the background for some reason fails to
be drawn behind the text, the transparent text meant to be
“filled” with the background will instead be completely
unreadable.

WARNING

As of late 2022, not all browsers support background-clip: text correctly. Blink
browsers (Chrome and Edge) require a -webkit- prefix, supporting -webkit-
background-clip: text . Also, since browsers may not support the text value in
the future (it’s under discussion for removal from CSS as we write this), include the
prefixed and nonprefixed versions of background-clip and set the transparent
color inside a @supports feature query (for more information, see Chapter 21).

Working with Background Images

Having covered the basics of background colors, we turn now
to the subject of background images. By default, images are
tiled, repeating in both horizontal and vertical directions to fill
up the entire background of the document. This default CSS
behavior created horrific websites often referred to as
“Geocities 1996,” but CSS can do a great deal more than simple
tiling of background images. It can be used to create subtle
beauty. We’ll start with the basics and then work our way up.

Using an Image

In order to get an image into the background in the first place,
use the property background-image .

BACKGROUND-IMAGE

Values [< image ># | none

Initial value none

Applies to All elements

Computed
value

As specified, but with all URLs made
absolute

Inherited No

Animatable No

< image >
[< uri > | < linear-gradient > | < repeating-linear-

gradient > |
< radial-gradient > | < repeating-radial-gradient > |
< conic-gradient > | < repeating-conic-gradient >]

The default value of none means about what you’d expect: no
image is placed in the background. If you want a background

image, you must give this property at least one image reference,
such as in the following:

body {background-image: url(bg23.gif);}

Because of the default values of other background properties,
this will cause the image bg23.gif to be tiled in the document’s
background, as shown in Figure 8-7. You’ll learn how to change
that shortly.

Figure 8-7. Applying a background image in CSS

It’s usually a good idea to specify a background color to go along
with your background image; we’ll come back to that concept a
little later. (We’ll also talk about how to have more than one
image at the same time, but for now we’re going to stick to just
one background image per element.)

You can apply background images to any element, block-level or
inline. If you have more than one background image, comma-
separate them:

If you combine simple icons with creative attribute selectors,
you can (by using properties we’ll get to in just a bit) mark
when a link points to a PDF, word processor document, email
address, or other unusual resource. You can, for example, use
the following code to display Figure 8-8:

Figure 8-8. Adding link icons as background images

It’s true that you can add multiple background images to an
element, but until you learn how to position each image and

body {background-image: url(bg23.gif), url(another_im

a[href] {padding-left: 1em; background-repeat: no-rep
a[href$=".pdf"] {background-image: url(/i/pdf-icon.pn
a[href$=".doc"] {background-image: url(/i/msword-icon
a[href^="mailto:"] {background-image: url(/i/email-ic

prevent it from repeating, you most likely won’t want to. We’ll
cover repeating background images after we cover these
necessary properties.

Just like background-color , background-image is not
inherited—in fact, not a single one of the background
properties is inherited. Remember also that when specifying
the URL of a background image, it falls under the usual
restrictions and caveats for url() values: a relative URL
should be interpreted with respect to the stylesheet (see
“URLs”).

Understanding Why Backgrounds Aren’t
Inherited

Earlier, we specifically noted that backgrounds are not
inherited. Background images demonstrate why inherited
backgrounds would be a bad thing. Imagine a situation that
backgrounds were inherited, and you applied a background
image to the <body> . That image would be used for the
background of every element in the document, with each
element doing its own tiling, as shown in Figure 8-9.

Figure 8-9. What inherited backgrounds would do to layout

Note that the pattern restarts at the top left of every element,
including the links. This isn’t what most authors would want,
and this is why background properties are not inherited. If you
do want this particular effect for some reason, you can make it
happen with a rule like this:

* {background-image: url(yinyang.png);}

Alternatively, you could use the value inherit like this:

body {background-image: url(yinyang.png);}
* {background-image: inherit;}

Following Good Background Practices

Images are laid on top of whatever background color you
specify. If your images aren’t tiled or have areas that are not
opaque, the background will show through, blending its color
with that of the semitransparent images. If the image fails to
load, the background color specified will show instead of the
image. For this reason, it’s always a good idea to specify a
background color when using a background image, so that
you’ll at least get a legible result if the image doesn’t appear.

Background images can cause accessibility issues. For example,
if you have an image of a clear blue sky as a background image
with dark text, that is likely very legible. But what if there is a
bird in the sky? If dark text lands on a dark part of the
background, that text will not be legible. Adding a drop shadow
to the text (see Chapter 15) or a list semitransparent
background color behind all the text can reduce the risk of
illegibility.

Positioning Background Images

OK, so we can put images in the background of an element.
How about positioning the image exactly where you want? No
problem! The background-position property is here to help.

BACKGROUND-POSITION

Values < position >#

Initial
value

0% 0%

Applies to Block-level and replaced elements

Percentages Refer to the corresponding point on
both the element and the origin image
(see explanation in “Percentage
values”)

Computed
value

The absolute length offsets, if < length >
is specified; otherwise, percentage
values

Inherited No

Animatable Yes

< position >

[[left | center | right | top | bottom |
< percentage > | < length >] | [left | center | right |
< percentage > | < length >] [top | center | bottom |
< percentage > | < length >] | [center | [left | right] [
< percentage > | < length >]?] && [center | [top |
bottom] [< percentage > | < length >]?]]

That value syntax looks horrific, but it isn’t; it’s just what
happens when you try to formalize the fast-and-loose
implementations of a new technology into a regular syntax and
then layer even more features on top of that while trying to
reuse parts of the old syntax. (So, OK, kind of horrific.) In
practice, the syntax for background-position is simple, but the
percent values can be a little difficult to wrap your head
around.

NOTE

Throughout this section, we’ll be using the rule background-repeat: no-repeat to
prevent tiling of the background image. You’re not imagining things: we haven’t
talked about background-repeat yet! For now, just accept that the rule restricts the
background to a single image. You’ll learn more details in “Background Repeating (or
Lack Thereof)”.

For example, we can center a background image in the <body>
element as follows, with the result depicted in Figure 8-10:

body {background-image: url(hazard-rad.png);
 background-repeat: no-repeat;
 background-position: center;}

Figure 8-10. Centering a single background image

Here, we’ve placed a single image in the background and then
prevented it from being repeated with background-repeat .
Every background that includes an image starts with a single
image. This starting image is called the origin image.

The placement of the origin image is accomplished with
background-position , and there are several ways to supply
values for this property. First off, we can use the keywords top ,

bottom , left , right , and center . Usually, these appear in
pairs, but (as the previous example shows) this is not always
true. We can also use length values, such as 50px or 2cm ; the
combinations of keywords and length values, such as right
50px bottom 2cm ; and finally, percentage values, such as 43% .
Each type of value has a slightly different effect on the
placement of the background image.

Keywords

The image placement keywords are easiest to understand. They
have the effects you’d expect from their names; for example,
top right would cause the origin image to be placed in the
top-right corner of the element’s background. Let’s use a small
yin-yang symbol:

p {background-image: url(yinyang-sm.png);
 background-repeat: no-repeat;
 background-position: top right;}

This will place a nonrepeated origin image in the top-right
corner of each paragraph’s background, and the result would
be exactly the same if the position were declared as right top .

This is because position keywords can appear in any order, as
long as there are no more than two of them—one for the
horizontal and one for the vertical. If you use two horizontal
(right right) or two vertical (top top) keywords, the whole
value is ignored.

If only one keyword appears, the other is assumed to be
center . So if you want an image to appear in the top center of
every paragraph, you need only declare this:

Percentage values

Percentage values are closely related to the keywords, although
they behave in a more sophisticated way. Let’s say that you
want to center an origin image within its element by using
percentage values. That’s straightforward enough:

p {background-image: url(chrome.jpg);
 background-repeat: no-repeat;
 background-position: 50% 50%;}

p {background-image: url(yinyang-sm.png);
 background-repeat: no-repeat;
 background-position: top;} /* same as 'top center

This places the origin image such that its center is aligned with
the center of its element’s background. In other words, the
percentage values apply to both the element and the origin
image. The pixel of the image that is 50% from the top and 50%
from the left in the image is placed 50% from the top and 50%
from the left of the element on which it was set.

To understand what that means, let’s examine the process in
closer detail. When you center an origin image in an element’s
background, the point in the image that can be described as
50% 50% (the center) is lined up with the point in the
background that can be described the same way. If the image is
placed at 0% 0% , its top-left corner is placed in the top-left
corner of the element’s background. Using 100% 100% causes
the bottom-right corner of the origin image to go into the
bottom-right corner of the background. Figure 8-11 contains
examples of those values, as well as a few others, with the
points of alignment for each located at the center of the
concentric rings.

Thus, if you want to place a single origin image a third of the
way across the background and two-thirds of the way down,
your declaration would be as follows:

p {background-image: url(yinyang-sm.png);
 background-repeat: no-repeat;
 background-position: 33% 66%;}

With these rules, the point in the origin image that is one-third
across and two-thirds down from the top-left corner of the
image will be aligned with the point that is farthest from the
top-left corner of the background. Note that the horizontal
value always comes first with percentage values. If you were to
switch the percentages in the preceding example, the point in
the image that is two-thirds from the left side of the image and
one-third of the way down from the top would be placed two-
thirds of the way across the background and one-third of the
way down.

Figure 8-11. Various percentage positions

If you supply only one percentage value, the single value
supplied is taken to be the horizontal value, and the vertical is
assumed to be 50% . For example:

p {background-image: url(yinyang-sm.png);
 background-repeat: no-repeat;
 background-position: 25%;}

The origin image is placed one-quarter of the way across the
paragraph’s background and halfway down it, as if
background-position: 25% 50%; had been set.

Table 8-1 gives a breakdown of keyword and percentage
equivalencies.

Table 8-1. Positional equivalents

Keyword(s)
Equivalent
keywords

Equivalent
percentages

center center center 50% 50%
50%

right center right
right center

100% 50%
100%

left center left
left center

0% 50%
0%

top top center
center top

50% 0%

bottom bottom center
center bottom

50% 100%

top left left top 0% 0%

top right right top 100% 0%

bottom rig
ht

right bottom 100% 100%

Keyword(s)
Equivalent
keywords

Equivalent
percentages

bottom lef
t

left bottom 0% 100%

As the property table in “Positioning Background Images”
showed, the default values for background-position are 0%
0% , which is functionally the same as top left . This is why,
unless you set different values for the position, background
images always start tiling from the top-left corner of the
element’s background.

Length values

Finally, we turn to length values for positioning. When you
supply lengths for the position of the origin image, they are
interpreted as offsets from the top-left corner of the element’s
background. The offset point is the top-left corner of the origin
image; thus, if you set the values 20px 30px , the top-left corner
of the origin image will be 20 pixels to the right of, and 30 pixels
below, the top-left corner of the element’s background, as
shown (along with a few other length examples) in Figure 8-12.

As with percentages, the horizontal value comes first with
length values.

Figure 8-12. Offsetting the background image by using length measures

This is quite different from percentage values because the offset
is from one top-left corner to another. In other words, the top-
left corner of the origin image lines up with the point specified
in the background-position declaration.

You can combine length and percentage values to get a “best of
both worlds” effect. Let’s say you need to have a background
image that is all the way to the right side of the background and
10 pixels down from the top. As always, the horizontal value
comes first:

p {background-image: url(yinyang.png);
 background-repeat: no-repeat;

 background-position: 100% 10px;
 border: 1px dotted gray;}

For that matter, you can get the same result by using right
10px , since you’re allowed to mix keywords with lengths and
percentages. The syntax enforces axis order when using
nonkeyword values; if you use a length or percentage value, the
horizontal value must always come first, and the vertical must
always come second. That means right 10px is fine, whereas
10px right is invalid and will be ignored (because right is
not a valid vertical keyword).

Negative values

If you’re using lengths or percentages, you can use negative
values to pull the origin image outside of the element’s
background. Consider a document with a very large yin-yang
symbol for a background. What if we want only part of it visible
in the top-left corner of the element’s background? No problem,
at least in theory.

Assuming that the origin image is 300 pixels tall by 300 pixels
wide and that only the bottom-right third of the image should
be visible, we get the desired effect (shown in Figure 8-13) like
this:

body {background-image: url(yinyang.png);
 background-repeat: no-repeat;
 background-position: -200px -200px;}

Figure 8-13. Using negative length values to position the origin image

Or, say you want just the right half of the origin image to be
visible and vertically centered within the element’s background
area:

body {background-image: url(yinyang.png);
 background-repeat: no-repeat;
 background-position: -150px 50%;}

Negative values will come into play later, as they are useful in
creating gorgeous backgrounds; see “Conic Gradients”.

Negative percentages are also possible, although they are
somewhat interesting to calculate. The origin image and the
element are likely to be very different sizes, for one thing, and
that can lead to unexpected effects. Consider, for example, the
situation created by the following rule, illustrated in Figure 8-
14:

p {background-image: url(pix/yinyang.png);
 background-repeat: no-repeat;
 background-position: -10% -10%;
 width: 500px;}

Figure 8-14. Varying effects of negative percentage values

The rule calls for the point outside the origin image defined by
-10% -10% to be aligned with a similar point for each
paragraph. The image is 300 × 300 pixels, so we know its
alignment point can be described as 30 pixels above the top of
the image, and 30 pixels to the left of its left edge (effectively
-30px and -30px). The paragraph elements are all the same
width (500px), so the horizontal alignment point is 50 pixels to
the left of the left edge of their backgrounds. This means that
each origin image’s left edge will be 20 pixels to the left of the
left padding edge of the paragraphs. This is because the -30px

alignment point of the images lines up with the -50px point for
the paragraphs. The difference between the two is 20 pixels.

The paragraphs have different heights, however, so the vertical
alignment point changes for each paragraph. If a paragraph’s
background area is 300 pixels high, to pick a semi-random
example, then the top of the origin image will line up exactly
with the top of the element’s background, because both will
have vertical alignment points of -30px . If a paragraph is 50
pixels tall, its alignment point would be -5px , and the top of
the origin image will actually be 25 pixels below the top of the
background. This is why you can see all the tops of the
background images in Figure 8-14—the paragraphs are shorter
than the background image.

Changing the offset edges

It’s time for a confession: throughout this whole discussion of
background positioning, we’ve been keeping two facts from
you. We acted as though the value of background-position
could have no more than two keywords, and that all offsets
were always made from the top-left corner of the background
area.

That was originally the case with CSS but hasn’t been true for a
while. When we include four keywords, or two keywords and
two length or percentage values in a very specific pattern, we
can set the edge from which the background image should be
offset.

Let’s start with a simple example: placing the origin image a
quarter of the way across and 30 pixels down from the top-left
corner. Using what we saw in previous sections, that would be
the following:

background-position: 25% 30px;

Now let’s do the same thing with this four-part syntax:

background-position: left 25% top 30px;

This four-part value says, “From the left edge, have a
horizontal offset of 25% ; from the top edge, have an offset of
30px .”

Great, so that’s a more verbose way of getting the default
behavior. Now let’s change the code so the origin image is
placed a quarter of the way across and 30 pixels up from the

bottom-right corner, as shown in Figure 8-15 (which assumes
no repeating of the background image, for clarity’s sake):

background-position: right 25% bottom 30px;

Here, we have a value that means “from the right edge, have
a horizontal offset of 25% ; from the bottom edge, have an
offset of 30px .”

Thus, the general pattern is edge keyword, offset distance, edge
keyword, offset distance. You can mix the order of horizontal
and vertical information; that is, bottom 30px right 25%
works just as well as right 25% bottom 30px . However, you
cannot omit either of the edge keywords; 30px right 25% is
invalid and will be ignored.

Figure 8-15. Changing the offset edges for the origin image

That said, you can omit an offset distance when you want it to
be 0. So right bottom 30px would put the origin image
against the right edge and 30 pixels up from the bottom of the

background area, whereas right 25% bottom would place the
origin image a quarter of the way across from the right edge
and up against the bottom. These are both illustrated in
Figure 8-16.

Figure 8-16. Inferred zero-length offsets

You can define only the edges of an element as offset bases, not
the center. A value like center 25% center 25px will be
ignored.

If you have multiple background images and only one
background position, all the images will be placed in the same
location. If you want to place them in different spots, provide a
comma-separated list of background positions. They will be
applied to the images in order. If you have more images than

position values, the positions get repeated (as we’ll explore
further later in the chapter).

Changing the positioning box

Now you know how to add an image to the background, and
can even change where the origin image is placed. But what if
we want to place it with respect to the border edge, or to the
outer content edge, instead of to the default outer padding
edge? We can use the property background-origin .

BACKGROUND-ORIGIN

Values [border-box | padding-box | conte
nt-box]#

Initial value padding-box

Applies to All elements

Computed
value

As declared

Inherited No

Animatable No

This property probably looks similar to background-clip , and
with good reason, but its effect is distinct. Whereas
background-clip defines the background painting area,
background-origin defines the edge that’s used to determine
placement of the origin image. This is also known as defining
the background positioning area.

The default, padding-box , means that the top-left corner of the
origin image will be placed in the top-left corner of the outer
edge of the element’s padding box (if background-position
hasn’t been changed from its default of top left or 0 0),
which is just inside the border area.

If you use the value border-box , the top-left corner of a
background-position: 0 0 origin image will go into the top-
left corner of the padding area. The border, if any, will be
drawn over the origin image (assuming the background
painting area wasn’t restricted to be padding-box or content-
box , that is).

With content-box , you shift the origin image to the top-left
corner of the content area. The following code depicts the three
options, illustrated in Figure 8-17:

div[id] {color: navy; background: silver;
 background-image: url(yinyang.png);
 background-repeat: no-repeat;
 padding: 1em; border: 0.5em dashed;}
#ex01 {background-origin: border-box;}
#ex02 {background-origin: padding-box;} /* default v
#ex03 {background-origin: content-box;}

Figure 8-17. The three types of background origins

Remember that this “placed in the top left” behavior is the
default behavior, which you can change with background-
position . The position of the origin image is calculated with
respect to the box defined by background-origin : the border
edge, the padding edge, or the content edge. Consider, for
example, this variant of our previous example, which is
illustrated in Figure 8-18:

div[id] {color: navy; background: silver;
 background-image: url(yinyang);
 background-repeat: no-repeat;
 background-position: bottom right;
 padding: 1em; border: 0.5em dashed;}
#ex01 {background-origin: border-box;}
#ex02 {background-origin: padding-box;} /* default v
#ex03 {background-origin: content-box;}

Figure 8-18. The three types of background origins, redux

Things can get really interesting if you’ve explicitly defined
your background origin and clipping to be different boxes.
Imagine you have the origin placed with respect to the padding
edge but the background clipped to the content area, or vice
versa. The following code results in Figure 8-19:

 #ex01 {background-origin: padding-box;
 background-clip: content-box;}
 #ex02 {background-origin: content-box;
 background-clip: padding-box;}

Figure 8-19. When origin and clipping diverge

In the first example, the edges of the origin image are clipped
because it is positioned with respect to the padding box, but the
background painting area has been clipped at the edge of the

content box. In the second example, the origin image is placed
with respect to the content box, but the painting area extends
into the padding box. Thus, the origin image is visible all the
way down to the bottom padding edge, even though its top is
not placed against the top padding edge.

Background Repeating (or Lack Thereof)

Viewports come in an infinite number of sizes. Fortunately, we
can tile background images, meaning we don’t need to create
backgrounds of multiple sizes or serve large-format (and file
size) wallpaper to small-screen low-bandwidth devices. When
you want to repeat an image in a specific way, or when you
don’t want to repeat it at all, we have background-repeat .

BACKGROUND-REPEAT

Values < repeat-style >#

Initial value repeat

Applies to All elements

Computed value As specified

Inherited No

Animatable No

< repeat-style >
repeat-x | repeat-y | [repeat | space | round | no-
repeat]{1,2}

The value syntax for background-repeat looks a bit
complicated at first glance, but it’s fairly straightforward. In
fact, at its base, it uses just four values: repeat , no-repeat ,
space , and round . The other two, repeat-x and repeat-y ,

are considered shorthand for combinations of the others.
Table 8-2 shows how they break down.

If two values are given, the first applies in the horizontal
direction, and the second in the vertical. If there is just one
value, it applies in both the horizontal and vertical directions,
with the exception, as shown in Table 8-2, of repeat-x and
repeat-y .

Table 8-2. Repeat keyword equivalents

Single keyword Equivalent keywords

repeat-x repeat no-repeat

repeat-y no-repeat repeat

repeat repeat repeat

no-repeat no-repeat no-repeat

space space space

round round round

As you might guess, repeat by itself causes the image to tile
infinitely in all directions. The repeat-x and repeat-y values
cause the image to be repeated in the horizontal or vertical
directions, respectively, and no-repeat prevents the image
from tiling along a given axis. If you have more than one image,
each with different repeat patterns, provide a comma-separated
list of values. We said “all directions” rather than “both
directions” because a background-position may have put the
initial repeating image somewhere other than the top-left
corner of the clip box. With repeat , the image repeats in all
directions. By default, the background image will start from the
top-left corner of an element. Therefore, the following rules will
have the effect shown in Figure 8-20:

body {background-image: url(yinyang-sm.png);
 background-repeat: repeat-y;}

Figure 8-20. Tiling the background image vertically

Let’s assume, though, that you want the image to repeat only
across the top of the document. Rather than creating a special
image with a whole lot of blank space underneath, you can just
make a small change to that last rule:

body {background-image: url(yinyang-sm.png);
 background-repeat: repeat-x;}

As Figure 8-21 shows, the image is repeated along the x-axis
(horizontally) from its starting position—in this case, the top-
left corner of the <body> element’s background area.

Figure 8-21. Tiling the background image horizontally

Finally, you may not want to repeat the background image. In
this case, use the value no-repeat :

body {background-image: url(yinyang-sm.png);
 background-repeat: no-repeat;}

With this tiny image, no-repeat may not seem terribly useful,
but it is the most common value, and unfortunately not the
default. Let’s try it again with a much bigger symbol. The
following code results in Figure 8-22:

body {background-image: url(yinyang.png);
 background-repeat: no-repeat;}

Figure 8-22. Placing a single large background image

The ability to control the repeat direction dramatically expands
the range of possible effects. For example, let’s say you want a
triple border on the left side of each <h1> element in your
document. You can take that concept further and decide to set a

wavy border along the top of each <h2> element. The image is
colored in such a way that it blends with the background color
and produces the wavy effect shown in Figure 8-23, which is the
result of the following code:

Figure 8-23. Bordering elements with background images

TIP

There are better ways to create a wavy-border effect—notably, the border image
properties explored in “Image Borders”.

Positioning images that repeat

h1 {background-image: url(triplebor.gif); background-
h2 {background-image: url(wavybord.gif); background-r
 background-color: #CCC;}

In the previous section, we explored the values repeat-x ,
repeat-y , and repeat , and how they affect the tiling of
background images. In each case, the tiling pattern always
started from the top-left corner of the element’s background.
That’s because, as you’ve seen, the default values for
background-position are 0% 0% . Given that you know how to
change the position of the origin image, you need to know how
user agents will handle it.

It will be easier to show an example and then explain it.
Consider the following markup, which is illustrated in Figure 8-
24:

p {background-image: url(yinyang-sm.png);
 background-position: center;
 border: 1px dotted gray;}
p.c1 {background-repeat: repeat-y;}
p.c2 {background-repeat: repeat-x;}

Figure 8-24. Centering the origin image and repeating it

So there you have it: stripes running through the center of the
elements. It may look wrong, but it isn’t.

These examples are correct because the origin image has been
placed in the center of the first <p> element. In the first
example, the image is tiled along the y-axis in both directions—
up and down, starting from the origin image at the center. In
the second example, the images are tiled along the x-axis,
starting from the origin image, and repeated to both the right
and left. You may notice the first and last repetitions are slightly
cut off, whereas when we started with background-position:
0 0 , only the last image, or rightmost and bottommost images,
risked being clipped.

Setting an image in the center of the <p> and then letting it
fully repeat will cause it to tile in all four directions: up, down,
left, and right. The only difference background-position
makes is in where the tiling starts. When the background image
repeats from the center, the grid of yin-yang symbols is
centered within the element, resulting in consistent clipping
along the edges. When the tiling begins at the top-left corner of
the padding area, the clipping is not consistent around the
edges. The spacing and rounding values, on the other hand,
prevent image clipping but have their own drawbacks.

NOTE

In case you’re wondering, CSS has no single-direction values such as repeat-left or
repeat-up .

Spacing and rounding repeat patterns

Beyond the basic tiling patterns you’ve seen thus far,
background-repeat has the ability to exactly fill out the
background area. Consider, for example, what happens if we
use the value space to define the tiling pattern, as shown in
Figure 8-25:

div#example {background-image: url(yinyang.png);
 background-repeat: space;}

Figure 8-25. Tiling the background image with filler space

You’ll notice background images in each of the four corners of
the element. Furthermore, the images are spaced out so that
they occur at regular intervals in both the horizontal and
vertical directions.

This is what space does: it determines the number of
repetitions that will fully fit along a given axis, and then spaces
them out at regular intervals so that the repetitions go from one

edge of the background to another. This doesn’t guarantee a
regular square grid, with intervals that are all the same both
horizontally and vertically. It just means that you’ll have what
look like columns and rows of background images. While no
image will be clipped, unless there isn’t enough room for even
one iteration (as can happen with very large background
images), this value often results in different horizontal and
vertical separations. Figure 8-26 shows some examples.

Figure 8-26. Tiling with different intervals showing background-repeat: space on
elements of different sizes

NOTE

Keep in mind that any background color, or the “backdrop” of the element (that is,
the combined backgrounds of the element’s ancestors) will show through the gaps
between space -separated background images.

What happens if you have a really big image that won’t fit more
than once, or even once, along the given axis? That image is
drawn once, placed as determined by the value of background-
position , and clipped as necessary. The flip side is that if more
than one repetition of the image will fit along an axis, the value
of background-position is ignored along that axis. The
following code, for example, displays Figure 8-27:

div#example {background-image: url(yinyang.png);
 background-position: center;
 background-repeat: space;}

Figure 8-27. Spacing along one axis but not the other

Notice that the images are spaced horizontally, and thus
override the center position along that axis, but are centered
vertically and not spaced (because there isn’t enough room to
do so). That’s the effect of space overriding center along one
axis but not the other.

By contrast, the value round will most likely result in scaling of
the background image as it is repeated, and (strangely enough)

will not override background-position . If an image won’t
quite repeat so that it goes from edge to edge of the background,
that image will be scaled up or down to make it fit a whole
number of times.

Furthermore, the images can be scaled differently along each
axis. The round value is the only background property value
that can alter an image’s intrinsic aspect ratio automatically if
needed. While background-size can also lead to a change in
the aspect ratio, distorting the image, this happens only by
explicit direction from the author. You can see an example in
Figure 8-28, which is the result of the following code:

body {background-image: url(yinyang.png);
 background-position: top left;
 background-repeat: round;}

Figure 8-28. Tiling the background image with scaling

Note that if you have a background 850 pixels wide and a
horizontally rounded image that’s 300 pixels wide, a browser
can decide to use three images and scale them down to fit three
across into the 850-pixel area (thus making each instance of the
image 283.333 pixels wide). With space , the browser would
have to use two images and put 250 pixels of space between
them, but round is not so constrained.

Here’s the interesting wrinkle: while round will resize the
images so that you can fit a whole number of them into the
background, it will not move them to make sure that they
actually touch the edges of the background. The only way to
make sure your repeating pattern fits and no background
images are clipped is to put the origin image in a corner. If the

origin image is anywhere else, clipping will occur. The
following code shows an example, illustrated in Figure 8-29:

body {background-image: url(yinyang.png);
 background-position: center;
 background-repeat: round;}

Figure 8-29. Rounded background images that are clipped

The images are still scaled so that they would fit into the
background positioning area a whole number of times. They
just aren’t repositioned to actually do so. Thus, if you’re going to
use round and don’t want to have any clipped background
tiles, make sure you’re starting from one of the four corners
(and make sure the background positioning and painting areas
are the same; see “Tiling and clipping repeated backgrounds”
for more).

Tiling and clipping repeated backgrounds

As you may recall, background-clip can alter the area in
which the background is drawn, and background-origin
determines the placement of the origin image. So what happens
when you’ve made the clipping area and the origin area
different, and you’re using either space or round for the tiling
pattern?

The basic answer is that if your values for background-origin
and background-clip aren’t the same, clipping will happen.
This is because space and round are calculated with respect to
the background positioning area, not the painting area.
Figure 8-30 shows some examples of what can happen.

Figure 8-30. Clipping due to mismatched clip and origin values

As for the best combination of values to use, that’s a matter of
opinion and circumstance. In most cases, setting both

background-origin and background-clip to padding-box
will likely get you the results you desire. If you plan to have
borders with see-through bits, though, border-box might be a
better choice.

Getting Attached

Now you know how to place the origin image for the
background anywhere in the background of an element, and
you know how to control (to a large degree) the way it tiles. As
you may have realized already, placing an image in the center
of the <body> element could mean, given a sufficiently long
document, that the background image won’t be initially visible
to the reader. After all, a browser is a viewport providing a
window onto the document. If the document is too long to be
completely shown in the viewport, the user can scroll back and
forth through the document. The center of the body could be
two or three “screens” below the beginning of the document, or
just far enough down to push most of the origin image beyond
the bottom of the browser window.

Furthermore, if the origin image is initially visible, by default it
scrolls with the document—vanishing when the user scrolls
beyond the location of the image. Never fear: CSS provides a

way to prevent the background image from scrolling out of
view.

BACKGROUND-ATTACHMENT

Values [scroll | fixed | local]#

Initial value scroll

Applies to All elements

Computed value As specified

Inherited No

Animatable No

Using the property background-attachment , you can declare
the origin image to be fixed with respect to the viewing area
and therefore immune to the effects of scrolling:

body {background-image: url(yinyang.png);
 background-repeat: no-repeat;
 background-position: center;
 background-attachment: fixed;}

Doing this has two immediate effects. First, the origin image
does not scroll along with the document. Second, the placement
of the origin image is determined by the size of the viewport,
not the size (or placement within the viewport) of the element
that contains it. Figure 8-31 shows the image still sitting in the
center of the viewport, even though the document has been
scrolled partway through the text.

Figure 8-31. The centering continues to hold

The element-specific version of fixed is local . In this case,
though, the effect is seen only when an element’s content
(rather than the whole document) has to be scrolled. This is
tricky to grasp at first. Consider the following, where
background-attachment is defaulting to scroll :

In this situation, if the content of an aside is taller than 20 em,
the overflowed content is not visible but can be accessed using
a scrollbar. The background image, however, will not scroll
with the content. It will instead stay in the top-right corner of
the element box.

By adding background-attachment: local , the image is
attached to the local context. The visual effect is rather like an
iframe , if you have any experience with those. Figure 8-32
shows the results of the previous code sample and the following
code side by side:

aside {background-image: url(yinyang.png);
 background-position: top right; background-repeat
 max-height: 20em;
 overflow: scroll;}

aside {background-image: url(yinyang.png);
 background-position: top right; background-repeat

Figure 8-32. Default scroll attachment versus local attachment

One other value for background-attachment is the default
value scroll . As you might expect, this causes the background
image to scroll along with the rest of the document when
viewed in a web browser, and it doesn’t necessarily change the
position of the origin image as the window is resized. If the
document width is fixed (perhaps by assigning an explicit
width to the <body> element), resizing the viewing area won’t
affect the placement of a scroll-attachment origin image at all.

Useful side effects of attached backgrounds

In technical terms, when a background image has been fixed, it
is positioned with respect to the viewing area, not the element
that contains it. However, the background will be visible only

 background-attachment: local; /* attaches to cont
 max-height: 20em;
 overflow: scroll;}

within its containing element. Aligning images to the viewport,
rather than the element, can be used to our advantage.

Let’s say you have a document with a tiled background that
actually looks like it’s tiled, and both <h1> and <h2> elements
with the same pattern, only in a different color. You set both the
<body> and heading elements to have fixed backgrounds as
follows, resulting in Figure 8-33:

This neat trick is made possible because when a background’s
attachment is fixed , the origin element is positioned with
respect to the viewport. Thus, both background patterns begin
tiling from the top-left corner of the viewport, not from the
individual elements. For the <body> , you can see the entire
repeat pattern. For the <h1> , however, the only place you can
see its background is in the padding and content of the <h1>
itself. Since both background images are the same size and have
precisely the same origin, they appear to line up, as shown in
Figure 8-33.

body {background-image: url(grid1.gif); background-re
 background-attachment: fixed;}

h1, h2 {background-image: url(grid2.gif); background-
 background-attachment: fixed;}

Figure 8-33. Perfect alignment of backgrounds

This capability can be used to create sophisticated effects. One
of the most famous examples is the “complexspiral distorted”
demonstration, shown in Figure 8-34.

https://meyerweb.com/eric/css/edge/complexspiral/glassy.html

Figure 8-34. The complexspiral distorted

The visual effects are caused by assigning different fixed-
attachment background images to non- <body> elements. The
entire demo is driven by one HTML document, four JPEG
images, and a stylesheet. Because all four images are positioned
in the top-left corner of the browser window but are visible
only where they intersect with their elements, the images line
up to create the illusion of translucent rippled glass. (Now we
can use SVG filters for these sorts of special effects, but fixed-
attachment backgrounds made creating faux filters possible
back in 2002.)

It is also the case that in paged media, such as printouts, every
page generates its own viewport. Therefore, a fixed-attachment
background should appear on every page of the printout. This
could be used for effects such as watermarking all the pages in
a document.

Sizing Background Images

Thus far, we’ve taken images of varying sizes and dropped
them into element backgrounds to be repeated (or not),
positioned, clipped, and attached. In every case, we just took the
image at whatever intrinsic size it was (with the automated
exception of round repeating). Ready to actually change the
size of the origin image and all the tiled images that spawn
from it?

BACKGROUND-SIZE

Values [[< length > | < percentage > | auto]
{1,2} | cover | contain]#

Initial
value

auto

Applies to All elements

Computed
value

As declared, except all lengths made
absolute and any missing auto
keywords added

Inherited No

Animatable Yes

Let’s start by explicitly resizing a background image. We’ll drop
in an image that’s 200 × 200 pixels and then resize it to be twice
as big. The following code results in Figure 8-35:

main {background-image: url(yinyang.png);
 background-repeat: no-repeat;
 background-position: center;
 background-size: 400px 400px;}

Figure 8-35. Resizing the origin image

With background-size , we can resize the origin image to be
smaller. We can size it using ems, pixels, viewport widths, any
length unit, or a combination thereof.

We can even distort the image by changing its size. Figure 8-36
illustrates the results when changing the previous code sample
to use background-size: 400px 4em , with both repeated and
nonrepeated backgrounds.

Figure 8-36. Distorting the origin image by resizing it

As you can see, when background-size has two values, the
first is the horizontal size and the second is the vertical. If you
allow the image to repeat, all the repeated images will be the
same size as the origin image.

Percentages are a little more interesting. If you declare a
percentage value, it’s calculated with respect to the background
positioning area—that is, the area defined by background-
origin , and not by background-clip . Suppose you want an
image that’s half as wide and half as tall as its background
positioning area; the following code results in Figure 8-37:

background-size: 50% 50%;

Figure 8-37. Resizing the origin image with percentages

And yes, you can mix lengths and percentages:

background-size: 25px 100%;

Negative length and percentage values are not permitted for
background-size .

Maintaining the background image’s aspect ratio

Now, what about the default value of auto ? First off, when only
one value is provided, it’s taken for the horizontal size, and the

vertical size is set to auto . (Thus background-size: auto is
equivalent to background-size: auto auto .) If you want to
size the origin image vertically and leave the horizontal size to
be automatic, thus preserving the intrinsic aspect ratio of the
image, you have to write it explicitly, like this:

background-size: auto 333px;

In many ways, auto in background-size acts a lot like the
auto values of height and width (also block-size and
inline-size) when applied to replaced elements such as
images. That is to say, you’d expect roughly similar results from
the following two rules, if they were applied to the same image
in different contexts:

img.yinyang {width: 300px; height: auto;}

main {background-image: url(yinyang.png);
 background-repeat: no-repeat;
 background-size: 300px auto;}

Covering and containing

Now for some real fun! Suppose you want to cover the entire
background of an element with an image, and you don’t care if

parts of it stick outside the background painting area. In this
case, you can use cover :

main {background-image: url(yinyang.png);
 background-position: center;
 background-size: cover;}

This scales the origin image so that it completely covers the
background positioning area while still preserving its intrinsic
aspect ratio, assuming it has one. You can see an example in
Figure 8-38, where a 200 × 200 pixel image is scaled up to cover
the background of an 800 × 400 pixel element. The following
code provides this result:

main {width: 800px; height: 400px;
 background-image: url(yinyang.png);
 background-position: center;
 background-size: cover;}

Note that there is no background-repeat in this example.
That’s because we expect the image to fill out the entire
background, so whether it’s repeated or not doesn’t really
matter.

You can also see that cover is very different from 100% 100% .
If we’d used 100% 100% , the origin image would have been
stretched to be 800 pixels wide by 400 pixels tall. Instead,
cover made it 800 pixels wide and tall, then centered the
image inside the background positioning area. This is the same
as if we’d said 100% auto in this particular case, but the beauty
of cover is that it works regardless of whether your element is
wider than it is tall, or taller than it is wide.

Figure 8-38. Covering the background with the origin image

By contrast, contain will scale the image so that it fits exactly
inside the background positioning area, even if that leaves
some of the rest of the background showing around it. This is
illustrated in Figure 8-39, which is the result of the following
code:

main {width: 800px; height: 400px;
 background-image: url(yinyang.png);
 background-repeat: no-repeat;
 background-position: center;
 background-size: contain;}

Figure 8-39. Containing the origin image within the background

In this case, since the element is shorter than it is tall, the origin
image is scaled so it is as tall as the background positioning
area, and the width is scaled to match, just as if we’d declared
auto 100% . If an element is taller than it is wide, contain acts
like 100% auto .

You’ll note that we brought no-repeat back to the example so
the visual result wouldn’t become too visually confusing.

Removing that declaration would cause the background to
repeat, which is no big deal if that’s what you want. Figure 8-40
shows the result.

Figure 8-40. Repeating a contained origin image

Always remember: the sizing of cover and contain images is
always with respect to the background positioning area, which
is defined by background-origin . This is true even if the
background painting area defined by background-clip is
different! Consider the following rules, which are depicted in
Figure 8-41:

div {border: 1px solid red;
 background: url(yinyang-sm.png) center no-repeat
 /* that’s shorthand 'background', explained in t
cover {background size: cover;}

Figure 8-41. Covering and containing with background-clip and background-
origin

Yes, you can see background color around the edges of some of
these, and others get clipped. That’s the difference between the
painting area and the positioning area. You’d think that cover
and contain would be sized with respect to the painting area,

.cover {background-size: cover;}

.contain {background-size: contain;}

.clip-content {background-clip: content-box;}

.clip-padding {background-clip: padding-box;}

.origin-content {background-origin: content-box;}

.origin-padding {background-origin: padding-box;}

but they aren’t, as depicted in the last examples in Figure 8-41.
Keep that firmly in mind whenever you use these values.

If you have more than one background image, with different
values for position, repeat, or size, include a comma-separated
list of values. Each value in a list will be associated with the
image in that position in the list. If there are more values than
images, the extra values are ignored. If there are fewer, the list
is repeated. You can set only one background color, though.

NOTE

In this section, we used raster images (GIFs, to be precise) even though they tend to
look horrible when scaled up and represent a waste of network resources when
scaled down. (We did this so that it would be extra obvious when lots of up-scaling
was happening.) This is an inherent risk in scaling background raster images. On the
other hand, you can just as easily use SVGs as background images, and they scale up
or down with no loss of quality or waste of bandwidth. If you’re going to be scaling a
background image and it doesn’t have to be a photograph, strongly consider using
SVG or CSS gradients.

Bringing It All Together

As is often the case with thematic areas of CSS, the background
properties can all be brought together in a single shorthand
property: background . Whether you might want to do that is
another question entirely.

BACKGROUND

Values [< bg-layer >,]* < final-bg-

layer >

Initial value Refer to individual properties

Applies to All elements

Percentages Refer to individual properties

Computed
value

Refer to individual properties

Inherited No

Animatable See individual properties

< bg-layer >
< bg-image > ‖ < position > [/ < bg-size >]? ‖ < repeat-

style > ‖ < attachment > ‖ < box > ‖ < box >

< final-bg-layer >

< bg-image > ‖ < position > [/ < bg-size >]? ‖ < repeat-

style > ‖ < attachment > ‖ < box > ‖ < box > ‖ < background-

color >

This syntax can get a little confusing. Let’s start simple and
work our way up.

First off, the following statements are all equivalent to one
another and will have the effect shown in Figure 8-42:

body {background-color: white;
 background-image: url(yinyang.png);
 background-position: top left;
 background-repeat: repeat-y;
 background-attachment: fixed;
 background-origin: padding-box;
 background-clip: border-box;
 background-size: 50% 50%;}
body {background:
 white url(yinyang.png) repeat-y top left/50% 50%
 padding-box border-box;}
body {background:
 fixed url(yinyang.png) padding-box border-box whi
 top left/50% 50%;}
body {background:
 url(yinyang.png) top left/50% 50% padding-box whi

fi d b d b }

Figure 8-42. Using shorthand

You can mostly mix up the order of the values however you
like, with three restrictions. First, any background-size value
must come immediately after the background-position value,
and must be separated from it by a forward slash (/). Second,
within those values, the usual restrictions apply: the horizontal
value comes first, and the vertical value follows, assuming that
you’re supplying axis-derived values (as opposed to, say,
cover).

 fixed border-box;}

Third, if you supply values for both background-origin and
background-clip , the first of the two you list will be assigned
to background-origin , and the second to background-clip .
Therefore, the following two rules are functionally identical:

Related to that, if you supply only one such value, it sets both
background-origin and background-clip . Thus, the
following shorthand sets both the background positioning area
and the background painting area to the padding box:

As is the case for shorthand properties, if you leave out any
values, the defaults for the relevant properties are filled in
automatically. Thus, the following two are equivalent:

body {background:
 url(yinyang.png) top left/50% 50% padding-box bor
 repeat-y fixed;}
body {background:
 url(yinyang.png) top left/50% 50% padding-box whi
 fixed border-box;}

body {background:
 url(yinyang.png) padding-box top left/50% 50% bor

b d {b k d hit l(i }

Even better, background has no required values—as long as
you have at least one value present, you can omit the rest. It’s
possible to set just the background color using the shorthand
property, which is a very common practice:

body {background: white;}

On that note, remember that background is a shorthand
property, and, as such, its default values can obliterate
previously assigned values for a given element. For example:

Given these rules, <h1> elements will be styled according to the
first rule. And <h2> elements will be styled according to the
second, which means they’ll just have a flat silver background.
No image will be applied to <h2> backgrounds, let alone
centered and repeated horizontally. It is more likely that the
author meant to do this:

body {background: white url(yinyang.png;}
body {background: white url(yinyang.png) transparent
 scroll padding-box border-box;}

h1, h2 {background: gray url(thetrees.jpg) center/con
h2 {background: silver;}

This lets the background color be changed without wiping out
all the other values.

One more restriction will lead us very neatly into the next
section: you can supply a background color to only the final
background layer. No other background layer can have a solid
color declared. What the heck does that mean? So glad you
asked.

Working with Multiple Backgrounds

Throughout most of this chapter, we’ve only briefly mentioned
that almost all the background properties accept a comma-
separated list of values. For example, if you wanted to have
three different background images, you could do this:

Seriously. It will look like Figure 8-43.

h1, h2 {background: gray url(thetrees.jpg) center/con
h2 {background-color: silver;}

section {background-image: url(bg01.png), url(bg02.gi
 background-repeat: no-repeat;}

Figure 8-43. Multiple background images

This creates three background layers, one for each image, with
the last being the final, bottom background layer.

The three images are piled into the top-left corner of the
element and don’t repeat. The lack of repetition occurs because
we declared background-repeat: no-repeat . We declared it
only once, and there are three background images.

When a mismatch occurs between the number of values in a
background-related property and the background-image
property, the missing values are derived by repeating the
sequence in the property with a value undercount. Thus, in the
previous example, it was as though we had said this:

background-repeat: no-repeat, no-repeat, no-repeat;

Now, suppose we want to put the first image at the top right, put
the second at the center of the left side, and put the last layer at
the center of the bottom. We can layer background-position
as follows, resulting in Figure 8-44:

Figure 8-44. Individually positioning background images

Similarly, say we want to keep the first two layers from
repeating, but horizontally repeat the third:

section {background-image: url(bg01.png), url(bg02.gi
 background-position: top right, left center,

 background-repeat: no-repeat;}

section {background-image: url(bg01.png), url(bg02.gi
 background-position: top right, left center,
 background-repeat: no-repeat, no-repeat, rep

Nearly every background property can be comma-listed this
way. You can have different origins, clipping boxes, sizes, and
just about everything else for each background layer you
create. Technically, there is no limit to the number of layers you
can have, though at a certain point it’s just going to get silly.

Even the shorthand background can be comma-separated. The
following example is exactly equivalent to the previous one,
and the result is shown in Figure 8-45:

Figure 8-45. Multiple background layers via shorthand

section {
 background: url(bg01.png) right top no-repeat,
 url(bg02.gif) center left no-repeat,
 url(bg03.jpg) 50% 100% repeat-x;}

The only real restriction on multiple backgrounds is that
background-color does not repeat in this manner, and if you
provide a comma-separated list for the background shorthand,
the color can appear on only the last background layer. If you
add a color to any other layer, the entire background
declaration is made invalid. Thus, if we want to have a green
background fill for the previous example, we’d do it in one of
the following two ways:

The reason for this restriction is pretty straightforward.
Imagine if you were able to add a full background color to the
first background layer. It would fill in the whole background
and obscure all the background layers behind it! So if you do
supply a color, it can be on only the last layer, which is
“bottommost.”

section {
 background: url(bg01.png) right top no-repeat,
 url(bg02.gif) center left no-repeat,
 url(bg03.jpg) 50% 100% repeat-x green
section {
 background: url(bg01.png) right top no-repeat,
 url(bg02.gif) center left no-repeat,
 url(bg03.jpg) 50% 100% repeat-x;
 background-color: green;}

This ordering is important to internalize as soon as possible,
because it runs counter to the instincts you’ve likely built up in
the course of using CSS. After all, you know what will happen
here—the <h1> background will be green:

h1 {background-color: red;}
h1 {background-color: green;}

Contrast that with this multiple-background rule, which will
make the <h1> background red:

h1 {background:
 url(box-red.gif),
 url(box-green.gif),
 green;}

Yes, red. The red GIF is tiled to cover the entire background
area, as is the green GIF, but the red GIF is “on top of” the green
GIF. It’s closer to you. And the effect is exactly backward from
the “last one wins” rules built into the cascade.

You can visualize it like this: when there are multiple
backgrounds, they’re listed like the layers in a drawing program
such as Adobe Photoshop or Illustrator. In the layer palette of a
drawing program, layers at the top of the palette are drawn

over the layers at the bottom. The same process plays out here:
the layers listed at the top of the list are drawn over the layers
at the bottom of the list.

The odds are pretty good that you will, at some point, set up a
bunch of background layers in the wrong order, because your
cascade-order reflexes will kick in. (This error still occasionally
trips up the authors even to this day, so don’t get down on
yourself if it gets you too.)

Another fairly common mistake when you’re getting started
with multiple backgrounds is to use the background shorthand
and forget to explicitly turn off background tiling for your
background layers by letting the background-repeat value
default to repeat , thus obscuring all but the top layer. See
Figure 8-46, for example, which is the result of the following
code:

We can see only the top layer because it’s tiling infinitely,
thanks to the default value of background-repeat . That’s why
the example at the beginning of this section used background-
repeat: no-repeat .

section {background-image: url(bg02.gif), url(bg03.jp

Figure 8-46. Obscuring layers with repeated images

Using the Background Shorthand

One way to avoid these sorts of situations is to use the
background shorthand, like so:

That way, when you add or subtract background layers, the
values you meant to apply specifically to them will come in or
go out with them.

This can mean some annoying repetition if all the backgrounds
should have the same value of a given property, like

body {background:
 url(bg01.png) top left border-box no-repeat,
 url(bg02.gif) bottom center padding-box no-r
 url(bg04.svg) bottom center padding-box no-r

background-origin . If that’s the situation, you can blend the
two approaches, like so:

This works just as long as you don’t need to make any
exceptions. The minute you decide to change the origin of one
of those background layers, you’ll need to explicitly list them,
whether you do it in background or with the separate
background-origin declaration.

Remember that the number of layers is determined by the
number of background images, and so, by definition,
background-image values are not repeated to equal the
number of comma-separated values given for other properties.
You might want to put the same image in all four corners of an
element and think you could do it like this:

body {background:
 url(bg01.png) top left no-repeat,

 url(bg02.gif) bottom center no-repeat,
 url(bg04.svg) bottom center no-repeat gray;
 background-origin: padding-box;}

background-image: url(i/box-red.gif);
background-position: top left, top right, bottom righ
background-repeat: no-repeat;

The result, however, would be to place a single red box in the
top-left corner of the element. To get images in all four corners,
as shown in Figure 8-47, you’ll have to list the same image four
times:

Figure 8-47. Placing the same image in all four corners

Creating Box Shadows

You have learned about border images, outlines, and
background images. CSS has another property that can decorate

g p p

background-image: url(i/box-red.gif), url(i/box-red.g
 url(i/box-red.gif), url(i/box-red.g
background-position: top left, top right, bottom righ
background-repeat: no-repeat;

both the inside and outside of an element without impacting
the box model: box-shadow .

BOX-SHADOW

Values none | [inset ? && < length >{2,4} &&
< color >?]#

Initial
value

none

Applies to All elements

Computed
value

< length > values as absolute length
values; < color > values as computed
internally; otherwise, as specified

Inherited No

Animatable Yes

It might seem a little out of place to talk about shadows in a
chapter mostly concerned with backgrounds, but you’ll
understand our reasoning in a moment.

Let’s consider a simple box drop shadow: one that’s 10 pixels
down and 10 pixels to the right of an element box, and a half-
opaque black. Behind it we’ll put a repeating background on the
<body> element. All of this is illustrated in Figure 8-48 and
created with the following code:

#box {background: silver; border: medium solid;
 box-shadow: 10px 10px rgb(0 0 0 / 0.5);}

Figure 8-48. A simple box shadow

We can see that the <body> ’s background is visible through the
half-opaque (or half-transparent, if you prefer) drop shadow.
Because no blur or spread distances are defined, the drop
shadow exactly mimics the outer shape of the element box itself
—at least it appears to do so.

The reason it only appears to mimic the shape of the box is that
the shadow is visible only outside the outer border edge of the
element. We couldn’t really see that in the previous figure,
because the element had an opaque background. You might
have just assumed that the shadow extended all the way under
the element, but it doesn’t. Consider the following, illustrated in
Figure 8-49:

Figure 8-49. Box shadows are incomplete

So it looks as though the element’s content (and padding and
border) area “knocks out” part of the shadow. In truth, it’s just
that the shadow was never drawn there, because of the way
box shadows are defined in the specification. This does mean,
as Figure 8-49 demonstrates, that any background “behind” the
box with a drop shadow can be visible through the element
itself. This (perhaps bizarre-seeming) interaction with the

#box {background: transparent; border: thin dashed;
 box-shadow: 10px 10px rgb(0 0 0 / 0.5);}

backgrounds and borders is why box-shadow is covered here,
instead of at an earlier point in the text.

So far, we’ve seen box shadows defined with two length values.
The first defines a horizontal offset, and the second a vertical
offset. Positive numbers move the shadow down and to the
right, and negative numbers move the shadow up and to the
left.

If a third length is given, it defines a blur distance, which
determines how much space is given to blurring. A fourth
length defines a spread distance, which changes the size of the
shadow. Positive length values make the shadow expand before
blurring happens; negative values cause the shadow to shrink.
The following has the results shown in Figure 8-50:

.box:nth-of-type(1) {box-shadow: 1em 1em 2px rgba(0,0

.box:nth-of-type(2) {box-shadow: 2em 0.5em 0.25em rgb

.box:nth-of-type(3) {box-shadow: 0.5em 2ch 1vw 13px r

.box:nth-of-type(4) {box-shadow: -10px 25px 5px -5px

.box:nth-of-type(5) {box-shadow: 0.67em 1.33em 0 -0.1

.box:nth-of-type(6) {box-shadow: 0.67em 1.33em 0.2em

.box:nth-of-type(7) {box-shadow: 0 0 2ch 2ch rgba(128

Figure 8-50. Various blurred and spread shadows

You may have noticed that some of these boxes have rounded
corners (via border-radius), and that their shadows are
curved to match. This is the defined behavior, fortunately.

We have yet to cover one aspect of box-shadow , which is the
inset keyword. If inset is added to the value of box-shadow ,
the shadow is rendered inside the box, as if the box were a
punched-out hole in the canvas rather than floating above it
(visually speaking). Let’s take the previous set of examples and
redo them with inset shadows. This will have the result shown
in Figure 8-51:

.box:nth-of-type(1) {box-shadow: inset 1em 1em 2px rg

.box:nth-of-type(2) {box-shadow: inset 2em 0.5em 0.25

.box:nth-of-type(3) {box-shadow: 0.5em 2ch 1vw 13px r

.box:nth-of-type(4) {box-shadow: inset -10px 25px 5px

.box:nth-of-type(5) {box-shadow: 0.67em 1.33em 0 -0.1

.box:nth-of-type(6) {box-shadow:
 inset 0.67em 1.33em 0.2em -0.1em rgba(0,0,0,0.5);}
.box:nth-of-type(7) {box-shadow: 0 0 2ch 2ch rgba(128

Figure 8-51. Various inset shadows

Note that the inset keyword can appear before the rest of the
value, or after, but not in the middle of the lengths and colors. A
value like 0 0 0.1em inset gray would be ignored as invalid
because of the placement of the inset keyword.

The last point to note is that you can apply to an element a list
of as many comma-separated box shadows as you like, just as
with text shadows. Some could be inset, and some outset. The
following rules are just two of the infinite possibilities:

Multiple shadows are drawn back to front, just as background
layers are, so the first shadow in the comma-separated list will

#shadowbox {
 padding: 20px;
 box-shadow: inset 0 -3em 3em rgb(0 0 0 /0.1),
 0 0 0 2px rgb(255 255 255),
 0.3em 0.3em 1em rgb(0 0 0 / 0.3);}
#wacky {box-shadow: inset 10px 2vh 0.77em 1ch red,
 1cm 1in 0 -1px cyan inset,
 2ch 3ch 0.5ch hsl(117, 100%, 50% / 0.343),
 -2ch -3ch 0.5ch hsl(297, 100%, 50% / 0.23);}

be “on top” of all the others. Consider the following:

box-shadow: 0 0 0 5px red,
 0 0 0 10px blue,
 0 0 0 15px green;

The green is drawn first, then the blue on top of the green, and
the red drawn last, on top of the blue. While box shadows can
be infinitely wide, they do not contribute to the box model and
take up no space. Because of this, make sure to include enough
space, especially if you’re doing large offsets or blur distances.

TIP

The filter property is another way to create element drop shadows, although it is
much closer in behavior to text-shadow than box-shadow , albeit applying to the
entire element box and text. See Chapter 20 for details.

Summary

Adding backgrounds to elements, whether with colors or
images, gives you a great deal of power over the total visual
presentation. The advantage of CSS over older methods is that
colors and backgrounds can be applied to any element in a
document, and manipulated in surprisingly complex ways.

Chapter 9. Gradients

Three image types defined by CSS are described entirely with
CSS: linear gradients, radial gradients, and conic gradients.
Each type has two subtypes: repeating and nonrepeating.
Gradients are most often used in backgrounds, though they can
be used in any context where an image is permitted—as in
list-style-image and border-image , for example.

A gradient is a visual transition from one color to another. A
gradient from yellow to red will start yellow, run through
successively less yellow, redder shades of orange, and
eventually arrive at a full red. How gradual or abrupt the
transition is depends on the amount of space the gradient has
and the way you define color stops and progression color hints.
If you run from white to black over 100 pixels, each pixel along
the gradient’s default progression will be another 1% darker
gray, as shown in Figure 9-1.

Figure 9-1. The progression of a simple gradient

As we go through the process of exploring gradients, always
keep this in mind: gradients are images. It doesn’t matter that
you describe them by typing CSS—they are every bit as much
images as SVGs, PNGs, JPEGs, and so on—but gradients have
excellent rendering performance, don’t require an extra HTTP
request to load, and are infinitely scalable.

What’s interesting about gradients is that they have no intrinsic
dimensions. If the background-size property’s value auto is
used, it is treated as if it were 100% . Thus, if you don’t define a
background-size for a background gradient, it will be set to
the default value of auto , which is the same as declaring 100%
100% . So, by default, background gradients fill the entire
background positioning area. Just note that if you offset the
gradient’s background position with a length (not percentage)
value, by default it will tile.

Linear Gradients

Linear gradients are gradient fills that proceed along a linear
vector, referred to as the gradient line. Here are a few relatively
simple gradients, with the results shown in Figure 9-2:

#ex01 {background-image: linear-gradient(purple, gold
#ex02 {background-image: linear-gradient(90deg, purpl

Figure 9-2. Simple linear gradients

The first of these is the most basic that a gradient can be: two
colors. This causes a gradient from the first color at the top of
the background painting area to the second color at the bottom
of the background painting area.

By default, a gradient runs from top to bottom because the
default direction for gradients is to bottom , which is the same
as 180deg and its various equivalents (for example, 0.5turn).
If you’d like to go in a different direction, you can start the
gradient value with a direction. That’s what we did for all the
other gradients shown in Figure 9-2.

A gradient must have, at minimum, two color stops. They can
be the same color, though. If you want to have a solid color
behind only part of your content, a gradient with the same

#ex03 {background-image: linear-gradient(to left, pur
#ex04 {background-image: linear-gradient(-135deg, pur
#ex05 {background-image: linear-gradient(to bottom le

color declared twice, along with a background size and a no-
repeat, enables that, as shown in Figure 9-3:

Figure 9-3. Solid-color gradients

The basic syntax of a linear gradient is shown here:

linear-gradient(
 [[<angle> | to <side-or-quadrant>],]?
 [<color-stop-list> [, <color-hint>]?]# ,

blockquote {
 padding: 0.5em 1em 2em;
 background-image:
 linear-gradient(palegoldenrod, palego
 linear-gradient(salmon, salmon);
 background-size: 75% 90%;
 background-position: 0px 0px, 15px 30px;
 background-repeat: no-repeat;
 columns: 3;
}

 <color-stop-list>
)

We’ll explore both color stop lists and color hints soon. For now,
the basic pattern to keep in mind is an optional direction at the
start, a list of color stops and/or color hints, and a color stop at
the end. As shown earlier, a linear-gradient() value must
have a minimum of two color stops.

While you use the to keyword only if you’re describing a side
or quadrant with keywords like top and right , the direction
you give always describes the direction in which the gradient
line points. In other words, linear-
gradient(0deg,red,green) will have red at the bottom and
green at the top because the gradient line points toward 0
degrees (the top of the element) and thus ends with green.
While it is indeed “going toward 0 degrees,” remember to omit
the to if you’re using an angle value, because something like
to 45deg is invalid and will be ignored. Degrees increase
clockwise from 0 at the top.

The important point is that while 0deg is the same as to top ,
45% is not the same as to top right . This is explained in
“Understanding Gradient Lines: The Gory Details”. Equally
important to remember is that when using angles, whether it’s

degrees, radians, or turns, the unit type is required. A 0 value is
not valid and will prevent any gradient from being created,
while 0deg is valid.

Setting Gradient Colors

You can use any color value you like in gradients, including
alpha-channel values such as rgba() and keywords like
transparent . Thus it’s entirely possible to fade out pieces of
your gradient by blending to (or from) a color with zero opacity.
Consider the following rules, which are depicted in Figure 9-4:

Figure 9-4. Fading to white versus fading to transparent

#ex01 {background-image:
 linear-gradient(to right, rgb(200,200,200), rgb(
#ex02 {background-image:
 linear-gradient(to right, rgba(200,200,200,1), r

The first example fades from light gray to white, whereas the
second example fades the same light gray from opaque to
transparent, thus allowing the parent element’s yellow
background to show through.

You’re not restricted to two colors, either. While that is the
minimum number of colors allowed, you’re free to add as many
colors as you can stand. Consider the following gradient:

The gradient line points toward 90 degrees, which is the right
side. There are 14 color stops in all, one for each of the comma-
separated color names, and they are, by default, distributed
evenly along the gradient line, with the first at the beginning of
the line and the last at the end. Between the color stops, by
default the colors are blended as smoothly as possible from one
color to the other. This is shown in Figure 9-5, with extra labels
indicating how far along the gradient line the color stops are
placed.

#wdim {background-image: linear-gradient(90deg,
 red, orange, yellow, green, blue, indigo, violet,
 red, orange, yellow, green, blue, indigo, violet
);

Figure 9-5. The distribution of color stops along the gradient line

So, without any indication of where the color stops should be
positioned, they’re evenly distributed. Fortunately, we can give
each color up to two positions, and can even use color hints for
more control over gradient progression, hopefully improving
the visual effect.

Positioning Color Stops

The full syntax of a < color-stop > is as follows:

[<color>] [<length> | <percentage>]{1,2}?

After every color value, you can (but don’t have to) supply a
position value or two. This gives you the ability to distort the
default evenly distributed progression of color stops into
something else.

We’ll start with lengths, since they’re pretty simple. Let’s take a
rainbow progression (only a single rainbow this time) and have

each color of the rainbow occur every 25 pixels, as shown in
Figure 9-6:

Figure 9-6. Placing color stops every 25 pixels

This worked out just fine, but notice what happens after 150
pixels—the violet just continues on to the end of the gradient
line. That’s what happens if you set up the color stops so they
don’t make it to the end of a basic gradient line: the last color is
just carried onward.

Conversely, if your color stops go beyond the end of a basic
gradient line, the gradient will appear to stop at whatever point
it manages to reach when it gets to the end of the visible part of
the gradient line. This is illustrated in Figure 9-7, created with
the following code:

#spectrum {background-image: linear-gradient(90deg,
 red, orange 25px, yellow 50px, green 7
 blue 100px, indigo 125px, violet 150px

Figure 9-7. Gradient clipping when color stops go too far

Since the last color stop is at 1,200 pixels but the background
size isn’t nearly that wide, the visible part of the gradient stops
right around the color blue .

Note that in the preceding two examples and figures, the first
color (red) doesn’t have a length value. If the first color has no
position, it’s assumed to be the beginning of the gradient line, as
if 0% (or other zero value, like 0px) had been declared.
Similarly, if you leave a position off the last color stop, it’s
assumed to be the end of the gradient line. (But note that this is
not true for repeating gradients, which we’ll cover in
“Repeating Linear Gradients”.)

You can use any length value you like, not just pixels—ems,
viewport units, you name it. You can even mix different units
into the same gradient, although this is not generally

#spectrum {background-image: linear-gradient(90deg,
 red, orange 200px, yellow 400px, green
 blue 800px, indigo 1000px, violet 1200

recommended for reasons we’ll get to in a little bit. You can also
have negative length values if you want; doing so will place a
color stop before the beginning of the gradient line, all the color
transitions will happen as expected, and clipping will occur in
the same manner as it happens at the end of the line. The
following code, for example, results in Figure 9-8:

Figure 9-8. Gradient clipping when color stops have negative positions

As for percentages, they’re calculated with respect to the total
length of the gradient line. A color stop at 50% will be at the
midpoint of the gradient line. Let’s return to our rainbow
example, and instead of having a color stop every 25 pixels,
we’ll have one every 10% of the gradient line’s length. This
would look like the following, which has the result shown in
Figure 9-9:

#spectrum {background-image: linear-gradient(90deg,
 red -200px, orange 200px, yellow 400px
 blue 800px, indigo 1000px, violet 1200

#spectrum {background-image: linear-gradient(90deg

Figure 9-9. Placing color stops every 10%

As you saw previously, since the last color stop comes before
the end of the gradient line, its color (violet) is carried
through to the end of the gradient. These stops are more spread
out than in the earlier 25-pixel example, but otherwise things
happen in more or less the same way.

If some color stops have position values and others don’t, the
stops without positions are evenly distributed between the ones
that do. The following are equivalent:

#spectrum {background-image: linear-gradient(90deg,
 red, orange 10%, yellow 20%, green 30%, blue 40%,

#spectrum {background-image: linear-gradient(90deg,
 red, orange, yellow 50%, green, blue, indigo 95%, v

#spectrum {background-image: linear-gradient(90deg,
 red 0%, orange 25%, yellow 50%, green 65%, blue 80%

Because red and violet don’t have specified position values,
they’re taken to be 0% and 100% , respectively. This means that
orange , green , and blue will be evenly distributed between
the explicitly defined positions to either side of them.

For orange , that means the point midway between red 0%
and yellow 50% , which is 25%. For green and blue , these
need to be arranged between yellow 50% and indigo 95% .
That’s a 45% difference, which is divided in three, because there
are three intervals between the four values. That means 65%
and 80%.

You might wonder what happens if you put two color stops at
exactly the same point, like this:

All that happens is the two color stops are put on top of each
other. Figure 9-10 shows the result.

#spectrum {background-image: linear-gradient(90deg,
 red 0%, orange, yellow 50%, green 50%, blue , ind

Figure 9-10. The effect of coincident, or “hard,” color stops

The gradient blends as usual all along the gradient line, but at
the 50% point, it instantly blends from yellow to green over
zero length, creating what’s often called a hard color stop. So
the gradient blends from orange at the 25% point (halfway
between 0% to 50%) to yellow at the 50% point, then blends
from yellow to green over zero length, then blends from green
at 50% over to blue at 66.67% (one-third of the way between
50% and 100%).

This hard-stop effect can be useful if you want to create a
striped effect. The following code results in the stripes shown in
Figure 9-11:

.stripes {background-image: linear-gradient(90deg,
 gray 0%, gray 25%,
 transparent 25%, transparent 50%,
 gray 50%, gray 75%,
 transparent 75%, transparent 100%);}

Figure 9-11. Hard-stop stripes

That said, there’s an easier and more readable way to do that
kind of thing, which is to give each color a starting and ending
stop position. Here’s how to do that, with exactly the same
result as shown in Figure 9-11:

.stripes {background-image:
 linear-gradient(90deg,
 gray 0% 25%,
 transparent 25% 50%,
 gray 50% 75%,
 transparent 75% 100%);}

Note that the 0% and 100% could have been left out, and they’d
be inferred by the browser. So you can leave them in for clarity
or take them out for efficiency, as suits you.

It’s also fine to mix two-stop stripes and one-stop color points in
a single gradient. If you want to have the first and last quarter
of the gradient be solid gray stripes and transition through
transparency between them, it could look like this:

.stripes {background-image:
 linear-gradient(90deg,
 gray 0% 25%,
 transparent 50%,
 gray 75% 100%);}

OK, so that’s what happens if you put color stops right on top of
each other, but what happens if you put one before the other?
Something like this, say:

The offending color stop (blue, in this case) is set to the largest
specified value of a preceding color stop. Here, it is set to 50% ,
since the stop before it has that position. This creates a hard
stop, and we get the same effect we saw earlier, when the green
and blue color stops were placed on top of each other.

The key point here is that the color stop is set to the largest
specified position of the stop that precedes it. Thus, the
following two gradients are visually the same, as the indigo
color stop in the first gets set to 50% :

#spectrum {background-image: linear-gradient(90deg,
 red 0%, orange, yellow, green 50%, blue 40%, indi

#spectrum {background-image: linear-gradient(90deg,

In this case, the largest specified position before the indigo stop
is the 50% specified at the yellow stop. Thus, the gradient fades
from red to orange to yellow, then has a hard switch to indigo
before fading from indigo to violet. The green and blue aren’t
skipped; rather, the gradients transition from yellow to green to
blue to indigo over zero distance. See Figure 9-12 for the results.

Figure 9-12. Handling color stops that are out of place

This behavior is the reason mixing units within a single
gradient is generally discouraged. If you mix rem units and
percentages, for example, your color stop positioned with
percentages might end up before an earlier color stop
positioned with rems.

Setting Color Hints

p { g g g (g,
 red 0%, orange, yellow 50%, green, blue, indigo 3

#spectrum {background-image: linear-gradient(90deg,
 red 0%, orange, yellow 50%, indigo 50%, violet)};

Thus far, we’ve worked with color stops, but you may
remember that the syntax for linear gradients permits color
hints after each color stop:

linear-gradient(
 [[<angle> | to <side-or-quadrant>],]?
 [<color-stop-list> [, <color-hint>]?]# ,
 <color-stop-list>
)

A < color-hint > is a way of modifying the blend between the
two color stops to either side. By default, the blend from one
color stop to the next is linear, with the midpoint of the blend at
the halfway mark between two color stops, or 50%. It doesn’t
have to be that simple. The following two gradients are the
same and have the result shown in Figure 9-13:

linear-gradient(
 to right, rgb(0% 0% 0%) 25%, rgb(90% 90% 90%) 75%
)
linear-gradient(
 to right, rgb(0% 0% 0%) 25%, 50%, rgb(90% ,90% ,9
)

Figure 9-13. Linear blending from one color stop to the next

With color hints, we can change the midpoint of the
progression. Instead of reaching rgb(45% 45% 45%) at the
halfway point, it can be set for any point between the two stops.
Thus, the following CSS leads to the result seen in Figure 9-14:

#ex01 {background:
 linear-gradient(to right, rgb(0% 0% 0%) 25%, rgb
#ex02 {background:
 linear-gradient(to right, rgb(0% 0% 0%) 25%, 33%

#ex03 {background:
 linear-gradient(to right, rgb(0% 0% 0%) 25%, 67%
#ex04 {background:
 linear-gradient(to right, rgb(0% 0% 0%) 25%, 25%
#ex05 {background:
 linear-gradient(to right, rgb(0% 90% 90%) 25%, 7

Figure 9-14. Black to gray with differing midpoint hints

In all five examples, the first color stop is at the 25% mark and
the last at the 75% mark, but each has a different midpoint for
the gradient. In the first case (#ex01), the default linear
progression is used, with the middle color (45% black)
occurring at the midpoint between the two color stops.

In the second case (#ex02), the middle color happens at the
33% point of the gradient line. So the first color stop is at the
25% point on the line, the middle color happens at 33%, and the
second color stop happens at 75%.

In the third example (#ex03), the midpoint is at the 67% point
of the gradient line; thus, the color fades from black at 25% to

the middle color at 67%, and then from that middle color at 67%
to light gray at 75%.

The fourth and fifth examples show what happens when you
put a color hint’s distance right on top of one of the color stops:
you get a hard stop.

The interesting point about color hinting is that the progression
from color stop to color hint to color stop is not just a set of two
linear progressions. Instead, the progression has some
“curving,” in order to ease from one side of the color hint to the
other. (The exact curve is logarithmic and based on the
gradient-progression equation used by Photoshop.) This is
easiest to see by comparing what would seem to be, but actually
is not, two gradients that do the same thing. As you can see in
Figure 9-15, the result is rather different for these two
examples:

#ex01 {background:
 linear-gradient(to right,
 rgb(0% 0% 0%) 25%,
 rgb(45% 45% 45%) 67%, /* this is a color st
 rgb(90% 90% 90%) 75%);}
#ex02 {background:
 linear-gradient(to right,
 rgb(0% 0% 0%) 25%,

67% /* this is a color hi

Figure 9-15. Comparing two linear gradients to one hinted transition

Notice how the gray progression differs in the two examples.
The first shows a linear progression from black to
rgb(45%,45%,45%) , and then another linear progression from
there to rgb(90%,90%,90%) . The second progresses from black
to light gray over the same distance, and the color-hint point is
at the 67% mark, but the gradient is altered to attempt a
smoother overall progression. The colors at 25%, 67%, and 75%
are the same in both examples, but all the other shades along
the way are different because of the (somewhat complicated)
easing algorithm defined in the CSS specifications.

 67%, /* this is a color hi
 rgb(90% 90% 90%) 75%);}

WARNING

If you’re familiar with animations, you might think to put easing functions (such as
ease-in) into a color hint, in order to exert more control over the way the colors are
blended. While the browser does this to some extent, as illustrated in Figure 9-15, this
isn’t something developers can control as of late 2022 (though that capability is under
serious discussion by the CSS Working Group at this time).

Understanding Gradient Lines: The Gory
Details

Now that you have a grasp of the basics of placing color stops,
let’s look closely at how gradient lines are constructed, and thus
how they create the effects that they do. First, let’s set up a
simple gradient so we can then dissect how it works:

linear-gradient(
 55deg, #4097FF, #FFBE00, #4097FF
)

Now, how does this one-dimensional construct—a line at 55
degrees on the compass—create a two-dimensional gradient
fill? First, the gradient line is placed and its start and ending
points determined. This is diagrammed in Figure 9-16, with the
final gradient shown next to it.

Figure 9-16. The placement and sizing of the gradient line

The first point to make very clear is that the box seen here is
not an element—it’s the linear-gradient image itself.
(Remember, we’re creating images here.) The size and shape of
that image can depend on a lot of factors, whether it’s the size
of the element’s background or the application of properties
like background-size , which is a topic we’ll cover in a bit. For
now, we’re just concentrating on the image itself.

So, in Figure 9-16, you can see that the gradient line goes
straight through the center of the image. The gradient line
always goes through the center of the gradient image, and in
this case, the gradient image is centered in the background
area. (Using background-position to shift placement of a
gradient image can, in some cases, make it appear that the
center of the gradient is not centered in the image, but it is.)
This gradient is set to a 55-degree angle, so it’s pointing at 55

degrees on the compass. What’s interesting is the start and
ending points of the gradient line, which are actually outside
the image.

Let’s talk about the starting point first. It’s the point on the
gradient line where a line perpendicular to the gradient line
intersects with the corner of the image farthest away from the
gradient line’s direction (55deg). Conversely, the gradient line’s
ending point is the point on the gradient line where a
perpendicular line intersects the corner of the image nearest to
the gradient line’s direction.

Bear in mind that the terms “starting point” and “ending point”
are a little bit misleading—the gradient line doesn’t actually
stop at either point. The gradient line is, in fact, infinite.
However, the starting point is where the first color stop will be
placed by default, as it corresponds to position value 0% .
Similarly, the ending point corresponds to the position value
100% .

Therefore, let’s consider the gradient we defined before:

linear-gradient(
 55deg, #4097FF, #FFBE00, #4097FF
)

The color at the starting point will be #4097FF , the color at the
midpoint (which is also the center of the gradient image) will be
#FFBE00 , and the color at the ending point will be #4097FF ,
with smooth blending in between. This is illustrated in Figure 9-
17.

Figure 9-17. The calculation of color along the gradient line

All right, fine so far. But, you may wonder, how do the bottom-
left and top-right corners of the image get set to the same blue
that’s calculated for the starting and ending points, if those
points are outside the image? Because the color at each point
along the gradient line is extended out perpendicularly from
the gradient line. This is partially shown in Figure 9-18 by
extending perpendicular lines at the starting and ending points,
as well as every 5% of the gradient line between them. Note that
each line perpendicular to the gradient line is a solid color.

Figure 9-18. The extension of selected colors along the gradient line

Hopefully, that should be enough to let you mentally fill in the
rest, so let’s consider what happens to the gradient image in
various other settings. We’ll use the same gradient definition as
before, but this time apply it to wide, square, and tall images.
These are shown in Figure 9-19. Note that the starting-point and
ending-point colors always make their way into the corners of
the gradient image.

Figure 9-19. How gradients are constructed for various images

Note that we very carefully said “the starting-point and ending-
point colors,” and did not say “the starting and ending colors.”
That’s because, as you saw earlier, color stops can be placed
before the starting point and after the ending point, like so:

linear-gradient(
 55deg, #4097FF -25%, #FFBE00, #4097FF 125%
)

The placement of these color stops, the starting and ending
points, the way the colors are calculated along the gradient line,
and the final gradient are all shown in Figure 9-20.

Figure 9-20. A gradient with stops beyond the starting and ending points

Once again, we see that the colors in the bottom-left and top-
right corners match the starting-point and ending-point colors.
It’s just that in this case, since the first color stop comes before

the starting point, the actual color at the starting point is a
blend of the first and second color stops. Likewise for the
ending point, which is a blend of the second and third color
stops.

Now here’s where things get a little bit wacky. Remember how
you can use directional keywords, like top and right , to
indicate the direction of the gradient line? Suppose you want
the gradient line to go toward the top right, so you create a
gradient image like this:

This does not cause the gradient line to intersect with the top-
right corner. If only that were so! Instead, what happens is a
good deal stranger. First, let’s diagram it in Figure 9-21 so that
we have something to refer to.

linear-gradient(
 to top right, #4097FF -25%, #FFBE00, #4097FF 125%
)

Figure 9-21. A gradient headed toward the top right

Your eyes do not deceive you: the gradient line is way off from
the top-right corner. It is headed into the top-right quadrant of
the image, though. That’s what to top right really means:
head into the top-right quadrant of the image, not into the top-
right corner.

As Figure 9-21 shows, the way to find out exactly what that
means is to do the following:

1. Draw a line from the midpoint of the image into the corners
adjacent to the corner in the quadrant that’s been declared.
Thus, for the top-right quadrant, the adjacent corners are the
top left and bottom right.

2. Find the center point of that line, which is the center point of
the image, and draw the gradient line perpendicular to that
line, through the center point, pointing into the declared
quadrant.

3. Construct the gradient—that is, determine the starting and
ending points, place or distribute the color stops along the
gradient line, and then calculate the entire gradient image, as
per usual.

This process has a few interesting side effects. First, the color at
the midpoint will always stretch from one quadrant-adjacent
corner to the other. Second, if the image’s shape changes—that
is, if its aspect ratio changes—the gradient line will also reset its
direction, reorienting slightly to fit the new aspect ratio. So
watch out for that if you have flexible elements. Third, a
perfectly square gradient image will have a gradient line that
intersects with a corner. Figure 9-22 depicts examples of these
three side effects, using the following gradient definition in all
three cases:

linear-gradient(

Figure 9-22. Examples of the side effects of a quadrant-directed gradient

Sadly, there is no way to say “point the gradient line into the
corner of a nonsquare image,” short of calculating the
necessary degree heading yourself and declaring it explicitly, a
process that will most likely require JavaScript unless you know
the image will always be an exact size in all cases, forever. (Or
use the aspect-ratio property; see Chapter 6 for details.)

While linear gradients follow a gradient line in the direction set
forth by the angle, it is possible to create a mirrored gradient;
for that, oddly enough, see “Radial Gradients”.

Repeating Linear Gradients

Regular gradients are autosized by default, matching the size of
the background area to which they are applied. In other words,

 to top right, purple, green 49.5%, black 50%, gre
)

by default a gradient image takes up all the available
background space and does not repeat.

Intentionally setting a background size and tiling images,
especially with hard color stops, can create interesting effects.
By declaring two linear-gradient background images using hard
color stops, with perpendicular gradient lines, and different
background colors, you can create picnic tablecloth effects for
any place setting by setting up some gradient images, tiling
them, and then putting a color underneath, as illustrated in
Figure 9-23:

div {
 background-image:
 linear-gradient(to top, transparent 1vw, rgba(0
 linear-gradient(to right, transparent 1vw, rgba
 background-size: 2vw 2vw;
 background-repeat: repeat;
}
div.fruit {background-color: papayawhip;}
div.grain {background-color: palegoldenrod;}
div.fishy {background-color: salmon;}

Figure 9-23. Papayawhip-, palegoldenrod-, and salmon- colored table cloths

Instead of defining a gradient size with background-size and
tiling it with background-repeat , we can use repeating linear
gradient syntax. By adding repeating in front of the linear
gradients, they are made infinitely repeating within the size of
the gradient. In other words, the declared color stops and color
hints are repeated on a loop along the gradient line, over and
over again, because the size of a gradient line when using
repeating-linear-gradient is the size of the last color stop
position less the first color stop position (in this case, 2vw).
Thus, we can remove the sizing and repetition properties, as in
the following, and get the same result shown in Figure 9-23:

div {
 background-image:
 repeating-linear-gradient(to top,
 transparent 0 1vw, rgb(0 0 0 / 0.2) 1vw 2vw),
 repeating-linear-gradient(to right,
 transparent 0 1vw, rgb(0 0 0 / 0.2) 1vw 2vw);

This is nice for simple patterns like these tablecloths, but it
comes in really handy for more complex situations. For
example, if you declare the following nonrepeating gradient,
you end up with discontinuity where the image repeats, as
shown in Figure 9-24:

Figure 9-24. Tiling gradient images with a repeating background image

You could try to nail down the exact sizes of the element and
gradient image and then mess with the construction of the
gradient image to try to make the sides line up, but it would be
a lot easier to do the following, with the result shown in
Figure 9-25:

}
div.fruit {background-color: papayawhip;}

div.grain {background-color: palegoldenrod;}
div.fishy {background-color: salmon;}

h1.example {background:
 linear-gradient(-45deg, black 0, black 25px, yell
 top left/40px 40px repeat;}

h1 example {background: repeating linear gradient(45

Figure 9-25. A repeating gradient image

Note that the last color stop ends with an explicit length (50px).
This is important to do with repeating gradients, because the
length value(s) of the last color stop defines the overall length of
the pattern. If you leave off an ending stop, it will default to
100%, which is the end of the gradient line.

If you’re using smoother transitions, you need to be careful that
the color value at the last color stop matches the color value at
the first color stop. Consider this:

This will produce a smooth gradient from purple to gold at 50
pixels, and then a hard switch back to purple and another 50-
pixel purple-to-gold blend. By adding one more color stop with
the same color as the first color stop, the gradient can be
smoothed out to avoid hard-stop lines:

h1.example {background: repeating-linear-gradient(-45
 black 0 25px, yellow 25px 50px) top left;}

repeating-linear-gradient(-45deg, purple 0px, gold 50

repeating-linear-gradient(-45deg purple 0px gold 50

See Figure 9-26 for a comparison of the two approaches.

Figure 9-26. Dealing with hard resets in repeating-gradient images

You may have noticed that none of the repeating gradients so
far have a defined size. That means the images are defaulting in
size to the full background positioning area of the element to
which they’re applied, per the default behavior for images that
have no intrinsic height and width.

If you resize a repeating-gradient image by using background-
size , the gradient would repeat only within the bounds of the
gradient image. If you then repeated that image using
background-repeat , you could easily be back to having
discontinuities in your background.

If you use percentages in your repeating linear gradients, they’ll
be placed the same as if the gradient wasn’t of the repeating
variety. Then again, this would mean that all of the gradients
defined by those color stops would be seen and none of the

repeating-linear-gradient(-45deg, purple 0px, gold 50

repetitions would be visible, so percentages tend to be kind of
pointless with repeating linear gradients.

Radial Gradients

Linear gradients are pretty awesome, but at times you really
want a circular gradient. You can use such a gradient to create a
spotlight effect, a circular shadow, a rounded glow, or any
number of other effects, including a reflected gradient. The
syntax used is similar to that for linear gradients, but some
interesting differences exist:

What this boils down to is you can optionally declare a shape
and size, optionally declare where the center of the gradient is
positioned, and then declare two or more color stops with
optional color hints between the stops. Interesting options are
available in the shape and size bits, so let’s build up to those.

radial-gradient(
 [[<shape> ‖ <size>] [at <position>]? , | at

 [<color-stop-list> [, <color-hint>]?] [, <c
)

First, let’s look at a simple radial gradient—the simplest
possible, in fact—presented in a variety of differently shaped
elements (Figure 9-27):

Figure 9-27. A simple radial gradient in multiple settings

In all of these cases, because no position is declared, the default
of center is used, and the default ellipse has the same aspect
ratio as the image size. Because no shape is declared, the shape
is an ellipse for all cases but the square element; in that case,
the shape is a circle. Finally, because no color-stop or color-hint
positions are declared, the first is placed at the beginning of the
gradient ray, and the last at the end, with a linear blend from
one to the other.

That’s right: the gradient ray is the radial equivalent of the
gradient line in linear gradients. It extends outward from the

.radial {background-image: radial-gradient(purple, go

center of the gradient directly to the right, and the rest of the
gradient is constructed from it. (We’ll get to the details in just a
bit.)

Setting Shape and Size

First off, a radial gradient has exactly two possible shape values
(and thus two possible shapes): circle and ellipse . The
shape of a gradient can be declared explicitly or can be implied
by the way you size the gradient image.

So, on to sizing. As always, the simplest way to size a radial
gradient is with either one nonnegative length (if you’re sizing a
circle) or two nonnegative lengths (if it’s an ellipse). Say you
have this radial gradient:

radial-gradient(50px, purple, gold)

This creates a circular radial gradient that fades from purple at
the center to gold at a distance of 50 pixels from the center. If
we add another length, the shape becomes an ellipse that’s as
wide as the first length and as tall as the second length:

radial-gradient(50px 100px, purple, gold)

Figure 9-28 shows these two gradients.

Figure 9-28. Simple radial gradients

Notice that the shape of the gradients has nothing to do with the
overall size and shape of the images in which they appear. If
you make a gradient a circle, it will be a circle, even if it’s inside
a rectangular gradient image. So too will an ellipse always be an
ellipse, even when inside a square gradient image.

You can also use percentage values for the size, but only for
ellipses. Circles cannot be given percentage sizes because
there’s no way to indicate the axis to which that percentage
refers. (Imagine an image 100 pixels tall by 500 wide. Should
10% mean 10 pixels or 50 pixels?) If you try to provide
percentage values for a circle, the entire declaration will fail
because of the invalid value.

If you do supply percentages to an ellipse, then as usual, the
first refers to the horizontal axis and the second to the vertical.
The following gradient is shown in various settings in Figure 9-
29:

radial-gradient(50% 25%, purple, gold)

Figure 9-29. Percentage-sized elliptical gradients

When it comes to ellipses, you’re also able to mix lengths and
percentages, with the usual caveat to be careful. So if you’re
feeling confident, you can absolutely make an elliptical radial
gradient 10 pixels tall and half the element width, like so:

radial-gradient(50% 10px, purple, gold)

As it happens, lengths and percentages aren’t the only way to
size radial gradients. In addition to those value types, four

keywords are available for sizing radial gradients, the effects of
which are summarized here:

closest-side

If the radial gradient’s shape is a circle, the gradient is sized
so that the end of the gradient ray exactly touches the edge of
the gradient image that is closest to the center point of the
radial gradient. If the shape is an ellipse, the end of the
gradient ray exactly touches the closest edge in each of the
horizontal and vertical axes.

farthest-side

If the radial gradient’s shape is a circle, the gradient is sized
so that the end of the gradient ray exactly touches the edge of
the gradient image that is farthest from the center point of
the radial gradient. If the shape is an ellipse, the end of the
gradient ray exactly touches the farthest edge in each of the
horizontal and vertical axes.

closest-corner

If the radial gradient’s shape is a circle, the gradient is sized
so that the end of the gradient ray exactly touches the corner
of the gradient image that is closest to the center point of the
radial gradient. If the shape is an ellipse, the end of the
gradient ray still touches the corner closest to the center, and

the ellipse has the same aspect ratio that it would have had if
closest-side had been specified.

farthest-corner (default)
If the radial gradient’s shape is a circle, the gradient is sized
so that the end of the gradient ray exactly touches the corner
of the gradient image that is farthest from the center point of
the radial gradient. If the shape is an ellipse, the end of the
gradient ray still touches the corner farthest from the center,
and the ellipse has the same aspect ratio that it would have
had if farthest-side had been specified. Note: this is the
default size value for a radial gradient and so is used if no
size values are declared.

To better visualize the results of each keyword, see Figure 9-30,
which depicts each keyword applied as both a circle and an
ellipse.

Figure 9-30. The effects of radial-gradient sizing keywords (positioned at 33% 66%)

These keywords cannot be mixed with lengths or percentages
in elliptical radial gradients; thus, closest-side 25px is
invalid and will be ignored.

Something you might have noticed in Figure 9-30 is that the
gradients didn’t start at the center of the image. That’s because
they were positioned elsewhere, which is the topic of the next
section.

Positioning Radial Gradients

If you want to shift the center of a radial gradient away from
the default of center , you can do so using any position value
that would be valid for background-position . We’re not going
to reproduce that rather complicated syntax here; flip back to
“Positioning Background Images” if you need a refresher.

When we say “any position value that would be valid,” that
means any permitted combination of lengths, percentages,
keywords, and so on. It also means that if you leave off one of
the two position values, it will be inferred just the same as for
background-position . So, just for one example, center is
equivalent to center center . The one major difference
between radial gradient positions and background positions is
the default: for radial gradients, the default position is center ,
not 0% 0% .

To give an idea of the possibilities, consider the following rules,
illustrated in Figure 9-31:

radial-gradient(at bottom left, purple, gold);
radial-gradient(at center right, purple, gold);
radial-gradient(at 30px 30px, purple, gold);
radial-gradient(at 25% 66%, purple, gold);
radial-gradient(at 30px 66%, purple, gold);

Figure 9-31. Changing the center position of radial gradients

None of those positioned radial gradients are explicitly sized, so
they all default to farthest-corner . That’s a reasonable guess
at the intended default behavior, but it’s not the only possibility.
Let’s mix some sizes into these gradients and find out how that
changes things (as depicted in Figure 9-32):

Figure 9-32. Changing the center position of explicitly sized radial gradients

Nifty. Now, suppose we want something a little more
complicated than a fade from one color to another. Next stop,
color stops!

Using Radial Color Stops and the Gradient
Ray

radial-gradient(30px at bottom left, purple, gold);
radial-gradient(30px 15px at center right, purple, go
radial-gradient(50% 15% at 30px 30px, purple, gold);
radial-gradient(farthest-side at 25% 66%, purple, gol
radial-gradient(closest-corner at 30px 66%, purple, g

Color stops for radial gradients have the same syntax as, and
work in a similar fashion to, linear gradients. Let’s return to the
simplest possible radial gradient and follow it with a more
explicit equivalent:

radial-gradient(purple, gold);
radial-gradient(purple 0%, gold 100%);

So the gradient ray extends out from the center point. At 0%
(the start point, and also the center of the gradient), the ray will
be purple. At 100% (the ending point), the ray will be gold.
Between the two stops is a smooth blend from purple to gold;
beyond the ending point is solid gold.

If we add a stop between purple and gold, but don’t give it a
position, the stop will be placed midway between the two
colors, and the blending will be altered accordingly, as shown in
Figure 9-33:

radial-gradient(100px circle at center, purple 0%, gr

Figure 9-33. Adding a color stop

We’d have gotten the same result if we’d added green 50%
there, but you get the idea. The gradient ray’s color goes
smoothly from purple to green to gold, and then is solid gold
beyond that point on the ray.

This illustrates one difference between gradient lines (for linear
gradients) and gradient rays: a linear gradient is derived by
extending the color perpendicularly at each point along the
gradient line. A similar behavior occurs with a radial gradient,
except instead of the lines that come off the gradient ray,
ellipses are created; these are scaled-up or scaled-down
versions of the ellipse at the ending point. Figure 9-34 illustrates
a gradient ray and the ellipses that are drawn at various points
along it.

Figure 9-34. The gradient ray and some of the ellipses it spawns

That brings up an interesting question: how is the ending point
(the 100% point, if you like) determined for each gradient ray?
It’s the point where the gradient ray intersects with the shape
described by the size. For a circle, that’s easy: the gradient ray’s
ending point is however far from the center that the size value
indicates. So for a 25px circle gradient, the ending point of
the ray is 25 pixels from the center.

For an ellipse, it’s essentially the same operation, except that the
distance from the center is dependent on the horizontal axis of
the ellipse. Given a radial gradient that’s a 40px 20px ellipse ,
the ending point will be 40 pixels from the center and directly
to its right. Figure 9-35 shows this in some detail.

Figure 9-35. Setting the gradient ray’s ending point

Another difference between linear gradient lines and radial
gradient rays is that you can see beyond the ending point. As
you may recall, a linear gradient line is always drawn so that
you can see the colors at the 0% and 100% points, but nothing
beyond them; the gradient line can never be any smaller than
the longest axis of the gradient image and will frequently be
longer than that. With a radial gradient, on the other hand, you
can size the radial shape to be smaller than the total gradient
image. In that case, the color at the last color stop is extended

outward from the ending point. (You’ve already seen this in
several previous figures.)

Conversely, if you set a color stop that’s beyond the ending point
of a ray, you might get to see the color out to that stop. Consider
the following gradient, illustrated in Figure 9-36:

radial-gradient(50px circle at center, purple, green,

Figure 9-36. Color stops beyond the ending point

The first color stop has no position, so it’s set to 0% , which is the
center point. The last color stop is set to 80px , so it will be 80
pixels away from the center in all directions. The middle color
stop, green , is placed midway between the two (40 pixels from

the center). So we get a gradient that goes out to gold at 80
pixels and then continues gold beyond that point.

This happens even though the circle is explicitly set to be 50
pixels large. It still is 50 pixels in radius; it’s just that the
positioning of the last color stop makes that fact vaguely
irrelevant. Visually, we might as well have declared this:

Or, more simply, just this:

radial-gradient(80px, purple, green, gold)

The same behaviors apply if you use percentages for your color
stops. These are equivalent to the previous examples, and to
each other, visually speaking:

radial-gradient(50px, purple, green, gold 160%)
radial-gradient(80px, purple, green, gold 100%)

Now, what if you set a negative position for a color stop? The
result is pretty much the same as for linear gradient lines: the
negative color stop is used to figure out the color at the starting

radial-gradient(80px circle at center, purple, green,

point but is otherwise unseen. Thus, the following gradient will
have the result shown in Figure 9-37:

radial-gradient(80px, purple -40px, green, gold)

Figure 9-37. Handling a negative color-stop position

Given these color-stop positions, the first color stop is at -40px ,
the last is at 80px (because, given its lack of an explicit
position, it defaults to the ending point), and the middle is
placed midway between them. The result is the same as if we’d
explicitly used this:

That’s why the color at the center of the gradient is a green-
purple: it’s a blend of one-third purple, two-thirds green. From
there, it blends the rest of the way to green, and then on to gold.
The rest of the purple-green blend, the part that sits on the
“negative space” of the gradient ray, is invisible.

Handling Degenerate Cases

Given that we can declare size and position for a radial
gradient, the question arises: what if a circular gradient has
zero radius, or an elliptical gradient has zero height or width?
These conditions aren’t quite as hard to create as you might
think. Besides explicitly declaring that a radial gradient has
zero size using 0px or 0% , you could also do something like
this:

radial-gradient(80px, purple -40px, green 20px, gold

(

The gradient’s size is set to closest-corner , and the center has
been moved into the top right corner, so the closest corner is
0 pixels away from the center. Now what?

In this case, the specification explicitly says that the gradient
should be rendered as if it’s “a circle whose radius [is] an
arbitrary very small number greater than zero.” So that might
mean as if it had a radius of one-one-billionth of a pixel, or a
picometer, or heck, the Planck length. The interesting thing is
that it means the gradient is still a circle. It’s just a very, very,
very small circle. Probably, it will be too small to render
anything visible. If so, you’ll just get a solid-color fill that
corresponds to the color of the last color stop instead.

Ellipses with zero-length dimensions have fascinatingly
different defined behaviors. Let’s assume the following:

radial-gradient(0px 50% at center, purple, gold)

The specification states that any ellipse with a zero width is
rendered as if it’s “an ellipse whose height [is] an arbitrary very
large number and whose width [is] an arbitrary very small

radial-gradient(closest-corner circle at top right, p

number greater than zero.” In other words, render it as though
it’s a linear gradient mirrored around the vertical axis running
through the center of the ellipse. The specification also says that
in such a case, any color stops with percentage positions resolve
to 0px . This will usually result in a solid color matching the
color defined for the last color stop.

On the other hand, if you use lengths to position the color stops,
you can get a vertically mirrored horizontal linear gradient for
free. Consider the following gradient, illustrated in Figure 9-38:

radial-gradient(0px 50% at center, purple 0px, gold 1

Figure 9-38. The effects of a zero-width ellipse

How did this happen? First, remember that the specification
says that the 0px horizontal width is treated as if it’s a tiny
nonzero number. For the sake of illustration, let’s suppose that’s
one-one-thousandth of a pixel (0.001 px). That means the ellipse
shape is a thousandth of a pixel wide by half the height of the
image. Again for the sake of illustration, let’s suppose that’s a
height of 100 pixels. That means the first ellipse shape is a
thousandth of a pixel wide by 100 pixels tall, which is an aspect
ratio of 0.001:100, or 1:100,000.

OK, so every ellipse drawn along the gradient ray has a
1:100,000 aspect ratio. That means the ellipse at half a pixel
along the gradient ray is 1 pixel wide and 100,000 pixels tall. At
1 pixel, it’s 2 pixels wide and 200,000 pixels tall. At 5 pixels, the
ellipse is 10 pixels by a million pixels. At 50 pixels along the
gradient ray, the ellipse is 100 pixels wide and 10 million tall.
And so on. This is diagrammed in Figure 9-39.

Figure 9-39. Very, very tall ellipses

So you can see why the visual effect is of a mirrored linear
gradient. These ellipses are effectively drawing vertical lines.
Technically they aren’t, but in practical terms they are. The
result is as if you have a vertically mirrored horizontal
gradient, because each ellipse is centered on the center of the

gradient, and both sides of it get drawn. While this may be a
radial gradient, we can’t see its radial nature.

On the other hand, if the ellipse has width but not height, the
results are quite different. You’d think the result would be a
vertical linear gradient mirrored around the horizontal axis,
but not so! Instead, the result is a solid color equal to the last
color stop (unless it’s a repeating gradient, a subject we’ll turn
to shortly, in which case it should be a solid color equal to the
average color of the gradient). So, given either of the following,
you’ll get a solid gold:

Why the difference? It goes back to the way radial gradients are
constructed from the gradient ray. Again, remember that, per
the specification, a zero distance here is treated as a very small
nonzero number. As before, we’ll assume that 0px is
reassigned to 0.001px , and that the 50% evaluates to 100
pixels. That’s an aspect ratio of 100:0.001, or 100,000:1.

So, to get an ellipse that’s 1 pixel tall, the width of that ellipse
must be 100,000 pixels. But our last color stop is at only 100

radial-gradient(50% 0px at center, purple, gold)
radial-gradient(50% 0px at center, purple 0px, gold 1

pixels! At that point, the ellipse that’s drawn is 100 pixels wide
and a thousandth of a pixel tall. All of the purple-to-gold
transition that happens along the gradient ray has to happen in
that thousandth of a pixel. Everything after that is gold, as per
the final color stop. Thus, we can see only the gold.

You might think that if you increased the position value of the
last color stop to 100000px , you’d see a thin sliver of purplish
color running horizontally across the image. And you’d be right,
if the browser treats 0px as 0.001px in these cases. If it
assumes 0.00000001px instead, you’d have to increase the
color stop’s position a lot further in order to see anything. And
that’s assuming the browser was actually calculating and
drawing all those ellipses, instead of just hardcoding the special
cases. The latter is a lot more likely, honestly. It’s what we’d do if
we were in charge of a browser’s gradient-rendering code.

And what if an ellipse has zero width and zero height? In that
case, the specification is written such that the zero-width
behavior is used; thus, you’ll get the mirrored-linear-gradient
behavior.

NOTE

As of late 2022, browser support for the defined behavior in these edge cases is
unstable, at best. Some browsers use the last color-stop’s color in all cases, and others
refuse to draw a gradient at all in some cases.

Repeating Radial Gradients

While percentages in repeating linear gradients could turn
them into nonrepeating gradients, percentages can be very
useful if the size of the circle or ellipse is defined, percentage
positions along the gradient ray are defined, and you can see
beyond the endpoint of the gradient ray. For example, assume
the following:

As there are five color stops and the size is 100px, a color stop
will occur every 20 pixels, with the colors repeating in the
declared pattern. Because the first and last color stops have the
same color value, there is no hard color switch. The ripples just
spread out forever, or at least until they’re beyond the edges of
the gradient image. See Figure 9-40 for an example.

.allhail {background:
 repeating-radial-gradient(100px 50px, purple, gol

 purple 60%, yellow 80%,

Figure 9-40. Repeating radial gradients

Just imagine what that would look like with a repeating radial
gradient of a rainbow!

Keep these two points in mind when creating repeating radial
gradients:

If you don’t declare size dimensions for a radial, it will
default to an ellipse that has the same height-to-width ratio
as the overall gradient image; and, if you don’t declare a size
for the image with background-size , the gradient image will

.wdim {background:
 repeating-radial-gradient(
 100px circle at bottom center,
 rgb(83%,83%,83%) 50%,
 violet 55%, indigo 60%, blue 65%, green 70%,
 yellow 75%, orange 80%, red 85%,
 rgb(47%,60%,73%) 90%
);}

default to the height and width of the element background
where it’s being applied (or, if being used as a list-style bullet,
the size that the browser gives it).
The default radial size value is farthest-corner . This will
put the endpoint of the gradient ray far enough to the right
that its ellipse intersects with the corner of the gradient
image that’s farthest from the center point of the radial
gradient.

These are reiterated here to remind you that if you stick to the
defaults, there’s not really any point to having a repeating
gradient, since you’ll be able to see only the first iteration of the
repeat. It’s only when you restrict the initial size of the gradient
that the repeats become visible.

Conic Gradients

Radial gradients are fun, but what if you want a gradient that
wraps around a central point, similar to a color hue wheel?
That’s what CSS calls a conic gradient, which can be thought of
as a concentric series of linear gradients that are bent into
circles. Looked at another way, at any distance from the center,
there’s a circle whose outer rim could be straightened out into a
linear gradient with the color stop specified.

Conic gradients are more easily shown than described, so
consider the following CSS, which is illustrated in Figure 9-41
along with a linear diagram to show how the stops wrap
around the conical space:

Figure 9-41. A simple conic gradient and its linear equivalent

background:
 conic-gradient(
 black, gray, black, white, black, silver, g
);

Note how each of the color stops is labeled on the linear
gradient: the circled numbers listed there are repeated in the
conic gradient, to show where each color stop falls. At 60
degrees around the conic gradient, there is a gray color stop.
At 180 degrees, a white color stop. At the top of the conic
gradient, the 0deg and 360deg points meet, so black and
gray sit next to each other.

By default, conic gradients start at 0 degrees, using the same
compass degree system that transforms and other parts of CSS
use, so 0deg is at the top. If you want to start from a different
angle and wrap around the circle back to that point, it’s as
straightforward as adding from and an angle value to the front
of the conic-gradient value, which rotates the entire gradient
by the declared angle. The following would all have the same
result:

If the conic gradient is given a different start angle, such as
from 45deg , it acts as a rotation of the entire conic gradient.

conic-gradient(from 144deg, black, gray, black, white
conic-gradient(from 2.513274rad, black, gray, black,
conic-gradient(from 0.4turn, black, gray, black, whit

Consider the following two examples, with the results depicted
in Figure 9-42:

Figure 9-42. Conic gradients with angled color stops and different start angles

Not only is the starting point rotated 45 degrees, but all the
other color stops are as well. Thus, even though the first color
stop has an angle of 90deg , it actually occurs at the 135-degree
mark, that being 90 degrees with a 45-degree rotation added.

It’s also possible to change the location of the gradient’s center
point within the image, just as with radial gradients. The syntax

conic-gradient(black, white 90deg, gray 180deg, black
conic-gradient(from 45deg, black, white 90deg, gray 1

is quite similar, as you can see in this code block (illustrated in
Figure 9-43):

Figure 9-43. Rotated and offset conic gradients

In the first of the three examples, the center of the conic
gradient is placed 3em to the right of the top-left corner, and
6em down from that same corner. Similarly, the second
example shows the center point 67% of the way across the
conic-gradient image, and 25% down from the top.

The third example shows what happens when the center point
of a conic gradient is placed along one edge of the image: we see
only half (at most) of the gradient. In this case, the top half is
visible—that is, the colors from 270 degrees through 90 degrees.

conic-gradient(from 144deg at 3em 6em, black, gray, b
conic-gradient(from 144deg at 67% 25%, black, gray, b
conic-gradient(from 144 deg at center bottom, black,

So all together, the syntax for a conic gradient is as follows:

If the from angle is not given, it defaults to 0deg . If no at
position is given, it defaults to 50% 50% (that is, the center of
the conic-gradient image).

Much as with radial and linear gradients, color stop distances
can be specified by a percentage value; in this case, it resolves
to an angle value. Thus, for a conic gradient starting at 0
degrees, the color stop distance 25% would resolve to 90
degrees, as 90 is 25% of 360. Conic color stops can also be
specified as a degree value, as shown previously.

You cannot specify a length value for a conic gradient’s color
stop’s distance. Only percentages and angles are acceptable, and
they can be mixed.

Creating Conic Color Stops

conic-gradient(
 [from <angle>]? [at <position>]? , | at <posi
 <color-stop> , [<color-hint>]? , <color-stop
)

If you want a conic gradient to blend smoothly from color to
color all the way around the circle, it is necessary to make the
last color stop match the first color stop. Otherwise, you’ll see
the kinds of hard transitions shown in earlier examples. If you
want to create a color hue wheel, for example, you need to
declare it like so:

Except that’s not actually a wheel, since the conic-gradient
image fills the entire background area, and background areas in
CSS are (thus far) rectangular by default. To make the color
wheel actually look like a color wheel, you’d need to either use
a circular clipping path (see Chapter 20) or round the corners
on a square element (see Chapter 7). For example, the following
will have the result shown in Figure 9-44:

conic-gradient(red, magenta, blue, aqua, lime, yellow

.hues {
 height: 10em; width: 10em;
 background: conic-gradient(red, magenta, blue, a
}
#wheel {
 border-radius: 50%;
}

<div class="hues"></div>
<div class="hues" id="wheel"></div>

Figure 9-44. Hue-wheel conic gradients with and without corner rounding

This emphasizes that while it’s easy to think of conic gradients
as circles, the end result is a rectangle, absent any clipping or
other effort to make the element’s background area
nonrectangular. So if you’re thinking about using conic
gradients to make, say, a pie chart, you’ll have to do more than
just define a conic gradient with hard stops.

Just as we used two length-percentage values to create hard
stops in linear gradients, we can use two hard stops in conic
gradients. For example:

conic-gradient(
 green 37.5%,
 yellow 37.5% 62.5%,
 red 62.5%);

In this syntax, a given color stop can be written as < color >
< beginning > < ending >, where < beginning > and < ending >
are percentage or angle values.

If you want to create smoother transitions between colors but
still have them be mostly solid, the < color > < beginning >
< ending > syntax can help a lot. For example, the following
conic gradient eases the transitions between green, yellow, and
red without making the overall gradient too “smeared”:

This runs a solid wedge of green from 0 to 126 degrees (35%),
then transitions smoothly from green to yellow between 126
degrees and 144 degrees (40%), past which there is a solid
wedge of yellow spanning from 144 degrees to 216 degrees
(60%). Similarly, a smoothed transition occurs from yellow to
red between 216 degrees and 234 degrees (65%), and beyond
that, a solid red wedge running to 360 degrees.

conic-gradient(green 35%, yellow 40% 60%, red 65%);

All this is illustrated in Figure 9-45, with extra annotations to
mark where the calculated angles land.

Figure 9-45. Conic gradients with solid-color wedges and smooth transitions

And, as it happens, that syntax makes it relatively easy to re-
create those picnic tablecloths discussed earlier in the chapter
by using a conic gradient:

background-image: conic-gradient(
 rgba(0 0 0 / 0.2) 0% 25%,

 rgba(0 0 0 / 0.4) 25% 50%,
 rgba(0 0 0 / 0.2) 50% 75%,
 transparent 75% 100%
);
background-size: 2vw 2vw;
background-repeat: repeat;

This creates, in a single gradient image, a set of four squares in
the pattern. That image is then sized and repeated. It’s not more
efficient or elegant than using repeating linear gradients, but it
does embody a certain cleverness that appeals to us.

Repeating Conic Gradients

And now we come to repeating conic gradients, which are
highly useful if you want to create a starburst pattern or even
something simple like a checkerboard pattern. For example:

This sets up a checkerboard pattern with four color stops but
only two colors. We can restate that using repeating-conic-

conic-gradient(
 #0002 0 25%, #FFF2 0 50%, #0002 0 75%, #FFF2 0 10

)

gradient like so, with new colors to make the pattern a little
clearer:

repeating-conic-gradient(
 #343 0 25%, #ABC 0 50%
)

All that was necessary in this simple repeating case was to set
up the first two color stops. After that, the stops are repeated
until the full 360 degrees of the conic gradient are filled, as
shown in Figure 9-46.

Figure 9-46. A repeating conic gradient

This means we can create wedges of any size, with any
transition, and repeat them all the way around the conic circle.
Here are just three examples, rendered in Figure 9-47:

Figure 9-47. Three variants on a repeating conic gradient

Notice that the first (leftmost) example’s smoothed transitions
hold true even at the top of the image: the transition from #117
at 350 degrees to #ABE at 5 degrees is handled like all of the
other transitions. Repeated conic gradients are unique in this
way, since both linear and radial gradients never “wrap
around” to have the end meet the beginning. This is also seen in
the third (rightmost) example in Figure 9-47.

It’s possible to break this special behavior, though, as the
second (center) example illustrates: note the narrower wedge
from 355 degrees through 360 degrees. This happens because
the first color stop in the pattern explicitly runs from 0 degrees

repeating-conic-gradient(#117 5deg, #ABE 15deg, #117
repeating-conic-gradient(#117 0 5deg, #ABE 0 15deg, #
repeating-conic-gradient(#117 5deg, #ABE 15deg)

through 5 degrees. Thus, there is no way to transition from 355
degrees through to 5 degrees, which leads to a hard transition
at 360/0 degrees.

Manipulating Gradient Images

As we have previously emphasized (possibly to excess),
gradients are images. That means you can size, position, repeat,
and otherwise affect them with the various background
properties, just as you would any PNG or SVG.

One way this can be leveraged is to repeat simple gradients.
(Repeating in more complex ways is the subject of the next
section.) For example, you could use a hard-stop radial gradient
to give your background a dotted look, as shown in Figure 9-48:

body {background: radial-gradient(circle at center,
 rgba(0 0 0 / 0.1), rgba(0 0 0 / 0
 transparent 10px, transparent)
 center / 25px 25px repeat,
 tan;}

Figure 9-48. Tiled radial gradient images

Yes, this is visually pretty much the same as tiling a PNG that
has a mostly transparent dark circle 10 pixels in diameter.
Using a gradient in this case has three advantages:

The CSS is almost certainly smaller in bytes than the PNG
would be.
Even more importantly, the PNG requires an extra hit on the
server. This slows both page and server performance. A CSS
gradient is part of the stylesheet and so eliminates the extra
server hit.
Changing the gradient is a lot simpler, so experimenting to
find exactly the right size, shape, and darkness is much
easier.

Creating Special Effects

Gradients can’t do everything a raster or vector image can, so
it’s not as though you’ll be giving up external images completely
now that gradients are a thing. You can still pull off some pretty
impressive effects with gradients, though. Consider the
background effect shown in Figure 9-49.

Figure 9-49. It’s time to play the music…

That curtain effect is accomplished with just two linear
gradients repeated at differing intervals, plus a third to create a
“glow” effect along the bottom of the background. Here’s the
code that accomplishes it:

background-image:
 linear-gradient(0deg, rgba(255 128 128 / 0.25), t
 linear-gradient(89deg,
 transparent 30%,

The first (and therefore topmost) gradient is just a fade from a
75%-transparent light red up to full transparency at the 75%
point of the gradient line. Then two “fold” images are created.
Figure 9-50 shows each separately.

With those images defined, they are repeated along the x-axis
and given different sizes. The first, which is the “glow” effect, is
given auto size to let it cover the entire element background.
The second is given a width of 300px and a height of 100% ;
thus, it will be as tall as the element background and 300 pixels
wide. This means it will be tiled every 300 pixels along the x-
axis. The same is true of the third image, except it tiles every
109 pixels. The end result looks like an irregular stage curtain.

 #510A0E 35% 40%, #61100F 43%, #B93F3A 50%,
 #4B0408 55%, #6A0F18 60%, #651015 65%,
 #510A0E 70% 75%, rgba(255 128 128 / 0) 80%, t
 linear-gradient(92deg,
 #510A0E 20%, #61100F 25%, #B93F3A 40%, #4B040
 #6A0F18 70%, #651015 80%, #510A0E 90%);
background-size: auto, 300px 100%, 109px 100%;
background-repeat: repeat-x;

Figure 9-50. The two “fold” gradients

The beauty of this is that adjusting the tiling intervals is just a
matter of editing the stylesheet. Changing the color-stop
positions or the colors is less trivial, but not too difficult if you
know the effect you’re after. And adding a third set of repeating
folds is no more difficult than just adding another gradient to
the stack.

Triggering Average Gradient Colors

It’s worth asking what happens if a repeating gradient’s first
and last color stops somehow end up being in the same place.
For example, suppose your fingers miss the 5 key and you
accidentally declare the following:

ti di l di t(t l 0 ld 0

The first and last color stops are 0 pixels apart, but the gradient
is supposed to repeat ad infinitum along the gradient line. Now
what?

In such a case, the browser finds the average gradient color and
fills it in throughout the entire gradient image. In our simple
case in the preceding code, that will be a 50/50 blend of purple
and gold (which will be about #C06C40 or
rgb(75%,42%,25%)). Thus, the resulting gradient image should
be a solid orangey-brown, which doesn’t really look much like a
gradient.

This condition can also be triggered when the browser rounds
the color-stop positions to 0, or when the distance between the
first and last color stops is so small as compared to the output
resolution that nothing useful can be rendered. This could
happen if, for example, a repeating radial gradient used all
percentages for the color-stop positions and was sized using
closest-side , but was accidentally placed into a corner.

repeating-radial-gradient(center, purple 0px, gold 0p

WARNING

As of late 2022, no browsers really do average colors correctly. Some of the correct
behaviors can be triggered under very limited conditions, but in most cases,
browsers either just use the last color stop as a fill color, or else try really hard to
draw subpixel repeating patterns.

Summary

Gradients are a fascinating image type, being constructed
entirely with CSS values instead of with raster data or vector
elements. With the three types of gradients available, you can
create almost any pattern or visual effect.

Chapter 10. Floating and Positioning

For a very long time, floated elements were the basis of all our
web layout schemes. (This is largely because of the property
clear , which we’ll get to in a bit.) But floats were never meant
for layout; their use as a layout tool was a hack nearly as
egregious as the use of tables for layout. They were just what
we had. Floats are quite interesting and useful in their own
right, however. This is especially true given the recent addition
of float shaping, which allows the creation of nonrectangular
shapes that content can flow past.

Floating

Ever since the early 1990s, it has been possible to float images
by declaring, for instance, <img src="b5.gif" alt="B4"
align="right"> . This causes an image to float to the right and
allows other content (such as text) to “flow around” the image.
The name floating, in fact, came from the Netscape DevEdge
page “Extensions to HTML 2.0,” which explained the then-new
align attribute. Unlike HTML, CSS lets you float any element,
from images to paragraphs to lists. This is accomplished using
the property float .

FLOAT

Values left | right | inline-start | inli
ne-end | none

Initial
value

none

Applies to All elements

Computed
value

As specified

Inherited No

Animatable No

For example, to float an image to the left, you could use this
markup:

As Figure 10-1 illustrates, the image “floats” to the left side of
the browser window, and the text flows around it.

Figure 10-1. A floating image

You can float to the left or right , as well as to the inline-
start and inline-end edges of an element. These latter two
are useful when you want to float an element toward the start
or end of the inline axis, regardless of the direction that axis is
pointing. (See Chapter 6 for details on the inline axis.)

NOTE

Throughout the rest of this section, we mostly stick to left and right because they
simplify explanations. They will also be nearly the only float values you see in the
wild, at least for the next few years.

Floated Elements

Keep a few points in mind with regard to floating elements.
First, a floated element is, in some ways, removed from the
normal flow of the document, although it still affects the layout

of the normal flow. In a manner utterly unique within CSS,
floated elements exist almost on their own plane, yet they still
have influence over the rest of the document.

This influence arises because when an element is floated, other
normal-flow content “flows around” it. This is familiar behavior
with floated images, but the same is true if you float a
paragraph, for example. In Figure 10-2, you can see this effect
quite clearly, thanks to the margin added to the floated
paragraph:

Figure 10-2. A floating paragraph

p.aside {float: inline-end; width: 15em; margin: 0 1e
 padding: 0.25em; border: 1px solid;}

One of the first facts to notice about floated elements is that
margins around floated elements do not collapse. If you float an
image and give it 25-pixel margins, there will be at least 25
pixels of space around that image. If other elements adjacent to
the image—and that means adjacent horizontally and vertically
—also have margins, those margins will not collapse with the
margins on the floated image. The following code results in
Figure 10-3, with 50 pixels of space between the two floated
images:

p img {float: inline-start; margin: 25px;}

Figure 10-3. Floating images with margins

No floating at all

CSS has one other value for float besides the ones we’ve
discussed: float: none is used to prevent an element from
floating at all.

This might seem a little silly, since the easiest way to keep an
element from floating is to avoid declaring a float , right?
Well, first of all, the default value of float is none . In other
words, the value has to exist in order for normal, nonfloating
behavior to be possible; without it, all elements would float in
one way or another.

Second, you might want to override floating in some cases.
Imagine that you’re using a server-wide stylesheet that floats
images. On one particular page, you don’t want those images to
float. Rather than writing a whole new stylesheet, you could
place img {float: none;} in your document’s embedded
stylesheet.

Floating: The Details

Before we start digging into details of floating, it’s important to
establish the concept of a containing block. A floated element’s
containing block is the nearest block-level ancestor element.
Therefore, in the following markup, the floated element’s
containing block is the paragraph element that contains it:

We’ll return to the concept of containing blocks when we
discuss positioning in “Positioning”.

Furthermore, a floated element generates a block box,
regardless of the kind of element it is. Thus, if you float a link,
even though the element is inline and would ordinarily
generate an inline box, it generates a block box. It will be laid
out and act as if it was, for example, a <div> . This is not unlike
declaring display: block for the floated element, although it
is not necessary to do so.

A series of specific rules govern the placement of a floated
element, so let’s cover those before digging into applied
behavior. These rules are vaguely similar to those that govern

<h1>
 Test
</h1>
<p>
 This is paragraph text, but you knew that. Within
 paragraph is an image that's been floated. <img s
 class="floated-figure"> The containing block for
 the paragraph.
</p>

the evaluation of margins and widths and have the same initial
appearance of common sense. They are as follows:

1. The left (or right) outer edge of a floated element may not be
to the left (or right) of the inner edge of its containing block.
This is straightforward enough. The outer-left edge of a left-
floated element can go only as far left as the inner-left edge
of its containing block. Similarly, the farthest right a right-
floated element may go is its containing block’s inner-right
edge, as shown in Figure 10-4. (In this and subsequent
figures, the circled numbers show the position where the
markup element actually appears in relation to the source,
and the numbered boxes show the position and size of the
floated visible element.)

Figure 10-4. Floating to the left (or right)

2. To prevent overlap with other floated elements, the left outer
edge of a floated element must be to the right of the right
outer edge of a left-floating element that occurs earlier in the
document source, unless the top of the latter element is
below the bottom of the earlier element. Similarly, the right
outer edge of a floated element must be to the left of the left
outer edge of a right-floating element that comes earlier in
the document source, unless the top of the latter element is
below the bottom of the earlier element.
This rule prevents floated elements from “overwriting” each
other. If an element is floated to the left, and another floated

element is already there, the latter element will be placed
against the outer-right edge of the previously floated
element. If, however, a floated element’s top is below the
bottom of all earlier floated images, it can float all the way to
the inner-left edge of the parent. Figure 10-5 shows some
examples.

Figure 10-5. Keeping floats from overlapping

The advantage of this rule is that all your floated content will
be visible, since you don’t have to worry about one floated
element obscuring another. This makes floating a fairly safe
thing to do. The situation is markedly different when using

positioning, where it is very easy to cause elements to
overwrite one another.

3. The right outer edge of a left-floating element may not be to
the right of the left outer edge of any right-floating element to
its right. The left outer edge of a right-floating element may
not be to the left of the right outer edge of any left-floating
element to its left.
This rule prevents floated elements from overlapping each
other. Let’s say you have a body that is 500 pixels wide, and
its sole content is two images that are 300 pixels wide. The
first is floated to the left, and the second is floated to the
right. This rule prevents the second image from overlapping
the first by 100 pixels. Instead, it is forced down until its top
is below the bottom of the right-floating image, as depicted in
Figure 10-6.

Figure 10-6. More overlap prevention

4. A floating element’s top may not be higher than the inner top
of its parent. If a floating element is between two collapsing
margins, the floated element is placed as though it had a
block-level parent element between the two elements.
The first part of this rule keeps floating elements from
floating all the way to the top of the document. Figure 10-7
illustrates the correct behavior. The second part of this rule
fine-tunes the alignment in some situations—for example,
when the middle of three paragraphs is floated. In that case,
the floated paragraph is floated as if it had a block-level
parent element (say, a <div>). This prevents the floated

paragraph from moving up to the top of whatever common
parent the three paragraphs share.

Figure 10-7. Unlike balloons, floated elements can’t float upward

5. A floating element’s top may not be higher than the top of
any earlier floating or block-level element.
Similarly to rule 4, rule 5 keeps floated elements from
floating all the way to the top of their parent elements. It is
also impossible for a floated element’s top to be any higher
than the top of a floated element that occurs earlier.
Figure 10-8 shows an example: since the second float was
forced to be below the first one, the third float’s top is even
with the top of the second float, not the first.

Figure 10-8. Keeping floats below their predecessors

6. A floating element’s top may not be higher than the top of
any line box that contains a box generated by an element
that comes earlier in the document source.
Similarly to rules 4 and 5, this rule further limits the upward
floating of an element by preventing it from being above the
top of a line box containing content that precedes the floated
element. Let’s say that, right in the middle of a paragraph,
there is a floated image. The highest the top of that image
may be placed is the top of the line box from which the image
originates. As you can see in Figure 10-9, this keeps images
from floating too far upward.

Figure 10-9. Keeping floats level with their context

7. A left-floating element that has another floating element to its
left may not have its right outer edge to the right of its
containing block’s right edge. Similarly, a right-floating
element that has another floating element to its right may not
have its right outer edge to the left of its containing block’s
left edge.
In other words, a floating element cannot stick out beyond
the edge of its containing element, unless it’s too wide to fit
on its own. This prevents a succeeding number of floated
elements from appearing in a horizontal line and far
exceeding the edges of the containing block. Instead, a float

that would otherwise stick out of its containing block by
appearing next to another one will be floated down to a point
below any previous floats, as illustrated by Figure 10-10 (in
the figure, the floats start on the next line in order to more
clearly illustrate the principle at work here).

Figure 10-10. If there isn’t room, floats get pushed to a new “line”

8. A floating element must be placed as high as possible.
Rule 8 is, as you might expect, subject to the restrictions
introduced by the previous seven rules. Historically,
browsers aligned the top of a floated element with the top of
the line box after the one in which the image’s tag appears.

Rule 8, however, implies that its top should be even with the
top of the same line box as that in which its tag appears,
assuming there is enough room. Figure 10-11 shows the
theoretically correct behaviors.

Figure 10-11. Given the other constraints, go as high as possible

9. A left-floating element must be put as far to the left as
possible, and a right-floating element as far to the right as
possible. A higher position is preferred to one that is farther
to the right or left.
Again, this rule is subject to restrictions introduced in the
preceding rules. As you can see in Figure 10-12, it is pretty

easy to tell when an element has gone as far as possible to
the right or left.

Figure 10-12. Get as far to the left (or right) as possible

Applied Behavior

Several interesting consequences fall out of the rules we’ve just
seen, both because of what they say and what they don’t say.
The first topic to discuss is what happens when the floated
element is taller than its parent element.

This happens quite often, as a matter of fact. Take the example
of a short document, composed of no more than a few
paragraphs and <h3> elements, where the first paragraph
contains a floated image. Further, this floated image has a
margin of 5 pixels (5px). You would expect the document to be
rendered as shown in Figure 10-13.

Figure 10-13. Expected floating behavior

Nothing there is unusual, but Figure 10-14 shows what happens
when you set the first paragraph to have a background.

Nothing is different about the second example, except for the
visible background. As you can see, the floated image sticks out
of the bottom of its parent element. It also did so in the first
example, but it was less obvious there because you couldn’t see
the background. The floating rules we discussed earlier address
only the left, right, and top edges of floats and their parents. The

deliberate omission of bottom edges requires the behavior in
Figure 10-14.

Figure 10-14. Backgrounds and floated elements

CSS clarified this: one important aspect of floated-element
behavior is that a floated element will expand to contain any
floated descendants. Thus, you could contain a float within its
parent element by floating the parent, as in this example:

On a related note, consider backgrounds and their relationship
to floated elements that occur earlier in the document, which is
illustrated in Figure 10-15.

<div style="float: left; width: 100%;">
 T
 around the floated image because the 'div' has be
</div>

Because the floated element is both within and outside of the
flow, this sort of thing is bound to happen. What’s going on? The
content of the heading is being “displaced” by the floated
element. However, the heading’s element width is still as wide
as its parent element. Therefore, its content area spans the
width of the parent, and so does the background. The actual
content doesn’t flow all the way across its own content area so
that it can avoid being obscured behind the floating element.

Figure 10-15. Element backgrounds “slide under” floated elements

Negative margins

Interestingly, negative margins can cause floated elements to
move outside of their parent elements. This seems to be in
direct contradiction to the rules explained earlier, but it isn’t. In
the same way that elements can appear to be wider than their

parents through negative margins, floated elements can appear
to protrude out of their parents.

Let’s consider an image that is floated to the left, and that has
left and top margins of -15px . This image is placed inside a
<div> that has no padding, borders, or margins. Figure 10-16
shows the result.

Figure 10-16. Floating with negative margins

Contrary to appearances, this does not violate the restrictions
on floated elements being placed outside their parent elements.

Here’s the technicality that permits this behavior: a close
reading of the rules in the previous section will show that the
outer edges of a floating element must be within the element’s
parent. However, negative margins can place the floated
element’s content such that it effectively overlaps its own outer
edge, as detailed in Figure 10-17.

Figure 10-17. The details of floating up and left with negative margins

One important question arises: what happens to the document
display when an element is floated out of its parent element by
using negative margins? For example, an image could be floated
so far up that it intrudes into a paragraph that has already been
displayed by the user agent. In such a case, it’s up to the user
agent to decide whether the document should be reflowed.

The CSS specification explicitly states that user agents are not
required to reflow previous content to accommodate things that
happen later in the document. In other words, if an image is
floated up into a previous paragraph, it will probably overwrite
whatever was already there. This makes the utility of negative
margins on floats somewhat limited. Hanging floats are usually
fairly safe, but trying to push an element upward on the page is
generally a bad idea.

Another way for a floated element to exceed its parent’s inner
left and right edges occurs when the floated element is wider
than its parent. In that case, the floated element will overflow

the right or left inner edge—depending on which way the
element is floated—in its best attempt to display itself correctly.
This will lead to a result like that shown in Figure 10-18.

Figure 10-18. Floating an element that is wider than its parent

Floats, Content, and Overlapping

An interesting question is this: what happens when a float
overlaps content in the normal flow? This can happen if, for
example, a float has a negative margin on the side where
content is flowing past (e.g., a negative left margin on a right-
floating element). You’ve already seen what happens to the
borders and backgrounds of block-level elements. What about
inline elements?

The CSS 2.1 specification states the following:

An inline box that overlaps with a float has its borders,
background, and content all rendered “on top” of the float.
A block box that overlaps with a float has its borders and
background rendered “behind” the float, whereas its content
is rendered “on top” of the float.

To illustrate these rules, consider the following situation:

To that markup, apply the following styles, with the result seen
in Figure 10-19:

<p class="box">
 This paragraph, unremarkable in most ways, does c
 This inline contains some strongly emphas
 marked to make an important point. The r
 content is normal anonymous inline content.
</p>
<p>
 This is a second paragraph. There's nothing rema
 Please move along to the next bit.
</p>
<h2 id="jump-up">
 A Heading!
</h2>

Figure 10-19. Layout behavior when overlapping floats

The inline element (strong) completely overlaps the floated
image—background, border, content, and all. The block
elements, on the other hand, have only their content appear on
top of the float. Their backgrounds and borders are placed
behind the float.

The described overlapping behavior is independent of the
document source order. It does not matter if an element comes
before or after a float: the same behaviors still apply.

Clearing

.sideline {float: left; margin: 10px -15px 10px 10px;
p.box {border: 1px solid gray; background: hsl(117,50
p.box strong {border: 3px double; background: hsl(215
h2#jump-up {margin-top: -25px; background: hsl(42,70%

We’ve talked quite a bit about floating behavior, so we have
only one more subject to discuss before we turn to shapes. You
won’t always want your content to flow past a floated element
—in some cases, you’ll specifically want to prevent it. If your
document is grouped into sections, you might not want the
floated elements from one section hanging down into the next.

In that case, you’d want to set the first element of each section
to prohibit floating elements from appearing next to it. If the
first element might otherwise be placed next to a floated
element, it will be pushed down until it appears below the
floated image, and all subsequent content will appear after that,
as shown in Figure 10-20.

Figure 10-20. Displaying an element in the clear

This is done with clear .

CLEAR

Values both | left | right | inline-start
| inline-end | none

Initial
value

none

Applies to Block-level elements

Computed
value

As specified

Inherited No

Animatable No

For example, to make sure all <h3> elements are not placed to
the right of left-floating elements, you would declare h3
{clear: left;} . This can be translated as “make sure that the
left side of an <h3> is clear of floating elements and pseudo-

elements.” The following rule uses clear to prevent <h3>
elements from flowing past floated elements to the left side:

h3 {clear: left;}

While this will push the <h3> past any left-floating elements, it
will allow floated elements to appear on the right side of <h3>
elements, as shown in Figure 10-21.

Figure 10-21. Clear to the left, but not the right

To avoid this sort of thing, and to make sure that <h3>
elements do not coexist on a line with any floated elements, you
use the value both :

h3 {clear: both;}

Understandably, this value prevents coexistence with floated
elements on both sides of the cleared element, as demonstrated
in Figure 10-22.

Figure 10-22. Clear on both sides

If, on the other hand, we were worried only about <h3>
elements being pushed down past floated elements to their
right, then we’d use h3 {clear: right;} .

As with float , you can give clear the values inline-start
(and both) or inline-end . If you’re floating with those values,
clearing with them makes sense. If you’re floating using left
and right , using those values for clear is sensible.

Finally, clear: none allows elements to float to either side of
an element. As with float: none , this value mostly exists to
allow for normal document behavior, in which elements will
permit floated elements to both sides. The none value can be
used to override other styles, as shown in Figure 10-23. Despite
the document-wide rule that <h3> elements will not permit
floated elements to either side, one <h3> in particular has been
set so that it does permit floated elements on either side:

Figure 10-23. Not clear at all

The clear property works by way of clearance—extra spacing
added above an element’s top margin in order to push it past

h3 {clear: both;}

<h3 style="clear: none;">What's With All The NEO?</h3

any floated elements. This means that the top margin of a
cleared element does not change when an element is cleared.
Its downward movement is caused by the clearance instead.
Pay close attention to the placement of the heading’s border in
Figure 10-24, which results from the following:

Figure 10-24. Clearing and its effect on margins

There is no separation between the top border of the <h3> and
the bottom border of the floated image because 25 pixels of
clearance was added above the 15-pixel top margin in order to
push the <h3> ’s top border edge just past the bottom edge of
the float. This occurs unless the <h3> ’s top margin calculates to

img.sider {float: left; margin: 0;}
h3 {border: 1px solid gray; clear: left; margin-top:

<img src="chrome.jpg" class="sider" height="50" width

<h3>
 Why Doubt Salmon?
</h3>

40 pixels or more, in which case the <h3> will naturally place
itself below the float, and the clear value will be irrelevant.

In most cases, you can’t know how far an element needs to be
cleared. The way to make sure a cleared element has some
space between its top and the bottom of a float is to put a
bottom margin on the float itself. Therefore, if you want at least
15 pixels of space below the float in the previous example, you
would change the CSS like this:

img.sider {float: left; margin: 0 0 15px;}
h3 {border: 1px solid gray; clear: left;}

The floated element’s bottom margin increases the size of the
float box, and thus the point past which cleared elements must
be pushed. This is because, as you’ve seen before, the margin
edges of a floated element define the edges of the floated box.

Positioning

The idea behind positioning is fairly simple. It allows you to
define exactly where element boxes will appear relative to
where they would ordinarily be—or position them in relation to

a parent element, another element, or even to the viewport
(e.g., the browser window) itself.

Before we delve into the various kinds of positioning, it’s a good
idea to look at what types exist and how they differ.

Types of Positioning

You can choose one of five types of positioning, which affect
how the element’s box is generated, by using the position
property.

POSITION

Values static | relative | sticky | absol
ute | fixed

Initial
value

static

Applies to All elements

Computed
value

As specified

Inherited No

Animatable No

The values of position have the following meanings:

static

The element’s box is generated as normal. Block-level
elements generate a rectangular box that is part of the
document’s flow, and inline-level boxes cause the creation of

one or more line boxes that are flowed within their parent
element.

relative

The element’s box is offset by a certain distance; 0px by
default. The element retains the shape it would have had
were it not positioned, and the space that the element would
ordinarily have occupied is preserved.

absolute

The element’s box is completely removed from the flow of
the document and positioned relative to its closest positioned
ancestor, if any, or its containing block, which may be
another element in the document or the initial containing
block (described in the next section). Whatever space the
element might have occupied in the normal document flow is
closed up, as though the element did not exist. The positioned
element generates a block-level box, regardless of the type of
box it would have generated if it were in the normal flow.

fixed

The element’s box behaves as though it was set to absolute ,
but its containing block is the viewport itself.

sticky

The element is left in the normal flow, until the conditions
that trigger its stickiness come to pass, at which point it is
removed from the normal flow but its original space in the
normal flow is preserved. It will then act as if absolutely
positioned with respect to its containing block. Once the
conditions to enforce stickiness are no longer met, the
element is returned to the normal flow in its original space.

Don’t worry so much about the details right now, as we’ll look
at each of these kinds of positioning later. Before we do that, we
need to discuss containing blocks.

The Containing Block

In general terms, a containing block is the box that contains
another element, as we said earlier in the chapter. As an
example, in the normal-flow case, the root element (<html> in
HTML) is the containing block for the <body> element, which is
in turn the containing block for all its children, and so on.
When it comes to positioning, the containing block depends
entirely on the type of positioning.

For a nonroot element whose position value is relative or
static , its containing block is formed by the content edge of
the nearest block-level, table-cell, or inline-block ancestor box.

For a nonroot element that has a position value of absolute ,
its containing block is set to the nearest ancestor (of any kind)
that has a position value other than static . This happens as
follows:

If the ancestor is block-level, the containing block is set to be
that element’s padding edge; in other words, the area that
would be bounded by a border.
If the ancestor is inline-level, the containing block is set to
the content edge of the ancestor. In left-to-right languages,
the top and left of the containing block are the top and left
content edges of the first box in the ancestor, and the bottom
and right edges are the bottom and right content edges of the
last box. In right-to-left languages, the right edge of the
containing block corresponds to the right content edge of the
first box, and the left is taken from the last box. The top and
bottom are the same.
If there are no ancestors, the element’s containing block is
defined to be the initial containing block.

There’s an interesting variant to the containing-block rules
when it comes to sticky-positioned elements, which is that a
rectangle is defined in relation to the containing block called
the sticky-constraint rectangle. This rectangle has everything to

do with how sticky positioning works, and will be explained in
full in “Sticky Positioning”.

An important point: elements can be positioned outside of their
containing block. This suggests that the term “containing block”
should really be “positioning context,” but since the
specification uses “containing block,” so will we.

Offset Properties

Four of the positioning schemes described in the previous
section—relative, absolute, sticky, and fixed—use distinct
properties to describe the offset of a positioned element’s sides
with respect to its containing block. These properties, which are
referred to as the offset properties, are a big part of what makes
positioning work. There are four physical offset properties and
four logical offset properties.

TOP, RIGHT, BOTTOM, LEFT, INSET-BLOCK-START, INSET-BLOCK-END,
INSET-INLINE-START, INSET-INLINE-END

Values < length > | < percentage > | auto

Initial
value

auto

Applies to Positioned elements

Percentages Refer to the height of the containing
block for top and bottom , and the
width of the containing block for righ
t and left ; to the size of the
containing block along the block axis
for inset-block-start and inset-blo
ck-end , and the size along the inline
axis for inset-inline-start and inse
t-inline-end

Computed
value

For relative or sticky -positioned
elements, see the sections on those
positioning types; for static elements, a
uto ; for length values, the
corresponding absolute length; for

percentage values, the specified value;
otherwise, auto

Inherited No

Animatable < length >, < percentage >

These properties describe an offset from the nearest side of the
containing block (thus the term offset properties). The simplest
way to look at it is that positive values cause inward offsets,
moving the edges toward the center of the containing block,
and negative values cause outward offsets.

For example, top describes how far the top margin edge of the
positioned element should be placed from the top of its
containing block. In the case of top , positive values move the
top margin edge of the positioned element downward, while
negative values move it above the top of its containing block.
Similarly, left describes how far to the right (for positive
values) or left (for negative values) the left margin edge of the
positioned element is from the left edge of the containing block.
Positive values will shift the margin edge of the positioned
element to the right, and negative values will move it to the left.

The implication of offsetting the margin edges is that it’s
possible to set margins, borders, and padding for a positioned
element; these will be preserved and kept with the positioned
element, and they will be contained within the area defined by
the offset properties.

It is important to remember that the offset properties define an
offset from the analogous side (e.g., inset-block-end defines
the offset from the block-end side) of the containing block, not
from the upper-left corner of the containing block. This is why,
for example, one way to fill up the lower-right corner of a
containing block is to use these values:

top: 50%; bottom: 0; left: 50%; right: 0;

In this example, the outer-left edge of the positioned element is
placed halfway across the containing block. This is its offset
from the left edge of the containing block. The outer-right edge
of the positioned element, on the other hand, is not offset from
the right edge of the containing block, so the two are coincident.
Similar reasoning holds true for the top and bottom of the
positioned element: the outer-top edge is placed halfway down
the containing block, but the outer-bottom edge is not moved up
from the bottom. This leads to what’s shown in Figure 10-25.

Figure 10-25. Filling the lower-right quarter of the containing block

NOTE

What’s depicted in Figure 10-25, and in most of the examples in this chapter, is based
around absolute positioning. Since absolute positioning is the simplest scheme in
which to demonstrate how the offset properties work, we’ll stick to that for now.

Note the background area of the positioned element. In
Figure 10-25, it has no margins, but if it did, they would create
blank space between the borders and the offset edges. This
would make the positioned element appear as though it did not
completely fill the lower-right quarter of the containing block.
In truth, it would fill the area, because margins count as part of

the area of a positioned element, but this fact wouldn’t be
immediately apparent to the eye.

Thus, the following two sets of styles would have approximately
the same visual appearance, assuming that the containing block
is 100em high by 100em wide:

By using negative offset values, we can position an element
outside its containing block. For example, the following values
will lead to the result shown in Figure 10-26:

top: 50%; bottom: -2em; left: 75%; right: -7em;

#ex1 {top: 50%; bottom: 0; left: 50%; right: 0; margi
#ex2 {top: 60%; bottom: 10%; left: 60%; right: 10%; m

Figure 10-26. Positioning an element outside its containing block

In addition to length and percentage values, the offset
properties can be set to auto , which is the default value. There
is no single behavior for auto ; it changes based on the type of
positioning used. We’ll explore how auto works later, as we
consider each of the positioning types in turn.

Inset Shorthands

In addition to the logical inset properties mentioned in the
previous section, CSS has a few inset shorthand properties: two
logical and one physical.

INSET-BLOCK, INSET-INLINE

Values [< length > | < percentage >]{1,2} | au
to

Initial
value

auto

Applies to Positioned elements

Percentages Refer to the size of the containing block
along the block axis for inset-block ,
and the size along the inline axis for in
set-inline

Computed
value

For relative or sticky -positioned
elements, see the sections on those
positioning types; for static elements, a
uto ; for length values, the
corresponding absolute length; for
percentage values, the specified value;
otherwise, auto

Inherited No

Animatable < length >, < percentage >

For both properties, you can supply one or two values. If you
supply one, the same value is used for both sides; that is,
inset-block: 10px will use 10 pixels of inset for both the
block-start and block-end edges.

If you supply two values, the first is used for the start edge, and
the second for the end edge. Thus, inset-inline: 1em 2em
will use 1 em of inset for the inline start edge, and 2 ems of
inset for the inline end edge.

It’s usually a lot easier to use these two shorthands for logical
insets, since you can always supply auto when you don’t want
to set a specific offset—for example, inset-block: 25% auto .

The shorthand for all four edges in one property is called
inset , but it’s a physical property—it’s shorthand for top ,
bottom , left , and right .

INSET

Values [< length > | < percentage >]{1,4} | au
to

Initial
value

auto

Applies to Positioned elements

Percentages Refer to the height of the containing
block for top and bottom , and the
width of the containing block for righ
t and left

Inherited No

Animatable < length >, < percentage >

Yes, it looks like this should be shorthand for the logical
properties, but it isn’t. The following two rules have the same
result:

As with other physical shorthands such as those seen in
Chapter 7, the values are in the order TRBL (top, right, bottom,
left), and an omitted value is copied from the opposite side.
Thus, inset: 20px 2em is the same as writing inset: 20px
2em 20px 2em .

Setting Width and Height

After determining where you’re going to position an element,
you will often want to declare how wide and how high that
element should be. In addition, you’ll likely want to limit how
high or wide a positioned element gets.

If you want to give your positioned element a specific width, the
property to turn to is width . Similarly, height will let you
declare a specific height for a positioned element.

Although it is sometimes important to set the width and
height of a positioned element, it is not always necessary. For
example, if the placement of the four sides of the element is
described using top , right , bottom , and left (or with
inset-block-start , inset-inline-start , etc.), then the

#popup {top: 25%; right: 4em; bottom: 25%; left: 2em;
#popup {inset: 25% 4em 25% 2em;}

height and width of the element are implicitly determined by
the offsets. Assume that we want an absolutely positioned
element to fill the left half of its containing block, from top to
bottom. We could use these values, with the result depicted in
Figure 10-27:

inset: 0 50% 0 0;

Figure 10-27. Positioning and sizing an element by using only the offset properties

Since the default value of both width and height is auto , the
result shown in Figure 10-27 is exactly the same as if we had
used these values:

inset: 0 50% 0 0; width: 50%; height: 100%;

The presence of width and height in this specific example
adds nothing to the layout of the element.

If we were to add padding, a border, or a margin to the
element, the presence of explicit values for height and width
could very well make a difference:

This will give us a positioned element that extends out of its
containing block, as shown in Figure 10-28.

inset: 0 50% 0 0; width: 50%; height: 100%; padding:

Figure 10-28. Positioning an element partially outside its containing block

This happens because (by default) the padding is added to the
content area, and the content area’s size is determined by the
values of height and width . To get the padding we want and
still have the element fit inside its containing block, we would
either remove the height and width declarations, explicitly
set them both to auto , or set box-sizing to border-box .

Limiting Width and Height

Should it become necessary or desirable, you can place limits
on an element’s width by using the following properties, which
we’ll refer to as the min-max properties. An element’s content
area can be defined to have minimum dimensions by using
min-width and min-height .

MIN-WIDTH, MIN-HEIGHT

Values < length > | < percentage >

Initial
value

0

Applies to All elements except nonreplaced inline
elements and table elements

Percentages Refer to the width of the containing
block

Computed
value

For percentages, as specified; for length
values, the absolute length

Inherited No

Animatable < length >, < percentage >

Similarly, an element’s dimensions can be limited using the
properties max-width and max-height .

MAX-WIDTH, MAX-HEIGHT

Values < length > | < percentage > | none

Initial
value

none

Applies to All elements except nonreplaced inline
elements and table elements

Percentages Refer to the height of the containing
block

Computed
value

For percentages, as specified; for length
values, the absolute length; otherwise,
none

Inherited No

Animatable < length >, < percentage >

The names of these properties make them fairly self-
explanatory. What’s less obvious at first, but makes sense once

you think about it, is that values for all these properties cannot
be negative.

The following styles will force the positioned element to be at
least 10em wide by 20em tall, as illustrated in Figure 10-29:

inset: 10% 10% 20% 50%; min-width: 10em; min-height:

Figure 10-29. Setting a minimum width and height for a positioned element

This isn’t a very robust solution since it forces the element to be
at least a certain size regardless of the size of its containing
block. Here’s a better one:

inset: 10% 10% auto 50%; height: auto; min width: 15e

Here, the element should be 40% as wide as the containing
block but can never be less than 15em wide. We’ve also
changed the bottom and height so that they’re automatically
determined. This will let the element be as tall as necessary to
display its content, no matter how narrow it gets (never less
than 15em , though!).

NOTE

We’ll look at the role auto plays in the height and width of positioned elements in
“Placement and Sizing of Absolutely Positioned Elements”.

You can turn all this around to keep elements from getting too
wide or tall by using max-width and max-height . Let’s
imagine that, for some reason, we want an element to have
three-quarters the width of its containing block but to stop
getting wider when it hits 400 pixels. The appropriate styles are
as follows:

width: 75%; max-width: 400px;

One great advantage of the min-max properties is that they let
you mix units with relative safety. You can use percentage-

inset: 10% 10% auto 50%; height: auto; min-width: 15e

based sizes while setting length-based limits, or vice versa.

It’s worth mentioning that these min-max properties can be
very useful in conjunction with floated elements. For example,
we can allow a floated element’s width to be relative to the
width of its parent element (which is its containing block),
while making sure that the float’s width never goes below
10em . The reverse approach is also possible:

This will set the float to 40em wide, unless that would be more
than 40% the width of the containing block, in which case the
float will be limited to that 40% width.

NOTE

For details on what to do with content that overflows an element when it’s been
constrained to a certain maximum size, see “Handling Content Overflow”.

Absolute Positioning

Since most of the examples and figures in the previous sections
illustrate absolute positioning, you’ve already seen a bunch of it

p.aside {float: left; width: 40em; max-width: 40%;}

in action. Most of what remains are the details of what happens
when absolute positioning is invoked.

Containing Blocks and Absolutely
Positioned Elements

When an element is positioned absolutely, it is completely
removed from the document flow. It is then positioned with
respect to its closest positioned ancestor, if any, otherwise its
containing block, and its margin edges are placed using the
offset properties (top , left , inset-inline-start , etc.). The
positioned element does not flow around the content of other
elements, nor does their content flow around the positioned
element. This implies that an absolutely positioned element
may overlap other elements or be overlapped by them. (We’ll
see how to affect the overlapping order later.)

The containing block for an absolutely positioned element is the
nearest ancestor element that has a position value other than
static . It is common for an author to pick an element that will
serve as the containing block for the absolutely positioned
element and give it a position of relative with no offsets,
like so:

.contain {position: relative;}

Consider the example in Figure 10-30, which illustrates the
following:

p {margin: 2em;}
p.contain {position: relative;} /* establish a contai
b {position: absolute; inset: auto 0 0 auto;
 width: 8em; height: 5em; border: 1px solid gray;}

<body>
<p>
 This paragraph does not establish a cont
 its descendant elements that are absolutely posit
 absolutely positioned boldface element it
 positioned with respect to the initial containing
</p>
<p class="contain">
 Thanks to <code>position: relative</code>, this p
 containing block for any of its descendant elemen

 positioned. Since there is such an element--
 boldfaced element that is absolutely positioned,<
 to its containing block (the paragraph), it
 element box generated by the paragraph.
</p>
</body>

The elements in both paragraphs have been absolutely
positioned. The difference is in the containing block used for
each one. The element in the first paragraph is positioned
with respect to the initial containing block, because all of its
ancestor elements have a position of static . The second
paragraph has been set to position: relative , so it
establishes a containing block for its descendants.

Figure 10-30. Using relative positioning to define containing blocks

You’ve probably noted that in that second paragraph, the
positioned element overlaps some of the text content of the
paragraph. There is no way to avoid this, short of positioning
the element outside of the paragraph or specifying a
padding for the paragraph that is wide enough to accommodate
the positioned element. Also, since the element has a
transparent background, the paragraph’s text shows through
the positioned element. The only way to avoid this is to set a

background for the positioned element, or else move it out of
the paragraph entirely.

Assuming the containing block is the root element, you could
drop in an absolutely positioned paragraph, as follows, and get
a result like that shown in Figure 10-31:

The paragraph is now positioned at the very beginning of the
document, half as wide as the document’s width and
overwriting other content.

Figure 10-31. Positioning an element whose containing block is the root element

An important point to highlight is that when an element is
absolutely positioned, it establishes a containing block for its
descendant elements. For example, we can absolutely position

<p style="position: absolute; top: 0; right: 25%; lef
 auto; width: 50%; height: auto; background: silve
 ...
</p>

an element and then absolutely position one of its children by
using the following styles and basic markup (depicted in
Figure 10-32):

Remember that if the document is scrolled, the absolutely
positioned elements will scroll right along with it. This is true of
all absolutely positioned elements that are not descendants of
fixed-position or sticky-position elements.

div {position: relative; width: 100%; height: 10em;
 border: 1px solid; background: #EEE;}
div.a {position: absolute; top: 0; right: 0; width: 1
 margin-left: auto; background: #CCC;}
div.b {position: absolute; bottom: 0; left: 0; width:
 margin-top: auto; background: #AAA;}

<div>
 <div class="a">
 absolutely positioned element A
 <div class="b">
 absolutely positioned element B
 </div>
 </div>
 containing block
</div>

This happens because, eventually, the elements are positioned
in relation to something that’s part of the normal flow. For
example, if you absolutely position a table, and its containing
block is the initial containing block, then the positioned table
will scroll because the initial containing block is part of the
normal flow, and thus it scrolls.

If you want to position elements so that they’re placed relative
to the viewport and don’t scroll along with the rest of the
document, keep reading. “Fixed Positioning” has the answers
you seek.

Figure 10-32. Absolutely positioned elements establish containing blocks

Placement and Sizing of Absolutely
Positioned Elements

Combining the concepts of placement and sizing may seem odd,
but it’s a necessity with absolutely positioned elements because
the specification binds them closely together. This is not such a
strange pairing, upon reflection. Consider what happens if an
element is positioned using the four physical offset properties,
like so:

Here, the height and width of the <h1> ’s element box is
determined by the placement of its outer margin edges, as
shown in Figure 10-33.

Figure 10-33. Determining the height of an element based on the offset properties

If the containing block were made taller, the <h1> would also
become taller; if the containing block were narrowed, the <h1>

#masthead h1 {position: absolute; inset: 1em 25% 10px
 margin: 0; padding: 0; background: silver;}

would become narrower. If we were to add margins or padding
to the <h1> , that would have further effects on its calculated
height and width.

But what if we do all that and then also try to set an explicit
height and width?

Something has to give, because it’s incredibly unlikely that all
those values will be accurate. In fact, the containing block
would have to be exactly two and a half times as wide as the
<h1> ’s computed value of font-size for all of the shown
values to be accurate. Any other width would mean at least
one value is wrong and has to be ignored. Figuring out which
one depends on multiple factors, and the factors change
depending on whether an element is replaced or nonreplaced.
(See Chapter 6 for replaced versus nonreplaced elements.)

For that matter, consider the following:

#masthead h1 {position: absolute; top: 0; left: 1em;
 margin: 0; padding: 0; height: 1em; width: 50%; b

#masthead h1 {position: absolute; top: auto; left: au

What should the result be? As it happens, the answer is not
“reset the values to 0.” We’ll see the actual answer, starting in
the next section.

Auto-edges

When absolutely positioning an element, a special behavior
applies when any of the offset properties other than bottom
are set to auto . Let’s take top as an example. Consider the
following:

What should happen? For left , the left edge of the element
should be placed against the left edge of its containing block
(which we’ll assume here to be the initial containing block).

For top , however, something much more interesting happens.
The top of the positioned element should line up with the place

<p>
 When we consider the effect of positioning, it qu
 authors can do a great deal of damage to layout,
 interesting things.<span style="position: absolut
 left: 0;">[4] This is usually the case wit
 the sword always has at least two edges, both of
</p>

where its top would have been if it were not positioned at all. In
other words, imagine where the would have been
placed if its position value were static ; this is its static
position—the place where its top edge should be calculated to
sit. Therefore, we should get the result shown in Figure 10-34.

Figure 10-34. Absolutely positioning an element consistently with its “static” top edge

The “[4]” sits just outside the paragraph’s content because the
initial containing block’s left edge is to the left of the
paragraph’s left edge.

The same basic rules hold true for left and right being set to
auto . In those cases, the left (or right) edge of a positioned
element lines up with the spot where the edge would have been
placed if the element weren’t positioned. So let’s modify our
previous example so that both top and left are set to auto :

<p>
 When we consider the effect of positioning, it qu
 authors can do a great deal of damage to layout,
 interesting things.<span style="position: absolut

This results in Figure 10-35.

Figure 10-35. Absolutely positioning an element consistently with its “static” position

The “[4]” now sits right where it would have were it not
positioned. Note that, since it is positioned, its normal-flow
space is closed up. This causes the positioned element to
overlap the normal-flow content.

This auto-placement works only in certain situations, generally
wherever there are few constraints on the other dimensions of
a positioned element. Our previous example could be auto-
placed because it had no constraints on its height or width, nor
on the placement of the bottom and right edges. But suppose,
for some reason, there had been such constraints. Consider the
following:

g g p y p
 auto;">[4] This is usually the case with u
 the sword always has at least two edges, both of
</p>

It is not possible to satisfy all of those values. Determining what
happens is the subject of the next section.

Placing and Sizing Nonreplaced Elements

In general, the size and placement of an element depends on its
containing block. The values of its various properties (width ,
right , padding-left , and so on) affect its layout, but the
foundation is the containing block.

Consider the width and horizontal placement of a positioned
element. It can be represented as an equation that states the
following:

<p>
 When we consider the effect of positioning, it qu
 authors can do a great deal of damage to layout,
 interesting things.<span style="position: absolut

 height: 2em; width: 5em;">[4] This is usua
 technologies: the sword always has at least two e
</p>

left + margin-left + border-left-width + padding-left
padding-right + border-right-width + margin-right + r
the width of the containing block

This calculation is fairly reasonable. It’s basically the equation
that determines how block-level elements in the normal flow
are sized, except it adds left and right to the mix. So how do
all these interact? We have a series of rules to work through.

First, if left , width , and right are all set to auto , you get
the result seen in the previous section: the left edge is placed at
its static position, assuming a left-to-right language. In right-to-
left languages, the right edge is placed at its static position. The
width of the element is set to be “shrink to fit,” which means the
element’s content area is made only as wide as necessary to
contain its content. The nonstatic position property (right in
left-to-right languages, left in right-to-left) is set to take up the
remaining distance. For example:

This results in Figure 10-36.

<div style="position: relative; width: 25em; border:
 An absolutely positioned element can have its con
 absolute; top: 0; left: 0; right: auto; width: au

 silver;">shrink-wrapped thanks to the way
</div>

Figure 10-36. The “shrink-to-fit” behavior of absolutely positioned elements

The top of the element is placed against the top of its containing
block (the <div> , in this case), and the width of the element is
just as wide as is needed to contain the content. The remaining
distance from the right edge of the element to the right edge of
the containing block becomes the computed value of right .

Now suppose that only the left and right margins are set to
auto , not left , width , and right , as in this example:

What happens here is that the left and right margins, which are
both auto , are set to be equal. This will effectively center the
element, as shown in Figure 10-37.

<div style="position: relative; width: 25em; border:
 An absolutely positioned element can have its con
 absolute; top: 0; left: 1em; right: 1em; width: 1
 background: silver;">shrink-wrapped thanks
 rules work.
</div>

Figure 10-37. Horizontally centering an absolutely positioned element with auto
margins

This is basically the same as auto -margin centering in the
normal flow. So let’s make the margins something other than
auto :

Now we have a problem. The positioned ’s properties
add up to only 14em , whereas the containing block is 25em
wide. That’s an 11-em deficit we have to make up somewhere.

The rules state that, in this case, the user agent ignores the
value for the inline-end side of the element and solves for that.
In other words, the result will be the same as if we’d declared
this:

<div style="position: relative; width: 25em; border:
 An absolutely positioned element can have its con
 absolute; top: 0; left: 1em; right: 1em; width: 1
 margin-right: 1em; background: silver;">shrink-wr
 way positioning rules work.
</div>

<span style="position: absolute; top: 0; left: 1em;

This results in Figure 10-38.

Figure 10-38. Ignoring the value for right in an overconstrained situation

If one of the margins had been set to auto , that would have
been changed instead. Suppose we change the styles to state the
following:

The visual result would be the same as that in Figure 10-38,
only it would be attained by computing the right margin to
12em instead of overriding the value assigned to the property
right .

If, on the other hand, we made the left margin auto , it would
be reset, as illustrated in Figure 10-39:

right: 12em; width: 10em; margin-left: 1em; margin-ri
right: auto; background: silver;">shrink-wrapped</spa

<span style="position: absolute; top: 0; left: 1em;
right: 1em; width: 10em; margin-left: 1em; margin-rig
background: silver;">shrink-wrapped

Figure 10-39. Making use of an auto left margin

In general, if only one of the properties is set to auto , that
property will be used to satisfy the equation given earlier in the
section. Thus, given the following styles, the element’s width
would expand to whatever size is needed, instead of “shrink-
wrapping” the content:

So far we’ve really examined behavior only along the
horizontal axis, but very similar rules hold true along the
vertical axis. If we take the previous discussion and rotate it 90
degrees, as it were, we get almost the same behavior. For
example, the following markup results in Figure 10-40:

<span style="position: absolute; top: 0; left: 1em;
right: 1em; width: 10em; margin-left: auto; margin-ri
background: silver;">shrink-wrapped

<span style="position: absolute; top: 0; left: 1em;
right: 1em; width: auto; margin-left: 1em; margin-rig
background: silver;">not shrink-wrapped

In the first case, the height of the element is shrink-wrapped to
the content. In the second, the unspecified property (bottom) is
set to make up the distance between the bottom of the
positioned element and the bottom of its containing block. In
the third case, top is unspecified, and therefore used to make
up the difference.

<div style="position: relative; width: 30em; height:
 <div style="position: absolute; left: 0; width: 3
 background: #CCC; top: 0;">
 element A
 </div>
 <div style="position: absolute; left: 35%; width:
 background: #AAA; top: 0; height: 50%;">
 element B
 </div>
 <div style="position: absolute; left: 70%; width:
 background: #CCC; height: 50%; bottom: 0;">
 element C

 </div>
</div>

Figure 10-40. Vertical layout behavior for absolutely positioned elements

For that matter, auto-margins can lead to vertical centering.
Given the following styles, the absolutely positioned <div> will
be vertically centered within its containing block, as shown in
Figure 10-41:

<div style="position: relative; width: 10em; height:
 <div style="position: absolute; left: 0; width: 1
 top: 0; height: 5em; bottom: 0; margin: auto
 element D
 </div>
</div>

Figure 10-41. Vertically centering an absolutely positioned element with auto-
margins

There are two small variations to point out. In horizontal
layout, either right or left can be placed according to the
static position if their values are auto . In vertical layout, only
top can take on the static position; bottom , for whatever
reason, cannot.

Also, if an absolutely positioned element’s size is
overconstrained in the vertical direction, bottom is ignored.

Thus, in the following situation, the declared value of bottom
would be overridden by the calculated value of 5em :

There is no provision for top to be ignored if the properties are
overconstrained.

Placing and Sizing Replaced Elements

Positioning rules are different for replaced elements (e.g.,
images) than they are for nonreplaced elements. This is because
replaced elements have an intrinsic height and width, and
therefore are not altered unless explicitly changed by the
author. Thus, there is no concept of “shrink to fit” in the
positioning of replaced elements.

The behaviors that go into placing and sizing replaced elements
are most easily expressed by this series of rules, to be taken one
after the other:

<div style="position: relative; width: 10em; height:
 <div style="position: absolute; left: 0; width: 1
 top: 0; height: 5em; bottom: 0; margin: 0;">
 element D
 </div>
</div>

1. If width is set to auto , the used value of width is
determined by the intrinsic width of the element’s content.
Thus, if an image is intrinsically 50 pixels wide, the used
value is calculated to be 50px . If width is explicitly declared
(that is, something like 100px or 50%), the width is set to
that value.

2. If left has the value auto in a left-to-right language,
replace auto with the static position. In right-to-left
languages, replace an auto value for right with the static
position.

3. If either left or right is still auto (in other words, it
hasn’t been replaced in a previous step), replace any auto
on margin-left or margin-right with 0 .

4. If, at this point, both margin-left and margin-right are
still defined to be auto , set them to be equal, thus centering
the element in its containing block.

5. After all that, if only one auto value is left, change it to equal
the remainder of the equation.

This leads to the same basic behaviors you saw with absolutely
positioned nonreplaced elements, as long as you assume that
there is an explicit width for the nonreplaced element.
Therefore, the following two elements will have the same width
and placement, assuming the image’s intrinsic width is 100
pixels (see Figure 10-42):

Figure 10-42. Absolutely positioning a replaced element

As with nonreplaced elements, if the values are
overconstrained, the user agent is supposed to ignore the value
on the inline-end side: right in left-to-right languages and
left in right-to-left languages. Thus, in the following example,

<div>
 <img src="frown.gif" alt="a frowny face"
 style="position: absolute; top: 0; left: 50px
</div>
<div style="position: absolute; top: 0; left: 50px;
 width: 100px; height: 100px; margin: 0;">
 it's a div!
</div>

the declared value for right is overridden with a computed
value of 50px :

Similarly, layout along the vertical axis is governed by this
series of rules:

1. If height is set to auto , the computed value of height is
determined by the intrinsic height of the element’s content.
Thus, the height of an image 50 pixels tall is computed to be
50px . If height is explicitly declared (that is, something like
100px or 50%), the height is set to that value.

2. If top has the value auto , replace it with the replaced
element’s static position.

3. If bottom has a value of auto , replace any auto value on
margin-top or margin-bottom with 0 .

4. If, at this point, both margin-top and margin-bottom are
still defined to be auto , set them to be equal, thus centering
the element in its containing block.

<div style="position: relative; width: 300px;">
 <img src="frown.gif" alt="a frowny face" style="p
 left: 50px; right: 125px; width: 200px; margi
</div>

5. After all that, if only one auto value is left, change it to equal
the remainder of the equation.

As with nonreplaced elements, if the values are
overconstrained, the user agent is supposed to ignore the value
for bottom .

Thus, the following markup results in Figure 10-43:

<div style="position: relative; height: 200px; width:
 <img src="one.gif" alt="one" width="25" height="2
 style="position: absolute; top: 0; left: 0; m
 <img src="two.gif" alt="two" width="25" height="2
 style="position: absolute; top: 0; left: 60px
 bottom: 4377px;">
 <img src="three.gif" alt="three" width="25" heigh
 style="position: absolute; left: 0; width: 10
 bottom: 0;">
 <img src="four.gif" alt="four" width="25" height=
 style="position: absolute; top: 0; height: 10
 width: 50px;">
 <img src="five.gif" alt="five" width="25" height=
 style="position: absolute; top: 0; left: 0; b
 margin: auto;">
</div>

Figure 10-43. Stretching replaced elements through positioning

Placement on the Z-Axis

With all of the positioning going on, there will inevitably be a
situation where two elements will try to exist in the same place,
visually speaking. One of them will have to overlap the other—

so how do we control which element comes out “on top”? This is
where z-index comes in.

This property lets you alter the way that elements overlap one
another. It takes its name from the coordinate system in which
side-to-side is the x-axis and top-to-bottom is the y-axis. In such
a case, the third axis—which runs from back to front, as you
look at the display surface—is termed the z-axis. Thus, elements
are given values along this axis by using z-index . Figure 10-44
illustrates this system.

Z-INDEX

Values < integer > | auto

Initial value auto

Applies to Positioned elements

Computed value As specified

Inherited No

Animatable Yes

Figure 10-44. A conceptual view of z-index stacking

In this coordinate system, an element with a higher z-index
value is closer to the reader than those with lower z-index
values. This will cause the high-value element to overlap the
others, as illustrated in Figure 10-45, which is a “head-on” view
of Figure 10-44. This precedence of overlapping is referred to as
stacking.

Figure 10-45. How the elements are stacked

Any integer can be used as a value for z-index , including
negative numbers. Assigning an element a negative z-index
will move it further away from the reader; that is, it will be
moved lower in the stack. Consider the following styles,
illustrated in Figure 10-46:

p {background: rgba(255,255,255,0.9); border: 1px sol
p#first {position: absolute; top: 0; left: 0;
 width: 40%; height: 10em; z-index: 8;}
p#second {position: absolute; top: -0.75em; left: 15%
 width: 60%; height: 5.5em; z-index: 4;}
p#third {position: absolute; top: 23%; left: 25%;

Each of the elements is positioned according to its styles, but the
usual order of stacking is altered by the z-index values.
Assuming the paragraphs were in numeric order, a reasonable
stacking order would have been, from lowest to highest,
p#first , p#second , p#third , p#fourth . This would have put
p#first behind the other three elements, and p#fourth in
front of the others. Thanks to z-index , the stacking order is
under your control.

Figure 10-46. Stacked elements can overlap

 width: 30%; height: 10em; z-index: 1;}
p#fourth {position: absolute; top: 10%; left: 10%;
 width: 80%; height: 10em; z-index: 0;}

As the previous example demonstrates, the z-index values
don’t need to be contiguous. You can assign any integer of any
size. If you want to be fairly certain that an element stays in
front of everything else, you might use a rule along the lines of
z-index: 100000 . This would work as expected in most cases
—although if you ever declared another element’s z-index to
be 100001 (or higher), it would appear in front.

Once you assign an element a value for z-index (other than
auto), that element establishes its own local stacking context.
This means that all of the element’s descendants have their own
stacking order, except relative to their ancestor element. This is
very similar to the way that elements establish new containing
blocks. Given the following styles, you would see something like
Figure 10-47:

p {border: 1px solid; background: #DDD; margin: 0;}
#one {position: absolute; top: 1em; left: 0;
 width: 40%; height: 10em; z-index: 3;}
#two {position: absolute; top: -0.75em; left: 15%;
 width: 60%; height: 5.5em; z-index: 10;}
#three {position: absolute; top: 10%; left: 30%;
 width: 30%; height: 10em; z-index: 8;}
p[id] em {position: absolute; top: -1em; left: -1em;
 width: 10em; height: 5em;}
#one em {z-index: 100; background: hsla(0,50%,70%,0.9
#t { i d 10 b k d h l (120 50% 70% 0

Figure 10-47. Positioned elements establish local stacking contexts

Note where the elements fall in the stacking order (you
can find a list of the various ways to establish a stacking context
in “Blending in Isolation” in Chapter 20). Each is correctly
layered with respect to its parent element. Each is drawn
in front of its parent element, whether or not its z-index is
negative, and parents and children are grouped together like
layers in an editing program. (The specification keeps children
from being drawn behind their parents when using z-index
stacking, so the em in p#three is drawn on top of p#one , even
though its z-index value is -343 .) This is because its z-index
value is taken with respect to its local stacking context: its

#two em {z-index: 10; background: hsla(120,50%,70%,0.
#three em {z-index: -343; background: hsla(240,50%,70

containing block. That containing block, in turn, has a z-index ,
which operates within its local stacking context.

We have one more z-index value to examine. The CSS
specification has this to say about the default value, auto :

The stack level of the generated box in the current stacking
context is 0. The box does not establish a new stacking
context unless it is the root element.

So, any element with z-index: auto can be treated as though
it is set to z-index: 0 .

TIP

z-index is also honored by flex and grid items, even though they are not positioned
using the position property. The rules are essentially the same.

Fixed Positioning

As implied in a previous section, fixed positioning is just like
absolute positioning, except the containing block of a fixed
element is the viewport. A fixed-position element is totally
removed from the document’s flow and does not have a
position relative to any part of the document.

Fixed positioning can be exploited in interesting ways. First off,
it’s possible to create frame-style interfaces by using fixed
positioning. Consider Figure 10-48, which shows a common
layout scheme.

Figure 10-48. Emulating frames with fixed positioning

This could be done using the following styles:

header {position: fixed; top: 0; bottom: 80%; left: 2
 background: gray;}
div#sidebar {position: fixed; top: 0; bottom: 0; left
 background: silver;}

This will fix the header and sidebar to the top and side of the
viewport, where they will remain regardless of how the
document is scrolled. The drawback here, though, is that the
rest of the document will be overlapped by the fixed elements.
Therefore, the rest of the content should probably be contained
in its own wrapper element and employ something like the
following:

It would even be possible to create small gaps between the
three positioned elements by adding some appropriate margins,
as follows:

main {position: absolute; top: 20%; bottom: 0; left:
 overflow: scroll; background: white;}

body {background: black; color: silver;} /* colors fo
div#header {position: fixed; top: 0; bottom: 80%; lef
 background: gray; margin-bottom: 2px; color: yell
div#sidebar {position: fixed; top: 0; bottom: 0; left
 background: silver; margin-right: 2px; color: mar
div#main {position: absolute; top: 20%; bottom: 0; le
 overflow: auto; background: white; color: black;}

Given such a case, a tiled image could be applied to the <body>
background. This image would show through the gaps created
by the margins, which could certainly be widened if the author
saw fit.

Another use for fixed positioning is to place a “persistent”
element on the screen, like a short list of links. We could create
a persistent footer with copyright and other information as
follows:

This would place the footer element at the bottom of the
viewport and leave it there no matter how much the document
is scrolled.

NOTE

Many of the layout cases for fixed positioning, besides “persistent elements,” are
handled as well, if not better, by grid layout (see Chapter 12 for more).

Relative Positioning

footer {position: fixed; bottom: 0; width: 100%; heig

The simplest of the positioning schemes to understand is
relative positioning. In this scheme, a positioned element is
shifted by use of the offset properties. However, this can have
some interesting consequences.

On the surface, it seems simple enough. Suppose we want to
shift an image up and to the left. Figure 10-49 shows the result
of these styles:

img {position: relative; top: -20px; left: -20px;}

Figure 10-49. A relatively positioned element

All we’ve done here is offset the image’s top-edge 20 pixels
upward and offset the left-edge 20 pixels to the left. However,
notice the blank space where the image would have been had it
not been positioned. This happened because when an element
is relatively positioned, it’s shifted from its normal place, but
the space it would have occupied doesn’t disappear.

NOTE

Relative positioning is very similar to translation element transforms, which are
discussed in Chapter 17.

Consider the results of the following styles, which are depicted
in Figure 10-50:

em {position: relative; top: 10em; color: red;}

Figure 10-50. Another relatively positioned element

As you can see, the paragraph has some blank space in it. This is
where the element would have been, and the layout of
the element in its new position exactly mirrors the space
it left behind.

It’s also possible to shift a relatively positioned element to
overlap other content. For example, the following styles and
markup are illustrated in Figure 10-51:

img.slide {position: relative; left: 30px;}

Figure 10-51. Relatively positioned elements can overlap other content

Relative positioning has one interesting wrinkle. What happens
when a relatively positioned element is overconstrained? For
example:

<p>
 In this paragraph, we will find that there is an
 pushed to the right. It will therefore <img src="
 class="slide"> overlap content nearby, assuming t
 last element in its line box.
</p>

strong {position: relative; top: 10px; bottom: 20px;}

Here we have values that call for two very different behaviors.
If we consider only top: 10px , the element should be shifted
downward 10 pixels, but bottom: 20px clearly calls for the
element to be shifted upward 20 pixels.

CSS states that when it comes to overconstrained relative
positioning, one value is reset to be the negative of the other.
Thus, bottom would always equal -top . This means the
previous example would be treated as though it had been the
following:

Therefore, the element will be shifted downward 10
pixels. The specification also makes allowances for writing
directions. In relative positioning, right always equals -left
in left-to-right languages; but in right-to-left languages, this is
reversed: left always equals -right .

strong {position: relative; top: 10px; bottom: -10px;

NOTE

As you saw in previous sections, when we relatively position an element, it
immediately establishes a new containing block for any of its children. This
containing block corresponds to the place where the element has been newly
positioned.

Sticky Positioning

The last type of positioning in CSS is sticky positioning. If you’ve
ever used a decent music app on a mobile device, you’ve
probably noticed this in action: as you scroll through an
alphabetized list of artists, the current letter stays stuck at the
top of the window until a new letter section is entered, at which
point the new letter replaces the old. It’s a little hard to show in
print, but Figure 10-52 takes a stab at it by showing three points
in a scroll.

Figure 10-52. Sticky positioning

CSS makes this sort of thing possible by declaring an element to
be position: sticky , but (as usual) there’s more to it than
that.

First off, the offsets (top , left , etc.) are used to define a sticky-
positioning rectangle with relation to the containing block. Take
the following as an example. It will have the effect shown in
Figure 10-53, where the dashed line shows where the sticky-
positioning rectangle is created:

#scrollbox {overflow: scroll; width: 15em; height: 18
#scrollbox h2 {position: sticky; top: 2em; bottom: au
 left: auto; right: auto;}

Figure 10-53. The sticky-positioning rectangle

Notice that the <h2> is in the middle of the rectangle in
Figure 10-53. That’s its place in the normal flow of the content
inside the #scrollbox element. The only way to make the
<h2> sticky is to scroll that content until the top of the <h2>
touches the top of the sticky-positioning rectangle (which is
2em below the top of the scrollbox)—at which point, the <h2>
will stick there. This is illustrated in Figure 10-54.

Figure 10-54. Sticking to the top of the sticky-positioning rectangle

In other words, the <h2> sits in the normal flow until its sticky
edge touches the sticky edge of the sticky-positioning rectangle.
At that point, it sticks there as if absolutely positioned, except
that it leaves behind the space it otherwise would have
occupied in the normal flow.

You may have noticed that the #scrollbox element doesn’t
have a position declaration. One isn’t hiding offstage, either:
it’s the overflow: scroll set on #scrollbox that creates a
containing block for the sticky-positioned <h2> elements. This
is a case where a containing block isn’t determined by
position .

If the scrolling is reversed so that the <h2> ’s normal-flow
position moves lower than the top of the rectangle, the <h2> is
detached from the rectangle and resumes its place in the
normal flow. This is shown in Figure 10-55.

Figure 10-55. Detaching from the top of the sticky-positioning rectangle

Note that the reason the <h2> sticks to the top of the rectangle
in these examples is that the value of top is set to something
other than auto for the <h2> (that is, for the sticky-positioned
element). You can use whatever offset side you want. For
example, you could have elements stick to the bottom of the
rectangle as you scroll downward through the content. The
following code is illustrated in Figure 10-56:

#scrollbox {overflow: scroll; position: relative; wid
#scrollbox h2 {position: sticky; top: auto; bottom: 0

Figure 10-56. Sticking to the bottom of the sticky-positioning rectangle

This could be a way to show footnotes or comments for a given
paragraph, for example, while allowing them to scroll away as
the paragraph moves upward. The same rules apply for the left
and right sides, which is useful for side-scrolling content.

If you define more than one offset property to have a value
other than auto , all of them will become sticky edges. For
example, this set of styles will force the <h2> to always appear
inside the scrollbox, regardless of which way its content is
scrolled (see Figure 10-57):

#scrollbox {overflow: scroll; : 15em; height: 10em;}
#scrollbox h2 {position: sticky; top: 0; bottom: 0; l

Figure 10-57. Making every side a sticky side

You might wonder: what happens if I have multiple sticky-
positioned elements in a situation like this, and I scroll past two
or more? In effect, they pile up on top of one another:

It’s not easy to see in static images like Figure 10-58, but the way
the headers are piling up is that the later they are in the source,
the closer they are to the viewer. This is the usual z-index
behavior—which means that you can decide which sticky
elements sit on top of others by assigning explicit z-index

#scrollbox {overflow: scroll; width: 15em; height: 18
#scrollbox h2 {position: sticky; top: 0; width: 40%;}
h2#h01 {margin-right: 60%; background: hsla(0,100%,50
h2#h02 {margin-left: 60%; background: hsla(120,100%,5
h2#h03 {margin-left: auto; margin-right: auto;
 background: hsla(240,100%,50%,0.75);}

values. For example, suppose we want the first sticky element
in our content to sit atop all the others. By giving it z-index:
1000 , or any other sufficiently high number, it would sit on top
of all the other sticky elements that are stuck in the same place.
The visual effect would be of the other elements “sliding under”
the topmost element.

Figure 10-58. A sticky-header pileup

Summary

As you saw in this chapter, CSS offers numerous ways to affect
the placement of basic elements. Floats may be a fundamentally
simple aspect of CSS, but that doesn’t keep them from being
useful and powerful. They fill a vital and honorable niche,
allowing the placement of content to one side while the rest of
the content flows around it.

Thanks to positioning, it’s possible to move elements around in
ways that the normal flow could never accommodate.
Combined with the stacking possibilities of the z-axis and the
various overflow patterns, there’s still a lot to like in
positioning, even in a time when flexbox and grid layout are
available to us.

Chapter 11. Flexible Box Layout

The CSS Flexible Box Module Level 1, or flexbox for short,
makes the once difficult tasks of laying out certain kinds of
pages, widgets, applications, and galleries almost simple. With
flexbox, you often don’t need a CSS framework. In this chapter,
you’ll learn how to use just a few lines of CSS to create almost
any feature your site requires.

Flexbox Fundamentals

Flexbox is a simple and powerful way to lay out page
components by dictating how space is distributed, content is
aligned, and elements are visually ordered. Content can easily
be arranged vertically or horizontally, and can be laid out along
a single axis or wrapped across multiple lines. And much, much
more.

With flexbox, the appearance of content can be independent of
source order. Though visually altered, flex properties should
not impact the order of content read by screen readers.

http://www.w3.org/TR/css-flexbox-1

WARNING

Specifications say that screen readers should follow source order, but as of late 2022,
Firefox follows the visual order. As of this writing, a proposal calls for adding a CSS
property that specifies whether to follow source or visual order, so it may soon be
possible to decide for yourself.

Perhaps most importantly, with flexible box module layouts,
elements can be made to behave predictably for different
screen sizes and different display devices. Flexbox works very
well with responsive sites, as content can increase and decrease
in size when the space provided is increased or decreased.

Flexbox works off of a parent-and-child relationship. Flexbox
layout is activated by declaring display: flex or display:
inline-flex on an element. This element becomes a flex
container, arranging its children within the space provided and
controlling their layout. The children of this flex container
become flex items. Consider the following styles and markup,
illustrated in Figure 11-1:

div#one {display: flex;}
div#two {display: inline-flex;}
div {border: 1px dashed; background: silver;}
div > * {border: 1px solid; background: #AAA;}
div p {margin: 0;}

Figure 11-1. The two kinds of flex containers

<div id="one">
 <p>flex item with
two longer lines</p>
 flex item
 <p>flex item</p>
</div>
<div id="two">
 flex item with
two longer lines
 flex item
 <p>flex item</p>
</div>

https://meyerweb.github.io/csstdg5figs/11-flexbox/two-kinds-of-flex-containers.html

TIP

Look for the Play symbol to know when an online example is available. All of the
examples in this chapter can be found at https://meyerweb.github.io/csstdg5figs/11-
flexbox.

Notice how each child element of the <div> s becomes a flex
item, and furthermore, how they all lay out in the same way? It
doesn’t matter that some are paragraphs and others are
 s. They all become flex items. (There would likely have
been some differences due to the paragraphs’ browser-default
margins, except those were removed.)

The only real difference between the first and second flex
containers is that one is set to display: flex , and the other to
display: inline-flex . In the first, the <div> becomes a
block box with flex layout inside it. In the second, the <div>
becomes an inline-block box with flex inside it.

The key thing to keep in mind is that once you set an element to
be a flex container, like the <div> s in Figure 11-1, it will flex
only its immediate children, and not further descendants.
However, you can make those descendants flex containers as
well, enabling some really complex layouts.

https://meyerweb.github.io/csstdg5figs/11-flexbox

Within a flex container, items line up on the main-axis. The
main-axis can be either horizontal or vertical, so you can
arrange items into columns or rows. The main-axis takes on the
directionality set via the writing mode: this main-axis concept is
discussed in depth in “Understanding Axes”.

As the first <div> in Figure 11-1 demonstrates, when the flex
items don’t fill up the entire main-axis (in this case, the width)
of the container, they will leave extra space. Certain properties
dictate how to handle that extra space, which we’ll explore later
in the chapter. You can group the children to the left, the right,
or centered, or you can spread them out, defining how the
space is spread out either between or around the children.

Besides distributing space, you can also allow the flex items to
grow to take up all the available space by distributing that extra
space among one, some, or all of the flex items. If there isn’t
enough space to contain all the flex items, you can employ
flexbox properties to dictate how they should shrink to fit
within their container, or whether they’re allowed to wrap to
multiple flex lines.

Furthermore, the children can be aligned with respect to their
container or to each other; to the bottom, top, or center of the
container; or stretched out to fill the container. Regardless of

the difference in content length among sibling containers, with
flexbox you can make all the siblings the same size with a single
declaration.

A Simple Example

Let’s say we want to create a navigation bar out of a group of
links. This is exactly the sort of thing flexbox was designed to
handle. Consider the following:

nav {
 display: flex;
}

<nav>
 Home
 About
 Blog
 Careers
 Contact Us
</nav>

In the preceding code, with its display property set to flex ,
the <nav> element is turned into a flex container, and its child
links are all flex items. These links are still hyperlinks, but they

are now also flex items, which means they are no longer inline-
level boxes: rather, they participate in their container’s flex
formatting context. Therefore, the whitespace between the <a>
elements in the HTML is completely ignored in layout terms. If
you’ve ever used HTML comments to suppress the space
between links, list items, or other elements, you know why this
is a big deal.

So let’s add some CSS to the links:

nav {
 display: flex;
 border-block-end: 1px solid #ccc;
}
a {
 margin: 0 5px;
 padding: 5px 15px;
 border-radius: 3px 3px 0 0;
 background-color: #ddaa00;
 text-decoration: none;
 color: #ffffff;
}
a:hover, a:focus, a:active {
 background-color: #ffcc22;
 color: black;
}

We now have ourselves a simple tabbed navigation bar, as
shown in Figure 11-2.

Figure 11-2. A simple tabbed navigation

That might not seem like much right now, because there’s
nothing here you couldn’t have done with old-school CSS. Just
wait: it gets better.

By design, flexbox is direction-agnostic. This is different from
block or inline layouts, which are defined to be vertically and
horizontally biased, respectively. The web was originally
designed for the creation of pages on monitors, and assumed a
horizontal constraint with infinite vertical scroll. This vertically
biased layout is insufficient for modern applications that
change orientation, grow, and shrink, depending on the user
agent and the direction of the viewport, and change writing
modes depending on the language.

For years we joked about the challenges of vertical centering
and multiple column layout. Some layouts were no laughing

https://meyerweb.github.io/csstdg5figs/11-flexbox/simple-tabbed-navigation.html

matter, like ensuring equal heights in sets of multiple side-by-
side boxes, with buttons or “more” links fixed to the bottom of
each box (Figure 11-3); or, keeping the pieces of a single button
all neatly lined up (Figure 11-4). Flexbox makes what used to be
challenging layout effects fairly simple.

Figure 11-3. Power grid layout with flexbox, with buttons aligned on the bottom

https://meyerweb.github.io/csstdg5figs/11-flexbox/power-grid-layout.html

Figure 11-4. Widget with several components, all vertically centered

The classic “Holy Grail” layout, with a header, three equal-
height columns of varying flexibility, and a footer, can be
created in a few lines of CSS with either flexbox or grid layout,
which are covered in the next chapter. Here’s an example of
HTML that might represent such a layout:

<header>Header</header>
<main>
 <nav>Links</nav>
 <aside>Aside content</aside>
 <article>Document content</article>
</main>
<footer>Footer</footer>

As the chapter progresses, remember that flexbox is designed
for a specific type of layout, that of single-dimensional content

https://meyerweb.github.io/csstdg5figs/11-flexbox/widget-with-components-vertically-centered.html
https://en.wikipedia.org/wiki/Holy_grail_(web_design)

distribution. It works best at arranging information along a
single dimension, or axis. While you can create grid-like layouts
(two-dimensional alignment) with flexbox, this is not its
intended purpose, and it has significant flaws for this use case.
If you find yourself pining for two-dimensional layout
capabilities, see Chapter 12.

Flex Containers

The first important concept to fully understand is the flex
container, also known as the container box. The element on
which display: flex or display: inline-flex is applied
becomes the flex container and generates a flex formatting
context for its child nodes.

These children are flex items, whether they are DOM nodes, text
nodes, or generated-content pseudo-elements. Absolutely
positioned children of flex containers are also flex items, but
each is sized and positioned as though it is the only flex item in
its flex container.

We’ll first look at all the CSS properties that apply to the flex
container, including several properties impacting the layout of

flex items. We’ll then explore the equally important concept of
flex items in “Flex Items”.

Using the flex-direction Property

If you want your layout to go from top to bottom, left to right,
right to left, or even bottom to top, you can use flex-
direction to control the main-axis along which the flex items
get laid out.

FLEX-DIRECTION

Values row | row-reverse | column | colum
n-reverse

Initial value row

Applies to Flex containers

Computed
value

As specified

Inherited No

Animatable No

The flex-direction property specifies how flex items are
placed in the flex container. It defines the main-axis of a flex
container, which is the primary axis along which flex items are
laid out (see “Understanding Axes” for more details).

Assume the following basic markup structure:

 1
 2
 3
 4
 5

Figure 11-5 shows how that simple list would be arranged by
applying each of the four values of flex-direction , assuming
a left-to-right language.

Figure 11-5. The four values of the flex-direction property

The default value, row , doesn’t look all that different from a
bunch of inline or floated elements. This is misleading, for

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-direction-four-values.html

reasons you’ll soon see, but notice how the other flex-
direction values affect the arrangement of the list items.

For example, you can reverse this layout of the items with
flex-direction: row-reverse . The flex items are laid out
from top to bottom when flex-direction: column is set, and
from bottom to top if flex-direction: column-reverse is set,
as shown in Figure 11-5.

We specified left-to-right languages, because the direction of the
main-axis for row —the direction that the flex items are laid out
—is the direction of the current writing mode. We’ll discuss
how writing modes affect flex direction and layout in a bit.

WARNING

Do not use flex-direction to change the layout for right-to-left languages. Rather,
use the dir attribute in HTML, or the writing-mode CSS property described in
“Setting Writing Modes”, to indicate the language direction. To learn more about
language direction and flexbox, see “Working with Other Writing Directions”.

The column value sets the flex container’s main-axis to be the
same orientation as the block axis of the current writing mode.
This is the vertical axis in horizontal writing modes like English,
and the horizontal axis in vertical writing modes like
traditional Japanese.

Thus, when declaring a column direction in English (or a
language with the same writing direction), the flex items are
displayed in the same order as declared in the source
document, but from top to bottom instead of left to right, so the
flex items are laid out one on top of the next instead of side by
side. Consider the following:

nav {
 display: flex;
 flex-direction: column;
 border-right: 1px solid #ccc;
}

Thus, by simply writing a few CSS properties, we can create a
nice sidebar-style navigation for the list of links we saw earlier
as a horizontal row of tabs. For the new layout, we change the
flex-direction from the default value of row to column and
move the border from the bottom to the right; Figure 11-6
shows the result.

Figure 11-6. Changing the flex direction can completely change the layout

The column-reverse value is similar to column , except the
main-axis is reversed; thus, main-start is placed at the end of
the main-axis, and main-end is placed at the start of the main-
axis. In top-to-bottom writing modes, that means the flex items
are arranged going upward, as shown previously in Figure 11-5.
The -reverse values only change the appearance. The
keyboard-navigation tab order remains the same as the
underlying markup.

What we’ve shown so far is super powerful and makes many
layouts a breeze. If we include the navigation within a full
document, we can see how simple layout can be with just a few
flexbox property declarations.

https://meyerweb.github.io/csstdg5figs/11-flexbox/changing-flex-direction-change-layout.html

Let’s expand a little on our preceding HTML example, and
include the navigation as a component within a home page:

<body>
 <header>
 <h1>My Page's title!</h1>
 </header>
 <nav>
 Home
 About
 Blog
 Careers
 Contact Us
 </nav>
 <main>
 <article>

 <p>This is some awesome content that is on the
 <button>Go Somewhere</button>
 </article>
 <article>

 <p>This is more content than the previous box,
 the next.</p>
 <button>Click Me</button>
 </article>
 <article>

By adding a few lines of CSS, we get a nicely laid-out home page
(Figure 11-7):

* {
 outline: 1px #ccc solid;
 margin: 10px;
 padding: 10px;
}
body, nav, main, article {
 display: flex;
}
body, article {
 flex-direction: column;
}

 <p>We have lots of content here to show that c
 everything can be the same size if you use fle
 <button>Do Something</button>
 </article>
 </main>
 <footer>Copyright © 2023</footer>
</body>

Figure 11-7. Home page layout using flex-direction: row and column

Yes, elements can be flex items while also being flex containers,
as you can see with the navigation, main, and article elements
in this case. The <body> and <article> elements have
column set as their flex directions, and we let <nav> and
<main> default to row . And all that with just two lines of CSS!

https://meyerweb.github.io/csstdg5figs/11-flexbox/home-page-layout-row-and-column.html

To be clear, there’s more styling at work in Figure 11-7. Borders,
margins, and padding were applied to all the elements, so you
can visually differentiate the flex items for the sake of learning
(we wouldn’t put this less-than-attractive site into production!).
Otherwise, all we’ve done is simply declare the body,
navigation, main, and articles as flex containers, making the
navigation links, main, article, images, paragraphs, and buttons
flex items.

Working with Other Writing Directions

If you’re creating websites in English, or another left-to-right
(LTR) language, you likely want the flex items to be laid out
from left to right, and from top to bottom. The default value
row will do that. If you’re writing in Arabic, or another right-to-
left (RTL) language, you likely want the flex items to be laid out
from right to left, and from top to bottom. The default value
row will do that, too.

Using flex-direction: row arranges the flex items in the
same direction as the text direction, also known as the writing
mode, whether the language is RTL or LTR. While most websites
are presented in left-to-right languages, some sites are in right-
to-left languages, and yet others are top-to-bottom. With

flexbox, when you change the writing mode, flexbox takes care
of changing the flex direction for you.

The writing mode is set by the writing-mode , direction , and
text-orientation properties, or by the dir attribute in
HTML. (These are covered in Chapter 15.) When the writing
mode is right to left, the direction of the main-axis—and
therefore the flex items within the flex container—will go from
right to left when the flex-direction is row . This is
illustrated in Figure 11-8.

Figure 11-8. The four values of flex-direction when writing direction is right to

left

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-direction-rtl-four-values.html

NOTE

If the CSS direction value is different from the dir attribute value on an element,
the CSS property value takes precedence over the HTML attribute. The specifications
strongly recommend using the HTML attribute rather than the CSS property.

Vertically written languages include Bopomofo, Egyptian
hieroglyphs, Hiragana, Katakana, Han, Hangul, Meroitic cursive
and hieroglyphs, Mongolian, Ogham, Old Turkic, Phags Pa, Yi,
and sometimes Japanese. These languages are displayed
vertically only when a vertical writing mode is specified. If not,
all of those languages are treated as horizontal.

For top-to-bottom languages, writing-mode: horizontal-tb is
in effect, meaning the main-axis is rotated 90 degrees clockwise
from the default left to right. Thus, flex-direction: row goes
from top to bottom, and flex-direction: column proceeds
from right to left. Figure 11-9 shows the effects of the various
flex-direction values on the following markup:

<ol lang="jp">
 一
 二
 三
 四

 五

Figure 11-9. The four values of flex-direction when writing mode is horizontal-tb

That’s right: the rows are vertical, and columns are horizontal.
Not only that, but the basic column direction is right to left,
whereas column-reverse runs left to right. That’s what comes
of applying these values to a top-to-bottom, right-to-left
language as we see here.

All right, you’ve seen various ways flex direction and writing
modes interact. But so far, all the examples have shown a single
row or column of flex items. What happens when the flex items’
main dimension (their combined inline sizes for row or
combined block sizes for column) don’t fit within the flex

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-direction-ttb-four-values.html

container? We can either have them overflow the container or
can allow them to wrap onto additional flex lines. Also, we’ll
later talk about how to allow flex items to shrink (or grow) to fit
the container.

Wrapping Flex Lines

If all the flex items don’t fit into the main-axis of the flex
container, the flex items will not wrap by default, nor will they
necessarily resize. Rather, the flex items may shrink if allowed
to do so via the flex item’s flex property (see “Growth Factors
and the flex Property”); otherwise, the flex items will overflow
the bounding container box.

You can affect this behavior. The flex-wrap property sets
whether a flex container is limited to a single line or is allowed
to become multiline when needed.

FLEX-WRAP

Values nowrap | wrap | wrap-reverse

Initial value nowrap

Applies to Flex containers

Computed value As specified

Inherited No

Animatable No

When the flex-wrap property is set to allow for multiple flex
lines via wrap or wrap-reverse , it determines where
additional lines of flex items appear: either before or after the
original line of flex items.

Figure 11-10 demonstrates the three values of the flex-wrap
property when the flex-direction value is row (and the
language is LTR). Where these examples show two flex lines, the

second line and subsequent flex lines are added along the
direction of the cross-axis (in this case, the vertical axis).

Figure 11-10. The three values of the flex-wrap property in a row-oriented flow

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-wrap-three-values.html

When wrap is set, the cross-axis is the same as the block axis
for flex-direction: row and row-reverse , and is the same
as the inline axis of the language for flex-direction: column
and column-reverse .

The difference is that when flex-wrap is set to wrap-reverse ,
the cross-axis direction is reversed: subsequent flex lines are
drawn above the previous line in the case of row and row-
reverse , and to the left of the previous column in the case of
column-reverse (assuming an LTR language such as English).

We’ll talk more about axes in just a moment, but first, let’s talk
about the shorthand property that brings flex direction and
wrapping together.

Defining Flexible Flows

The flex-flow property lets you define the wrapping
directions of the main- and cross-axes, and whether the flex
items can wrap to more than one line if needed.

FLEX-FLOW

Values < flex-direction > ‖ < flex-wrap >

Initial value row nowrap

Applies to Flex containers

Computed
value

As specified

Inherited No

Animatable No

The flex-flow shorthand property sets the flex-direction
and flex-wrap properties to define the flex container’s
wrapping and main- and cross-axes.

As long as display is set to flex or inline-flex , omitting
flex-flow , flex-direction , and flex-wrap is the same as
declaring any of the following three, all of which have the result
shown in Figure 11-11:

flex-flow: row;
flex-flow: nowrap;
flex-flow: row nowrap;

Figure 11-11. A row-oriented unwrapped flex flow

In LTR writing modes, declaring any of the property values just
listed, or omitting the flex-flow property altogether, will
create a flex container with a horizontal main-axis that doesn’t
wrap. Figure 11-11 illustrates flex items distributed along the
horizontal axis, on one line, overflowing a container that’s 500
pixels wide.

If instead we want a reverse-column-oriented flow with
wrapping, either of these will suffice:

flex-flow: column-reverse wrap;
flex-flow: wrap column-reverse;

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-flow-unwrapped-row.html

In an LTR language like English, this causes the flex items to
flow from bottom to top, starting at the left side, and wrap to
new columns in the rightward direction. In a vertical writing
mode like Japanese, which is right-to-left when written
vertically, the columns would be horizontal, flowing from right
to left, and wrap top to bottom.

We’ve been using terms like main-axis and cross-axis without
really delving into what they mean. It’s time to clarify all that.

Understanding Axes

First: flex items are laid out along the main-axis. Flex lines are
added in the direction of the cross-axis.

Up until we introduced flex-wrap , all the examples had a
single line of flex items. In that single line, the flex items were
laid out along the main-axis, in the main direction, from main-
start to main-end. When we added flex wrapping, new flex lines
were added along the cross-axis, in the cross direction, going
from cross-start to cross-end.

As you can see, a lot of terms are used in that paragraph. Here
are some quick definitions:

Main-axis

The axis along which content flows. In flexbox, this is the
direction in which flex items are flowed.

Main-size
The total length of the content along the main-axis.

Main-start
The end of the main-axis from which content begins to flow.

Main-end
The end of the main-axis toward which content flows,
opposite the main-start.

Cross-axis
The axis along which flex lines are “stacked.” In flexbox, this
is the direction in which new lines of flex items are placed, if
flex wrapping is permitted.

Cross-size
The total length of the content along the cross-axis.

Cross-start
The edge of the cross-axis where blocks begin to be stacked.

Cross-end
The opposite edge of the cross-axis from the cross-start.

While these terms may sound like logical properties such as
margin-inline-start , they are not the same thing. Here, the
physical direction of each changes depending on the value of
the flex-direction property. In fact, the meaning of each
term in the context of layout depends on the combination of the
flex direction, the flex wrapping, and the writing mode.
Charting all the combinations for every writing mode would get
difficult, so let’s examine what they mean for LTR languages.

NOTE

It’s important to understand that direction gets reversed when writing direction is
reversed. To make explaining (and understanding) flex layout much simpler, the rest
of the explanations and examples in this chapter are based on an LTR writing mode,
but will include how writing mode impacts the flex properties and features
discussed.

When thinking about flex-direction , we know that the flex
items will start being laid out along the main-axis of the flex
container, starting from the main-start edge and proceeding
toward the main-end edge. If the flex-wrap property is used to
allow the container to wrap when the flex items don’t fit onto
one line, the flex lines are laid out starting from the cross-start
edge and proceeding toward the cross-end edge.

As shown in Figure 11-12, when we have horizontal rows of flex
items, the cross-axis is vertical. In these examples, with flex-
flow: row wrap and flex-flow: row-reverse wrap set on
horizontal languages, new flex lines are added below preceding
flex lines. The cross-size is the opposite of main-size, being
height for row and row-reverse flex directions, and width for
column and column-reverse directions, in both RTL and LTR
languages.

By contrast, the wrap-reverse value inverts the direction of
the cross-axis. Normally for flex-direction of row and row-
reverse , the cross-axis goes from top to bottom, with the cross-
start on top and cross-end on the bottom. When flex-wrap is
wrap-reverse , the cross-start and cross-end directions are
swapped, with the cross-start on the bottom, cross-end on top,
and the cross-axis going from bottom to top. Additional flex
lines get added on top of, or above, the previous line.

Figure 11-12. Stacking of row-oriented flex lines

If the flex-direction is set to column or column-reverse , by
default the cross-axis goes from left to right in LTR languages,
with new flex lines being added to the right of previous lines. As
shown in Figure 11-13, when flex-wrap is set to wrap-
reverse , the cross-axis is inverted, with cross-start being on the
right, cross-end being on the left, the cross-axis going from right
to left, and additional flex lines being added to the left of the
previously drawn line.

Figure 11-13. Stacking of column-oriented flex lines

Arrangement of Flex Items

In our examples thus far, we’ve skated past the precise
arrangement of the flex items within each flex line, and how
that’s determined. It might seem intuitive that a row fills in

horizontally, but why should all the items huddle toward the
main-start edge? Why not have them grow to fill all available
space, or distribute themselves throughout the line?

For an example of what we’re talking about here, check out
Figure 11-14. Notice the extra space at the top left. In this
bottom-to-top, right-to-left flow, new flex items get placed above
the previous ones, with new wrap lines being placed to the left
of each previously filled line.

Figure 11-14. Empty space will be in the direction of main-end and cross-end

By default, no matter the values of flex-flow , empty space
outside the flex items in a flex container will be in the direction

of main-end and cross-end, but CSS has properties that allow us
to alter that.

Flex Item Alignment

In our examples thus far, whenever the flex items do not
completely fill the flex container, the flex items are all grouped
toward the main-start on the main-axis. Flex items can be flush
against the main-end instead, centered, or even spaced out in
various ways across the main-axis.

The flex layout specification provides us with flex container
properties to control the distribution of space. The justify-
content property controls how flex items within a flex line are
distributed along the main-axis. The align-items property
defines the default distribution of the flex items along the cross-
axis of each flex line; this global default can be individually
overridden with the flex item align-self property. When
there is more than one flex line and wrapping is enabled, the
align-content property defines how those flex lines are
distributed along the cross-axis of the flex container.

Justifying Content

The justify-content property enables us to direct the way
flex items are distributed along the main-axis of the flex
container within each flex line, and how to handle situations
where information might be lost. This property is applied to the
flex container, not the individual flex items.

JUSTIFY-CONTENT

Values normal | space-between | space-aro
und | space-evenly | stretch | uns
afe | safe ? [center | start | end
| flex-start | flex-end | left | r
ight]

Initial
value

normal

Applies to Flexbox, grid, and multicolumn
containers

Computed
value

As specified

Inherited No

Animatable No

Note the stretch value is treated the same as normal for
flexbox, but not for grid layout.

NOTE

The safe and unsafe values, introduced with several other values in CSS Box
Alignment Module Level 3, are recognized but not supported in most browsers as of
early 2023. This means the value is ignored, but its presence does not render the rest
of the declaration invalid.

Figure 11-15 shows the effects of the various values in a writing
mode like English.

Figure 11-15. The values of the justify-content property

With start and flex-start , flex items are placed flush
against main-start. With end and flex-end , flex items are
justified toward main-end. The center option groups the items
flush against each other, centered in the middle of the main-

https://meyerweb.github.io/csstdg5figs/11-flexbox/justify-content-values.html

axis. The left and right options place items flush against the
named sides of the box, regardless of the actual axis direction.

The space-between value puts the first flex item on a flex line
flush with main-start and the last flex item in each flex line
flush with main-end, and then puts an equal amount of space
between every pair of adjacent flex items. The space-evenly
value takes the leftover space and splits it so that every gap is
the same length. This means the spaces at the start and end
edges of the main-axis will be the same size as the spaces placed
between flex items.

By contrast, space-around splits up the leftover space and then
applies half of each portion to each flex item, as if there were
noncollapsing margins of equal size around each item. Note
that this means the space between any two flex items is twice
that of the spaces at the main-start and main-end of the flex
line.

The stretch value has no effect as a value of justify-
content in flexbox. As you’ll see in the next chapter, when
placed on a grid container, it causes grid items to grow in size
until they take up all available space in the main-axis direction.

NOTE

We’ll cover safe and unsafe , which vary how the browser should handle items
that overflow the container along the cross-axis, in “Safe and unsafe alignment”.

Justifying and overflow

If flex items are not allowed to wrap to multiple lines and
overflow their flex line, the value of justify-content
influences the way the flex items will overflow the flex
container.

Setting justify-content: start or flex-start explicitly sets
the default behavior of grouping the flex items toward main-
start, placing the first flex item of each flex line flush against the
main-start side. Each subsequent flex item then gets placed
flush with the preceding flex item’s main-end side. (Remember,
the location of the main-start side depends on the flex direction
and writing mode.) If there isn’t enough room for all the items
and wrapping is not allowed, the items will overflow the main-
end edge. This is illustrated in Figure 11-16.

Figure 11-16. The effects of start content justification

The mirror of this is setting justify-content: end or flex-
end , which puts the last flex on a line flush against the main-
end with each preceding flex item being placed flush with the
subsequent item. In this case, if the items aren’t allowed to
wrap, and if there isn’t enough room for all the items, the items
will overflow on the main-start edge, as illustrated in Figure 11-
17.

Figure 11-17. The effects of end content justification

https://meyerweb.github.io/csstdg5figs/11-flexbox/justify-content-start.html
https://meyerweb.github.io/csstdg5figs/11-flexbox/justify-content-end.html

Setting justify-content: center will pack all the items flush
against each other, and center them on the center of the flex
line instead of packing them against the main-start or main-
end. If there isn’t enough room for all the items and they aren’t
allowed to wrap, the items will overflow evenly on both the
main-start and main-end edges.

Figure 11-18 illustrates these effects.

Figure 11-18. The effects of center content justification

As the left and right values, they always start packing from
the left or right edge of a row, regardless of axis directions.
Thus, justify-content: left will always justify row-based
content to the left, whether the main-axis goes left to right or
right to left. In column-based content, left is treated the same
as start , and right the same as end . Any overflow will occur
on the opposite side from where the packing started; that is,

https://meyerweb.github.io/csstdg5figs/11-flexbox/justify-content-center.html

flex items will overflow on the right edge for justify-content:
left and on the left edge for right .

With those relatively simple cases covered, let’s look at values
that alter space between and around flex items, and compare
them to their wrapped cases. Note that if flex items are allowed
to wrap onto multiple lines, the space around each flex item is
based on the available space in their specific flex line only, and
will not (in most cases) be consistent from one line to the next.

Setting justify-content: space-between puts the first flex
item flush with main-start and the last flex item on the line
flush with main-end, and then puts an equal amount of space
around each flex item, until the flex line is filled (see Figure 11-
19). If we have three flex items, the same amount of space will
be between the first and second items as between the second
and third, but there will be no extra empty space between the
main-start and main-end edges of the container and the first
and last flex items in the line. This means if a line has only one
flex item, it will be flush with the main-start edge, not centered.
If there isn’t enough space to fit all the flex items and they
aren’t allowed to wrap, the items will overflow on the main-end
edge, yielding an effect visually indistinguishable from
justify-content: start .

Figure 11-19. The effects of space-between content justification

Setting justify-content: space-around evenly distributes
the extra space on the line around each of the flex items, as if
noncollapsing margins of equal size were around each element
on the main-dimension sides (Figure 11-20). Thus, there will be
twice as much space between the first and second item as there
is between main-start and the first item, and main-end and the
last item. If there isn’t enough room for all the items and they
aren’t allowed to wrap, the items will overflow evenly on both
the main-start and main-end edges.

https://meyerweb.github.io/csstdg5figs/11-flexbox/justify-content-space-between.html

Figure 11-20. The effects of space-around content justification

Setting justify-content: space-evenly means the user agent
counts the items, adds one, and then splits any extra space on
the line by that many (i.e., if we have five items, the amount of
space is split into six equal-size portions); see Figure 11-21. One
portion of the space is placed before each item on the line, as if
it were a noncollapsing margin, and the last portion is placed
after the last item on the list. Thus, the same amount of space
will appear between the first and second item as there is
between main-start and the first item, and main-end and the
last item. If there isn’t enough room for all the items and they
aren’t allowed to wrap, the items will overflow evenly on both
the main-start and main-end edges.

https://meyerweb.github.io/csstdg5figs/11-flexbox/justify-content-space-around.html

Figure 11-21. The effects of space-evenly content justification

The stretch value has no effect when set as the value of
justify-content on a flex container, and is treated the same
as normal . As you’ll see in the next chapter, when placed on a
grid container, it causes the grid items to grow in size until they
take up all available space in the main-axis direction.

And finally, justify-content: normal is treated the same as
justify-content: start . This is the case for historical
reasons too boring and lengthy to get into here, but what it
means is that the default value of justify-content is
essentially start , even if it is technically normal .

Note in the previous few examples that when flex items are
allowed to wrap onto multiple lines, the space around each flex
item is based on the available space in its specific flex line only,
and will not (in many cases) be consistent from one line to the
next.

https://meyerweb.github.io/csstdg5figs/11-flexbox/justify-content-space-evenly.html

justify-content example

We took advantage of the default value of justify-content in
Figure 11-2, creating a left-aligned navigation bar. By changing
the default value to justify-content: flex-end , we can right-
align the navigation bar in English:

nav {
 display: flex;
 justify-content: flex-start;
}

Note that justify-content is applied to the flex container. If
we’d applied to the links themselves, using something like nav
a {justify-content: flex-start;} , no alignment effect
would have occurred.

A major advantage of justify-content is that when the
writing direction changes (say, for RTL writing modes), we don’t
have to alter the CSS to get the tabs where they need to go. The
flex items are always grouped toward main-start when flex-
start is applied; in English, main-start is on the left. For
Hebrew, main-start is on the right. If flex-end is applied and
the flex-direction is row , then the tabs go to the right side in
English, and the left side in Hebrew, as shown in Figure 11-22.

Figure 11-22. Internationally robust navigation alignment

This may seem like the main-start and main-end are similar to
inline-start and inline-end in logical properties. This will feel
true when flex-direction is set to row . With flex-
direction: row-reverse , however, the main-start and main-
end get switched, but the inline-start and inline-end don’t,
because the inline directions for the flex items remain the same
even if their flex order changes.

We could have centered that navigation, as shown in Figure 11-
23:

nav {
 display: flex;

https://meyerweb.github.io/csstdg5figs/11-flexbox/justify-content-i18n.html

 justify-content: center;
}

Figure 11-23. Changing the layout with one property value pair

All the flex items we’ve shown thus far are a single line tall, and
therefore are the same size in the cross dimension as their
sibling flex items. Before discussing wrapping flex lines, we
need to discuss aligning items of differing dimensions along the
cross-axis, which is, appropriately enough, called aligning.

Aligning Items

Whereas justify-content defines how flex items are aligned
along the flex container’s main-axis, the align-items property
defines how flex items are aligned along its flex line’s cross-axis.
As with justify-content , align-items is applied to flex
containers, not individual flex items.

https://meyerweb.github.io/csstdg5figs/11-flexbox/justify-content-i18n-center.html

ALIGN-ITEMS

Values normal | space-between | space-aro
und | space-evenly | stretch | [fi
rst | last]? && baseline | [safe |
unsafe]? center | start | end | fl
ex-start | flex-end

Initial
value

normal

Applies to Flex containers

Computed
value

As specified

Inherited No

Animatable No

Note the normal behaves as stretch for flexbox.

NOTE

While align-items sets the alignment for all the flex items within a container, the
align-self property enables overriding the alignment for individual flex items, as
you’ll see in “The align-self property”.

In Figure 11-24, note how the flex items are arranged with
respect to the cross-axis. (The cross-axis is the block axis for
row-flowed flex containers, and the inline axis for column-
flowed flex containers.)

Figure 11-24. The values of the align-items property for both rows and columns

The default value, normal , is treated as stretch in flexbox.

https://meyerweb.github.io/csstdg5figs/11-flexbox/align-items-values-rows-cols.html

For stretch , the cross-start edge of each flex item is placed
against the cross-start edge of the container, and the cross-end
edges are also placed against the cross-end edge of the
container. This happens regardless of the size of the content
inside each flex item, so a flex item with short content (such as
“One”) will still have its element box fill out the cross-axis size
of the flex container.

With the center value, by contrast, the element box is just as
large as it needs to be to contain the content along the cross-
axis, and no bigger. The cross-start and -end edges of the flex
items are placed the same distance away from the cross-start
and -end edges of the container, thus centering the flex item’s
box within the flex container along the cross-axis.

For the various start and end values, the cross-start or -end
edges of the flex items are all snugged up against the respective
edge of the flex container. There are so many ways to say
start and end , mostly for historical reasons that are too
lengthy and painful to get into here.

Notice that when the items are aligned to the start or end of the
cross-axis, their inline sizes are (by default) exactly as big as
their content needs to be, and no wider. It’s as if their max-
width was set to max-size , so that extra content can wrap to

multiple lines within the flex item, but if no wrapping is
needed, the element’s inline size won’t fill out the entire flex
container’s inline size. This is a default behavior of flex items,
so if you want flex elements to fill out the entire inline size of
the flex container, the way block boxes fill out their containing
block, use the stretch value instead.

With baseline , the flex items’ first baselines are aligned with
one another when they can do so, which is to say, when the
flex-direction is row or row-reverse . Because the font size
of each flex item differs, the baseline of each line in every flex
item differs. The flex item that has the greatest distance
between its first baseline and its cross-start side will be flush
against the cross-start edge of the line. The other flex items will
be placed so that their first baselines line up with the first
baseline of the flex item that’s flush against the cross-start edge
(and thus each other’s first baselines). When align-items:
last baseline; is set, the inverse occurs. The flex item with
the greatest distance between its last baseline and the cross-end
side will be flush against the cross-end edge of the line. The
other flex items will be placed with their last baseline lined up
with the last baseline of the flex item that’s flush against the
cross-end edge, unless overridden by align-self (see “The
align-self property”). Since there isn’t a way to align baselines in

a columnar flow, baseline is treated like start in these
contexts, or end in the case of last baseline .

Flex item margins and alignment

Now you have a general idea how each value behaves, but
there’s a bit more to it than that. In the multiline align-items
figures that follow, the following styles have been applied:

flex-container {
 display: flex;
 flex-flow: row wrap;
 gap: 1em;
}
flex-item {border: 1px solid;}
.C, .H {margin-top: 1.5em;}
.D, .I {margin-bottom: 1em;}
.J {font-size: 3em;}

For each flex line, the cross-start and cross-end edges have been
drawn in as a red dotted and blue dashed line, respectively. The
C, H, D, and I boxes have added top or bottom margins. We’ve
added a gap (which will be discussed a bit later in the chapter)
between the flex items to make the figures more legible, which
doesn’t affect the impact of the align-items property in this
case. The J box has its font size increased, which also increases

its line height. (This will come into play when we discuss the
baseline value.)

The effects of these margins on both the stretch and center
alignments can be seen in Figure 11-25.

Figure 11-25. The effect of margins on cross-axis alignment

The stretch value, as its name implies, stretches all
“stretchable” flex items to be as tall or wide as the tallest or
widest flex item on the line. A stretchable flex item is one that
does not have a non- auto value set for any of the sizing
properties along the cross-axis. In Figure 11-25, that would be
the block-size , min-block-size , max-block-size , height ,
min-height , and max-height properties. If all are set to auto ,
the flex item is stretchable. If not, it is not.

Assuming a flex item is stretchable, its cross-start edge will be
flush with the flex line’s cross-start edge, and its cross-end edge
will be flush with the flex line’s cross-end edge. The flex item
with the largest cross-size will remain its default size, and the
other flex items will grow to the size of that largest flex item.

What Figure 11-25 shows us is that it’s the outer edge of the flex
items’ margins that will be flush with cross-start and cross-end,
not their border edges. This is demonstrated by items C, D, H,
and I, which appear smaller than the other flex items on their
flex lines. They’re not, though. It’s just that their margins, which
are always fully transparent, take up some of the stretching
space.

NOTE

If a flex container’s cross-size is constrained, the contents may overflow the flex
container’s cross-start and/or cross-end edge. The direction of the overflow is not
determined by the align-items property, but rather by the align-content
property, discussed in “Aligning Flex Lines”. The align-items property aligns the
flex items within the flex line and does not directly impact the overflow direction of
the flex items within the container.

Baseline alignment

The baseline values are a little more complicated. CSS has two
possible baseline alignments, represented by first baseline
and last baseline . You can also use the value baseline ,
which is equivalent to first baseline .

With baseline (and first baseline), the flex items in each
line are all aligned at the lowest first baseline. For each flex
line, the flex item with the biggest distance between its baseline
and its cross-start margin edge has that margin edge placed
flush against the cross-start edge of the line, and all other flex
items’ baselines are lined up with the baseline of that flex item.

To understand this, take a look at the first set of flex items in
Figure 11-26, the ones labeled baseline (and first
baseline). For each flex line, the cross-start and -end edges are
marked with solid red and blue lines, respectively. The baseline
to which the items in each line are aligned is marked with a
dotted line, and the element whose baseline is taken as the
prime baseline has a lighter background and red text.

Figure 11-26. Baseline alignments

In the first line (A through E), it is the C box whose first baseline
is used. This is because the C box has a top margin, so its first
baseline is the farthest from the cross-start edge of the flex line.
All the other boxes (A, B, D, and E) have their first baselines
aligned with the first baseline of C.

In the second line (F through J), H’s first baseline is used—again,
because of its top margin—and so the F, G, I, and J boxes have
their first baselines aligned with H’s. Here, we can also see how
the J box has its first baseline aligned with all the others,
despite its much bigger font size.

https://meyerweb.github.io/csstdg5figs/11-flexbox/baseline-alignments.html

Similar things happen for the flex items labeled with last
baseline , only here, the dominating factors are bottom
margins. The D box in the first line has a bottom margin, as
does the I box in the second line. In both cases, their last
baselines are the farthest away from the cross-end edge of the
line, and so all the other flex items in their rows have their last
baselines aligned with the last baselines of D and I. The dotted
lines show the placements of the last baselines in each flex line.

In many cases, first baseline will look like start (and its
equivalents, such as flex-start), and last baseline will
look like end . For example, had C lacked a top margin in
Figure 11-26, all the items in that first line would have been
visibly flush against the top of the flex line, instead of pushed
away from it. Anytime flex items have different margins,
borders, padding, font sizes, or line heights on their cross-start
side, the start and first baseline will differ. Similarly, any
cross-end margins, borders, etc. will create a difference
between the results of last baseline and end .

Any of the baseline values can become start when the
baselines of the flex items are parallel to the cross-axis. For
example, suppose we take the flex containers in Figure 11-26
and change them to flex-direction: column . Now the cross-
axis, like the baselines of the English text within, is horizontal.

Since there’s no way to create an offset from the cross-start edge
of the columns that will align the text baselines, baseline is
treated exactly as if it were start instead; or end , in the case
of last baseline.

Safe and unsafe alignment

In all the previous examples, we let the flex containers be
whatever size they needed to be to contain the flex lines; that is,
we left them at block-size: auto (or height: auto , in old-
school CSS terminology). But what happens if the block size of a
flex container is constrained in some way, perhaps by the size
of a grid track or an explicit block size value being given? In
these situations, the safe and unsafe keywords come into
play.

If safe alignment is specified, then anytime a flex item would
overflow the flex container, the flex item is treated as though its
align-self were set to start . That would look something like
this:

flex-container {display: flex; height: 10em;
 align-items: safe first baseline;}

On the other hand, if unsafe is used, the alignment of flex
items is honored no matter what that means in terms of
overflowing the flex container.

If you’re wondering which is the default, the answer is neither.
Instead, when neither safe nor unsafe alignment has been
declared, browsers should default to unsafe behavior unless
this would cause flex items to overflow the scrollable area of
their nearest ancestor’s scroll container, in which case they
should align to the cross-axis edge farthest away from the edge
they would otherwise overflow. Figure 11-27 shows some
examples.

WARNING

As of late 2022, only Firefox browsers fully support the safe and unsafe keywords,
and they have to be written first in the value (as shown in this section) even though
the formal syntax for the property does not require this placement. All other
evergreen browsers recognize these keywords as valid, but they have no impact on
the layout.

Figure 11-27. Safe versus unsafe alignments

The align-self property

If you want to change the alignment of one or more flex items,
but not all, you can include the align-self property on the
flex items you would like to align differently. This property
takes the same values as align-items and is used to override
the align-items property value on a per-flex-item basis.

ALIGN-SELF

Values auto | normal | stretch | [first |
last]? && baseline | [unsafe | sa
fe]? [center | start | end | self-
start | self-end | flex-start | fle
x-end]

Initial
value

auto

Applies to Flex items

Inherited No

Percentages Not applicable

Animatable No

You can override the cross-axis alignment of any individual flex
item with the align-self property, as long as it’s represented
by an element or pseudo-element. You cannot override the

alignment for anonymous flex items (non-empty text node
children of flex containers). Their align-self always matches
the value of align-items of their parent flex container.

The default value of align-items is stretch , but let’s make
that explicit in the following code, which will let us set different
align-self values for the second flex item, as illustrated in
Figure 11-28:

Figure 11-28. Changing individual flex-item alignments

All these flex items have align-self ’s default value of auto ,
meaning they inherit the alignment (in this case, stretch)
from the container’s align-items property. The exception in
each example is the second flex item, which has been given the
align-self value shown underneath.

.flex-container {align-items: stretch;}

.flex-container .two {align-self: var(--selfAlign);}

https://meyerweb.github.io/csstdg5figs/11-flexbox/gaps-between-items.html

As we said, all the values of align-items can be used for
align-self , including the values for first and last baseline
alignment, safe and unsafe alignment, and so on.

Aligning Flex Lines

In nearly all the previous examples, the flex container’s cross-
size was always as tall as it needed to be: no block-size or
height was declared on the container, so it defaulted to
height: auto . Because of this, the flex container grew to fit the
content.

Had the cross-size of the container been set to a specific size,
there may have been extra space at the cross-end, or not
enough space to fit the content. In such cases, CSS allows us to
control the overall placement of flex lines with the align-
content property.

ALIGN-CONTENT

Values normal | [first | last]? && basel
ine | space-between | space-around
| space-evenly | stretch | [unsafe
| safe]? [center | start | end |
flex-start | flex-end]

Initial
value

normal

Applies to Multiline flex containers

Computed
value

As specified

Inherited No

Animatable No

The align-content property dictates how any extra cross-
direction space in a flex container is distributed between and

around flex lines. Although the values and concepts are largely
the same, align-content is different from the previously
discussed align-items property, which dictates flex item
positioning within each flex line.

Think of align-content as similar to the way justify-
content aligns individual items along the main-axis of the flex
container, but it does so for flex lines with regard to the cross-
axis of the container. This property applies to multiline flex
containers, having no effect on nonwrapping and otherwise
single-line flex containers.

Consider the following CSS as a base and assume the flex items
have no margins:

.flex-container {
 display: flex;
 flex-flow: row wrap;
 align-items: flex-start;
 border: 1px dashed;
 height: 14em;
 background-image: url(banded.svg);
}

Figure 11-29 demonstrates the possible values of the align-
content property, as used in conjunction with that CSS. We’ve

concentrated on the primary alignment values, and left out
examples of things such as safe and unsafe alignment as well as
the first and last baseline alignments.

With a height of 14 ems, the flex container is taller than the
default combined heights of the three flex lines. Given the
larger text of some flex items and the various bits of padding
and borders, each flex container in Figure 11-29 has
approximately 3 ems of leftover space.

Figure 11-29. Distribution of extra space for primary values of align-content

https://meyerweb.github.io/csstdg5figs/11-flexbox/align-content.html

With the values normal , stretch , center , start , flex-
start , end , and flex-end , the free space is distributed
outside the flex lines, as illustrated in Figure 11-29. These act in
the same ways as they do for align-items . With the value
stretch , the extra space is evenly distributed to all the flex
lines, increasing their cross-size until their edges touch. For the
others, the flex lines are kept together, with the leftover space
placed to one side or another.

For the remaining values, the flex lines are pushed apart and
the leftover space distributed in various ways. Let’s assume the
approximately 3 ems of leftover space is equal to 120 pixels. (It’s
big text, OK?)

Given space-between , about 60 pixels of space is between each
adjacent pair of flex lines, each half of the leftover 120 pixels.
With space-around , the space is evenly distributed around
each line: the 120 pixels are split into three pieces, since there
are three flex lines. This puts 20 pixels of noncollapsed space
(half of 40 pixels) on the cross-start and cross-end sides of each
flex line, so we have 20 pixels of extra space at the cross-start
and cross-end sides of the flex container, and 40 pixels of space
between adjacent flex lines.

For space-evenly , there are four spaces to insert: one before
each flex line, and an extra space after the last flex line. With
three lines, that means four spaces, with 30 pixels for each
space. That places 30 pixels of space at the cross-start and cross-
end sides of the flex container, and 30 pixels between adjacent
flex lines.

Continuing this example for the stretch value, you’ll note that
the stretch value is different: with stretch , the lines stretch
with the extra space evenly distributed among the flex lines
rather than between them. In this case, 40 pixels are added to
each of the flex lines, causing all three lines to grow in height by
an equal amount—that is, the extra space is divided equally, not
proportionally, with the exact same amount added to each.

If there isn’t enough room for all the lines, they will overflow at
cross-start, cross-end, or both, depending on the value of the
align-content property. This is shown in Figure 11-30, where
the dotted box with a light-gray background represents a short
flex container. (A little bit of inline padding was added to each
flex container to make it more obvious where it starts and
ends.)

Figure 11-30. Flex-line overflow directions for each value of align-content

The only difference in the CSS between this and Figure 11-29 is
the height of the flex container. Here, the flex containers have
been reduced to a height of 7 ems, so as to create flex
containers not tall enough to encompass all their flex lines
(which, as you may recall, total around 10 ems in height).

When the flex lines overflow the flex container, the align-
content values normal , stretch , start , flex-start ,
baseline , last baseline , and space-between cause them to
overflow on the cross-end side, whereas the values center ,
space-around , and space-evenly evenly overflow both the
cross-end and cross-start sides. Only align-content: end and

flex-end cause flex lines to overflow on just the cross-start
side.

Keep in mind that these values are not top- or bottom-centric. If
the cross-axis goes upward, align-content: flex-start will
start aligning flex lines from the bottom and work upward from
there, potentially overflowing the top (cross-end) edge. For that
matter, when the flow direction is columnar, the cross-axis will
be horizontal, in which case the cross-start and -end edges will
be the right or left edges of the flex container.

Using the place-content Property

CSS offers a shorthand property that collapses align-content ,
which we just covered, and justify-content .

PLACE-CONTENT

Values < align-content > < justify-conte

nt >?

Initial value normal

Applies to Block, flex, and grid containers

Computed
value

See individual properties

Inherited No

Animatable No

You can supply either one or two values. If you supply one,
place-content acts as if you had set both align-content and
justify-content to the same value. In other words, the
following two rules are equivalent:

.gallery {place-content: center;}

.gallery {align-content: center; justify-content: cen

The exception to this behavior occurs if the value is baseline-
related, such as first baseline . In that case, the value for
justify-content is set to start , making the following two
rules equivalent:

If two values are given, the second is the value of justify-
content . Thus, the following two rules are equivalent:

That’s pretty much all there is to place-content . If you’d
rather align and justify content by using a single shorthand
property, place-content does that. Otherwise, use the
individual properties separately.

Two more place- shorthand properties are covered in
Chapter 12.

.gallery {place-content: last baseline;}

.gallery {align-content: last baseline; justify-conte

.gallery {place-content: last baseline end;}

.gallery {align-content: last baseline; justify-conte

Opening Gaps Between Flex Items

Flex items are, by default, rendered with no space held open
between them. Space can appear between items thanks to
values of justify-content or by adding margins to flex items,
but these approaches are not always ideal. For example,
margins can lead to flex line wrapping when it isn’t actually
needed, and even using justify-content values like space-
between can result in having no space separating the items. It
would be easier if there was a way to define what are
essentially minimum gap sizes, and thanks to the gap
properties, there is.

ROW-GAP, COLUMN-GAP

Values normal | [< length > | < percentage >]

Initial
value

normal

Applies to Flex, grid, and multicolumn containers

Computed
value

As specified for normal ; otherwise, the
computed length value

Inherited No

Animatable Yes (for length values)

Each of these properties inserts space of the declared size
between adjacent flex items. This space is often referred to as a
gutter. For historical reasons, the default value, normal ,
equates to 0 pixels (no space) in flexbox and grid containers,
and 1 em in multicolumn layout. Otherwise, you can supply a
single length or percentage value.

Suppose we have a set of flex items that will wrap to multiple
flex lines, and we want to open a 15-pixel gap between the flex
lines. Here’s what that CSS would look like, illustrated in
Figure 11-31:

Figure 11-31. Gaps between rows of flex items

No margins are set on the flex items, to be clear. Exactly 15
pixels of space is between each flex line (row), thanks to the
value of row-gap . In essence, row-gap acts as if it were called
block-axis-gap , so if the writing mode were changed to
something like vertical-rl , thus making the block axis
horizontal, the rows would flow top to bottom, and the gaps
between them would be to their right and left sides (which are
their block-start and block-end sides).

Note that there are gaps only between rows: there are no gaps
placed between the flex items and the block-start and -end

.gallery {display: flex; flex-wrap: wrap; row-gap: 15

edges of the flex container. If you want to open gaps of the same
size along those container edges, you would write something
like this:

In a like manner, we can open spaces between the flex items
along the inline axis by using column-gap . We can modify the
earlier example to push items apart as follows, with the result
shown in Figure 11-32:

Figure 11-32. Gaps between adjacent flex items along the inline axis

Here, leftover space remains at the inline-end side of the flex
lines, with each line having its own amount of space. That’s
because the flex items weren’t given a justify-content value,

.gallery {display: flex; flex-wrap: wrap; row-gap: 15

.gallery {display: flex; flex-wrap: wrap; column-gap:

so they defaulted to start . This means the gaps between the
flex items are all exactly 15 pixels wide.

If we were to change the value of justify-content to space-
between , then in any flex line with leftover space, the gaps
between flex items will be increased by an equal amount,
meaning they will be separated by more than 15 pixels. If
there’s a line where the inline sizes of all the flex items and all
the gaps exactly equals the inline length of the flex line, 15
pixels of space will be between each flex item.

This is why row-gap and column-gap are really more like
minimum separation distances between flex items or flex lines.
The gaps don’t count as “leftover space,” any more than the flex
items do.

Gaps are inserted between the outer margin edges of adjacent
flex items, so if you add margins to your flex items, the actual
visible space between two flex items will be the width of the
gap plus the widths of the margins. Consider the following,
which is illustrated in Figure 11-33:

.gallery {display: flex; flex-wrap: wrap; column-gap:

.gallery div {margin-inline: 10px;}

Figure 11-33. Gaps and margins combine to open more space

Now the open spaces between flex items are all 35 pixels wide:
15 pixels from the gap property, plus 20 pixels (10 + 10) from
the inline-side margins set on the flex items.

Thus far we’ve used length values, but what about percentages?
Any percentage value used for a gap is taken to be a percentage
of the container’s size along the relevant axis. Thus, given
column-gap: 10% , the gaps will be 10% the inline size of the
flex container. If the container is 640 pixels wide along the
inline axis, the column gaps will be 64 pixels each.

Working with rows can be a little more complicated. If you
define an explicit block size, percentages are just a percentage
of that block size. A block-size (which could also be set with
height or width) of 25em and a row-gap of 10% means row
gaps will be 2.5 ems wide. This same sort of thing can also
happen if the block size happens to be larger than the sum total
of the rows’ block sizes.

But when the block size is solely determined by the block sizes
of the rows added together, any percentage value could lead to
a cyclic calculation: each calculation changes the value being
calculated, ad infinitum. Suppose a flex container has three flex
lines, each exactly 30 pixels tall. The flex container is set so its
height is auto , so it will “shrink-wrap” the flex lines, making it
90 pixels tall (we’re assuming no padding here, but the
principles are the same regardless). A row-gap of 10% would
mean 9-pixel row gaps, and inserting the 2 row gaps would add
18 pixels of height. That would increase the container’s height
to 108 pixels, which would mean the 10%-wide gaps are now
10.8 pixels, so the container height increases again, which
increases the row gaps, which increases container height,
which…

To avoid this sort of infinite-loop scenario, the gaps are set to be
zero-width whenever a cyclic calculation would happen, and
everyone moves on with their lives. In practice, this means that
percentage values for row gaps are useful only in a narrow
range of cases, whereas they can be more broadly useful for
column gaps. Figure 11-34 shows examples of percentage row
gaps.

Figure 11-34. Percentage-based row gaps with and without explicit container heights

You can set up both column and gap rows on a flex container by
supplying the two properties individually, or you can use the
shorthand property gap .

GAP

Values < row-gap > < column-gap >?

Initial
value

0 0 for flex and grid layout; 0 1em for
multicolumn layout

Applies to Flex, grid, and multicolumn containers

Computed
value

See individual properties

Inherited No

Animatable Yes (for length values)

You need to supply only one value to gap , in which case it will
be used for both the row and column gaps. If you supply two
values, the first will always be used for row gaps, and the
second for column gaps. Thus you get the results shown in
Figure 11-35 from the following CSS:

#ex01 {gap: 15px 5px;}
#ex02 {gap: 5px 15px;}
#ex03 {gap: 5px;}

Figure 11-35. Row and column gaps set using the gap shorthand property

NOTE

The original gap property was defined in CSS Multiple Columns, with additional
hyphenated gap properties defined in CSS Grid as grid-row-gap , grid-column-gap ,
and grid-gap , before being made more generic and available in grid, flexbox, and
multicolumn contexts. Browsers are required to treat the older properties as aliases
for the newer, more generic properties; e.g., grid-gap is an alias for gap . So if you
find the older grid gap properties in legacy CSS, you can change them to the newer
names, but if not, they’ll still work as if you had.

Flex Items

In the previous sections, you saw how to globally lay out all the
flex items within a flex container by styling that container. The
flexible box layout specification provides several additional
properties applicable directly to flex items. With these flex-
item-specific properties, we can more precisely control the
layout of individual flex containers’ children.

What Are Flex Items?

As you’ve seen throughout the chapter, we create flex
containers by adding display: flex or display: inline-
flex to an element that has child nodes. The children of those
flex containers are called flex items—whether they’re child
elements, non-empty text nodes between child elements, or

generated content. In Figure 11-36, each letter is enclosed in its
own element, including the space between words, so that each
letter and space becomes a flex item.

Figure 11-36. The child nodes are flex items, and the parent node is a flex container

When it comes to text-node children of flex containers, if the
text node is not empty (containing content other than
whitespace), it will be wrapped in an anonymous flex item,
behaving like its flex-item siblings. While these anonymous flex
items do inherit all the flex properties set by the flex container,
just like their DOM node siblings, they are not directly
targetable with CSS. We can’t directly set any of the flex-item-
specific properties on them. Thus, in the following markup, the
two elements (and) and the text “they’re
what’s for” become flex items, for a total of three flex items:

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-items-within-container.html

Generated content (via ::before and ::after) can be styled
directly; therefore, all the properties discussed in this chapter
apply equally to generated content and to element nodes.

Whitespace-only text nodes within a flex container are ignored,
as if their display property were set to none , as the following
code example shows:

nav ul {
 display: flex;
}

<nav>

 Link 1
 Link 2
 Link 3
 Link 4
 Link 5

</nav>

<p style="display: flex;">
 Flex items: they’re what’s for <
</p>

In the preceding code, with the display property set to flex ,
the unordered list is the flex container, and its child list items
are all flex items. These list items, being flex items, are flex-level
boxes—semantically still list items, but not list items in their
presentation. They are not block-level boxes either. Rather, they
participate in their container’s flex-formatting context. The
whitespace between and around the elements—the line
feeds and indenting tabs and/or spaces—is completely ignored.
The links are not flex items themselves, but are descendants of
the flex items the list items have become.

Flex Item Features

The margins of flex items do not collapse. The float and
clear properties don’t have an effect on flex items and do not
take a flex item out of flow. In effect, float and clear are
ignored when applied to flex items. (However, the float
property can still affect box generation by influencing the
display property’s computed value.) Consider the following:

aside {
 display: flex;
}
img {

 float: left;
}

<aside>
 <!-- this is a comment -->
 <h1>Header</h1>

 Some text
</aside>

In this example, the aside is the flex container. The comment
and whitespace-only text nodes are ignored. The text node
containing “Some text” is wrapped in an anonymous flex item.
The header, image, and text node containing “Some text” are all
flex items. Because the image is a flex item, the float is
ignored.

Even though images and text nodes are inline-level nodes,
because they are flex items, they are blockified as long as they
are not absolutely positioned:

aside {
 display: flex;
 align-items: center;
}

aside * {
 border: 1px solid;
}

This markup is similar to the previous code example, except in
this example we’ve added a link within the non-empty text
node. In this case, we are creating five flex items illustrated in
Figure 11-37. The comment and whitespace-only text nodes are
ignored. The header, the image, the text node before the link,
the link, and the text node after the link are all flex items.

<aside>
 <!-- a comment -->
 <h1>Header</h1>

 Some text with a link and
</aside>

Figure 11-37. Five flex items in an aside

The text nodes containing “Some text” and “and more text” are
wrapped in anonymous flex items, represented in Figure 11-37
by the dashed boxes (the dashes having been added for
illustrative purposes) with no background. The header, image,
and link, being actual DOM nodes, can be styled directly with
CSS, as you can see with the border styling. The anonymous flex
containers are not directly targetable, and so will have only
whatever styles they pick up from the flex container.

Additionally, vertical-align has no effect on a flex item,
except as it affects the alignment of text within the flex item.
Setting vertical-align: bottom on a flex item will make all
the text inside that flex item align to the bottom of their line
boxes; it will not push the flex item to the bottom of its
container. (That’s what align-items and align-self are for.)

Absolute Positioning

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-items-in-aside.html

While float will not actually float a flex item, setting
position: absolute is a different story. The absolutely
positioned children of flex containers, just like any other
absolutely positioned element, are taken out of the flow of the
document.

More to the point, they do not participate in flex layout and are
not part of the document flow. However, they can be impacted
by the styles set on the flex container, just as a child can be
impacted by a parent element that isn’t a flex container. In
addition to inheriting any inheritable properties, the flex
container’s properties can affect the origin of the positioning.

The absolutely positioned child of a flex container is affected by
both the justify-content value of the flex container and its
own align-self value, if there is one. For example, if you set
align-self: center on the absolutely positioned child, it will
start out centered with respect to the flex container parent’s
cross-axis. From there, the element or pseudo-element can be
moved by properties like top , bottom , margins, and so on.

The order property (explained in “The order Property”) may
not impact where the absolutely positioned flex container child
is drawn, but it does impact the order in which it is drawn in
relation to its siblings.

Minimum Widths

In Figure 11-38, you’ll note that the flex line inside the container
with the nowrap default flex-wrap value overflows its flex
container. This is because when it comes to flex items, the
implied value of min-width is auto , rather than 0 . Originally
in the specification, if the items didn’t fit onto that single main-
axis, they would shrink. However, the specification of min-
width was altered as applied to flex items. (Traditionally, the
default value for min-width is 0 .)

Figure 11-38. Flex container overflow with minimum-width flex items

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-wrap-container-overflow-with-min-width.html

If you set min-width to a width narrower than the computed
value of auto —for example, if you declare min-width: 0 —the
flex items in the nowrap example will shrink to be narrower
than their actual content (in some cases). If the items are
allowed to wrap, they will be as narrow as possible to fit their
content, but no narrower. Figure 11-39 illustrates both
situations.

Figure 11-39. Zero-minimum-width flex items in nonwrapped and wrapped flex

containers

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-wrap-zero-min-width-flex-items.html

Flex-Item-Specific Properties

While flex items’ alignment, order, and flexibility are to some
extent controllable via properties set on their flex container,
several properties can be applied to individual flex items for
more granular control.

The flex shorthand property, along with its component
properties of flex-grow , flex-shrink , and flex-basis ,
controls the flexibility of the flex items. Flexibility is the amount
by which a flex item can grow or shrink along the main-axis.

The flex Property

The defining aspect of flex layout is the ability to make the flex
items flex: altering their width or height to fill the available
space in the main dimension. A flex container distributes free
space to its items proportionally to their flex grow factor, or
shrinks them to prevent overflow proportionally to their flex
shrink factor. (We’ll explore these concepts momentarily.)

Declaring the flex shorthand property on a flex item, or
defining the individual properties that make up the shorthand,
enables you to define the grow and shrink factors. If there is
excess space, you can tell the flex items to grow to fill that

space. Or not. If there isn’t enough room to fit all the flex items
within the flex container at their defined or default sizes, you
can tell the flex items to shrink proportionally to fit into the
space. Or not.

This is all done with the flex property, which is a shorthand
property for flex-grow , flex-shrink , and flex-basis .
While these three subproperties can be used separately, it is
highly recommended to always use the flex shorthand, for
reasons we’ll soon cover.

FLEX

Values [< flex-grow > < flex-shrink >? ‖ < fl

ex-basis >] | none

Initial
value

0 1 auto

Applies to Flex items (children of flex containers)

Percentages Valid for flex-basis value only,
relative to element’s parent’s inner
main-axis size

Computed
value

Refer to individual properties

Inherited No

Animatable See individual properties

The flex property specifies the components of a flexible
length: the length of the flex item being the length of the flex
item along the main-axis (see “Understanding Axes”). When a
box is a flex item, flex is consulted to determine the size of the
box, instead of the main-axis size dimension property (height
or width). The components of the flex property include the
flex growth factor, flex shrink factor, and the flex basis.

The flex basis determines how the flex growth and shrink
factors are implemented. As its name suggests, the flex-basis
component of the flex shorthand is the basis on which the flex
item determines how much it can grow to fill available space or
how much it should shrink to fit all the flex items when there
isn’t enough space. It’s the initial size of each flex item, and can
be restricted to that specific size by specifying 0 for both the
growth and shrink factors:

.flexItem {
 width: 50%;
 flex: 0 0 200px;
}

In the preceding CSS, the flex item will have a main-axis size of
exactly 200 pixels, as the flex basis is 200px , and it is allowed to
neither grow nor shrink. Assuming that the main-axis is

horizontal, the value of width (50%) is ignored. Similarly, a
value for height would be ignored if the main-axis were
vertical.

NOTE

This override of height and width occurs outside the cascade, so you can’t even
override the flex basis by adding !important to the height or width value of a flex
item.

If the target of a selector is not a flex item, applying the flex
property to it will have no effect.

It is important to understand the three components that make
up the flex shorthand property in order to be able to use it
effectively.

The flex-grow Property

The flex-grow property defines whether a flex item is allowed
to grow when space is available, and, if so, how much it will
grow proportionally relative to the growth of other flex-item
siblings.

WARNING

Declaring the growth factor via the flex-grow property is strongly discouraged by
the authors of the specification itself. Instead, declare the growth factor as part of the
flex shorthand. We’re discussing the property here only to explore how growth
works.

FLEX-GROW

Values < number >

Initial value 0

Applies to Flex items (children of flex
containers)

Computed
value

As specified

Inherited No

Animatable Yes

The value of flex-grow is always a number. Negative numbers
are not valid. You can use non-integers if you like, just as long
as they’re 0 or greater. The value sets the flex growth factor,
which determines how much the flex-item will grow relative to
the rest of the flex item siblings as the flex container’s free
space is distributed.

If any space is available within the flex container, the space will
be distributed proportionally among the children with a
nonzero positive growth factor based on the various values of
those growth factors.

For example, assume a 750px -wide horizontal flex container
with three flex items, each set to width: 100px . A total of 300
pixels of space is taken up by the flex items, leaving 450 pixels
of “leftover” or available space (since 750 – 300 = 450). This is
the first scenario shown in Figure 11-40: none of the flex items
are permitted to grow.

Figure 11-40. A variety of flex-growth scenarios

In the second scenario in Figure 11-40, only one of the flex
items (the third) has been given a growth factor. The
declaration we gave it is flex-grow: 1 , but it could be any
positive number the browser can understand. In this case, with

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-grow-variety.html

two items having no growth factor and the third having a
growth factor, all of the available space is given to the flex item
with a growth factor. Thus, the third flex item gets all 450 pixels
of available space added to it, arriving at a final width of 550
pixels. The width: 100px applied to it elsewhere in the styles is
overridden.

In the third and fourth scenarios, the same flex item widths
result despite the differing flex growth factors. Let’s consider
the third scenario, where the growth factors are 1, 1, and 3. The
factors are all added together to get a total of 5. Each factor is
then divided by that total to get a proportion. So here, the three
values are each divided by 5, yielding 0.2, 0.2, and 0.6.

Each proportion is multiplied by the available space to get the
amount of growth. Thus:

1. 450 px × 0.2 = 90 px
2. 450 px × 0.2 = 90 px
3. 450 px × 0.6 = 270 px

Those are the growth portions added to each flex item’s starting
width of 100 pixels. Thus, the final widths are 190 pixels, 190
pixels, and 370 pixels, respectively.

The fourth scenario has the same result, because the
proportions are the same. Imagine for a moment that we alter
the growth factors to be 0.5, 1, and 1.5. Now the math works out
such that the first flex item gets one-sixth of the available space,
the second gets a third, and the third gets half. This results in
the flex items’ final widths being 175, 250, and 425 pixels,
respectively. Had we declared growth factors of 0.1, 0.1, and 0.3,
or 25, 25, and 75, or really any combination of numbers with a
1:1:3 correspondence, the result would have been identical.

As noted in “Minimum Widths”, if no width or flex basis is set,
the flex basis defaults to auto , meaning each flex item basis is
the width of its nonwrapped content. The auto value is special:
it defaults to content unless the item has a width set on it, at
which point the flex basis becomes that width. The auto value
is discussed in “Automatic flex basis”. Had we not set the width
in this example scenario, with our smallish font size, we would
have had more than 450 pixels of distributable space along the
main-axis.

NOTE

The main-axis size of a flex item is impacted by the available space, the growth factor
of all the flex items, and the flex basis of the item. We have yet to cover flex basis, but
that time is coming soon!

Now let’s consider flex items with different width values as
well as different growth factors. In Figure 11-41, in the second
example, we have flex items that are 100 pixels, 250 pixels, and
100 pixels wide, with growth factors of 1, 1, and 3, respectively,
in a container that is 750 pixels wide. This means we have 300
pixels of extra space to distribute among a total of five growth
factors (since 750 – 450 = 300). Each growth factor is therefore
60 pixels (300 ÷ 5). Therefore, the first and second flex items,
with a flex-grow value of 1 , will each grow by 60 pixels. The
last flex item will grow by 180 pixels, since its flex-grow value
is 3 .

Figure 11-41. Mixed widths and growth factors

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-grow-mixed-width-and-factors.html

To recap, the available space in the flex container, the growth
factors, and final width of each flex item are as follows:

Available space: 750 px – (100 px + 250 px + 100 px) = 300 px

Growth factors: 1 + 1 + 3 = 5

Width of each growth factor: 300 px ÷ 5 = 60 px

When flexed, the width of the flex items, based on their original
width and growth factors, become

item1 = 100 px + (1 × 60 px) = 160 px

item2 = 250 px + (1 × 60 px) = 310 px

item3 = 100 px + (3 × 60 px) = 280 px

which adds up to 750 pixels.

Growth Factors and the flex Property

The flex property takes up to three values—the growth factor,
shrink factor, and basis. The first positive non-null numeric
value, if there is one, sets the growth factor (i.e., the flex-grow
value). When the growth and shrink factors are omitted in the
flex value, the growth factor defaults to 1 . However, if

neither flex nor flex-grow is declared, the growth factor
defaults to 0 . Yes, really.

Recall the second example in Figure 11-40, where the flex
growth factors were 0, 0, and 1. Because we declared a value for
flex-grow only, the flex basis was set to auto , as if we had
declared the following:

#example2 flex-item {
 flex: 0 1 auto;
}
#example2 flex-item:last-child {
 flex: 1 1 auto;
}

So that means the first two flex items had no growth factor, a
shrink factor, and a flex basis of auto . Had we used flex in
the examples in Figure 11-40 instead of ill-advisedly using
flex-grow , the flex basis in each case would be set to 0% , as if
this had been done:

#example2 flex-item {
 flex: 0 1 0%;
}
#example2 flex-item:last-child {

 flex: 1 1 0%;
}

As the shrink factor defaults to 1 and the basis defaults to 0% ,
the following CSS is identical to the preceding snippet:

#example2 flex-item {
 flex: 0;
}
#example2 flex-item:last-child {
 flex: 1;
}

This would have the result shown in Figure 11-42. Compare this
to Figure 11-40 to see how things have changed (or not).

You may notice something odd in the first two scenarios: the
flex basis been set to 0, and only the last flex item in the second
scenario has a positive value for flex growth. Logic would seem
to dictate that the widths of the three flex items should be 0, 0,
and 750 pixels, respectively. But logic would also dictate that it
makes no sense to have content overflowing its flex item if the
flex container has the room for all the content, even if the basis
is set to 0 .

The specification authors thought of this quandary. When the
flex property declaration explicitly sets or defaults the flex
basis to 0% and a flex item’s growth factor is 0 , the length of
the main-axis of the nongrowing flex items will shrink to the
smallest length the content allows, or smaller. In Figure 11-42,
that minimum length is the width of the widest sequence of
letters, “flex:” (including the colon).

As long as a flex item has a visible overflow and no explicitly set
value for min-width (or min-height for vertical main-axes),
the minimum width (or minimum height) will be the smallest
width (or height) that the flex item needs to be to fit the content
or the declared width (or height), whichever is smaller.

Figure 11-42. Flex sizing when using the flex shorthand

If all items are allowed to grow, and the flex basis for each flex
item is 0% , all of the space, rather than just excess space, is

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-grow-sizing-when-using-shorthand.html

distributed proportionally based on the growth factors. In the
third example in Figure 11-42, two flex items have growth
factors of 1, and one flex item has a growth factor of 3. We thus
have a total of five growth factors:

(2 × 1) + (1 × 3) = 5

With five growth factors, and a total of 750 pixels, each growth
factor is worth 150 pixels:

750 px ÷ 5 = 150 px

While the default flex item size is 100 pixels, the flex basis of
0% overrides that, leaving us with two flex items at 150 pixels
each and the last flex item with a width of 450 pixels:

1 × 150 px = 150 px

3 × 150 px = 450 px

Similarly, in the last example of Figure 11-42, with two flex
items having growth factors of 0.5, and one flex item having a
growth factor of 1.5, we have a total of 2.5 growth factors:

(2 × 0.5) + (1 × 1.5) = 2.5

With a 2.5 growth factor, and a total of 750 pixels, each growth
factor is worth 300 pixels:

750 px ÷ 2.5 = 300 px

While the default flex item size is 100 pixels, the flex basis of 0%
overrides that, leaving us with two flex items at 150 pixels each
and the last flex item with a width of 450 pixels:

0.5 × 300 px = 150 px

1.5 × 300 px = 450 px

Again, this is different from declaring only flex-grow , because
that means the flex basis defaults to auto . In that case, only the
extra space, not all the space, is distributed proportionally.
When using flex , on the other hand, the flex basis is set to 0% ,
so the flex items grow in proportion to the total space, not just
the leftover space. Figure 11-43 illustrates the difference.

Figure 11-43. Flex sizing differences between using flex and flex-grow

Now let’s talk about flex shrinking factors, which are in some
ways the inverse of flex growth factors, but are in other ways
different.

The flex-shrink Property

The < flex-shrink > portion of the flex shorthand property
specifies the flex shrink factor. It can also be set via the flex-
shrink property.

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-grow-differences-between-flex-and-flex-grow.html

WARNING

Declaring the shrink factor via the flex-shrink property is strongly discouraged by
the authors of the specification itself. Instead, declare the shrink factor as part of the
flex shorthand. We’re discussing the property here only to explore how shrinking
works.

FLEX-SHRINK

Values < number >

Initial value 1

Applies to Flex items (children of flex
containers)

Computed
value

As specified

Inherited No

Animatable Yes

The shrink factor determines how much a flex item will shrink
relative to the rest of its flex-item siblings when there isn’t
enough space for them all to fit, as defined by their content and
other CSS properties. When omitted in the shorthand flex
property value or when both flex and flex-shrink are
omitted, the shrink factor defaults to 1 . Like the growth factor,
the value of flex-shrink is always a number. Negative
numbers are not valid. You can use non-integer values if you
like, just as long as they’re greater than 0.

Basically, the shrink factor defines how “negative available
space” is distributed when there isn’t enough room for the flex
items, and the flex container isn’t allowed to otherwise grow or
wrap. See Figure 11-44.

Figure 11-44 is similar to Figure 11-40, except the flex items are
set to width: 300px instead of 100 pixels. We still have a 750-
pixel-wide flex container. The total width of the three items is
900 pixels, meaning the content starts out 150 pixels wider than
the parent flex container. If the items are not allowed to shrink
or wrap (see “Wrapping Flex Lines”), they will burst out from
the fixed-size flex container. This is demonstrated in the first
example in Figure 11-44: those items will not shrink because
they have a zero shrink factor. Instead, they overflow the flex
container.

Figure 11-44. A variety of flex shrinking scenarios

In the second example in Figure 11-44, only the last flex item is
set to be able to shrink. The last flex item is thus forced to do all
the shrinking necessary to enable all the flex items to fit within
the flex container. With 900 pixels of content needing to fit into
our 750-pixel container, we have 150 pixels of negative
available space. The two flex items with no shrink factor stay at
300 pixels wide. The third flex item, with a positive value for
the shrink factor, shrinks 150 pixels, to end up 150 pixels wide.
This enables the three items to fit within the container. (In this
example, the shrink factor is 1 , but had it been 0.001 or 100

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-shrink-variety.html

or 314159.65 or any other positive number the browser could
understand, the result would be the same.)

In the third example, we have positive shrink factors for all
three flex items:

#example3 flex-item {
 flex-shrink: 1;
}
#example3 flex-item:last-child {
 flex-shrink: 3;
}

As this is the only one of the three flex shorthand properties
we declared, this means the flex items will behave as if we had
declared the following:

#example3 flex-item {
 flex: 0 1 auto; /* growth defaults to 0, basis to a
}
f#example3 flex-item:last-child {
 flex: 0 3 auto;
}

If all items are allowed to shrink, as is the case here, the
shrinking is distributed proportionally based on the shrink
factors. This means the larger a flex item’s shrink factor, as
compared to the shrink factors of its sibling flex items, the more
the item will shrink in comparison.

With a parent 750 pixels wide, and three flex items with a width
of 300 pixels, 150 “negative space” pixels need to be shaved off
the flex items that are allowed to shrink (which is all of them in
this example). With two flex items having a shrink factor of 1,
and one flex item having a shrink factor of 3, we have a total of
five shrink factors:

(2 × 1) + (1 × 3) = 5

With five shrink factors, and a total of 150 pixels needing to be
shaved off all the flex items, each shrink factor is worth 30
pixels:

150 px ÷ 5 = 30 px

The default flex item size is 300 pixels, leading us to have two
flex items with a width of 270 pixels each and the last flex item
having a width of 210 pixels, which totals 750 pixels:

300 px – (1 × 30 px) = 270 px

300 px – (3 × 30 px) = 210 px

The following CSS produces the same outcome: while the
numeric representations of the shrink factors are different,
they are proportionally the same, so the flex item widths will be
the same:

flex-item {
 flex: 1 0.25 auto;
}
flex-item:last-child {
 flex: 1 0.75 auto;
}

Note that the flex items in these examples will shrink to 210,
210, and 270 pixels, respectively, as long as the content (like
media objects or nonwrappable text) within each flex item is
not wider than 210, 210, or 270 pixels, respectively. If the flex
item contains content that cannot wrap or otherwise shrink in
the main dimension, the flex item will not shrink any further.

Suppose that the first flex items contain an image 300 pixels
wide. That first flex item cannot shrink, and other flex items
can shrink; therefore, it will not shrink, as if it had a null shrink

factor. In this case, the first item would be 300 pixels, with the
150 pixels of negative space distributed proportionally based on
the shrink factors of the second and third flex items.

That being the case, we have four unimpeded shrink factors
(one from the second flex item, and three from the third) for
150 pixels of negative space, with each shrink factor being
worth 37.5 pixels. The flex items will end up 300, 262.5, and
187.5 pixels, respectively, for a total of 750 pixels, as shown here
and illustrated in Figure 11-45:

item1 = 300 px – (0 × 37.5 px) = 300.0 px

item2 = 300 px – (1 × 37.5 px) = 262.5 px

item3 = 300 px – (3 × 37.5 px) = 187.5 px

Figure 11-45. Shrinking being impeded by flex-item content

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-shrink-with-image.html

Had the image been 296 pixels wide, that first flex item would
have been able to shrink by 4 pixels. The remaining 146 pixels
of negative space would then be distributed among the four
remaining factors, yielding 36.5 pixels per factor. The flex items
would then be 296, 263.5, and 190.5 pixels wide, respectively.

If all three flex items contained nonwrappable text or media
300 pixels or wider, none of the three flex items would not
shrink, appearing similar to the first example in Figure 11-44.

Proportional shrinkage based on width and shrink
factor

The preceding code examples are fairly simple because all the
flex items start with the same width. But what if the widths are
different? What if the first and last flex items have a width of
250 pixels and the middle flex item has a width of 500 pixels, as
shown in Figure 11-46?

Figure 11-46. Flex items shrink proportionally relative to their shrink factor

Flex items shrink proportionally relative to both the shrink
factor and the flex item’s width, with the width often being the
width of the flex item’s content with no wrapping. In Figure 11-
46, we are trying to fit 1,000 pixels into a flex container that’s
750 pixels wide. We have an excess of 250 pixels to be removed
from five shrink factors.

If this were a flex-grow situation, we would simply divide 250
pixels by 5, allocating 50 pixels per growth factor. If we were to
shrink that way, we would get flex items 200, 550, and 100
pixels wide, respectively. But that’s not how shrinking actually
works.

Here, we have 250 pixels of negative space to proportionally
distribute. To get the shrink factor proportions, we divide the
negative space by the total of the flex items’ widths (more

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-shrink-proportionally-relative-to-factor.html

precisely, their lengths along the main-axis) times their shrink
factors:

ShrinkPercent =

Using this equation, we find the shrink percentage:

= 250 px ÷ [(250 px × 1) + (500 px × 1) + (250 px × 3)]

= 250 px ÷ 1500 px

= 0.166666667 (16.67%)

When we reduce each flex item by 16.67% times the value of
flex-shrink , we end up with flex items that are reduced as
follows:

item1 = 250 px × (1 × 16.67%) = 41.67 px

item2 = 500 px × (1 × 16.67%) = 83.33 px

item3 = 250 px × (3 × 16.67%) = 125 px

Each reduction is then subtracted from the starting sizes of 250,
500, and 250 pixels, respectively. Thus we have flex items that
are 208.33, 416.67, and 125 pixels wide.

Differing basis values

NegativeSpace

((Width1 × ShrF1)+. . . +(WidthN × ShrFN))

When the shrink factor has been set to 0 , and both the width
and flex basis of a flex item are set to auto , the item’s content
will not wrap, even when you think it should. Conversely, any
positive shrink value enables content to wrap. Because
shrinking is proportional based on the shrink factor, if all the
flex items have similar shrink factors, the content should wrap
over a similar number of lines.

In the three examples shown in Figure 11-47, the flex items do
not have a declared width. Therefore, the width is based on the
content, because width defaults to auto . The flex container
has been made 520 pixels wide instead of our usual 750 pixels.

Figure 11-47. Flex items shrink proportionally relative to their shrink factor and

content

Note that in the first example, where all the items have the
same flex-shrink value, all content wraps over four lines. In
the second example, the first flex item has a shrink factor that’s
half the value of the other flex items, so it wraps the content

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-shrink-proportionally-relative-to-factor-and-content.html

over (roughly) half the number of lines. This is the power of the
shrink factor.

In the third example, with no shrink factor, the text doesn’t
wrap at all, and the flex items overflow the container by quite a
bit.

WARNING

As of late 2022, this “line-balancing” and refusal-to-wrap behavior is not consistent
across browsers. If you see different results when trying this out for yourself, that
may be why.

Because the flex property’s shrink factor reduces the width of
flex items proportionally, the number of lines of text in the flex
items will grow or shrink as the width shrinks or grows, leading
to similar height content within sibling flex items when the
shrink factors are similar.

In the examples, take the contents of the flex items to be 280,
995, and 480 pixels, respectively—which are the widths of the
nonwrapping flex items in the third example (as measured by
the developer tools, then rounded to make this example a little
simpler). This means we have to fit 1,755 pixels of content into a
520-pixel-wide flex container by shrinking the flex items

proportionally based on their shrink factor. We have 1,235
pixels of negative available space to proportionally distribute.

NOTE

Remember that you can’t rely on web inspector tools to figure out shrink factors for
production. We’re going through this exercise to show how shrink factors work. If
minutia isn’t your thing, feel free to jump to “The flex-basis Property”.

In our first example, the flex items will end up with the same,
or approximately the same, number of text lines. This is
because flex items shrink proportionally, based on the width of
their content.

We didn’t declare any widths, and therefore can’t simply use an
explicit element width as the basis for our calculations, as we
did in the previous examples. Rather, we distribute the 1,235
pixels of negative space proportionally based on the widths of
the content—280, 995, and 480 pixels, respectively. We
determine 520 is 29.63% of 1,755. To determine the width of
each flex item with a shrink factor of 1, we multiply the content
width of each flex item by 29.63%:

item1 = 280 px × 29.63% = 83 px

item2 = 995 px × 29.63% = 295 px

item3 = 480 px × 29.63% = 142 px

With the default of align-items: stretch (see “Aligning
Items”), a three-column layout will have three columns of equal
height. By using a consistent shrink factor for all flex items, you
can indicate that the actual content of these three flex items
should be of approximately equal height—though, by doing
this, the widths of those columns will not necessarily be
uniform.

In the second example in Figure 11-47, the flex items don’t all
have the same shrink factor. The first flex item will,
proportionally, shrink half as much as the others. We start with
the same widths: 280, 995, and 480 pixels, respectively, but their
shrink factors are 0.5, 1.0, and 1.0. Because we know the widths
of the content, the shrink factor (X) can be found
mathematically:

280 px + 995 px + 480 px = 1,615 px

(0.5 × 280 px) + (1 × 995 px) + (1 × 480 px) = 1,235 px

X = 1,235 px ÷ 1,615 px = 0.7647

We can find the final widths now that we know the shrink
factor. If the shrink factor is 76.47%, item2 and item3 will

shrink by that amount, whereas item1 will shrink by 38.23%
(because its flex-shrink value is half the others). The amount
of shrinkage in each case is rounded off to the nearest whole
number:

item1 = 280 px × 0.3823 = 107 px

item2 = 995 px × 0.7647 = 761 px

item3 = 480 px × 0.7647 = 367 px

Thus, the final widths of the flex items are as follows:

item1 = 280 px – 107 px = 173 px

item2 = 995 px – 761 px = 234 px

item3 = 480 px – 367 px = 113 px

The total combined widths of these three flex items is 520
pixels.

Adding in varying shrink and growth factors makes it all a little
less intuitive. That’s why you likely want to always declare the
flex shorthand, preferably with a width or basis set for each
flex item. If this doesn’t make sense yet, don’t worry; we’ll cover
a few more examples of shrinking as we discuss flex-basis .

Responsive flexing

Allowing flex items to shrink proportionally allows for
responsive objects and layouts that can shrink proportionally
without breaking. For example, you can create a three-column
layout that smartly grows and shrinks without media queries,
as shown on a wide screen in Figure 11-48 and narrow screen
in Figure 11-49:

nav {
 flex: 0 1 200px;
 min-width: 150px;
}
article {
 flex: 1 2 600px;
}
aside {
 flex: 0 1 200px;
 min-width: 150px;
}

Figure 11-48. A wide flexbox layout

Figure 11-49. A narrow flexbox layout

In this example, if the viewport is greater than 1,000 pixels,
only the middle column grows because only the middle column

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-shrink-homepage.html

is provided with a positive growth factor. We also dictate that
below the 1,000-pixel-wide mark, all the columns shrink.

Let’s take it bit by bit. The <nav> and <aside> elements have
the following CSS:

flex: 0 1 200px;
min-width: 150px;

They don’t grow from their basis but can shrink at equal rates.
This means they’ll have the width of their flex basis by default.
If they do need to shrink, they’ll shrink to a minimum width of
150px and then stop shrinking. However, if either one has an
element that’s more than 150 pixels wide, whether it’s an image
or a run of text, it will stop shrinking as soon as it reaches the
width of that bit of content. Suppose a 180-pixel image dropped
into the <aside> element. It would stop shrinking as soon as it
reaches 180 pixels wide. The <nav> would keep shrinking
down to 150 pixels.

The <main> element, on the other hand, has these styles:

flex: 1 2 600px;

Thus, the <main> element can grow if there’s space for it to do
so. Since it’s the only flex item that can grow, it gets all the
growth. Given a browser window 1,300 pixels wide, the two
side columns will be 200 pixels wide each, leaving 900 pixels of
width for the center column. In shrinking situations, the center
column will shrink twice as fast as the other two elements.
Thus, if the browser window is 900 pixels wide, each side
column will be 175 pixels wide, and the center column 550
pixels wide.

Once the window reaches 800 pixels wide, the side columns will
reach their min-width values of 150px . From then on, any
narrowing will be taken up by the center column.

Just to be clear, you are not required to use pixels in these
situations. You don’t even have to use the same unit measures
for various flex basis values. The previous example could be
rewritten like this:

nav {
 flex: 0 1 20ch;
 min-width: 15vw;
}
article {
 flex: 1 2 45ch;
}

aside {
 flex: 0 1 20ch;
 min-width: 10ch;
}

We won’t go through all the math here, but the general
approach is to set flex basis values on character widths for
improved readability, with some lower limits based on
character widths and others on viewport width.

NOTE

Flexbox can be useful for a one-dimensional page layout like the one shown in this
section, with only three columns in a line. For anything more complex, or for a more
powerful set of options, use grid layout. (See Chapter 12.)

The flex-basis Property

As you’ve already seen, a flex item’s size is impacted by its
content and box-model properties and can be reset via the
three components of the flex property. The < flex-basis >
component of the flex property defines the initial or default
size of flex items, before extra or negative space is distributed—
before the flex items are allowed to grow or shrink according to
the growth and shrink factors. It can also be set via the flex-
basis property.

WARNING

Declaring the flex basis via the flex-basis property is strongly discouraged by the
authors of the specification itself. Instead, declare the flex basis as part of the flex
shorthand. We’re discussing the property here only to explore the flex basis.

FLEX-BASIS

Values auto | content | max-content | min
-content | fit-content | [< length >
| < percentage >]

Initial
value

auto

Applies to Flex items (children of flex containers)

Percentages Relative to flex container’s inner main-
axis size

Computed
value

As specified, with length values made
absolute

Inherited No

Animatable < width >

The flex basis determines the size of a flex item’s element box,
as set by box-sizing . By default, when a block-level element is
not a flex item, the size is determined by the size of its parent,
content, and box-model properties. When no size properties are
explicitly declared or inherited, the size defaults to its
individual content, border, and padding, which is 100% of the
width of its parent for block-level elements.

The flex basis can be defined using the same length value types
as the width and height properties—for example, 5vw , 12% ,
and 300px .

The universal keyword initial resets the flex basis to the
initial value of auto , so you might as well declare auto . In
turn, auto evaluates to the width (or height), if declared. If
the value of width (or height) is set to auto , the value of
flex-basis is evaluated to content . This causes the flex item
to be sized based on the content of the flex item, though the
exact method for doing so is not made explicit in the
specification.

The content keywords

In addition to lengths and percentages, flex-basis supports
the min-content , max-content , fit-content , and content
keywords. We covered the first three in Chapter 6, but fit-

content deserves a revisit here, and content needs to be
explored.

When using fit-content as the value for flex-basis , the
browser will do its best to balance all the flex items in a line so
that they are similar in block size. Consider this code, which is
illustrated in Figure 11-50:

.flex-item {flex-basis: 25%; width: auto;}

.flex-item.fit {flex-basis: fit-content;}

Figure 11-50. Fit-content flex-basis sizing

In the first flex line, the flex basis of the flex items is set to 25%,
meaning each flex item starts out with 25% the width of the flex

line as its sizing basis, and is flexed from there at the browser’s
discretion. In the second flex line, the flex items are set to use
fit-content for their flex basis. Notice that more content
leads to wider flex items, and less to narrower items.

Also notice that the heights (more properly, the block sizes) of
the flex items are all the same, though this is not guaranteed: in
certain situations, some of the flex items could be a bit taller
than the others—say, by having one flex item’s content wrap to
one more line than the others’. They should all be very close to
the same, though.

This is a good illustration of one of the strengths of flexbox: you
can give a general direction to the layout engine and have it do
the rest of the work. Here, rather than having to figure out
which widths should be assigned to which flex items in order to
balance out their heights, you tell it fit-content and let it
figure out the rest.

Using the content keyword has results generally similar to
fit-content , though some differences exist. A content basis
is the size of the flex item’s content—that is, the length of the
main-axis size of the longest line of content or widest (or tallest)
media object. It’s the equivalent of declaring flex-basis:
auto; inline-size: auto; on a flex item.

The value content has the effects shown in Figure 11-51.

Figure 11-51. Sizing flex items on a content basis

In the first and third examples, the width of the flex item is the
size of the content; and the flex basis is that same size. In the
first example, the flex items’ width and basis are approximately
132 pixels. The total width of the three flex items side by side is

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-basis-content-basis.html

396 pixels, with a few pixels of space between the items, all
fitting easily into the parent container.

In the third example, we have set a null shrink factor (0): this
means the flex items cannot shrink, so they won’t shrink or
wrap to fit into the fixed-width flex container. Rather, they are
the width of their nonwrapped text. That width is also the value
of the flex basis. The three flex items’ widths, and thus their
basis values, are approximately 309, 1,037 pixels, and 523
pixels, respectively. You can’t see the full width of the second
flex item or the third flex item at all, but they’re in the chapter
files.

The second example contains the same content as the third
example, but the flex items are defaulting to a shrink factor of
1, so the text in this example wraps because the flex items can
shrink. Thus, while the width of the flex item is not the width of
the content, the flex basis—the basis by which it will
proportionally shrink—is the width of the items’ contents.

The third example in Figure 11-51 is also a good illustration of
what would happen with the max-content keyword with
flex-shrink: 0 : the flex basis for each item will be the
maximum size of its content. If flex shrinking is allowed, then
the browser will start with the max-content for the basis of

https://meyerweb.github.io/csstdg5figs/11-flexbox

each item’s flexing, and shrink them down from there. The
difference between the two is captured in the following code
and illustrated in Figure 11-52:

Figure 11-52. Sizing flex items on a max-content basis, with and without shrinking

In the first example, where shrinking is not allowed, each flex
item is as wide as its content can get without wrapping. This
causes the flex items to overflow the container (because flex-
wrap is not set to wrap). In the second example, where flex-
shrink is set to 1 , the browser shrinks the flex items equally
until they all fill out the flex container without overflowing it.
Note that the second of the four items is a little taller than the

#example1 {flex-basis: max-content; flex-shrink: 0;}
#example2 {flex-shrink: 1;}

others, because its shrinking happens to require wrapping the
content to one more line than the other items.

For a min-content flex basis, the reverse happens. Consider
the following, illustrated in Figure 11-53:

#example1 {flex-basis: min-content; flex-grow: 0;}
#example2 {flex-grow: 1;}

Figure 11-53. Sizing flex items on a min-content basis, with and without growing

In the first example, flex items are as narrow as possible while
still fitting their content. For elements containing text, this

makes them very tall, given that the block axis is vertical. (Note
that the full heights of the flex items in the first example have
been clipped to keep the figure to a reasonable size.) In the
second example, the items are allowed to grow, so they start
from the min-content size and their widths are grown equally
until they all fill out the flex container without overflowing it.

In the browser used to create Figure 11-53, the widths of the
flex items in the first example added up to 361.1 pixels
(rounded to the nearest tenth of a pixel), with 20 pixels of space
between each flex item. This means from the left edge of the
first item to the right edge of the last item is about 420.1 pixels.
To arrive at the result in the second example, given that the
width of the flex container is 1,200 pixels, the difference
between the container width and content width is 1,200 – 420.1
= 778.9 pixels. This difference is divided by 4, yielding
approximately 194.7 pixels, and the width of each of the four
flex items is increased by that amount.

Automatic flex basis

When set to auto , whether explicitly or by default, flex-
basis is the same as the main-axis size of the element, had the
element not been turned into a flex item. For length values,
flex-basis resolves to the width or height value, with the

exception that when the value of width or height is auto , the
flex-basis value falls back to content .

When the flex basis is auto , and all the flex items can fit within
the parent flex container, the flex items will be their preflexed
size. If the flex items don’t fit into their parent flex container,
the flex items within that container will shrink proportionally
based on their nonflexed main-axis sizes (unless the shrink
factor is 0).

When there are no other properties setting the main-axis size of
the flex items (that is, there’s no inline-size , min-inline-
size , width , or min-width set on these flex items), and flex-
basis: auto or flex: 0 1 auto is set, the flex items will be
only as wide as they need to be for the content to fit, as seen in
the first example in Figure 11-54. In this case, they are the width
of the text “flex-basis: auto,” which is approximately 110 pixels.
The flex items are their preflexed size, as if set to display:
inline-block . In this example, they’re grouped at main-start
because the justify-content property, the flex container’s
justify-content defaults to flex-start .

In the second example in Figure 11-54, each flex item has a flex
basis of auto and an explicitly declared width. The main-axis
size of the elements, had they not been turned into flex items,

would be 100, 150, and 200 pixels, respectively. And so they are
here, since they fit into the flex container without any overflow
along the main-axis.

Figure 11-54. Auto flex basis and flex item widths

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-basis-auto-basis-and-widths.html

In the third example in Figure 11-54, each of the flex items has a
flex basis of auto and a very large explicitly declared width.
The main-axis size of the elements, had they not been turned
into flex items, would be 2,000, 3,000, and 4,000 pixels,
respectively. Since they could not possibly fit into the flex
container without overflowing along the main-axis, and their
flex shrink factors have all defaulted to 1 , they shrink until
they fit into the flex container. You can do the math to find out
how big they are using the process outlined in “Differing basis
values”; as a hint, the width of the third flex item should be
reduced from 4,000 pixels to 240 pixels.

Default values

When neither flex-basis nor flex is set, the flex item’s
main-axis size is the preflex size of the item, as the default
value is auto .

In Figure 11-55: the flex basis values are defaulting to auto , the
growth factor is defaulting to 0 , and the shrink factor of each
item is defaulting to 1 . For each flex item, the flex basis is its
individual width value. That means the flex basis values are
being set to the values of the width properties: 100, 200, and
300 pixels in the first example, and 200, 400, and 200 pixels in
the second example. As the combined widths of the flex items

are 600 pixels and 800 pixels, respectively, both of which are
greater than the main-axis size of the 540-pixel-wide containers,
they are all shrinking proportionally to fit.

Figure 11-55. Default sizing of flex items

In the first example, we are trying to fit 600 pixels in 540 pixels,
so each flex item will shrink by 10% to yield flex items that are
90, 180, and 270 pixels wide. In the second example, we are
trying to fit 800 pixels into 540 pixels, so they all shrink 32.5%,
making the flex items’ widths 135, 270, and 135 pixels.

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-basis-default-sizing.html

Length units

In the previous examples, the auto flex basis values defaulted
to the declared widths of the various flex items. CSS provides
other options; for example, we can use the same length units
for our flex-basis value as we do for width and height .

Figure 11-56. Sizing flex items with length-unit flex basis values

When we have both flex-basis and width (or height , for
vertical main-axes) values, the basis trumps the width (or
height). Let’s add basis values to the first example from
Figure 11-55. The flex items include the following CSS:

flex-container {
 width: 540px;

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-basis-width-vs-length.html

}
item1 {
 width: 100px;
 flex-basis: 300px; /* flex: 0 1 300px; */
}
item2 {
 width: 200px;
 flex-basis: 200px; /* flex: 0 1 200px; */
}
item3 {
 width: 300px;
 flex-basis: 100px; /* flex: 0 1 100px; */
}

The widths are overridden by the basis values. The flex items
shrink down to 270 pixels, 180 pixels, and 90 pixels,
respectively. Had the container not had a constrained width, the
flex items would have been 300 pixels, 200 pixels, and 100
pixels, respectively.

While the declared flex basis can override the main-axis size of
flex items, the size can be affected by other properties, such as
min-width , min-height , max-width , and max-height . These
are not ignored. Thus, for example, an element might have
flex-basis: 100px and min-width: 500px . The minimum

width of 500px will be respected, even though the flex basis is
smaller.

Percentage units

Percentage values for flex-basis are calculated relative to the
size of the main dimension of the flex container.

We’ve already seen the first example in Figure 11-57; it’s
included here to recall that the width of the text “flex-basis:
auto” in this case is approximately 110 pixels wide. In this case
only, declaring flex-basis: auto looks the same as writing
flex-basis: 110px :

flex-container {
 width: 540px;
}
flex-item {
 flex: 0 1 100%;
}

In the second example in Figure 11-57, the first two flex items
have a flex basis of auto with a default width of auto , which
is as if their flex basis were set to content . As we’ve noted
previously, the flex-basis of the first two items ends up being
the equivalent of 110 pixels, as the content in this case happens

to be 110 pixels wide. The last item has its flex-basis set to
100% .

Figure 11-57. Sizing flex items with percentage flex basis values

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-basis-percentage.html

The percentage value is relative to the parent, which is 540
pixels. The third flex item, with a basis of 100% , is not the only
flex item within the nonwrapping flex container. Thus, it will
not grow to be 100% of the width of the parent flex container
unless its shrink factor is set with a null shrink factor, meaning
it can’t shrink, or if it contains nonwrappable content that is as
wide or wider than the parent container.

TIP

Remember: when the flex basis is a percent value, the main-axis size is relative to the
parent, which is the flex container.

With our three flex basis values, if the content is indeed 110
pixels wide, and the container is 540 pixels wide (ignoring other
box-model properties for simplicity’s sake), we have a total of
760 pixels to fit in a 540-pixel space. Thus we have 220 pixels of
negative space to distribute proportionally. The shrink factor is
as follows:

Shrink factor = 220 px ÷ 760 px = 28.95%

Each flex item will be shrunk by 28.95%, becoming 71.05% of
the width it would have been, had it not been allowed to shrink.
We can figure the final widths:

item1 = 110 px × 71.05% = 78.16 px

item2 = 110 px × 71.05% = 78.16 px

item3 = 540 px × 71.05% = 383.68 px

These numbers hold true as long as the flex items can be that
small—that is, as long as none of the flex items contain media
or nonbreaking text wider than 78.16 pixels or 383.68 pixels.
This is the widest these flex items will be as long as the content
can wrap to be that width or narrower. We say “widest”
because if one of the other two flex items can’t shrink to be as
narrow as this value, they’ll both have to absorb some of that
negative space.

In the third example in Figure 11-57, the flex-basis: auto
item wraps over three lines. The CSS for this example is the
equivalent of the following:

flex-container {
 width: 540px;
}
item1 {
 flex: 0 1 70%;
}
item2 {
 flex: 0 1 auto;

}
item3 {
 flex: 0 1 80%;
}

We declare the flex-basis of the three flex items to be 70% ,
auto , and 80% , respectively. Remembering that in our scenario
auto is the width of the nonwrapping content, which in this
case is approximately 110 pixels, and our flex container is 540
pixels, the basis values are equivalent to the following:

item1 = 70% × 540 px = 378 px

item2 = widthOfText(“flex-basis: auto”) ≈ 110 px

item3 = 80% × 540 px = 432 px

When we add the widths of these three flex items’ basis values,
they have a total combined width of 920 pixels, which needs to
fit into a flex container 540 pixels wide. Thus we have 380
pixels of negative space to remove proportionally among the
three flex items. To figure out the ratio, we divide the available
width of our flex container by the sum of the widths of the flex
items that they would have if they couldn’t shrink:

Proportional width = 540 px ÷ 920 px = 0.587

Because the shrink factors are all the same, this is fairly simple.
Each item will be 58.7% of the width it would be if it had no
flex-item siblings:

item1 = 378 px × 58.7% = 221.8 px

item2 = 110 px × 58.7% = 64.6 px

item3 = 432 px × 58.7% = 253.6 px

What happens when the container is a different width? Say,
1,000 pixels? The flex basis would be 700 pixels (70% × 1,000
pixels), 110 pixels, and 800 pixels (80% × 1,000 pixels),
respectively, for a total of 1,610 pixels:

Proportional width = 1,000 px ÷ 1,610 px = 0.6211

item1 = 700 px × 62.11% = 434.8 px

item2 = 110 px × 62.11% = 68.3 px

item3 = 800 px × 62.11% = 496.9 px

Because with a basis of 70% and 80%, the combined basis
values of the flex items will always be wider than 100%, no
matter how wide we make the parent, all three items will
always shrink.

If the first flex item can’t shrink for some reason—whether
because of unshrinkable content, or another bit of CSS setting
its flex-shrink to 0 —it will be 70% of the width of the
parent, 378 pixels in this case. The other two flex items must
shrink proportionally to fit into the remaining 30%, or 162
pixels. In this case, we expect widths to be 378 pixels, 32.875
pixels, and 129.125 pixels. As the text “basis:” is wider than that
—assume 42 pixels—we get 378 pixels, 42 pixels, and 120 pixels.
Figure 11-58 shows the result.

Figure 11-58. While the percentage value for flex-basis is relative to the width of

the flex container, the main-axis size is impacted by its siblings

Testing this out on your device will likely have slightly different
results, as the width of the text “flex-basis: auto” may not be the
same for you, depending on the font that gets used to render

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-basis-percentage-main-axis.html

the text. (We used Myriad Pro, with fallbacks to Helvetica and
any generic sans-serif font.)

Zero basis

If neither the flex-basis property nor the flex shorthand is
included at all, the flex basis defaults to auto . When the flex
property is included, but the flex basis component of the
shorthand is omitted from the shorthand, the basis defaults to
0 . While on the surface you might think the two values of
auto and 0 are similar, the 0 value is actually very different
and may not be what you expect.

In the case of flex-basis: auto , the basis is the main size of
the flex items’ contents. If the basis of each of the flex items is
0 , the available space is the main-axis size of the entire flex
container. In either case, the available space is distributed
proportionally, based on the growth factors of each flex item.

With a basis of 0 , the size of the flex container is divided up
and distributed proportionally to each flex item based on its
growth factors—its default original main-axis size as defined by
height , width , or content is not taken into account, though
min-width , max-width , min-height , and max-height do
impact the flexed size.

As shown in Figure 11-59, when the basis is auto , only the
extra space is divided up proportionally and added to each flex
item set to grow. Again, assuming the width of the text “flex: X X
auto” is 110 pixels, in the first example we have 210 pixels to
distribute among six growth factors, or 35 pixels per growth
factor. The flex items are 180, 145, and 215 pixels wide,
respectively.

Figure 11-59. Flex growth in auto and zero flex basis values

In the second example, when the basis is 0, all 540 pixels of the
width is distributable space. With 540 pixels of distributable
space among six growth factors, each growth factor is worth 90
pixels. The flex items are 180, 90, and 270 pixels wide,
respectively. While the middle flex item is 90 pixels wide, the
content in this example is narrower than 110 pixels, so the flex
item didn’t wrap.

The flex Shorthand

Now that you have a fuller understanding of the properties that
make up the flex shorthand, remember: always use the flex
shorthand. It accepts the usual global property values, including
initial , auto , none ; and the use of an integer, usually 1 ,
meaning the flex item can grow.

FLEX

Values none | [< flex-grow > < flex-

shrink >? ‖ < flex-basis >]

Initial
value

0 1 auto

Applies to Flex items

Computed
value

See individual properties, with the
caveat that relative lengths for flex-ba
sis are converted to absolute lengths

Inherited No

Animatable Yes

Four of the flex values provide the most commonly desired
effects:

flex: initial

Equivalent to flex: 0 1 auto . This sizes flex items based on
the value of inline-size (which is equivalent to either
width or height , depending on the direction of the inline
axis), and allows shrinking but not growing.

flex: auto

Equivalent to flex: 1 1 auto . This sizes flex items based on
the value of inline-size , but makes them fully flexible,
allowing both shrinking and growing.

flex: none

Equivalent to flex: 0 0 auto . This sizes flex items based on
the value of inline-size , but makes them completely
inflexible: they can’t shrink or grow.

flex: <number>

Equivalent to flex: <number> 1 0 . This value sets the flex
item’s growth factor to the < number > provided. It also sets
both the shrink factor and flex basis to 0 . This means the
value of inline-size acts as a minimum size, but the flex
item will grow if there is room to do so.

Let’s consider each of these in turn.

Flexing with initial

The global CSS keyword initial can be used on all properties
to represent a property’s initial value (its specification default
value). Thus, the following lines are equivalent:

flex: initial;
flex: 0 1 auto;

Declaring flex: initial sets a null growth factor, a shrink
factor of 1 , and the flex basis values to auto . In Figure 11-60,
we can see the effect of the auto flex basis values. In the first
two examples, the basis of each flex item is content —with
each flex item having the width of the single line of letters that
makes up the content. However, in the last two examples, the
flex basis values of all the items are equal at 50 pixels, since
width: 50px has been applied to all the flex items. The flex:
initial declaration sets the flex-basis to auto , which we
previously saw is the value of the width (or height), if
declared, or content if not declared.

In the first and third of these examples, we see that when the
flex container is too small to fit all the flex items at their default
main-axis size, the flex items shrink so that all fit within the
parent flex container. In these examples, the combined flex
basis values of all the flex items is greater than the main-axis
size of the flex container. In the first example, the width of each

flex item varies based on the width of each item’s content and
its ability to shrink. They all shrink proportionally based on
their shrink factor, but not narrower than their widest content.
In the third example, with each flex item’s flex-basis being 50
pixels (because of the value of width), all the items shrink
equally.

Figure 11-60. Flex items shrink but won’t grow when flex: initial is set

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-items-shrink-dont-grow.html

Flex items, by default, are grouped at main-start, as flex-
start is the default value for the justify-content property.
This is noticeable only when the combined main-axis sizes of
the flex items in a flex line are smaller than the main-axis size
of the flex container, and none of the flex items are able to
grow.

Flexing with auto

The flex: auto option is similar to flex: initial , but
makes the flex items flexible in both directions: they’ll shrink if
there isn’t enough room to fit all the items within the container,
and they’ll grow to take up all the extra space within the
container if there is distributable space. The flex items absorb
any free space along the main-axis. The following two
statements are equivalent:

flex: auto;
flex: 1 1 auto;

Figure 11-61 shows a variety of scenarios using auto flexing.

Figure 11-61. Flex items can grow and shrink when flex: auto is set

The first and third examples of Figure 11-61 are identical to the
examples in Figure 11-60, as the shrinking and basis values are
the same. However, the second and fourth examples are
different. This is because when flex: auto is set, the growth
factor is 1 , and the flex items therefore can grow to
incorporate all the extra available space.

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-items-shrink-and-grow.html

Preventing flexing with none

Any flex: none flex items are inflexible: they can neither
shrink nor grow. The following two lines of CSS are equivalent:

flex: none;
flex: 0 0 auto;

Figure 11-62 shows the effects of none .

Figure 11-62. With flex: none , flex items will neither grow nor shrink

As demonstrated in the first and third examples of Figure 11-62,
if there isn’t enough space, the flex items overflow the flex
container. This is different from flex: initial and flex:
auto , which both set a positive shrink factor.

The basis resolves to auto , meaning each flex item’s main-axis
size is determined by the main-axis size of the element had it
not been turned into a flex item. The flex-basis resolves to the

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-items-dont-grow-nor-shrink.html

width or height value of the element. If that value is auto ,
the basis becomes the main-axis size of the content. In the first
two examples, the basis—and the width, since there is no
growing or shrinking—is the width of the content. In the third
and fourth examples, the width and basis are all 50 pixels,
because that’s the value of the width property applied to them.

Numeric flexing

When the value of the flex property is a single, positive,
numeric value, that value will be used for the growth factor,
while the shrink factor will default to 1 and the basis will
default to 0 . The following two CSS declarations are
equivalent:

flex: 3;
flex: 3 1 0;

This makes the flex item on which it is set flexible: it can grow.
The shrink factor is actually moot: the flex basis is set to 0 , so
the flex item can grow only from that basis.

In the first two examples in Figure 11-63, all the flex items have
a flex growth factor of 3 . The flex basis is 0 , so they don’t
“shrink”; they just grow equally from 0 pixels wide until the

sum of their main-axis sizes to fill the container along the main-
axis. With all the flex items having a basis of 0 , 100% of the
main dimension is distributable space. The main-axis size of the
flex items is wider in this second example because the wider
flex container has more distributable space.

Figure 11-63. Flexing using a single numeric value

Any numeric value that is greater than 0, even 0.1, means the
flex item can grow. If there is available space to grow and only
one flex item has a positive growth factor, that item will take up

https://meyerweb.github.io/csstdg5figs/11-flexbox/flex-using-single-numeric-value.html

all the available space. If multiple flex items can grow, the
available extra space will be distributed proportionally to each
flex item based on its growth factor.

The last three examples of Figure 11-63 declare six flex items
with flex: 0 , flex: 1 , flex: 2 , flex: 3 , flex: 4 , and
flex: 5 , respectively. These are the growth factors for the flex
items, with each having a shrink factor of 1 and a flex basis of
0 . The main-axis size of each is proportional to the specified
flex growth factor. You might assume that the flex: 0 item
with the text “flex: 0” in the third example will be 0 pixels wide,
as in the fourth example—but, by default, flex items won’t
shrink below the length of the longest word or fixed-size
element.

NOTE

We added a bit of padding, margins, and borders to the figures to make the visuals
more pleasing. For this reason, the leftmost flex item, with flex: 0 declared, is
visible: it has a 1-pixel border making it visible, even though it’s 0 pixels wide.

The order Property

Flex items are, by default, displayed and laid out in the same
order as they appear in the source code. The order of flex items

and flex lines can be reversed with flex-direction , but
sometimes you want a rearrangment that’s a little more
complicated. The order property can be used to change the
ordering of individual flex items.

ORDER

Values < integer >

Initial
value

0

Applies to Flex items and absolutely positioned
children of flex containers

Computed
value

As specified

Inherited No

Animatable Yes

By default, all flex items are assigned the order of 0 , with the
flex items all assigned to the same ordinal group and displayed
in the same order as their source order, along the direction of
the main-axis. (This has been the case for all the examples
throughout this chapter.)

To change the visual order of a flex item, set the order
property value to a nonzero integer. Setting the order property
on elements that are not children of a flex container has no
effect on such elements.

WARNING

Changing the visual rendering order of flex items creates a disconnect between the
source order of elements and their visual presentation. This can, in the words of the
Mozilla Developer Network’s article on order , “adversely affect users experiencing
low vision navigating with the aid of assistive technology such as a screen reader.” It
could also create problems for users who navigate by keyboard and use a zoomed-in
or otherwise magnified view of pages. In other words: be very careful with order ,
and use it only in production after much accessibility testing.

The value of the order property specifies an ordinal group to
which the flex item belongs. Any flex items with a negative
value will appear to come before those defaulting to 0 when
drawn to the page, and all the flex items with a positive value
will appear to come after those defaulting to 0 . While visually

altered, the source order remains the same. Screen readers and
tabbing order remain as defined by the source order of the
HTML.

For example, if you have a group of 12 items, and you want the
seventh to come first and the sixth to be last, you would declare
the following:

ul {
 display: inline-flex;
}
li:nth-of-type(6) {
 order: 1;
}
li:nth-of-type(7) {
 order: -1;
}

In this scenario, we are explicitly setting the order for the sixth
and seventh list items, while the other list items are defaulting
to order: 0 . Figure 11-64 shows the result.

Figure 11-64. Reordering flex items with the order property

The seventh flex item is the first to be laid out, because of the
negative value of the order property, which is less than the
default 0 , and is also the lowest value of any of its sibling flex
items. The sixth flex item is the only item with a value greater
than 0, and therefore has the highest-order value out of all of its
siblings. This is why it’s laid out after all the other flex items. All
the other items, all having the default order of 0 , are drawn
between those first and last items, in the same order as their
source order, since they are all members of the same ordinal
group (0).

The flex container lays out its content in order-modified
document order, starting from the lowest-numbered ordinal
group and going up. When multiple flex items have the same
value for the order property, the items share an ordinal group.
The items in each ordinal group will appear in source order,
with the group appearing in numeric order, from lowest to
highest. Consider the following:

https://meyerweb.github.io/csstdg5figs/11-flexbox/order01.html

ul {
 display: inline-flex;
 background-color: rgba(0,0,0,0.1);
}
li:nth-of-type(3n-1) {
 order: 3;
 background-color: rgba(0,0,0,0.2);
}
li:nth-of-type(3n+1) {
 order: -1;
 background-color: rgba(0,0,0,0.4);
}

By setting the same order value to more than one flex item, the
items will appear by ordinal group, and by source order within
each individual ordinal group. Figure 11-65 shows the result.

Figure 11-65. Flex items appear in order of ordinal groups, by source order within

their group

Here’s what happened:

https://meyerweb.github.io/csstdg5figs/11-flexbox/order02.html

Items 2, 5, 8, and 11 were selected to share ordinal group 3 ,
and get a 20% opaque background.
Items 1, 4, 7, and 10 were selected to share ordinal group -1 ,
and get a 40% opaque background.
Items 3, 6, 9, and 12 were not selected at all. They default to
the ordinal group 0 .

The three ordinal groups, then, are -1 , 0 , and 3 . The groups
are arranged in that order. Within each group, the items are
arranged by source order.

This reordering is purely visual. Screen readers should read the
document as it appears in the source code, though they may
not. As a visual change, ordering flex items impacts the painting
order of the page: the painting order of the flex items is the
order in which they appear, as if they were reordered in the
source document, even though they aren’t.

Changing the layout with the order property has no effect on
the tab order of the page. If the numbers in Figure 11-65 were
links, tabbing through the links would go through the links in
the order of the source code, not in the order of the layout.

Tabbed Navigation Revisited

Adding to our tabbed navigation bar example in Figure 11-2, we
can make the currently active tab appear first, as Figure 11-66
shows:

nav {
 display: flex;
 justify-content: flex-end;
 border-bottom: 1px solid #ddd;
}
a {
 margin: 0 5px;
 padding: 5px 15px;
 border-radius: 3px 3px 0 0;
 background-color: #ddd;
 text-decoration: none;
 color: black;
}
a:hover {
 background-color: #bbb;
 text-decoration: underline;
}
a.active {
 order: -1;
 background-color: #999;
}

<nav>
 Home

 About
 Blog
 Careers
 Contact Us
</nav>

Figure 11-66. Changing the order will change the visual order, but not the tab order

The currently active tab has the .active class added, the href
attribute removed, and the order set to -1 , which is less than
the default 0 of the other sibling flex items, meaning it appears
first.

Why did we remove the href attribute? As the tab is the
currently active document, there is no reason for the document
to link to itself. But, more importantly, if it was an active link
instead of a placeholder link, and the user was using the
keyboard to tab through the navigation, the order of
appearance is Blog, Home, About, Careers, and Contact Us, with
the Blog appearing first; but the tab order would have been
Home, About, Blog, Careers, and Contact Us, following the

https://meyerweb.github.io/csstdg5figs/11-flexbox/changing-order-changes-visual-order.html

source order rather than the visual order, which can be
confusing.

The order property can be used to enable marking up the
main content area before the side columns for mobile devices
and those using screen readers and other assistive technology,
while creating the appearance of the common three-column
layout: a center main content area, with site navigation on the
left and a sidebar on the right, as shown way back in Figure 11-
48.

While you can put your footer before your header in your
markup, and use order to reorder the page, this is an
inappropriate use of the property. The order property should
be used only for visual reordering of content. Your underlying
markup should always reflect the logical order of your content.
Consider these two markup orders for the same content, shown
here side by side to make comparing them easier:

<header></header> <header></header>
<main> <main>
 <article></article> <nav></nav>
 <aside></aside> <article></article>
 <nav></nav> <aside></aside>
</main> </main>
<footer></footer> <footer></footer>

We’ve been marking up websites in the order we want them to
appear, as shown on the right in the code example, which is the
same code as in our three-column layout example (Figure 11-
48).

It really would make more sense if we marked up the page as
shown on the left, with the <article> content, which is the
main content, first in the source order: this puts the article first
for screen readers, search engines, and even mobile devices,
but in the middle for our sighted users on larger screens:

main {
 display: flex;
}
main > nav {
 order: -1;
}

By using the order: -1 declaration, we are able to make the
<nav> appear first, as it is the lone flex item in the ordinal
group of -1 . The <article> and <aside> , with no order
explicitly declared, default to order: 0 .

Remember, when more than one flex item is in the same
ordinal group, the members of that group are displayed in
source order in the direction of main-start to main-end, so the
article is displayed before the aside .

Some developers, when changing the order of at least one flex
item, like to give all flex items an order value for better
markup readability. We could have also written this:

main {
 display: flex;
}
main > nav {
 order: 1;
}
main > article {
 order: 2;
}
main > aside {
 order: 3;
}

In previous years, before browsers supported flex, all this could
have been done with floats: we would have set float: right
on the <nav> . While doable, flex layout makes this sort of

layout much simpler, especially if we want all three columns—
the <aside> , <nav> , and <article> —to be of equal heights.

Summary

With flexible box layout, you can lay out sibling elements in
ways that are responsive to many layout contexts and writing
modes, with a variety of options for arranging those elements
and aligning them to one another. It makes the task of vertically
centering elements within their parent elements almost
trivially easy, something that was very difficult in the years
before flexbox. It also serves as a powerfully useful bridge
between normal-flow and grid layout, which is the subject of
the next chapter.

Chapter 12. Grid Layout

At its inception, CSS had a layout-shaped hole at its center.
Designers bent other features to the purposes of layout, most
notably float and clear , and generally hacked their way
around that hole. Flexbox layout helped to fill it, but flexbox is
really meant for specific use cases, like navigation bars
(navbars), as shown in Chapter 11.

Grid layout, by contrast, is a generalized layout system. With its
emphasis on rows and columns, it might at first feel like a
return to table layout—and in certain ways that’s not too far off
—but there is far, far more to grid layout than table layout. Grid
allows pieces of the design to be laid out independently of their
document source order, and even overlap pieces of the layout,
if that’s your wish. CSS provides powerfully flexible methods
for defining repeating patterns of grid lines, attaching elements
to those grid lines, and more. You can nest grids inside grids, or
for that matter, attach tables or flexbox containers to a grid.
And much, much more.

In short, grid layout was the layout system we long waited for,
and in 2017, it landed in all the major browser engines. It takes
many, many layouts that were difficult, or even impossible, and

invariably fragile, and allows you to create them simply,
flexibly, and robustly.

Creating a Grid Container

The first step to creating a grid is defining a grid container. This
is much like a containing block in positioning, or a flex
container in flexible-box layout: a grid container is an element
that defines a grid formatting context for its contents.

At this basic level, grid layout is quite reminiscent of flexbox.
For example, the child elements of a grid container become grid
items, just as the child elements of a flex container become flex
items. The children of those grid items do not become grid
elements—although any grid item can itself be made a grid
container, and thus have its child elements become grid items
to the nested grid. It’s possible to nest grids inside grids, until
it’s grids all the way down.

CSS has two kinds of grids: regular grids and inline grids. These
are created with special values for the display property: grid
and inline-grid . The first generates a block-level box, and the
second an inline-level box. Figure 12-1 illustrates the difference.

Figure 12-1. Grids and inline grids

These are very similar to the block and inline-block values
for display . Most grids you create are likely to be block-level,
though the ability to create inline grids is always there should
you need it.

Although display: grid creates a block-level grid, the
specification is careful to explicitly state that “grid containers
are not block containers.” Although the grid box participates in
layout much as a block container does, there are differences
between them.

First off, floated elements do not intrude into the grid container.
What this means in practice is that a grid will not slide under a
floated element, as a block container will. See Figure 12-2 for a
demonstration of the difference.

Figure 12-2. Floats interact differently with blocks and grids

Furthermore, the margins of a grid container do not collapse
with the margins of its descendants. Again, this is distinct from
block boxes, whose margins do (by default) collapse with
descendants. For example, the first list item in an ordered list
may have a top margin, but this margin will collapse with the
list element’s top margin. The top margin of a grid item will
never collapse with the top margin of its grid container.
Figure 12-3 illustrates the difference.

Figure 12-3. Margin collapsing and the lack thereof

A few CSS properties and features do not apply to grid
containers and grid items:

All column properties (e.g., column-count , columns , etc.)
are ignored when applied to a grid container. (You can learn
more about multicolumn properties at CSS Multi-Column
Layout.)
The ::first-line and ::first-letter pseudo-elements
do not apply to grid containers and are ignored.
float and clear are effectively ignored for grid items
(though not grid containers). Despite this, the float
property still helps determine the computed value of the
display property for children of a grid container, because
the display value of the grid items is resolved before they’re
made into grid items.
The vertical-align property has no effect on the
placement of grid items, though it may affect the content
inside the grid item. (Don’t worry: we’ll talk later about
other, more powerful ways to align grid items.)

Lastly, if a grid container’s declared display value is inline-
grid and the element is either floated or absolutely positioned,
the computed value of display becomes grid (thus dropping
inline-grid).

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Columns

Once you’ve defined a grid container, the next step is to set up
the grid within. Before we explore how that works, though, it’s
necessary to cover some terminology.

Understanding Basic Grid
Terminology

We’ve already talked about grid containers and grid items, but
let’s define them in a bit more detail. As we said before, a grid
container is a box that establishes a grid-formatting context—
that is, an area in which a grid is created and elements are laid
out according to the rules of grid layout instead of block layout.
You can think of it like the way an element set to display:
table creates a table-formatting context within it. Given the
grid-like nature of tables, this comparison is fairly apt, though
be sure not to make the assumption that grids are just tables in
another form. Grids are far more powerful than tables ever
were.

A grid item is a thing that participates in grid layout within a
grid-formatting context. This is usually a child element of a grid
container, but it can also be the anonymous (that is, not
contained within an element) bits of text that are part of an

element’s content. Consider the following, which has the result
shown in Figure 12-4:

Figure 12-4. Grid items

Notice how each element, and each bit of text between the
elements, has become a grid item. The image is a grid item, just
as much as the elements and text runs—seven grid items in all.
Each will participate in the grid layout, although the
anonymous text runs will be much more difficult (or
impossible) to affect with the various grid properties we’ll
discuss.

#warning {display: grid;
 background: #FCC; padding: 0.5em;
 grid-template-rows: 1fr;
 grid-template-columns: repeat(7, 1fr);}

<p id="warning">Note:<
 grid container with several grid item

NOTE

If you’re wondering about grid-template-rows and grid-template-columns , we’ll
tackle them in the next section.

In the course of using those properties, you’ll create or
reference several core components of grid layout. These are
summarized in Figure 12-5.

The most fundamental unit is the grid line. By defining the
placement of one or more grid lines, you implicitly create the
rest of the grid’s components:

Grid track
A continuous run between two adjacent grid lines—in other
words, a grid column or a grid row. It goes from one edge of
the grid container to the other. The size of a grid track is
dependent on the placement of the grid lines that define it.
These are analogous to table columns and rows. More
generically, these can be referred to as block-axis and inline-
axis tracks, where (in Western languages) column tracks are
on the block axis and row tracks are on the inline axis.

Figure 12-5. Grid components

Grid cell
Any space bounded by four grid lines, with no grid lines
running through it, analogous to a table cell. This is the
smallest unit of area in grid layout. Grid cells cannot be
directly addressed with CSS grid properties; that is, no
property allows you to say a grid item should be associated
with a given cell. (But see the next point for more details.)

Grid area
Any rectangular area bounded by four grid lines and made
up of one or more grid cells. An area can be as small as a
single cell or as large as all the cells in the grid. Grid areas are

directly addressable by CSS grid properties, which allow you
to define the areas and then associate grid items with them.

An important point to note is that these grid tracks, cells, and
areas are entirely constructed of grid lines—and, more
importantly, do not have to correspond to grid items. There is
no requirement that all grid areas be filled with an item; it is
perfectly possible to have some or even most of a grid’s cells be
empty of any content. You can also have grid items overlap each
other, either by defining overlapping grid areas or by using
grid-line references that create overlapping situations.

Another fact to keep in mind is that you can define as many or
as few grid lines as you wish. You could literally define just a set
of vertical grid lines, thus creating a bunch of columns and only
one row. Or you could go the other way, creating a bunch of
row tracks and no column tracks (though there would be one,
stretching from one side of the grid container to the other).

The flip side is that if you create a condition preventing a grid
item from being placed within the column and row tracks you
define, or if you explicitly place a grid item outside those tracks,
new grid lines and tracks will be automatically added to the
grid to accommodate, creating implicit grid tracks (a subject
we’ll return to later in the chapter).

Creating Grid Lines

It turns out that creating grid lines can get fairly complex.
That’s not so much because the concept is difficult. CSS just
provides many ways to get it done, and each uses its own subtly
different syntax.

We’ll start by looking at two closely related properties.

GRID-TEMPLATE-ROWS, GRID-TEMPLATE-COLUMNS

Values none | < track-list > | < auto-track
-list >_ | [subgrid < line-name-li
st >]?

Initial
value

none

Applies to Grid containers

Percentages Refer to the inline size (usually width)
of the grid container for grid-templat
e-columns , and to the block size
(usually height) of the grid container
for grid-template-rows

Computed
value

As declared, with lengths made
absolute

Inherited No

Animatable No

With these properties, you can define the grid tracks of your
overall grid template, or what the CSS specification calls the
explicit grid. Everything depends on these grid tracks; fail to
place them properly, and the whole layout can easily fall apart.

Once you define a grid track, grid lines are created. If you
create just one track for the whole grid, two lines are created:
one at the start of the track and one at the end. Two tracks
means three lines: one at the start of the first track, one
between the two, and one at the end of the second track. And so
on.

TIP

When you’re starting out with CSS grid layout, it’s probably a good idea to sketch out
where the grid tracks need to be on paper first, or in some close digital analogue.
Having a visual reference for where the lines will land, and how the tracks should
behave, can make writing your grid CSS a lot easier.

The exact syntax patterns for < track-list > and < auto-track-

list > are complex and nest a few layers deep, and unpacking
them would take a lot of time and space that’s better devoted to
just exploring how things work. There are a lot of ways to make
all this happen, so before we start discussing those patterns, we
have some basic things to establish.

First, grid lines can always be referred to by number, but can
also be explicitly named by the author. Take the grid shown in
Figure 12-6, for example. From your CSS, you can use any of the
numbers to refer to a grid line, or you can use the defined
names, or you can mix them together. Thus, you could say that
a grid item stretches from column line 3 to line steve , and
from row line skylight to line 2 .

Note that a grid line can have more than one name. You can use
any of them to refer to a given grid line, though you can’t
combine them the way you can multiple class names. You might
think that means it’s a good idea to avoid repeating grid-line
names, but that’s not always the case, as you’ll soon see.

Figure 12-6. Grid-line numbers and names

We used intentionally silly grid-line names in Figure 12-6 to
illustrate that you can pick any name you like, as well as to
avoid the implication that there are “default” names. If you’d
seen start for the first line, you might have assumed that the
first line is always called that. Nope. If you want to stretch an
element from start to end , you’ll need to define those names
yourself. Fortunately, that’s simple to do.

As we’ve said, many value patterns can be used to define the
grid template. We’ll start with the simpler ones and work our
way toward the more complex.

NOTE

We’ll discuss the subgrid value in “Using Subgrids”, after establishing how grid
tracks and grid areas are defined, named, sized, combined, and so on.

Using Fixed-Width Grid Tracks

As our initial step, let’s create a grid whose grid tracks are a
fixed width. We don’t necessarily mean a fixed length like pixels
or ems; percentages also count as fixed width here. In this
context, fixed width means the grid lines are placed such that
the distance between them does not change because of content
changes within the grid tracks.

So, as an example, this counts as a definition of three fixed-
width grid columns:

#grid {display: grid;
 grid-template-columns: 200px 50% 100px;}

That will place a line 200 pixels from the start of the grid
container (by default, the left side); a second grid line half the
width of the grid container away from the first; and a third line
100 pixels away from the second. This is illustrated in Figure 12-
7.

Figure 12-7. Grid-line placement

While it’s true that the second column can change in size if the
grid container’s size changes, it will not change based on the
content of the grid items. However wide or narrow the content
placed in that second column, the column’s width will always
be half the width of the grid container.

It’s also true that the last grid line doesn’t reach the right edge
of the grid container. That’s fine; it doesn’t have to. If you want
it to—and you probably will—you’ll see various ways to deal
with that in just a bit.

This is all lovely, but what if you want to name your grid lines?
Just place any grid-line name you want, and as many as you
want, in the appropriate place in the value, surrounded by
square brackets. That’s all! Let’s add some names to our
previous example, with the result shown in Figure 12-8:

#grid {display: grid;
 grid-template-columns:

Figure 12-8. Grid-line naming

What’s nice is that adding the names makes clear that each
value is actually specifying a grid track’s width, which means
there is always a grid line to either side of a width value. Thus,
for the three widths we have, four grid lines are actually
created.

Row grid lines are placed in exactly the same way as columns,
as Figure 12-9 shows:

 [start col-a] 200px [col-b] 50% [col-c] 100px
 }

#grid {display: grid;
 grid-template-columns:
 [start col-a] 200px [col-b] 50% [col-c] 100px
 grid-template-rows:
 [start masthead] 3em [content] 80% [footer] 2

Figure 12-9. Creating a grid

We have a couple of things to point out here. First, both column
and row lines have the names start and end . This is perfectly
OK. Rows and columns don’t share the same namespace, so you
can reuse names like these in the two contexts.

Second is the percentage value for the content row track. This
is calculated with respect to the height of the grid container;
thus, a container 500 pixels tall would yield a content row
that’s 400 pixels tall (because the percentage value of this row is
80%). Doing this generally requires that you know ahead of

 }

time how tall the grid container will be, which won’t always be
the case.

You might think we could just say 100% and have it fill out the
space, but that doesn’t work, as Figure 12-10 illustrates: the
content row track will be as tall as the grid container itself,
thus pushing the footer row track out of the container
altogether:

#grid {display: grid;
 grid-template-columns:
 [start col-a] 200px [col-b] 50% [col-c] 100px
 grid-template-rows:
 [start masthead] 3em [content] 100% [footer]
 }

Figure 12-10. Exceeding the grid container

One way (not necessarily the best way) to handle this scenario
is to minmax the row’s value, telling the browser that you want
the row no shorter than one amount and no taller than another,
leaving the browser to fill in the exact value. This is done with
the minmax(a,b) pattern, where a is the minimum size and b
is the maximum size:

#grid {display: grid;
 grid-template-columns:
 [start col-a] 200px [col-b] 50% [col-c] 100px
 grid-template-rows:

[start masthead] 3em [content] minmax(3em 100

This code indicates that the content row should never be
shorter than 3 ems tall, and never taller than the grid container
itself. This allows the browser to bring up the size until it’s tall
enough to fit the space left over from the masthead and
footer tracks, and no more. It also allows the browser to make
it shorter than that, as long as it’s not shorter than 3em , so this
is not a guaranteed result. Figure 12-11 shows one possible
outcome of this approach.

Figure 12-11. Adapting to the grid container

In like fashion, with the same caveats, minmax() could have
been used to help the col-b column fill out the space across
the grid container. The thing to remember with minmax() is
that if the max is smaller than the min, the max value is thrown

 [start masthead] 3em [content] minmax(3em,100
 }

out and the min value is used as a fixed-width track length.
Thus, minmax(100px, 2em) would resolve to 100px for any
font-size value smaller than 50px .

If the vagueness of minmax() ’s behavior unsettles you, CSS
offers alternatives to this scenario. We could also have used the
calc() value pattern to come up with a track’s height (or
width). For example:

That would yield a content row exactly as tall as the grid
container minus the sum of the masthead and footer heights,
as we saw in the previous figure.

That works as far as it goes, but is a somewhat fragile solution,
since any changes to the masthead or footer heights will also
require an adjustment of the calculation. It also becomes a lot
more difficult (or impossible) if you want more than one grid
track to flex in this fashion. As it happens, CSS has much more
robust ways to deal with this sort of situation, as you’ll see next.

Using Flexible Grid Tracks

 grid-template-rows:
 [start masthead] 3em [content] calc(100%-5em)

Thus far, all our grid tracks have been inflexible—their size
determined by a length measure or the grid container’s
dimensions, but unaffected by any other considerations.
Flexible grid tracks, by contrast, can be based on the amount of
space in the grid container not consumed by inflexible tracks;
or, alternatively, can be based on the actual content of the
entire grid track.

Fractional units

If you want to divide up whatever space is available by a
certain fraction and distribute the fractions to various columns,
the fr unit is here for you. An fr is a flexible amount of space,
representing a fraction of the leftover space in a grid.

In the simplest case, you can divide up the whole container by
equal fractions. For example, if you want four columns, you
could write this:

grid-template-columns: 1fr 1fr 1fr 1fr;

In this very specific and limited case, that’s equivalent to saying
the following:

grid-template-columns: 25% 25% 25% 25%;

Figure 12-12 shows the result of either.

Figure 12-12. Dividing the container into four columns

This works because all of the grid container was “leftover
space,” so all of it is available to be divided up by the fr
lengths. We’ll get into how that plays out with nonflexible grid
tracks in just a bit.

Going back to the previous example, suppose we want to add a
fifth column and redistribute the column sizes so they’re all still
equal. If we used percentage values, we’d have to rewrite the
entire value to be five instances of 20% . With fr , though, we
can just add another 1fr to the value and have everything
done for us automatically:

grid-template-columns: 1fr 1fr 1fr 1fr 1fr;

The way fr units work is that all of the fr values are added
together, and all the leftover space in the grid is divided by that
total. Then each track gets the number of those fractions
indicated by its fr value.

In our first example, we had four 1fr values, so their 1 ’s were
added together to get a total of 4. The available space was then
divided by 4, and each column got one of those fourths. When
we added a fifth 1fr , the space was divided by 5, and each
column got one of those fifths.

You are not required to always use 1 with your fr units!
Suppose you want to divide up a space into three columns, with
the middle column twice as wide as the other two. The code
would look like this:

grid-template-columns: 1fr 2fr 1fr;

Again, these values are added up to get 4, and then we divide
that 4 by 1 (representing the whole), so the base fr in this case
is 0.25 . The first and third tracks are thus 25% the width of the
container, whereas the middle column is half the container’s
width, because it’s 2fr , which is twice 0.25 , or 0.5 , or 50%.

You aren’t limited to integers, either. A recipe card for apple pie
could be laid out using these columns:

grid-template-columns: 1fr 3.14159fr 1fr;

We’ll leave the math on that one as an exercise for you. (Lucky
you! Just remember to start with 1 + 3.14159 + 1 , and you’ll
have a good head start.)

This is a convenient way to slice up a container, but there’s
more here than just replacing percentages with something
more intuitive. Fractional units really come into their own
when we have some fixed tracks and some flexible space.
Consider, for example, the following, which is illustrated in
Figure 12-13:

grid-template-columns: 15em 1fr 10%;

Figure 12-13. Giving the center column whatever’s available

Here, the browser assigns the first and third tracks to their
inflexible widths, and then gives whatever is left in the grid
container to the center track. For a 1,000-pixel-wide grid
container whose font-size is the usual browser default of
16px , the first column will be 240 pixels wide and the third will
be 100 pixels wide. That totals 340 pixels, leaving 660 pixels that
aren’t assigned to the fixed tracks. The fractional units total 1,
so 660 is divided by 1, yielding 660 pixels, all of which are given
to the single 1fr track. If the grid container’s width is
increased to 1,400 pixels, the third column will be 140 pixels
wide and the center column 1,020 pixels wide.

Just like that, we have a mixture of fixed and flexible columns.
We can keep this going, splitting up any flexible space into as
many fractions as we like. Consider this:

In this case, the columns will be sized as shown in Figure 12-14.

width: 100em; grid-template-columns: 15em 4.5fr 3fr 1

Figure 12-14. Flexible column sizing

The widths of the columns will be, from left to right: 15, 45, 30,
and 10 ems. The first column gets its fixed width of 15em . The
last column is 10% of 100 em, which is 10 em. That leaves 75
ems to distribute among the flexible columns. The two added
together total 7.5 fr. For the wider column, 4.5 ÷ 7.5 equals 0.6,
and that times 75 ems equals 45 ems. Similarly, 3 ÷ 7.5 = 0.4, and
that times 75 ems equals 30 ems.

Yes, admittedly, we put a thumb on the scales for that example:
the fr total and width value were engineered to yield nice,
round numbers for the various columns. This was done purely
to aid understanding. If you want to work through the process
with less tidy numbers, consider using 92.5em or 1234px for
the width value in the previous example.

If you want to define a minimum or maximum size for a given
track, minmax() can be quite useful. To extend the previous

example, suppose the third column should never be less than 5
ems wide, no matter what. The CSS would then be as follows:

Now the layout will have two flexible columns at its middle,
down to the point that the third column reaches 5em wide.
Below that point, the layout will have three inflexible columns
(15em , 5em , and 10% wide, respectively) and a single flexible
column that will get all the leftover space, if there is any. Once
you run the math, it turns out that up to 30.5556em wide, the
grid will have one flexible column. Above that width, there will
be two flexible columns.

You might think this works the other way—for example, if you
wanted to make a column track flexible up to a certain point,
and then become fixed after, you would declare a minimum fr
value. This won’t work, sadly, because fr units are not allowed
in the min position of a minmax() expression. So any fr value
provided as a minimum will invalidate the entire declaration.

Speaking of setting to 0, let’s look at a minimum value explicitly
set to 0 , like this:

grid-template-columns: 15em 4.5fr minmax(5em,3fr) 10%

grid-template-columns: 15em 1fr minmax(0,500px) 10%;

Figure 12-15 illustrates the narrowest grid width at which the
third column can remain 500 pixels wide. Any narrower, and
the minmax -ed column will be narrower than 500 pixels. Any
wider, and the second column, the fr column, will grow
beyond zero width while the third column stays at 500 pixels
wide.

Figure 12-15. Minmaxed column sizing

If you look closely, you’ll see the 1fr label next to the boundary
between the 15em and minmax(0,500px) columns. That’s there
because the 1fr is placed with its left edge on the second-
column grid line, and has no width, because there is no space
left to flex. Similarly, the minmax is placed on the third-column
grid line. It’s just that, in this specific situation, the second- and
third-column grid lines are in the same place (which is why the
1fr column has zero width).

g p (, p) ;

If you ever run into a case where the minimum value is greater
than the maximum value, the whole thing is replaced with the
minimum value. Thus, minmax(500px,200px) would be
treated as a simple 500px . You probably wouldn’t do this so
obviously, but this feature is useful when mixing things like
percentages and fractions. Thus, you could have a column that’s
minmax(10%,1fr) that would be flexible down to the point
where the flexible column was less than 10% of the grid
container’s size, at which point it would stick at 10% .

Fractional units and minmaxes are usable on rows just as easily
as columns; it’s just that rows are rarely sized in this way. You
could easily imagine setting up a layout in which the masthead
and footer are fixed tracks, while the content is flexible down to
a certain point. That might look something like this:

grid-template-rows: 3em minmax(5em,1fr) 2em;

That works OK, but it’s a lot more likely that you’ll want to size
that row by the height of its content, not some fraction of the
grid container’s height. The next section shows exactly how to
make that happen.

Content-aware tracks

It’s one thing to set up grid tracks that take up fractions of the
space available to them, or that occupy fixed amounts of space.
But what if you want to line up a bunch of pieces of a page and
can’t guarantee how wide or tall they might get? This is where
min-content and max-content come in. (See Chapter 6 for a
detailed explanation of these keywords.)

What’s so powerful about using these sizing keywords in CSS
Grid is that they apply to the entire grid track they define. For
example, if you size a column to be max-content , the entire
column track will be as wide as the widest content within it.
This is easiest to illustrate with a grid of images (12, in this case)
with the grid declared as follows and shown in Figure 12-16:

#gallery {display: grid;
 grid-template-columns: max-content max-content ma
 grid-template-rows: max-content max-content max-c

Figure 12-16. Sizing grid tracks by content

Looking at the columns, we can see that each column track is as
wide as the widest image within that track. Where a bunch of
portrait images happen to line up, the column is more narrow;
where a landscape image shows up, the column is made wide
enough to fit it. The same thing happens with the rows. Each
row is as tall as the tallest image within it, so if a row happens
to have all short images, the row is also short.

The advantage here is that this works for any sort of content, no
matter what’s in there. Say we add captions to the photos. All of

the columns and rows will resize themselves as needed to
handle both text and images, as shown in Figure 12-17.

This isn’t a full-fledged design—the images are out of place, and
there’s no attempt to constrain the caption widths. In fact, that’s
exactly what we should expect from max-content values for
the column widths. Since it means “make this column wide
enough to hold all its content,” that’s what we get.

Figure 12-17. Sizing grid tracks around mixed content

What’s important to realize is that this will hold even if the grid
tracks have to spill out of the grid container. Even if we’d
assigned something like width: 250px to the grid container,
the images and captions would be laid out just the same. That’s
why things like max-content tend to appear in minmax()
statements. Consider the following, where grids with and

without minmax() appear side by side. In both cases, the grid
container is represented by a shaded background (see
Figure 12-18):

Figure 12-18. Sizing grid tracks with and without minmax()

In the first instance, the grid items completely contain their
contents, but they spill out of the grid container. In the second,
minmax() directs the browser to keep the columns within the
range of 0 and max-content , so they’ll all be fitted into the

#g1 {display: grid;
 grid-template-columns: max-content max-content ma
 }
#g2 {display: grid;
 grid-template-columns: minmax(0,max-content) minm
 minmax(0,max-content) minmax(0,max-content)
 }

grid container if possible. A variant would be to declare
minmax(min-content, max-content) , which can lead to a
slightly different result than the 0, max-content approach.

The reason that some images are overflowing their cells in the
second example is that the tracks have been fitted into the grid
container according to minmax(0,max-content) . They can’t
reach max-content in every track, but they can get as close as
possible while all still fitting into the grid container. Where the
contents are wider than the track, they just stick out of it,
overlapping other tracks. This is standard grid behavior.

If you’re wondering what happens if you min-content both the
columns and the rows, it’s pretty much the same as applying
min-content to the columns and leaving the rows alone. This
happens because the grid specification directs browsers to
resolve column sizing first, and row sizing after that.

One more keyword you can use with grid track sizing is auto ,
which also happens to be the default value for any grid track’s
width. As a minimum, it’s treated as the minimum size for the
grid item, as defined by min-width or min-height . As a
maximum, it’s treated the same as max-content . You might
think this means it can be used only in minmax() statements,
but this is not the case. You can use it anywhere, and it will take

on either a minimum or maximum role. Which one it takes on
depends on the other track values around it, in ways that are
frankly too complicated to get into here. As with so many other
aspects of CSS, using auto is essentially letting the browser do
what it wants. Sometimes that’s fine, but in general you’ll
probably want to avoid it.

NOTE

There is a caveat to that last statement: auto values allow grid items to be resized by
the align-content and justify-content properties, a topic we’ll discuss in
“Setting Alignment in Grids”. Since auto values are the only track-sizing values that
permit this, there may be very good reasons to use auto after all.

Fitting Track Contents

In addition to the min-content and max-content keywords, a
fit-content() function allows you to more compactly express
certain types of sizing patterns. It’s a bit complicated to
decipher, but the effort is worth it:

The fit-content() function accepts a < length > or a
< percentage > as its argument, like this:

#grid {display: grid; grid-template-columns: 1fr fit
#grid2 {display: grid; grid-template-columns: 2fr fit

Before we explore what that means, let’s ponder the pseudo-
formula given by the specification:

fit-content(argument) => min(max-content, max(min-content,
argument))

This means, essentially, “figure out which is greater, the min-
content sizing or the supplied argument, and then take that
result and choose whichever is smaller, that result or the max-
content size.” Which is probably confusing!.

We feel that a better way of phrasing it is “ fit-
content(argument) is equivalent to minmax(min-
content,max-content) , except that the value given as an
argument sets an upper limit, similar to max-width or max-
height .” Let’s consider this example:

The argument here is 50ch , or the same width as 50 zero (0)
characters side by side. So we’re setting up a single column
that’s having its content fit to that measure.

#example {display: grid; grid-template-columns: fit-c

For the initial case, assume the content is only 29 characters
long, measuring 29 ch (because it’s in a monospace font). That
means the value of max-content is 29ch , and the column will
be only that wide, because it minimizes to that measure— 29ch

is smaller than whatever the maximum of 50ch and min-
content turns out to be.

Now, let’s assume a bunch of text content is added so that there
are 256 characters, thus measuring 256ch in width (without
any line wrapping). That means max-content evaluates to
256ch . This is well beyond the 50ch argument, so the column
is constrained to be the larger of min-content and 50ch ,
which is 50ch .

As further illustration, consider the results of the following, as
shown in Figure 12-19:

#thefollowing {
 display: grid;
 grid-template-columns:
 fit-content(50ch) fit-content(50ch) fit-conte
 font-family: monospace;}

Figure 12-19. Sizing grid tracks with fit-content()

Notice the first column is narrower than the other two. Its 29ch
content minimizes to that size. The other two columns have
more content than will fit into 50ch , so they line-wrap, because
their width has been limited to 50ch .

Now let’s consider what happens if an image is added to the
second column. We’ll make it 500px wide, which happens to be
wider than 50ch in this instance. For that column, the
maximum of min-content and 50ch is determined. As we
said, the larger value there is min-content , which is to say
500px (the width of the image). Then the minimum of 500px
and max-content is determined. The text, rendered as a single
line, would go on past 500px , so the minimum is 500px . Thus,
the second column is now 500 pixels wide. This is depicted in
Figure 12-20.

Figure 12-20. Fitting to wide content

If you compare Figures 12-19 to 12-20, you’ll see that the text in
the second column wraps at a different point, due to the change
in column width. But also compare the text in the third column.
It, too, has different line wraps.

That happens because after the first and second columns are
sized, the third column has a bit less than 50ch of space in
which to be sized. The fit-content(50ch) function still does
its thing, but here, it does so within the space available to it.
Remember, the 50ch argument is an upper bound, not a fixed
size.

This is one of the great advantages of fit-content() over the
less flexible minmax() . It allows you to shrink tracks to their
minimum content-size when there isn’t much content, while
still setting an upper bound on the track size when there’s a lot
of content.

You may have been wondering about the repetitive grid
template values in previous examples, and what happens if you
need more than three or four grid tracks. Will you have to write
out every single track width individually? Indeed not, as you’ll
see in the next section.

Repeating Grid Tracks

If you want to set up a bunch of grid tracks of the same size, you
probably don’t want to have to type out every single one of
them. Fortunately, repeat() is here to make sure you don’t
have to.

Let’s say we want to set up a column grid line every 5 ems and
have 10 column tracks. Here’s how to do that:

#grid {display: grid;
 grid-template-columns: repeat(10, 5em);}

That’s it. Done. Ten column tracks, each one 5em wide, for a
total of 50 ems of column tracks. It sure beats typing 5em 10
times!

Any track-sizing value can be used in a repeat, from min-
content and max-content to fr values to auto , and so on,
and you can put together more than one sizing value. Suppose
we want to define a column structure such that there’s a 2em
track, then a 1fr track, and then another 1fr track—and,
furthermore, we want to repeat that pattern three times. Here’s
how to do that, with the result shown in Figure 12-21:

#grid {display: grid;
 grid-template-columns: repeat(3, 2em 1fr 1fr);}

Figure 12-21. Repeating a track pattern

Notice that the last-column track is a 1fr track, whereas the
first-column track is 2em wide. This is an effect of the way the
repeat() was written. It’s easy to add another 2em track at the
end, in order to balance things out, by adding a 2em after the
repeat() expression:

This highlights the fact that repeat can be combined with any
other track-sizing values—even other repeats—in the
construction of a grid. The one thing you can’t do is nest a
repeat inside another repeat.

Other than that, just about anything goes within a repeat()
value. Here’s an example taken straight from the grid
specification:

#grid {display: grid;
 grid-template-columns: repeat(3, 2em 1fr 1fr) 2em

In this case, there are four repetitions of a 10-pixel track, a
named grid line, a 250-pixel track, and then another named grid
line. Then, after the four repetitions, a final 10-pixel column
track. Yes, that means there will be four column grid lines
named col-start , and another four named col-end , as
shown in Figure 12-22. This is acceptable; grid-line names are
not required to be unique.

Figure 12-22. Repeated columns with named grid lines

One thing to remember, if you’re going to repeat named lines, is
that if you place two named lines next to each other, they’ll be
merged into a single, double-named grid line. In other words,
the following two declarations are equivalent:

#grid {
 display: grid;
 grid-template-columns: repeat(4, 10px [col-start]

id t l t t(3 [t] 5 [b tt])

NOTE

If you’re concerned about having the same name applied to multiple grid lines, don’t
be: there’s nothing preventing it, and it can even be helpful in some cases. We’ll
explore ways to handle such situations in “Using Column and Row Lines”.

Autofilling tracks

CSS provides a way to set up a simple pattern and repeat it until
the grid container is filled. This doesn’t have quite the same
complexity as regular repeat() —at least not yet—but it can
still be pretty handy.

For example, suppose we want to have the previous row
pattern repeat as many times as the grid container will
comfortably accept:

That will define a row line every 5 ems until there’s no more
room. Thus, for a grid container that’s 11 ems tall, the following
is equivalent:

grid-template-rows: repeat(3, [top] 5em [bottom]);
grid-template-rows: [top] 5em [bottom top] 5em [top b

grid-template-rows: repeat(auto-fill, [top] 5em [bott

If the grid container’s height is increased past 15 ems, but is less
than 20 ems, then this is an equivalent declaration:

See Figure 12-23 for examples of the autofilled rows at three
grid container heights.

Figure 12-23. Autofilling rows at three heights

One limitation with auto-repeating is that it can take only an
optional grid-line name, a fixed track size, and another optional
grid-line name. So [top] 5em [bottom] represents about the
maximum value pattern. You can drop the named lines and just
repeat 5em , or just drop one of the names.

grid-template-rows: [top] 5em [bottom top] 5em [botto

grid-template-rows: [top] 5em [bottom top] 5em [top b

It’s not possible to auto-repeat multiple fixed track sizes, nor
can you auto-repeat flexible track sizes. Similarly, you can’t use
intrinsic track sizes with auto-repeated tracks, so values such as
min-content and max-content can’t be put into an auto-
repeated pattern.

NOTE

You might wish you could auto-repeat multiple track sizes in order to define gutters
around your content columns. This is usually unnecessary because of the properties
row-gap and column-gap and their shorthand gap , which are covered in
Chapter 11 but also apply in CSS Grid.

Furthermore, you can have only one auto-repeat in a given
track template. Thus, the following would not be permissible:

However, you can combine fixed-repeat tracks with autofill
tracks. For example, you could start with three wide columns,
and then fill the rest of the grid container with narrow tracks
(assuming there’s space for them). That would look something
like this:

grid-template-columns: repeat(auto-fill, 4em) repeat(

grid-template-columns: repeat(3, 20em) repeat(auto-fi

You can flip that around too:

That works because the grid layout algorithm assigns space to
the fixed tracks first, and then fills up whatever space is left
with auto-repeated tracks. The end result is to have one or more
autofilled 2-em tracks, and then three 20-em tracks. Figure 12-
24 shows two examples.

Figure 12-24. Autofilling columns next to fixed columns

With auto-fill , you will always get at least one repetition of
the track template, even if it won’t fit into the grid container for
some reason. You’ll also get as many tracks as will fit, even if
some of the tracks don’t have content. As an example, suppose
you set up an autofill that places five columns, but only the first

grid-template-columns: repeat(auto-fill, 2em) repeat(

three actually end up with grid items in them. The other two
would remain in place, holding open layout space.

If you use auto-fit , on the other hand, tracks that don’t
contain any grid items will be compressed to a width of zero,
though they (and their associated grid lines) remain part of the
grid. Otherwise, auto-fit acts the same as auto-fill .
Suppose the following:

grid-template-columns: repeat(auto-fit, 20em);

If the grid container has room for five column tracks (i.e., it’s
more than 100 ems wide), but two tracks don’t have any grid
items to go into them, those empty grid tracks will be dropped,
leaving the three column tracks that do contain grid items. The
leftover space is handled in accordance with the values of
align-content and justify-content (discussed in “Setting
Alignment in Grids”). A simple comparison of auto-fill and
auto-fit is shown in Figure 12-25, where the numbers in the
colored boxes indicate the grid-column number to which
they’ve been attached.

Figure 12-25. Using auto-fill versus auto-fit

Defining Grid Areas

Maybe you’d rather just “draw a picture” of your grid—both
because it’s fun to do and because the picture can serve as self-
documenting code. It turns out you can more or less do exactly
that with the grid-template-areas property.

GRID-TEMPLATE-AREAS

Values none | < string >

Initial value none

Applies to Grid containers

Computed value As declared

Inherited No

Animatable No

We could go through a wordy description of how this works,
but it’s a lot more fun to just show it. The following rule has the
result shown in Figure 12-26:

#grid {display: grid;
 grid-template-areas:
 "h h h h"
 "l c c r"
 "l f f f";}

Figure 12-26. A simple set of grid areas

That’s right: the letters in the string values are used to define
how areas of the grid are shaped. Really! And you aren’t even
restricted to single letters! For example, we could expand the
previous example like so:

#grid {display: grid;
 grid-template-areas:
 "header header header header"
 "leftside content content rightside"
 "leftside footer footer footer";}

The grid layout is the same as that shown in Figure 12-26,
though the name of each area would be different (e.g., footer
instead of f).

In defining template areas, the whitespace is collapsed, so you
can use it (as was done in the previous example) to visually line
up columns of names in the value of grid-template-areas .
You can line up the names with spaces or tabs, whichever will
annoy your coworkers the most. Or you can just use a single

space to separate each identifier, and not worry about the
names lining up with one another. You don’t even have to line-
break between strings; the following works just as well as a
pretty-printed version:

What you can’t do is merge those separate strings into a single
string and have it mean the same thing. Every new string (as
delimited by the quote marks) defines a new row in the grid.
Thus the previous example, like the examples before it, defines
three rows. Say we merge them all into a single string, like so:

grid-template-areas:
 "h h h h
 l c c r
 l f f f";

Then we’d have a single row of 12 columns, starting with the
four-column area h and ending with the three-column area f .
The line breaks aren’t significant in any way, except as
whitespace that separates one identifier from another.

grid-template-areas: "h h h h" "l c c r" "l f f f";

If you look at these values closely, you may come to realize that
each individual identifier represents a grid cell. Let’s bring back
our first example from this section, and consider the result
shown in Figure 12-27, which uses Firefox’s Grid Inspector to
label each cell:

#grid {display: grid;
 grid-template-areas:
 "h h h h"
 "l c c r"
 "l f f f";}

Figure 12-27. Grid cells with their grid area identifiers

This is exactly the same layout result as in Figure 12-26, but
here, we’ve shown how each grid identifier in the grid-
template-areas value corresponds to a grid cell. Once all the
cells are identified, the browser merges any adjacent cells with
the same name into a single area that encloses all of them—as
long as they describe a rectangular shape! If you try to set up

more complicated areas, the entire template is invalid. Thus,
the following would result in no grid areas being defined:

#grid {display: grid;
 grid-template-areas:
 "h h h h"
 "l c c r"
 "l l f f";}

See how l outlines an L shape? That humble change causes the
entire grid-template-areas value to be dropped as invalid. A
future version of grid layout may allow for nonrectangular
shapes, but for now, this limitation exists.

If you want to define only some grid cells to be part of grid
areas but leave others unlabeled, you can use one or more .
characters to fill in for those unnamed cells. Let’s say you just
want to define some header, footer, and sidebar areas, and
leave the rest unnamed. That would look something like this,
with the result shown in Figure 12-28:

#grid {display: grid;
 grid-template-areas:
 "header header header header"
 "left right"
 "footer footer footer footer";}

Figure 12-28. A grid with some unnamed grid cells

The two cells in the center of the grid are not part of a named
area, having been represented in the template by null cell
tokens (the . identifiers). Where each of those ... sequences
appears, we could have used one or more null tokens—so left
. . right or left right would work just as well.

You can be as simple or creative with your cell names as you
like. If you want to call your header ronaldo and your footer
podiatrist , go for it. You can even use any Unicode character
above codepoint U+0080, so ConHugeCo©®™ and åwësømë are
completely valid area identifiers…as are emoji! Now, to size
the grid tracks created by these areas, we bring in our old
friends grid-template-columns and grid-template-rows .
Let’s add both to the previous example, with the result shown in
Figure 12-29:

#grid {display: grid;
 grid-template-areas:
 "header header header header"
 "left right"

 "footer footer footer footer";
 grid-template-columns: 1fr 20em 20em 1fr;
 grid-template-rows: 40px 10em 3em;}

Figure 12-29. Named areas and sized tracks

Thus, the columns and rows created by naming the grid areas
are given track sizes. If we give more track sizes than there are
area tracks, that will add more tracks past the named areas.
Therefore, the following CSS will lead to the result shown in
Figure 12-30:

#grid {display: grid;
 grid-template-areas:
 "header header header header"
 "left right"
 "footer footer footer footer";
 grid-template-columns: 1fr 20em 20em 1fr 1fr;
 grid-template-rows: 40px 10em 3em 20px;}

Figure 12-30. Adding more tracks beyond the named areas

So, given that we’re naming areas, how about mixing in some
named grid lines? As it happens, we already have: naming a
grid area automatically adds names to the grid lines at its start
and end. For the header area, there’s an implicit header-
start name on its first-column grid line and its first-row grid
line, and header-end for its second-column and -row grid lines.
For the footer area, the footer-start and footer-end
names were automatically assigned to its grid lines.

Grid lines extend throughout the whole grid area, so a lot of
these names are coincident. Figure 12-31 shows the naming of
the lines created by the following template:

 grid-template-areas:
 "header header header header"
 "left right"
 "footer footer footer footer";

Figure 12-31. Implicit grid-line names made explicit

Now let’s mix it up even more by adding a couple of explicit
grid-line names to our CSS. Given the following rules, the first-
column grid line in the grid would add the name begin , and
the second-row grid line in the grid would add the name
content :

#grid {display: grid;
 grid-template-areas:

 "header header header header"
 "left right"
 "footer footer footer footer";
 grid-template-columns: [begin] 1fr 20em 20em 1fr
 grid-template-rows: 40px [content] 1fr 3em 20px;}

Again: those grid-line names are added to the implicit grid-line
names created by the named areas. Grid-line names never
replace other grid-line names. Instead, they just keep piling up.

Even more interesting, this implicit-name mechanism runs in
reverse. Suppose you don’t use grid-template-areas at all,
but instead set up some named grid lines like so, as illustrated
in Figure 12-32:

 grid-template-columns:
 [header-start footer-start] 1fr
 [content-start] 1fr [content-end] 1fr
 [header-end footer-end];
 grid-template-rows:
 [header-start] 3em
 [header-end content-start] 1fr
 [content-end footer-start] 3em
 [footer-end];

Figure 12-32. Implicit grid-area names made explicit

Because the grid lines use the form of name-start / name-end ,
the grid areas they define are implicitly named. To be frank, it’s
clumsier than doing it the other way, but the capability is there
in case you ever want it.

Bear in mind that you don’t need all four grid lines to be named
in order to create a named grid area, though you probably do
need them all to create a named grid area where you want it to
be. Consider the following example:

This will still create a grid area named content . It’s just that
the named area will be placed into a new row after all the
defined rows. What’s odd is that an extra, empty row will

 grid-template-columns: 1fr [content-start] 1fr [c
 grid-template-rows: 3em 1fr 3em;

appear after the defined rows but before the row containing
content . This has been confirmed to be the intended behavior.
Thus, if you try to create a named area by naming the grid lines
and miss one or more of them, your named area will effectively
hang off to one side of the grid instead of being a part of the
overall grid structure.

So, again, if you want to create named grid areas, you should
probably stick to explicitly naming grid areas and let the
start- and end- grid-line names be created implicitly, as
opposed to the other way around.

Placing Elements in the Grid

Believe it or not, we’ve gotten this far without talking about
how grid items are actually placed in a grid, once they’ve been
defined.

Using Column and Row Lines

There are a couple of ways to go about placing grid items,
depending on whether you want to refer to grid lines or grid
areas. We’ll start with four simple properties that attach an
element to grid lines.

GRID-ROW-START, GRID-ROW-END, GRID-COLUMN-START, GRID-COLUMN-
END

Value < grid-line >

Initial
value

auto

Applies to Grid items and absolutely positioned
elements, if their containing block is a
grid container

Computed
value

As declared

Inherited No

Animatable No

< grid-line >
auto | < custom-ident > | [< integer > && < custom-
ident >?] | [span && [< integer > ‖ < custom-ident >]]

These properties let you say, “I want the edge of the element to
be attached to grid line such-and-so.” As with so much of CSS
Grid, it’s a lot easier to show than to describe, so ponder the
following styles and their result (see Figure 12-33):

.grid {display: grid; width: 50em;
 grid-template-rows: repeat(5, 5em);
 grid-template-columns: repeat(10, 5em);}
.one {
 grid-row-start: 2; grid-row-end: 4;
 grid-column-start: 2; grid-column-end: 4;}
.two {
 grid-row-start: 1; grid-row-end: 3;
 grid-column-start: 5; grid-column-end: 10;}
.three {
 grid-row-start: 4;
 grid-column-start: 6;}

Figure 12-33. Attaching elements to grid lines

Here, we’re using grid-line numbers to say where and how the
elements should be placed within the grid. Column numbers
count from left to right, and row numbers from top to bottom. If
you omit ending grid lines, as was the case for .three , then the
next grid lines in sequence are used for the end lines.

Thus, the rule for .three in the previous example is exactly
equivalent to this:

.three {
 grid-row-start: 4; grid-row-end: 5;
 grid-column-start: 6; grid-column-end: 7;}

There’s another way to say that same thing, as it happens: you
could replace the ending values with span 1 , or even just plain
span , like this:

.three {
 grid-row-start: 4; grid-row-end: span 1;
 grid-column-start: 6; grid-column-end: span;}

If you supply span with a number, you’re saying, “Span across
this many grid tracks.” So we can rewrite our earlier example
like this and get exactly the same result:

#grid {display: grid;
 grid-template-rows: repeat(5, 5em);
 grid-template-columns: repeat(10, 5em);}
.one {
 grid-row-start: 2; grid-row-end: span 2;
 grid-column-start: 2; grid-column-end: span 2;}
.two {
 grid-row-start: 1; grid-row-end: span 2;
 grid-column-start: 5; grid-column-end: span 5;}
.three {
 grid-row-start: 4; grid-row-end: span 1;
 grid-column-start: 6; grid-column-end: span;}

If you leave out a number for span , it’s set to be 1 . You can’t
use 0 or negative numbers for span ; only positive integers.

An interesting feature of span is that you can use it for both
ending and starting grid lines. The precise behavior of span is
that it counts grid lines in the direction “away” from the grid
line where it starts. In other words, if you define a start grid
line and set the ending grid line to be a span value, it will
search toward the end of the grid. Conversely, if you define an
ending grid line and make the start line a span value, it will
search toward the start of the grid.

That means the following rules will have the result shown in
Figure 12-34 (the column and row numbers were added for
clarity):

#grid {display: grid;
 grid-rows: repeat(4, 2em); grid-columns: repeat(5
.box1 {grid-row: 1; grid-column-start: 3; grid-c
.box2 {grid-row: 2; grid-column-start: span 2; grid-c
.box3 {grid-row: 3; grid-column-start: 1; grid-c
.box4 {grid-row: 4; grid-column-start: span 1; grid-c

Figure 12-34. Spanning grid lines

In contrast to span numbering, you aren’t restricted to positive
integers for your actual grid-line values. Negative numbers will
count backward from the end of explicitly defined grid lines.
Thus, to place an element into the bottom-right grid cell of a
defined grid, regardless of how many columns or rows it might
have, you can just say this:

grid-column-start: -1;
grid-row-start: -1;

Note that this doesn’t apply to any implicit grid tracks, a
concept we’ll get to in a bit, but only to the grid lines you
explicitly define via one of the grid-template-* properties
(e.g., grid-template-rows).

We aren’t restricted to grid-line numbers, as it happens. If there
are named grid lines, we can refer to those instead of (or in
conjunction with) numbers. If you have multiple instances of a

grid-line name, you can use numbers to identify which instance
of the grid-line name you’re talking about. Thus, to start from
the fourth instance of a row grid named mast-slice , you can
say mast-slice 4 . Take a look at the following, illustrated in
Figure 12-35, for an idea of how this works:

#grid {display: grid;
 grid-template-rows: repeat(5, [R] 4em);
 grid-template-columns: 2em repeat(5, [col-A] 5em
.one {
 grid-row-start: R 2; grid-row-end: 5;
 grid-column-start: col-B; grid-column-end: span

.two {
 grid-row-start: R; grid-row-end: span R
 grid-column-start: col-A 3; grid-column-end: spa
.three {
 grid-row-start: 9;
 grid-column-start: col-A -2;}

Figure 12-35. Attaching elements to named grid lines

Notice how span changes when we add a name: specifying
span 2 col-A causes the grid item to span from its starting
point (the third col-A) across another col-A and end at the
col-A after that. This means the grid item actually spans four
column tracks, since col-A appears on every other column
grid line.

Again, negative numbers count backward from the end of a
sequence, so col-A -2 gets us the second-to-last instance of a
grid line named col-A . Because no end-line values are
declared for .three , they’re both set to span 1 . That means
the following is exactly equivalent to the .three in the
previous example:

.three {
 grid-row-start: 9; grid-row-end: span 1;

There’s an alternative way to use names with named grid lines
—specifically, the named grid lines that are implicitly created
by grid areas. For example, consider the following styles,
illustrated in Figure 12-36:

 grid-column-start: col-A -2; grid-row-end: span 1

grid-template-areas:
 "header header header header"
 "leftside content content rightside"

 "leftside footer footer footer";
#masthead {grid-row-start: header;
 grid-column-start: header; grid-row-end: head
#sidebar {grid-row-start: 2; grid-row-end: 4;
 grid-column-start: leftside / span 1;}
#main {grid-row-start: content; grid-row-end: content
 grid-column-start: content;}
#navbar {grid-row-start: rightside; grd-row-end: 3;
 grid-column-start: rightside;}
#footer {grid-row-start: 3; grid-row-end: span 1;
 grid-column-start: footer; grid-row-end: foot

Figure 12-36. Another way of attaching elements to named grid lines

If you supply a custom identifier (i.e., a name you defined), the
browser looks for a grid line with that name plus either -start
or -end added on, depending on whether you’re assigning a
start line or an end line. Thus, the following are equivalent:

This works because, as we mentioned with grid-template-
areas , explicitly creating a grid area implicitly creates the
named -start and -end grid lines that surround it.

The final value possibility, auto , is kind of interesting.
According to the Grid Layout specification, if one of the grid-
line start/end properties is set to auto , that indicates “auto-
placement, an automatic span, or a default span of one.” In

grid-column-start: header; grid-column-end: he
grid-column-start: header-start; grid-column-end: he

practice, this tends to mean that the grid line that gets picked is
governed by the grid flow, a concept we have yet to cover (but
will soon!). For a start line, auto usually means that the next
available column or row line will be used. For an end line,
auto usually means a one-cell span. In both cases, the word
usually is used intentionally: as with any automatic mechanism,
there are no absolutes.

Using Row and Column Shorthands

Two shorthand properties allow you to more compactly attach
an element to grid lines.

GRID-ROW, GRID-COLUMN

Values < grid-line > [/ < grid-line >]?

Initial
value

auto

Applies to Grid items and absolutely positioned
elements, if their containing block is a
grid container

Computed
value

As declared

Inherited No

Animatable No

The primary benefit of these properties is that they make it a lot
simpler to declare the start and end grid lines to be used for
laying out a grid item. For example:

#grid {display: grid;

That’s a whole lot easier to read than having each start and end
value in its own property, honestly. Other than being more
compact, the behavior of these properties is more or less what
you’d expect. If you have two bits separated by a forward slash
(/), the first part defines the starting grid line, and the second
part defines the ending grid line.

If you have only one value with no forward slash, it defines the
starting grid line. The ending grid line depends on what you
said for the starting line. If you supply a name for the starting
grid line, the ending grid line is given that same name. If a

 grid-template-rows: repeat(10, [R] 1.5em);
 grid-template-columns: 2em repeat(5, [col-A] 5em
.one {
 grid-row: R 3 / 7;
 grid-column: col-B / span 2;}
.two {
 grid-row: R / span R 2;
 grid-column: col-A 3 / span 2 col-A;}
.three {

 grid-row: 9;
 grid-column: col-A -2;}

single number is given, the second number (the end line) is set
to auto . That means the following pairs are equivalent:

grid-row: 2;
grid-row: 2 / auto;

grid-column: header;
grid-column: header / header;

A subtle behavior built into the handling of grid-line names in
grid-row and grid-column pertains to implicitly named grid
lines. As you may recall, defining a named grid area creates -
start and -end grid lines. That is, given a grid area with a
name of footer , there are implicitly created footer-start
grid lines to its top and left, and footer-end grid lines to its
bottom and right.

In that case, if you refer to those grid lines by the area’s name,
the element will still be placed properly. Thus, the following
styles have the result shown in Figure 12-37:

#grid {display: grid;
 grid-template-areas:
 "header header"
 "sidebar content"
 "footer footer";

Figure 12-37. Attaching to implicit grid lines via grid-area names

You can always explicitly refer to the implicitly named grid
lines, but if you just refer to the grid area’s name, things still
work out. If you refer to a grid-line name that doesn’t
correspond to a grid area, it falls back to the behavior discussed
previously. In detail, it’s the same as saying line-name 1 , so
the following two are equivalent:

grid-column: jane / doe;
grid-column: jane 1 / doe 1;

This is why it’s risky to name grid lines the same as grid areas.
Consider the following:

 grid-template-rows: auto 1fr auto;
 grid-template-columns: 25% 75%;}
#header {grid-row: header / header; grid-column: head
#footer {grid-row: footer; grid-column: footer-start

 grid-template-areas:

This explicitly sets grid lines named footer above the
“footer” row and below the “legal” row…and now there’s
trouble ahead. Suppose we add this:

#footer {grid-column: footer; grid-row: footer;}

For the column lines, there’s no problem. The name footer
gets expanded to footer / footer . The browser looks for a
grid area with that name and finds it, so it translates footer /
footer to footer-start / footer-end . The #footer element
is attached to those implicit grid lines.

For grid-row , everything starts out the same. The footer
name becomes footer / footer , which is translated to
footer-start / footer-end . But that means the #footer will
only be as tall as the “footer” row. It will not stretch to the
second explicitly named footer grid line below the “legal”
row, because the translation of footer to footer-end (due to

 "header header"
 "sidebar content"
 "footer footer"
 "legal legal";
 grid-template-rows: auto 1fr [footer] auto [foote
 grid-template-columns: 25% 75%;

the match between the grid-line name and the grid-area name)
takes precedence.

The upshot of all this: it’s generally a bad idea to use the same
name for grid areas and grid lines. You might be able to get
away with it in some scenarios, but you’re almost always better
off keeping your line and area names distinct, so as to avoid
tripping over name-resolution conflicts.

Working with Implicit Grid

Up to this point, we’ve concerned ourselves solely with
explicitly defined grids: we’ve talked about the row and column
tracks we define via properties like grid-template-columns ,
and how to attach grid items to the cells in those tracks.

But what happens if we try to place a grid item, or even just
part of a grid item, beyond that explicitly created grid? For
example, consider the following grid:

#grid {display: grid;
 grid-template-rows: 2em 2em;
 grid-template-columns: repeat(6, 4em);}

Two rows, six columns. Simple enough. But suppose we define a
grid item to sit in the first column and go from the first-row grid
line to the fourth:

.box1 {grid-column: 1; grid-row: 1 / 4;}

Now what? We have only two rows bounded by three grid lines,
and we’ve told the browser to go beyond that, from row line 1
to row line 4.

What happens is that another row line is created to handle the
situation. This grid line, and the new row track it creates, are
both part of the implicit grid. Here are a few examples of grid
items that create implicit grid lines (and tracks) and how
they’re laid out (see Figure 12-38):

.box1 {grid-column: 1; grid-row: 1 / 4;}

.box2 {grid-column: 2; grid-row: 3 / span 2;}

.box3 {grid-column: 3; grid-row: span 2 / 3;}

.box4 {grid-column: 4; grid-row: span 2 / 5;}

.box5 {grid-column: 5; grid-row: span 4 / 5;}

.box6 {grid-column: 6; grid-row: -1 / span 3;}

.box7 {grid-column: 7; grid-row: span 3 / -1;}

Figure 12-38. Creating implicit grid lines and tracks

A lot is going on there, so let’s break it down. First off, the
explicit grid is represented by the filled-in box behind the
various numbered boxes; all the dashed lines represent the
implicit grid.

What about those numbered boxes? The first, box1 , adds an
extra grid row line after the end of the explicit grid. The second,
box2 , starts on the last row-line of the explicit grid, and spans
forward two row-lines, so it adds yet another implicit row-line.
The third, box3 , ends on the last explicit row-line (line 3) and
spans back two lines, thus starting on the first explicit row-line.

Things really get interesting with box4 . It ends on the fifth row-
line, which is to say the second implicit row-line. It spans back
three row-lines—and yet, it still starts on the same row-line as

box3 . This happens because grid track spans have to start
counting within the explicit grid. Once they start, they can
continue into the implicit grid (as happened with box2), but
they cannot start counting within the implicit grid.

Thus, box4 ends on row-line 5, but its span starts with row-line
3 and counts back two lines (span 2) to arrive at row-line 1.
Similarly, box5 ends on row-line 5 and spans back four lines,
which means it starts on row-line –2. Remember: span counting
must start in the explicit grid. It doesn’t have to end there.

After those, box6 starts on the last explicit row-line (line 3), and
spans out to the sixth row-line—adding yet another implicit
row-line. The point of having it here is to show that negative
grid-line references are with respect to the explicit grid, and
count back from its end. They do not refer to negatively indexed
implicit lines that are placed before the start of the explicit grid.

If you want to start an element on an implicit grid line before
the explicit grid’s start, the way to do that is shown by box7 :
put its end line somewhere in the explicit grid, and span back
past the beginning of the explicit grid. And you may have
noticed: box7 occupies an implicit column track. The original
grid was set up to create six columns, which means seven
column-lines, the seventh being the end of the explicit grid.

When box7 was given grid-column: 7 , that was equivalent to
grid-column: 7 / span 1 (since a missing end line is always
assumed to be span 1). That necessitated the creation of an
implicit column-line in order to hold the grid item in the
implicit seventh column.

Now let’s take those principles and add named grid lines to the
mix. Consider the following, illustrated in Figure 12-39:

What you can see at work in several of these examples is what
happens with grid-line names in the implicit grid: every
implicitly created line has the name that’s being hunted. Take
box2 , for example. It’s given an end line of final , but there is
no line with that name. Thus the span-search goes to the end of
the explicit grid and, having not found the name it’s looking for,
creates a new grid line, to which it attaches the name final .

#grid {display: grid;
 grid-template-rows: [begin] 2em [middle] 2em [end
 grid-template-columns: repeat(5, 5em);}
.box1 {grid-column: 1; grid-row: 2 / span end 2;}
.box2 {grid-column: 2; grid-row: 2 / span final;}
.box3 {grid-column: 3; grid-row: 1 / span 3 middle;}
.box4 {grid-column: 4; grid-row: span begin 2 / end;}
.box5 {grid-column: 5; grid-row: span 2 middle / begi

(In Figure 12-39, the implicitly created line names are italicized
and faded out a bit.)

Figure 12-39. Named implicit grid lines and tracks

Similarly, box3 starts on the first explicit row-line, and then
needs to span three middle named lines. It searches forward
and finds one, then goes looking for the other two. Not finding
any, it attaches the name middle to the first implicit row-line,
and then does the same for the second implicit row-line. Thus, it
ends two implicit row-lines past the end of the explicit grid.

The same sort of thing happens with box4 and box5 , except
working backward from endpoints. You can see that box4 ends
with the end row-line (line 3), then spans back to the second

begin row-line it can find. This causes an implicit row-line to
be created before the first row-line, named begin . Finally,
box5 spans back from begin (the explicitly labeled begin) to
the second middle it can find. Since it can’t find any, it labels
two implicit row-line middle and ends at the one farthest from
where it started looking.

Handling Errors

We need to cover a few cases, as they fall under the general
umbrella of “what grids do when things go pear-shaped.” First,
what if you accidentally put the start line after the end line?
Say, something like this:

grid-row-start: 5;
grid-row-end: 2;

All that happens is probably what was meant in the first place:
the values are swapped. Thus, you end up with the following:

grid-row-start: 2;
grid-row-end: 5;

Second, what if both the start and the end lines are declared to
be spans of some variety? For example:

grid-column-start: span;
grid-column-end: span 3;

If this happens, the end value is dropped and replaced with
auto . That means you’d end up with this:

That would cause the grid item to have its ending edge placed
automatically, according to the current grid flow (a subject we’ll
soon explore), and the starting edge to be placed one grid line
earlier.

Third, what if the only thing directing placement of the grid
item is a named span? In other words, you’d have this:

grid-row-start: span footer;
grid-row-end: auto;

This is not permitted, so the span footer in this case is
replaced with span 1 .

Using Areas

grid-column-start: span; /* 'span' is equal to 'span
grid-column-end: auto;

Attaching by row lines and column lines is great, but what if
you could refer to a grid area with a single property? Behold:
grid-area .

GRID-AREA

Values < grid-line > [/ < grid-line >]{0,3}

Initial
value

See individual properties

Applies to Grid items and absolutely positioned
elements, if their containing block is a
grid container

Computed
value

As declared

Inherited No

Animatable No

Let’s start with a simple use of grid-area : assigning an
element to a previously defined grid area. For this, we’ll bring
back our old friend grid-template-areas , put it together with
grid-area and some markup, and see what magic results (as
shown in Figure 12-40):

#grid {display: grid;
 grid-template-rows: 200px 1fr 3em;
 grid-template-columns: 20em 1fr 1fr 10em;
 grid-template-areas:
 "header header header header"
 "leftside content content rightside"
 "leftside footer footer footer";}
#masthead {grid-area: header;}
#sidebar {grid-area: leftside;}
#main {grid-area: content;}
#navbar {grid-area: rightside;}
#footer {grid-area: footer;}

<div id="grid">
 <div id="masthead">…</div>
 <div id="main">…</div>
 <div id="navbar">…</div>
 <div id="sidebar">…</div>
 <div id="footer">…</div>
</div>

Figure 12-40. Assigning elements to grid areas

That’s all it takes: set up some named grid areas to define your
layout, and then drop grid items into them with grid-area . So
simple and yet so powerful.

Another way to use grid-area refers to grid lines instead of
grid areas. Fair warning: it’s likely to be confusing at first.

Here’s an example of a grid template that defines some grid
lines, and some grid-area rules that reference the lines, as
illustrated in Figure 12-41:

#grid {display: grid;
 grid-template-rows:
 [r1-start] 1fr [r1-end r2-start] 2fr [r2-end]
 grid-template-columns:
 [col-start] 1fr [col-end main-start] 1fr [mai
.box01 {grid-area: r1 / main / r1 / main;}
.box02 {grid-area: r2-start / col-start / r2-end / ma

Figure 12-41. Assigning elements to grid lines

These elements were placed as directed. Note the ordering of
the grid-line values, however. They’re listed in the order row-
start , column-start , row-end , column-end . If you diagram
that in your head, you’ll quickly realize that the values go
counterclockwise (also called anticlockwise) around the grid
item—the exact opposite of the TRBL pattern we’re used to
from margins, padding, borders, and so on. Furthermore, this
means the column and row references are not grouped together
but are instead split up.

If you supply fewer than four values, then the missing values
are taken from those you do supply. If you use only three
values, then the missing grid-column-end is the same as
grid-column-start if it’s a name; if the start line is a number,
the end line is set to auto . The same holds true if you give only
two values, except that the now-missing grid-row-end is

.box02 {grid area: r2 start / col start / r2 end / ma

.box03 {grid-area: 1 / 1 / 2 / 2;}

copied from grid-row-start if it’s a name; otherwise, it’s set to
auto .

From that, you can probably guess what happens if only one
value is supplied: if it’s a name, use it for all four values; if it’s a
number, the rest are set to auto .

This one-to-four replication pattern is actually how giving a
single grid-area name translates into having the grid item fill
that area. The following are equivalent:

grid-area: footer;
grid-area: footer / footer / footer / footer;

Now recall the behavior discussed in the previous section about
grid-column and grid-row : if a grid line’s name matches the
name of a grid area, it’s translated into a -start or -end
variant, as appropriate. That means the previous example is
translated to the following:

And that’s how a single grid-area name causes an element to be
placed into the corresponding grid area.

grid-area: footer-start / footer-start / footer-end /

Understanding Grid-Item Overlap

One thing we’ve been very careful to do in our grid layouts thus
far is to avoid overlap. Rather like positioning, it’s absolutely
(get it?) possible to make grid items overlap each other. Let’s
take a simple case, illustrated in Figure 12-42:

#grid {display: grid;
 grid-template-rows: 50% 50%;
 grid-template-columns: 50% 50%;}
.box01 {grid-area: 1 / 1 / 2 / 3;}
.box02 {grid-area: 1 / 2 / 3 / 2;}

Figure 12-42. Overlapping grid items

Thanks to the grid numbers that were supplied in the last two
lines of the CSS, the two grid items overlap in the upper-right
grid cell. Which is on top of the other depends on the layering

behavior we’ll discuss later, but for now, just take it as a given
that they do layer when overlapping.

There may well be times when you want grid items to overlap.
A photo’s caption might partially overlap the photo, for
example. Or you might want to assign a few items to the same
grid area so they combine, or set them to be shown one at a
time by script or user interaction.

Overlap isn’t restricted to situations involving raw grid
numbers. In the following case, the sidebar and the footer will
overlap, as shown in Figure 12-43. (Assuming the footer comes
later than the sidebar in the markup, then in the absence of
other styles, the footer will be on top of the sidebar.)

#grid {display: grid;
 grid-template-areas:
 "header header"
 "sidebar content"
 "footer footer";}
#header {grid-area: header;}
#sidebar {grid-area: sidebar / sidebar / footer-end /
#footer {grid-area: footer;}

Figure 12-43. Overlapping sidebar and footer

We bring this up in part to warn you about the possibility of
overlap, and also to serve as a transition to the next topic. It’s a
feature that sets grid layout apart from positioning, in that it
can sometimes help avoid overlap: the concept of grid flow.

Specifying Grid Flow

For the most part, we’ve been explicitly placing grid items on
the grid. If items aren’t explicitly placed, they’re automatically
placed into the grid. Following the grid-flow direction that’s in
effect, an item is placed in the first area that will fit it. The
simplest case is just filling a grid track in sequence, one grid
item after another, but things can get a lot more complex than
that, especially if there is a mixture of explicitly and
automatically placed grid items. The latter must work around
the former.

CSS has primarily two grid-flow models, row-first and column-
first, though you can enhance either by specifying a dense flow.
All this is done with the property called grid-auto-flow .

GRID-AUTO-FLOW

Values [row | column] ‖ dense

Initial value row

Applies to Grid containers

Computed value As declared

Inherited No

Animatable No

To see how these values work, consider the following markup:

<ol id="grid">
1
2

3
4
5

To that markup, let’s apply the following styles:

#grid {display: grid; width: 45em; height: 8em;
 grid-auto-flow: row;}
#grid li {grid-row: auto; grid-column: auto;}

Assuming a grid with a column line every 15 ems and a row
line every 4 ems, we get the result shown in Figure 12-44.

Figure 12-44. Row-oriented grid flow

This probably seems pretty normal, the same sort of thing you’d
get if you floated all the boxes, or if all of them were inline
blocks. That familiarity is why row is the default value. Now,
let’s try switching the grid-auto-flow value to column , as
shown in Figure 12-45:

#grid {display: grid; width: 45em; height: 8em;
 grid-auto-flow: column;}
#grid li {grid-row: auto; grid-column: auto;}

So with grid-auto-flow: row , each row is filled in before
starting on the next row. With grid-auto-flow: column , each
column is filled first.

Figure 12-45. Column-oriented grid flow

What needs to be stressed here is that the list items weren’t
explicitly sized. By default, they were resized to attach to the
defined grid lines. This can be overridden by assigning explicit
sizing to the elements. For example, if we make the list items 7
ems wide and 1.5 ems tall, we’ll get the result shown in
Figure 12-46:

#grid {display: grid; width: 45em; height: 8em;
 grid-auto-flow: column;}
#grid li {grid-row: auto; grid-column: auto;
 width: 7em; height: 1.5em;}

Figure 12-46. Explicitly sized grid items

If you compare that to the previous figure, you’ll see that the
corresponding grid items start in the same place; they just don’t
end in the same places. This illustrates that what’s really placed
in grid flow is grid areas, to which the grid items are then
attached.

This is important to keep in mind if you auto-flow elements that
are wider than their assigned column or taller than their
assigned row, as can very easily happen when turning images
or other intrinsically sized elements into grid items. Let’s say we
want to put a bunch of images, each a different size, into a grid
that’s set up to have a column line every 50 horizontal pixels,
and a row line every 50 vertical pixels. This grid is illustrated in
Figure 12-47, along with the results of flowing a series of images
into that grid by either row or column:

#grid {display: grid;
 grid-template-rows: repeat(3, 50px);
 grid-template-columns: repeat(4, 50px);
 grid-auto-rows: 50px;
 grid-auto-columns: 50px;

}
img {grid-row: auto; grid-column: auto;}

Figure 12-47. Flowing images in grids

Notice that some of the images overlap others? That’s because
each image is attached to the next grid line in the flow, without
taking into account the presence of other grid items. We didn’t
set up images to span more than one grid track when they
needed it, so overlap occurred.

This can be managed with class names or other identifiers. We
could class images as tall or wide (or both) and specify that
they get more grid tracks. Here’s some CSS to add to the
previous example, with the result shown in Figure 12-48:

img.wide {grid-column: auto / span 2;}
img.tall {grid-row: auto / span 2;}

Figure 12-48. Giving images more track space

This does cause the images to keep spilling down the page, but
no overlapping occurs.

However, notice the gaps in this grid? That happens because the
placement of some grid items across grid lines doesn’t leave
enough room for other items in the flow. To illustrate this, and
the two flow patterns, more clearly, let’s try an example with
numbered boxes (Figure 12-49).

Figure 12-49. Illustrating flow patterns

Follow across the rows of the first grid, counting along with the
numbers. In this particular flow, the grid items are laid out
almost as if they were leftward floats. Almost, but not quite:
notice that grid item 13 is actually to the left of grid item 11.
That would never happen with floats, but it can with grid flow.
The way row flow (if we may call it that) works is that you go
across each row from left to right, and if there’s room for a grid

item, you put it there. If a grid cell has been occupied by
another grid item, you skip over it. So the cell next to item 10
didn’t get filled, because there wasn’t room for item 11. Item 13
went to the left of item 11 because there was room for it there
when the row was reached.

As shown by the second example in Figure 12-49, the same
basic mechanisms hold true for column flow, except in this case
you work from top to bottom. Thus, the cell below item 9 is
empty because item 10 wouldn’t fit there. Instead, item 10 went
into the next column and covered four grid cells (two in each
direction). The items after it, since they were just one grid cell
in size, filled in the cells after it in column order.

NOTE

Grid flow works left to right, top to bottom in languages that have that writing
pattern. In RTL languages, such as Arabic and Hebrew, the row-oriented flow would
be right to left, not left to right.

If you were just now wishing for a way to pack grid items as
densely as possible, regardless of how that affected the
ordering, good news: you can! Just add the keyword dense to
your grid-auto-flow value, and that’s exactly what will
happen. We can see the result in Figure 12-50, which shows the

results of grid-auto-flow: row dense and grid-auto-flow:
dense column side by side.

Figure 12-50. Illustrating dense flow patterns

In the first grid, item 12 appears in the row above item 11
because there was a cell that fit it. For the same reason, item 11
appears to the left of item 10 in the second grid.

In effect, what happens with dense grid flow is that for each
grid item, the browser scans through the entire grid in the given
flow direction (row or column), starting from the flow’s
starting point (the top-left corner in LTR languages), until it
finds a place where that grid item will fit. This can make things
like photo galleries more compact, and works great as long as

you don’t have a specific order in which the grid items need to
appear.

Now that we’ve explored grid flow, we have a confession to
make: to make the last couple of grid items look right, we
included some CSS that we didn’t show you. Without it, the
items hanging off the edge of the grid would have looked quite
a bit different from the other items—much shorter in row-
oriented flow, and much narrower in column-oriented flow.
You’ll see why, and the CSS we used, in the next section.

Defining Automatic Grid Tracks

So far, we’ve almost entirely seen grid items placed into a grid
that was explicitly defined. But in the preceding section we had
grid items running off the edge of the explicitly defined grid.
What happens when a grid item goes off the edge? Rows or
columns are added as needed to satisfy the layout directives of
the items in question (see “Working with Implicit Grid”). So, if
an item with a row span of 3 is added after the end of a row-
oriented grid, three new rows are added after the explicit grid.

By default, these automatically added grid tracks are the
absolute minimum size needed. If you want to exert a little

more control over their sizing, grid-auto-rows and grid-
auto-columns are for you.

GRID-AUTO-ROWS, GRID-AUTO-COLUMNS

Values < track-breadth >+ | minmax(< track-

breadth > , < track-breadth >)

Initial
value

auto

Applies to Grid containers

Computed
value

Depends on the specific track sizing

Note < track-breadth > is a stand-in for < le

ngth > | < percentage > | < flex > |
min-content | max-content | auto

Inherited No

Animatable No

For any automatically created row or column tracks, you can
provide a single track size or a minmaxed pair of track sizes.
Let’s take a look at a reduced version of the grid-flow example
from the previous section: we’ll set up a 2 × 2 grid and try to put
five items into it. In fact, let’s do it twice: once with grid-auto-
rows and once without, as illustrated in Figure 12-51:

.grid {display: grid;
 grid-template-rows: 80px 80px;
 grid-template-columns: 80px 80px;}
#g1 {grid-auto-rows: 80px;}

As the second grid shows, without assigning a size to the
automatically created row, the overflowing grid items are
placed in a row that’s exactly as tall as the grid items’ content,
and not a pixel more. Each is still just as wide as the column
into which it’s placed, because the columns have a size (80px).
The row, lacking an explicit height, defaults to auto , with the
result shown.

Figure 12-51. Grids with and without auto-row sizing

If we flip things to a column-oriented flow, the same basic
principles apply (see Figure 12-52):

.grid {display: grid; grid-auto-flow: column;
 grid-template-rows: 80px 80px;
 grid-template-columns: 80px 80px;}
#g1 {grid-auto-columns: 80px;}

Figure 12-52. Grids with and without auto-column sizing

In this case, because the flow is column oriented, the last grid
items are placed into a new column past the end of the explicit
grid. In the second grid, where there’s no grid-auto-columns ,
those fifth and sixth items are each as tall as their rows (80px),
but have an auto width, so they’re just as wide as they need to
be, and no wider.

Now you know what we used in the grid-auto-flow figures in
the previous section: we silently made the auto-rows and auto-
columns the same size as the explicitly sized columns, in order
to not have the last few grid items look weird. Let’s bring back
one of those figures, only this time the grid-auto-rows and
grid-auto-columns styles will be removed. As shown in
Figure 12-53, the last few items in each grid are shorter or
narrower than the rest, because of the lack of auto-track sizing.

Figure 12-53. A previous figure with auto-track sizing removed

And now you know…the rest of the story.

Using the grid Shorthand

At long last, we’ve come to the shorthand property grid . It
might just surprise you, though, because it’s not like other
shorthand properties.

GRID

Values none | [< grid-template-rows > / < g
rid-template-columns >] | [< line-
names >? < string > < track-size >? <
line-names >?]+ [/ < track-list >]? |
[< grid-auto-flow > [< grid-auto-ro
ws > [/ < grid-auto-columns >]?]?]]

Initial
value

See individual properties

Applies to Grid containers

Computed
value

See individual properties

Inherited No

Animatable No

The syntax is a little bit migraine-inducing, yes, but we’ll step
through it a piece at a time.

Let’s get to the elephant in the room right away: grid allows
you to either define a grid template or to set the grid’s flow and
auto-track sizing in a compact syntax. You can’t do both at the
same time.

Furthermore, whichever you don’t define is reset to its defaults,
as is normal for a shorthand property. So if you define the grid
template, the flow and auto tracks will be returned to their
default values.

Now let’s talk about creating a grid template by using grid .
The values can get fiendishly complex and take on some
fascinating patterns, but can be very handy in some situations.
As an example, the following rule is equivalent to the set of
rules that follows it:

grid:
 "header header header header" 3em
 ". content sidebar ." 1fr
 "footer footer footer footer" 5em /
 2em 3fr minmax(10em,1fr) 2em;

Notice how the value of grid-template-rows is broken up and
scattered around the strings of grid-template-areas . That’s
how row sizing is handled in grid when you have grid-area
strings present. Take those strings out, and you end up with the
following:

grid:
 3em 1fr 5em / 2em 3fr minmax(10em,1fr) 2em;

In other words, the row tracks are separated by a forward slash
(/) from the column tracks.

Remember that with grid , undeclared shorthands are reset to
their defaults. That means the following two rules are
equivalent:

/* the following together say the same thing as above
grid-template-areas:
 "header header header header"
 ". content sidebar ."
 "footer footer footer footer";
grid-template-rows: 3em 1fr 5em;
grid-template-columns: 2em 3fr minmax(10em,1fr) 2em;

#layout {display: grid;

Therefore, make sure your grid declaration comes before
anything else related to defining the grid. If we want a dense
column flow, we’d write something like this:

Now, let’s bring the named grid areas back, and add some extra
row grid-line names to the mix. A named grid line that goes
above a row track is written before the string, and a grid line
that goes below the row track comes after the string and any
track sizing. So let’s say we want to add main-start and main-
stop above and below the middle row, and page-end at the
very bottom:

#layout {display: grid;
 grid: 3em 1fr 5em / 2em 3fr minmax(10em,1fr) 2em;

#layout {display: grid;
 grid: 3em 1fr 5em / 2em 3fr minmax(10em,1fr) 2em;
 grid-auto-rows: auto;
 grid-auto-columns: auto;
 grid-auto-flow: row;}

#layout {display: grid;
 grid: 3em 1fr 5em / 2em 3fr minmax(10em,1fr) 2em;
 grid-auto-flow: dense column;}

id

That creates the grid shown in Figure 12-54, with the implicitly
created named grid lines (e.g., footer-start), along with the
explicitly named grid lines we wrote into the CSS.

Figure 12-54. Creating a grid with the grid shorthand

You can see how grid values can get very complicated very
quickly. It’s a powerful syntax, and it’s surprisingly easy to get
used to once you’ve had just a bit of practice. On the other hand,
it’s also incredibly easy to get things wrong and have the entire

grid:
 "header header header header" 3em
 [main-start] ". content sidebar ." 1fr [main-stop
 "footer footer footer footer" 5em [page-end] /
 2em 3fr minmax(10em,1fr) 2em;

value be invalid, thus preventing the appearance of any grid at
all.

For the other use of grid , it’s a merging of grid-auto-flow ,
grid-auto-rows , and grid-auto-columns . The following rules
are equivalent:

#layout {grid-auto-flow: dense rows;
 grid-auto-rows: 2em;
 grid-auto-columns: minmax(1em,3em);}

#layout {grid: dense rows 2em / minmax(1em,3em);}

That’s certainly a lot less typing for the same result! But once
again, we have to remind you: if you write this, all the column
and row track properties will be set to their defaults. Thus, the
following rules are equivalent:

#layout {grid: dense rows 2em / minmax(1em,3em);}

#layout {grid: dense rows 2em / minmax(1em,3em);
 grid-template-rows: auto;
 grid-template-columns: auto;}

So once again, it’s important to make sure your shorthand
comes before any properties it might otherwise override.

Using Subgrids

We promised many, many pages ago to talk about subgrid , and
at last the time has come. The basic summary is that subgrids
are grids that use the grid tracks of an ancestor grid to align
their grid items, instead of a pattern unique to themselves. A
crude example is setting a number of columns on the <body>
element, and then having all of the layout components use that
grid, no matter how far down they are in the markup.

Let’s see how that works. We’ll start with a simple markup
structure like this:

<body>
 <header class="site">
 <h1>ConHugeCo</h1>
 <nav>…</nav>
 </header>
 <main>
 …
 </main>
 <footer class="site">

 <nav>…</nav>
 <div>…</div>
 </footer>
</body>

A real home page would have a lot more elements, but we’re
keeping this brief for clarity’s sake.

First, we add the following CSS:

At this point, the body has 15 columns, each equally sized
thanks to the 1fr value. Those columns are separated by 14
gutters, each 1% the width of the viewport. (These are almost
certainly desktop styles and not intended for mobile devices.)

At the moment, the three children of the <body> element are
trying to jam themselves into the first 3 of those 15 columns. We
don’t want that: we want them to span the width of the layout.
Well, we want the header and footer to do that. The <main>
element should actually stand away from the edges of the
viewport by, say, one column on each side.

body {display: grid; grid-template-columns: repeat(15

So we add the following CSS:

:is(header, footer).site {grid-column: 1 / -1;}
main {grid-column: 2 / -2;}

What we have so far is illustrated in Figure 12-55, with dashed
lines added to represent the grid-column tracks set for the
<body> element, and some extra content that wasn’t present in
the initial markup code. (You’ll see it in more detail soon.)

Figure 12-55. The initial setup of a page layout

This might look like an entirely pointless exercise in defining
and then ignoring a bunch of grid columns, but just wait. It’s
about to get good.

Let’s take a closer look at the site header. Here’s its full markup
structure, minus the link URLs:

<header class="site">
 <h1>ConHugeCo Industries</h1>
 <nav>
 Home
 Mission
 Products
 Services
 Support
 Contact
 </nav>
</header>

Again, a real site would probably have a bit more to it, but this
is enough to get the point across. What we’re going to do now is
turn the <header> element into a grid container that uses the
<body> element’s grid tracks for itself:

In the first rule, we make the element into a grid container with
display: grid and then says its column template is a
subgrid . At this point, the browser looks up through the

header.site {display: grid; grid-template-columns: su
header.site h1 {grid-column: 2 / span 5;}
header.site nav {grid-column: span 7 / -2;
 align-self: center; text-align: end;}

markup tree to the closest grid container and uses the grid-
template-columns of that ancestor (in this case, the <body>).
But this isn’t just a copy of the value. The <header> element is
literally using the body’s grid tracks for its column-oriented
layout.

Thus, when the second rule says the <h1> should start on
column line 2 and span five column tracks, it starts on the
body’s second column line and spans five of the body’s column
lines. Similarly, the <nav> element is set to span seven tracks
back from the second-to-last column line of the <body> .
Figure 12-56 shows the results, along with the self-alignment
and text alignment of the <nav> element and some shaded
backgrounds to clearly indicate where the header’s pieces are
being gridded.

Figure 12-56. Placing the header ’s pieces on the body ’s columns

Notice that the pieces inside the header line up perfectly with
the edges of the <main> element. That’s because they’re all

being placed on the exact same grid lines. Not separate grid
lines that just happen to coincide, but the actual grid lines. This
means that if, for example, the <body> element’s column
template is changed to add a couple more columns, or to resize
some of the columns to be wider or narrower, we just edit the
grid-template-columns value for the <body> , and everything
using those column lines will move along with the lines.

We can do similar things with the footer. Take this CSS, for
example:

Now the logo in the footer is placed right alongside the fifth
column line, the <nav> starts from the column line at the
center of the layout and spans over a few tracks, and the <div>
containing the legal bits ends at the very last column line and
spans back two tracks. Figure 12-57 shows the result.

footer.site {display: grid; grid-template-columns: su
footer.site img {grid-column: 5;}
footer.site nav {grid-column: 9 / -4; }
footer.site div {grid-column: span 2 / -1;}

Figure 12-57. Placing the <footer> ’s pieces on the <body> ’s columns

Looking at it, maybe we’d prefer the legal stuff to be
underneath the navlinks. The usual solution in cases like this is
to wrap the navlinks and legalese into a container such as a
<div> , and then place that container on the grid columns. But
thanks to how subgrid works, this isn’t at all necessary!

Defining Explicit Tracks

A more grid-like solution to the problem of placing footer pieces
below others is to put them on their own rows. So let’s do that:

footer.site {display: grid; grid-template-columns: su
 grid-template-rows: repeat(2,auto);}
footer.site img {grid-column: 5; grid-row: 1 / -1;}

footer.site nav {grid-column: 9 / -2; }
footer.site div {grid-column: span 7 / -2; grid-row:

This code has only three new things as compared to the last
time we looked at it. First, the <footer> itself is given a grid-
template-rows value. Second, the logo image is set to span the
two rows defined in the first rule. Third, the grid-column
value of the <div> is changed so it spans the same column
tracks the <nav> does. It’s just expressed differently. The
<div> is also set to an explicit grid row.

So while the <footer> continues to subgrid the column
template of the body element, it also defines its own private
row template. Just two rows, in this case, but that’s all we need.
Figure 12-58 shows the result, with a dashed line added to show
the boundary between the <footer> ’s two rows.

Figure 12-58. Placing the <footer> ’s pieces on the <body> ’s columns

Dealing with Offsets

Let’s turn to the <main> element in this document, which
contains this basic markup:

<main>
 <div class="gallery">
 <div>

 <h2>Title</h2>
 <p>Some descriptive text</p>
 </div>
 </div>
</main>

As you saw previously, the <main> element is placed on the
<body> ’s grid as follows:

main {grid-column: 2 / -2;}

This causes it to stretch from the <body> ’s second grid column
line to the second-to-last grid column line. This pushes its sides
inward by one column on either side.

The contents within the <main> element are not participating
in the <body> grid, because <main> isn’t a subgrid. Well, not
yet. Let’s fix that by changing the rule to the following, with the
result shown in Figure 12-59.

Figure 12-59. Placing the <main> element’s children on the <body> ’s grid

Again, this element is a subgrid of the body’s subgrid, but this
time it isn’t stretched from one edge of the grid to the other. The
gallery <div> is taking up only one column, because it’s a grid
item that hasn’t been assigned any grid column values.

So here’s the question: what if we want move it one column
track away from the edge of the <main> element? That’s the
third column line of the <body> , but the second inside the
<main> element’s container. Should it be grid-column: 3 or
grid-column: 2 ?

The answer is 2 . When counting grid lines within a subgrid,
you account for only those grid lines inside it. Thus, the
following would have the result shown in Figure 12-60:

.gallery {grid-column: 2 / -2;}

Now the gallery fills all but the start and end columns within
the <main> ’s container, by starting at the second grid line
within the <main> and ending at the second-to-last grid line. If
we were to change the value to 3 / -3 , the gallery would
stretch from the third column line with the <main> to the third-
last, thus leaving two empty columns to either side. But let’s not
do that.

Figure 12-60. Placing the gallery inward by a column on each side, and spanning
several columns

Instead, let’s now suppose we add five more cards to the gallery,
for a total of six, and we’ll add some filler text rather than have
each one just titled “Title” and so on. If we do that and don’t
change any of the CSS, we’ll just have six <div> s stacked on top
of each other, because while the gallery is stretched across the
<main> ’s subgrid, it isn’t a subgrid (or even a not-subgrid), so
its interior is a normal-flow environment.

We can fix that with—yes—more subgridding!

Now the gallery is a subgrid of its nearest ancestor element that
defines a not-subgridded column template, which is the <body>
element, and thus the cards within the gallery will use the
column template of the <body> . We want them to fill out the
gallery, which has 12 tracks within it, so we’ll have them each
span 2 tracks, with the results shown in Figure 12-61:

Figure 12-61. Adding multiple cards to the subgridded gallery

Not bad, but it could be better. That last card has a longer title,
and it’s wrapped to two lines. That means all the descriptive

.gallery {grid-column: 2 / -2; display: grid; grid-te

.gallery > div {grid-column: span 2; padding: 0.5em;
 border: 1px solid; background: #FFF8;}

text paragraphs don’t line up with one another. How do we fix
that? The same way we did for the footer: by defining a row
template for the gallery, and making the cards subgrid to that
row template!

We start by defining the row template with some named lines
and track sizes:

Now, each card needs to span the row template so that the row
lines will be available to it:

.gallery > div {grid-column: span 2;
 grid-row: 1 / -1;}

Now that the cards span from the gallery’s first row line to its
last, we’re ready to have the cards become grid containers with
a single column and a subgrid of the gallery’s row template:

.gallery > div {grid-column: span 2;
 grid-row: 1 / -1;

.gallery {display: grid;
 grid-template-columns: subgrid;
 grid-template-rows: [pic] max-content [title]
 grid-column: 2 / -2;}

 display: grid;
 grid-template-rows: subgrid;
 grid-template-columns: 1fr;}

We didn’t really need to add the grid-template-columns
declaration, because it would default to a single column, but
sometimes it’s nice to explicitly say what it is you want to
happen, so anyone responsible for the CSS after you write it
(including you in six months) doesn’t have to guess at what you
meant to do.

At the moment, the elements inside each card will
automatically fall into the row tracks: the images into the pic
track, the titles into the title track, and the paragraphs into
the desc track. But since we’re trying to be self-documenting,
let’s explicitly assign each element to its named track, and while
we’re at it, vertically align the titles:

Figure 12-62 shows the final result, with the titles vertically
centered with respect to one another, the descriptive

.gallery > div img {grid-row: pic;}

.gallery > div h2 {grid-row: title; align-self: cente

.gallery > div p {grid-row: desc;}

paragraphs all lined up along their top edges, and all the cards
sharing the same height.

A big advantage here is that with the pieces of the cards
explicitly assigned to the named grid row lines, rearranging the
cards is now merely a question of editing the grid-row-
template value set on the gallery.

Figure 12-62. Placing card items on subgridded rows

We could also have made the cards’ column template a subgrid,
which would have meant they’d use the <body> element’s
column template, because the body is the nearest ancestor
element with a column template that isn’t a subgrid. In that
case, the cards would use the gallery’s row template and the
body’s column template. And they’d all influence the sizing of
those ancestors’ grid tracks, and thus influence the layout of
everything else that uses those same templates.

If you have more cards than will fit into a single row, you’ll run
into a problem: subgrids do not create implicit grid tracks.
Instead, you need to use the auto-track properties like grid-
auto-rows , which will add as many rows as needed.

Thus, we’ll need to remove the line names and rework the CSS
we’ve built to read as follows:

The problem now is that we have the picture, title, and
description text each assigned to a named grid line, but grid-
auto-rows doesn’t allow line names. It might look like we have
to change the grid row assignments, but that’s not the case, as
you’re about to see.

.gallery {display: grid;
 grid-template-columns: subgrid;
 grid-auto-rows: max-content max-content auto;
 /* was: [pic] max-content [title] max-content

 grid-column: 2 / -2;}
.gallery > div {grid-column: span 2;
 grid-row: 1 / -1;
 display: grid;
 grid-template-rows: subgrid;
 grid-template-columns: 1fr;}

Naming Subgridded Lines

In addition to using the names of any grid lines in the ancestor
template, you can assign names to the subgrid, which is a real
help if you’re using auto-tracks like those created in the
previous section.

In this case, since we used to have row lines named pic ,
title , and desc in the parent grid but had to remove them in
order to set up auto-rows, we take those same labels and put
them after the subgrid keyword for grid-template-rows :

grid-template-rows: subgrid [pic] [title] [desc];

Here’s what that looks like in context with the rest of the CSS for
these cards, which are laid out as shown in Figure 12-63:

.gallery {display: grid;
 grid-template-columns: subgrid;
 grid-auto-rows: max-content max-content auto;
 grid-column: 2 / -2;}
.gallery > div {grid-column: span 2;
 grid-row: 1 / -1;
 display: grid;
 grid-template-rows: subgrid [pic] [title] [desc]
 grid-template-columns: 1fr;}

Figure 12-63. Placing cards onto auto-rows with named lines

It’s also possible to assign names to just a few lines while not
naming the rest. To see this in action, let’s add a couple of
paragraphs of text below the gallery, something like this (with
ellipsis-enclosed text in place of the actual content):

<main>
 <div class="gallery">
 …cards here…
 </div>

.gallery > div img {grid-row: pic;}

.gallery > div h2 {grid-row: title; align-self: cente

.gallery > div p {grid-row: desc;}

 <p class="leadin">…text…</p>
 <p class="explore">…text…</p>
</main>

To span the paragraphs across various column tracks, we could
count and use numbers, but let’s name some lines and use those
instead. In this case, since these paragraphs are children of the
<main> element, we’ll need to modify its subgridded column
template. Here’s how we’ll do it:

main {grid-column: 2 / -2;
 display: grid;
 grid-template-columns:
 subgrid [] [leadin-start] repeat(5, [])
 [leadin-end explore-start] repeat(5, [])
 [explore-end];
 }

OK, whoa. What just happened?

Here’s how it breaks down: after the subgrid keyword, we
have a bunch of name assignments. The first is just [] , which
means “don’t add a name to this grid line.” Then we have
[leadin-start] , which assigns the name leadin-start to the
second grid column line in the subgrid. After that is a repetition

that means the next five grid column lines get no subgrid name
assigned.

Next up is what happens to be the line running down the
middle of the grid, which is given both the name leadin-end
and explore-start . This means the lead-in paragraph should
stop spanning at this line, and the explore paragraph should
start spanning at the same line. After another five no-name-
assigned lines, we assign explore-end to a line, and that’s it.
Any lines that weren’t addressed will be left alone.

Now all we have to do is set the paragraphs’ start and end
column lines like so, and get the result shown in Figure 12-64,
where the two cards on the second line of cards have been
removed for clarity:

p.leadin {grid-column: leadin-start / leadin-end;}
p.explore {grid-column: explore-start / explore-end;}

Figure 12-64. Placing elements using subgrid-named grid lines

And there they are, using their custom-named start and end
grid lines to span across many grid tracks. As promised, the first
ends where the second starts, right on that grid line that
happens to be in the middle of the layout.

Having the cards jam right up next to each other doesn’t look
great, though. We could push the actual text apart by using
padding on the paragraphs, but some gaps would be nice,
wouldn’t they?

Giving Subgrids Their Own Gaps

It’s possible to set gaps on subgrids that are separate from any
gaps on their ancestor grids. Thus, for example, we could
extend our previous example like this:

main {grid-column: 2 / -2;
 display: grid;
 grid-template-columns:
 subgrid [] [leadin-start] repeat(5, [])
 [leadin-end explore-start] repeat(5, [])
 [explore-end];
 gap: 0 2em;
 }

With this change, the <main> element is setting no row gaps
but 2-em column gaps. This has the result shown in Figure 12-
65.

Figure 12-65. The effect of adding gaps to a subgrid

Notice that not only are the two paragraphs pushed apart, but
so are the cards in the gallery. That’s because they’re all
participating in the same subgrid, and that subgrid just had
some gaps added to it. This means the sides of the cards and the
side of the paragraphs are still lined up precisely with each
other, which is pretty nice.

Note also that these gaps don’t apply to the content in ancestor
grids: the boxes in the header and footer still come right up to
the center column line. It’s only the elements in the <main>
element’s subgrid, and any subgrids of that subgrid, that will
know about and make use of these gaps.

NOTE

If gaps aren’t familiar to you, the properties row-gap , column-gap , and gap are
covered in Chapter 11.

Grid Items and the Box Model

Now we can create a grid, attach items to the grid, create
gutters between the grid tracks, and even use the track
templates of ancestor elements. But what happens if we style a
grid item with, say, margins? Or if it’s absolutely positioned?
How do these things interact with the grid lines?

Let’s take margins first. The basic principle at work is that an
element is attached to the grid by its margin edges. That means
you can push the visible parts of the element inward from the
grid area it occupies by setting positive margins—and pull it
outward with negative margins. For example, these styles will
have the result shown in Figure 12-66:

#grid {display: grid;
 grid-template-rows: repeat(2, 100px);
 grid-template-columns: repeat(2, 200px);}
.box02 {margin: 25px;}
.box03 {margin: -25px 0;}

Figure 12-66. Grid items with margins

This works as it does because the items have both their width
and height set to auto , so they can be stretched as needed to
make everything work out. If width and/or height have non-
auto values, they’ll end up overriding margins to make all the
math work out. This is much like what happens with inline
margins when element sizing is overconstrained: eventually,
one of the margins gets overridden.

Consider an element with the following styles placed into a 200-
pixel-wide by 100-pixel-tall grid area:

.exel {width: 150px; height: 100px;
 padding: 0; border: 0;

 margin: 10px;}

Going across the element first, it has 10 pixels of margin to
either side, and its width is 150px , giving a total of 170 pixels.
Something’s gotta give, and in this case it’s the right margin (in
LTR languages), which is changed to 40px to make everything
work—10 pixels on the left margin, 150 pixels on the content
box, and 40 pixels on the right margin equals the 200 pixels of
the grid area’s width.

On the vertical axis, the bottom margin is reset to -10px . This
compensates for the top margin and content height totaling 110
pixels, when the grid area is only 100 pixels tall.

NOTE

Margins on grid items are ignored when calculating grid-track sizes. Therefore, no
matter how big or small you make a grid item’s margins, it won’t change the sizing of
a min-content column, for example, nor will increasing the margins on a grid item
cause fr -sized grid tracks to change size.

As with block layout, you can selectively use auto margins to
decide which margin will have its value changed to fit. Suppose
we wanted the grid item to align to the right of its grid area. By
setting the item’s left margin to auto , that would happen:

.exel {width: 150px; height: 100px;
 padding: 0; border: 0;
 margin: 10px; margin-left: auto;}

Now the element will add up 160 pixels for the right margin
and content box, and then give the difference between that and
the grid area’s width to the left margin, since it’s been explicitly
set to auto . This results in Figure 12-67, with 10 pixels of
margin on each side of the exel item, except the left margin,
which is (as we just calculated) 40 pixels.

Figure 12-67. Using auto margins to align items

That alignment process might seem familiar from block-level
layout, where you can use auto inline margins to center an
element in its containing block, as long as you’ve given it an
explicit width . Grid layout differs in that you can do the same
thing on the vertical axis; that is, given an element with an
absolute height, you can vertically center it by setting the top
and bottom margins to auto . Figure 12-68 shows a variety of

auto margin effects on images, which inherently have explicit
heights and widths:

.i01 {margin: 10px;}

.i02 {margin: 10px; margin-left: auto;}

.i03 {margin: auto 10px auto auto;}

.i04 {margin: auto;}

.i05 {margin: auto auto 0 0;}

.i06 {margin: 0 auto;}

Figure 12-68. Various auto-margin alignments

TIP

CSS has other ways to align grid items, notably with properties like justify-self ,
which don’t depend on having explicit element sizes or auto margins. These are
covered in the next section.

This auto-margin behavior is a lot like the way margins and
element sizes operate when elements are absolutely positioned
—which leads us to the next question: what if a grid item is also
absolutely positioned? For example:

.exel {grid-row: 2 / 4; grid-column: 2 / 5;
 position: absolute;
 top: 1em; bottom: 15%;
 left: 35px; right: 1rem;}

The answer is actually pretty elegant: if you’ve defined grid-line
starts and ends and the grid container establishes a positioning
content (e.g., using position: relative), that grid area is used
as the containing block and positioning context for the grid, and
so the grid item is positioned within that context. That means
the offset properties (top et al.) are calculated in relation to the
declared grid area. Thus, the previous CSS would have the
result shown in Figure 12-69, with the lightly shaded area
denoting grid area used as the positioning context, and the

thick-bordered box denoting the absolutely positioned grid
item.

Figure 12-69. Absolutely positioning a grid item

Everything you know about absolutely positioned elements
regarding offsets, margins, element sizing, and so on applies
within this formatting context. It’s just that in this case, the
formatting context is defined by a grid area. Absolute
positioning introduces a wrinkle: it changes the behavior of the
auto value for grid-line properties. If, for example, you set
grid-column-end: auto for an absolutely positioned grid item,
the ending grid line will actually create a new and special grid
line that corresponds to the padding edge of the grid container

itself. This is true even if the explicit grid is smaller than the
grid container, as can happen. To see this in action, we’ll modify
the previous example as follows, with the result shown in
Figure 12-70:

.exel {grid-row: 2 / auto; grid-column: 2 / auto;
 position: absolute;
 top: 1em; bottom: 15%;
 left: 35px; right: 1rem;}

Figure 12-70. Auto values and absolute positioning

Notice how the positioning context now starts at the top of the
grid container (the thin black line around the outside of the
figure), and stretches all the way to the right edge of the grid
container, even though the grid itself ends short of that edge.

One implication of this behavior is that if you absolutely
position an element that’s a grid item, but you don’t give it any
grid-line start or end values, then it will use the inner padding
edge of the grid container as its positioning context. It does this
without having to set the grid container to position:
relative , or any of the other usual tricks to establish a
positioning context.

Also note that absolutely positioned grid items do not
participate in figuring out grid cell and track sizing. As far as
the grid layout is concerned, the positioned grid item doesn’t
exist. Once the grid is set up, the grid item is positioned with
respect to the grid lines that define its positioning context.

Setting Alignment in Grids

If you have any familiarity with flexbox (see Chapter 11), you’re
probably aware of the various alignment properties and their

values. Those same properties are also available in grid layout
and have very similar effects.

First, a quick refresher. Table 12-1 summarizes the alignment
properties that are available and what they affect. Note there
are a few more than you might have expected from flexbox.

Table 12-1. Justify and align values

Property Aligns Applies to

align-cont
ent

The entire grid in the
block direction

Grid
container

align-item
s

All grid items in the
block direction

Grid
container

align-self A grid item in the block
direction

Grid items

justify-co
ntent

The entire grid in the
inline direction

Grid
container

justify-it
ems

All grid items in the
inline direction

Grid
container

justify-se
lf

A grid item in the inline
direction

Grid items

Property Aligns Applies to

place-cont
ent

The entire grid in both
the block and inline
directions

Grid
container

place-item
s

All grid items in both
the block and inline
directions

Grid
container

place-self A grid item in both the
block and inline
directions

Grid items

As Table 12-1 shows, the various justify-* properties change
alignment along the inline axis—in English, this will be the
horizontal direction. The difference is whether a property
applies to a single grid item, all the grid items in a grid, or the
entire grid. Similarly, the align-* properties affect alignment
along the block axis; in English, this is the vertical direction.
The place-* properties, on the other hand, are shorthands
that apply in both the block and inline directions.

Aligning and Justifying Individual Items

It’s easiest to start with the *-self properties, because we can
have one grid show various justify-self property values,
while a second grid shows the effects of those same values
when used by align-self . (See Figure 12-71.)

Figure 12-71. Self-alignment in the inline and block directions

Each grid item in Figure 12-71 is shown with its grid area (the
dashed line) and a label identifying the property value that’s
applied to it. Each deserves a bit of commentary.

First, though, realize that for all of these values, any element
that doesn’t have an explicit width or height will “shrink-
wrap” its content, instead of using the default grid-item
behavior of filling out the entire grid area.

The start and end values cause the grid item to be aligned to
the start or end edge of its grid area, which makes sense.

Similarly, center centers the grid item within its area along
the alignment axis, without the need to declare margins or any
other properties, including height and width .

The left and right values cause the item to be aligned to the
left or right edge of the grid area when the inline axis is
horizontal, as shown in Figure 12-71. If the inline axis is
vertical, as in writing-mode: vertical-rl , items are aligned
along the inline axis as if the inline axis were still horizontal;
thus, in a top-to-bottom inline axis, left will align to the top of
the grid area when direction is ltr , and to its bottom when
direction is rtl . When applied to align-self , left and
right are treated as if they were stretch .

The self-start and self-end values are more interesting.
The self-start option aligns a grid item with the grid-area
edge that corresponds to the grid item’s start edge. So in
Figure 12-71, the self-start and self-end boxes are set to
direction: rtl . That sets them to use RTL language direction,
meaning their start edges are their right edges, and their end
edges their left. You can see in the first grid this right-aligned
self-start and left-aligned self-end . In the second grid,
however, the RTL direction is irrelevant to block-axis
alignment. Thus, self-start is treated as start , and self-
end is treated as end .

The last value, stretch , is also interesting. To understand it,
notice how the other boxes in each grid “shrink-wrap”
themselves to their content, as if set to max-content . The
stretch value, by contrast, directs the element to stretch from
edge to edge in the given direction— align-self: stretch

causes the grid item to stretch along the block axis, and
justify-self: stretch causes inline-axis stretching. This is
as you might expect, but bear in mind that it works only if the
element’s size properties are set to auto . Thus, given the
following styles, the first example will stretch vertically, but the
second will not:

.exel01 {align-self: stretch; block-size: auto;}

.exel02 {align-self: stretch; block-size: 50%;}

Because the second example sets a block-size value that isn’t
auto (which is the default value), that grid item cannot be
resized by stretch . The same holds true for justify-self
and inline-size .

Two more values that can be used to align grid items are
sufficiently interesting to merit their own explanation. These
permit the alignment of a grid item’s first or last baseline with
the highest or lowest baseline in the grid track. For example,
suppose you want a grid item to be aligned so the baseline of its

last line is aligned with the last baseline in the tallest grid item
sharing its row track. That would look like the following:

.exel {align-self: last-baseline;}

Conversely, to align its first baseline with the lowest first
baseline in the same row track, you’d say this:

.exel {align-self: baseline;}

If a grid element doesn’t have a baseline, or it’s asked to
baseline-align itself in a direction where baselines can’t be
compared, baseline is treated as start , and last-baseline
is treated as end .

NOTE

This section intentionally skips two values: flex-start and flex-end . These values
are supposed to be used only in flexbox layout, and are defined to be equivalent to
start and end in any other layout context, including grid layout.

For a more detailed explanation of the values just discussed and how they cause
items to interact, see Chapter 11.

The shorthand property place-self combines the two self-
placement properties just discussed.

PLACE-SELF

Values < align-self > < justify-self >?

Initial
value

auto

Applies to Block-level and absolutely positioned
elements, and grid items

Computed
value

See individual properties

Inherited No

Animatable No

Supplying one value for place-self means it’s copied to the
second value as well. Thus, in each of the following pairs of
declarations, the first declaration is equivalent to the second:

place-self: end;
place-self: end end;

Because both of the individual properties place-self
shorthands can accept baseline alignment values, supplying
only one value causes both individual properties to be set to the
same value. In other words, the following are equivalent:

place-self: last baseline;
place-self: last baseline last baseline;

You can also supply two values, one for each of the individual
properties the shorthand represents. So the following CSS
shows rules that are equivalent to each other:

Aligning and Justifying All Items

Now let’s consider align-items and justify-items . These
properties accept all the same values you saw in the previous
section plus a few more, and have the same effect, except they
apply to all grid items in a given grid container, and must be
applied to the grid container instead of to individual grid items.

.gallery > .highlight {place-self: center;}

.gallery > .highlight {align-self: center; justify-se

ALIGN-ITEMS

Values normal | stretch | [[first | last
]? && baseline] | [[unsafe | safe
]? center | start | end | left | ri
ght]

Initial
value

normal

Applies to All elements

Computed
value

As declared

Inherited No

Animatable No

JUSTIFY-ITEMS

Values normal | stretch | [[first | last
]? && baseline] | [[unsafe | safe
]? center | start | end | left | ri
ght] | [legacy && [left | right |
center]?]

Initial
value

legacy

Applies to All elements

Computed
value

As declared (except for legacy)

Inherited No

Animatable No

As an example, you could set all of the grid items in a grid to be
center-aligned within their grid areas as follows, with a result
like that depicted in Figure 12-72:

#grid {display: grid;
 align-items: center; justify-items: center;}

Figure 12-72. Centering all the grid items

As you can see, that rule horizontally and vertically centers
every grid item within its given grid area. Furthermore, it
causes any grid item without an explicit width and height to
“shrink-wrap” its content rather than stretch out to fill its grid
area, because of the way center is handled. If a grid item has
an explicit inline or block size, those are honored instead of
“shrink-wrapping” the content, and the item is still centered
within its grid area.

For an overview of the effects of the various keyword values in
the context of both justify-items and align-items , see
Figure 12-73; the grid areas are represented with dashed lines,
and the grid items are placed according to their alignment
values.

Figure 12-73. The alignment of grid items within their grid cells

Not illustrated in Figure 12-73, the legacy value is a new
addition to grid alignment, and is essentially treated as start .
(It exists to re-create the behaviors of HTML’s ancient <CENTER>
element and align attribute, neither of which is relevant in a
grid context.)

TIP

For an exploration of what safe and unsafe mean in terms of items overflowing
their container, see Chapter 11.

The shorthand property place-items combines the two item-
placement properties just discussed.

PLACE-ITEMS

Values < align-items > < justify-
items >?

Initial value See individual properties

Applies to All elements

Computed
value

See individual properties

Inherited No

Animatable No

The way place-items works is very similar to the place-self
property discussed previously in the chapter. If one value is
given, it’s applied to both align-items and justify-items . If
two values are given, the first is applied to align-items and
the second to justify-items . Thus, the following rules are
equivalent:

Distributing Grid Items and Tracks

Beyond aligning and justifying every grid item, it’s possible to
distribute the grid items, or even to justify or align the entire
grid, using align-content and justify-content . A small set
of distributive values is used for these properties. Figure 12-74
illustrates the effects of each value as applied to justify-
content , with each grid sharing the following styles:

.gallery {place-items: first baseline start;}

.gallery {align-items: first baseline; justify-items:

.grid {display: grid; padding: 0.5em; margin: 0.5em 1
 grid-gap: 0.75em 0.5em; border: 1px solid;

 grid-template-rows: 4em;
 grid-template-columns: repeat(5, 6em);}

Figure 12-74. Distributing grid items along the inline axis

In these cases, the set of grid tracks is taken as a single unit, and
the items are then justified by the value of justify-content .
That alignment does not affect the alignment of individual grid
items; thus, you could end-justify the whole grid with justify-
content: end while having individual grid items be left-,
center-, or start-justified (among other options) within their
grid areas.

This works just as well in column tracks as it does in row tracks,
as Figure 12-75 illustrates, as long as you switch to align-
content . This time, the grids all share these styles:

.grid {display: grid; padding: 0.5em;
 grid-gap: 0.75em 0.5em; border: 1px solid;
 grid-template-rows: repeat(4, 3em);
 grid-template-columns: 5em;}

Figure 12-75. Distributing grid items along the block axis

The way these distributions work is that the grid tracks,
including any gutters, are all sized as usual. Then, if any space
is left over beyond the grid tracks and gutters—that is, if the
grid tracks don’t reach all the way from one edge of the grid
container to the other—then the remaining space is distributed
according to the value of justify-content (in the inline axis)
or align-content (in the block axis).

This space distribution is carried out by resizing the grid
gutters. If no gutters are declared, they will be created. If
gutters already exist, their sizes are altered as required to
distribute the grid tracks as specified.

Note that because space is distributed only when the tracks
don’t fill out the grid container, the gutters can only increase in

size. If the tracks are larger than the container, which can easily
happen, there is no leftover space to distribute (negative space
turns out to be indivisible).

One more distribution value wasn’t shown in the previous
figures: stretch . This value takes any leftover space and
applies it equally to the grid tracks, not the gutters. So if we
have 400 pixels of leftover space and 8 grid tracks, each grid
track is increased by 50 pixels. The grid tracks are not increased
proportionally, but equally. As of late 2022, there is no browser
support for this value in terms of grid distribution.

Layering and Ordering

As we discussed in a previous section, it’s entirely possible to
have grid items overlap each other, whether because negative
margins are used to pull a grid item beyond the edges of its grid
area, or because the grid areas of two different grid items share
grid cells. By default, the grid items will visually overlap in
document source order: grid items later in the document source
will appear above (or “in front of”) grid items earlier in the
document source. Thus the following results in Figure 12-76
(assume the number in each class name represents the grid
item’s source order):

Figure 12-76. Grid items overlapping in source order

If you want to assert your own stacking order, z-index is here
to help. Just as in positioning, z-index places elements relative
to one another on the z-axis, which is perpendicular to the
display surface. Positive values are closer to you, and negative
values further away. So to bring the second box to the “top,” as
it were, all you need is to give it a z-index value higher than
any other (with the result shown in Figure 12-77):

#grid {display: grid; width: 80%; height: 20em;
 grid-rows: repeat(10, 1fr); grid-columns: repeat(
.box01 {grid-row: 1 / span 4; grid-column: 1 / span 4
.box02 {grid-row: 4 / span 4; grid-column: 4 / span 4
.box03 {grid-row: 7 / span 4; grid-column: 7 / span 4
.box04 {grid-row: 4 / span 7; grid-column: 3 / span 2
.box05 {grid-row: 2 / span 3; grid-column: 4 / span 5

.box02 {z-index: 10;}

Figure 12-77. Elevating a grid item

Another way you can affect the ordering of grid items is by
using the order property. Its effect is essentially the same as it
is in flexbox—you can change the order of grid items within a
grid track by giving them order values. This affects not only
placement within the track, but also paint order if they should
overlap. For example, we could change the previous example
from z-index to order , as shown here, and get the same
result shown in Figure 12-77:

.box02 {order: 10;}

In this case, box02 appears “on top of” the other grid items
because its order places it after the rest of them. Thus, it’s
drawn last. Similarly, if those grid items were all placed in

sequence in a grid track, the order value for box02 would put
it at the end of the sequence. This is depicted in Figure 12-78.

Figure 12-78. Changing grid-item order

Remember that just because you can rearrange the order of
grid items this way doesn’t necessarily mean you should. As the
Grid Layout specification says:

As with reordering flex items, the order property must only
be used when the visual order needs to be out-of-sync with
the speech and navigation order; otherwise the underlying
document source should be reordered instead.

So the only reason to use order to rearrange grid-item layout is
if you need to have the document source in one order and
layout in the other. This is already easily possible by assigning
grid items to areas that don’t match source order.

This is not to say that order is useless and should always be
shunned; there may well be times it makes sense. But unless
you find yourself nearly forced into using it by specific

https://www.w3.org/TR/css-grid-1/#order-property

circumstances, think very hard about whether it’s the best
solution.

TIP

For a formal definition of the order property, see Chapter 11.

Summary

Grid layout is complex and powerful, so don’t be discouraged if
you feel overwhelmed at first. It takes some time to get used to
the way grid operates, especially because so many of its
features are nothing like what we’ve dealt with before. Much of
those features’ power comes directly from their novelty—but
like any powerful tool, grid layout can be difficult and
frustrating to learn to use.

We hope we were able to steer you past some of those pitfalls,
but still, remember the wisdom of Master Yoda: “You must
unlearn what you have learned.” When coming to grid layout,
there has never been greater need to put aside what you think
you know about layout and learn anew. Over time, your
patience and persistence will be rewarded.

Chapter 13. Table Layout in CSS

You may have glanced at this chapter’s title and wondered,
“Table layout? Isn’t that so last millennium?” Indeed so, but this
chapter is not about using tables for layout. Instead, it’s about
the ways that tables themselves are laid out by CSS, which is a
far more complicated affair than it might first appear.

Tables are unusual, compared to the rest of document layout.
Until flexbox and grid came along, tables alone possessed the
unique ability to associate element sizes with other elements—
for example, all the cells in a row have the same height, no
matter how much or how little content each individual cell
might contain. The same is true for the widths of cells that
share a column. Cells that adjoin can share a border, even if the
two cells have very different border styles. As you’ll see, these
abilities are purchased at the expense of a great many
behaviors and rules—many of them rooted deep in the web’s
past—that apply to tables, and only tables.

Table Formatting

Before we can start to worry about how cell borders are drawn
and tables sized, we need to delve into the fundamental ways in

which tables are assembled, and the ways that elements within
a table are related. This is referred to as table formatting, and it
is quite distinct from table layout: the layout is possible only
after the formatting has been completed.

Visually Arranging a Table

The first thing to understand is how CSS defines the
arrangement of tables. While this knowledge may seem basic,
it’s key to understanding how best to style tables.

CSS draws a distinction between table elements and internal
table elements. In CSS, internal table elements generate
rectangular boxes that have content, padding, and borders, but
not margins. Therefore, it is not possible to define the
separation between table cells by giving them margins. A CSS-
conformant browser will ignore any attempts to apply margins
to cells, rows, or any other internal table element (with the
exception of captions, which are discussed in “Using Captions”).

CSS has six basic rules for arranging tables. The basis of these
rules is a grid cell, which is one area between the grid lines on
which a table is drawn. Consider the two tables in Figure 13-1;
their grid cells are indicated by the dashed lines.

Figure 13-1. Grid cells form the basis of table layout

In a simple 2 × 2 table, such as the lefthand table shown in
Figure 13-1, the grid cells correspond to the actual table cells. In
a more complicated table, like the righthand table in Figure 13-
1, some table cells will span multiple grid cells—but note that
every table cell’s edges are placed along a grid-cell edge.

These grid cells are largely theoretical constructs, and they
cannot be styled or even accessed through the DOM. They just
serve as a way to describe how tables are assembled for styling.

Table Arrangement Rules

The six rules of table arrangement are as follows:

Each row box encompasses a single row of grid cells. All the
row boxes in a table fill the table from top to bottom in the
order they occur in the source document (with the exception
of any table-header or table-footer row boxes, which come at
the beginning and end of the table, respectively). Thus, a

table contains as many grid rows as there are row elements
(e.g., <tr> elements).
A row group’s box encompasses the same grid cells as the
row boxes it contains.
A column box encompasses one or more columns of grid cells.
All the column boxes are placed next to one another in the
order they occur. The first column box is on the left for LTR
languages, and on the right for RTL languages.
A column group’s box encompasses the same grid cells as the
column boxes it contains.
Although cells may span several rows or columns, CSS does
not define how this happens. It is instead left to the
document language to define spanning. Each spanned cell is
a rectangular box one or more grid cells wide and high. The
top row of this spanning rectangle is in the row that is the
parent to the spanned grid cell. The cell’s rectangle must be
as far to the left as possible in LTR languages, but it may not
overlap any other cell box. It must also be to the right of all
cells in the same row that are earlier in the source document
(in a LTR language). In RTL languages, a spanned cell must be
as far to the right as possible without overlapping other cells,
and must be to the left of all cells in the same row that follow
it in the document source.

A cell’s box cannot extend beyond the last row box of a table
or row group. If the table structure would cause this
condition, the cell must be shortened until it fits within the
table or row group that encloses it.

NOTE

The CSS specification discourages, but does not prohibit, the positioning of table cells
and other internal table elements. Positioning a row that contains row-spanning
cells, for example, could dramatically alter the layout of the table by removing the
row from the table entirely, thus removing the spanned cells from consideration in
the layout of other rows. Nevertheless, it is quite possible to apply positioning to table
elements in current browsers.

By definition, grid cells are rectangular, but they do not all have
to be the same size. All the grid cells in a given grid column will
be the same width, and all the grid cells in a grid row will be the
same height, but the height of one grid row may be different
from that of another grid row. Similarly, grid columns may be of
different widths.

With those basic rules in mind, a question may arise: how,
exactly, do you know which elements are cells and which are
not?

Setting Table Display Values

In HTML, it’s easy to know which elements are parts of tables
because the handling of elements like <tr> and <td> is built
into browsers. In XML, on the other hand, there is no way to
intrinsically know which elements might be part of a table. This
is where a whole collection of values for display come into
play.

DISPLAY

Values [< display-outside > ‖ < display-in
side >] |
< display-listitem > | < display-in
ternal > | < display-box > |
< display-legacy >

Definitions See below

Initial
value

inline

Applies to All elements

Computed
value

As specified

Inherited No

Animatable No

< display-outside >
block | inline | run-in

< display-inside >
flow | flow-root | table | flex | grid | ruby

< display-listitem >
list-item && < display-outside >? && [flow | flow-
root]?

< display-internal >
table-row-group | table-header-group | table-footer-
group | table-row | table-cell | table-column-group |
table-column | table-caption |
ruby-base | ruby-text | ruby-base-container | ruby-
text-container

< display-box >
contents | none

< display-legacy >
inline-block | inline-list-item | inline-table |
inline-flex | inline-grid

In this chapter, we’ll stick to the table-related values, as the
others are beyond the scope of tables. The table-related values
can be summarized as follows:

table

Defines a block-level table. Thus, it defines a rectangular
block that generates a block box. The corresponding HTML
element is, not surprisingly, <table> .

inline-table

Defines an inline-level table. This means the element defines
a rectangular block that generates an inline box. The closest
non-table analogue is the value inline-block . The closest
HTML element is <table> , although, by default, HTML
tables are not inline.

table-row

Specifies that an element is a row of table cells. The
corresponding HTML element is <tr> .

table-row-group

Specifies that an element groups one or more table rows. The
corresponding HTML value is <tbody> .

table-header-group

Very much like table-row-group , except that for visual
formatting, the header row group is always displayed before
all other rows and row groups, and after any top captions. In
print, if a table requires multiple pages to print, a user agent
may repeat header rows at the top of each page (Firefox does

this, for example). The specification does not define what
happens if you assign table-header-group to multiple
elements. A header group can contain multiple rows. The
HTML equivalent is <thead> .

table-footer-group

Very much like table-header-group , except that the footer
row group is always displayed after all other rows and row
groups, and before any bottom captions. In print, if a table
requires multiple pages to print, a user agent may repeat
footer rows at the bottom of each page. The specification
does not define what happens if you assign table-footer-
group to multiple elements. This is equivalent to the HTML
element <tfoot> .

table-column

Describes a column of table cells. In CSS terms, elements with
this display value are not visually rendered, as if they had
the value none . Their existence is largely for helping to
define the presentation of cells within the column. The HTML
equivalent is <col> .

table-column-group

Groups one or more columns. Like table-column elements,
table-column-group elements are not rendered, but the

value is useful for defining presentation for elements within
the column group. The HTML equivalent is <colgroup> .

table-cell

Represents a single cell in a table. The HTML elements <th>
and <td> are both examples of table-cell elements.

table-caption

Defines a table’s caption. CSS does not define what should
happen if multiple elements have the value caption , but it
does explicitly warn, “Authors should not put more than one
element with display: caption inside a table or inline-
table element.”

You can get a quick summary of the general effects of these
values by taking an excerpt from the example HTML 4.0
stylesheet given in Appendix D of the CSS 2.1 specification:

table {display: table;}
tr {display: table-row;}
thead {display: table-header-group;}
tbody {display: table-row-group;}
tfoot {display: table-footer-group;}
col {display: table-column;}
colgroup {display: table-column-group;}
td, th {display: table-cell;}
caption {display: table-caption;}

In XML, where elements will not have display semantics by
default, these values become quite useful. Consider the
following markup:

<scores>
 <headers>
 <label>Team</label>
 <label>Score</label>
 </headers>
 <game sport="MLB" league="NL">
 <team>
 <name>Reds</name>
 <score>8</score>
 </team>
 <team>
 <name>Cubs</name>
 <score>5</score>
 </team>
 </game>
</scores>

This could be formatted in a tabular fashion by using the
following styles:

scores {display: table;}
headers {display: table-header-group;}
game {display: table-row-group;}
team {display: table-row;}
label, name, score {display: table-cell;}

The various cells could then be styled as necessary—for
example, boldfacing the <label> elements and right-aligning
the <score> s.

Row primacy

CSS defines its table model as row primacy. This model assumes
that authors will use markup languages in which rows are
explicitly declared. Columns, on the other hand, are derived
from the layout of the rows of cells. Thus, the first column is
made up of the first cells in each row; the second column is
made up of the second cells, and so forth.

Row primacy is not a major issue in HTML, because the markup
language is already row-oriented. In XML, row primacy has
more of an impact because it constrains the way authors can
define table markup. Because of the row-oriented nature of the
CSS table model, a markup language in which columns are the

basis of table layout is not really possible (assuming that the
intent is to use CSS to present such documents).

Columns

Although the CSS table model is row oriented, columns do still
play a part in layout. A cell can belong to both contexts (row
and column), even though it is descended from row elements in
the document source. In CSS, however, columns and column
groups can accept only four nontable properties: border ,
background , width , and visibility .

In addition, each of these four properties has special rules that
apply only in the columnar context:

border

Borders can be set for columns and column groups only if the
property border-collapse has the value collapse . In such
circumstances, column and column-group borders
participate in the collapsing algorithm that sets the border
styles at each cell edge. (See “Collapsed Cell Borders”.)

background

The background of a column or column group will be visible
only in cells where both the cell and its row have transparent
backgrounds. (See “Working with Table Layers”.)

width

The width property defines the minimum width of the
column or column group. The content of cells within the
column (or group) may force the column to become wider.

visibility

If the value of visibility for a column or column group is
collapse , none of the cells in the column (or group) are
rendered. Cells that span from the collapsed column into
other columns are clipped, as are cells that span from other
columns into the collapsed column. Furthermore, the overall
width of the table is reduced by the width the column would
have taken up. A declaration of any visibility value other
than collapse is ignored for a column or column group.

Inserting Anonymous Table Objects

A markup language might not contain enough elements to fully
represent tables as they are defined in CSS, or an author could
forget to include all the necessary elements. For example,
consider this HTML:

<table>
 <td>Shirt size:</td>

 <td><select> … </select></td>
</table>

You might glance at this markup and assume that it defines a
two-cell table of a single row, but structurally, there is no
element defining a row (because the <tr> is missing).

To cover such possibilities, CSS defines a mechanism for
inserting “missing” table components as anonymous objects.
For a basic example of how this works, let’s revisit our missing-
row HTML example. In CSS terms, what effectively happens is
that an anonymous table-row object is inserted between the
<table> element and its descendant table cells:

<table>
 <!--anonymous table-row object begins-->
 <td>Name:</td>
 <td><input type="text"></td>
 <!--anonymous table-row object ends-->
</table>

Figure 13-2 shows a visual representation of this process. The
dotted line represents the inserted anonymous table row.

Figure 13-2. Anonymous-object generation in table formatting

Seven kinds of anonymous-object insertions can occur in the
CSS table model. These seven rules are, like inheritance and
specificity, an example of a mechanism that attempts to impose
intuitive sense on the way CSS behaves.

The rules are as follows:

1. If a table-cell element’s parent is not a table-row
element, an anonymous table-row object is inserted
between the table-cell element and its parent. The
inserted object will include all consecutive siblings of the
table-cell element.
The same holds true even if the parent element is a table-
row-group . For example, assume that the following CSS
applies to the XML after it:

system {display: table;}
planet {display: table-row-group;}
name, moons {display: table-cell;}

<system>
 <planet>
 <name>Mercury</name>
 <moons>0</moons>
 </planet>
 <planet>
 <name>Venus</name>
 <moons>0</moons>
 </planet>
</system>

Both sets of cells will be enclosed in an anonymous table-
row object that is inserted between them and the <planet>
elements.

2. If a table-row element’s parent is not a table , inline-
table , or table-row-group element, then an anonymous
table element is inserted between the table-row element
and its parent. The inserted object will include all
consecutive siblings of the table-row element. Consider the
following styles and markup:

docbody {display: block;}
planet {display: table-row;}

<docbody>
 <planet>
 <name>Mercury</name>
 <moons>0</moons>
 </planet>
 <planet>
 <name>Venus</name>
 <moons>0</moons>
 </planet>
</docbody>

Because the display value of the <planet> elements’
parent is block , the anonymous table object is inserted
between the <planet> elements and the <docbody>
element. This anonymous table object will enclose both
<planet> elements, since they are consecutive siblings.

3. If a table-column element’s parent is not a table , inline-
table , or table-column-group element, then an anonymous
table element is inserted between the table-column
element and its parent. This is much the same as the table-
row rule just discussed, except for its column-oriented
nature.

4. If the parent element of a table-row-group , table-header-
group , table-footer-group , table-column-group , or
table-caption element is not a table element, then an

anonymous table object is inserted between the element
and its parent.

5. If a child element of a table or inline-table element is
not a table-row-group , table-header-group , table-
footer-group , table-row , or table-caption element, then
an anonymous table-row object is inserted between the
table element and its child element. This anonymous object
spans all the consecutive siblings of the child element that
are not table-row-group , table-header-group , table-
footer-group , table-row , or table-caption elements.
Consider the following markup and styles:

system {display: table;}
planet {display: table-row;}
name, moons {display: table-cell;}

<system>
 <planet>
 <name>Mercury</name>
 <moons>0</moons>
 </planet>
 <name>Venus</name>
 <moons>0</moons>
</system>

Here, a single anonymous table-row object will be inserted
between the <system> element and the second set of
<name> and <moons> elements. The <planet> element is
not enclosed by the anonymous object because its display is
table-row .

6. If a child element of a table-row-group , table-header-
group , or table-footer-group element is not a table-row
element, an anonymous table-row object is inserted
between the element and its child element. This anonymous
object spans all the consecutive siblings of the child element
that are not table-row objects themselves. Consider the
following markup and styles:

system {display: table;}
planet {display: table-row-group;}
name, moons {display: table-cell;}

<system>
 <planet>
 <name>Mercury</name>
 <moons>0</moons>
 </planet>
 <name>Venus</name>
 <moons>0</moons>
</system>

In this case, each set of <name> and <moons> elements will
be enclosed in an anonymous table-row element. For the
second set, the insertion happens in accord with rule 5. For
the first set, the anonymous object is inserted between the
<planet> element and its children because the <planet>
element is a table-row-group element.

7. If a child element of a table-row element is not a table-
cell element, then an anonymous table-cell object is
inserted between the element and its child element. This
anonymous object encloses all consecutive siblings of the
child element that are not table-cell elements themselves.
Consider the following markup and styles:

system {display: table;}
planet {display: table-row;}
name, moons {display: table-cell;}

<system>
 <planet>
 <name>Mercury</name>
 <num>0</num>
 </planet>
</system>

Because the element <num> does not have a table-related
display value, an anonymous table-cell object is
inserted between the <planet> element and the <num>
element.
This behavior also extends to the encapsulation of
anonymous inline boxes. Suppose that the <num> element is
not included:

<system>
 <planet>
 <name>Mercury</name>
 0
 </planet>
</system>

The 0 would still be enclosed in an anonymous table-cell
object. To further illustrate this point, here is an example
adapted from the CSS specification:

example {display: table-cell;}
row {display: table-row;}
hey {font-weight: 900;}

<example>
 <row>This is the <hey>top</hey> row.</row>

<row>This is the <hey>bottom</hey> row </row>

Within each <row> element, the text fragments and hey
element are enclosed in anonymous table-cell objects.

Working with Table Layers

For the assembly of a table’s presentation, CSS defines six
individual layers on which the various aspects of a table are
placed. Figure 13-3 shows these layers.

 <row>This is the <hey>bottom</hey> row.</row>
</example>

Figure 13-3. The formatting layers used in table presentation

Basically, the styles for each aspect of the table are drawn on
their individual layers. Thus, if the <table> element has a
green background and a 1-pixel black border, those styles are
drawn on the lowest layer. Any styles for the column groups are
drawn on the next layer up, the columns themselves on the
layer above that, and so on. The top layer, which corresponds to
the table cells, is drawn last.

For the most part, this is a logical process; after all, if you
declare a background color for table cells, you would want that

drawn over the background for the table element. The most
important point revealed by Figure 13-3 is that column styles
come below row styles, so a row’s background will overwrite a
column’s background.

It is important to remember that by default, all elements have
transparent backgrounds. Thus, in the following markup, the
table element’s background will be visible “through” cells, rows,
columns, and so forth that do not have a background of their
own, as illustrated in Figure 13-4:

<table style="background: #B84;">
 <tr>
 <td>hey</td>
 <td style="background: #ABC;">there</td>
 </tr>
 <tr>
 <td>what’s</td>
 <td>up?</td>
 </tr>
 <tr style="background: #CBA;">
 <td>not</td>
 <td style="background: #ECC;">much</td>
 </tr>
</table>

Figure 13-4. Seeing the background of table-formatting layers through other layers

Using Captions

A table caption is about what you’d expect: a short bit of text
that describes the nature of the table’s contents. A chart of stock
quotes for the fourth quarter of 2026, therefore, might have a
caption element whose contents read “Q4 2026 Stock
Performance.” With the property caption-side , you can place
this element either above or below the table, regardless of
where the caption appears in the table’s structure. (In HTML5,
the <caption> element can appear only as the first child of a
<table> element, but other languages may have different
rules.)

CAPTION-SIDE

Values top | bottom

Initial
value

top

Applies to Elements with the display value tabl
e-caption

Computed
value

As specified

Inherited Yes

Animatable No

Note The values left and right appeared
in CSS2, but were dropped from CSS2.1
because of a lack of widespread support

Captions are a bit odd, at least in visual terms. The CSS
specification states that a caption is formatted as if it were a

block box placed immediately before (or after) the table’s box,
with one exception: the caption can still inherit values from the
table.

A simple example should suffice to illustrate most of the
important aspects of caption presentation. Consider the
following, illustrated in Figure 13-5:

The text in each <caption> element inherits the color value
white from the table, while the caption gets its own
background. The separation between each table’s outer border
edge and the caption’s outer margin edge is 1 em, as the
margins of the table and the caption have collapsed. Finally, the
width of the caption is based on the content width of the
<table> element, which is considered to be the containing
block of the caption.

table {color: white; background: #840; margin: 0.5em
caption {background: #B84; margin: 1em 0;}
table.one caption {caption-side: top;}
table.two caption {caption-side: bottom;}
td {padding: 0.5em;}

Figure 13-5. Styling captions and tables

For the most part, captions are styled just like any block-level
element: they can be padded, have borders, be given
backgrounds, and so on. For example, if we need to change the
horizontal alignment of text within the caption, we use the
property text-align . Thus, to right-align the caption in the
previous example, we would write this:

caption {background: gray; margin: 1em 0;
 caption-side: top; text-align: right;}

Table Cell Borders

CSS has two quite distinct table-border models. The separated
border model takes effect when cells are separated from each
other in layout terms. The collapsed border model has no visual
separation between cells, and cell borders merge or collapse
into one another. The former is the default model, but you can
choose between the two models with the property border-
collapse .

BORDER-COLLAPSE

Values collapse | separate | inherit

Initial
value

separate

Applies to Elements with the display value tabl
e or table-inline

Inherited Yes

Computed
value

As specified

Note In CSS2, the default was collapse

The whole point of this property is to offer a way to determine
which border model the user agent will employ. If the value
collapse is in effect, the collapsed border model is used. If the
value is separate , the separated border model is used. We’ll

look at the latter model first, since it’s much easier to describe
and is the default.

Separated Cell Borders

In the separated border model, every cell in the table is
separated from the other cells by some distance, and the
borders of cells do not collapse into one another. Thus, given
the following styles and markup, you should get the result
shown in Figure 13-6:

<table cellspacing="0">
 <tr>
 <td>cell one</td>
 <td>cell two</td>
 </tr>
 <tr>
 <td>cell three</td>
 <td>cell four</td>
 </tr>
</table>

td {border: 3px double black; padding: 3px;}
tr:nth-child(2) td:nth-child(2) {border-color: gray;}

Note that the cell borders touch but remain distinct from one
another. The three lines between cells are actually the two
double borders sitting right next to each other; the gray border
around the fourth cell helps make this more clear.

Figure 13-6. Separated (and thus separate) cell borders

The HTML attribute cellspacing is included in the preceding
example to make sure the cells have no separation between
them, but its presence is likely a bit troubling. After all, if you
can define borders as separate, there ought to be a way to use
CSS to alter the spacing between cells. Fortunately, there is.

Applying border spacing

Once you’ve separated the table cell borders, you might want
those borders to be separated by a certain distance. This can be
easily accomplished with the property border-spacing , which
provides a more powerful replacement for the HTML attribute
cellspacing .

BORDER-SPACING

Values < length > < length >?

Initial
value

0

Applies to Elements with the display value table
or table-inline

Computed
value

Two absolute lengths

Inherited Yes

Animatable Yes

Note Property is ignored unless border-col
lapse value is separate

Either one or two lengths can be given for the value of this
property. If you want all your cells separated by a single pixel,

border-spacing: 1px; will suffice. If, on the other hand, you
want cells to be separated by 1 pixel horizontally and 5 pixels
vertically, write border-spacing: 1px 5px; . If two lengths are
supplied, the first is always the horizontal separation, and the
second is always the vertical.

The spacing values are also applied between the borders of cells
along the outside of a table and the padding on the table
element itself. Given the following styles, you would get a result
like that shown in Figure 13-7:

Figure 13-7 displays a space 5 pixels wide between the borders
of any two horizontally adjacent cells, and 17 pixels of space
between the borders of the right- and leftmost cells and the
right and left borders of the <table> element. Similarly, the
borders of vertically adjacent cells are 8 pixels apart, and the
borders of the cells in the top and bottom rows are 20 pixels
from the top and bottom borders of the table, respectively. The

table {border-collapse: separate; border-spacing: 5px
padding: 12px; border: 2px solid black;}
td { border: 1px solid gray;}
td#squeeze {border-width: 5px;}

separation between cell borders is constant throughout the
table, regardless of the border widths of the cells themselves.

Note also that declaring a border-spacing value is done on the
table itself, not on the individual cells. If border-spacing had
been declared for the <td> elements in the previous example,
it would have been ignored.

Figure 13-7. Border spacing effects between cells and their enclosing table

In the separated border model, borders cannot be set for rows,
row groups, columns, and column groups. Any border
properties declared for such elements must be ignored by a
CSS-conformant user agent.

Handling empty cells

Because every cell is, in a visual sense, distinct from all the
other cells in the table, what do you do with cells that are empty
(i.e., have no content)? You have two choices, which are
reflected in the values of the empty-cells property.

EMPTY-CELLS

Values show | hide

Initial
value

show

Applies to Elements with the display value tabl
e-cell

Computed
value

As specified

Inherited Yes

Animatable No

Note Property is ignored unless border-col
lapse value is separate

If empty-cells is set to show , the borders and background of
an empty cell will be drawn, just as with table cells that have

content. If the value is hide , no part of the cell is drawn, as if
the cell were set to visibility: hidden .

If a cell contains any content, it cannot be considered empty.
Content, in this case, includes not only text, images, form
elements, and so on, but also the nonbreaking space entity
() and any other whitespace except the carriage return
(CR), line feed (LF), tab, and space characters. If all the cells in a
row are empty, and all have an empty-cells value of hide ,
the entire row is treated as if the row element were set to
display: none .

Collapsed Cell Borders

While the collapsed border model largely describes how HTML
tables have always been laid out when they don’t have any cell
spacing, it is quite a bit more complicated than the separated
borders model. The following rules set collapsing cell borders
apart from the separated borders model:

Elements with a display of table or inline-table cannot
have any padding when border-collapse is collapse ,
although they can have margins. Thus, separation never
occurs between the border around the outside of the table

and the edges of its outermost cells in the collapsed border
model.
Borders can be applied to cells, rows, row groups, columns,
and column groups. A table itself can, as always, have a
border.
Separation never exists between cell borders in the collapsed
border model. In fact, borders collapse into each other where
they adjoin, so that only one of the collapsing borders is
actually drawn. This is somewhat akin to margin collapsing,
where the largest margin wins. When cell borders collapse,
the “most interesting” border wins.
Once they are collapsed, the borders between cells are
centered on the hypothetical grid lines between the cells.

We’ll explore the last two points in more detail in the next two
sections.

Collapsing border layout

To better understand how the collapsed border model works,
let’s look at the layout of a single table row, as shown in
Figure 13-8.

The padding and content width of each cell is inside the
borders, as expected. For the borders between cells, half of the
border is to one side of the grid line between two cells, and the

other half is to the other side. In each case, only a single border
is drawn along each cell edge. You might think that half of each
cell’s border is drawn to each side of the grid line, but that’s not
what happens.

Figure 13-8. The layout of a table row using the collapsing borders model

For example, assume that the solid borders on the middle cell
are green and the solid borders on the outer two cells are red.
The borders on the right and left sides of the middle cell (which
collapse with the adjacent borders of the outer cells) will be all
green, or all red, depending on which border wins out. We’ll
discuss how to tell which one wins in the next section.

You may have noticed that the outer borders protrude past the
table’s width. This is because in this model, half the table’s
borders are included in the width. The other half stick out
beyond that distance, sitting in the margin itself. This might
seem a bit weird, but that’s how the model is defined to work.

The specification includes a layout formula reproduced here for
the benefit of those who enjoy such things:

row width = (0.5 × border-width-0) + padding-left-1 + width-1 +
padding-right-1 + border-width-1 + padding-left-2 +...+ padding-
right-n + (0.5 × border-width-n)

Each border-width - n refers to the border between cell n and
the next cell; thus, border-width-3 refers to the border
between the third and fourth cells. The value n stands for the
total number of cells in the row.

This mechanism has a slight exception. When beginning the
layout of a collapsed-border table, the user agent computes an
initial left and right border for the table itself. It does this by
examining the left border of the first cell in the first row of the
table and by taking half of that border’s width as the table’s
initial left border width. The user agent then examines the right
border of the last cell in the first row and uses half that width to

set the table’s initial right border width. For any row after the
first, if the left or right border is wider than the initial border
widths, it sticks out into the margin area of the table.

If a border is an odd number of display elements (pixels,
printer dots, etc.) wide, the user agent is left to decide what to
do about centering the border on the grid line. The user agent
might shift the border so that it is slightly off-center, round up
or down to an even number of display elements, use anti-
aliasing, or adjust anything else that seems reasonable.

Border collapsing

When two or more borders are adjacent, they collapse into each
other. In fact, they don’t collapse so much as fight it out to see
which will gain supremacy over the others. Strict rules govern
which borders will win and which will not:

If one of the collapsing borders has a border-style of
hidden , it takes precedence over all other collapsing
borders. All borders at this location are hidden.
If all the borders are visible, wider borders take precedence
over narrower ones. Thus, if a 2-pixel dotted border and a 5-
pixel double border collapse, the border at that location will
be a 5-pixel double border.

If all collapsing borders have the same width but different
border styles, the border style is taken in the following order,
from most to least preferred: double , solid , dashed ,
dotted , ridge , outset , groove , inset , none . Thus, if two
borders with the same width are collapsing, and one is
dashed while the other is outset , the border at that
location will be dashed.
If collapsing borders have the same style and width, but
differ in color, the color used is taken from an element in the
following list, from most preferred to least: cell, row, row
group, column, column group, table. Thus, if the borders of a
cell and a column (identical in every way except color)
collapse, the cell’s border color (and style and width) will be
used. If the collapsing borders come from the same type of
element, such as two row borders with the same style and
width but different colors, the color is taken from borders
that are closer to the block-start and inline-start edges of the
element.

The following styles and markup, presented in Figure 13-9, help
illustrate each of the four rules:

table {border-collapse: collapse;
border: 3px outset gray;}
td {border: 1px solid gray; padding: 0.5em;}

#r2c1, #r2c2 {border-style: hidden;}
#r1c1, #r1c4 {border-width: 5px;}
#r2c4 {border-style: double; border-width: 3px;}
#r3c4 {border-style: dotted; border-width: 2px;}
#r4c1 {border-bottom-style: hidden;}
#r4c3 {border-top: 13px solid silver;}

<table>
 <tr>
 <td id="r1c1">1-1</td>
 <td id="r1c2">1-2</td>
 <td id="r1c3">1-3</td>
 <td id="r1c4">1-4</td>
 </tr>
 <tr>
 <td id="r2c1">2-1</td>
 <td id="r2c2">2-2</td>
 <td id="r2c3">2-3</td>
 <td id="r2c4">2-4</td>
 </tr>
 <tr>
 <td id="r3c1">3-1</td>
 <td id="r3c2">3-2</td>
 <td id="r3c3">3-3</td>
 <td id="r3c4">3-4</td>
 </tr>
 <tr>
 <td id="r4c1">4-1</td>

 <td id="r4c2">4-2</td>
 <td id="r4c3">4-3</td>
 <td id="r4c4">4-4</td>
 </tr>
</table>

Figure 13-9. Manipulating border widths, styles, and colors leads to some unusual
results

Let’s consider what happens for each of the cells, in turn:

For cells 1-1 and 1-4, the 5-pixel borders are wider than any
of their adjacent borders, so they win out not only over
adjoining cell borders, but over the border of the table itself.

The only exception is the bottom of cell 1-1, which is
suppressed.
The bottom border on cell 1-1 is suppressed because cells 2-1
and 2-2, with their explicitly hidden borders, completely
remove any borders from the edge of the cells. Again, the
table’s border loses out (on the left edge of cell 2-1) to a cell’s
border. The bottom border of cell 4-1 is also hidden, and so it
prevents any border from appearing below the cell.
The 3-pixel double border of cell 2-4 is overridden on top by
the 5-pixel solid border of cell 1-4. Cell 2-4’s border, in turn,
overrides the border between itself and cell 2-3 because it is
both wider and “more interesting.” Cell 2-4 also overrides the
border between itself and cell 3-4, even though both are the
same width, because 2-4’s double style is defined to be “more
interesting” than 3-4’s dotted border.
The 13-pixel bottom silver border of cell 3-3 not only
overrides the top border of cell 4-3, but it also affects the
layout of content within both cells and the rows that contain
both cells.
For cells along the outer edge of the table that aren’t specially
styled, their 1-pixel solid borders are overridden by the 3-
pixel outset border on the table element itself.

This is, in fact, about as complicated as it sounds, although the
behaviors are largely intuitive and make a little more sense

with practice. It’s worth noting that the basic Netscape 1.1-era
table presentation can be captured with a fairly simple set of
rules:

Yes, tables were made to look 3D-ish by default when they
debuted. It was a different time.

Table Sizing

Now that we’ve dug into the guts of table formatting and cell
border appearance, you have the pieces you need to
understand the sizing of tables and their internal elements.
When it comes to determining table width, CSS has two
approaches: fixed-width layout and automatic-width layout.
Table heights are calculated automatically, no matter what
width algorithms are used.

Width

Since there are two ways to figure out the width of a table, it’s
only logical that there is a way to declare which should be used

table {border-collapse: collapse; border: 2px outset
td {border: 1px inset gray;}

for a given table. You can use the property table-layout to
select between the two kinds of table width calculations.

TABLE-LAYOUT

Values auto | fixed

Initial
value

auto

Applies to Elements with the display value tabl
e or inline-table

Computed
value

As specified

Inherited Yes

Animatable No

While the two models can have different results in laying out a
given table, the fundamental difference between the two is that

of speed. With a fixed-width table layout, the user agent can
calculate the layout of the table more quickly than is possible in
the automatic-width model.

Fixed layout

The main reason the fixed-layout model is so fast is that its
layout does not fully depend on the contents of table cells.
Instead, it’s driven by the width values of the table, its column
elements, and the cells of the first row within that table.

The fixed-layout model works in the following steps:

Any column element whose width property has a value
other than auto sets the width for that entire column.

If a column has an auto width, but the cell in the first row
of the table within that column has a width other than
auto , the cell sets the width for that entire column. If the
cell spans multiple columns, the width is divided between
the columns.
Any columns that are still auto-sized are sized so that their
widths are as equal as possible.

At that point, the width of the table is set to be either the value
of width for the table or the sum of the column widths,
whichever is greater. If the table turns out to be wider than its

columns, the difference is divided by the number of columns
and the result is added to each of them.

This approach is fast because all of the column widths are
defined by the first row of the table. The cells in any rows that
come after the first are sized according to the column widths
that were defined by the first row. The cells in those following
rows do not—indeed, cannot—change column widths, which
means that any width value assigned to those cells will be
ignored. If a cell’s content does not fit into its cell, the overflow
value for the cell determines whether the cell contents are
clipped, visible, or generate a scrollbar.

Let’s consider the following styles and markup, which are
illustrated in Figure 13-10:

table {table-layout: fixed; width: 400px;
 border-collapse: collapse;}
td {border: 1px solid;}
col#c1 {width: 200px;}
#r1c2 {width: 75px;}
#r2c3 {width: 500px;}

<table>
 <colgroup> <col id="c1"><col id="c2"><col id="c3"
 <tr>

Figure 13-10. Fixed-width table layout

The first column is 200 pixels wide, which happens to be half
the 400-pixel width of the table. The second column is 75 pixels
wide, because the first-row cell within that column has been
assigned an explicit width. The third and fourth columns are

 <td id="r1c1">1-1</td>
 <td id="r1c2">1-2</td>
 <td id="r1c3">1-3</td>
 <td id="r1c4">1-4</td>
 </tr>
 <tr>
 <td id="r2c1">2-1</td>

 <td id="r2c2">2-2</td>
 <td id="r2c3">2-3</td>
 <td id="r2c4">2-4</td>
 </tr>
 (…more rows here…)
</table>

each 61 pixels wide. Why? Because the sum of the column
widths for the first and second columns (275 pixels), plus the
various borders between columns (3 pixels), equals 278 pixels.
Then, 400 minus 278 is 122, and that divided in half is 61, so
that’s how many pixels wide the third and fourth columns will
be. What about the 500-pixel width for #r2c3 ? It’s ignored
because that cell isn’t in the first row of the table.

Note that the table doesn’t need to have an explicit width value
to use the fixed-width layout model, although it definitely helps.
For example, given the following, a user agent could calculate a
width for the table that is 50 pixels narrower than the parent
element’s width. It would then use that calculated width in the
fixed-layout algorithm:

This is not required, however. User agents are also permitted to
lay out any table with an auto value for width by using the
automatic-width layout model.

Automatic layout

table {table-layout: fixed; margin: 0 25px; width: au

The automatic-width layout model, while not as fast as fixed
layout, is probably much more familiar to you because it’s
substantially the same model that HTML tables have used since
their inception. In most current browsers, use of this model will
be triggered by a table having a width of auto , regardless of
the value of table-layout , although this is not assured.

The reason automatic layout is slower is that the table cannot
be laid out until the user agent has looked at all of the content
in the table. The user agent must lay out the entire table in a
fashion that takes the contents and styles of every cell into
account. This generally requires the user agent to perform some
calculations and then go back through the table to perform a
second set of calculations (if not more).

The content has to be fully examined because, as with HTML
tables, the table’s layout is dependent on the content in all the
cells. If a 400-pixel-wide image is in a cell in the last row, that
content will force all of the cells above it (those in the same
column) to be at least 400 pixels wide. Thus, the width of every
cell has to be calculated, and adjustments must be made
(possibly triggering another round of content-width
calculations) before the table can be laid out.

The details of the model can be expressed in the following
steps:

1. For each cell in a column, calculate both the minimum and
maximum cell width.
1. Determine the minimum width required to display the

content. In determining this minimum content width, the
content can flow to any number of lines, but it may not
stick out of the cell’s box. If the cell has a width value that
is larger than the minimum possible width, the minimum
cell width is set to the value of width . If the cell’s width
value is auto , the minimum cell width is set to the
minimum content width.

2. For the maximum width, determine the width required to
display the content without any line breaking other than
that forced by explicit line breaking (e.g., the

element). That value is the maximum cell width.

2. For each column, calculate both the minimum and maximum
column width.
1. The column’s minimum width is determined by the largest

minimum cell width of the cells within the column. If the
column has been given an explicit width value that is
larger than any of the minimum cell widths within the
column, the minimum column width is set to the value of
width .

2. For the maximum width, take the largest maximum cell
width of the cells within the column. If the column has
been given an explicit width value that is larger than any
of the maximum cell widths within the column, the
maximum column width is set to the value of width .
These two behaviors re-create the traditional HTML table
behavior of forcibly expanding any column to be as wide
as its widest cell.

3. If a cell spans more than one column, the sum of the
minimum column widths must be equal to the minimum cell
width for the spanning cell. Similarly, the sum of the
maximum column widths has to equal the spanning cell’s
maximum width. User agents should divide any changes in
column widths equally among the spanned columns.

In addition, the user agent must take into account that when a
column has a percentage value for its width, the percentage is
calculated in relation to the width of the table—even though the
user agent doesn’t yet know what that will be! It instead has to
hang on to the percentage value and use it in the next part of
the algorithm.

At this point, the user agent will have figured how wide or
narrow each column can be. With that information in hand, it

can then proceed to actually figuring out the width of the table.
This happens as follows:

1. If the computed width of the table is not auto , the computed
table width is compared to the sum of all the column widths
plus any borders and cell spacing. (Columns with percentage
widths are likely calculated at this time.) The larger of the
two is the final width of the table. If the table’s computed
width is larger than the sum of the column widths, borders,
and cell spacing, then the difference is divided by the
number of columns and the result is added to each of them.

2. If the computed width of the table is auto , the final width of
the table is determined by adding up the column widths,
borders, and cell spacing. This means that the table will be
only as wide as needed to display its content, just as with
traditional HTML tables. Any columns with percentage
widths use that percentage as a constraint—but one that a
user agent does not have to satisfy.

Once the last step is completed, then—and only then—can the
user agent actually lay out the table.

The following styles and markup, presented in Figure 13-11,
help illustrate how this process works:

table {table-layout: auto; width: auto;
 border-collapse: collapse;}
td {border: 1px solid; padding: 0;}
col#c3 {width: 25%;}
#r1c2 {width: 40%;}
#r2c2 {width: 50px;}
#r2c3 {width: 35px;}
#r4c1 {width: 100px;}
#r4c4 {width: 1px;}

<table>
 <colgroup> <col id="c1"><col id="c2"><col id="c3"

 <tr>
 <td id="r1c1">1-1</td>
 <td id="r1c2">1-2</td>
 <td id="r1c3">1-3</td>
 <td id="r1c4">1-4</td>
 </tr>
 <tr>
 <td id="r2c1">2-1</td>
 <td id="r2c2">2-2</td>
 <td id="r2c3">2-3</td>
 <td id="r2c4">2-4</td>
 </tr>
 <tr>
 <td id="r3c1">3-1</td>
 <td id="r3c2">3-2</td>

Figure 13-11. Automatic table layout

Let’s consider what happens for each of the columns, in turn:

For the first column, the only explicit cell or column width is
that of cell 4-1, which is given a width of 100px . Because the
content is so short, both the minimum and maximum column
widths are set to 100px . (If a cell in the column had several

 <td id="r3c3">3-3</td>
 <td id="r3c4">3-4</td>
 </tr>
 <tr>
 <td id="r4c1">4-1</td>
 <td id="r4c2">4-2</td>
 <td id="r4c3">4-3</td>
 <td id="r4c4">4-4</td>
 </tr>
</table>

sentences of text, it would have increased the maximum
column width to whatever width necessary to display all of
the text without line breaking.)
For the second column, two width s are declared: cell 1-2 is
given a width of 40% , and cell 2-2 is given a width of 50px .
The minimum width of this column is 50px , and the
maximum width is 40% of the final table width.
For the third column, only cell 3-3 has an explicit width
(35px), but the column itself is given a width of 25% .
Therefore, the minimum column width is 35 pixels, and the
maximum width is 25% of the final table width.
For the fourth column, only cell 4-4 is given an explicit width
(1px). This is smaller than the minimum content width, so
both the minimum and maximum column widths are equal
to the minimum content width of the cells. This turns out to
be a computed 22 pixels, so the minimum and maximum
widths are both 22 pixels.

The user agent now knows that the four columns have
minimum and maximum widths as follows, in order:

1. Minimum 100 pixels, maximum 100 pixels
2. Minimum 50 pixels, maximum 40%
3. Minimum 35 pixels, maximum 25%
4. Minimum 22 pixels, maximum 22 pixels

The table’s minimum width is the sum of all the column
minimums, plus the borders collapsed between the columns,
which totals 215 pixels. The table’s maximum width is 123px +
65% , where the 123px comes from the first and last columns
and their shares of the collapsed borders. This maximum works
out to be 351.42857142857143 pixels (given that 123px
represents 35% of the overall table width). With this number in
hand, the second column will be 140.5 pixels wide, and the
third column will be 87.8 pixels wide. These may be rounded by
the user agent to whole numbers such as 141px and 88px , or
not, depending on the exact rendering method used. (These are
the numbers used in Figure 13-11.)

Note that user agents are not required to actually use the
maximum value; they may choose another course of action.

This is (although it may not seem like it) a comparatively simple
and straightforward example: all of the content is basically the
same width, and most of the declared widths are pixel lengths.
If a table contains images, paragraphs of text, form elements,
and so forth, the process of figuring out the table’s layout is
likely to be a great deal more complicated.

Height

After all of the effort expended in figuring out the width of the
table, you might well wonder how much more complicated
height calculation will be. Actually, in CSS terms, it’s pretty
simple, although browser developers probably don’t think so.

The easiest situation to describe is one in which the table height
is explicitly set via the height property. In such cases, the
height of the table is defined by the value of height . This
means that a table may be taller or shorter than the sum of its
row heights. Note that height is treated much more like min-
height for tables, so if you define a height value that’s smaller
than the sum total of the row heights, it may appear to be
ignored.

By contrast, if the height value of a table is greater than the
total of its row heights, the specification explicitly refuses to
define what should happen, instead noting that the issue may
be resolved in future versions of CSS. A user agent could
expand the table’s rows to fill out its height, or leave blank
space inside the table’s box, or something completely different.
It’s up to each user agent to decide.

NOTE

As of mid-2022, the most common behavior of user agents is to increase the heights
of the rows in a table to fill out its overall height. This is accomplished by taking the
difference between the table height and the sum of the row heights, dividing it by the
number of rows, and applying the resulting amount to each row.

If the height of the table is auto , its height is the sum of the
heights of all the rows within the table, plus any borders and
cell spacing. To determine the height of each row, the user agent
goes through a process similar to that used to find the widths of
columns: it calculates a minimum and maximum height for the
contents of each cell and then uses these to derive a minimum
and maximum height for the row. After having done this for all
the rows, the user agent figures out what each row’s height
should be, stacks them all on top of one another, and uses the
total to determine the table’s height.

In addition to what to do about tables with explicit heights and
how to treat row heights within them, you can add the
following to the list of things CSS does not define:

The effect of a percentage height for table cells
The effect of a percentage height for table rows and row
groups

How a row-spanning cell affects the heights of the rows that
are spanned, except that the rows have to contain the
spanning cell

As you can see, height calculations in tables are largely left up
to user agents to figure out. Historical evidence would suggest
that this will lead to each user agent doing something different,
so you should probably avoid setting table heights as much as
possible.

Alignment

In a rather interesting turn of events, alignment of content
within cells is a lot better defined than cell and row heights.
This is true even for vertical alignment, which can quite easily
affect the height of a row.

Horizontal alignment is the simplest. To align content within a
cell, you use the text-align property. In effect, the cell is
treated as a block-level box, and all of the content within it is
aligned as per the text-align value.

To vertically align content in a table cell, vertical-align is the
relevant property. It uses many of the same values that are used
for vertically aligning inline content, but the meanings of those

values change when applied to a table cell. To summarize the
three simplest cases:

top

The top of the cell’s content is aligned with the top of its row;
in the case of row-spanning cells, the top of the cell’s content
is aligned with the top of the first row it spans.

bottom

The bottom of the cell’s content is aligned with the bottom of
its row; in the case of row-spanning cells, the bottom of the
cell’s content is aligned with the bottom of the last row it
spans.

middle

The middle of the cell’s content is aligned with the middle of
its row; in the case of row-spanning cells, the middle of the
cell’s content is aligned with the middle of all the rows it
spans.

These are illustrated in Figure 13-12, which uses the following
styles and markup:

table {table-layout: auto; width: 20em;
border-collapse: separate; border-spacing: 3px;}
td {border: 1px solid; background: silver;

 padding: 0;}
div {border: 1px dashed gray; background: white;}
#r1c1 {vertical-align: top; height: 10em;}
#r1c2 {vertical-align: middle;}
#r1c3 {vertical-align: bottom;}

<table>
 <tr>
 <td id="r1c1">
 <div>The contents of this cell are top-aligned.
 </td>
 <td id="r1c2">
 <div>The contents of this cell are middle-align
 </td>
 <td id="r1c3">
 <div>The contents of this cell are bottom-align
 </td>
 </tr>
</table>

Figure 13-12. Vertical alignment of cell contents

In each case, the alignment is carried out by automatically
increasing the padding of the cell itself to achieve the desired
effect. In the first cell in Figure 13-12, the bottom padding of the
cell has been changed to equal the difference between the
height of the cell’s box and the height of the content within the
cell. For the second cell, the top and bottom padding of the cell
have been reset to be equal, thus vertically centering the
content of the cell. In the last cell, the cell’s top padding has
been altered.

The fourth possible alignment value is baseline , and it’s a
little more complicated than the first three:

baseline

The baseline of the cell is aligned with the baseline of its row;
in the case of row-spanning cells, the baseline of the cell is
aligned with the baseline of the first row it spans.

It’s easiest to provide an illustration (Figure 13-13) and then
discuss what’s happening.

Figure 13-13. Baseline alignment of cell contents

A row’s baseline is defined by the lowest initial cell baseline
(that is, the baseline of the first line of text) out of all its cells.
Thus, in Figure 13-13, the row’s baseline is defined by the third
cell, which has the lowest initial baseline. The first two cells
then have the baseline of their first line of text aligned with the
row’s baseline.

As with top, middle, and bottom alignment, the placement of
baseline-aligned cell content is accomplished by altering the top
and bottom padding of the cells. If none of the cells in a row are

baseline-aligned, the row does not even have a baseline—it
doesn’t really need one.

The detailed process for aligning cell contents within a row is as
follows:

If any of the cells are baseline-aligned, the row’s baseline is
determined and the content of the baseline-aligned cells is
placed.

Any top-aligned cell has its content placed. The row now
has a provisional height, which is defined by the lowest
cell bottom of the cells that have already had their content
placed.
If any remaining cells are middle- or bottom-aligned, and
the content height is taller than the provisional row height,
the height of the row is increased to enclose the tallest of
those cells.
All remaining cells have their content placed. In any cell
whose contents are shorter than the row height, the cell’s
padding is increased in order to match the height of the
row.

The vertical-align values sub , super , text-top , and
text-bottom are supposed to be ignored when applied to table

cells. Instead, they seem to be treated as if they are baseline ,
or possibly top .

Summary

Even if you’re quite familiar with table layout from years of
table-and-spacer design, it turns out that the mechanisms
driving such layout are rather complicated. Thanks to the
legacy of HTML table construction, the CSS table model is row-
centric, but it does, thankfully, accommodate columns and
limited column styling. Thanks to new abilities to affect cell
alignment and table width, you now have even more tools for
presenting tables in a pleasing way.

The ability to apply table-related display values to arbitrary
elements opens the door to creating table-like layouts by using
HTML elements such as <div> and <section> , or by using
XML languages that allow you to use any element to describe
table components.

Chapter 14. Fonts

The “Font Properties” section of the CSS1 specification, written
in 1996, begins with this sentence: “Setting font properties will
be among the most common uses of style sheets.” Despite the
awareness of font’s importance from the very beginning of CSS,
it wasn’t until about 2009 that this capability really began to be
widely and consistently supported. With the introduction of
variable fonts, typography on the web has become an art form.
While you can include any fonts you are legally allowed to
distribute in your design, you have to pay attention to how you
use them.

It’s important to remember this does not grant absolute control
over fonts. If the font you’re using fails to download, or is in a
file format the user’s browser doesn’t understand, the text will
(eventually) be displayed with a fallback font. That’s a good
thing, as it means the user still gets your content.

While fonts may seem vital to a design, always bear in mind
you can’t depend on the presence of a given font. If a font is
slow to load, browsers generally delay text rendering. While
that prevents text being redrawn while a user is reading, it’s
bad to have no text on the page.

Your font choice may also be overridden by user preference, or
a browser extension meant to enhance the reading experience.
An example is the browser extension OpenDyslexic, which
“overrides all fonts on web pages with the OpenDyslexic font,
and formats pages to be more easily readable.” In general,
always design assuming your fonts will be delayed and even fail
altogether.

Font Families

What we think of as a “font” is usually composed of many
variations to describe bold text, italic text, bold italic text, and
so on. For example, you’re probably familiar with (or at least
have heard of) the font Times. Times is actually a combination
of many variants, including TimesRegular, TimesBold,
TimesItalic, TimesBoldItalic, and so on. Each variant of Times is
an actual font face, and Times, as we usually think of it, is a
combination of all these variant faces. In other words, system-
standard fonts like Times are actually a font family, not just a
single font, even though most of us think about fonts as being
single entities.

With such font families, a separate file is required for each
width, weight, and style combination (that is, each font face),

meaning you can have upward of 20 separate files for a
complete typeface. Variable fonts, on the other hand, are able to
store multiple variants, such as regular, bold, italic, and bold
italic, in a single file. Variable font files are generally a little bit
larger (maybe just a few kilobytes) than any single font face file,
but smaller than the multiple files required of a regular font,
and require only a single HTTP request.

To cover all the bases, CSS defines five generic font families:

Serif fonts
Serif fonts are proportional and have serifs. A font is
proportional if all characters in the font have different
widths. For example, a lowercase i and a lowercase m take up
different horizontal spaces because they have different
widths. (This book’s paragraph font is proportional, for
example.) Serifs are the decorations on the ends of strokes
within each character, such as little lines at the top and
bottom of a lowercase l, or at the bottom of each leg of an
uppercase A. Examples of serif fonts are Times, Georgia, and
New Century Schoolbook.

Sans-serif fonts
Sans-serif fonts are proportional and do not have serifs.
Examples of sans-serif fonts are Helvetica, Geneva, Verdana,

Arial, and Univers.

Monospace fonts
Monospace fonts are not proportional. Rather, each character
uses up the same amount of horizontal space as all the
others; thus, a lowercase i takes up the same horizontal space
as a lowercase m, even though their actual letterforms may
have different widths. These generally are used for
displaying programmatic code or tabular data, like this
book’s code font, for example. If a font has uniform character
widths, it is classified as monospace, regardless of whether it
has serifs. Examples of monospace fonts are Courier, Courier
New, Consolas, and Andale Mono.

Cursive fonts
Cursive fonts attempt to emulate human handwriting or
lettering. Usually, they are composed largely of flowing
curves and have stroke decorations that exceed those found
in serif fonts. For example, an uppercase A might have a
small curl at the bottom of its left leg or be composed entirely
of swashes and curls. Examples of cursive fonts are Zapf
Chancery, Author, and Comic Sans.

Fantasy fonts

Fantasy fonts are not really defined by any single
characteristic other than our inability to easily classify them
in one of the other families (these are sometimes called
decorative or display fonts). A few such fonts are Western,
Woodblock, and Klingon.

Your operating system and browser will have a default font
family for each of these generic families. Fonts a browser
cannot classify as serif, sans-serif, monospace, or cursive are
generally considered fantasy. While most font families fall into
one of these generic families, not all do. For example, SVG icon
fonts, dingbat fonts, and Material Icons Round contain images
rather than letters.

Using Generic Font Families

You can call on any available font family by using the property
font-family .

FONT-FAMILY

Values [< family-name > | < generic-fa

mily >]#

Initial value User-agent specific

Applies to All elements

Computed value As specified

@font-face
equivalent

font-family

Inherited Yes

Animatable No

If you want a document to use a sans-serif font but do not
particularly care which one, the appropriate declaration would
be as follows:

body {font-family: sans-serif;}

This will cause the user agent to pick a sans-serif font family
(such as Helvetica) and apply it to the <body> element. Thanks
to inheritance, the same font family choice will be applied to all
visible elements that descend from the <body> , unless
overridden by the user agent. User agents generally apply a
font-family property to some elements, such as monospace in
the case of <code> and <pre> , or a system font to some form-
input controls.

Using nothing more than these generic families, you can create
a fairly sophisticated stylesheet. The following rule set is
illustrated in Figure 14-1:

body {font-family: serif;}
h1, h2, h3, h4 {font-family: sans-serif;}
code, pre, kbd {font-family: monospace;}
p.signature {font-family: cursive;}

Thus, most of this document will use a serif font such as Times,
including all paragraphs except those that have a class of
signature , which will instead be rendered in a cursive font
such as Author. Heading levels 1 through 4 will use a sans-serif

font like Helvetica, while the elements <code> , <pre> , <tt> ,
and <kbd> will use a monospace font like Courier.

NOTE

Using generic defaults is excellent for rendering speed, as it allows the browser to
use whichever default fonts it already has in memory rather than having to parse
through a list of specific fonts and load characters as needed.

Figure 14-1. Various font families

A page author may, on the other hand, have more specific
preferences for which font to use in the display of a document
or element. In a similar vein, a user may want to create a user
stylesheet that defines the exact fonts to be used in the display
of all documents. In either case, font-family is still the
property to use.

Assume for the moment that all <h1> elements should use
Georgia as their font. The simplest rule for this would be the
following:

h1 {font-family: Georgia;}

This will cause the user agent displaying the document to use
Georgia for all <h1> elements, assuming that the user agent has
Georgia available for use. If it doesn’t, the user agent will be
unable to use the rule at all. It won’t ignore the rule, but if it
can’t find a font called Georgia , it can’t do anything but display
<h1> elements using the user agent’s default font.

To handle a situation like this, you can give the user agent
options by combining specific font families with generic font
families. For example, the following markup tells a user agent
to use Georgia if it’s available, and to use another serif font like
Times as a fallback if it isn’t:

h1 {font-family: Georgia, serif;}

For this reason, we strongly encourage you to always provide a
generic family as part of any font-family rule. By doing so,
you provide a fallback mechanism that lets user agents pick an

alternative when they can’t provide an exact font match. This is
often referred to as a font stack. Here are a few more examples:

h1 {font-family: Arial, sans-serif;}
h2 {font-family: Arvo, sans-serif;}
p {font-family: 'Times New Roman', serif;}
address {font-family: Chicago, sans-serif;}
.signature {font-family: Author, cursive;}

If you’re familiar with fonts, you might have a number of
similar fonts in mind for displaying a given element. Let’s say
that you want all paragraphs in a document to be displayed
using Times, but you would also accept Times New Roman,
Georgia, New Century Schoolbook, and New York (all of which
are serif fonts) as alternate choices. First, decide the order of
preference for these fonts, and then string them together with
commas:

Based on this list, a user agent will look for the fonts in the
order they’re listed. If none of the listed fonts are available, it
will just pick an available serif font.

p {font-family: Times, 'Times New Roman', 'New Centur
 'New York', serif;}

Using Quotation Marks

You may have noticed the presence of single quotes in the
previous code example, which we haven’t used before in this
chapter. Quotation marks are advisable in a font-family
declaration only if a font name contains one or more spaces,
such as New York , or if the font name includes symbols. Thus, a
font called Karrank% should be quoted:

While quoting font names is almost never required, if you leave
off the quotation marks, user agents may ignore the font name
and continue to the next available font in the font stack. The
exception to this is font names that match accepted font-
family keywords. For example, if your font name is cursive ,
serif , sans-serif , monospace , or fantasy , it must be
quoted so the user agent knows the difference between a font
name and a font-family keyword, as shown here:

h2 {font-family: Author, "cursive", cursive;}

The actual generic family names (serif , monospace , etc.)
should never be quoted. If they are quoted, the browser will

h2 {font-family: Wedgie, 'Karrank%', Klingon, fantasy

look for a font with that exact name.

When quoting font names, either single or double quotes are
acceptable, as long as they match. Remember that if you place a
font-family rule in a style attribute, which you generally
shouldn’t, you’ll need to use whichever quotes you didn’t use
for the attribute itself. Therefore, if you use double quotes to
enclose the font-family rule, you’ll have to use single quotes
within the rule, as in the following markup:

If you use double quotes in such a circumstance, they interfere
with the attribute syntax. Note the font name is case-insensitive.

Using Custom Fonts

p {font-family: sans-serif;} /* sets paragraphs to s

<!-- the next example is correct (uses single-quotes)
<p style="font-family: 'New Century Schoolbook', Time

<!-- the next example is NOT correct (uses double-quo
<p style="font-family: "New Century Schoolbook", Time

The @font-face rule enables you to use custom fonts on the
web, instead of being forced to rely only on “web-safe” fonts
(that is, font families that are widely installed, such as Times).
The two required functions of the @font-face rule are to
declare the name used to refer to a font and to provide the URL
of that font’s file for downloading. In addition to these required
descriptors, CSS has 14 optional descriptors.

While there’s no guarantee that every user will see the font you
want, @font-face is supported in all browsers except ones like
Opera Mini that intentionally don’t support it for performance
reasons.

Suppose you want to use a very specific font in your stylesheets,
one that is not widely installed. Through the magic of @font-
face , you can define a specific family name to correspond to a
font file on your server that you can refer to throughout your
CSS. The user agent will download that file and use it to render
the text in your page, the same as if it were installed on the
user’s machine. For example:

@font-face {
 font-family: "Switzera";
 src: url("SwitzeraADF-Regular.otf");
}

This allows you to tell user agents to load the defined .otf file
and use that font to render text when called upon via font-
family: SwitzeraADF .

NOTE

The examples in this section refer to SwitzeraADF, a font face collection available
from the Arkandis Digital Foundry.

The @font-face declaration doesn’t automatically load all the
referenced font files. The intent of @font-face is to allow lazy
loading of font faces. This means only faces needed to render a
document will be loaded. Font files referenced in your CSS that
aren’t necessary to render the page will not be downloaded.
Font files are generally cached, and aren’t redownloaded as
your users navigate your site.

The ability to load any font is quite powerful, but keep these
concerns in mind:

For security reasons, font files must be retrieved from the
same domain as the page requesting them. There’s a solution
for that.
Requiring lots of font downloads can lead to slow load times.

http://arkandis.tuxfamily.org/openfonts.html

Fonts with lots of characters can lead to large font files.
Fortunately, online tools and CSS enable limiting character
sets.
If fonts load slowly, this can lead to flashes of unstyled text or
invisible text. CSS has a way of addressing this issue as well.

We’ll cover these problems and their solutions in this chapter.
But remember, with great power comes great responsibility.
Use fonts wisely!

Using Font-Face Descriptors

All the parameters that define the font you’re referencing are
contained within the @font-face { } construct. These are
called descriptors, and very much like properties, they take the
format descriptor: value; . In fact, most of the descriptor
names refer directly to property names, as will be examined
throughout the rest of the chapter. Table 14-1 lists the possible
descriptors, both required and optional.

Table 14-1. Font descriptors

Descriptor
Default
value

Description

font-famil
y

n/a Required. The name
used for this font in fo
nt-family property
values.

src n/a Required. One or more
URLs pointing to the
font file(s) that must be
loaded to display the
font.

font-displ
ay

auto Determines how a font
face is displayed based
on whether and when it
is downloaded and
ready to use.

Descriptor
Default
value

Description

font-stret
ch

normal Distinguishes between
varying degrees of
character widths (e.g.,
condensed and expan
ded).

font-style normal Distinguishes between
normal , italic , and o
blique faces.

font-weigh
t

normal Distinguishes between
various weights (e.g., b
old).

font-varia
nt

normal A value of the font-var
iant property.

Descriptor
Default
value

Description

font-featu
re-setting
s

normal Permits direct access to
low-level OpenType
features (e.g., enabling
ligatures).

font-varia
tion-setti
ngs

normal Allows low-level control
over OpenType or
TrueType font
variations, by
specifying the four-
letter axis names of the
features to vary, along
with their variation
values.

ascent-ove
rride

normal Defines the ascent
metric for the font.

descent-ov
erride

normal Defines the descent
metric for the font.

Descriptor
Default
value

Description

line-gap-o
verride

normal Defines the line gap
metric for the font.

size-adjus
t

100% Defines a multiplier for
glyph outlines and
metrics associated with
the font.

unicode-ra
nge

U+0-10FFFF Defines the range of
characters for which a
given face may be used.

As noted in Table 14-1, two descriptors are required: font-
family and src .

FONT-FAMILY DESCRIPTOR

Value < family-name >

Initial value Not defined

SRC DESCRIPTOR

Values < uri > [format(< string >#)]? [te
ch(< font-tech >#)]? |
< font-face-name >]#

Initial
value

Not defined

The point of src is pretty straightforward, so we’ll describe it
first: src lets you define one or more comma-separated
sources for the font face you’re defining. With each source, you
can provide an optional (but recommended) format hint that
can help improve download performance.

You can point to a font face at any URL—including files on the
user’s computer using local() , and files elsewhere with
url() . There is a default restriction: unless you set an
exception, font faces can be loaded from only the same origin as
the stylesheet. You can’t simply point your src at someone
else’s site and download their font. You’ll need to host a local
copy on your own server, use HTTP access controls to relax the
same domain restriction, or use a font-hosting service that
provides both the stylesheet(s) and the font file(s).

NOTE

To create an exception to the same-origin restriction for fonts, include the following
in your server’s .htaccess file:

<FilesMatch "\.(ttf|otf|woff|woff2)$">
 <IfModule mod_headers.c>
 Header set Access-Control-Allow-Origin "*"
 </IfModule>
</FilesMatch>

The FilesMatch line includes all the file extensions of the fonts you want to import.
This will allow anyone, from anywhere, to point at your font files and load them
directly off your server.

You may be wondering how it is that we’re defining font-
family here when it was already defined in a previous section.

This font-family is the font-family descriptor, whereas the
previously defined font-family is the font-family property. If
this seems confusing, stick with us a moment and all should
become clear.

Essentially, @font-face lets you create low-level definitions
that underpin the font-related properties like font-family .
When you define a font family name via the descriptor font-
family: "Switzera"; , you’re setting up an entry in the user
agent’s table of font families that you can refer to in your font-
family property values:

Note that the font-family descriptor value and the entry in
the font-family property match case-insensitively. If they
didn’t match at all, the h1 rule would ignore the first font-
family name listed in the font-family value and move on to
the next (Helvetica, in this case).

@font-face {
 font-family: "Switzera"; /* descriptor */
 src: url("SwitzeraADF-Regular.otf");
}
h1 {font-family: switzera, Helvetica, sans-serif;} /

Also note that the font-family descriptor can be (almost) any
name you want to give it. It doesn’t have to exactly match the
name of the font file, though it usually makes sense to use a
descriptor that’s at least close to the font’s name for purposes of
clarity. That said, the value used in the font-family property
does have to (case-insensitively) match the font-family
descriptor.

As long as the font has cleanly downloaded and is in a format
the user agent can handle, it will be used in the manner you
direct, as illustrated in Figure 14-2.

Figure 14-2. Using a downloaded font

In a similar manner, the comma-separated src descriptor
value can provide fallbacks. That way, if the user agent doesn’t
understand the file type defined by the hint or, for whatever
reason, the user agent is unable to download the first source, it
can move on to the second source and try to load the file
defined there:

@font-face {

Remember that the same-origin policy mentioned earlier
generally applies in this case, so pointing to a copy of the font
on some other server will usually fail, unless that server is set
up to permit cross-origin access.

If you want to be sure the user agent understands the kind of
font you’re telling it to use, use the optional but highly
recommended format() hint:

The advantage of supplying a format() hint is that user agents
can skip downloading files in formats they don’t support, thus
reducing bandwidth use and load time. If no format hint is
supplied, the font resource will be downloaded even if its
format isn’t supported. The format() hint also lets you

 font-family: "Switzera";
 src: url("SwitzeraADF-Regular.otf"),
 url("https://example.com/fonts/SwitzeraADF-R
}

@font-face {
 font-family: "Switzera";
 src: url("SwitzeraADF-Regular.otf") format("opent
}

explicitly declare a format for a file that might not have a
common filename extension:

Table 14-2 lists all of the allowed format values (as of late 2022).

@font-face {
 font-family: "Switzera";
 src: url("SwitzeraADF-Regular.otf") format("opent
 url("SwitzeraADF-Regular.true") format("true

 /* TrueType font files usually end in '.ttf'
}

Table 14-2. Recognized font-format values

Value Format Full name

collection OTC/TTC OpenType Collection
(formerly: TrueType
Collection)

embedded-o
pentype

EOT Embedded OpenType

opentype OTF OpenType

svg SVG Scalable Vector
Graphics

truetype TTF TrueType

woff2 WOFF2 Web Open Font Format,
version 2

woff WOFF Web Open Font Format

In addition to the format, you can supply a value corresponding
to a font technology with the tech() function. A color font
version of Switzera might look something like this:

Table 14-3 lists all of the recognized font-technology values (as
of late 2022).

@font-face {
 font-family: "Switzera";
 src: url("SwitzeraADF-Regular-Color.otf")
 format("opentype") tech("color-COLRv1"),
 url("SwitzeraADF-Regular.true") format("true
 /* TrueType font files usually end in '.ttf'
}

Table 14-3. Recognized font-technology values

Value Description

color-CBDT Font colors are defined using the
OpenType CBDT (Color Bitmap Data
Table) table.

color-
COLRv0

Font colors are defined using the
OpenType COLR (Color Table) table.

color-
COLRv1

Font colors are defined using the
OpenType COLR table.

color-sbix Font colors are defined using the
OpenType sbix (Standard Bitmap
Graphics Table) table.

color-SVG Font colors are defined using the
OpenType SVG (Scalable Vector
Graphics) table.

Value Description

feature-aat Font uses tables from the Apple
Advanced Typography (AAT) Font
Feature Registry.

feature-
graphite

Font uses tables from the Graphite open
source font-rendering engine.

feature-
opentype

Font uses tables from the OpenType
specification.

incremental Incremental font-loading using the
range-request or patch-subset server
methods.

palettes A font that offers palettes by way of the
OpenType CPAL table.

Value Description

variations Font uses variations as defined by the
OpenType tables such as GSUB and GPO
S , the AAT tables morx and kerx , or
the Graphite tables Silf , Glat , Gloc ,
Feat , and Sill .

Delving into the details of all these feature tables is well beyond
the scope of this book, and you are unlikely to need to use them
most of the time. Even if a font has one or more of the listed
feature tables, listing them is not required. Even with
tech("color-SVG") , an SVG color font will still render using its
colors.

In addition to the combination of url() , format() , and
tech() , you can supply a font family name (or several names)
in case the font is already locally available on the user’s
machine, using the aptly named local() function:

@font-face {
 font-family: "Switzera";
 src: local("Switzera-Regular"),
 local("SwitzeraADF-Regular"),

l("S it ADF R l tf") f t(" t

In this example, the user agent looks to see if it already has a
font family named Switzera-Regular or SwitzeraADF-
Regular , case-insensitively, available on the local machine. If
so, it will use the name Switzera to refer to that locally
installed font. If not, it will use the url() values to try
downloading the first remote font listed that has a format type
it supports.

Bear in mind that the order of the resources listed in src
matters. As soon as the browser encounters a source in a
format it supports, it attempts to use that source. For this
reason, local() values should be listed first, with no format
hint needed. This should be followed by external resources with
file type hints, generally in order of smallest file size to largest
to minimize performance hits.

This capability allows an author to create custom names for
locally installed fonts. For example, you could set up a shorter
name for versions of Hiragino, a Japanese font, like so:

 url("SwitzeraADF-Regular.otf") format("opent
 url("SwitzeraADF-Regular.true") format("true
}

@font-face {
 font-family: "Hiragino";
 src: local("Hiragino Kaku Gothic Pro"),
 local("Hiragino Kaku Gothic Std");
}

h1, h2, h3 {font-family: Hiragino, sans-serif;}

As long as the user has one of the versions of Hiragino Kaku
Gothic installed on their machine, those rules will cause the
first three heading levels to be rendered using that font.

Online services let you upload font-face files and generate all
the @font-face rules you need, convert those files to all the
formats required, and hand everything back to you as a single
package. One of the best known is Font Squirrel’s @Font-Face
Kit Generator. Just make sure you’re legally able to convert and
use the font faces you’re running through the generator (see the
following sidebar for more information).

https://www.fontsquirrel.com/tools/webfont-generator

CUSTOM FONT CONSIDERATIONS

You need to keep two points in mind when using customized
fonts. The first is that you legally must have the rights to use the
font in a web page, and the second is whether it’s a good idea to
do so.

Much like stock photography, commercial font families come
with licenses that govern their use, and not every font license
permits its use on the web. You can completely avoid this
question by using only free and open source software (FOSS)
fonts, or by using a commercial service like Google Fonts or
Adobe Fonts that deals with the licensing and format
conversion issues so you don’t have to. Otherwise, you need to
make sure you have the legal right to use a font face in the way
you want to use it, just the same as you make sure you have the
proper license for any images you want to use in your designs.

In addition, the more font faces you call upon, the more
resources the web server has to hand over and the higher the
overall page weight will become. Most faces are not overly large
—usually 50 KB to 200 KB—but they add up quickly if you
decide to get fancy with your type, and truly complicated faces
can be much larger than 200 KB. You will have to balance
appearance against performance, leaning one way or the other
depending on the circumstances.

That said, just as image optimization tools are available, so are
font optimization tools. Typically, these are subsetting tools,
which construct fonts using only the symbols actually needed
for display. If you’re using a service like Adobe Fonts or
Fonts.com, they probably have subsetting tools available, or
else do it dynamically when the font is requested.

When subsetting a font, you can use the unicode-range
descriptor to limit custom font use to only the characters in the
font file. Services such as Font Squirrel will subset the font for
you and provide the unicode range in the CSS snippet it
produces. Just remember that subsetting needs to be done in
the font file, not just in the Unicode range, in order to reduce
the file size.

Restricting Character Range

At times you might want to use a custom font in very limited
circumstances; for example, to ensure that a font face is applied
only to characters that are in a specific language. In these cases,
it can be useful to restrict the use of a font to certain characters
or symbols, and the unicode-range descriptor allows precisely
that.

http://fonts.com/

UNICODE-RANGE DESCRIPTOR

Values < urange >#

Initial value U+0-10FFFF

By default, the value of this descriptor covers U+0 to U+10FFFF,
which is the entirety of Unicode—meaning that if a font can
supply the glyph for a character, it will. Most of the time, this is
exactly what you want. For all the other times, you’ll want to
use specific font faces for specific kinds of content. You can
define a single code point, a code-point range, or a set of ranges
with the ? wildcard character.

To pick a few examples from the CSS Fonts Module Level 3:

unicode-range: U+0026; /* the Ampersand (&) character
unicode-range: U+590-5FF; /* Hebrew characters */
unicode-range: U+4E00-9FFF, U+FF00-FF9F, U+30??, U+A5
 kanji, hiragana, and katakana, plus the yen/yuan cu

In the first case, a single code point is specified. The font will be
used only for the ampersand (&) character. If the ampersand is
not used, the font is not downloaded. If it is used, the entire font
file is downloaded. For this reason, it is sometimes good to
optimize your font files to include only characters in the
specified Unicode range, especially if, as in this case, you’re
using only one character from a font that could contain several
thousand characters.

In the second case, a single range is specified, spanning Unicode
character code point 590 through code point 5FF. This covers
the 111 total characters used when writing Hebrew. Thus, an
author might specify a Hebrew font and restrict it to be used
only for Hebrew characters, even if the face contains glyphs for
other code points:

@font-face {
 font-family: "CMM-Ahuvah";
 src: url("cmm-ahuvah.otf" format("opentype");
 unicode-range: U+590-5FF;
}

In the third case, a series of ranges are specified in a comma-
separated list to cover all the Japanese characters. The
interesting feature there is the U+30?? value, with a question

mark, which is a special format permitted in unicode-range
values. The question marks are wildcards meaning “any
possible digit,” making U+30?? equivalent to U+3000-30FF . The
question mark is the only “special” character pattern permitted
in the value.

Ranges must always ascend. Any descending range, such as
U+400-300 , is treated as a parsing error and ignored.

Because @font-face is designed to optimize lazy loading, it’s
possible to use unicode-range to download only the font faces
a page actually needs, with possibly a much smaller file size
when using a font file optimized to contain only the defined
subset character range. If the page doesn’t use any character in
the range, the font is not downloaded. If a single character on a
page requires a font, the whole font is downloaded.

Suppose you have a website that uses a mixture of English,
Russian, and basic mathematical operators, but you don’t know
which will appear on any given page. A page could be all
English, a mixture of Russian and math, and so on.
Furthermore, suppose you have special font faces for all three
types of content. You can make sure a user agent downloads
only the faces it needs with a properly constructed series of
@font-face rules:

Because the first rule doesn’t specify a Unicode range, the entire
font file is always downloaded—unless a page happens to
contain no characters at all (and maybe even then). The second
rule causes myfont-cyrillic.otf to be downloaded only if the page
contains characters in its declared Unicode range; the third rule
does the same for mathematical symbols.

If the content calls for the mathematical character U+2222 (∢,
the spherical angle character), myfont-math.otf will be

@font-face {
 font-family: "MyFont";
 src: url("myfont-general.otf" format("opentype");
}
@font-face {
 font-family: "MyFont";
 src: url("myfont-cyrillic.otf" format("opentype")
 unicode-range: U+04??, U+0500-052F, U+2DE0-2DFF,
}
@font-face {
 font-family: "MyFont";
 src: url("myfont-math.otf" format("opentype");
 unicode-range: U+22??; /* equivalent to U+2200-
}

body {font-family: MyFont, serif;}

downloaded and the character from myfont-math.otf will be
used, even if myfont-general.otf has that character.

A more likely way to use this capability would be our
ampersand example; we can include a fancy ampersand from a
cursive font and use it in place of the ampersand found in a
headline font. Something like this:

In a case like this, to keep page weights low, take a cursive font
(that you have the rights to use) and minimize it down to
contain just the ampersand character. You can use a tool like
Font Squirrel to create a single-character font file.

@font-face {
 font-family: "Headline";
 src: url("headliner.otf" format("opentype");
}
@font-face {
 font-family: "Headline";
 src: url("cursive-font.otf" format("opentype");
 unicode-range: U+0026;
}

h1, h2, h3, h4, h5, h6 {font-face: Headline, cursive;

NOTE

Remember that pages can be translated with automated services like Google
Translate. If you too aggressively restrict your Unicode ranges (say, to the range of
unaccented letters used in English), an auto-translated version of the page into
French or Swedish, for example, could end up a mishmash of characters in different
font faces, as the accented characters in those languages would use a fallback font
and the unaccented characters would be in your intended font.

Working with Font Display

If you’re a designer or developer of a certain vintage, you may
remember the days of the flash of unstyled content (FOUC). This
happened in earlier browsers that would load the HTML and
display it to the screen before the CSS was finished loading, or,
at least, before the layout of the page via CSS was finished.

A flash of unstyled text (FOUT) happens when a browser has
loaded the page and the CSS and then displays the laid-out page,
along with all the text, before it’s done loading custom fonts.
FOUT causes text to appear in the default font, or a fallback
font, before being replaced by text using the custom-loaded
font.

A cousin to this problem is the flash of invisible text (FOIT). This
user-agent solution to FOUT is caused when the browser detects
that text is set in a custom font that hasn’t loaded yet and makes

the text invisible until the font loads or a certain amount of
time has passed.

Since the replacement of text can change its size, whether via
FOUT or FOIT, take care when selecting fallback fonts. If a
significant height difference exists between the font used to
initially display the text and the custom font eventually loaded
and used, significant page reflows are likely to occur.

In an attempt to help with this, the font-display descriptor
guides the browser to proceed with text rendering when a web
font has yet to load.

FONT-DISPLAY DESCRIPTOR

Values auto | block | swap | fallback |
optional

Initial value auto

Applies to All elements

Computed
value

As specified

What we can call the font-display timeline timer starts when the
user agent first paints the page. The timeline is divided into
three periods: block, swap, and failure.

During the font-block period, if the font face is not loaded, the
browser renders any content that should use that font by using
an invisible fallback font face, meaning the text content is not
visible but the space is reserved. If the font loads successfully
during the block period, the text is rendered with the
downloaded font and made visible.

During the swap period, if the font face is not loaded, the
browser renders the content by using a visible fallback font
face, most likely one it has installed locally (e.g., Helvetica). If
the font loads successfully, the fallback font face is swapped to
the downloaded font.

Once the failure period is entered, the user agent treats the
requested font as a failed load, falls back to an available font,
and will not swap the font if it does eventually load. If the swap
period is infinite, the failure period is never entered.

The values of the font-display descriptor match these periods
of the timeline, and their effect is to emphasize one part of the
timeline at the expense of the others. The effects are
summarized in Table 14-4.

Let’s consider each value in turn:

block

Tells the browser to hold open space for the font for a few
seconds (3 is what the specification recommends, but

Table 14-4. font-display values

Value
Block
period

Swap
period

Failure
period

auto Browser
defined

Browser
defined

Browser
defined

block 3s Infinite n/a

swap < 100 ms Infinite n/a

fallback < 100 ms 3s Infinite

optional 0 0 Infinite

 Recommended period length; actual times may vary

a a a

a

browsers may choose their own values), and then enters an
infinitely long swap period. If the font ever finally loads, even
if it’s 10 minutes later, the fallback font that was used in its
place will be replaced with the loaded font.

swap

Is similar, except it doesn’t hold the space open for longer
than a fraction of a second (100 milliseconds is the
recommendation). A fallback font is then used, and is
replaced with the intended font whenever it finally loads.

fallback

Gives the same brief block window that swap does, and then
enters a short period in which the fallback font can be
replaced by the intended font. If that short period (3 seconds
is recommended) is exceeded, the fallback font is used
indefinitely, and the user agent may cancel the download of
the intended font since a swap will never happen.

optional

Is the most stringent of them all: if the font isn’t immediately
available at first paint, the user agent goes straight to the
fallback font and skips right over the block and swap periods
to sit in the failure period for the rest of the page’s life.

Combining Descriptors

Something that might not be immediately obvious is that you
can supply multiple descriptors in order to assign specific faces
for specific property combinations. For example, you can assign
one face to bold text, another to italic text, and a third to text
that is both bold and italic.

This capability is implicit, as any undeclared descriptor is
assigned its default value. Let’s consider a basic set of three face
assignments, using both descriptors we’ve covered and a few
we’ll get to in a bit:

@font-face {
 font-family: "Switzera";
 font-weight: normal;
 font-style: normal;
 font-stretch: normal;
 src: url("SwitzeraADF-Regular.otf") format("opent
}
@font-face {
 font-family: "Switzera";
 font-weight: 500;
 font-style: normal;
 font-stretch: normal;
 src: url("SwitzeraADF-Bold.otf") format("opentype
}

You may have noticed that we’ve explicitly declared some
descriptors with their default values, even though we didn’t
need to. The previous example is exactly the same as a set of
three rules in which we remove every descriptor that shows a
value of normal :

@font-face {
 font-family: "Switzera";
 font-weight: normal;
 font-style: italic;
 font-stretch: normal;
 src: url("SwitzeraADF-Italic.otf") format("openty
}

@font-face {
 font-family: "Switzera";
 src: url("SwitzeraADF-Regular.otf") format("openty
}
@font-face {
 font-family: "Switzera";
 font-weight: 500;
 src: url("SwitzeraADF-Bold.otf") format("opentype"
}
@font-face {
 font-family: "Switzera";
 font-style: italic;

In all three rules, no font-stretching occurs beyond the default
normal amount, and the values of font-weight and font-
style vary by which face is being assigned. So what if we want
to assign a specific face to unstretched text that’s both bold and
italic?

And then what about bold, italic, condensed text?

 src: url("SwitzeraADF-Italic.otf") format("opentyp
}

@font-face {
 font-family: "Switzera";
 font-weight: bold;
 font-style: italic;
 font-stretch: normal;
 src: url("SwitzeraADF-BoldItalic.otf") format("ope
}

@font-face {
 font-family: "Switzera";
 font-weight: bold;
 font-style: italic;
 font-stretch: condensed;

How about normal-weight, italic, condensed text?

We could keep this up for quite a while, but let’s stop there. If
we take all those rules and strip out anything with a normal
value, we end up with the following result, illustrated in
Figure 14-3:

 src: url("SwitzeraADF-BoldCondItalic.otf") format(
}

@font-face {
 font-family: "Switzera";
 font-weight: normal;
 font-style: italic;
 font-stretch: condensed;
 src: url("SwitzeraADF-CondItalic.otf") format("ope
}

@font-face {
 font-family: "Switzera";
 src: url("SwitzeraADF-Regular.otf") format("openty
}
@font-face {
 font-family: "Switzera";
 font-weight: bold;

 src: url("SwitzeraADF-Bold.otf") format("opentype"
}
@font-face {
 font-family: "Switzera";
 font-style: italic;
 src: url("SwitzeraADF-Italic.otf") format("opentyp
}
@font-face {
 font-family: "Switzera";
 font-weight: bold;
 font-style: italic;
 src: url("SwitzeraADF-BoldItalic.otf") format("ope
}
@font-face {
 font-family: "Switzera";
 font-weight: bold;
 font-stretch: condensed;
 src: url("SwitzeraADF-BoldCond.otf") format("opent
}
@font-face {
 font-family: "Switzera";
 font-style: italic;
 font-stretch: condensed;
 src: url("SwitzeraADF-CondItalic.otf") format("ope
}
@font-face {
 font-family: "Switzera";
 font-weight: bold;

Figure 14-3. Employing a variety of faces

If you declare html { +font-family: switzera;} , you don’t
have to declare the font family again for additional selectors
that use switzera . The browser will use the correct font file for
your bold, italic, stretched, and normal text depending on your
selector-specific values for the font-weight , font-style , and
font-stretch property values.

The point is, we can have a specific font file for every weight,
style, and stretch. The ability to declare all the variations within
a few @font-face rules with a single font-family name
ensures cohesive typeface design and avoids font synthesis
even when using nonvariable fonts. Declaring all the variations
of a font via @font-face , with the same font-family
descriptor name, reduces font-family property overrides,

 font-style: italic;
 font-stretch: condensed;
 src: url("SwitzeraADF-BoldCondItalic.otf") format(
}

reducing the chance of other developers on your team using the
wrong font file for a specific selector.

As you can see, when using standard fonts, a lot of possible
combinations exist just for those three descriptors—consider
that font-stretch has 10 possible values—but you’ll likely
never have to run through them all. In fact, most font families
don’t have as many faces as SwitzeraADF offers (24 at last
count), so there wouldn’t be much point in writing out all the
possibilities. Nevertheless, the options are there, and in some
cases you may find that you need to assign, say, a specific face
for bold condensed text so that the user agent doesn’t try to
compute them for you. Or else use a variable font that has
weight and condensing axes.

Now that we’ve covered @font-face and provided an
overview of a few descriptors, let’s get back to properties.

Font Weights

Most of us are used to normal and bold text, which are the two
most basic font weights available. CSS gives you a lot more
control over font weights with the property font-weight .

FONT-WEIGHT

Values normal | bold | bolder | lighter |
< number >

Initial
value

normal

Applies to All elements

Computed
value

One of the numeric values (100 , etc.),
or one of the numeric values plus one of
the relative values (bolder or
lighter)

@font-face
equivalent

font-weight

Variable
axis

"wght"

Inherited Yes

Animatable No

The < number > value can be from 1 to 1000 , inclusive, where
1 is the lightest and 1000 is the heaviest possible weight.
Unless you are using variable fonts, discussed later, limited
weights are almost always available for a font family
(sometimes there is only a single weight).

Generally speaking, the heavier a font weight becomes, the
darker and “more bold” a font appears. There are a great many
ways to label a heavy font face. For example, the font family
known as SwitzeraADF has variants such as SwitzeraADF Bold,
SwitzeraADF Extra Bold, SwitzeraADF Light, and SwitzeraADF
Regular. All of these use the same basic font shapes, but each
has a different weight.

If the specified weight doesn’t exist, a nearby weight is used.
Table 14-5 lists the numbers used for each of the commonly
accepted font weight labels, as defined in the "wght" variation
axis. If a font has only two weights corresponding to 400 and
700 (normal and bold), any number value for font-weight
will be mapped to the closest value. Thus, any font-weight
value from 1 through 550 will be mapped to 400 , and any
value greater than 550 up through 1000 will be mapped to
700 .

Table 14-5. Weight mappings

Value Mapping

1 Lowest valid value

100 Thin

200 Extra Light (Ultra Light)

300 Light

400 Normal

500 Medium

600 Semi Bold (Demi Bold)

700 Bold

800 Extra Bold (Ultra Bold)

900 Black (Heavy)

Value Mapping

950 Extra Black (Ultra Black)

1000 Highest valid value

Let’s say that you want to use SwitzeraADF for a document but
would like to make use of all those heaviness levels. If your user
has all the font files locally on their machine and you didn’t use
@font-face to rename all the options to Switzera , you could
refer to them directly through the font-family property—but
you really shouldn’t have to do that. It’s no fun having to write a
stylesheet like this:

That’s pretty tedious. This is a perfect example of why
specifying a single font family for the whole document and then
assigning different weights to various elements by using

h1 {font-family: 'SwitzeraADF Extra Bold', sans-serif
h2 {font-family: 'SwitzeraADF Bold', sans-serif;}
h3 {font-family: 'SwitzeraADF Bold', sans-serif;}
h4, p {font-family: 'SwitzeraADF Regular', sans-serif
small {font-family: 'SwitzeraADF Light', sans-serif;}

@font-face is so powerful: you can include several @font-
face declarations, each with the same font-family name, but
with various values for the font-weight descriptors. Then you
can use different font files with fairly simple font-weight
declarations:

strong {font-weight: bold;}
b {font-weight: bolder;}

The first declaration says the element should be
displayed using a bold font face or, to put it another way, a font
face that is heavier than the normal font face. The second
declaration says should use a font face that is the inherited
font-weight value plus 100.

What’s really happening behind the scenes is that heavier faces
of the font are used for displaying and
elements. Thus, if you display a paragraph using Times, and
part of it is bold, then two faces of the same font are really in
use: Times and TimesBold. The regular text is displayed using
Times, and the bold and bolder text are displayed using
TimesBold.

If the font doesn’t have a boldfaced version, it may be
synthesized by the browser, creating a faux bold. (To prevent

this, use font-synthesis property, which is described later.)

How Weights Work

To understand how a user agent determines the heaviness, or
weight, of a given font variant (not to mention how weight is
inherited), it’s easiest to start by talking about the values 1
through 1000 inclusive, specifically the values divisible by 100,
100 through 900 . These number values were defined to map
to a relatively common feature of font design that gives a font
nine levels of weight. If a nonvariable font family has faces for
all nine weight levels available, the numbers are mapped
directly to the predefined levels, with 100 as the lightest
variant of the font and 900 as the heaviest.

In fact, these numbers have no intrinsic weight. The CSS
specification says only that each number corresponds to a
weight at least as heavy as the number that precedes it. Thus,
100 , 200 , 300 , and 400 might all map to a single relatively
lightweight variant; 500 and 600 could correspond to a single
medium-heavy font variant; and 700 , 800 , and 900 could all
produce the same very heavy font variant. As long as no
number corresponds to a variant that is lighter than the variant
assigned to the previous lower number, everything will be all
right.

When it comes to nonvariable fonts, these numbers are defined
to be equivalent to certain common variant names. The value
400 is defined to be equivalent to normal , and 700
corresponds to bold .

A user agent has to do some calculations if a font family has
fewer than nine weights. In this case, the user agent must fill in
the gaps in a predetermined way:

If the value 500 is unassigned, it is given the same font
weight as that assigned to 400 .
If 300 is unassigned, it is given the next variant lighter than
400 . If no lighter variant is available, 300 is assigned the
same variant as 400 . In this case, it will usually be Normal
or Medium. This method is also used for 200 and 100 .
If 600 is unassigned, it is given the next variant darker than
that assigned for 500 . If no darker variant is available, 600
is assigned the same variant as 500 . This method is also used
for 700 , 800 , and 900 .

To illustrate this weighting scheme more clearly, let’s look at a
couple of examples. In the first example, assume that the font
family Karrank% is an OpenType font, so it has nine weights
already defined. In this case, the numbers are assigned to each

level, and the keywords normal and bold are assigned to the
numbers 400 and 700 , respectively.

In our second example, consider the font family SwitzeraADF.
Hypothetically, its variants might be assigned numeric values
for font-weight , as shown in Table 14-6.

Table 14-6. Hypothetical weight assignments for a specific font family

Font face
Assigned
keyword

Assigned
number(s)

SwitzeraADF
Light

100 through 3
00

SwitzeraADF
Regular

normal 400

SwitzeraADF
Medium

500

SwitzeraADF Bold bold 600 through 7
00

SwitzeraADF
Extra Bold

800 through 9
00

The first three number values are assigned to the lightest
weight. The Regular face gets the keyword normal and the
number weight 400 . Since there is a Medium font, it’s assigned
to the number 500 . There is nothing to assign to 600 , so it’s

mapped to the Bold font face, which is also the variant to which
700 and bold are assigned. Finally, 800 and 900 are assigned
to the Black and Ultra Black variants, respectively. Note that this
last assignment would happen only if those faces had the top
two weight levels already assigned. Otherwise, the user agent
might ignore them and assign 800 and 900 to the Bold face
instead, or it might assign them both to one or the other of the
Black variants.

The font-weight property is inherited, so if you set a
paragraph to be bold

p.one {font-weight: bold;}

then all of its children will inherit that boldness, as we see in
Figure 14-4.

Figure 14-4. Inherited font-weight

This isn’t unusual, but the situation gets interesting when you
use the last two values we have to discuss: bolder and
lighter . In general terms, these keywords have the effect
you’d anticipate: they make text more or less bold compared to

its parent’s font weight. How they do so is slightly complicated.
First, let’s consider bolder .

If you set an element to have a weight of bolder or lighter ,
the user agent first must determine what font-weight value
was inherited from the parent element. Once it has that
number (say, 400), it then changes the value as shown in
Table 14-7.

Table 14-7. bolder and lighter weight mappings

Inherited value bolder lighter

value < 100 400 No change

100 ≤ value < 350 400 100

350 ≤ value < 550 700 100

550 ≤ value < 750 900 400

750 ≤ value < 900 900 700

900 ≤ value No change 700

Thus, you might encounter the following situations, illustrated
in Figure 14-5:

Figure 14-5. Text trying to be bolder

In the first example, the user agent moves up from 400 to 700 .
In the second example, <h1> text is already set to bold , which
equates to 700 . If no bolder face is available, the user agent
sets the weight of text within an <h1> to 900 , since that is
the next step up from 700 . Since 900 is assigned to the same
font face as 700 , no visible difference exists between normal

p {font-weight: normal;}
p em {font-weight: bolder;} /* inherited value '400'

h1 {font-weight: bold;}
h1 b {font-weight: bolder;} /* inherited value '700'

div {font-weight: 100;}
div strong {font-weight: bolder;} /* inherited value

<h1> text and bold <h1> text, but the weight values are
different nonetheless.

As you might expect, lighter works in much the same way,
except it causes the user agent to move down the weight scale
instead of up.

The font-weight Descriptor

With the font-weight descriptor, authors can assign faces of
varying weights to the weighting levels permitted by the font-
weight property. The allowable values are different for the
descriptor, which supports auto , normal , bold , or one to two
numeric values as a range. Neither lighter nor bolder are
supported.

For example, the following rules explicitly assign five faces to
six font-weight values:

@font-face {
 font-family: "Switzera";
 font-weight: 1 250;
 src: url("f/SwitzeraADF-Light.otf") format("openty
}
@font-face {
 font-family: "Switzera";

font weight: normal;

With these faces assigned, the author now has multiple
weighting levels available for their use, as illustrated in
Figure 14-6:

 font-weight: normal;
 src: url("f/SwitzeraADF-Regular.otf") format("open
}
@font-face {
 font-family: "Switzera";
 font-weight: 500 600;
 src: url("f/SwitzeraADF-DemiBold.otf") format("ope
}
@font-face {
 font-family: "Switzera";
 font-weight: bold;
 src: url("f/SwitzeraADF-Bold.otf") format("opentyp
}
@font-face {
 font-family: "Switzera";
 font-weight: 800 1000;

 src: url("f/SwitzeraADF-ExtraBold.otf") format("op
}

h1, h2, h3, h4 {font-family: SwitzeraADF, Helvetica,
h1 {font-size: 225%; font-weight: 900;}
h2 {font-size: 180%; font-weight: 700;}
h3 {font-size: 150%; font-weight: 500;}
h4 {font size: 125%; font weight: 300;}

Figure 14-6. Using declared font-weight faces

In any given situation, the user agent picks which face to use
depending on the exact value of a font-weight property, using
the resolution algorithm detailed in “How Weights Work”.
While the font-weight property has numerous keyword
values, the font-weight descriptor accepts only normal and
bold as keywords, and any number from 1 to 1000 inclusive.

Font Size

While size doesn’t have a @font-face descriptor, you need to
understand the font-size property to better understand some
of the descriptors to come, so we’ll explore it now. The methods
for determining font size are both very familiar and very
different.

h4 {font-size: 125%; font-weight: 300;}

FONT-SIZE

Values xx-small | x-small | small | mediu
m | large | x-large | xx-large | xx
x-large | smaller | larger | < leng

th > | < percentage >

Initial
value

medium

Applies to All elements

Percentages Calculated with respect to the parent
element’s font size

Computed
value

An absolute length

Inherited Yes

Animatable Yes (numeric keywords only)

What can be a real head-scratcher at first is that different fonts
declared to be the same size may not appear to be the same
size. This is because the actual relation of the font-size
property to what you see rendered is determined by the font’s
designer. This relationship is set as an em square (some call it
an em box) within the font itself. This em square (and thus the
font size) doesn’t have to refer to any boundaries established by
the characters in a font. Instead, it refers to the distance
between baselines when the font is set without any extra
leading (line-height in CSS).

The effect of font-size is to provide a size for the em box of a
given font. This does not guarantee that any of the displayed
characters will be this size. It is quite possible for fonts to have
characters that are taller than the default distance between
baselines. For that matter, a font might be defined such that all
of its characters are smaller than its em square, as many fonts
are. Figure 14-7 shows some hypothetical examples.

Figure 14-7. Font characters and em squares

Using Absolute Sizes

Having established all that, we turn now to the absolute-size
keywords. The font-size property has eight absolute-size
values: xx-small , x-small , small , medium , large , x-large ,
xx-large , and the relatively new xxx-large . These are not
defined precisely but instead are defined relative to each other,
as Figure 14-8 demonstrates:

p.one {font-size: xx-small;}
p.two {font-size: x-small;}
p.three {font-size: small;}
p.four {font-size: medium;}
p.five {font-size: large;}
p.six {font-size: x-large;}

p.seven {font-size: xx-large;}
p.eight {font-size: xxx-large;}

Figure 14-8. Absolute font sizes

In the CSS1 specification, the difference (or scaling factor)
between one absolute size and the next was 1.5 going up the
ladder, or 0.66 going down. This was determined to be too large
a scaling factor. In CSS2, the suggested scaling factor for
computer screens between adjacent indexes was 1.2. This didn’t
resolve all the issues, though, as it created issues for the small
sizes.

The CSS Fonts Level 4 specification doesn’t have a one-size-fits-
all scaling factor. Rather, each absolute-size keyword value has
a size-specific scaling factor based on the value of medium (see
Table 14-8). The small value is listed as eight-ninths the size of
medium , while xx-small is three-fifths. In any case, the scaling

factors are guidelines, and user agents are free to alter them for
any reason.

Table 14-8. Font-size mappings

CSS
absolute-
size values

xx-small x-small small

Scaling
factor

3/5 3/4 8/9

Sizes at med
ium == 16px

9px 10px 13px

HTML
heading
equivalent

h6 - h5

Note that we’ve set the default size, medium , explicitly to 16px .
The default font-size value is the same, medium , for all
generic font families, but the medium keyword may have
different definitions based on operating system or browser user
settings. For example, in many browsers, serif and sans-serif
fonts have medium equal to 16px , but monospace set to 13px .

WARNING

As of late 2022, the xxx-large keyword is not supported by Safari or Opera, either
on desktop or mobile devices.

Using Relative Sizes

Just as font-weight has the keywords bolder and lighter ,
the font-size property has relative-size keywords called
larger and smaller . Much as with relative font weights, these
keywords cause the computed value of font-size to move up
and down a scale of size values.

The larger and smaller keywords are fairly straightforward:
they cause the size of an element to be shifted up or down the
absolute-size scale, relative to their parent element:

p {font-size: medium;}
strong, em {font-size: larger;}

Unlike the relative values for weight, the relative-size values
are not necessarily constrained to the limits of the absolute-size
range. Thus, a font’s size can be pushed beyond the sizes for
xx-small and xxx-large . If the parent element font-size is
the largest or smallest absolute value, the browser will use a
scaling factor between 1.2 and 1.5 to create an even smaller or
larger font size. For example:

h1 {font-size: xxx-large;}
em {font-size: larger;}

<p>This paragraph element contains a strong-e
which itself contains an emphasis element, which
a strong element.</p>

<p> medium large x-large xx-larg
 </p>

<h1>A Heading with Emphasis added</h1>
<p>This paragraph has some emphasis as well.

As you can see in Figure 14-9, the emphasized text in the <h1>
element is slightly larger than xxx-large . The amount of
scaling is left up to the user agent, with a scaling factor in the
range of 1.2 to 1.5 being preferred, but not required. The em
text in the paragraph is shifted up one slot to 140%.

Figure 14-9. Relative font sizing at the edges of the absolute sizes

WARNING

User agents are not required to increase or decrease font size beyond the limits of the
absolute-size keywords, but they may do so anyway. Also, while it is technically
possible to declare smaller than xx-small , small text can be very difficult to read
onscreen, leading to content being not accessible to users. Use very small text
sparingly and with a great deal of caution.

Setting Sizes as Percentages

In a way, percentage values are very similar to the relative-size
keywords. A percentage value is always computed in terms of
whatever size is inherited from an element’s parent. Unlike the
size keywords previously discussed, percentages permit much
finer control over the computed font size. Consider the
following example, illustrated in Figure 14-10:

body {font-size: 15px;}
p {font-size: 12px;}
em {font-size: 120%;}
strong {font-size: 135%;}
small, .fnote {font-size: 70%;}

<body>
<p>This paragraph contains both emphasis and
emphasis, both of which are larger than thei
The <small>small text</small>, on the other hand, is
<p class="fnote">This is a 'footnote' and is smaller

<p> 12px 14.4px 12px 16.2px </str
<small> 9px </small> 12px </p>
<p class="fnote"> 10.5px </p>
</body>

Figure 14-10. Throwing percentages into the mix

In this example, the exact pixel-size values are shown. These
are the values calculated by the browser, regardless of the
displayed size of the characters onscreen, which may have been
rounded to the nearest whole number of pixels.

When using em measurements, the same principles apply as
with percentages, such as the inheritance of computed sizes
and so forth. CSS defines the length value em to be equivalent
to percentage values, in the sense that 1em is the same as 100%
when sizing fonts. Thus, the following would yield identical
results, assuming that both paragraphs have the same parent
element:

p.one {font-size: 166%;}
p.two {font-size: 1.66em;}

As with the relative-size keywords, percentages are effectively
cumulative. Thus, the following markup is displayed as shown
in Figure 14-11:

p {font-size: 12px;}
em {font-size: 120%;}
strong {font-size: 135%;}

Figure 14-11. The issues of inheritance

The size value for the element shown in Figure 14-11
is computed as follows:

12 px × 120% = 14.4 px + 14.4 px × 135% = 19.44 px

The problem of runaway scaling can go the other direction, too.
Imagine the effect of the following rule on a nested list item if
we have lists nested four levels deep:

ul {font-size: 80%;}

<p>This paragraph contains both emphasis and <str
emphasis, both of which are larger than

<p>12px 14.4px 19.44px 12

The unordered list nested four levels deep would have a
computed font-size value 40.96% the size of the parent of the
top-level list. Every nested list would have a font size 80% as big
as its parent list, causing each level to become harder and
harder to read.

Automatically Adjusting Size

Two of the main factors that influence a font’s legibility are its
size and its x-height, which is the height of a lowercase x
character in the font. The number that results from dividing the
x-height by the font-size is referred to as the aspect value.
Fonts with higher aspect values tend to remain legible as the
font’s size is reduced; conversely, fonts with low aspect values
become illegible more quickly. CSS provides a way to deal with
shifts in aspect values between font families, as well as ways to
use different metrics to compute an aspect value, with the
property font-size-adjust .

FONT-SIZE-ADJUST

Values [ex-height | cap-height | ch-width
| ic-width | ic-height]? [from-fon
t | < number >] | none | auto

Initial
value

none

Applies to All elements

@font-face
equivalent

size-adjust

Inherited Yes

Animatable Yes

The goal of this property is to preserve legibility when the font
used is not the author’s first choice. Because of the differences
in font appearance, one font may be legible at a certain size,

while another font at the same size is difficult or impossible to
read.

The property value can be none , from-font , or a number. The
number specified should generally be the aspect value (the ratio
of a given font metric to font size) of the first-choice font family.
To pick the font metric used to compute the aspect ratio, you
can add a keyword specifying it. If not included, it defaults to
ex-height , which normalizes the aspect value of the fonts
using the x-height divided by the font size.

The other possibilities for the font metric keyword are as
follows:

cap-height

Use the cap-height (height of capital letters) of the font.

ch-width

Use the horizontal pitch (also the width of 1ch) of the font.

ic-width

Use the width of the font using the CJK water ideograph, “水”
(U+6C34) of the font.

ic-height

Use the height of the ideograph “水” (U+6C34) of the font.

Declaring font-size-adjust: none will suppress any
adjustment of font sizes. This is the default state.

The from-font keyword directs the user agent to use the built-
in value of the specified font metric from the first available
font, rather than requiring the author to figure out what that
value is and write it explicitly. Thus, writing font-size-
adjust: cap-height from-font will automatically set an
aspect value by dividing the cap-height by the em-square
height.

A good example is to compare the common fonts Verdana and
Times. Consider Figure 14-12 and the following markup, which
shows both fonts at a font-size of 10px :

p {font-size: 10px;}
p.cl1 {font-family: Verdana, sans-serif;}
p.cl2 {font-family: Times, serif; }

Figure 14-12. Comparing Verdana and Times

The text in Times is much harder to read than the Verdana text.
This is partly due to the limitations of pixel-based display, but it

is also because Times becomes harder to read at smaller font
sizes.

As it turns out, the ratio of x-height to character size in Verdana
is 0.58, whereas in Times it is 0.46. To make these font faces look
more consistent with each other, you can declare the aspect
value of Verdana, and have the user agent adjust the size of the
text that’s actually used. This is accomplished using the
following formula:

Declared font-size ×
(font-size-adjust value ÷ aspect
value of available font) = Adjusted font-size

So, when Times is used instead of Verdana, the adjustment is as
follows:

10px × (0.58 ÷ 0.46) = 12.6px

This leads to the result shown in Figure 14-13:

p {font: 10px Verdana, sans-serif; font-size-adjust:
p.cl2 {font-family: Times, serif; }

Figure 14-13. Adjusting Times

The catch is that for a user agent to intelligently make size
adjustments, it first has to know the aspect value of the fonts
you specify. User agents that support @font-face will be able
to pull that information directly from the font file, assuming the
files contain the information—any professionally produced font
should, but there’s no guarantee. If a font file doesn’t contain
the aspect value, a user agent may try to compute it; but again,
there’s no guarantee that they will or even can.

If the user agent can’t find or figure out aspect values on its
own, the auto value for font-size-adjust is a way of getting
the desired effect even if you don’t know the actual aspect value
of your first-choice font. For example, assuming that the user
agent can determine that the aspect value of Verdana is 0.58,
the following will have the same result as that shown in
Figure 14-13:

p {font: 10px Verdana, sans-serif; font-size-adjust:
p.cl2 {font-family: Times, serif; }

WARNING

As of late 2022, the only user-agent line to support font-size-adjust is the Gecko
(Firefox) family.

Understanding font size adjustment comes in handy when
considering size-adjust . This font descriptor behaves
similarly to the font-size-adjust property, though it’s
restricted to comparing only x-heights instead of the range of
font metrics available for font-size-adjust .

SIZE-ADJUST DESCRIPTOR

Values < percentage >

Initial value 100%

The font-size-adjust property is a rare case where the
property and descriptor names are not the same: the descriptor
is size-adjust . The value is any positive percentage value
(from 0 to infinity) by which you want the fallback font scaled
so it better matches the primary font selected. That percentage

is used as a multiplier for the glyph outline sizes and other
metrics of the font:

@font-face {
 font-family: myPreferredFont;
 src: url("longLoadingFont.otf");
}

@font-face {
 font-family: myFallBackFont;
 src: local(aLocalFont);
 size-adjust: 87.3%;
}

WARNING

As of late 2022, the only user-agent line that does not support the size-adjust
descriptor is the WebKit (Safari) family.

Font Style

The font-style property sounds very simple: you can choose
from three values, and optionally provide an angle for oblique
text if you’re using it.

FONT-STYLE

Values italic |[oblique < angle >?] | norm
al

Initial
value

normal

Applies to All elements

Computed
value

As specified

@font-face
equivalent

font-style

Variable
axis

"slnt" (slant) or "ital" (italic)

Inherited Yes

Animatable Yes for variable fonts that define a
ranged axis for italic or oblique;
otherwise, no

The default value of font-style is normal . This value refers
to upright text, which is best described as text that is not italic
or otherwise slanted. For instance, the vast majority of text in
this book is upright.

Italic font faces are usually a bit cursive in appearance, and
generally use less horizontal space than the normal version of
the same font. In standard fonts, italic text is a separate font
face, with small changes made to the structure of each letter to
account for the altered appearance. This is especially true of
serif fonts because, in addition to the text characters “leaning,”
the serifs may be altered. Font faces with labels like Italic ,
Cursive , and Kursiv are usually mapped to the italic
keyword.

Oblique text, on the other hand, is a slanted version of the
normal, upright text. Oblique text is generally not altered from
the upright text other than being given a slope. If a font has
oblique versions, they are often in faces with labels such as
Oblique , Slanted , and Incline .

When fonts don’t have italic or oblique versions, the browser
can simulate italic and oblique fonts by artificially sloping the
glyphs of the regular face. (To prevent this from happening, use
font-synthesis: none , covered later in the chapter.)

Italic and oblique text at the same angle are not the same: italic
is stylized and usually obsessively designed, and oblique is
merely slanted. By default, if oblique is declared without an
angle, a value of 14deg is used.

When oblique is given an angle, such as font-style: oblique
25deg , the browser selects the face classified as oblique, if
available. If one or more oblique faces are available in the
chosen font family, the one most closely matching the specified
angle by the font-style descriptor is chosen. If no oblique
faces are available, the browser may synthesize an oblique
version of the font by slanting a normal face by the specified
angle.

Unless further limited by the font or the descriptor, the oblique
angle specified must be between 90deg and -90deg , inclusive.
If the given value is outside those limits, the declaration is
ignored. Positive values are slanted toward the end (inline-end)
of the line, while negative values are slanted toward the
beginning (inline-start) of the line.

To visualize the difference between italic and oblique text, refer
to Figure 14-14.

Figure 14-14. Italic and oblique text in detail

For TrueType or OpenType variable fonts, the "slnt" variation
axis is used to implement varying slant angles for oblique, and
the "ital" variation axis with a value of 1 is used to
implement italic values. See “Font Variation Settings” for more
details.

If you want to make sure that a document uses italic text in
familiar ways, you could write a stylesheet like this:

p {font-style: normal;}
em, i {font-style: italic;}

These styles would make paragraphs use an upright font, as
usual, and cause the and <i> elements to use an italic
font, also as usual. On the other hand, you might decide that
there should be a subtle difference between and <i> :

p {font-style: normal;}
em {font-style: oblique;}
i {font-style: italic;}
b {font-style: oblique -8deg;}

If you look closely at Figure 14-15, you’ll see no apparent
difference between the and <i> elements. In practice,
not every font is so sophisticated as to have both an italic face
and an oblique face, and even fewer web browsers are
sophisticated enough to tell the difference when both faces do
exist.

Figure 14-15. More font styles

The equivalent font-variation-settings setting for italic
is "ital" . For the oblique <angle> value, the equivalent is
"slnt" , which is used to vary between upright and slanted
text. Just as with font-style , the slant axis is interpreted as
the angle of slant in counterclockwise degrees from upright:
inline-start-leaning oblique design will have a negative slant
value, whereas inline-end-leaning needs a positive value.

The font-style Descriptor

As a descriptor, font-style lets an author link specific faces to
specific font-style values.

FONT-STYLE DESCRIPTOR

Values normal | italic | oblique < angle >
{0,2}

Initial
value

auto

For example, we might want to assign very particular faces of
Switzera to the various kinds of font-style property values.
Given the following, the result would be to render <h2> and
<h3> elements using SwitzeraADF-Italic instead of
SwitzeraADF-Regular, as illustrated in Figure 14-16:

@font-face {
 font-family: "Switzera";
 font-style: normal;
 src: url("SwitzeraADF-Regular.otf") format("openty
}
@font-face {

font family: "Switzera";

Figure 14-16. Using declared font-style faces

Ideally, if a SwitzeraADF face with an oblique typeface existed,
a page author could point to it instead of the italic variant.
There isn’t such a face, though, so the author mapped the italic

 font-family: Switzera ;
 font-style: italic;
 src: url("SwitzeraADF-Italic.otf") format("opentyp
}
@font-face {

 font-family: "Switzera";
 font-style: oblique;
 src: url("SwitzeraADF-Italic.otf") format("opentyp
}

h1, h2, h3 {font-family: SwitzeraADF, Helvetica, sans
h1 {font-size: 225%;}
h2 {font-size: 180%; font-style: italic;}
h3 {font-size: 150%; font-style: oblique;}

face to both the italic and oblique values. As with font-
weight , the font-style descriptor can take all of the values of
the font-style property except for inherit .

Oblique text changes the angle of letterforms without
performing any kind of character substitution. Any variable
font that supports oblique text also supports normal or upright
text: upright text is oblique text at a 0deg angle. For example:

The angle given in the CSS value oblique 3deg is a clockwise
slant of 3 degrees. Positive angles are clockwise slants, whereas
negative angles are counterclockwise slants. If no angle is

@font-face {
 font-family: "varFont";
 src: url("aVariableFont.woff2") format("woff2-varia
 font-weight: 1 1000;
 font-stretch: 75% 100%;
 font-style: oblique 0deg 20deg;

 font-display: swap;
}

body { font-family: varFont, sans-serif; font-style:
em { font-style: oblique 14deg; }

included, it is the same as writing oblique 14deg . The degree
angle can be any value between -90deg and 90deg , inclusive.

Font Stretching

In some font families, variant faces have wider or narrower
letterforms. These often take names like Condensed, Wide, and
Ultra Expanded. The utility of such variants is that a designer
can use a single font family while also having skinny and fat
variants. CSS provides a property that allows an author to select
among such variants, when they exist, without having to
explicitly define them in font-family declarations. It does this
via the somewhat misleadingly named font-stretch .

FONT-STRETCH

Values normal | ultra-condensed | extra-c
ondensed | condensed | semi-conden
sed | semi-expanded | expanded | ex
tra-expanded | ultra-expanded | < pe

rcentage >

Initial
value

normal

Applies to All elements

@font-face
equivalent

font-stretch

Variable
axis

"wdth"

Inherited Yes

Animatable Yes in a variable font that defines a
stretch axis; otherwise, no

You might expect from the property name that font-stretch
will stretch or squeeze a font like saltwater taffy, but that’s not
the case. This property instead behaves very much like the
absolute-size keywords (e.g., xx-large) for the font-size
property. You can set a percentage between 50% and 200%
inclusive, or use a range of keyword values that have defined
percentage equivalents. Table 14-9 shows the mapping between
keyword values and numeric percentages.

Table 14-9. Percentage equivalents for font-stre
tch keyword values

Keyword Percentage

ultra-condensed 50%

extra-condensed 62.5%

condensed 75%

semi-condensed 87.5%

normal 100%

semi-expanded 112.5%

expanded 125%

extra-expanded 150%

ultra-expanded 200%

For example, you might decide to stress the text in a strongly
emphasized element by changing the font characters to a wider
face than its parent element’s font characters.

The catch is that this property works only if the font family in
use actually has wider and narrower faces, which mostly come
with only expensive traditional fonts. (They’re much more
widely available in variable fonts.)

For example, consider the common font Verdana, which has
only one width face; this is equivalent to font-stretch:
normal . Declaring the following will have no effect on the width
of the displayed text:

body {font-family: Verdana;}
strong {font-stretch: extra-expanded;}
footer {font-stretch: extra-condensed;}

All of the text will be at Verdana’s usual width. However, if the
font family is changed to one that has multiple width faces,
such as Futura, things will be different, as shown in Figure 14-
17:

body {font-family: Verdana;}
strong {font-stretch: extra-expanded;}

footer {font-stretch: extra-condensed;}

Figure 14-17. Stretching font characters

For variable fonts that support the "wdth" axis, set the width in
font-variation-settings to a value greater than 0. This
controls the glyph width or stroke thickness, depending on the
font design.

The font-stretch Descriptor

Much as with the font-weight descriptor, the font-stretch
descriptor allows you to explicitly assign faces of varying
widths to the width values permitted in the font-stretch
property. For example, the following rules explicitly assign
three faces to the most directly analogous font-stretch
values:

@font-face {
 font-family: "Switzera";
 font-stretch: normal;
 src: url("SwitzeraADF-Regular.otf") format("openty
}
@font face {

In a parallel to what you saw in previous sections, you can call
on these different width faces through the font-stretch
property, as illustrated in Figure 14-18:

Figure 14-18. Using declared font-stretch faces

@font-face {
 font-family: "Switzera";
 font-stretch: condensed;
 src: url("SwitzeraADF-Cond.otf") format("opentype"
}
@font-face {
 font-family: "Switzera";
 font-stretch: expanded;
 src: url("SwitzeraADF-Ext.otf") format("opentype")
}

h1, h2, h3 {font-family: SwitzeraADF, Helvetica, sans
h1 {font-size: 225%;}
h2 {font-size: 180%; font-stretch: condensed;}
h3 {font-size: 150%; font-stretch: expanded;}

If you use a variable font that contains the full spectrum of font-
stretch sizing, you can import a single font file with @font-
face , then use it for all of your text font-stretch requirements.
This produces the same degree of horizontal stretching shown
in Figure 14-18, albeit with a different font:

The font-stretch descriptor can take all of the values of the
font-stretch property except for inherit .

If you do want to use a different font for your variable fonts
depending on whether the text is extended or condensed, use
the "wdth" value in the comma-separated value of the @font-

@font-face {
 font-family: 'League Mono Var';
 src: url('LeagueMonoVariable.woff2') format('woff2'
 font-weight: 100 900;
 font-stretch: 50% 200%;
 font-display: swap;
}

h1, h2, h3 {font-family: "League Mono Var", Helvetica
h2 {font-size: 180%; font-stretch: 75%;}
h3 {font-size: 150%; font-stretch: 125%;}

face font-variation-settings descriptor, as in the following
example:

Font Synthesis

Sometimes a given font family will lack alternate faces for
options like bold or italic text or small capital letters. In such
situations, the user agent may attempt to synthesize a face from
the faces it has available, but this can lead to unattractive
letterforms. To address this, CSS offers font-synthesis , which
lets you say how much synthesis you will or won’t permit in the
rendering of a page. This doesn’t have a @font-face

@font-face {
 font-family: 'League Mono Var';
 src: url('LeagueMonoVariable.woff2') format('woff2'
 font-weight: 100 900;
 font-stretch: 50% 200%;
}

strong {
 font-family: LeagueMono;
 font-variation-settings: "wdth" 100;
}

descriptor, but it has bearing on all the font variants to follow,
so we’re dealing with it now.

FONT-SYNTHESIS

Values none | weight | style | small-caps

Initial value weight style

Applies to All elements

Inherited Yes

Animatable No

In many user agents, a font family that has no bold face can
have one computed for it. This might be done by adding pixels
to either side of each character glyph, for example. While this
might seem useful, it can lead to results that are visually
unappealing, especially at smaller font sizes. This is why most
font families have bold faces included: the font’s designer
wanted to make sure that bolded text in that font looked good.

Similarly, a font family that lacks an italic face can have one
synthesized by simply slanting the characters in the normal
face. This tends to look even worse than synthesized bold faces,
particularly when it comes to serif fonts. Compare the
difference between the actual italic face included in Georgia
and a synthesized italic version of Georgia (which we’re calling
“oblique” here), illustrated in Figure 14-19.

Figure 14-19. Synthesized versus designed italics

In supporting user agents, declaring font-synthesis: none
blocks the user agent from doing any such synthesis for the
affected elements. You can block it for the whole document with
html {font-synthesis: none;} , for example. The downside is
that any attempts to create variant text using a font that doesn’t
offer the appropriate faces will stay the normal face, instead of
even approximating what was intended. The upside is that you
don’t have to worry about a user agent trying to synthesize
those variants and doing a poor job of it.

Font Variants

Beyond font weights and font styles, there are font variants.
These are embedded within a font face and can cover aspects
like various styles of historical ligatures, small-caps
presentation, ways of presenting fractions, the spacing of
numbers, whether zeros get slashes through them, and much
more. CSS lets you invoke these variants, when they exist,
through the shorthand property font-variant .

FONT-VARIANT

Values [< font-variant-caps > ‖ < font-varia

nt-numeric > ‖ < font-variant-altern

ates > ‖ < font-variant-ligatures > ‖
< font-variant-east-asian >] | norma
l | none

Initial
value

normal

Applies to All elements

Computed
value

As specified

@font-face
equivalent

font-variant

Inherited Yes

Animatable No

This property is shorthand for five separate properties, which
we’ll get to in just a moment. The most common values you’ll
find in the wild are normal , which is the default and describes
ordinary text, and small-caps , which has existed since CSS1.

First, however, let’s cover the two values that don’t correspond
to other properties:

none

Disables all variants of any kind by setting font-feature-
ligatures to none and all the other font variant properties
to normal

normal

Disables most variants by setting all the font variant
properties, including font-feature-ligatures , to normal

Understanding the variant aspect of small-caps might help
explain the idea of variants, making all the other properties
easier to understand. The small-caps value calls for the use of
small caps (font-feature-settings: "smcp"). Instead of
upper- and lowercase letters, a small-caps font employs capital
letters of different sizes. Thus, you might see something like
what’s shown in Figure 14-20:

h1 {font-variant: small-caps;}
h1 code, p {font-variant: normal;}

Figure 14-20. The small-caps value in use

As you may notice, in the display of the <h1> element, there is
a larger capital letter wherever an uppercase letter appears in
the source, and a small capital letter wherever there is a
lowercase letter in the source. This is very similar to text-
transform: uppercase , with the only real difference being
that, here, the capital letters are of different sizes. However, the
reason that small-caps is declared using a font property is
that some fonts have a specific small-caps face, which a font
property is used to select.

<h1>The Uses of <code>font-variant</code></h1>
<p>
The property <code>font-variant</code> is very intere
</p>

What happens if no font-face variant, such as small-caps ,
exists? The specification provides two options. The first is for
the user agent to create a small-caps face by scaling capital
letters on its own. The second is to make all letters uppercase
and the same size, exactly as if the declaration text-
transform: uppercase had been used instead. This is not an
ideal solution but it is permitted.

WARNING

Bear in mind that not every font supports every variant. For example, most Latin
fonts won’t support any of the East Asian variants. In addition, not every font will
include support for, say, some of the numeric and ligature variants. Many fonts will
support none of the variants.

To find out what a given font supports, you have to consult its documentation, or do a
lot of testing if no documentation is available. Most commercial fonts do come with
documentation, and most free fonts don’t. Fortunately, some browser developer tools
(not including Chromium browsers, as of late 2022) have a tab that provides
information about font variants and feature settings.

Capital Font Variants

In addition to the small-caps value we just discussed, CSS has
other capital-text variants. These are addressed via the
property font-variant-caps .

FONT-VARIANT-CAPS

Values normal | small-caps | all-small-ca
ps | petite-caps | all-petite-caps
| titling-caps | unicase

Initial
value

normal

Applies to All elements

Computed
value

Specified keyword

@font-face
equivalent

font-variant

Inherited Yes

Animatable No

The default value is normal , which means no capital-letter
variant is used. From there, we have the following options:

small-caps

Renders all of the letters using capital letters. The capital
letters for characters that are uppercase in the source text
are the same height as uppercase letters. Characters that are
lowercase in the text are rendered as smaller capitals,
usually a bit taller than the font’s x-height.

all-small-caps

The same as small-caps , except all letters are rendered as
smaller capitals, even those that are uppercase in the source
text.

petite-caps

Similar to small-caps , except the capitals used for
lowercase letters are equal in height to, or even a bit shorter
than, the font’s x-height. If the font has no petite-caps variant,
the result is likely to be the same as for small-caps .

all-petite-caps

The same as petite-caps , except all letters are rendered as
smaller capitals, even those that are uppercase in the source
text.

titling-caps

If a row has multiple uppercase letters, alternate capital
forms are used to keep the letters from appearing too
visually strong. Usually these are thinner versions of the
normal capitals in the font.

unicase

The text is rendered using a mixture of capital and
noncapital letterforms, usually all the same height. This can
vary widely even among the few fonts that offer this variant.

The following code is illustrated in Figure 14-21; note that the
values marked with a dagger (†) were faked in one way or
another:

.variant1 {font-variant-caps: small-caps;}

.variant2 {font-variant-caps: all-small-caps;}

.variant3 {font-variant-caps: petite-caps;}

.variant4 {font-variant-caps: all-petite-caps;}

.variant5 {font-variant-caps: titling-caps;}

.variant6 {font-variant-caps: unicase;}

Figure 14-21. Different types of capital variants

Why did we fake some of the examples in Figure 14-21? In part,
because finding a single font that contains all the capital
variants is exceedingly difficult, and it is literally faster to fake
some results than dig up a font, or set of fonts, that might work.

We also want to highlight that exact situation: most of the time,
you’re going to get either a fallback (as from petite-caps to
small-caps) or no variant at all. Because of this, make sure to
use the @font-face font-variant descriptor to define what
should happen. Otherwise, if a font-variant-caps category
variant is not available, the browser will decide how to render
it. For example, if petite-caps is specified and the font doesn’t
have a petite-caps face or variable axis defined, the user agent
may render the text using small capital glyphs. If small capital

glyphs are not included in the font, the browser may synthesize
them by proportionally shrinking uppercase glyphs.

Alternatively, you can use {font-synthesis: none;} to
prevent the browser from synthesizing the text. You can also
include {font-synthesis: small-caps;} , or omit font-
synthesis altogether, to allow a small-caps typeface to be
synthesized if needed.

Fonts sometimes include special glyphs for various caseless
characters like punctuation marks to match the cap-variant
text. The browser will not synthesize caseless characters on its
own.

All the values of font-variant-caps other than normal have
defined equivalent OpenType features. These are summarized
in Table 14-10.

Table 14-10. font-variant-caps values and equivalent
OpenType features

Value OpenType feature

normal n/a

small-caps "smcp"

all-small-caps "c2sc" , "smcp"

petite-caps "pcap"

all-petite-caps "c2pc" , "pcap"

titling-caps "titl"

unicase "unic"

Numeric Font Variants

Many font faces have variant behaviors for use when rendering
numerals. When available, these can be accessed via the font-
variant-numeric property. The values of this property affect

the usage of alternate glyphs for numbers, fractions, and
ordinal markers.

FONT-VARIANT-NUMERIC

Values normal | [lining-nums | oldstyle-n
ums] ‖ [proportional-nums | tabular
-nums] ‖ [diagonal-fractions | stac
ked-fractions] ‖ ordinal ‖ slashed-
zero]

Initial
value

normal

Applies to All elements

Computed
value

Specified keyword

Inherited Yes

Animatable No

The default value, normal , means that nothing special will be
done when rendering numbers. They’ll just appear the same as
they usually do for the font face. Figure 14-22 demonstrates all
the values, and as before, the examples marked with a dagger
(†) were faked in one way or another because fonts lacked those
features.

Figure 14-22. Different types of numeric variants

Perhaps the simplest numeric variant is slashed-zero . This
causes the numeral 0 to appear with a slash through it, most
likely on a diagonal. Slashed zeros are often the default
rendering in monospace fonts, where distinguishing 0 from the
capital letter O can be difficult. In serif and sans-serif fonts, they
are usually not the default appearance of zeros. Setting font-
variant-numeric: slashed-zero will bring out a slashed zero
if one is available.

Speaking of diagonal slashes, the value diagonal-fractions
causes characters arranged as a fraction (e.g., 1/2) to be
rendered as smaller numbers, the first raised up, separated by a
diagonal slash. The stacked-fractions value renders the
fraction as the first number above the second, and the two
separated by a horizontal slash.

If the font has features for ordinal labels, like the letters
following the numbers of 1st, 2nd, 3rd, and 4th in English,
ordinal enables the use of those special glyphs. These will
generally look like superscripted, smaller versions of the letters.

Authors can affect the figures used for numbers with lining-
nums , which sets all numbers on the baseline; and oldstyle-
nums , which enables numbers like 3, 4, 7, and 9 to descend
below the baseline. Georgia is a common example of a font that
has old-style numbers.

You can also influence the sizing of figures used for numbers.
The proportional-nums value enables the numbers to be
proportional, as in proportional fonts; and tabular-nums gives
all numbers the same width, as in monospace fonts. The
advantage of these values is that you can, assuming there are
glyphs to support them in the font face, get the monospace
effect in proportional fonts without converting the numbers to

a monospace face, and similarly cause monospace numbers to
be sized proportionally.

You can include multiple values, but only one value from each
of the numeric-value sets:

All the values of font-variant-numeric other than normal
have defined equivalent OpenType features. These are
summarized in Table 14-11.

@font-face {
 font-family: 'mathVariableFont';
 src: local("math");
 font-feature-settings: "tnum" on, "zero" on;
}
.number {
 font-family: mathVariableFont, serif;
 font-feature-settings: "tnum" on, "zero" on;

 font-variant-numeric: ordinal slashed-zero oldstyle
}

Table 14-11. font-variant-numeric values and equivalent
OpenType features

Value OpenType feature

normal n/a

ordinal "ordn"

slashed-zero "zero"

lining-nums "lnum"

oldstyle-nums "onum"

proportional-nums "pnum"

tabular-nums "tnum"

diagonal-fractions "frac"

stacked-fractions "afrc"

Ligature Variants

A ligature is a joining of two (or more) characters into one
shape. As an example, two lowercase f characters could have
their crossbars merged into a single line when they appear next
to each other, or the crossbar could extend over a lowercase i
and replace its usual dot in the sequence fi. More archaically, a
combination like st could have a swash curve from one to the
other. When available, these features can be enabled or
disabled with the font-variant-ligatures property.

FONT-VARIANT-LIGATURES

Values normal | none | [[common-ligatures
| no-common-ligatures] ‖ [discreti
onary-ligatures | no-discretionary-
ligatures] ‖ [historical-ligatures
| no-historical-ligatures] ‖ [cont
extual | no-contextual]]

Initial
value

normal

Applies to All elements

Computed
value

Specified keyword

Inherited Yes

Animatable No

The values have the following effects:

common-ligatures

Enables the use of common ligatures, such as those
combining f or t with letters that follow them. In French, the
sequence oe is more usually rendered using the ligature œ.
Browsers usually have these enabled by default, so if you
want to disable them, use no-common-ligatures instead.

discretionary-ligatures

Enables the use of special ligatures created by font designers
that are unusual or otherwise not regarded as common.

historical-ligatures

Enables the use of historical ligatures, which are generally
those found in the typography of centuries past but are not
used today. For example, in German the tz digraph used to be
rendered as .

contextual-ligatures

Enables the use of ligatures that appear based on context,
such as a cursive font enabling connecting curves from one
letter to the next depending on not just the character that
follows, but possibly also what characters came before. These
are also sometimes used in programming fonts, where
sequences like != may be rendered as ≠ instead.

no-common-ligatures

Explicitly disables the use of common ligatures.

no-discretionary-ligatures

Explicitly disables the use of discretionary ligatures.

no-historical-ligatures

Explicitly disables the use of historical ligatures.

no-contextual-ligatures

Explicitly disables the use of contextual ligatures.

The default value, normal , turns off all these ligatures except
common ligatures, which are enabled by default. This is
especially relevant because font-variant: normal turns off
all the font-variant-ligatures except the common ones,
whereas font-variant: none turns them all off including
common ligatures. Table 14-12 provides a condensed summary
of how each value translates into OpenType features.

Table 14-12. font-variant-ligatures values and equivalent OpenType
features

Value OpenType feature

common-ligatures "clig" on , "liga" on

discretionary-ligatures "dlig" on

historical-ligatures "hlig" on

contextual-ligatures "calt" on

no-common-ligatures "clig" off , "liga" o
ff

no-discretionary-ligatu
res

"dlig" off

no-historical-ligatures "hlig" off

no-contextual-ligatures "calt" off

Less likely to be used or supported by browsers are the font-
variant-alternates and font-variant-east-asian

properties.

Alternate Variants

For any given character, a font may include alternate glyphs in
addition to the default glyph for that character. The font-
variant-alternates property affects the usage of those
alternate glyphs.

FONT-VARIANT-ALTERNATES

Values normal | [historical-forms ‖ styli
stic() ‖ historical-forms ‖ styles
et() ‖ character-variant() ‖ swash
() ‖ ornaments() ‖ annotation()]

Initial
value

normal

Applies to All elements

Computed
value

As specified

Inherited Yes

Animatable Discrete

The default value, normal , means don’t use any alternate
variants. The historical-forms keyword enables historical

forms, glyphs that were common in the past but not today. All
the other values are functions.

These alternate glyphs may be referenced by alternative names
defined in @font-feature-values . With @font-feature-
values , you can define a common name for the font-variant-
alternates function values to activate OpenType features.

The @font-feature-values at-rule may be used either at the
top level of your CSS or inside any CSS conditional-group at-
rule.

In Table 14-13, XY is replaced by a number representing the
feature set. With OpenType fonts and font-feature-settings ,
some features are already defined. For example, the OpenType
equivalent of the styleset() function is "ssXY" . As of late
2022, ss01 through ss20 are currently defined. Values higher
than 99 are allowed, but they don’t map to any OpenType
values and will be ignored.

Table 14-13. font-variant-alternates values and equivalent
OpenType features

Value OpenType feature

annotation() "nalt"

character-variant() "cvXY"

historical-forms "hist"

ornaments() "ornm"

styleset() "ssXY"

stylistic() "salt"

swash() "swsh" , "cswh"

An at-rule version of font-variant-alternates , called @font-
feature-values , allows authors to define labels for alternate
values of font-variant-alternates using at-rules of their
own. The following two styles (taken from the CSS specification)
demonstrate how to label the numeric values of the swash

alternate, and then use them later in font-variant-
alternates :

Without the presence of the @font-feature-values at-rule, the
paragraph styles would have to say font-variant-alternates:
swash(2) instead of using flowing for the value of the swash
function.

WARNING

As of late 2022, while all browsers support font-variant and its associated
subproperties, only Firefox and Safari have font-variant-alternates and @font-
feature-values support. You can more reliably set these variants by using the
font-feature-settings property.

East Asian Font Variants

@font-feature-values Noble Script { @swash { swishy:

p {
 font-family: Noble Script;
 font-variant-alternates: swash(flowing); /* use swa
}

The values of the font-variant-east-asian property allow for
controlling glyph substitution and sizing in East Asian text.

FONT-VARIANT-EAST-ASIAN

Values normal | [[jis78 | jis83 | jis90 |
jis04 | simplified | traditional] ‖
[full-width | proportional-width]
‖ ruby]

Initial
value

normal

Applies to All elements

Computed
value

Specified keyword

Inherited Yes

Animatable No

The assorted Japanese Industrial Standard (JIS) variants reflect
the glyph forms defined in different Japanese national
standards. Fonts generally include glyphs defined by the most
recent national standard. JIS values allow for the inclusion of
older Japanese glyph variations when such variants are needed,
such as when reproducing historical documents.

Similarly, the simplified and traditional values allow
control over the glyph forms for characters that have been
simplified over time but for which the older, traditional form is
still used in some contexts.

The ruby value enables display of Ruby variant glyphs. Ruby
text is generally smaller than the associated body text.

This property value allows font designers to include glyphs
better suited for smaller typography than scaled-down versions
of the default glyphs would be. Only glyph selection is affected;
there is no associated font scaling.

Font Variant Position

Compared to the previous variants, font-variant-position is
fairly straightforward. It’s strange, then, that it’s so poorly
supported.

FONT-VARIANT-POSITION

Values normal | sub | super

Initial value normal

Applies to All elements

Computed value Specified keyword

Inherited Yes

Animatable No

This property can be used to enable specialized variant glyphs
that are meant solely for superscripted and subscripted text. As
it says in the CSS specification, these glyphs are:

…designed within the same em-box as default glyphs and are
intended to be laid out on the same baseline as the default
glyphs, with no resizing or repositioning of the baseline.
They are explicitly designed to match the surrounding text
and to be more readable without affecting the line height.

https://www.w3.org/TR/css-fonts-4/#font-variant-position-prop

This is in contrast to what happens with super- and subscripted
text in fonts that lack such alternates, which is usually just
smaller text that’s been shifted up or down from the baseline.
This sort of synthesis of super- and subscripted text often leads
to line-height increases, which variant glyphs are generally
designed to prevent.

Font Feature Settings

Throughout this chapter, we’ve discussed font features but have
yet to cover the font-feature-settings property or
descriptor. Similarly to font-variant , font-feature-
settings allows you to exercise low-level control over which
OpenType font features are available for use.

FONT-FEATURE-SETTINGS

Values normal | < feature-tag-value >#

Initial value normal

The font-feature-settings property controls advanced
typographic features in OpenType fonts, as opposed to the
font-variation-settings property, which provides low-level
control over variable font characteristics.

You can list one or more comma-separated OpenType features,
as defined by the OpenType specification. For example,
enabling common ligatures, small caps, and slashed zeros
would look something like this:

The exact format of a < feature-tag-value > value is as
follows:

< feature-tag-value >
< string > [< integer > | on | off]?

For many features, the only permitted integer values are 0 and
1 , which are equivalent to off and on (and vice versa). Some
features allow a range of numbers, however, in which case
values greater than 1 both enable the feature and define the
feature’s selection index. If a feature is listed but no number is
provided, 1 (on) is assumed. Thus, the following descriptors
are all equivalent:

font-feature-settings: "liga" on, "smcp" on, "zero" o

Remember that all < string > values must be quoted. Thus, the
first of the following descriptors will be recognized, but the
second will be ignored:

A further restriction is that OpenType requires that all feature
tags be four ASCII characters long. Any feature name longer or
shorter, or that uses non-ASCII characters, is invalid and will be
ignored. (This isn’t something you need to worry about unless
you’re using a font that has its own made-up feature names and
the font’s creator didn’t follow the naming rules.)

By default, OpenType fonts always have the following features
enabled unless the author explicitly disables them via font-
feature-settings or font-variant :

"calt"

font-feature-settings: "liga"; /* 1 is assumed */
font-feature-settings: "liga" 1; /* 1 is declared *
font-feature-settings: "liga" on; /* on = 1 */

font-feature-settings: "liga", dlig;
/* common ligatures are enabled; we wanted discretion
 quotes, so they are not enabled */

Contextual alternates

"ccmp"

Composed characters

"clig"

Contextual ligatures

"liga"

Standard ligatures

"locl"

Localized forms

"mark"

Mark-to-base positioning

"mkmk"

Mark-to-mark positioning

"rlig"

Required ligatures

Additionally, other features may be enabled by default in
specific situations, such as vertical alternatives ("vert") for
vertical runs of text.

The OpenType font-feature-setting values we’ve discussed
so far are all listed in Table 14-14, along with a few others we
didn’t touch on for lack of support.

Table 14-14. OpenType values

Code Meaning Longhand

"afrc" Alternative fractions stacked-fract
ions

"c2pc" Petite capitals petite-caps

"c2sc" Small capitals from
capitals

all-small-ca
ps

"calt" Contextual
alternates

contextual

"case" Case-sensitive forms

"clig" Common ligatures common-ligat
ures

"cswh" Swash function swash()

"cv01" Character variants
(01–99)

character-var
iant()

Code Meaning Longhand

"dnom" Denominators

"frac" Fractions diagonal-frac
tions

"fwid" Full-width variants full-width

"hist" Enable historical
forms

historical-f
orms

"liga" Standard ligatures common-ligat
ures

"lnum" Lining figures lining-nums

"locl" Localized forms

"numr" Numerators

"nalt" Annotation function annotation()

Code Meaning Longhand

"onum" Old-style figures oldstyle-num
s

"ordn" Ordinal markers ordinal

"ornm" Ornaments
(function)

ornaments()

"pcap" Petite capitals petite-caps

"pnum" Proportional figures

"pwid" Proportionally
spaced variants

proportional-
width

"ruby" Ruby ruby

"salt" Stylistic function stylistic()

"sinf" Scientific inferiors

"smcp" Small capitals small-caps

Code Meaning Longhand

"smpl" Simplified forms simplified

"ss01" Stylistic set 1
(numero correct)

styleset()

"ss07" Stylistic set (1–20) styleset()

"subs" Subscript

"sups" Superscript

"swsh" Swash function swash()

"titl" Titling capitals titling-caps

"tnum" Tabular figures tabular-nums

"trad" Traditional forms traditional

"unic" Unicase unicase

"zero" Slashed zero slashed-zero

The complete list of standard OpenType feature names can be
found at Microsoft’s Registered Features page.

That said, font-feature-settings is a low-level feature
designed to handle special cases for which no other way exists
to enable or access an OpenType font feature. You also have to
list all of the feature settings you want to use in a single
property value. Whenever possible, use the font-variant
shorthand property or one of the six associated longhand
properties: font-variant-ligatures , font-variant-caps ,
font-variant-east-asian , font-variant-alternates , font-
variant-position , and font-variant-numeric .

The font-feature-settings Descriptor

The font-feature-settings descriptor lets you decide which
of an OpenType font face’s settings can or cannot be used,
specified as a space-separated list. Now, wait a second—isn’t
that almost exactly what we did with font-variant just a few
paragraphs ago? Yes! The font-variant descriptor covers
nearly everything font-feature-settings does, plus a little
more besides. It just does so in a more CSS-like way, with value
names instead of cryptic OpenType identifiers and Boolean
toggles. Because of this, the CSS specification explicitly

https://microsoft.com/typography/otspec/featurelist.htm

encourages authors to use font-variant instead of font-
feature-settings , except when there’s a font feature that the
value list of font-variant doesn’t include.

Keep in mind that this descriptor merely makes features
available for use (or suppresses their use). It does not turn them
on for the display of text; for that, see “Font Feature Settings”.

Just as with the font-variant descriptor, the font-feature-
settings descriptor defines which font features are enabled
(or disabled) for the font face being declared in the @font-face
rule. For example, given the following, Switzera will have
alternative fractions and small-caps disabled, even if such
features exist in SwitzeraADF:

The font-feature-settings descriptor can take all of the
values of the font-feature-settings property except for
inherit .

@font-face {
 font-family: "Switzera";
 font-weight: normal;
 src: url("SwitzeraADF-Regular.otf") format("opentyp
 font-feature-settings: "afrc" off, "smcp" off;
}

Font Variation Settings

The font-variation-settings property provides low-level
control over variable font characteristics, by specifying a four-
letter axis name along with a value.

FONT-VARIATION-SETTINGS

Values normal | [< string > < number >]#

Initial value normal

Applies to All elements

Computed value As specified

Inherited Yes

Animatable Yes

There are five registered axes, listed in Table 14-15. We have
covered almost all of them.

Table 14-15. Font variation axes

Axis Property Property value

"wght" font-weight 1 – 1000

"slnt" font-style oblique / oblique
<angle>

"ital" font-style italic

"opsz" font-optical-
sizing

"wdth" font-stretch

We use the term registered axes because font developers are not
limited to weight, width, optical size, slant, and italics: they can
create custom axes, and “register” them by giving them a four-
letter label. The simplest way to know if a font has such axes is
to look at the font’s documentation; otherwise, you have to
know how to dig into the internals of a font’s file(s) to find out.
These axes can control any aspect of the font’s appearance, such
as the size of the dot on lowercase i and j. Creating custom axes

is beyond the scope of this book, but calling on them where they
exist is not.

Because these axes are string values, they have to be quoted,
are case-sensitive, and are always lowercase. Imagine a font for
which the size of the dots (which are properly called diacritic
marks or just diacritics) over lowercase i and j can be changed
by way of an axis called DCSZ (for diacritic size). Furthermore,
this axis has been defined by the font’s designer to allow values
from 1 to 10. The diacritic size could be maximized as follows:

The font-variation-settings descriptor is the same as the
property. Instead of declaring each registered axis separately,
they are declared on one line, comma separated:

p {font-family: DotFont, Helvetica, serif; font-varia

@font-face {
 font-family: 'LeagueMono';
 src: url('LeagueMonoVariable.woff2') format('woff2'
 font-weight: 100 900;
 font-stretch: 50% 200%;
 font-variation-settings: 'wght' 100 900, 'wdth' 50
 font-display: swap;
}

TIP

Although you can set the weight, style, and so forth of a given font by using font-
variation-settings , it is recommended that you use the more widely supported
and human-readable properties font-weight and font-style instead.

Font Optical Sizing

Text rendered at different sizes often benefits from slightly
different visual representations. For example, to aid reading at
small text sizes, glyphs have less detail and strokes are often
thicker with larger serifs. Larger text can have more features
and a greater contrast between thicker and thinner strokes. The
property font-optical-sizing allows authors to enable or
disable this feature of variable fonts.

FONT-OPTICAL-SIZING

Values auto | none

Initial value auto

Applies to All elements and text

Computed value As specified

Variable font axis "opsz"

Inherited Yes

Animatable Discrete

By default (via auto), browsers can modify the shape of glyphs
based on font size and pixel density. The none value tells the
browser to not do this.

TIP

In fonts that support it, optical sizing is usually defined as a range of numbers. If you
want to explicitly change the optical sizing of a given element’s font to be a specific
number, perhaps to make text sturdier or more delicate than it would be by default,
use the font-variation-settings property and give it a value like 'opsz' 10
(where 10 can be any number in the optical-sizing range).

Override Descriptors

This brings us to the last three @font-face descriptors that we
have yet to discuss. Three descriptors enable override settings
for font families: ascent-override , descent-override , and
line-gap-override , which define the ascent, descent, and line
gap metrics, respectively. All three descriptors take the same
values: normal or a < percentage >.

ASCENT-OVERRIDE, DESCENT-OVERRIDE, LINE-GAP-OVERRIDE
DESCRIPTORS

Values normal | < percentage >

Initial value normal

The goal of these descriptors is to help fallback fonts better
match a primary font by overriding the metrics of the fallback
font and using those of the primary font instead.

The ascent metric is the distance above the baseline used to lay
out line boxes (the distance from the baseline to the top of the
em box). The descent metric is the distance below the baseline
used to lay out line boxes (the distance from the baseline to the
bottom of the em box). The line-gap metric is the font’s
recommended distance between adjacent lines of text, which is
sometimes called external leading.

Here’s an example of a hypothetical font and its ascent, descent,
and line-gap override descriptors:

@font-face {
 font-family: "PreferredFont";
 src: url("PreferredFont.woff");
}

@font-face {
 font-family: FallbackFont;
 src: local(FallbackFont);
 ascent-override: 110%;
 descent-override: 95%;

 line-gap-override: 105%;
}

This will direct the browser to alter the ascent and descent
heights by 110% and 95%, respectively, and increase the line
gap to 105% the distance in the fallback font.

Font Kerning

A font property that doesn’t have a descriptor equivalent is
font-kerning . Some fonts contain data indicating how
characters should be spaced relative to one another, known as
kerning. Kerning can make character spacing more visually
appealing and pleasant to read.

Kerning space varies depending on the way characters are
combined; for example, the character pair oc may have a
different spacing than the pair ox. Similarly, AB and AW may
have different separation distances, to the point that in some
fonts, the top-right tip of the W is actually placed to the left of
the bottom-right tip of the A. This kerning data can be explicitly
called for or suppressed using the property font-kerning .

FONT-KERNING

Values auto | normal | none

Initial value auto

Applies to All elements

Inherited Yes

Animatable No

The value none is pretty simple: it tells the user agent to ignore
any kerning information in the font. The normal value tells the
user agent to kern the text normally—that is, according to the
kerning data contained in the font. The auto value tells the
user agent to do whatever it thinks best, possibly depending on
the type of font in use. The OpenType specification, for
example, recommends (but does not require) that kerning be
applied whenever the font supports it. Furthermore, as per the
CSS specification:

https://www.w3.org/TR/css-fonts-4/#font-kerning-prop

[Browsers] may synthetically support the kern feature with
fonts that contain kerning data in the form of a kern table
but lack kern feature support in the GPOS table.

This means, in effect, that if kerning information is built into
the font, browsers are allowed to enforce it even if the font
lacks an explicit enabling of kerning via a feature table.

NOTE

If the letter-spacing property (see Chapter 15) is applied to kerned text, the
kerning is done first and then the letters’ spacing is adjusted according to the value of
letter-spacing , not the other way around.

The font Property

All of the properties discussed thus far are very sophisticated,
but writing them all out could get a little tedious:

h1 {font-family: Verdana, Helvetica, Arial, sans-seri
 font-weight: 900; font-style: italic; font-varian
h2 {font-family: Verdana, Helvetica, Arial, sans-seri
 font-weight: bold; font-style: italic; font-varia

Some of this problem could be solved by grouping selectors, but
wouldn’t it be easier to combine everything into a single
property? Enter font , which is a shorthand property
encompassing most (not quite all) of the other font properties,
and a little more besides.

FONT

Values [[< font-style > ‖ [normal | small-c
aps] ‖ < font-weight > ‖ < font-stret

ch >]? < font-size > [/ < line-height >
]? < font-family >] | caption | icon
| menu | message-box | small-capti
on | status-bar

Initial
value

Refer to individual properties

Applies to All elements

Percentages Calculated with respect to the parent
element for < font-size > and with
respect to the element’s < font-size >
for < line-height >

Computed
value

See individual properties (font-

style , etc.)

Inherited Yes

Animatable Refer to individual properties

Generally speaking, a font declaration can have any one value
from each of the listed font properties, or else a system font
value (described in “Using System Fonts”). Therefore, the
preceding example could be shortened as follows (and have
exactly the same effect, as illustrated by Figure 14-23):

Figure 14-23. Typical font rules

We say that the styles “could be” shortened in this way because
a few other possibilities exist, thanks to the relatively loose way
in which font can be written. If you look closely at the
preceding example, you’ll see that the first three values don’t
occur in the same order. In the h1 rule, the first three values
are for font-style , font-weight , and font-variant , in that
order. In the second, they’re ordered font-weight , font-
variant , and font-style . There is nothing wrong here
because these three can be written in any order. Furthermore,

h1 {font: italic 900 small-caps 30px Verdana, Helveti
h2 {font: bold normal italic 24px Verdana, Helvetica,

if any has a value of normal , that can be left out altogether.
Therefore, the following rules are equivalent to the previous
example:

In this example, the value of normal is left out of the h2 rule,
but the effect is exactly the same as in the preceding example.

It’s important to realize, however, that this free-for-all situation
applies only to the first three values of font . The last two are
much stricter in their behavior. Not only must font-size and
font-family appear in that order as the last two values in the
declaration, but both must always be present in a font
declaration. Period, end of story. If either is left out, the entire
rule will be invalidated and will be ignored completely by a
user agent. Thus, the following rules will get you the result
shown in Figure 14-24:

h1 {font: italic 900 small-caps 30px Verdana, Helveti
h2 {font: bold italic 24px Verdana, Helvetica, Arial,

h1 {font: normal normal italic 30px sans-serif;} /*
h2 {font: 1.5em sans-serif;} /* also fine; omitted
h3 {font: sans-serif;} /* INVALID--no 'font-size'
h4 {font: lighter 14px;} /* INVALID--no 'font-famil

Figure 14-24. The necessity of both size and family

Understanding font Property Limitations

Because the font property has been part of CSS since the very
beginning, and because so many properties dealing with all the
variants came later, the font property has some limitations
when it comes to font variations.

First, it’s important to remember that when using the font
shorthand property, the following properties are all set to their
default values even though they cannot be represented in
font :

font-feature-settings

font-kerning

font-language-override

font-optical-sizing

font-palette

font-size-adjust

font-variant-alternates

font-variant-caps (unless small-caps is included in the
font value)
font-variant-east-asian

font-variant-ligatures

font-variant-numeric

font-variation-settings

Second, and following on the note in the previous list, only two
variation values are permitted: small-caps and normal . The
numeric, ligature, alternate, East Asian, and many of the caps
variants cannot be set via the font property. If you want, for
example, to use small caps and slashed zeros in your top-level
headings, you would need to write something like this:

Third, another property value that suffers from the weight of
history is font stretching. As we discussed earlier in the chapter,
font-stretch allows you to choose from numerous keywords
or to set a percentage in the range of 50% to 200% (inclusive).
The keywords may be used in font , but the percentage value
may not.

h1 {font: bold small-caps 3em/1.1 Helvetica, sans-ser
 font-variant-numeric: slashed-zero;

Adding the Line Height

We also can set the value of the line-height property by using
font , even though line-height is a text property (not
covered in this chapter), not a font property. It’s done as a sort
of addition to the font-size value, separated from it by a
forward slash (/):

These rules, demonstrated in Figure 14-25, set all <h2>
elements to be bold and italic (using face for one of the sans-
serif font families), set the font-size to 24px (twice the
body ’s size), and set the line-height to 28.8px .

Figure 14-25. Adding line height to the mix

This addition of a value for line-height is entirely optional,
just as the first three font values are. If you do include a line-
height value, remember that font-size always comes before

body {font-size: 12px;}
h2 {font: bold italic 200%/1.2 Verdana, Helvetica, Ar

line-height , never after, and the two are always separated by
a slash.

WARNING

This may seem repetitive, but it’s one of the most common errors made by CSS
authors, so we can’t say it enough: the required values for font are font-size and
font-family , in that order. Everything else is strictly optional.

Using the Shorthand Properly

It is important to remember that font , being a shorthand
property, can act in unexpected ways if you are careless with its
use. Consider the following rules, which are illustrated in
Figure 14-26:

<h1>A level 1 heading element</h1>
<h2>A level 2 heading element</h2>
<h3>A level 3 heading element</h3>

h1, h2, h3 {font: italic small-caps 250% sans-serif;}
h2 {font: 200% sans-serif;}
h3 {font-size: 150%;}

Figure 14-26. Shorthand changes

Did you notice that the <h2> element is neither italicized nor
small-capped, and that none of the elements are bold? This is
the correct behavior. When the shorthand property font is
used, any omitted values are reset to their defaults. Thus, the
previous example could be written as follows and still be
exactly equivalent:

This sets the <h2> element’s font style and variant to normal ,
and the font-weight of all three elements to normal . This is
the expected behavior of shorthand properties. The <h3> does
not suffer the same fate as the <h2> because you use the
property font-size , which is not a shorthand property and
therefore affects only its own value.

h1, h2, h3 {font: italic normal small-caps 250% sans-
h2 {font: normal normal normal 200% sans-serif;}
h3 {font-size: 150%;}

Using System Fonts

When you want to make a web page blend in with the user’s
operating system, the system font values of font come in
handy. These are used to take the font size, family, weight, style,
and variant of elements of the operating system, and apply
them to an element. The values are as follows:

caption

Used for captioned controls, such as buttons

icon

Used to label icons

menu

Used in menus—that is, drop-down menus and menu lists

message-box

Used in dialog boxes

small-caption

Used for labeling small controls

status-bar

Used in window status bars

For example, you might want to set the font of a button to be
the same as that of the buttons found in the operating system.
For example:

button {font: caption;}

With these values, you can create web-based applications that
look very much like applications native to the user’s operating
system.

Note that system fonts may be set only as a whole; that is, the
font family, size, weight, style, etc., are all set together.
Therefore, the button text from our previous example will look
exactly the same as button text in the operating system,
whether or not the size matches any of the content around the
button. You can, however, alter the individual values after the
system font has been set. Thus, the following rule will make
sure the button’s font is the same size as its parent element’s
font:

button {font: caption; font-size: 1em;}

If you call for a system font and no such font exists on the user’s
machine, the user agent may try to find an approximation, such

as reducing the size of the caption font to arrive at the small-
caption font. If no such approximation is possible, the user
agent should use a default font of its own. If it can find a system
font but can’t read all of its values, it should use the default
value. For example, a user agent may be able to find a status-
bar font but not get any information about whether the font is
small caps. In that case, the user agent will use the value
normal for the small-caps property.

Font Matching

As you’ve seen, CSS allows for the matching of font families,
weights, and variants. This is all accomplished through font
matching, which is a vaguely complicated procedure.
Understanding it is important for authors who want to help
user agents make good font selections when displaying their
documents. We left it for the end of the chapter because it’s not
really necessary to understand how the font properties work,
and some readers will probably want to skip this part. If you’re
still interested, here’s how font matching works:

1. The user agent creates, or otherwise accesses, a database of
font properties. This database lists the various CSS properties
of all the fonts to which the user agent has access. Typically,

this will be all fonts installed on the machine, although there
could be others (for example, the user agent could have its
own built-in fonts). If the user agent encounters two identical
fonts, it will ignore one of them.

2. The user agent takes apart an element to which font
properties have been applied and constructs a list of font
properties necessary for the display of that element. Based
on that list, the user agent makes an initial choice of a font
family to use in displaying the element. If there is a complete
match, the user agent can use that font. Otherwise, the user
agent needs to do a little more work.

3. A font is first matched against the font-stretch property.
4. A font is next matched against the font-style property. The

keyword italic is matched by any font that is labeled as
either italic or oblique . If neither is available, the match
fails.

5. The next match is to font-weight , which can never fail
thanks to the way font-weight is handled in CSS (explained
in “How Weights Work”).

6. Then, font-size is tackled. This must be matched within a
certain tolerance, but that tolerance is defined by the user
agent. Thus, one user agent might allow matching within a
20% margin of error, whereas another might allow only 10%

differences between the size specified and the size that is
actually used.

7. If no font matched in step 2, the user agent looks for
alternate fonts within the same font family. If it finds any, it
repeats step 2 for that font.

8. Assuming a generic match has been found but doesn’t
contain everything needed to display a given element—the
font is missing the copyright symbol, for instance—the user
agent goes back to step 3, which entails a search for another
alternate font and another trip through step 2.

9. Finally, if no match has been made and all alternate fonts
have been tried, the user agent selects the default font for the
given generic font family and does the best it can to display
the element correctly.

Furthermore, the user agent does the following to resolve the
handling of font variants and features:

1. Check for font features enabled by default, including features
required for a given script. The core set of default-enabled
features is "calt" , "ccmp" , "clig" , "liga" , "locl" ,
"mark" , "mkmk" , and "rlig" .

2. If the font is defined via an @font-face rule, check for the
features implied by the font-variant descriptor in the
@font-face rule. Then check for the font features implied by

the font-feature-settings descriptor in the @font-face
rule.

3. Check feature settings determined by properties other than
font-variant or font-feature-settings . (For example,
setting a nondefault value for the letter-spacing property
will disable ligatures.)

4. Check for features implied by the value of the font-variant
property, the related font-variant subproperties (e.g.,
font-variant-ligatures), and any other property that

may call for the use of OpenType features (e.g., font-

kerning).
5. Check for the features implied by the value of the font-
feature-settings property.

The whole process is long and tedious, but it helps to
understand how user agents pick the fonts they do. For
example, you might specify the use of Times or any other serif
font in a document:

body {font-family: Times, serif;}

For each element, the user agent should examine the characters
in that element and determine whether Times can provide

characters to match. In most cases, it can do so with no
problem.

Assume, however, that a Chinese character has been placed in
the middle of a paragraph. Times has nothing that can match
this character, so the user agent has to work around the
character or look for another font that can fulfill the needs of
displaying that element. Any Western font is highly unlikely to
contain Chinese characters, but should one exist (let’s call it
AsiaTimes), the user agent could use it in the display of that one
element—or simply for the single character. Thus, the whole
paragraph might be displayed using AsiaTimes, or everything in
the paragraph might be in Times except for the single Chinese
character, which is displayed in AsiaTimes.

Summary

From what was initially a very simple set of font properties, CSS
has grown to allow fine-grained and wide-ranging influence
over the way fonts are displayed on the web. From custom fonts
downloaded over the web to custom-built families assembled
out of a variety of individual faces, authors may be fairly said to
overflow with font power.

The typographic options available to authors today are far
stronger than ever, but always remember: you must use this
power wisely. While you can have 17 fonts in use on your site,
that definitely doesn’t mean that you should. Quite aside from
the aesthetic difficulties this could present for your users, it
would also make the total page weight much, much higher than
it needs to be. As with any other aspect of web design, you are
advised to use your power wisely, not wildly.

Chapter 15. Text Properties

Because text is so important, many CSS properties affect it in
one way or another. But didn’t we just cover that in Chapter 14?
Not exactly: we covered only fonts—the importing and usage of
typefaces. Text styles are different.

OK, so what is the difference between text and fonts? At the
simplest level, text is the content, and fonts are used to display
that content. Fonts provide the shape for the letters. Text is the
styling around those shapes. Using text properties, you can
affect the position of text in relation to the rest of the line,
superscript it, underline it, and change the capitalization. You
can affect the size, color, and placement of text decorations.

Indentation and Inline Alignment

Let’s start with a discussion of how you can affect the inline
positioning of text within a line. Think of these basic actions as
the same types of steps you might take to create a newsletter or
write a report.

Originally, CSS was based on concepts of horizontal and vertical.
To better support all languages and writing directions, CSS now

uses the terms block direction and inline direction. If your
primary language is Western-derived, you’re accustomed to a
block direction of top to bottom, and an inline direction of left
to right.

The block direction is the direction in which block elements are
placed by default in the current writing mode. In English, for
example, the block direction is top to bottom, or vertical, as one
paragraph (or other text element) is placed beneath the one
before. Some languages have vertical text, like Mongolian.
When text is vertical, the block direction is horizontal.

The inline direction is the direction in which inline elements are
written within a block. To again take English as an example, the
inline direction is left to right, or horizontal. In languages like
Arabic and Hebrew, the inline direction is right to left instead.
To reuse the example from the preceding paragraph,
Mongolian’s inline direction is top to bottom.

Let’s reconsider English for a moment. A plain page of English
text, displayed on a screen, has a vertical block direction (from
top to bottom) and a horizontal inline direction (from left to
right). But if the page is rotated 90 degrees counterclockwise by
using CSS Transforms, suddenly the block direction is

horizontal and the inline direction is vertical. (And bottom to
top, at that.)

TIP

You can still find a lot of English-centric blog posts and other CSS-related
documentation on the web using the terms vertical and horizontal when talking
about writing directions. When you do, mentally translate them to block and inline as
needed.

Indenting Text

Most paper books we read in Western languages format
paragraphs of text with the first line indented, and no blank
line between paragraphs. If you want to re-create that look, CSS
provides the property text-indent .

TEXT-INDENT

Values [< length > | < percentage >] &&
hanging && each-line

Initial
value

0

Applies to Block-level elements

Percentages Refer to the width of the containing
block

Computed
value

For percentage values, as specified; for
length values, the absolute length

Inherited Yes

Animatable Yes

Notes hanging and each-line are still
experimental as of mid-2022

Using text-indent , the first line of any element can be
indented by a given length, even if that length is negative. A
common use for this property is to indent the first line of a
paragraph:

p {text-indent: 3em;}

This rule will cause the first line of any paragraph to be
indented 3 ems, as shown in Figure 15-1.

Figure 15-1. Text indenting

In general, you can apply text-indent to any element that
generates a block box, and the indentation will occur along the
inline direction. You can’t apply it to inline elements or
replaced elements such as images. However, if you have an
image within the first line of a block-level element, it will be
shifted over with the rest of the text in the line.

NOTE

If you want to “indent” the first line of an inline element, you can create the effect
with left padding or a margin.

You can also set negative values for text-indent to create a
hanging indent, where the first line hangs out to one side of the
rest of the element:

p {text-indent: −4em;}

Be careful when setting a negative value for text-indent ; the
first few words may be chopped off by the edge of the browser
window if you aren’t careful. To avoid display problems, we
recommend you use a margin or padding to accommodate the
negative indentation:

p {text-indent: −4em; padding-left: 4em;}

Any unit of length, including percentage values, may be used
with text-indent . In the following case, the percentage refers
to the width of the parent element of the element being
indented. In other words, if you set the indent value to 10% , the
first line of an affected element will be indented by 10% of its
parent element’s width, as shown in Figure 15-2:

div {width: 400px;}
p {text-indent: 10%;}

Figure 15-2. Text indenting with percentages

Note that because text-indent is inherited, some browsers,
like the Yandex browser, inherit the computed values, while
Safari, Firefox, Edge, and Chrome inherit the declared value. In
the following, both bits of text will be indented 5 ems in Yandex
and 10% of the current element’s width in other browsers,
because the value of 5em is inherited by the paragraph from its
parent <div> in Yandex and older versions of WebKit, whereas
most evergreen browsers inherit the declared value of 10%:

div#outer {width: 50em;}
div#inner {text-indent: 10%;}
p {width: 20em;}

<div>
<p>This paragraph is contained inside a DIV, which is
first line of the paragraph is indented 40px (400 * 1
because percentages are computed with respect to the
</div>

<div id="outer">
<div id="inner">

As of late 2022, two keywords are being considered for addition
to text-indent :

hanging

Inverts the indentation effect; that is, text-indent: 3em
hanging would indent all the lines of text except the first line.
This is similar to the negative-value indentation discussed
previously, but without risking cutting off text, because
instead of pulling the first line out of the content box, all the
lines but the first are indented away from the edge of the
content box.

each-line

Indents the first line of the element plus any line that starts
after a forced line break, such as that caused by a
 , but
not lines that follow a soft line break.

This first line of the DIV is indented by 5em.
<p>
This paragraph is 20em wide, and the first line of th
is indented 5em in WebKit and 2em elsewhere. This is
computed values for 'text-indent' are inherited in We
while the declared values are inherited elsewhere.
</p>
</div>
</div>

When supported, either keyword can be used in conjunction
with a length or percentage, such as the following:

p {text-indent: 10% hanging;}
pre {text-indent: 5ch each-line;}

Aligning Text

Even more basic than text-indent is the property text-
align , which affects the way the lines of text in an element are
aligned with respect to one another.

TEXT-ALIGN

Values start | end | left | right | cente
r | justify | justify-all | match-p
arent

Initial
value

start

Applies to Block-level elements

Computed
value

As specified, except in the case of match
-parent

Inherited Yes

Animatable No

Note justify-all is not supported as of
mid-2022

The quickest way to understand how these values work is to
examine Figure 15-3, which demonstrates the most widely used

values. The values left , right , and center cause the text
within elements to be aligned exactly as described by these
words in horizontal languages like English or Arabic, regardless
of the language’s inline direction.

Figure 15-3. Selected behaviors of the text-align property

The default value of text-align is start , which is the
equivalent of left in LTR languages, and right in RTL
languages. In vertical languages. left and right are mapped
to the start or end edge, respectively. This is illustrated in
Figure 15-4.

Because text-align applies only to block-level elements such
as paragraphs, there’s no way to center an anchor within its
line without aligning the rest of the line (nor would you want
to, since that would likely cause text overlap).

As you may expect, center causes each line of text to be
centered within the element. If you’ve ever come across the
long-ago deprecated <CENTER> element, you may be tempted to
believe that text-align: center is the same. It is actually
quite different. The <CENTER> element affected not only text,
but also centered whole elements, such as tables. The text-
align property does not control the alignment of elements,
only their inline content.

Figure 15-4. Left, right, and center in vertical writing modes

Start and end alignment

Remembering that CSS was based on concepts of horizontal and
vertical, the initial default value was originally “a nameless
value that acts as left if direction is ltr, right if direction is rtl.”
The default value now has a name: start , which is the
equivalent of left in LTR languages, and right in RTL
languages.

The default value of start means that text is aligned to the
start edge of its line box. In LTR languages like English, that’s
the left edge; in RTL languages such as Arabic, it’s the right
edge. In vertical languages, it will be the top or bottom,
depending on the writing direction. The upshot is that the
default value is much more aware of the document’s language
direction while leaving the default behavior the same in the
vast majority of existing cases.

In a like manner, end aligns text with the end edge of each line
box—the right edge in LTR languages, the left edge in RTL
languages, and so forth. Figure 15-5 shows the effects of these
values.

Figure 15-5. Start and end alignment

Justified text

An often-overlooked alignment value is justify , which raises
some issues of its own. In justified text, both ends of a line of
text (except the last line, which can be set with text-align-

last) are placed at the inner edges of the parent element, as
shown in Figure 15-6. Then, the spacing between words and
letters is adjusted so that the words are distributed evenly
throughout the line. Justified text is common in the print world
(for example, in this book), but under CSS, a few extra
considerations come into play.

Figure 15-6. Justified text

The user agent determines how justified text should be
stretched or distributed to fill the space between the left and
right edges of the parent. Some browsers, for example, might
add extra space only between words, while others might
distribute the extra space between letters (although the CSS
specification states that “user agents may not further increase
or decrease the inter-character space” if the property letter-
spacing has been assigned a length value). Other user agents

may reduce space on some lines, thus mashing the text together
a bit more than usual.

The value justify-all sets full justification for both text-
align and text-align-last (covered in an upcoming section).

WARNING

As of mid-2022, the justify-all value is not supported by any browser, even
though nearly all of them support text-align: justify and text-align-last:
justify . This gap in support remains a mystery as of press time, but is solved in
most browsers with the following:

.justify-all {
 text-align: justify;
 text-align-last: justify;
 }

Parent matching

We have one more value to cover: match-parent . If you
declare text-align: match-parent , and the inherited value of
text-align is start or end , the alignment of the match-
parent element will be calculated with respect to the parent
element’s horizontal or vertical, rather than inline, direction.

For example, you could force any English element’s text
alignment to match the alignment of a parent element,
regardless of its writing direction, as in the following example.

Aligning the Last Line

At times you might want to align the text in the very last line of
an element differently than you did the rest of the content. For
example, with text-align: justify , the last line defaults to
text-align: start . You might ensure a left-aligned last line in

div {text-align: start;}
div:lang(en) {direction: ltr;}
div:lang(ar) {direction: rtl;}
p {text-align: match-parent;}

<div lang="en-US">
Here is some en-US text.
<p>The alignment of this paragraph will be to the lef

</div>
<div lang="ar">
.ھذا نص عربي
<p>The alignment of this paragraph will be to the rig
</div>

an otherwise fully justified block of text, or choose to swap
from left to center alignment. For those situations, you can use
text-align-last .

TEXT-ALIGN-LAST

Values auto | start | end | left | right |
center | justify

Initial
value

auto

Applies to Block-level elements

Computed
value

As specified

Inherited Yes

Animatable No

As with text-align , the quickest way to understand how these
values work is to examine Figure 15-7.

Figure 15-7. Differently aligned last lines

The last lines of the elements are aligned independently of the
rest of the elements, according to the elements’ text-align-
last values.

A close study of Figure 15-7 will reveal that there’s more at play
than just the last lines of block-level elements. In fact, text-
align-last applies to any line of text that immediately
precedes a forced line break, whether or not that line break is
triggered by the end of an element. Thus, a line break created
by a
 tag will make the line of text immediately before that
break use the value of text-align-last .

An interesting wrinkle arises with text-align-last : if the first
line of text in an element is also the last line of text in the
element, the value of text-align-last takes precedence over

the value of text-align . Thus, the following styles will result
in a centered paragraph, not a start-aligned paragraph:

p {text-align: start; text-align-last: center;}

<p>A paragraph.</p>

Word Spacing

The word-spacing property is used to modify interword
spacing, accepting a positive or negative length. This length is
added to the standard space between words. Therefore, the
default value of normal is the same as setting a value of 0 .

WORD-SPACING

Values < length > | normal

Initial
value

normal

Applies to All elements

Computed
value

For normal , the absolute length 0 ;
otherwise, the absolute length

Inherited Yes

Animatable Yes

If you supply a positive length value, the space between words
will increase. Setting a negative value for word-spacing brings
words closer together:

p.spread {word-spacing: 0.5em;}
p.tight {word-spacing: -0.5em;}

p.default {word-spacing: normal;}
p.zero {word-spacing: 0;}

Manipulating these settings has the effect shown in Figure 15-8.

Figure 15-8. Changing the space between words

In CSS terms, a word is any string of nonwhitespace characters
that is surrounded by whitespace of some kind. This means
word-spacing is unlikely to work in any languages that employ
pictographs, or non-Roman writing styles. This is also why the

<p class="spread">The spaces—as in those between the
 will be increased by 0.5em.</p>
<p class="tight">The spaces—as in those between the “
 will be increased by 0.5em.</p>
<p class="default">The spaces—as in those between the
 will be neither increased nor decreased.</p>
<p class="zero">The spaces—as in those between the “w
 will be neither increased nor decreased.</p>

em dashes in the previous example’s text don’t get space
around them. From the CSS point of view, “spaces—as” is a
single word.

Use caution. The word-spacing property allows you to create
very unreadable documents, as Figure 15-9 illustrates.

Figure 15-9. Really wide word spacing

Letter Spacing

Many of the issues you encounter with word-spacing also
occur with letter-spacing . The only real difference between
the two is that letter-spacing modifies the space between
characters or letters.

LETTER-SPACING

Values < length > | normal

Initial
value

normal

Applies to All elements

Computed
value

For length values, the absolute length;
otherwise, normal

Inherited Yes

Animatable Yes

As with the word-spacing property, the permitted values of
letter-spacing include any length, though character-relative
lengths like em (rather than root-relative lengths like rem) are
recommended to ensure that the spacing is proportional to the
font size.

The default keyword is normal , which has the same effect as
letter-spacing: 0 . Any length value you enter will increase
or decrease the space between letters by that amount.
Figure 15-10 shows the results of the following markup:

Figure 15-10. Various kinds of letter spacing

WARNING

If a page uses fonts with features like ligatures, and those features are enabled,
altering letter or word spacing can effectively disable them. Browsers will not
recalculate ligatures or other joins when letter spacing is altered.

p {letter-spacing: 0;} /* identical to 'normal'
p.spacious {letter-spacing: 0.25em;}
p.tight {letter-spacing: −0.25em;}

<p>The letters in this paragraph are spaced as normal
<p class="spacious">The letters in this paragraph are
<p class="tight">The letters in this paragraph are a

Spacing and Alignment

It’s important to remember that space between words may be
altered by the value of the property text-align . If an element
is justified, the spaces between letters and words may be
altered to fit the text along the full width of the line. This may in
turn alter the spacing declared using word-spacing .

If a length value is assigned to letter-spacing , that value
cannot be changed by text-align ; but if the value of letter-
spacing is normal , inter-character spacing may be changed to
justify the text. CSS does not specify how the spacing should be
calculated, so user agents use their own algorithms. To prevent
text-align from altering letter spacing while keeping the
default letter spacing, declare letter-spacing: 0 .

Note that computed values are inherited, so child elements with
larger or smaller text will have the same word or letter spacing
as their parent element. You cannot define a scaling factor for
word-spacing or letter-spacing to be inherited in place of
the computed value (in contrast with line-height). As a result,
you may run into problems such as those shown in Figure 15-
11:

p {letter-spacing: 0.25em; font-size: 20px;}
small {font-size: 50%;}

Figure 15-11. Inherited letter spacing

As inherit inherits the ancestor’s letter-spacing computed
length, the only way to achieve letter spacing that’s in
proportion to the size of the text is to set it explicitly on each
element, as follows:

p {letter-spacing: 0.25em;}
small {font-size: 50%; letter-spacing: 0.25em;}

And the same goes for word spacing.

Vertical Alignment

<p>This spacious paragraph features <small>tiny text
as spacious</small>, even though the author probably
spacing to be in proportion to the size of the text.<

Now that we’ve covered alignment along the inline direction,
let’s move on to the vertical alignment of inline elements along
the block direction—things like superscripting and vertical
alignment (vertical with respect to the line of text, if the text is
laid out horizontally). Since the construction of lines is a
complex topic that merits its own small book, we’ll just stick to
a quick overview here.

Adjusting the Height of Lines

The distance between lines can be affected by changing the
height of a line. Note that height here is with respect to the line
of text itself, assuming that the longer axis of a line is
width, even if it’s written vertically. The property names we
cover from here will reveal a strong bias toward Western
languages and their writing directions; this is an artifact of the
early days of CSS, when Western languages were the only ones
that could be easily represented.

The line-height property refers to the distance between the
baselines of lines of text rather than the size of the font, and it
determines the amount by which the height of each element’s
box is increased or decreased. In the most basic cases,
specifying line-height is a way to increase (or decrease) the
vertical space between lines of text, but this is a misleadingly

simple way of looking at how line-height works. This
property controls the leading, which is the extra space between
lines of text above and beyond the font’s size. In other words,
the difference between the value of line-height and the size
of the font is the leading.

LINE-HEIGHT

Values < number > | < length > |
< percentage > | normal

Initial
value

normal

Applies to All elements (but see text regarding
replaced and block-level elements)

Percentages Relative to the font size of the element

Computed
value

For length and percentage values, the
absolute value; otherwise, as specified

Inherited Yes

Animatable Yes

When applied to a block-level element, line-height defines
the minimum distance between text baselines within that

element. Note that it defines a minimum, not an absolute value.
Baselines of text can wind up being pushed farther apart than
the value of line-height , for example, if a line contains an
inline image or form control that is taller than the declared line
height. The line-height property does not affect layout for
replaced elements like images, but it still applies to them.

Constructing a line

As you learned in Chapter 6, every element in a line of text
generates a content area, which is determined by the size of the
font. This content area, in turn, generates an inline box that is,
in the absence of any other factors, exactly equal to the content
area. The leading generated by line-height is one of the
factors that increase or decrease the height of each inline box.

To determine the leading for a given element, subtract the
computed value of font-size from the computed value of
line-height . That value is the total amount of leading. And
remember, it can be a negative number. The leading is then
divided in half, and each half-leading is applied to the top and
bottom of the content area. The result is the inline box for that
element. In this way, each line of text is centered within the line
height as long as the height of the line isn’t forced beyond its
minimum height by a replaced element or other factor.

As an example, let’s say font-size (and therefore the content
area) is 14 pixels tall, and line-height is computed to 18
pixels. The difference (4 pixels) is divided in half, and each half
is applied to the top and bottom of the content area. This
effectively centers the content by creating an inline box that is
18 pixels tall, with 2 extra pixels above and below the content
area. This sounds like a roundabout way to describe how line-
height works, but there are excellent reasons for the
description.

Once all of the inline boxes have been generated for a given line
of content, they are then considered in the construction of the
line box. A line box is exactly as tall as needed to enclose the top
of the tallest inline box and the bottom of the lowest inline box.
Figure 15-12 shows a diagram of this process.

Figure 15-12. Line-box diagram

Assigning values to line-height

Let’s now consider the possible values of line-height . If you
use the default value of normal , the user agent must calculate
the space between lines. Values can vary by user agent, but the
normal default is generally around 1.2 times the size of the
font, which makes line boxes taller than the value of font-
size for a given element.

Many values are simple length measures (e.g., 18px or 2em),
but < number > values with no length unit are preferable in
many situations.

WARNING

Be aware that even if you use a valid length measurement, such as 4cm , the browser
(or the operating system) may be using an incorrect metric for real-world
measurements, so the line height may not show up as exactly 4 centimeters on your
monitor.

The em , ex , and percentage values are calculated with respect
to the font-size of the element. The results of the following
CSS and HTML are shown in Figure 15-13:

body {line-height: 18px; font-size: 16px;}
p.cl1 {line-height: 1.5em;}
p.cl2 {font-size: 10px; line-height: 150%;}
p.cl3 {line-height: 0.33in;}

Figure 15-13. Simple calculations with the line-height property

Understanding line-height and inheritance

When the line-height is inherited by one block-level element
from another, things get a bit trickier. The line-height values
inherit from the parent element as computed from the parent,
not the child. The results of the following markup are shown in
Figure 15-14. It probably wasn’t what the author had in mind:

<p>This paragraph inherits a 'line-height' of 18px fr
a 'font-size' of 16px.</p>
<p class="cl1">This paragraph has a 'line-height' of
it will have slightly more line-height than usual.</p
<p class="cl2">This paragraph has a 'line-height' of
it will have slightly more line-height than usual.</p
<p class="cl3">This paragraph has a 'line-height' of
slightly more line-height than usual.</p>

body {font-size: 10px;}
div {line-height: 1em;} /* computes to '10px' */
p {font-size: 18px;}

Figure 15-14. Small line-height, large font-size, slight problem

Why are the lines so close together? Because the computed
line-height value of 10px was inherited by the paragraph
from its parent <div> . One solution to the small line-height
problem depicted in Figure 15-14 is to set an explicit line-
height for every element, but that’s not very practical. A better
alternative is to specify a number, which actually sets a scaling
factor:

body {font-size: 10px;}
div {line-height: 1;}
p {font-size: 18px;}

<div>
<p>This paragraph's 'font-size' is 18px, but the inhe
value is only 10px. This may cause the lines of text
other by a small amount.</p>
</div>

When you specify a number with no length unit, you cause the
scaling factor to be an inherited value instead of a computed
value. The number will be applied to the element and all of its
child elements so that each element has a line-height
calculated with respect to its own font-size (see Figure 15-
15):

div {line-height: 1.5;}
p {font-size: 18px;}

Figure 15-15. Using line-height factors to overcome inheritance problems

Now that you have a basic grasp of how lines are constructed,
let’s talk about vertically aligning elements relative to the line
box—that is, displacing them along the block direction.

<div>
<p>This paragraph's 'font-size' is 18px, and since th
set for the parent div is 1.5, the 'line-height' for
is 27px (18 * 1.5).</p>
</div>

Vertically Aligning Text

If you’ve ever used the elements <sup> and <sub> (the
superscript and subscript elements), or used the deprecated
align attribute with an image, you’ve done some rudimentary
vertical alignment.

NOTE

Because of the property name vertical-align , this section will use the terms
vertical and horizontal to refer to the block and inline directions of the text.

VERTICAL-ALIGN

Values baseline | sub | super | top | tex
t-top | middle | bottom | text-bot
tom | < length > | < percentage >

Initial
value

baseline

Applies to Inline elements, the pseudo-elements
::first-letter and ::first-line ,
and table cells

Percentages Refer to the value of line-height for
the element

Computed
value

For percentage and length values, the
absolute length; otherwise, as specified

Inherited No

Animatable < length >, < percentage >

Note When applied to table cells, only the
values baseline , top , middle , and b

ottom are recognized

The vertical-align property accepts any one of eight
keywords, a percentage value, or a length value. The keywords
are a mix of the familiar and unfamiliar: baseline (the default
value), sub , super , bottom , text-bottom , middle , top , and
text-top . We’ll examine how each keyword works in relation
to inline elements.

NOTE

Remember: vertical-align does not affect the alignment of content within a block-
level element, just the alignment of inline content within a line of text or a table cell.
This may change in the future, but as of mid-2022, proposals to widen its scope have
yet to move forward.

Baseline alignment

Using vertical-align: baseline forces the baseline of an
element to align with the baseline of its parent. Browsers, for
the most part, do this anyway, since you’d probably expect the
bottoms of all text elements in a line to be aligned.

If a vertically aligned element doesn’t have a baseline—that is,
if it’s an image, a form input, or another replaced element—
then the bottom of the element is aligned with the baseline of
its parent, as Figure 15-16 shows:

img {vertical-align: baseline;}

Figure 15-16. Baseline alignment of an image

This alignment rule is important because it causes some web
browsers to always put a replaced element’s bottom edge on the
baseline, even if the line includes no other text. For example,
let’s say you have an image in a table cell all by itself. The image
may actually be on a baseline, but in some browsers, the space
below the baseline causes a gap to appear beneath the image.
Other browsers will “shrink-wrap” the image with the table cell,
and no gap will appear. The gap behavior is correct, despite its
lack of appeal to most authors.

<p>The image found in this paragraph <img src="dot.gi
bottom edge aligned with the baseline of the text in

NOTE

See the deeply aged and yet somehow still relevant article “Images, Tables, and
Mysterious Gaps” (2002) for a more detailed explanation of gap behavior and ways to
work around it.

Superscripting and subscripting

The declaration vertical-align: sub causes an element to be
subscripted, meaning that its baseline (or bottom, if it’s a
replaced element) is lowered with respect to its parent’s
baseline. The specification doesn’t define the distance the
element is lowered, so it may vary depending on the user agent.

The super value is the opposite of sub ; it raises the element’s
baseline (or bottom of a replaced element) with respect to the
parent’s baseline. Again, the distance the text is raised depends
on the user agent.

Note that the values sub and super do not change the
element’s font size, so subscripted or superscripted text will not
become smaller (or larger). Instead, any text in the sub- or
superscripted element will, by default, be the same size as text
in the parent element, as illustrated by Figure 15-17:

https://meyerweb.com/eric/articles/devedge/img-table-gaps

span.raise {vertical-align: super;}
span.lower {vertical-align: sub;}

Figure 15-17. Superscript and subscript alignment

NOTE

If you wish to make super- or subscripted text smaller than the text of its parent
element, you can do so by using the font-size property.

Top and bottom alignment

The vertical-align: top option aligns the top of the
element’s inline box with the top of the line box. Similarly,
vertical-align: bottom aligns the bottom of the element’s
inline box with the bottom of the line box. Thus, the following
markup results in Figure 15-18:

.soarer {vertical-align: top;}

.feeder {vertical-align: bottom;}

<p>This paragraph contains supers
and subscripted text.</P>

Figure 15-18. Top and bottom alignment

The second line of the first paragraph contains two inline
elements whose top edges are aligned with each other. They’re
also well above the baseline of the text. The second paragraph
shows the inverted case: two images whose bottoms are aligned
and are well below the baseline of their line. This is because in
both cases, the sizes of the elements in the line have increased
the line’s height beyond what the font’s size would normally
create.

If you want instead to align elements with the top or bottom
edge of just the text in the line, text-top and text-bottom are

<p>And in this paragraph, as before, we have
first a <img src="tall.gif" alt="tall" class="soarer"
then a <img src="short.gif" alt="short" class="soarer
and then some text which is not tall.</p>

<p>This paragraph, as you can see, contains
first a <img src="tall.gif" alt="tall" class="feeder"
then a <img src="short.gif" alt="short" class="feeder
and then some text that is not tall.</p>

the values you seek. For the purposes of these values, replaced
elements, or any other kinds of nontext elements, are ignored.
Instead, a default text box is considered. This default box is
derived from the font-size of the parent element. The bottom
of the aligned element’s inline box is then aligned with the
bottom of the default text box. Thus, given the following
markup, you get a result like the one shown in Figure 15-19:

img.ttop {vertical-align: text-top;}
img.tbot {vertical-align: text-bottom;}

Figure 15-19. Text-top and -bottom alignment

Middle alignment

<p>Here: a <img src="tall.gif" class="tbot" alt="tall
and then a <img src="short.gif" class="tbot" alt="sho
<p>Here: a <img src="tall.gif" class="ttop" alt="tall
and then a <img src="short.gif" class="ttop" alt="sho

The value middle is usually (but not always) applied to images.
It does not have the exact effect you might assume, given its
name. The middle value aligns the middle of an inline
element’s box with a point that is 0.5ex above the baseline of
the parent element, where 1ex is defined relative to the font-
size for the parent element. Figure 15-20 shows this in more
detail.

Figure 15-20. Precise detail of middle alignment

Since most user agents treat 1ex as one-half em, middle
usually aligns the vertical midpoint of an element with a point
one-quarter em above the parent’s baseline, though this is not a
defined distance and so can vary from one user agent to
another.

Percentages

Percentages don’t let you simulate align="middle" for images.
Instead, setting a percentage value for vertical-align raises
or lowers the baseline of the element (or the bottom edge of a

replaced element) by the amount declared, with respect to the
parent’s baseline. (The percentage you specify is calculated as a
percentage of line-height for the element, not its parent.)
Positive percentage values raise the element, and negative
values lower it.

Depending on how the text is raised or lowered, it can appear to
be placed in adjacent lines, as shown in Figure 15-21, so take
care when using percentage values:

sub {vertical-align: −100%;}
sup {vertical-align: 100%;}

Figure 15-21. Percentages and fun effects

Length alignment

Finally, let’s consider vertical alignment with a specific length.
The vertical-align option is very basic: it shifts an element

<p>We can either ^{soar to new heights} or, i
_{sink into despair...}</p>

up or down by the declared distance. Thus, vertical-align:
5px; will shift an element upward 5 pixels from its unaligned
placement. Negative length values shift the element downward.

It’s important to realize that vertically aligned text does not
become part of another line, nor does it overlap text in other
lines. Consider Figure 15-22, in which some vertically aligned
text appears in the middle of a paragraph.

Figure 15-22. Vertical alignments can cause lines to get taller

As you can see, any vertically aligned element can affect the
height of the line. Recall the description of a line box, which is
exactly as tall as necessary to enclose the top of the tallest inline
box and the bottom of the lowest inline box. This includes inline
boxes that have been shifted up or down by vertical alignment.

Text Transformation

With the alignment properties covered, let’s look at ways to
manipulate the capitalization of text by using the property
text-transform .

TEXT-TRANSFORM

Values uppercase | lowercase | capitalize
| full-width |
full-size-kana | none

Initial
value

none

Applies to All elements

Computed
value

As specified

Inherited Yes

Animatable No

Notes full-width and full-size-kana are
supported only in Firefox as of mid-
2022

The default value none leaves the text alone and uses whatever
capitalization exists in the source document. As their names
imply, uppercase and lowercase convert text into all upper-
or lowercase characters. The full-width value forces the
writing of a character inside a square, as if on a typographical
grid.

WARNING

Accessibility note: some screen readers will read all-uppercase text one letter at a
time, as if spelling out an acronym, even if the source text is lowercase or mixed-case
and the uppercasing is only enforced via CSS. For this reason, uppercasing text via
CSS should be approached with caution.

Finally, the capitalize value capitalizes only the first letter of
each word (where a word is defined as a string of adjacent
characters surrounded by whitespace). Figure 15-23 illustrates
each of these settings in a variety of ways:

h1 {text-transform: capitalize;}
strong {text-transform: uppercase;}
p.cummings {text-transform: lowercase;}
p.full {text-transform: full-width;}
p.raw {text-transform: none;}

<h1>The heading-one at the beginninG</h1>

<p>
By default, text is displayed in the capitalization i
document, but it is possible to change this</
the property 'text-transform'.
</p>
<p class="cummings">
For example, one could Create TEXT such as might have
the late Poet E.E.Cummings.
</p>
<p class="full">
If you need to align characters as if in a grid, as i
languages, you can use 'full-width' to do so.
</p>
<p class="raw">
If you feel the need to Explicitly Declare the transf
to be 'none', that can be done as well.
</p>

Figure 15-23. Various kinds of text transformation

NOTE

As noted in Chapter 6, CJK stands for Chinese/Japanese/Korean. CJK characters take up
the majority of the entire Unicode code space, including approximately 70,000 Han
characters. You may sometimes come across the abbreviation CJKV, which adds
Vietnamese to the mix.

Different user agents may have different ways of deciding
where words begin and, as a result, which letters are
capitalized. For example, the text “heading-one” in the <h1>
element, shown in Figure 15-23, could be rendered in one of
two ways: “Heading-one” or “Heading-One.” CSS does not say
which is correct, so either is possible.

You may have also noticed that the last letter in the <h1>
element in Figure 15-23 is still uppercase. This is correct: when
applying a text-transform of capitalize , CSS requires user
agents to make sure only the first letter of each word is
capitalized. They can ignore the rest of the word.

As a property, text-transform may seem minor, but it’s very
useful if you suddenly decide to capitalize all your <h1>
elements. Instead of individually changing the content of all
your <h1> elements, you can just use text-transform to make
the change for you:

h1 {text-transform: uppercase;}

<h1>This is an H1 element</h1>

The advantages of using text-transform are twofold. First,
you need to write only a single rule to make this change, rather
than changing the <h1> itself. Second, if you decide later to
switch from all capitals back to initial capitals, the change is
even easier:

h1 {text-transform: capitalize;}

Remember that capitalize is a simple letter substitution at
the beginning of each “word.” CSS doesn’t check for grammar,
so common headline-capitalization conventions, such as leaving
articles (a, an, the) all lowercase, won’t be enforced.

Different languages have different rules for which letters
should be capitalized. The text-transform property takes into
account language-specific case mappings.

The full-width option forces the writing of a character inside
a square. Most characters you can type on a keyboard come in
both normal width and full width, with different Unicode code
points. The full-width version is used when full-width is set
and supported to mix them smoothly with Asian ideographic
characters, allowing ideograms and Latin scripts to be aligned.

Generally used with <ruby> annotation text, full-size-kana
converts all small Kana characters to the equivalent full-size
Kana, to compensate for legibility issues at the small font sizes
typically used in Ruby.

Text Decoration

Next we come to the topic of text decorations, and how we can
affect them with various properties. The simplest text

decoration, and the one that can be controlled the most, is an
underline. CSS also supports overlines, line-throughs, and even
the wavy underlines you see in word processing programs to
flag errors of spelling or grammar.

We’ll start with the various individual properties, and then tie it
all up with a shorthand property, text-decoration , that
covers them all.

Setting Text Decoration Line Placement

With the property text-decoration-line , you can set the
location of one or more line decorations on a run of text. The
most familiar decoration may be underlining, thanks to all the
hyperlinks out there, but CSS has three possible visible
decoration line values (plus an unsupported fourth that
wouldn’t draw a line at all even if it was supported).

TEXT-DECORATION-LINE

Values none | [underline ‖ overline ‖ lin
e-through ‖ blink]

Initial
value

none

Applies to All elements

Computed
value

As specified

Inherited No

Animatable No

Notes The blink value is deprecated, with all
browsers treating it as none as of early
2022

The values are relatively self-documenting: underline places a
line under the text, where under means “below the text in the
block direction.” The overline value is the mirror image,
putting the line above the text in the block direction. The line-
through value draws a line through the middle of the text.

Let’s see what these decorations look like in practice. The
following code is illustrated in Figure 15-24:

p.one {text-decoration: underline;}
p.two {text-decoration: overline;}
p.three {text-decoration: line-through;}
p.four {text-decoration: none;}

Figure 15-24. Various kinds of text decoration

The value none turns off any decoration that might otherwise
have been applied to an element. For example, links are usually

underlined by default. If you want to suppress the underlining
of hyperlinks, you can use the following CSS rule to do so:

a {text-decoration: none;}

If you explicitly turn off link underlining with this sort of rule,
the only visual difference between the anchors and normal text
will be their color (at least by default, though there’s no
ironclad guarantee that there will be a difference in their
colors). Relying on color alone as the difference between
regular text and links within that text is not enough to
differentiate links from the rest of the text, negatively
impacting user experience and making your content
inaccessible to many users.

NOTE

Bear in mind that many users will be annoyed when they realize you’ve turned off
link underlining, especially within blocks of text. If your links aren’t underlined,
users will have a hard time finding hyperlinks in your documents, and finding them
can be next to impossible for users with one form or another of color blindness.

That’s really all there is to text-decoration-line . The more
veteran among you may recognize this is what text-
decoration itself used to do, but times have moved on and

there’s much, much more we can do with decorations besides
just place them, so these values were shifted to text-
decoration-line .

Setting Text Decoration Color

By default, the color of a text decoration will match the color of
the text. If you need to change that, text-decoration-color is
here to help.

TEXT-DECORATION-COLOR

Values < color > | currentcolor

Initial value currentcolor

Applies to All elements

Computed value The computed color

Inherited No

Animatable Yes

You can use any valid color value for text-decoration-color ,
including the keyword currentcolor (which is the default).
Suppose you want to make it clear that stricken text really is
stricken. That would go something like this:

del, strike, .removed {
 text-decoration-line: line-through;
 text-decoration-color: red;
}

Thus, not only will the elements shown get a line-through
decoration, but the line will also be colored red. The text itself
will not be red unless you change that as well by using the
color property.

NOTE

Remember to keep the color contrast between decorations and the base text
sufficiently high to remain accessible. It’s also generally a bad idea to use color alone
to convey meaning, as in “check the links with red underlines for more information!”

Setting Text Decoration Thickness

With the property text-decoration-thickness , you can
change the stroke thickness of a text decoration to something

beefier, or possibly less beefy, than usual.

TEXT-DECORATION-THICKNESS

Values < length > | < percentage > | from-fon
t | auto

Initial
value

auto

Applies to All elements

Computed
value

As declared

Percentages Refer to the font-size of the element

Inherited No

Animatable Yes

Notes Was text-decoration-width until a
name change in 2019

Supplying a length value sets the thickness of the decoration to
that length; thus, text-decoration-thickness: 3px sets the
decoration to be 3 pixels thick, no matter how big or small the
text itself might be. A better approach is generally to use an em-
based value or jump straight to using a percentage value, since
percentages are calculated with respect to the value of 1em for
the element. Thus, text-decoration-thickness: 10% would
yield a decoration thickness of 1.6 pixels in a font whose
computed font size is 16 pixels, but 4 pixels for a 40-pixel font
size. The following code shows a few examples, which are
illustrated in Figure 15-25:

h1, p {text-decoration-line: underline;}
.tiny {text-decoration-thickness: 1px;}
.embased {text-decoration-thickness: 0.333em;}
.percent {text-decoration-thickness: 10%;}

Figure 15-25. Various decoration thicknesses

The keyword from-font is interesting because it allows the
browser to consult the font file to see whether it defines a

preferred decoration thickness; if it does, the browser uses that
thickness. If the font file doesn’t recommend a thickness, the
browser falls back to the auto behavior and picks whatever
thickness it thinks appropriate, using inscrutable reasoning
known only to itself.

Setting Text Decoration Style

Thus far, we’ve shown a lot of straight, single lines. If you’re
yearning for something beyond that hidebound approach,
text-decoration-style provides alternatives.

TEXT-DECORATION-STYLE

Values solid | double | dotted | dashed
| wavy

Initial value solid

Applies to All elements

Computed
value

As declared

Inherited No

Animatable No

The exact result will depend on the value you pick and the
browser you use to view the results, but the renderings of these
decoration styles should be at least similar to those shown in
Figure 15-26, which is the output of the following code:

p {text-decoration-line: underline; text-decoration-t
p.one {text-decoration-style: solid;}

Figure 15-26. Various decoration styles

We increased the decoration thickness for Figure 15-26 in order
to improve legiblility; the default sizing can make some of the
more complex decorations, like dotted , difficult to see.

Using the Text Decoration Shorthand
Property

When you just want to set a text decoration’s position, color,
thickness, and style in one handy declaration, text-

p.two {text-decoration-style: double;}
p.three {text-decoration-style: dotted;}
p.four {text-decoration-style: dashed;}
p.five {text-decoration-style: wavy;}

decoration is the way to go.

TEXT-DECORATION

Values < text-decoration-line > ‖ < text-dec

oration-style > ‖ < text-decoration
-color > ‖ < text-decoration-thick
ness >

Initial
value

See individual properties

Applies to All elements

Computed
value

As specified

Inherited No

Animatable As allowed by individual properties

With the text-decoration shorthand property, you can bring
everything into one place, like so:

Be careful, though: if you have two different decorations
matched to the same element, the value of the rule that wins
out will completely replace the value of the loser. Consider the
following:

h2.stricken {text-decoration: line-through wavy;}
h2 {text-decoration: underline overline double;}

Given these rules, any <h2> element with a class of stricken
will have only a wavy line-through decoration. The doubled
underline and overline decorations are lost, since shorthand
values replace one another instead of accumulating.

Note also that because of the way the decoration properties
work, you can set the color and style only once per element,
even if you have multiple decorations. For example, the
following is valid, setting both the under- and overlines to be
green and dotted:

h2 {text-decoration: overline purple 10%;}
a:any-link {text-decoration: underline currentcolor f

text-decoration: dotted green underline overline;

If you instead want the overline to be a different color than the
underline, or set each to have its own style, you’d need to apply
each to a separate element, something like this:

Offsetting Underlines

Along with all the text-decoration properties, a related
property allows you to change the distance between an
underline (and only an underline) and the text that the
underline decorates: text-underline-offset .

p {text-decoration: dotted green overline;}
p > span:first-child {text-decoration: silver dashed

<p>All this text will have differing text decor

TEXT-UNDERLINE-OFFSET

Values < length > | < percentage > | auto

Initial value auto

Applies to All elements

Computed
value

As specified

Percentages Refer to the font-size of the
element

Inherited No

Animatable Yes

You might wish that, say, underlines on hyperlinks were a little
farther away from the text’s baseline, so that they’re a little
more obvious to the user. Setting a length value like 3px will

put the underline 3 pixels below the text’s baseline. See
Figure 15-27 for the results of the following CSS:

p {text-decoration-line: underline;}
p.one {text-underline-offset: auto;}
p.two {text-underline-offset: 2px;}
p.three {text-underline-offset: -2px;}
p.four {text-underline-offset: 0.5em;}
p.five {text-underline-offset: 15%;}

Figure 15-27. Various underline offsets

As illustrated in Figure 15-27, the value defines an offset from
the text’s baseline, either positive (downward along the block
axis) or negative (upward along the block axis).

As with text-decoration-thickness , percentage values for
text-underline-offset are calculated with respect to the
value of 1em for the element. Thus, text-underline-offset:
10% would cause an offset of 1.6 pixels in a font whose
computed font size is 16 pixels.

WARNING

As of late 2022, only Firefox supports percentage values for text-underline-
offset , which is odd given that percentage values are a percent of 1 em in the
element’s font. The workaround is to use em length values, such as 0.1em for 10%.

Skipping Ink

An unaddressed aspect of the past few sections has been: how
exactly do browsers draw decorations over text, and more
precisely, decide when to “skip over” parts of the text? This is
known as skipping ink, and the approach a browser takes can
be altered with the property text-decoration-skip-ink .

TEXT-DECORATION-SKIP-INK

Values all | none | auto

Initial value auto

Applies to All elements

Computed value As specified

Inherited No

Animatable No

When ink skipping is turned on, the decoration is interrupted
wherever it would cross over the shapes of the text. Usually, this
means a small gap between the decoration and the text glyphs.
See Figure 15-28 for a close-up illustration of the differences in
ink-skipping approaches.

Figure 15-28. Ink-skipping approaches

The three values are defined as follows:

auto (the default)
The browser may interrupt under- and overlines where the
line would cross the text glyphs, with a little space between
the line and the glyphs. Furthermore, browsers should
consider the glyphs used for the text, since some glyphs may
call for ink skipping while others may not.

all

Browsers must interrupt under- and overlines where the line
would cross the text glyphs, with a little space between the
line and the glyphs. However, as of mid-2022, only Firefox
supports this value.

none

The browser must not interrupt under- and overlines where
the line would cross the text glyphs, but instead draw a
continuous line even though it may be drawn over parts of
the text glyphs.

As shown in Figure 15-28, auto can sometimes mean
differences depending on the language, font, or based on other
factors. You’re really just telling the browser to do whatever it
thinks is best.

NOTE

While this property’s name begins with the label text-decoration- , it is not a
property covered by the text-decoration shorthand property. That’s why it’s being
discussed here, after the shorthand, and not before.

Understanding Weird Decorations

Now, let’s look into the unusual side of text-decoration . The
first oddity is that text-decoration is not inherited. No
inheritance implies that any decoration lines drawn with the
text—whether under, over, or through it—will always be the
same color. This is true even if the descendant elements are a
different color, as depicted in Figure 15-29:

p {text-decoration: underline; color: black;}
strong {color: gray;}

Figure 15-29. Color consistency in underlines

Why is this so? Because the value of text-decoration is not
inherited, the element assumes a default value of
none . Therefore, the element has no underline. Now,
there is very clearly a line under the element, so it
seems silly to say that it has none. Nevertheless, it doesn’t. What
you see under the element is the paragraph’s
underline, which is effectively “spanning” the
element. You can see it more clearly if you alter the styles for
the boldfaced element, like this:

p {text-decoration: underline; color: black;}
strong {color: gray; text-decoration: none;}

<p>This paragraph, which is black and has a black und
strongly emphasized text that has th
beneath it as well.</p>

The result is identical to the one shown in Figure 15-29, since all
you’ve done is to explicitly declare what was already the case.
In other words, there is no way to “turn off” the decoration
generated by a parent element.

There is a way to change the color of a decoration without
violating the specification. As you’ll recall, setting a text
decoration on an element means that the entire element has the
same color decoration, even if child elements have different
colors. To match the decoration color with an element, you
must explicitly declare its decoration, as follows:

<p>This paragraph, which is black and has a black und
strongly emphasized text that has th
it as well.</p>

p {text-decoration: underline; color: black;}
strong {color: silver; text-decoration: underline;} /

<p>This paragraph, which is black and has a black und
strongly emphasized text that has th
beneath it as well, but whose gray underline overlays
of its parent.</p>

In Figure 15-30, the element is set to be gray and to
have an underline. The gray underline visually “overwrites” the
parent’s black underline, so the decoration’s color matches the
color of the element. The black underline is still
there; the gray underline is just hiding it. If you move the gray
underline with text-underline-offset or make the parent’s
text-decoration-thickness wider than its child, both
underlines will be visible.

Figure 15-30. Overcoming the default behavior of underlines

When text-decoration is combined with vertical-align ,
even stranger things can happen. Figure 15-31 shows one of
these oddities. Since the <sup> element has no decoration of its
own, but it is elevated within an overlined element, the overline
should cut through the middle of the <sup> element:

p {text-decoration: overline; font-size: 12pt;}
sup {vertical-align: 50%; font-size: 12pt;}

Figure 15-31. Correct, although strange, decorative behavior

But not all browsers do this. As of mid-2022, Chrome pushes the
overline up so it is drawn across the top of the superscript,
whereas others do not.

Text Rendering

A recent addition to CSS is text-rendering , which is actually
an SVG property that’s treated as CSS by supporting user agents.
It lets you indicate what the user agent should prioritize when
displaying text.

TEXT-RENDERING

Values auto | optimizeSpeed | optimizeLeg
ibility | geometricPrecision

Initial
value

auto

Applies to All elements

Inherited Yes

Animatable Yes

The values optimizeSpeed and optimizeLegibility indicate
that drawing speed should be favored over the use of legibility
features like kerning and ligatures (for optimizeSpeed) or that
such legibility features should be used even if that slows text
rendering (for optimizeLegibility).

The precise legibility features that are used with
optimizeLegibility are not explicitly defined, and the text
rendering often depends on the operating system on which the

user agent is running, so the exact results may vary. Figure 15-
32 shows text optimized for speed and then optimized for
legibility.

Figure 15-32. Different optimizations

As you can see in Figure 15-32, the differences between the two
optimizations are objectively rather small, but they can have a
noticeable impact on readability.

NOTE

Some user agents will always optimize for legibility, even when optimizing for speed.
This is likely an effect of rendering speeds having gotten so fast in the past few years.

The value geometricPrecision , on the other hand, directs the
user agent to draw the text as precisely as possible, such that it
could be scaled up or down with no loss of fidelity. You might
think that this is always the case, but not so. Some fonts change
kerning or ligature effects at different text sizes, for example,
providing more kerning space at smaller sizes and tightening
up the kerning space as the size is increased. With
geometricPrecision , those hints are ignored as the text size

changes. If it helps, think of it as the user agent drawing the text
as though all the text is a series of SVG paths, not font glyphs.

Even by the usual standard of web standards, the value auto is
pretty vaguely defined in SVG:

The user agent shall make appropriate trade-offs to balance
speed, legibility and geometric precision, but with legibility
given more importance than speed and geometric precision.

That’s it: user agents get to do what they think is appropriate,
leaning toward legibility.

Text Shadows

Sometimes you just really need your text to cast a shadow, like
when text overlaps a multicolored background. That’s where
text-shadow comes in. The syntax might look a little wacky at
first, but it should become clear enough with just a little
practice.

TEXT-SHADOW

Values none | [< length > ‖ < length > < leng

th > < color >?]#

Initial
value

none

Applies to All elements

Inherited No

Animatable Yes

The default is to not have a drop shadow for text. Otherwise,
you can define one or more shadows. Each shadow is defined
by an optional color and three length values, the last of which is
also optional.

The color sets the shadow’s color so it’s possible to define green,
purple, or even white shadows. If the color is omitted, the
shadow defaults to the color keyword currentcolor , making it
the same color as the text itself.

Using currentcolor as a default color may seem
counterintuitive, as you might think shadows are purely
decorative, but shadows can be used to improve legibility. A
small shadow can make very thin text more legible. Defaulting
to currentcolor allows adding thickness via a shadow that
will always match the color of the text.

In addition to improving accessibility by making thin text
thicker, shadows can be used to improve color contrast with a
multicolored background. For example, if you have white text
on a mostly dark black-and-white photo, adding a black shadow
to the white text makes the edges of the white text visible even
if the text is laid over white portions of the image.

The first two length values determine the offset distance of the
shadow from the text; the first is the horizontal offset, and the
second is the vertical offset. To define a solid, unblurred green
shadow offset 5 pixels to the right and half an em down from
the text, as shown in Figure 15-33, you could write either of the
following:

text-shadow: green 5px 0.5em;
text-shadow: 5px 0.5em green;

Negative lengths cause the shadow to be offset to the left and
upward from the original text. The following, also shown in
Figure 15-33, places a light-blue shadow 5 pixels to the left and
half an em above the text:

text-shadow: rgb(128,128,255) −5px −0.5em;

Figure 15-33. Simple shadows

While the offset may make the text take more visual space,
shadows have no effect on line height and therefore no impact
on the box model.

The optional third length value defines a blur radius for the
shadow. The blur radius is defined as the distance from the
shadow’s outline to the edge of the blurring effect. A radius of 2
pixels would result in blurring that fills the space between the
shadow’s outline and the edge of the blurring. The exact
blurring method is not defined, so different user agents might
employ different effects. As an example, the following styles are
rendered as shown in Figure 15-34:

p.cl1 {color: black; text-shadow: gray 2px 2px 4px;}

Figure 15-34. Dropping shadows all over

WARNING

Large numbers of text shadows, or text shadows with very large blur values, can
create performance slowdowns, particularly when animated in low-power and CPU-
constrained situations such as mobile devices. Test thoroughly before deploying
public designs that use text shadows.

Text Emphasis

Another way to call out text is by adding emphasis marks to
each character. This is more common in ideographic languages
like Chinese or Mongolian, but these marks can be added to any
language’s text with CSS. CSS has three text-emphasis properties

p.cl2 {color: white; text-shadow: 0 0 4px black;}
p.cl3 {color: black;
 text-shadow: 1em 0.5em 5px red,
 −0.5em −1em hsla(100,75%,25%,0.33

similar to those for text decorations, and then a shorthand that
conflates two of them.

Setting Emphasis Style

The most important of the three properties sets the type of
emphasis mark, allowing you to pick from a list of common
types or supply your own mark as a text string.

TEXT-EMPHASIS-STYLE

Values none | [[filled | open] ‖ [dot | c
ircle | double-circle | triangle |
sesame]] | < string >

Initial
value

none

Applies to Text

Computed
value

As declared, or none if nothing is
declared

Inherited Yes

Animatable No

Note As of mid-2022, most browsers support
this as only -webkit-text-emphasis-s
tyle , except Firefox, which supports
only text-emphasis-style

By default, text has no emphasis marks, or none . Alternatively,
emphasis marks can be one of five shapes: dot , circle ,
double-circle , triangle , or sesame . Those shapes can be set
as filled , which is the default; or open , which renders them
as unfilled outlines. These are summarized in Table 15-1, and
examples are shown in Figure 15-35.

Table 15-1. The predefined emphasis marks

Shape filled open

Sesame

 (U+FE45) (U+FE46)

Dot • (U+2022) ◦ (U+25E6)

Circle ● (U+25CF) ○ (U+25CB)

Double-circle ◉ (U+25C9) ◎ (U+25CE)

Triangle ▲ (U+25B2) △ (U+25B3)

The sesame is the most common mark used in vertical writing
modes; the circle is the usual default in horizontal writing

modes.

If the emphasis marks will not fit into the current text line’s
height, they will cause the height of that line of text to be
increased until they fit without overlapping other lines. Unlike
text decorations and text shadows, text emphasis marks do
affect the line height.

If none of the predefined marks work in your specific situation,
you can supply your own character as a string (a single
character in single or double quotes). However, be careful: if
the string is more than a single character, it may be reduced to
the first character in the string by the browser. Thus, text-
emphasis-style: 'cool' may result in the browser displaying
only the c as a mark, as shown in Figure 15-35. Furthermore,
the string symbols may or may not be rotated to match writing
direction in vertical languages.

Here are some examples of setting emphasis marks:

h1 em {text-emphasis-style: triangle;}
strong a:any-link {text-emphasis-style: filled sesame
strong.callout {text-emphasis-style: open double-circ

A key difference between text emphasis and text decoration is
that unlike decoration, emphasis is inherited. In other words, if
you set a style of filled sesame on a paragraph, and that
paragraph has child elements like links, those child elements
will inherit the filled sesame value.

Another difference is that every glyph (character or other
symbol) gets its own mark, and these marks are centered on the
glyph. Thus, in proportional fonts like those seen in Figure 15-
35, the marks will have different separations between them
depending on which two glyphs are next to each other.

Figure 15-35. Various emphasis marks

The CSS specification recommends that emphasis marks be half
the size of the text’s font size, as if they were given font-size:
50% . They should otherwise use the same text styles as the text;
thus, if the text is boldfaced, the emphasis marks should be as
well. They should also use the text’s color, unless overridden
with the next property we’ll cover.

Changing Emphasis Color

If you wish to have emphasis marks be a different color than
the text they’re marking, text-emphasis-color is here for you.

TEXT-EMPHASIS-COLOR

Values < color >

Initial
value

currentcolor

Applies to Text

Computed
value

The computed color

Inherited Yes

Animatable No

Note As of mid-2022, most browsers support
this as only -webkit-text-emphasis-c
olor , except Firefox, which supports
only text-emphasis-color

The default value, as is often the case with color-related
properties, is currentcolor . That ensures that emphasis marks
will match the color of the text by default. To change it, you can
do things like the following:

strong {text-emphasis-style: filled triangle;}
p.one strong {text-emphasis-color: gray;}
p.two strong {text-emphasis-color: hsl(0 0% 50%);}
/* these will yield the same visual result */

Placing Emphasis Marks

Thus far, we’ve shown emphasis marks in specific positions:
above each glyph in horizontal text, and to the right of each
glyph in vertical text. These are the default CSS values, but not
always the preferred placement. The text-emphasis-position
property allows you to change where marks are placed.

TEXT-EMPHASIS-POSITION

Values [over | under] && [right | left]

Initial
value

over right

Applies to Text

Computed
value

As declared

Inherited Yes

Animatable No

Note As of mid-2022, most browsers support
this only in the form -webkit-text-emp
hasis-position , except Firefox, which
supports only text-emphasis-position

The values over and under are applied only when the
typographic mode is horizontal. Similarly, right and left are
used only when the typographic mode is vertical.

This can be important in some Eastern languages. For example,
Chinese, Japanese, Korean, and Mongolian all prefer to have
marks to the right when the text is written vertically. They
diverge on horizontal text: Chinese prefers marks below the
text, and the rest prefer above the text, when it’s horizontal.
Thus you might write something like this in a stylesheet:

:lang(cn) {text-emphasis-position: under right;}

This would override the default over right when the text is
marked as being Chinese, applying under right instead.

Using the text-emphasis Shorthand

A shorthand option exists for the text-emphasis properties,
but it brings together only style and color.

TEXT-EMPHASIS

Values < text-emphasis-style > ‖ < text-em
phasis-color >

Initial
value

See individual properties

Applies to Text

Computed
value

See individual properties

Inherited Yes

Animatable No

Note As of mid-2022, most browsers support
this only in the form -webkit-text-emp
hasis-position , except Firefox, which
supports only text-emphasis-position

The reason text-emphasis-position is not included in the
text-emphasis shorthand is so that it can (indeed must) be
inherited separately. Therefore, the style and color of the marks
can be changed via text-emphasis without overriding the
position in the process.

As stated earlier, each character or ideogram or other glyph—
what CSS calls a typographic character unit—gets its own
emphasis mark. That is roughly correct, but exceptions occur.
The following character units do not get emphasis marks:

Word separators such as spaces, or any other Unicode
separator character
Punctuation characters, such as commas, full stops, and
parentheses
Unicode symbols corresponding to control codes, or any
unassigned characters

Setting Text Drawing Order

Browsers are supposed to use a specific order to draw the text
decorations, shadows, and emphasis marks we’ve discussed
previously, along with the text itself. These are drawn in the
following order, from bottommost (furthest away from the
user) to topmost (closest to the user):

1. Shadows (text-shadow)
2. Underlines (text-decoration)
3. Overlines (text-decoration)
4. The actual text
5. Emphasis marks (text-emphasis)
6. Line-through (text-decoration)

Thus, the drop shadows of the text are placed behind
everything else. Underlines and overlines go behind the text.
Emphasis marks and line-throughs go on top of the text. Note
that if you have top text-emphasis marks and an overline, the
emphasis marks will be drawn on top of the overline,
obfuscating the overline where they overlap.

Whitespace

Now that we’ve covered a variety of ways to style, decorate, and
otherwise enhance the text, let’s talk about the property white-
space , which affects the user agent’s handling of space,
newline, and tab characters within the document source.

WHITE-SPACE

Values normal | nowrap | pre | pre-wrap |
pre-line | break-spaces

Initial
value

normal

Applies to All elements

Computed
value

As declared

Inherited No

Animatable No

By using the white-space property, you can affect how a
browser treats the whitespace between words and lines of text.
To a certain extent, default HTML handling already does this: it
collapses any whitespace down to a single space. So given the
following markup, the rendering in a web browser would show

only one space between each word and ignore the line feed in
the elements:

You can explicitly set this default behavior with the following
declaration:

p {white-space: normal;}

This rule tells the browser to do as browsers have always done:
discard extra whitespace. Given this value, line-feed characters
(carriage returns) are converted into spaces, and any sequence
of more than one space in a row is converted to a single space.

Should you set white-space to pre , however, the whitespace
in an affected element is treated as though the elements were
HTML <pre> elements; whitespace is not ignored, as shown in
Figure 15-36:

p {white-space: pre;}

<p>This paragraph has many
 spaces in it.</p>

<p>This paragraph has many spaces in

Figure 15-36. Honoring the spaces in markup

With a white-space value of pre , the browser will pay
attention to extra spaces and even carriage returns. In this
respect, any element can be made to act like a <pre> element.

The opposite value is nowrap , which prevents text from
wrapping within an element, except wherever you use a

element. When text can’t wrap and it gets too wide for its
container, a horizontal scrollbar will appear by default (this can
be changed using the overflow property). The effects of the
following markup are shown in Figure 15-37:

<p style="white-space: nowrap;">This paragraph is not
which means that the only way to end a line is to ins
element. If no such element is inserted, then the li
forcing the user to scroll horizontally to read whate
initially displayed
in the browser window.</p>

Figure 15-37. Suppressing line wrapping with the white-space property

If an element is set to pre-wrap , text within that element has
whitespace sequences preserved, but text lines are wrapped
normally. With this value, generated linebreaks as well as those
found in the source markup are both honored.

The pre-line value is the opposite of pre-wrap and causes
whitespace sequences to collapse as in normal text but honors
new lines.

The break-spaces value is similar to pre-wrap , except that all
whitespace is preserved, even at the end of the line, with a line-
break opportunity after each whitespace character. These
spaces take up space and do not hang, and thus affect the box’s
intrinsic sizes (min-content size and max-content size).

Table 15-2 summarizes the behaviors of the various white-
space properties.

Consider the following markup, which has line-feed (e.g.,
return) characters to break lines, plus the end of each line has
several extra space characters that aren’t visible in the markup.
The results are illustrated in Figure 15-38:

Table 15-2. white-space properties

Value Whitespace Line feeds
Auto line
wrapping

pre-line Collapsed Honored Allowed

normal Collapsed Ignored Allowed

nowrap Collapsed Ignored Prevented

pre Preserved Honored Prevented

pre-wrap Preserved Honored Allowed

break-spac
es

Preserved Honored Allowed

<p style="white-space: pre-wrap;">

Figure 15-38. Three ways to handle whitespace

This paragraph has a great many s p a c e
 content, but their preservation will no
 wrapping or line breaking.
</p>
<p style="white-space: pre-line;">
This paragraph has a great many s p a c e
 content, but their collapse will not preve
 wrapping or line breaking.
<p style="white-space: break-spaces;">
This paragraph has a great many s p a c e
 content, but their preservation will not p
 wrapping or line breaking.
</p>

Notice that the third paragraph has a blank line between the
first and second lines of text. This is because a line wrap was
performed between two adjacent blank spaces at the end of the
line in the source markup. This didn’t happen for pre-wrap or
pre-line , because those white-space values don’t allow
hanging space to create line-wrap opportunities. The break-
spaces value does.

Whitespace impacts several properties, including tab-size ,
which has no effect when the white-space property is set to a
value in which whitespace is not maintained; and overflow-
wrap , which has an effect only when white-space allows
wrapping.

Setting Tab Sizes

Since whitespace is preserved in some values of white-space ,
it stands to reason that tabs (i.e., Unicode code point 0009) will
be displayed as, well, tabs. But how many spaces should each
tab equal? That’s where tab-size comes in.

TAB-SIZE

Values < length > | < integer >

Initial
value

8

Applies to Block elements

Computed
value

The absolute-length equivalent of the
specified value

Inherited Yes

Animatable Yes

By default, when whitespace is preserved, as with white-space
values of pre , pre-wrap , and break-spaces , any tab
character will be treated the same as eight spaces in a row,
including any effects from letter-spacing and word-
spacing . You can alter that by using a different integer value.
Thus, tab-size: 4 will cause each tab to be rendered as if it

were four spaces in a row. Negative values are not allowed for
tab-size .

If a length value is supplied, each tab is rendered using that
length. For example, tab-size: 10px will cause a sequence of
three tabs to be rendered as 30 pixels of whitespace. Some
effects of tab-size are illustrated in Figure 15-39.

Figure 15-39. Differing tab lengths

Remember that tab-size is effectively ignored when the value
of white-space causes whitespace to be collapsed (see
Table 15-2). The value will still be computed in such cases, but
there will be no visible effect no matter how many tabs appear
in the source.

Wrapping and Hyphenation

Handling whitespace is all well and good, but it’s a lot more
common to want to influence the way the visible characters are
handled when it comes to line wrapping. A few properties can

influence where line wrapping is allowed, as well as enable
hyphenation support.

Hyphenation

Hyphens can be very useful when displaying long words and
short line lengths, such as blog posts on mobile devices and
portions of The Economist. Authors can always insert their own
hyphenation hints by using the Unicode character U+00AD
SOFT HYPHEN (or, in HTML, ­), but CSS also offers a way
to enable hyphenation without littering up the document with
hints.

HYPHENS

Values manual | auto | none

Initial value manual

Applies to All elements

Computed value As specified

Inherited Yes

Animatable No

With the default value of manual , hyphens are inserted only
where manually inserted hyphenation markers occur in the
document, such as U+00AD or ­ . Otherwise, no
hyphenation occurs. The value none , on the other hand,
suppresses any hyphenation, even if manual break markers are
present; thus, U+00AD and ­ are ignored.

TIP

The <wbr> element does not introduce a hyphen at the line-break point. To make a
hyphen appear only at the end of a line, use the soft hyphen character entity (­)
instead.

The far more interesting (and potentially inconsistent) value is
auto , which permits the browser to insert hyphens and break
words at “appropriate” places inside words, even where no
manually inserted hyphenation breaks exist. But what
constitutes a word? And, under what circumstances is it
appropriate to hyphenate a word? Both are language
dependent. User agents are supposed to prefer manually
inserted hyphen breaks to automatically determined breaks,
but there are no guarantees. An illustration of hyphenation, or
the suppression thereof, in the following example is shown in
Figure 15-40:

.cl01 {hyphens: auto;}

.cl02 {hyphens: manual;}

.cl03 {hyphens: none;}

<p class="cl01">Supercalifragilisticexpialidocious
 antidisestablishmentarianism.</p>
<p class="cl02">Supercalifragilisticexpialidocious
 antidisestablishmentarianism.</p>

Figure 15-40. Hyphenation results

Because hyphenation is language dependent, and because the
CSS specifications do not define precise (or even vague) rules
for user agents, hyphenation may differ by browser.

If you do choose to hyphenate, be careful about the elements to
which you apply the hyphenation. The hyphens property is
inherited, so declaring body {hyphens: auto;} will apply
hyphenation to everything in your document—including text
areas, code samples, block quotes, and so on. Blocking

<p class="cl02">Super­cali­fragi­listic&s
docious anti­dis­establish­ment­arian
<p class="cl03">Super­cali­fragi­listic&s
docious anti­dis­establish­ment­arian

automatic hyphenation at the level of those elements is
probably a good idea, using rules that are something like this:

It’s usually a good idea to suppress hyphenation in code
samples and code blocks, especially in languages that use
hyphens in things like property and value names. (Ahem.)
Similar logic holds for keyboard input text—you likely don’t
want a stray dash getting into your Unix command-line
examples! And so on down the line. If you decide that you want
to hyphenate some of these elements, just remove them from
the selector.

NOTE

It is strongly advised to set the lang attribute on HTML elements to enable
hyphenation support and improve accessibility. As of mid-2022, hyphens is
supported in Firefox for 30+ languages, Safari supports many European languages,
but Chrome-related browsers support only English.

Hyphens can be suppressed by the effects of other properties.
For example, word-break affects the way soft wrapping of text

body {hyphens: auto;}
code, var, kbd, samp, tt, dir, listing, plaintext, xm
blockquote, q, textarea, input, option {hyphens: manu

is calculated in various languages, determining whether line
breaks appear where text would otherwise overflow its content
box.

Word Breaking

When a run of text is too long to fit into a single line, it is soft
wrapped. This is in contrast to hard wraps, which include line-
feed characters and
 elements. Where the text is soft
wrapped is determined by the user agent, but word-break lets
authors influence that decision making.

WORD-BREAK

Values normal | break-all | keep-all | br
eak-word

Initial
value

normal

Applies to Text

Computed
value

As specified

Inherited Yes

Animatable No

Note break-word is a legacy value and has
been deprecated

The default value of normal means that text should be
wrapped as it always has been. In practical terms, this means
that text is broken between words, though the definition of a

word varies by language. In Latin-derived languages like
English, this is almost always a space between letter sequences
(e.g., words) or at hyphens. In ideographic languages like
Japanese, each symbol can be a complete word, so breaks can
occur between any two symbols. In other ideographic
languages, though, the soft-wrap points may be limited to
appear between sequences of symbols that are not space
separated. Again, that’s all by default and is the way browsers
have handled text for years.

If you apply the value break-all , soft wrapping can (and will)
occur between any two characters, even if they are in the
middle of a word. With this value, no hyphens are shown, even
if the soft wrapping occurs at a hyphenation point (see
“Hyphenation”). Note that values of the line-break property
(described next) can affect the behavior of break-all in
ideographic text.

The keep-all value, on the other hand, suppresses soft
wrapping between characters, even in ideographic languages
where each symbol is a word. Thus, in Japanese, a sequence of
symbols with no whitespace will not be soft wrapped, even if
this means the text line will exceed the length of its element.
(This behavior is similar to white-space: pre .)

Figure 15-41 shows a few examples of word-break values, and
Table 15-3 summarizes the effects of each value.

Figure 15-41. Altering word-breaking behavior

As noted previously, the value break-word has been
deprecated, although it is supported by all known browsers as
of mid-2022. When used, it has the same effect as {word-break:
normal; overflow-wrap: anywhere;} , even if overflow-wrap
has a different value. (We’ll cover overflow-wrap in
“Wrapping Text”.)

Line Breaking

Table 15-3. Word-breaking behavior

Value Non-CJK CJK
Hyphenatio
permitted

normal As usual As usual Yes

break-all After any
character

After any
character

No

keep-all As usual Around
sequences

Yes

If your interests run to CJK text, then in addition to word-
break , you will also want to get to know line-break .

LINE-BREAK

Values auto | loose | normal | strict |
anywhere

Initial value auto

Applies to All elements

Computed
value

As specified

Inherited Yes

Animatable Yes

As you just saw, word-break can affect the way lines of text are
soft wrapped in CJK text. The line-break property also affects
such soft wrapping, specifically how wrapping is handled

around CJK-specific symbols and around non-CJK punctuation
(such as exclamation points, hyphens, and ellipses) that appears
in text declared to be CJK.

In other words, line-break applies to certain CJK characters
all the time, regardless of the content’s declared language. If
you throw some CJK characters into a paragraph of English text,
line-break will still apply to them, but not to anything else in
the text. Conversely, if you declare content to be in a CJK
language, line-break will continue to apply to those CJK
characters plus a number of non-CJK characters within the CJK
text. These include punctuation marks, currency symbols, and a
few other symbols.

No authoritative list exists of which characters are affected and
which are not, but the specification provides a list of
recommended symbols and behaviors around those symbols.

The default value auto allows user agents to soft wrap text as
they like, and more importantly lets user agents vary line
breaking based on the situation. For example, the user agent
can use looser line-breaking rules for short lines of text and
stricter rules for long lines. In effect, auto allows the user
agent to switch among the loose , normal , and strict values

http://w3.org/TR/css3-text/#line-break

as needed, possibly even on a line-by-line basis within a single
element.

You can perhaps infer that those other values have the
following general meanings:

loose

This value imposes the “least restrictive” rules for wrapping
text, and is meant for use when line lengths are short, such
as in newspapers.

normal

This value imposes the “most common” rules for wrapping
text. What exactly “most common” means is not precisely
defined, though there is the aforementioned list of
recommended behaviors.

strict

This value imposes the “most stringent” rules for wrapping
text. Again, this is not precisely defined.

anywhere

This value creates a line-breaking opportunity around every
typographic unit, including whitespace and punctuation
marks. A soft wrap can even happen in the middle of a word,
and hyphenation is not applied in such circumstances.

Wrapping Text

After all that information about hyphenation and soft
wrapping, what happens when text overflows its container
anyway? That’s what overflow-wrap addresses.

Originally called word-wrap , the overflow-wrap property
applies to inline elements, setting whether the browser should
insert line breaks within otherwise unbreakable strings in
order to prevent text from overflowing its line box. In contrast
to word-break , overflow-wrap will create a break only if an
entire word cannot be placed on its own line without
overflowing.

OVERFLOW-WRAP

Values normal | break-word | anywhere

Initial value normal

Applies to All elements

Computed value As specified

Inherited Yes

Animatable Yes

This property is less straightforward than it first appears,
because its primary effect is to change how word wrapping and
minimum-content sizing (which we haven’t even had a chance
to discuss yet) interact in trying to avoid overflow at the ends of
text lines.

NOTE

The overflow-wrap property can operate only if the value of white-space allows
line wrapping. If it does not (e.g., with the value pre), overflow-wrap has no effect.

If the default value of normal is in effect, wrapping happens as
normal—between words or as directed by the language. If a
word is longer than the width of the element containing it, the
word will “spill out” of the element box, just as on the classic
CSS IS AWESOME coffee mug. (Google it if you haven’t seen it
before. It’s worth the chuckle.)

If the break-word value is applied, wrapping can happen in the
middle of words, with no hyphen placed at the site of the
wrapping, but this will happen so that line lengths will be as
wide as the element’s width. In other words, if the width
property of the element is given the value min-content , the
“minimum content” calculations will assume that content
strings must be as long as possible.

By contrast, when anywhere is set, the “minimum content”
calculations will take line-wrapping opportunities into account.
This means, in effect, that the minimum-content width will be
the width of the widest character in the element’s content. Only
when two skinny characters are next to each other will they

have a chance to be on the same line together, and in a
monospace font every line of text will be a single character.
Figure 15-42 illustrates the difference between these three
values.

Figure 15-42. Overflow wrapping for width: min-content

If the value of width is something other than min-content ,
then break-word and anywhere will have the same results.
Really, the only difference between the two values is that with
anywhere , soft-wrap opportunities introduced by the word
break are considered when calculating min-content intrinsic
sizes. With break-word , they are not considered.

While overflow-wrap: break-word may appear very similar to
word-break: break-all , they are not the same. To see why,
compare the second box in Figure 15-42 to the top-middle box
in Figure 15-41. As it shows, overflow-wrap kicks in only if
content actually overflows; thus, when there is an opportunity
to use whitespace in the source to wrap lines, overflow-wrap

will take it. By contrast, word-break: break-all will cause
wrapping when content reaches the wrapping edge, regardless
of any whitespace that comes earlier in the line.

Once upon a time there was a property called word-wrap that
did exactly what overflow-wrap does. The two are so identical
that the specification explicitly states that user agents “must
treat word-wrap as an alternate name for the overflow-wrap
property, as if it were a shorthand of overflow-wrap .”

Writing Modes

Earlier, we discussed inline direction and introduced the topic
of reading direction. You’ve already seen numerous benefits of
including the lang attribute in your HTML, from being able to
style based on language selectors, to allowing the user agent to
hyphenate. Generally, you should let the user agent handle the
direction of text based on the language attribute, but CSS does
provide properties for the rare occasions when an override is
necessary.

Setting Writing Modes

The property used for specifying one of five available writing
modes is, of all things, writing-mode . This property sets the

block-flow direction of the element, which determines how
boxes are stacked together.

WRITING-MODE

Values horizontal-tb | vertical-rl | vert
ical-lr | sideways-rl | sideways-lr

Initial
value

horizontal-tb

Applies to All elements except table row groups,
table column groups, table rows, table
columns, Ruby base containers, and
Ruby annotation containers

Computed
value

As specified

Inherited Yes

Animatable Yes

The default value, horizontal-tb , means “a horizontal inline
direction, and a top-to-bottom block direction.” This covers all
Western and some Middle Eastern languages, which may differ
in the direction of their horizontal writing. The other two
values offer a vertical inline direction, and either an RTL or LTR
block direction.

The sideways-rl and sideways-lr values take horizontal text
and turn its flow “sideways,” with the direction the text runs
either going right to left (for sidewyas-rl) or left to right (for
sideways-lr). The difference between these values and the
vertical values is that the text is turned whichever way is
necessary to make the text read naturally.

Figure 15-43 illustrates all five values.

Figure 15-43. Writing modes

Notice how the lines are strung together in the two vertical-
examples. If you tilt your head to the right, the text in
vertical-rl is at least readable. The text in vertical-lr , on
the other hand, is difficult to read because it appears to flow

from bottom to top, at least when arranging English text. This is
not a problem in languages that use vertical-lr flow, such as
forms of Japanese.

In vertical writing modes, the block direction is horizontal,
which means vertical alignment of inline elements causes them
to move horizontally. This is illustrated in Figure 15-44.

Figure 15-44. Writing modes and “vertical” alignment

All the super- and subscript elements cause horizontal shifts,
both of themselves and the placement of the lines they occupy,
even though the property used to move them is vertical-
align . As described earlier, the vertical displacement is with
respect to the line box, where the box’s baseline is defined as
horizontal—even when it’s being drawn vertically.

Confused? It’s OK. Writing modes are likely to confuse you,
because they’re such a different way of thinking and because
old assumptions in the CSS specification clash with the new
capabilities. If vertical writing modes had been supported from

the outset, vertical-align would likely have a different name
— inline-align or something like that. (Maybe one day that
will happen.)

Changing Text Orientation

Once you’ve settled on a writing mode, you may decide you
want to change the orientation of characters within those lines
of text. You might want to do this for various reasons, not the
least of which is using different writing systems that are
commingled, such as Japanese text with English words or
numbers mixed in. In these cases, text-orientation is the
answer.

TEXT-ORIENTATION

Values mixed | upright | sideways

Initial
value

mixed

Applies to All elements except table row groups,
table rows, table column groups, and
table columns

Computed
value

As specified

Inherited Yes

Animatable Yes

The text-orientation property affects the way characters are
oriented. What that means is best illustrated by the following
styles, rendered in Figure 15-45:

.verts {writing-mode: vertical-lr;}
#one {text-orientation: mixed;}
#two {text-orientation: upright;}
#thr {text-orientation: sideways;}

Figure 15-45. Text orientation

Across the top of Figure 15-45 is a basically unstyled paragraph
of mixed Japanese and English text. Below that are three copies
of that paragraph, using the writing mode vertical-lr . In the
first, text-orientation: mixed writes the horizontal-script
characters (the English) sideways, and the vertical-script
characters (the Japanese) upright. In the second, all characters
are upright , including the English characters. In the third, all
characters are sideways , including the Japanese characters.

WARNING

As of mid-2022, sideways is not supported by Chromium browsers.

Combining Characters

Only relevant to vertical writing modes, the text-combine-
upright property enables displaying a subset of characters
upright within vertical text. This can be useful when mixing
languages or pieces of languages, such as embedding Arabic
numerals in CJK text, but may have other applications.

TEXT-COMBINE-UPRIGHT

Values none | all | [digits < integer >?]

Initial
value

none

Applies to Nonreplaced inline elements

Computed
value

Specified keyword, plus integer if digit
s

Inherited Yes

Animatable No

Note For < integer > values, only the
numbers 2, 3, and 4 are valid

Essentially, this property lets you say whether characters may
sit next to each other horizontally while being part of a vertical

line of text. Your choices are whether to allow this for all
characters or for only a few numeric digits.

Here’s how it works: as a line of vertical text is laid out, the
browser can consider whether the width of two characters,
sitting next to each other, is less than or equal to the value of
1em for the text. If so, they may be placed next to each other,
effectively putting two characters into the space of one. If not,
the first character is placed alone, and the process continues.

As of mid-2022, this can lead to characters being very, very
squished. For an example, consider the following markup and
CSS:

<div lang="zh-Hant">
<p>这是一些文本</p>
<p class="combine">这是一些文本</p>
<p>这是117一些0文本23日</p>
<p class="combine">这是117一些0文本23日</p>
<p class="combine">
 这是117一些0文本23<
<p>这是117一些0文本2
</div>

p {writing-mode: vertical-rl;}
.combine {text-combine-upright: all;}

All of the paragraphs are written using writing-mode:
vertical-rl , but some are set to text-combine-upright:
all , and others are not. The last paragraph is not set to all ,
but the elements within it have been. Figure 15-46
shows the result.

Figure 15-46. Various types of upright combination

Lest you think a bug is at work here, the results are consistent
across browsers (as of mid-2022). The second and fourth
columns have every single character, whether Chinese

ideographs or Arabic numerals, squished horizontally to fit on a
single line.

A way around this is to break up the text with child elements, as
shown in the fifth and sixth columns. In the first, numbers are
surrounded with elements, which break up the fitting
process. This works as long as no run of text has too many
characters; beyond two or three symbols, the text becomes
progressively more difficult to comprehend.

The sixth column shows a way to hack around the problem:
apply text-combine-upright: all to only the
elements, which are already used to wrap the Arabic numerals,
by giving each a class value of combine . In that case,
the .combine rule will apply only to the elements, not
all the text in the paragraph.

This is what the digits value is supposed to make possible
without the need for all the extra markup. Theoretically, you
could get the same result as that shown in the sixth column of
Figure 15-46 by applying the following CSS to the paragraph
that has no elements in it:

p {writing-mode: vertical-rl; text-upright-combine: d

Sadly, as of mid-2022, no browser supports this behavior, unless
you count Internet Explorer 11 using the alternate property
name -ms-text-combine-horizontal .

Declaring Direction

Harking back to the days of CSS2, a pair of properties could be
used to affect the direction of text by changing the inline
baseline direction: direction and unicode-bidi . These
should generally not be used today, but are covered here in case
you come across them in legacy code.

WARNING

The CSS specification explicitly warns against using direction and unicode-bidi
in CSS when applied to HTML documents. To quote: “Because HTML [user agents] can
turn off CSS styling, we recommend…the HTML dir attribute and <bdo> element to
ensure correct bidirectional layout in the absence of a style sheet.”

DIRECTION

Values ltr | rtl

Initial value ltr

Applies to All elements

Computed value As specified

Inherited Yes

Animatable Yes

The direction property affects the writing direction of text in
a block-level element, the direction of table-column layout, the
direction in which content horizontally overflows its element
box, and the position of the last line of a fully justified element.
For inline elements, direction applies only if the property
unicode-bidi is set to either embed or bidi-override (see
the following description of unicode-bidi).

Although ltr is the default, it is expected that if a browser is
displaying RTL text, the value will be changed to rtl . Thus, a
browser might carry an internal rule stating something like the
following:

*:lang(ar), *:lang(he) {direction: rtl;}

The real rule would be longer and encompass all RTL
languages, not just Arabic and Hebrew, but it illustrates the
point.

While CSS attempts to address writing direction, Unicode has a
much more robust method for handling directionality. With the
property unicode-bidi , CSS authors can take advantage of
some of Unicode’s capabilities.

UNICODE-BIDI

Values normal | embed | bidi-override

Initial value normal

Applies to All elements

Computed value As specified

Inherited No

Animatable Yes

Here we’ll simply quote the value descriptions from the CSS 2.1
specification, which do a good job of capturing the essence of
each value:

normal

The element does not open an additional level of embedding
with respect to the bidirectional algorithm. For inline-level
elements, implicit reordering works across element
boundaries.

embed

If the element is inline-level, this value opens an additional
level of embedding with respect to the bidirectional
algorithm. The direction of this embedding level is given by
the direction property. Inside the element, reordering is
done implicitly. This corresponds to adding a “left-to-right
embedding” character (U+202A; for direction: ltr) or a
“right-to-left embedding” character (U+202B; for direction:
rtl) at the start of the element and a “pop directional
formatting” character (U+202C) at the end of the element.

bidi-override

This creates an override for inline-level elements. For block-
level elements, this creates an override for inline-level
descendants not within another block. This means that,
inside the element, reordering is strictly in sequence
according to the direction property; the implicit part of the
bidirectional algorithm is ignored. This corresponds to
adding a “left-to-right override” character (U+202D; for
direction: ltr) or “right-to-left override” character
(U+202E; for direction: rtl) at the start of the element and
a “pop directional formatting” character (U+202C) at the end
of the element.

Summary

Even without altering the font face, we have many ways to
change the appearance of text. In addition to classic effects such
as underlining, CSS enables you to draw lines over text or
through it, change the amount of space between words and
letters, indent the first line of a paragraph (or other block-level
element), align text in various ways, exert influence over the
hyphenation and line breaking of text, and much more. You can
even alter the amount of space between lines of text. CSS also
supports languages other than those that are written left to
right, top to bottom. Given that so much of the web is text, the
strength of these properties makes a great deal of sense.

Chapter 16. Lists and Generated
Content

In the realm of CSS layout, lists are an interesting case. The
items in a list are simply block boxes, but with an extra bit that
doesn’t really participate in the document layout hanging off to
one side. With an ordered list, that extra bit contains a series of
increasing numbers (or letters) that are calculated and mostly
formatted by the user agent, not the author. Taking a cue from
the document structure, the user agent generates the numbers
and their basic presentation.

With CSS, you can define your own counting patterns and
formats, and associate those counters with any element, not just
ordered list items. Furthermore, this basic mechanism makes it
possible to insert other kinds of content, including text strings,
attribute values, or even external resources, into a document.
Thus, it is possible to use CSS to insert link icons, editorial
symbols, and more into a design without having to create extra
markup.

To see how all these list options fit together, we’ll explore basic
list styling before moving on to examine the generation of
content and counters.

Working with Lists

In a sense, almost anything that isn’t narrative text can be
considered a list. The US Census, the solar system, my family
tree, a restaurant menu, and even all of the friends you’ve ever
had can be represented as a list, or perhaps as a list of lists.
These many variations make lists fairly important, which is
why it’s a shame that list styling in CSS isn’t more sophisticated.

The simplest (and best-supported) way to affect a list’s styles is
to change its marker type. The marker of a list item is, for
example, the bullet that appears next to each item in an
unordered list. In an ordered list, the marker could be a letter, a
number, or a symbol from some other counting system. You can
even replace the markers with images. All of these are
accomplished using the different list-style properties.

Types of Lists

To change the type of marker used for a list’s items, use the
list-style-type property.

LIST-STYLE-TYPE

Values < counter-style > | < string > | none

Initial value disc

Applies to Elements whose display value is lis
t-item

Inherited Yes

Computed
value

As specified

You can use a string of text as the marker, such as list-style-
type: "▷" . In addition, < counter-style > stands in for a long
list of possible keywords or a custom-defined counter style
defined with @counter-style (see “Defining Counting
Patterns”). A few examples of these list style types are shown in
Figure 16-1.

Figure 16-1. A sampling of list style types

The keywords (plus some browser-specific extras) are listed
here:

afar †
amaric †
amaric-abegede †
arabic-indic
armenian

asterisks †
bengali

binary †
cambodian
circle

cjk-decimal *
cjk-earthly-branc
h
cjk-heavenly-stem
cjk-ideographic
decimal
decimal-leading-z
ero
devanagari
disc
disclosure-closed
disclosure-open

ethiopic †
ethiopic-abegede

†
ethiopic-abegede-

ethiopic-halehame-

sid-et †
ethiopic-halehame-

so-et †
ethiopic-halehame-

ti-er -
ethiopic-halehame-

ti-et -
ethiopic-halehame-

tig †
ethiopic-numeric

footnotes †
georgian
gujarati
gurmukhi

hangul -
hangul-consonant -
hebrew
hiragana
hiragana-iroha
japanese-formal
japanese-informal
kannada
katakana
katakana-iroha
khmer

mongolian
myanmar

octal †
oriya

oromo †
persian
sidama
simp-chinese-fo
rmal
simp-chinese-in
formal

somali †
square

symbols *
tamil *
telugu
thai
tibetan

tigre †
tigrinya-er †
tigrinya-er-abe

gede †
tigrinya-et †
tigrinya-et-abe

gede †
trad-chinese-fo

am-et †
ethiopic-abegede-

gez †
ethiopic-abegede-

ti-er †
ethiopic-abegede-

ti-et †
ethiopic-halehame

‡, -
ethiopic-halehame

-aa-er †
ethiopic-halehame

-aa-et †
ethiopic-halehame

-am -
ethiopic-halehame

-am-et †
ethiopic-halehame

-gez †
ethiopic-halehame

-om-et †

korean-hangul-for
mal
korean-hanja-form
al
korean-hanja-info
rmal
lao
lower-alpha
lower-armenian
lower-greek
lower-hexadecimal

†
lower-latin

lower-norwegian †
lower-roman
malayalam

rmal
trad-chinese-in
formal
upper-alpha
upper-armenian
upper-greek
upper-hexadeci

mal †
upper-latin
upper-norwegia

n †
upper-roman

urdu -

† WebKit only
‡ All engines except WebKit
* Mozilla only
- Requires -moz- prefix in Firefox

If you provide a counter style that the browser does not
recognize, such as declaring list-style-type: lower-
hexadecimal and loading the page, some browsers, including
Firefox, Edge, and Chrome, will assume decimal instead. Safari
will ignore values it does not understand as invalid.

The list-style-type property, as well as all other list-related
properties, can be applied only to an element that has a
display of list-item , but CSS doesn’t distinguish between
ordered and unordered list items. Thus, you can set an ordered
list to use discs instead of numbers. In fact, the default value of
list-style-type is disc , so you might theorize that without
explicit declarations to the contrary, all lists (ordered or
unordered) will use discs as the marker for each item. This
would be logical, but, as it turns out, it’s up to the user agent to
decide. Even if the user agent doesn’t have a predefined rule
such as ol {list-style-type: decimal;} , it may prohibit
ordered markers from being applied to unordered lists, and
vice versa. You can’t count on this, so be careful.

If you want to suppress the display of markers altogether, you
should use none . This value causes the user agent to refrain
from putting anything where the marker would ordinarily be,
although it does not interrupt the counting in ordered lists.
Thus, the following markup would have the result shown in
Figure 16-2:

ol li {list-style-type: decimal;}
li.off {list-style-type: none;}

Item the first
<li class="off">Item the second
Item the third
<li class="off">Item the fourth
Item the fifth

Figure 16-2. Switching off list-item markers

The list-style-type property is inherited, so if you want to
have different styles of markers in nested lists, you’ll likely need
to define them individually. You may also have to explicitly
declare styles for nested lists because the user agent’s stylesheet
may have already defined them. For example, assume that a
user agent has the following styles defined:

ul {list-style-type: disc;}
ul ul {list-style-type: circle;}
ul ul ul {list-style-type: square;}

If this is the case—and it’s likely that this, or something like it,
will be—you will have to declare your own styles to overcome
the user agent’s styles. Inheritance won’t be enough.

String markers

CSS also allows authors to supply string values as list markers.
This opens the field to anything you can input from the
keyboard, as long as you don’t mind having the same string
used for every marker in the list. Figure 16-3 shows the results
of the following styles:

.list01 {list-style-type: "%";}

.list02 {list-style-type: "Hi! ";}

.list03 {list-style-type: "†";}

.list04 {list-style-type: "⌘";}

.list05 {list-style-type: " ";}

Figure 16-3. A sampling of string markers

List-Item Images

Sometimes a regular text marker just won’t do. You might
prefer to use an image for each marker, which is possible with
the property list-style-image .

LIST-STYLE-IMAGE

Values < uri > | < image > | none | inherit

Initial
value

none

Applies to Elements whose display value is list
-item

Inherited Yes

Computed
value

For < uri > values, the absolute URI;
otherwise, none

Here’s how it works:

ul li {list-style-image: url(ohio.gif);}

Yes, it’s really that simple. One simple url() value, and you’re
putting images in for markers, as you can see in Figure 16-4.

Figure 16-4. Using images as markers

List image markers are displayed at their full size, so exercise
care in the images you use, as the example shown in Figure 16-5
makes clear with its oversized markers:

ul li {list-style-image: url(big-ohio.gif);}

Figure 16-5. Using really big images as markers

It’s generally a good idea to provide a fallback marker type in
case your image doesn’t load, gets corrupted, or is in a format
that some user agents can’t display. Do this by defining a
backup list-style-type for the list:

The other thing you can do with list-style-image is set it to
the default value of none . This is good practice because list-
style-image is inherited, so any nested lists will pick up the
image as the marker, unless you prevent that from happening:

Since the nested list inherits the item type square but has been
set to use no image for its markers, squares are used for the
markers in the nested list, as shown in Figure 16-6.

ul li {list-style-image: url(ohio.png); list-style-ty

ul {list-style-image: url(ohio.gif); list-style-type:
ul ul {list-style-image: none;}

Figure 16-6. Switching off image markers in sublists

Any image value is permitted for list-style-image , including
gradient images. Thus, the following styles would have a result
like that shown in Figure 16-7:

.list01 {list-style-image:
 radial-gradient(closest-side,
 orange, orange 60%, blue 60%, blue 95%, trans
.list02 {list-style-image:
 linear-gradient(45deg, red, red 50%, orange 50%,
.list03 {list-style-image:

Figure 16-7. Gradient list markers

Gradient markers have one drawback: they tend to be very
small. This can be influenced by factors such as font size,
because the marker size tends to scale with the list item’s
content. If you need to have full control over how the markers
are rendered, don’t use ::marker ; use ::before instead.

NOTE

The way to style list markers directly is the ::marker pseudo-element, discussed
later in this chapter.

 repeating-linear-gradient(-45deg, red, red 1px, y
.list04 {list-style-image:
 radial-gradient(farthest-side at bottom right,
 lightblue, lightblue 50%, violet, indigo, blu
 yellow, orange, red, lightblue);}

List-Marker Positions

There is another thing you can do to change the appearance of
list items: decide whether the marker appears outside or inside
the content of the list item. This is accomplished with list-
style-position .

LIST-STYLE-POSITION

Values inside | outside | inherit

Initial value outside

Applies to Elements whose display value is lis
t-item

Inherited Yes

Computed
value

As specified

If a marker’s position is set to outside (the default), it will
appear the way list items have since the beginning of the web.
Should you desire a slightly different appearance, you can pull
the marker in toward the content by setting the value of list-
style-position to inside . This causes the marker to be
placed “inside” the list item’s content. The exact way this
happens is undefined, but Figure 16-8 shows one possibility:

li.first {list-style-position: inside;}
li.second {list-style-position: outside;}

Figure 16-8. Placing the markers inside and outside list items

In practice, markers given an inside placement are treated as
if they’re an inline element inserted into the beginning of the
list item’s content. This doesn’t mean the markers are inline

elements. You can’t style them separately from the rest of the
element’s content, unless you wrap all the other content in an
element like , or else address them directly (but with
major limitations on what properties are allowed) by using
::marker . It’s just that in layout terms, that’s what they act like.

List Styles in Shorthand

For brevity’s sake, you can combine the three list-style
properties into a convenient single property: list-style .

LIST-STYLE

Values [< list-style-type > ‖ < list-style-

image > ‖
< list-style-position >] | inherit

Initial value Refer to individual properties

Applies to Elements whose display value is lis
t-item

Inherited Yes

Computed
value

See individual properties

For example:

li {list-style: url(ohio.gif) square inside;}

As shown in Figure 16-9, all three values can be applied to list
items at the same time.

Figure 16-9. Bringing it all together

The values for list-style can be listed in any order, and any
can be omitted. As long as one is present, the rest will fill in
their default values. For instance, the following two rules will
have the same visual effect:

They will also override any previous rules in the same way. For
example:

li.norm {list-style: url(img42.gif);}
li.odd {list-style: url(img42.gif) disc outside;} /*

li {list-style-type: square;}
li {list-style: url(img42.gif);}
li {list-style: url(img42.gif) disc outside;} /* the

The result will be the same as that in Figure 16-9 because the
implied list-style-type value of disc will override the
previous declared value of square , just as the explicit value of
disc overrides it in the second rule.

List Layout

Now that we’ve looked at the basics of styling list markers, let’s
consider how lists are laid out in various browsers. We’ll start
with a set of three list items devoid of any markers and not yet
placed within a list, as shown in Figure 16-10.

Figure 16-10. Three list items

The border around the list items shows them to be, essentially,
like block-level elements. Indeed, the value list-item is
defined to generate a block box. Now let’s add markers, as
illustrated in Figure 16-11.

Figure 16-11. Markers are added

The distance between the marker and the list item’s content is
not defined by CSS, and CSS does not as yet provide a way to
directly affect that distance.

With the markers outside the list items’ content, they don’t
affect the layout of other elements, nor do they really even
affect the layout of the list items themselves. They just hang a
certain distance from the edge of the content, and wherever the
content edge goes, the marker will follow. The behavior of the
marker works much as though the marker were absolutely
positioned in relation to the list-item content, something like
position: absolute; left: -1.5em; . When the marker is
inside, it acts like an inline element at the beginning of the
content.

So far, we have yet to add an actual list container; neither a
 nor an element is represented in the figures. We
can add one to the mix, as shown in Figure 16-12 (it’s
represented by a dashed border).

Figure 16-12. Adding a list border

As with the list items, the unordered-list element generates a
block box, one that encompasses its descendant elements. As
Figure 16-12 illustrates, the markers are placed not only outside
the list item contents, but also outside the content area of the
unordered-list element. The usual “indentation” you expect
from lists has not yet been specified.

Most browsers, as of this writing, indent list items by setting
either padding or margins for the containing list element. For
example, the user agent might apply a rule such as this:

ul, ol {margin-inline-start: 40px;}

Most browsers use a rule that’s something like this:

ul, ol {padding-inline-start: 40px;}

Neither is incorrect, but because browsers can, and have,
changed the way they indent list content, we recommend
including values for both properties when trying to eliminate
the indentation of the list items. Figure 16-13 compares the two
approaches.

Figure 16-13. Margins and padding as indentation devices

TIP

The distance 40px is a relic of early web browsers, which indented lists by a pixel
amount. (Block quotes are indented by the same distance.) A good alternate value
might be something like 2.5em , which would scale the indentation along with
changes in the text size and is also equal to 40px , assuming a default font size of 16
pixels.

For authors who want to change the indentation distance of
lists, we strongly recommend specifying both padding and
margins to ensure cross-browser compatibility. For example, if
you want to use padding to indent a list, use this rule:

If you prefer margins, write something like this instead:

In either case, remember that the markers will be placed
relative to the contents of the list items, and may therefore
“hang” outside the main text of a document or even beyond the
edge of the browser window. This is most easily observed if
very large images, or long text strings, are used for the list
markers, as shown in Figure 16-14.

ul {margin-inline-start: 0; padding-inline-start: 1em

ul {margin-inline-start: 1em; padding-inline-start: 0

Figure 16-14. Large markers and list layout

The ::marker Pseudo-Element

One feature many authors request is the ability to control the
space between a marker and the content of a list item, or to
change the size or color of a list marker independently of the
contents of the list items.

List markers can be styled, to a limited extent, with the pseudo-
element ::marker . The properties allowed for ::marker rules
as of late 2022 are as follows:

content

color

text-combine-upright

unicode-bidi

direction

white-space

All the font-* properties
All the transition and animation properties

You may have noticed that no element-sizing or other box
model properties such as margins are included, which puts a
damper on a lot of authors’ desires for marker styling. More
properties may be added in the future, but for now, that’s what
we have.

A few examples of marker styling, as declared here, are
illustrated in Figure 16-15:

li:nth-child(1)::marker {color: gray;}
li:nth-child(2)::marker {font-size: 2em;}
li:nth-child(3)::marker {font-style: italic;}

 List item the first
 The second list item
 List Items With a Vengeance

 List item the first
 The second list item
 List Items With a Vengeance

Figure 16-15. Examples of marker styling

Notice that the result of doubling a marker’s font size differs
between the ordered and unordered versions of this list. This
comes down to the different default sizing and placement of the
two marker types. As previously noted, the amount of control
you have over markers is limited, even markers defined with
content . So when you absolutely must have complete creative
freedom with your markers, it’s usually better to build your
own with generated content or marked-up inline content.

Creating Generated Content

CSS defines methods to create generated content. This is content
inserted via CSS, but not represented by either markup or
content.

For example, list markers are generated content. Nothing in the
markup of a list item directly represents the markers, and you,
the author, do not have to write the markers into your
document’s content. The browser simply generates the
appropriate marker automatically. For unordered lists, the
marker will have a symbol of some kind, such as a circle, disc,
or square. In ordered lists, the marker is by default a counter
that increments by one for each successive list item. (Or, as you
saw in previous sections, you may replace either kind with an
image or symbol—and, as you’ll see in just a bit, anything
supported by the content property.)

To understand how you can affect list markers and customize
the counting of ordered lists (or anything else!), you must first
look at more basic generated content.

Inserting Generated Content

To insert generated content into the document, use the
::before and ::after pseudo-elements. These place

generated content before or after the content of an element by
way of the content property (described in the next section).

For example, you might want to precede every hyperlink with
the text “(link)” to mark them when the page is printed out. This
is accomplished with a media query and rule like the following,
which has the effect shown in Figure 16-16:

@media print{
 a[href]::before {content: "(link)";}
}

Figure 16-16. Generating text content

Note that there isn’t a space between the generated content and
the element content. This is because the value of content in
the previous example doesn’t include a space. You could modify
the declaration as follows to make sure there’s a space between
generated and actual content:

a[href]::before {content: "(link) ";}

It’s a small difference but an important one.

In a similar manner, you might choose to insert a small icon at
the end of links to PDF documents. The rule to accomplish this
would look something like this:

a.pdf-doc::after {content: url(pdf-doc-icon.gif);}

Suppose you want to further style such links by placing a
border around them. This is done with a second rule, shown in
Figure 16-17:

a.pdf-doc {border: 1px solid gray;}

Figure 16-17. Generating icons

Notice that the link border extends around the generated
content, just as the link underline extends under the “(link)”
text in Figure 16-16. This happens because by default, generated
content is placed inside the element box of the element (unless
the generated content is a list marker).

<<generated-content-icons>> shows the result of these

You can float or position generated content outside its parent
element’s box. All display values can be given to generated
content; you can apply block formatting to the generated
content of an inline box, and vice versa. For example, consider
this:

em::after {content: " (!) "; display: block;}

Even though em is an inline element, the generated content will
generate a block box. Similarly, given the following code, the
generated content is made block-level instead of remaining the
default of inline :

Figure 16-18 shows the result.

Figure 16-18. Generating block-level content

One interesting aspect of generated content is that it inherits
values from the element to which it’s been attached. Thus, given

h1::before {content: "New Section"; display: block; c

the following rules, the generated text will be green, the same
as the content of the paragraphs:

p {color: green;}
p::before {content: "::: ";}

If you want the generated text to be purple instead, a simple
declaration will suffice:

p::before {content: "::: "; color: purple;}

Such value inheritance happens only with inherited properties,
of course. This is worth noting because it influences the way
certain effects must be approached. Consider the following:

Since the generated content is placed inside the element box of
the <h1> , it will be placed under the top border of the element.
It would also be placed within any padding, as shown in
Figure 16-19.

h1 {border-top: 3px solid black; padding-top: 0.25em;
h1::before {content: "New Section"; display: block; c
 border-bottom: 1px dotted black; margin-bottom: 0.5

Figure 16-19. Taking placement into account

The bottom margin of the generated content, which has been
made block-level, pushes the actual content of the element
downward by half an em. In every sense, the effect of the
generated content in this example is to break the <h1> element
into two pieces: the generated-content box and the actual
content box. This happens because the generated content has
display: block . If you were to change it to display: inline
(or remove the display:block; entirely), the effect would be
as shown in Figure 16-20:

Figure 16-20. Changing the generated content to be inline

Note how the borders are placed and how the top padding is
still honored. So is the bottom margin on the generated content,

h1 {border-top: 3px solid black; padding-top: 0.25em;
h1::before {content: "New Section"; display: inline;
 border-bottom: 1px dotted black; margin-bottom: 0.5

but since the generated content is now inline and margins don’t
affect line height, the margin has no visible effect.

With the basics of generating content established, let’s take a
closer look at the way the actual generated content is specified.

Specifying Content

If you’re going to generate content, you need a way to describe
it. As you’ve already seen, this is handled with the content
property, but there’s a great deal more to this property than
you’ve seen thus far.

CONTENT

Values normal | [< string > | < uri > | < coun

ter > | attr(< identifier >+)+ | open
-quote | close-quote | no-open-quo
te | no-close-quote]+ | inherit

Initial
value

normal

Applies to ::before and ::after pseudo-
elements

Inherited No

Computed
value

For < uri > values, an absolute URI; for
attribute references, the resulting
string; otherwise, as specified

You’ve already seen string and URI values in action, and
counters are covered later in this chapter. Let’s talk about

strings and URIs in a little more detail before we take a look at
the attr() and quote values.

String values are presented literally, even if they contain what
would otherwise be markup of some kind. Therefore, the
following rule would be inserted verbatim into the document,
as shown in Figure 16-21:

Figure 16-21. Strings are displayed verbatim

This means that if you want a newline (return) as part of your
generated content, you can’t use
 . Instead, you use the
string \A , or \00000a , which is the CSS way of representing a
newline (based on the Unicode line-feed character, which is
hexadecimal position A). Conversely, if you have a long string
value and need to break it up over multiple lines, you escape
out the line feeds with the \ character. These are both
demonstrated by the following rule and illustrated in Figure 16-
22:

h2::before {content: "¶ "; color: gray;

h2::before {content: "We insert this text before all

Figure 16-22. Inserting and suppressing newlines

You can also use escapes to refer to hexadecimal Unicode
values, such as \00AB .

WARNING

As of this writing, while inserting escaped content such as \279c is very well-
supported, some browsers don’t support the escaped newline character \A or
\0000a , and no browsers support \A unless you add a space after it.

With URI values, you point to an external resource (an image,
movie, sound clip, or anything else the user agent supports),
which is then inserted into the document in the appropriate
place. If the user agent can’t support the resource you point it to

it is a good idea to show how these things work. It m
but the point should be clearly made. "; color: gray

for any reason—say, you try to insert a movie into a document
when it’s being printed—then the user agent is required to
ignore the resource completely, and nothing will be inserted.

Inserting attribute values

Sometimes you might want to take the value of an element’s
attribute and make it a part of the document display. To pick a
simple example, you can place the value of every link’s href
attribute immediately after the links, like this:

a[href]::after {content: attr(href);}

Again, this leads to the problem of the generated content
running smack into the actual content. To solve this, add some
string values to the declaration, with the result shown in
Figure 16-23:

a[href]::after {content: " [" attr(href) "]";}

Figure 16-23. Inserting URLs

This can be useful for print stylesheets, as an example. Any
attribute value can be inserted as generated content: alt text,
class or id values—anything. An author might choose to
make the citation information explicit for a block quote, like
this:

For that matter, a more complicated rule might reveal the text-
and link-color values for a legacy document:

Note that if an attribute doesn’t exist, an empty string is put in
its place. This is what happens in Figure 16-24, in which the
previous example is applied to a document whose body
element has no alink attribute.

blockquote::after {content: "(" attr(cite) ")"; displ
 text-align: right; font-style: italic;}

body::before {
 content: "Text: " attr(text) " | Link: " attr(link)
 " | Visited: " attr(vlink) " | Active: " attr(alink

 display: block; padding: 0.33em;
 border: 1px solid; text-align: center; color: red;}

Figure 16-24. Missing attributes are skipped

The text “Active: ” (including the trailing space) is inserted into
the document, as you can see, but nothing follows it. This is
convenient when you want to insert the value of an attribute
only when it exists.

WARNING

CSS defines the returned value of an attribute reference as an unparsed string.
Therefore, if the value of an attribute contains markup or character entities, they will
be displayed verbatim.

Using generated quotes

A specialized form of generated content is the quotation mark,
and CSS provides a powerful way to manage both quotes and
their nesting behavior. This is possible because of the pairing of
content values like open-quote and the property quotes .

QUOTES

Values [< string > < string >]+ | none | in
herit

Initial value User-agent dependent

Applies to All elements

Inherited Yes

Computed
value

As specified

Other than the keywords none and inherit , the only valid
value is one or more pairs of strings, with the first in each pair
being a value for open-quote and the second being a close-
quote value. The first string of the pair defines the open-quote
symbol, and the second defines the close-quote symbol.
Therefore, of the following two declarations, only the first is
valid:

quotes: '"' "'"; /* valid */
quotes: '"'; /* NOT VALID */

The first rule also illustrates one way to put string quotes
around the strings themselves. The double quotation marks are
surrounded by single quotation marks, and vice versa.

Let’s look at a simple example. Suppose you’re creating an XML
format to store a list of favorite quotations. Here’s one entry in
the list:

<quotation>
 <quote>I hate quotations.</quote>
 <quotee>Ralph Waldo Emerson</quotee>
</quotation>

To present the data in a useful way, you could employ the
following rules, with the result shown in Figure 16-25:

quotation {display: block;}
quote {quotes: '“' '”';}
quote::before {content: open-quote;}
quote::after {content: close-quote;}
quotee::before {content: " (";}
quotee::after {content: ")";}

Figure 16-25. Inserting quotes and other content

The values open-quote and close-quote are used to insert
whatever quoting symbols are appropriate (since different
languages have different quotation marks). They use the value
of quotes to determine how they should work. Thus, the
quotation begins and ends with a double quotation mark.

With quotes , you can define quotation patterns to as many
nesting levels as you like. In American English, for example, a
common practice is to start out with a double quotation mark
and then use single quotation marks for the quotation nested
inside the first one. This can be re-created with curly quotation
marks by using the following rules:

quotation: display: block;}
quote {quotes: '\201C' '\201D' '\2018' '\2019';}
quote::before, q::before{content: open-quote;}
quote::after, q::after {content: close-quote;}

When applied to the following XML, these rules will have the
effect shown in Figure 16-26:

<quotation>
 <quote> In the beginning, there was nothing. And God

Figure 16-26. Nested curly quotes

If the nested level of quotation marks is greater than the
number of defined pairs, the last pair is reused for the deeper
levels. Thus, if we had applied the following rule to the markup
shown in Figure 16-26, the inner quote would have had double
quotation marks, the same as the outer quote:

quote {quotes: '\201C' '\201D';}

TIP

These particular rules use the hexadecimal Unicode positions for the curly quote
symbols. If your CSS uses UTF-8 character encoding (and it really should), you can
skip the escaped hexadecimal position approach and include just the curly quote
characters directly, as in previous examples.

Generated quotes make possible one other common
typographic effect. When quoted text spans several paragraphs,
the close-quote of each paragraph is often omitted; only the

<quote> t e beg g, t e e as ot g. d God
 be light!</q> And there was still nothing, but you
</quotation>

opening quote marks are shown, with the exception of the last
paragraph. This can be re-created using the no-close-quote
value:

This will start each paragraph with a double quotation mark
but no closing mark. This is true of the last paragraph as well,
so the fourth line in the previous code block inserts a close
quote at the end of the last paragraph.

This value is important because it decrements the quotation
nesting level without generating a symbol. This is why each
paragraph starts with a double quotation mark, instead of
alternating between double and single marks, until the third
paragraph is reached. The no-close-quote value closes the
quotation nesting at the end of each paragraph, and thus every
paragraph starts at the same nesting level.

This is significant because, as the CSS2.1 specification notes,
“Quoting depth is independent of the nesting of the source
document or the formatting structure.” In other words, when

blockquote {quotes: '"' '"' "'" "'" '"' '"';}
blockquote p::before {content: open-quote;}
blockquote p::after {content: no-close-quote;}
blockquote p:last-of-type::after {content: close-quot

you start a quotation level, it persists across elements until a
close-quote is encountered, and the quote nesting level is
decremented.

For the sake of completeness, there is a no-open-quote
keyword, which has a symmetrical effect to no-close-quote .
This keyword increments the quotation nesting level by one but
does not generate a symbol.

Defining Counters

Counters are probably familiar to you, even if you don’t realize
it; for example, the markers of the list items in ordered lists are
counters. Two properties and two content values make it
possible to define almost any counting format, including
subsection counters employing multiple styles, such as “VII.2.c.”

Resetting and incrementing

We create counters by setting the starting point for a counter
and then incrementing it by a specified amount. The former is
handled by the property counter-reset .

COUNTER-RESET

Values [< identifier > < integer >?]+ | none
| inherit

Initial value User agent-dependent

Applies to All elements

Inherited No

Computed
value

As specified

A counter identifier is simply a label created by the author. For
example, you might name your subsection counter
subsection , subsec , ss , or bob . The simple act of resetting
(or incrementing) an identifier is sufficient to call it into being.
In the following rule, the counter chapter is defined as it is
reset:

h1 {counter-reset: chapter;}

By default, a counter is reset to 0. If you want to reset to a
different number, you can declare that number following the
identifier:

h1#ch4 {counter-reset: chapter 4;}

You can also reset multiple identifiers all at once by listing
space-separated identifier-integer pairs. If you leave out an
integer, it defaults to 0:

As you can see from the previous example, negative values are
permitted. It would be perfectly legal to set a counter to -32768
and count up from there.

WARNING

CSS does not define what user agents should do with negative counter values in
nonnumeric counting styles. For example, there is no defined behavior for what to do
if a counter’s value is -5 but its display style is upper-alpha .

h1 {counter-reset: chapter 4 section -1 subsec figure
 /* 'subsec' is reset to 0 */

To count up or down, you’ll need a property to indicate that an
element increments or decrements a counter. Otherwise, the
counter would remain at whatever value it was given with a
counter-reset declaration. The property in question is, not
surprisingly, counter-increment .

COUNTER-INCREMENT

Values [< identifier > < integer >?]+ | none
| inherit

Initial value User-agent dependent

Applies to All elements

Inherited No

Computed
value

As specified

Like counter-reset , counter-increment accepts identifier-
integer pairs, and the integer portion of these pairs can be 0 or

negative as well as positive. The difference is that if an integer
is omitted from a pair in counter-increment , it defaults to 1,
not 0.

As an example, here’s how a user agent might define counters
to re-create the traditional 1, 2, 3 counting of ordered lists:

On the other hand, an author might want to count backward
from 0 so that the list items use a rising negative system. This
would require only a small edit:

ol {counter-reset: ordered;} /* defaults to 0 */
ol li {counter-increment: ordered -1;}

The counting of lists would then be –1, –2, –3, and so on. If you
replaced the integer -1 with -2 , lists would count –2, –4, –6,
and so on.

Displaying counters

To display the counters, you need to use the content property
in conjunction with one of the counter-related values. To see

ol {counter-reset: ordered;} /* defaults to 0 */
ol li {counter-increment: ordered;} /* defaults to 1

how this works, let’s use an XML-based ordered list:

<list type="ordered">
 <item>First item</item>
 <item>Item two</item>
 <item>The third item</item>
</list>

By applying the following rules to XML employing this
structure, you would get the result shown in Figure 16-27:

Figure 16-27. Counting the items

The generated content is placed as inline content at the
beginning of the associated element. Thus, the effect is similar

list[type="ordered"] {counter-reset: ordered;} /* de
list[type="ordered"] item {display: block;}
list[type="ordered"] item::before {counter-increment:
 content: counter(ordered) ". "; margin: 0.25em 0

to an HTML list with list-style-position: inside;
declared.

The <item> elements are ordinary elements generating block-
level boxes, which means that counters are not restricted only
to elements with a display of list-item . In fact, any element
can use a counter. Consider the following rules:

These rules would have the effect shown in Figure 16-28.

h1 {counter-reset: section subsec;
 counter-increment: chapter;}
h1::before {content: counter(chapter) ". ";}
h2 {counter-reset: subsec;
 counter-increment: section;}
h2::before {content: counter(chapter)"." counter(sec

h3 {counter-increment: subsec;}
h3::before {content: counter(chapter) "." counter(sec
 counter(subsec) ". ";}

Figure 16-28. Adding counters to headings

Figure 16-28 illustrates some important points about counter
resetting and incrementing. For instance, notice that the
counters are reset on the elements, whereas the actual
generated-content counters are inserted via the ::before
pseudo-elements. Attempting to reset counters in the pseudo-
elements won’t work: you’ll get a lot of zeros.

Also notice that the <h1> element uses the counter chapter ,
which defaults to 0 and has a “1.” before the element’s text.
When a counter is incremented and used by the same element,
the incrementation happens before the counter is displayed.
Similarly, if a counter is reset and shown in the same element,
the reset happens before the counter is displayed. Consider the
following:

The first <h1> element in the document would be preceded by
the text “1.0.0.” because the counters section and subsec
were reset but not incremented. Thus, if you want the first
displayed instance of an incremented counter to be 0, you need
to reset that counter to -1 , as follows:

You can do some interesting things with counters. Consider the
following XML:

h1::before, h2::before, h3::before {
 content: counter(chapter) "." counter(section) "."
h1 {counter-reset: section subsec;
 counter-increment: chapter;}

body {counter-reset: chapter -1;}
h1::before {counter-increment: chapter; content: coun

You can re-create the traditional format of a BASIC program
listing with the following rules:

It’s also possible to define a list style for each counter as part of
the counter() format. You can do this by adding a comma-
separated list-style-type keyword after the counter’s
identifier. The following modification of the heading-counter
example is illustrated in Figure 16-29:

<code type="BASIC">
 <line>PRINT "Hello world!"</line>
 <line>REM This is what the kids are calling a "comm
 <line>GOTO 10</line>
</code>

code[type="BASIC"] {counter-reset: linenum; font-fami
code[type="BASIC"] line {display: block;}

code[type="BASIC"] line::before {counter-increment: l
 content: counter(linenum) ": ";}

h1 {counter-reset: section subsec;
 counter-increment: chapter;}
h1::before {content: counter(chapter,upper-alpha) ".

Notice that the counter section is not given a style keyword,
so it defaults to the decimal counting style. You can even set
counters to use the styles disc , circle , square , and none if
you so desire, though every instance of those counters will be
just a single copy of the symbol you specified.

One interesting point to note is that elements with a display of
none do not increment counters, even if the rule seems to
indicate otherwise. In contrast, elements with a visibility of
hidden do increment counters:

h2 {counter-reset: subsec;
 counter-increment: section;}
h2::before {content: counter(chapter,upper-alpha)"."
h3 {counter-increment: subsec;}
h3::before {content: counter(chapter,upper-alpha) "."
 counter(subsec,lower-roman) ". ";}

.suppress {counter-increment: cntr; display: none;}
 /* 'cntr' is NOT incremented */
.invisible {counter-increment: cntr; visibility: hidd
 /* 'cntr' IS incremented */

Figure 16-29. Changing counter styles

Counters and scope

So far, you’ve seen how to string multiple counters together to
create section-and-subsection counting. Often, this is something
authors desire for nested ordered lists as well, but trying to
create enough counters to cover deep nesting levels would

quickly become clumsy. Just to get counters to work for five-
level-deep nested lists would require a bunch of rules like this:

Imagine writing enough rules to cover nesting up to 50 levels!
(We’re not saying you should nest ordered lists 50 deep. Just
follow along for the moment.)

Fortunately, CSS 2.1 described the concept of scope when it
comes to counters. Stated simply, every level of nesting creates
a new scope for any given counter. Scope is what makes it
possible for the following rules to cover nested-list counting in
the usual HTML way:

These rules will all make ordered lists, even those nested inside
others, start counting from 1 and increment each item by one—
exactly the way it’s been done in HTML from the beginning.

ol ol ol ol ol li::before {
 counter-increment: ord1 ord2 ord3 ord4 ord5;
 content: counter(ord1) "." counter(ord2) "." coun
 counter(ord4) "." counter(ord5) ".";}

ol {counter-reset: ordered;}
ol li::before {counter-increment: ordered; content: c

This works because a new instance of the counter ordered is
created at each level of nesting. So, for the first ordered list, an
instance of ordered is created. Then, for every list nested
inside the first one, another new instance is created, and the
counting starts anew with each list.

However, suppose you want ordered lists to count so that each
level of nesting creates a new counter appended to the old: 1,
1.1, 1.2, 1.2.1, 1.2.2, 1.3, 2, 2.1, and so on. This can’t be done with
counter() , but it can be done with counters() . What a
difference an s makes.

To create the nested-counter style shown in Figure 16-30, you
need these rules:

ol {counter-reset: ordered; list-style: none;}
ol li:before {content: counters(ordered,".") ": "; co

Figure 16-30. Nested counters

Basically, the keyword counters(ordered,".") displays the
ordered counter from each scope with a period appended, and
strings together all of the scoped counters for a given element.
Thus, an item in a third-level nested list would be prefaced with
the ordered value for the outermost list’s scope, the scope of
the list between the outer and current list, and the current list’s
scope, with each of those followed by a period. The rest of the

content value causes a space, colon, and space to be added
after all of those counters.

As with counter() , you can define a list style for nested
counters, but the same style applies to all of the counters. Thus,
if you changed your previous CSS to read as follows, the list
items in Figure 16-30 would all use lowercase letters for the
counters instead of numbers:

You may have noticed that list-style: none was applied to
the elements in the previous examples. That’s because the
counters being inserted were generated content, not
replacement list markers. In other words, had the list-style:
none been omitted, each list item would have had its user
agent-supplied list counter, plus the generated-content counters
we defined.

That ability can be very useful, but sometimes you really just
want to redefine the markers themselves. That’s where
counting patterns come in.

ol li::before {counter-increment: ordered;
 content: counters(ordered,".",lower-alpha) ": ";}

Defining Counting Patterns

If you want to get beyond simple nested counting, perhaps into
defining base-60 counting or using patterns of symbols, CSS
provides a way to define almost any counting pattern you can
imagine. You can use @counter-style blocks, with dedicated
descriptors to manage the outcome. The general pattern is as
follows:

@counter-style <name> {
 …declarations…
}

Here, <name> is an author-supplied name for the pattern in
question. For example, to create a series of alternating triangle
markers, the block might look something like this:

@counter-style triangles {
 system: cyclic;
 symbols: ▶ ▷;
}
ol {list-style: triangles;}

Figure 16-31 shows the result.

Figure 16-31. A simple counter pattern

Several descriptors are available, summarized here.

@COUNTER-STYLE DESCRIPTORS

system Defines the counter patterning system
to be used.

symbols Defines the counter symbols to be used
in the counter pattern. This descriptor is
required for all marker systems except
additive and extends .

additive-s
ymbols

Defines the counter symbols to be used
in additive counter patterns.

prefix Defines a string or symbol to be
included just before each counter in the
pattern.

suffix Defines a string or symbol to be
included just after each counter in the
pattern.

negative Defines strings or symbols to be
included around any negative-value
counter.

range

Defines the range of values in which the
counter pattern should be applied. Any
counter outside the defined range uses
the fallback counter style.

fallback Defines the counter pattern that should
be used when the value can’t be
represented by the primary counter
pattern, or the value is outside a defined
range for the counters.

pad Defines a minimum number of
characters for all counters in the
pattern, with any extra space filled in
with a defined symbol or set of symbols.

speak-as Defines a strategy for speaking the
counter in text-to-speech systems.

We’ll start with simple systems and work our way up in
complexity, but first, let’s see the precise definitions for the two
most basic descriptors: system and symbols .

SYSTEM DESCRIPTOR

Values cyclic | numeric | alphabetic | sy
mbolic | additive | [fixed < intege

r >?] | [extends < counter-style-nam

e >]

Initial
value

symbolic

SYMBOLS DESCRIPTOR

Values < symbol >+

Initial
value

n/a

Notes A < symbol > can be any Unicode-
compliant string, an image reference, or
an identifier such as an escaped
hexadecimal reference

For pretty much any @counter-style block, those are the
minimum two descriptors. You can leave out system if you’re
defining a symbolic system, but it’s generally better to include
it so that you’re clear about the kind of system you’re setting up.
Remember, the next person to work on the styles may not be as
familiar with counter styling as you!

Fixed Counting Patterns

The simplest kind of counter pattern is a fixed system. Fixed
systems are used when you want to define an exact sequence of
counter markers that doesn’t repeat after you’ve run out of
markers. Consider this example, which has the result shown in
Figure 16-32:

@counter-style emoji {
 system: fixed;
 symbols: ;
}
ol.emoji {list-style: emoji;}

Figure 16-32. A fixed counter pattern

Once the list gets past the fifth list item, the counter system runs
out of emoji, and since no fallback was defined (we’ll get to that
shortly), the markers for subsequent list items fall back to the
default for ordered lists.

Notice that the symbols in the symbols descriptor are
separated by spaces. If they were all jammed together with no
space separation, you’d get a result like that in Figure 16-33.

Figure 16-33. When symbols get too close

This does mean you can define a fixed sequence of markers in
which each marker is composed of multiple symbols. (If you
want to define a set of symbols that are combined in patterns to
create a counting system, just wait: we’re getting to that soon.)

If you want to use ASCII symbols in your markers, it’s generally
advisable to quote them. This avoids problems like angle
brackets being mistaken for pieces of HTML by the parser. Thus
you might do something like this:

@counter-style emoji {
 system: fixed;

 symbols: # $ % ">";
}

It’s acceptable to quote all symbols, and it might be a good idea
to get into that habit. That means more typing—the preceding
value would become "#" "$" "%" ">" —but it’s less error-
prone.

In fixed counter systems, you can define a starting value in the
system descriptor itself. If you want to start the counting at 5,
for example, you’d write this:

@counter-style emoji {
 system: fixed 5;
 symbols: ;
}
ul.emoji {list-style: emoji;}

In this case, the first five symbols represent counters 5 through
9.

NOTE

This ability to set a starting number is available in only fixed counter systems.

Cyclic Counting Patterns

The next step beyond fixed patterns is cyclic patterns, which
are fixed patterns that repeat. Let’s take the fixed emoji pattern
from the previous section and convert it to cyclic. This will have
the result shown in Figure 16-34:

@counter-style emojiverse {
 system: cyclic;
 symbols: ;
}

ul.emoji {list-style: emojiverse;}

Figure 16-34. A cyclic counter pattern

The defined symbols are used in order, over and over, until no
more items remain left to count.

It’s possible to use cyclic to supply a single marker that’s used
for the entire pattern, much like supplying a string for list-
style-type . In this case, it would look something like this:

@counter-style thinker {
 system: cyclic;
 symbols: ;
 /* equivalent to list-style-type: ; */
}

ul.hmmm {list-style: thinker;}

One thing you may have noticed is that so far, all our counters
have been followed by a full stop (or a period, if you prefer).
This is due to the default value of the suffix descriptor, which
has a cousin descriptor, prefix .

PREFIX AND SUFFIX DESCRIPTORS

Value < symbol >

Initial
value

"" (empty string) for prefix ; \2E (the
full stop, or period, " . ") for suffix

Notes A < symbol > can be any Unicode-
compliant string, an image reference, or
an identifier such as an escaped
hexadecimal reference

With these descriptors, you can define symbols that are
inserted before and after every marker in the pattern. Thus, we
might give our thinker ASCII wings like so, as illustrated in
Figure 16-35:

@counter-style wingthinker {
 system: cyclic;
 symbols: ;
 prefix: "~";
 suffix: " ~";
}

ul.hmmm {list-style: wingthinker;}

Figure 16-35. Putting “wings” on the thinker

The suffix descriptor is particularly useful if you want to
remove the default suffix from your markers. Here’s one
example of how to do so:

@counter-style thisisfine {
 system: cyclic;
 symbols: ;
 suffix: "";
}

You can also extend the markers in creative ways by using
prefix and suffix , as shown in Figure 16-36:

@counter-style thisisfine {
 system: cyclic;
 symbols: ;
 prefix: " ";
 suffix: " ";
}

Figure 16-36. This list is fine

You might wonder why the prefix value is quoted in this
example, while the suffix value is not. There is no reason
other than to demonstrate that both approaches work. As stated
before, quoting symbols is safer but is rarely required.

You may also see some differences between the Unicode glyphs
in the CSS examples here and those shown in the figures. This is
an unavoidable aspect of using emoji and other such characters
—what appears on one person’s user agent may be different on
someone else’s. Consider the differences in emoji rendering
between macOS, iOS, Android, Samsung, Windows desktop,
Windows mobile, Linux, and so on.

You can use images for your counters, at least in theory. As an
example, suppose you want to use a series of Klingon glyphs,
which have no Unicode equivalents. (It’s a long-standing
industry myth that Klingon is in Unicode. It was proposed in
1997 and rejected in 2001. A new proposal was made in 2016
and was once again rejected.) We won’t represent the entire set
of symbols here, but it would start something like this:

@counter-style klingon-letters {
 system: cyclic;
 symbols: url(i/klingon-a.svg) url(i/klingon-b.svg
 url(i/klingon-ch.svg) url(i/klingon-d.svg)

This would cycle from A through GH and then repeat, but still,
you’d get some Klingon symbology, which might be enough.
We’ll see ways to build up alphabetic and numeric systems later
in the chapter.

WARNING

As of late 2022, browser support for any type of <image> as counting symbols is
essentially nonexistent.

Symbolic Counting Patterns

A symbolic counting system is similar to a cyclic system,
except in symbolic systems, for each restart of the symbol
sequence, the number of symbols increases by one. Each
marker is made up of a single symbol that is repeated the
number of times the symbol sequence has repeated. This may
be familiar to you from footnote symbols, or some varieties of
alphabetic systems. Examples of each are shown here, with the
result in Figure 16-37:

 url(i/klingon-e.svg) url(i/klingon-gh.svg);
 suffix: url(i/klingon-full-stop.svg);
}

@counter-style footnotes {
 system: symbolic;
 symbols: "*" "†" "§";
 suffix: ' ';
}
@counter-style letters {
 system: symbolic;
 symbols: A B C D E;
}

Figure 16-37. Two patterns of symbolic counting

One thing to watch out for is that if you have only a few
symbols applied to a very long list, the markers will quickly get
quite long. Consider the letter counters shown in the previous
example. Figure 16-38 shows what the 135th through 150th
entries in a list using that system would look like.

Figure 16-38. Very long symbolic markers

This sort of consideration will become more of an issue from
here on out, because the counter styles are all additive in one

sense or another. To limit your exposure to these kinds of
problems, you can use the range descriptor.

RANGE DESCRIPTOR

Values [[< integer > | infinite]{2}]# | aut
o

Initial
value

auto

With range , you can supply one or more space-separated pairs
of values, with each pair separated from the others by commas.
Let’s suppose we want to stop the letter-doubling after three
iterations. We have five symbols, so we can restrict their use to
the first 15 list items like so, with the result shown in Figure 16-
39 (which has been arranged in two columns to keep the figure
size reasonable):

@counter-style letters {
 system: symbolic;
 symbols: A B C D E;

 range: 1 15;
}

Figure 16-39. Using range to limit a symbolic counter pattern

If we needed, for whatever reason, to supply a second range of
counter usage, it would look like this:

@counter-style letters {
 system: symbolic;
 symbols: A B C D E;
 range: 1 15, 101 115;
}

The symbolic letter system defined by letters would be
applied in the range 1–15 as well as 101–115 (which would be
“AAAAAAAAAAAAAAAAAAAAA” through
“EEEEEEEEEEEEEEEEEEEEEEE,” rather appropriately).

So what happens to the counters that fall outside of the range(s)
defined by range ? They fall back to a default marker style. You
can leave that up to the user agent to handle, or you can
provide some direction by means of the fallback descriptor.

FALLBACK DESCRIPTOR

Value < counter-style-name >

Initial
value

decimal

Note < counter-style-name > can be any of
the values allowed for list-style-typ
e

As an example, you might decide to handle any beyond-the-
range counters with Hebrew counting:

@counter-style letters {
 system: symbolic;
 symbols: A B C D E;
 range: 1 15, 101 115;
 fallback: hebrew;
}

You could just as easily use lower-greek , upper-latin , or
even a noncounting style like square .

Alphabetic Counting Patterns

An alphabetic counting system is similar to a symbolic
system, except the manner of repeating changes. Remember,
with symbolic counting, the number of symbols goes up with
each iteration through the cycle. In alphabetic systems, each
symbol is treated as a digit in a numbering system. If you’ve
spent any time in spreadsheets, this counting method may be
familiar to you from the column labels.

To illustrate this, let’s reuse the letter symbols from the
previous section, and change from a symbolic to an alphabetic
system. The result is shown in Figure 16-40 (once again
formatted as two columns to fit):

@counter-style letters {
 system: alphabetic;
 symbols: A B C D E;
 /* once more cut off at 'E' to show the pattern’s
}

Figure 16-40. Alphabetic counting

Notice the second iteration of the pattern, which runs from “AA”
to “AE” before switching over to “BA” through “BE,” then on to
“CA” and so on. In the symbolic version of this, we’d already be
up to “EEEEEE” by the time “EE” was reached in the alphabetic
system.

Note that to be valid, an alphabetic system must have a
minimum of two symbols supplied in the symbols descriptor. If
only one symbol is supplied, the entire @counter-style block
is rendered invalid. Any two symbols are valid; they can be
letters, numbers, or really anything in Unicode, as well as
images (again, in theory).

Numeric Counting Patterns

When you define a numeric system, you’re technically using
the symbols you supply to define a positional numbering system
—that is, the symbols are used as digits in a place-number
counting system. Defining ordinary decimal counting, for
example, would be done like this:

This base is extensible to create hexadecimal counting, like so:

@counter-style decimal {
 system: numeric;

 symbols: '0' '1' '2' '3' '4' '5' '6' '7' '8' '9';
}

@counter-style hexadecimal {
 system: numeric;

symbols: '0' '1' '2' '3' '4' '5' '6' '7' '8' '9'

That counter style will count from 1 through F, roll over to 10
and count up to 1F, then 20 to 2F, 30 to 3F, etc. Much more
simply, it’s a breeze to set up binary counting:

@counter-style binary {
 system: numeric;
 symbols: '0' '1';
}

Examples of these three counting patterns are shown in
Figure 16-41.

 symbols: 0 1 2 3 4 5 6 7 8 9
}

Figure 16-41. Three numeric counting patterns

An interesting question to consider is: what happens if a
counter value is negative? In decimal counting, we generally
expect negative numbers to be preceded by a minus sign (–),
but what about in other systems, like symbolic? What if we
define a letter-based numeric counting system? Or if we want to
use accounting-style formatting, which puts negative values
into parentheses? This is where the negative descriptor comes
into play.

NEGATIVE DESCRIPTOR

Values < symbol > < symbol >?

Initial
value

\2D (the hyphen-minus symbol)

Notes negative is applicable only in counting
systems that allow negative values: alp
habetic , numeric , symbolic , and add
itive .

The negative descriptor is like its own little self-contained
combination of prefix and suffix that is applied only when
the counter has a negative value. Its symbols are placed to the
inside (that is, closer to the counter) of any prefix and suffix
symbols.

So let’s say we want to use accounting-style formatting, and to
add prefix and suffix symbols to all counters. That would be
done as follows, with the result shown in Figure 16-42:

@counter-style accounting {

<ol start="-3">
…

Figure 16-42. Negative-value formatting

 system: numeric;
 symbols: '0' '1' '2' '3' '4' '5' '6' '7' '8' '9';
 negative: "(" ")";
 prefix: "$";
 suffix: " - ";
}
ol.kaching {list-style: accounting;}

Another common feature of numeric counting systems is the
desire to pad out low values so that their length matches that of
higher values. For example, rather than 1 and 100, a counting
pattern might use leading zeros to create 001 and 100. This can
be accomplished with the pad descriptor.

PAD DESCRIPTOR

Value < integer > && < symbol >

Initial value 0 ""

The pattern of this descriptor is interesting. The first part is an
integer that defines the number of digits that every counter
should have. The second part is a string that’s used to fill out
any value containing fewer than the defined number of digits.
Consider this example:

@counter-style padded {
 system: numeric;
 symbols: '0' '1' '2' '3' '4' '5' '6' '7' '8' '9';
 suffix: '.';
 pad: 4 "0";
}

Given these styles, ordered lists will all used decimal counting
by default: 1, 2, 3, 4, 5… Those with a class of padded will use
padded decimal counting: 0001, 0002, 0003, 0004, 0005…
Figure 16-43 shows an example.

}

ol {list-style: decimal;}
ol.padded {list-style: padded;}

Figure 16-43. Padding values

Note that the padded counters use the 0 symbol to fill in any
missing leading digits, in order to make every counter be at
least four digits long. The “at least” part of that sentence is
important: if a counter gets up to five digits, it won’t be padded.
More importantly, if a counter reaches five digits, none of the
other shorter counters will get additional zeros. They’ll stay
four digits long, because of the 4 in 4 "0" .

Any symbol can be used to pad values, not just 0 . You could use
underlines, periods, emoji, arrow symbols, empty spaces, or
anything else you like. In fact, you can have multiple characters
in the < symbol > part of the value. The following is perfectly
acceptable, if not necessarily desirable:

Given a counter value of 1 , the result of that crazy counting
system would be “ 1.”

Note that negative symbols count toward symbol length and
thus eat into padding. Also note that the negative sign will come
outside any padding. Given the following styles, we’d get the
result shown in Figure 16-44:

@counter-style crazy {
 system: numeric;
 symbols: '0' '1' '2' '3' '4' '5' '6' '7' '8' '9';
 suffix: '.';
 pad: 7 " ";
}

ol {list-style: decimal;}
ol.padded {list-style: padded;}

@counter-style negativezeropad {
 system: numeric;

syste : u e c;
 symbols: '0' '1' '2' '3' '4' '5' '6' '7' '8' '9';
 suffix: '. ';
 negative: '–';
 pad: 4 "0";
}
@counter-style negativespacepad {
 system: numeric;
 symbols: '0' '1' '2' '3' '4' '5' '6' '7' '8' '9';
 suffix: '. ';

 negative: '–';
 pad: 4 " ";
}

Figure 16-44. Negative value formatting, with padding

Additive Counting Patterns

We have one more system type to explore, which is additive-
symbol counting. In additive counting systems, different
symbols are used to represent values. Putting multiple symbols
together properly and then adding up the numbers that each
represents yields the counter value.

ADDITIVE-SYMBOLS DESCRIPTOR

Value [< integer > && < symbol >]#

Initial
value

n/a

Note < integer > values must be
nonnegative, and additive counters are
not applied when a counter’s value is
negative.

It’s much easier to show this than explain it. Here’s an example
adapted from Kseso:

@counter-style roman {
 system: additive;
 additive-symbols:
 1000 M, 900 CM, 500 D, 400 CD,
 100 C, 90 XC, 50 L, 40 XL,
 10 X, 9 IX, 5 V, 4 IV, 1 I;
}

https://escss.blogspot.com/

This will count in classical Roman style. Another good example
can be found in the specification for counting styles, which
defines a dice-counting system:

The results of both counting systems are shown in Figure 16-45;
this time, each list has been formatted as three columns.

Figure 16-45. Additive values

Symbols can be quoted for clarity; e.g., 6 "⚅", 5 "⚄", 4 "⚃" ,
and so on.

The most important thing to keep in mind is that the order of
the symbols and their equivalent values matters. Notice that
both the Roman and dice-counting systems supply values from

@counter-style dice {
 system: additive;
 additive-symbols: 6 ⚅, 5 ⚄, 4 ⚃, 3 ⚂, 2 ⚁, 1 ⚀,
 suffix: " ";
}

largest to smallest, not the other way around? That’s because if
you put the values in any order other than descending, the
entire block is rendered invalid.

Also notice the use of the additive-symbols descriptor instead
of symbols . This is important to keep in mind, since defining
an additive system and then trying to use the symbols
descriptor will render the entire counter-styles block
invalid. (Similarly, attempting to use the additive-symbols
description in non- additive systems will render those blocks
invalid.)

One last thing to note about additive systems is that, because of
the way the additive-counter algorithm is defined, it’s possible
to create additive systems in which some values can’t be
represented even though it seems like they should be. Consider
this definition:

@counter-style problem {
 system: additive;
 additive-symbols: 3 "Y", 2 "X";
 fallback: decimal;
}

This would yield the following counters for the first five
numbers: 1, X, Y, 4, YX. You might think 4 should be XX, and that
may make intuitive sense, but the algorithm for additive
symbols doesn’t permit it. To quote the specification: “While
unfortunate, this is required to maintain the property that the
algorithm runs in linear time relative to the size of the counter
value.”

TIP

So how does Roman counting manage to get III for 3? Again, the answer is in the
algorithm. It’s a little too complicated to get into here, so if you’re truly curious, we
recommend you read the CSS Counter Styles Level 3 specification, which defines the
additive counting algorithm. If that doesn’t interest you, just remember: make sure
you have a symbol whose value equates to 1 , and you’ll avoid this problem.

Extending Counting Patterns

There may come a time when you just want to vary an existing
counting system a bit. For example, suppose you want to
change regular decimal counting to use close-parentheses
symbols as suffixes, and pad up to two leading zeros. You could
write it all out longhand, like so:

@counter-style mydecimals {
 system: numeric;

b l '0' '1' '2' '3' '4' '5' '6' '7' '8' '9'

That works, but it’s clumsy. Well, worry not: extends is here to
help.

The extends option is sort of a system type, but only in the
sense that it builds on an existing system type. The previous
example would be rewritten with extends as follows:

@counter-style mydecimals {
 system: extends decimal;
 suffix: ") ";
 pad: 2 "0";
}

That takes the existing decimal system familiar from list-
style-type and reformats it a bit. Thus, there’s no need to
retype the whole symbol chain. You just adjust the options, as it
were.

In fact, you can only adjust the options: if you try to use either
symbols or additive-symbols in an extends system, the
entire @counter-style block will be invalid and ignored. In

 symbols: '0' '1' '2' '3' '4' '5' '6' '7' '8' '9';
 suffix: ") ";
 pad: 2 "0";
}

other words, symbols cannot be extended. As an example, you
can’t define hexadecimal counting by extending decimal
counting.

However, you can vary the hexadecimal counting for different
contexts. As an example, you could set up basic hex counting
and then define variant display patterns, as shown in the
following code and illustrated in Figure 16-46.

NOTE

Each list jumps from 19 to 253, thanks to a value="253" on one of the list items.

@counter-style hexadecimal {
 system: numeric;
 symbols: '0' '1' '2' '3' '4' '5' '6' '7' '8' '9'
}
@counter-style hexpad {
 system: extends hexadecimal;
 pad: 2 "0";
}
@counter-style hexcolon {
 system: extends hexadecimal;
 suffix: ": ";
}
@counter-style hexcolonlimited {
 system: extends hexcolon;

Figure 16-46. Various hexadecimal counting patterns

Notice that the last of the four counter styles,
hexcolonlimited , extends the third, hexcolon , which itself
extends the first, hexadecimal . In hexcolonlimited , the
hexadecimal counting stops at FF (255), thanks to the range:
1 255; declaration.

Speaking Counting Patterns

While it’s fun to build counters out of symbols, the result can be
a real mess for spoken technologies such as Apple’s VoiceOver
or the JAWS screen reader. Imagine, for example, a screen

y ;
 range: 1 255; /* stops at FF */
}

reader trying to read dice counters or phases of the moon. To
help, the speak-as descriptor allows you to define an audible
fallback.

SPEAK-AS DESCRIPTOR

Values auto | bullets | numbers | words |
spell-out | < counter-style-name >

Initial
value

auto

WARNING

As of late 2022, speak-as is supported only by Mozilla-based browsers.

Let’s take the values backward. With a < counter-style-name >,
you’re able to define an alternate counting style that the user
agent likely already recognizes. For example, you likely want to
provide an audio fallback for dice counting to be decimal , one
of the well-supported list-style-type values, when spoken:

@counter-style dice {
system: additive;

Given those styles, the counter ⚅⚅⚂ would be spoken as
“fifteen.” Alternatively, if the speak-as value is changed to
lower-latin , that counter will be spoken as “oh” (capital letter
O).

The spell-out value might seem fairly straightforward but it’s
a little more complicated than it first appears. What is spelled
out by the user agent is a “counter representation,” which is
then spelled out letter by letter. It’s hard to predict what that
will mean, since the method of generating a counter
representation isn’t precisely defined: the specification says,
“Counter representations are constructed by concatenating
counter symbols together.” And that’s all.

The words value is similar to spell-out , except the counter
representation is spoken as words instead of spelling out each
letter. Again, the exact process is not defined.

With the value numbers , the counters are spoken as numbers
in the document language. This is similar to the previous code

 system: additive;
 speak-as: decimal;
 additive-symbols: 6 ⚅, 5 ⚄, 4 ⚃, 3 ⚂, 2 ⚁, 1 ⚀;
 suffix: " ";
}

sample, where ⚅⚅⚂ is spoken as “fifteen,” at least in English
documents. If it’s another language, that language is used for
counting: “quince” in Spanish, “fünfzehn” in German, “shíwǔ”
in Chinese, and so on.

Given bullets , the user agent says whatever it says when
reading a bullet (marker) in an unordered list. This may mean
saying nothing at all, or producing an audio cue such as a chime
or click.

Finally, consider the default value of auto . We saved this for
last because its effect depends on the counting system in use. If
it’s an alphabetic system, speak-as: auto has the same
effect as speak-as: spell-out . In cyclic systems, auto is
the same as bullets . Otherwise, the effect is the same as
speak-as: numbers .

The exception to this rule arises if the system is an extends
system, in which case auto ’s effects are determined based on
the system being extended. Therefore, given the following
styles, the counters in an emojibrackets list will be spoken as
if speak-as were set to bullets :

@counter-style emojilist {
 emojiverse {

 system: cyclic;
 symbols: ;
@counter-style emojibrackets {
 system: extends emojilist;
 suffix: "]] ";
 speak-as: auto;
}

Summary

Even though list styling isn’t as sophisticated as we might like,
the ability to style lists is still highly useful. One relatively
common use is to take a list of links, remove the markers and
indentation, and thus create a navigation sidebar. The
combination of simple markup and flexible layout is difficult to
resist.

Remember, if a markup language doesn’t have intrinsic list
elements, generated content can be an enormous help—say, for
inserting content such as icons to point to certain types of links
(PDF files, Word documents, or even just links to another
website). Generated content also makes it easy to print out link
URLs, and its ability to insert and format quotation marks leads
to true typographic joy. It’s safe to say that the usefulness of
generated content is limited only by your imagination. Even

better, thanks to counters, you can now associate ordering
information to elements that are not typically lists, such as
headings or code blocks. If you want to support such features
with design that mimics the appearance of the user’s operating
system, read on. The next chapter discusses ways to change the
placement, shape, and even perspective of your design.

Chapter 17. Transforms

Ever since the inception of CSS, elements have been rectangular
and firmly oriented on the horizontal and vertical axes. Several
tricks arose to make elements look like they were tilted and so
on, but underneath it all was a rigid grid.

With CSS transforms, you have the ability to break that visual
grid and shake up the way your elements are presented.
Whether it’s as simple as rotating some photographs a bit to
make them appear more natural, or creating interfaces where
information can be revealed by flipping over elements, or doing
interesting perspective tricks with sidebars, CSS transforms can
—if you’ll pardon the obvious expression—transform the way
you design.

Coordinate Systems

Before embarking on this journey, let’s take a moment to orient
ourselves. Specifically, let’s review the coordinate systems used
to define positions or movement in space as a sequence of
measurements. Two types of coordinate systems are used in
transforms, and it’s a good idea to be familiar with both.

The first is the Cartesian coordinate system, often called the
x/y/z coordinate system. This system describes the position of a
point in space by using two numbers (for two-dimensional
placement) or three numbers (for three-dimensional
placement). In CSS, the system uses three axes: the x-axis
(horizontal); the y-axis (vertical); and the z-axis (depth). This is
illustrated in Figure 17-1.

Figure 17-1. The three Cartesian axes used in CSS transforms

For any two-dimensional (2D) transform, you need to worry
about only the x- and y-axes. By convention, positive x values go
to the right, and negative values go to the left. Similarly, positive
y values go downward along the y-axis, while negative values
go upward along the y-axis.

That might seem a little weird, since we tend to think that
higher numbers should place something higher up, not lower
down, as many of us learned in pre-algebra. (This is why the “y”
label is at the bottom of the y-axis in Figure 17-1: the labels are
placed in the positive direction on all three axes.) If you are
experienced with absolute positioning in CSS, think of the top
property values for absolutely positioned elements: they get
moved downward for positive top values, and upward when
top has a negative length.

Given this, in order to move an element leftward and down,
you would give it a negative x and a positive y value. Here is
one way to do this:

translateX(-5em) translateY(33px)

That is, in fact, a valid transform value, as you’ll see in just a bit.
Its effect is to translate (move) the element 5 ems to the left and
33 pixels down, in that order.

If you want to transform something in three-dimensional (3D)
space, you add a z-axis value. This axis is the one that “sticks
out” of the display and runs straight through your head—in a
theoretical sense, that is. Positive z values are closer to you, and
negative z values are farther away from you. In this regard, it’s
very much like the z-index property.

So let’s say that we want to take the element we moved before
and add a z-axis value:

Now the element will appear 200 pixels closer to us than it
would be without the z value.

Well, you might wonder exactly how an element can be moved
200 pixels closer to you, given that holographic displays are
regrettably rare and expensive. How many molecules of air
between you and your monitor are equivalent to 200 pixels?
What does an element moving closer to you even look like, and
what happens if it gets too close? These are excellent questions
that we’ll get to later. For now, just accept that moving an
element along the z-axis appears to move it closer or farther
away.

translateX(-5em) translateY(33px) translateZ(200px)

The really important thing to remember is that every element
carries its own frame of reference and so considers its axes
with respect to itself. If you rotate an element, the axes rotate
along with it, as illustrated in Figure 17-2. Any further
transforms are calculated with respect to those rotated axes,
not the axes of the display.

Figure 17-2. Elemental frames of reference

Now, suppose you want to rotate an element 45 degrees
clockwise in the plane of the display (i.e., around the z-axis).
Here’s the transform value you’re most likely to use:

rotate(45deg)

Change that to –45deg , and the element will rotate
counterclockwise (anticlockwise for our international friends)
around the z-axis. In other words, it will rotate in the xy plane,
as illustrated in Figure 17-3.

Figure 17-3. Rotations in the xy plane

Speaking of rotations, the other coordinate system used in CSS
transforms is a spherical system, which describes angles in 3D
space. It’s illustrated in Figure 17-4.

Figure 17-4. The spherical coordinate system used in CSS transforms

For the purposes of 2D transforms, you have to worry about
only a single 360-degree polar system: the one that sits on the
plane described by the x- and y-axes. When it comes to
rotations, a 2D rotation actually describes a rotation around the
z-axis. Similarly, rotations around the x-axis tilt the element
toward or away from you, and rotations around the y-axis turn
the element from side to side. These are illustrated in Figure 17-
5.

Figure 17-5. Rotations around the three axes

All right, now that we have our bearings, let’s get started with
using CSS transforms!

Transforming

One property applies all transforms as a single operation, and a
few ancillary properties affect exactly how the transforms are
applied or allow transforms in a single manner. We’ll start with
the big cheese.

TRANSFORM

Values < transform-list > | none

Initial
value

none

Applies to All elements except atomic inline-level
boxes (see explanation)

Percentages Refer to the size of the bounding box
(see explanation)

Computed
value

As specified, except for relative length
values, which are converted to an
absolute length

Inherited No

Animatable As a transform

A < transform-list > is a space-separated list of functions
defining different transformations, like the examples used in
the preceding section. We’ll dig into the specific functions you
can use in a moment.

First off, let’s clear up the matter of the bounding box. For any
element being affected by CSS, the bounding box is the border
box—the outermost edge of the element’s border. Any outlines
and margins are ignored for the purposes of calculating the
bounding box.

NOTE

If a table-display element is being transformed, its bounding box is the table wrapper
box, which encloses the table box and any associated caption box.

If you’re transforming an SVG element with CSS, its bounding
box is its SVG-defined object bounding box.

Note that all transformed elements (e.g., elements with
transform set to a value other than none) have their own
stacking context. (See “Placement on the Z-Axis” for an
explanation.)

While a scaled element may be much smaller or larger than it
was before the transform was applied, the actual space on the

page that the element occupies remains the same as before the
transform was applied. This is true for all the transform
functions: when you translate or rotate an element, its siblings
don’t automatically move out of the way.

Now, the value entry < transform-list > requires some
explanation. It refers to a list of one or more transform
functions, one after the other, in space-separated format. It
looks something like this, with the result shown in Figure 17-6:

Figure 17-6. A transformed <div> element

The functions are processed one at a time, starting with the first
(leftmost) and proceeding to the last (rightmost). This first-to-
last processing order is important, because changing the order
can lead to drastically different results. Consider the following
two rules, which have the results shown in Figure 17-7:

#example {transform: rotate(30deg) skewX(-25deg) scal

img#one {transform: translateX(200px) rotate(45deg);}
i #t {t f t t (45d) t l t X(200) }

Figure 17-7. Different transform lists, different results

In the first instance, an image is translated (moved) 200 pixels
along its x-axis and then rotated 45 degrees. In the second
instance, an image is rotated 45 degrees and then moved 200
pixels along its x-axis—that’s the x-axis of the transformed
element, not of the parent element, page, or viewport. In other
words, when an element is rotated, its x-axis (along with its
other axes) rotates along with it. All element transforms are
conducted with respect to the element’s own frame of
reference.

Note that when you have a series of transform functions, all of
them must be properly formatted; that is, they must be valid. If

img#two {transform: rotate(45deg) translateX(200px);}

even one function is invalid, it renders the entire value invalid.
Consider the following:

Because the value for rotate() is invalid—rotational values
must be an < angle >—the entire value is dropped. The image in
question will just sit there in its initial untransformed state,
neither translated nor scaled, let alone rotated.

In addition, transforms are not usually cumulative. If you apply
a transform to an element and then later want to add a
transformation, you need to restate the original transform.
Consider the following scenarios, illustrated in Figure 17-8:

img#one {transform: translateX(100px) scale(1.2) rota

#ex01 {transform: rotate(30deg) skewX(-25deg);}
#ex01 {transform: scaleY(2);}
#ex02 {transform: rotate(30deg) skewX(-25deg);}
#ex02 {transform: rotate(30deg) skewX(-25deg) scaleY(

Figure 17-8. Overwriting or modifying transforms

In the first case, the second rule completely replaces the first,
meaning that the element is scaled only along the y-axis. This
makes some sense; it’s the same as if you declare a font size and
then elsewhere declare a different font size for the same
element. You don’t get a cumulative font size that way. You just
get one size or the other. In the second example, the entirety of
the first set of transforms is included in the second set, so they
all are applied along with the scaleY() function.

NOTE

If you’re wishing for properties that apply to just a single type of transformation,
such as a property that only rotates or a property that only scales elements, you’ll see
some later in the chapter, so hang in there.

There’s one important caveat: as of this writing, transforms are
not applied to atomic inline-level boxes. These are inline boxes

like spans, hyperlinks, and so on. Those elements can be
transformed if their block-level parent is transformed, in which
case they go along for the ride. But you can’t just rotate a
 unless you’ve changed its display role via display:
block , display: inline-block , or something along those
lines. The reason for this limitation boils down to an
uncertainty. Suppose you have a (or any inline-level
box) that breaks across multiple lines. If you rotate it, what
happens? Does each line box rotate with respect to itself, or
should all the line boxes be rotated as a single group? There’s
no clear answer, and the debate continues, so for now you can’t
directly transform inline-level boxes.

The Transform Functions

CSS has 21 transform functions, as of early 2023, employing
various value patterns to get their jobs done. The following is a
list of all the available transform functions, minus their value
patterns:

We’ll tackle the most common types of transforms first, along
with their associated properties if they exist, and then deal with
the more obscure or difficult ones.

Translation

A translation transform is just a move along one or more axes.
For example, translateX() moves an element along its own x-
axis, translateY() moves it along its y-axis, and
translateZ() moves it along its z-axis.

translate
()
translate3
d()
translateX
()
translateY
()
translateZ
()

scale()
scale3d()
scaleX()
scaleY()
scaleZ()

rotate()
rotate3d()
rotateX()
rotateY()
rotateZ()

skew()
skewX()
skewY()

matrix()
matrix3d()
perspectiv
e()

TRANSLATEX(), TRANSLATEY() FUNCTIONS

Values < length > | < percentage >

These are usually referred to as the 2D translation functions,
since they can slide an element up and down, or side to side,
but not forward or backward along the z-axis. Each of these
functions accepts a single distance value, expressed as either a
length or a percentage.

If the value is a length, the effect is about what you’d expect.
Translate an element 200 pixels along the x-axis with
translateX(200px) , and it will move 200 pixels to its right.
Change that to translateX(-200px) , and the element will
move 200 pixels to its left. For translateY() , positive values
move the element downward, while negative values move it
upward.

Keep in mind that translations are always declared with respect
to the element itself. Thus, for example, if you flip the element
upside down by rotation, positive translateY() values will
move the element downward on the page, because that’s a
move upward from the upside-down element’s point of view.

If the value is a percentage, the distance is calculated as a
percentage of the element’s own size. Thus, if an element is 300
pixels wide and 200 pixels tall, translateX(50%) will move it
150 pixels to its right, and translateY(-10%) will move that
same element upward (with respect to itself) by 20 pixels.

TRANSLATE() FUNCTION

Values [< length > | < percentage >] [, < len

gth > | < percentage >]?

If you want to translate an element along both the x- and y-axes
at the same time, translate() makes it easy. Just supply the x
value first and the y value second, separated by a comma,
which is the same as if you included both a translateX() and
a translateY() . If you omit the y value, it’s assumed to be 0.
Thus, translate(2em) is treated as if it were
translate(2em,0) , which is also the same as
translateX(2em) . See Figure 17-9 for some examples of 2D
translation.

Figure 17-9. Translating in two dimensions

TRANSLATEZ() FUNCTION

Value < length >

The translateZ() function translates elements along the z-
axis, thus moving them into the third dimension. Unlike the 2D
translation functions, translateZ() accepts only length
values. Percentage values are not permitted for translateZ() ,
or indeed for any z-axis value.

TRANSLATE3D() FUNCTION

Values [< length > | < percentage >], [< leng

th > | < percentage >], [< length >]

Much like translate() does for x and y translations,
translate3d() is a shorthand function that incorporates the x,
y, and z translation values into a single function. This is handy if
you want to move an element over, up, and forward in one fell
swoop.

See Figure 17-10 for an illustration of how 3D translation works.
Each arrow represents the translation along that axis, arriving
at a point in 3D space. The dashed lines show the distance and
direction from the origin point (the intersection of the three
axes) and the distance above the xy plane.

Unlike translate() , there is no fallback if translate3d()
does not contain three values. Thus, translate3d(1em,-50px)
should be treated as invalid by browsers, with no actual
translation taking place as a result.

Figure 17-10. Translating in three dimensions

The translate property

When you want to translate an element without having to go
through the transform property, you can use the translate
property instead.

TRANSLATE

Values | none | [< length > | < percentage >]
{1,2} < length >?

Initial
value

none

Applies to Any transformable element

Percentages Refer to the corresponding size of the
bounding box

Computed
value

As specified, except for relative length
values, which are converted to an
absolute length

Inherited No

Animatable As a transform

Very much like the translate() function, the translate
property accepts from one to three length values, or two
percentages and a length value, or more reduced patterns such
as a single length. Unlike the translate() function, the
transform property does not use commas to separate its
values.

If only one value is given, it is used as an x-axis translation.
With two values, the first is the x-axis translation, and the
second is the y-axis translation. With three values, they are
taken in the order x y z . Any missing values default to 0px .

If you refer back to Figure 17-9, the following would yield the
same results as are shown there:

Similarly, the following would have the same effect
diagrammed in Figure 17-10:

translate: 25px; /* equivalent to 25px 0px 0px */
translate: 25%;
translate: 0 25px; /* equivalent to 0 25px 0px */
translate: 0 -25px;
translate: 20% 20%;
translate: -20% -20%;
translate: 110% 25px;

translate: 150px -50px 100px;

The default value, none , means that no translation is applied.

Scaling

A scale transform makes an element larger or smaller,
depending on the value you supply. These values are unitless
real numbers, either positive or negative. On the 2D plane, you
can scale along the x- and y-axes individually or scale them
together.

SCALEX(), SCALEY(), SCALEZ() FUNCTIONS

Values < number > | < percentage >

A number value supplied to a scale function is a multiplier;
thus, scaleX(2) will make an element twice as wide as it was
before the transformation, whereas scaleY(0.5) will make it
half as tall. Percentage values are equivalent to number values
at a ratio of 100:1; that is, 50% will have the same effect as 0.5 ,
and 200% will have the same effect as 2 , and so on.

SCALE() FUNCTION

Values [< number > | < percentage >] [, < num

ber > | < percentage >]?

If you want to scale along both axes simultaneously, use
scale() . The x value is always first, and the y always second,
so scale(2,0.5) will make the element twice as wide and half
as tall as it was before being transformed. If you supply only
one number, it is used as the scaling value for both axes; thus,
scale(2) will make the element twice as wide and twice as
tall. This is in contrast to translate() , where an omitted
second value is always set to 0. Using scale(1) will scale an
element to be exactly the same size it was before you scaled it,
as will scale(1,1) —just in case you were dying to do that.

Figure 17-11 shows a few examples of element scaling, using
the single-axis scaling functions as well as the combined
scale() .

If you can scale in two dimensions, you can also scale in three.
CSS offers scaleZ() for scaling just along the z-axis, and
scale3d() for scaling along all three axes at once. These have

an effect only if the element has any depth, which elements
don’t by default. If you do make a change that conveys depth—
say, rotating an element around the x- or y-axis—then there is a
depth that can be scaled, and either scaleZ() or scale3d()
can do so.

Figure 17-11. Scaled elements

SCALE3D() FUNCTION

Values [< number > | < percentage >] , [< nu

mber > | < percentage >] , [< number >
|
< percentage >]

Similar to translate3d() , the scale3d() function requires all
three numbers to be valid. If you fail to do this, the malformed
scale3d() will invalidate the entire transform value to which
it belongs.

Also note that scaling an element will change the effective
distance of any translations. For example, the following will
cause the element to be translated 50 pixels to its right:

transform: scale(0.5) translateX(100px);

This is because the element is shrunk by 50%, and then moved
to the right by 100 pixels within its own frame of reference,
which is half-size. Switch the order of the functions, and the

element will be translated 100 pixels to its right and then
shrunk 50% from that spot.

The scale property

Also similarly to translation, the scale property allows you to
scale elements up or down without having to use the
transform property.

SCALE

Values none | [< percentage > | < number >]
{1,3}

Initial
value

none

Applies to Any transformable element

Percentages Refer to the corresponding size of the
bounding box

Computed
value

As specified

Inherited No

Animatable As a transform

The way scale handles its values differs little from the
translate property. If you give only one value, such as

scale(2) , that value is used to scale in both the x and y
directions. With two values, the first is used to scale in the x-
axis direction, and the second in the y-axis direction. With three
values, the third is used to scale in the z-axis direction.

The following would have the same results as shown in
Figure 17-11.

scale: 2 1; /* equivalent to 200% 100% */
scale: 0.5 1; /* equivalent to 50% 100% */
scale: 1 2;
scale: 1 0.5;
scale: 1.5;
scale: 1.5;
scale: 0.5 1.5;
scale: 1 5 0.5;

The default value, none , means that no scaling is applied.

Element Rotation

A rotation function causes an element to be rotated around an
axis, or around an arbitrary vector in 3D space. CSS has four
simple rotation functions, and one less-simple function meant
specifically for 3D.

ROTATE(), ROTATEX(), ROTATEY(), ROTATEZ() FUNCTIONS

Value < angle >

All four basic rotation functions accept just one value: an angle.
This can be expressed using a number, either positive or
negative, and then any of the valid angle units (deg , grad ,
rad , and turn). (See “Angles” for more details.) If a value’s
number runs outside the usual range for the given unit, it will
look as if it were given a value in the allowed range. In other
words, a value of 437deg will be tilted the same as if it were
77deg , or, for that matter, -283deg .

Note, however, that these are visually equivalent only if you
don’t animate the rotation in some fashion. That is to say,
animating a rotation of 1100deg will spin the element around
several times before coming to rest at a tilt of –20 degrees (or
340 degrees, if you like). By contrast, animating a rotation of
-20deg will tilt the element a bit to the left, with no spinning;
and animating a rotation of 340deg will animate an almost full
spin to the right. All three animations come to the same end
state, but the process of getting there is very different in each
case.

The rotate() function is a straight 2D rotation, and the one
you’re most likely to use. It is visually equivalent to rotateZ()
because it rotates the element around the z-axis. In a similar
manner, rotateX() causes rotation around the x-axis, thus
causing the element to tilt toward or away from you; and
rotateY() rotates the element around its y-axis, as though it
were a door. These are all illustrated in Figure 17-12.

Figure 17-12. Rotations around the three axes

WARNING

Several of the examples in Figure 17-12 present a fully 3D appearance. This is
possible with certain values of the transform-style and perspective properties,
described in “Choosing a 3D Style” and “Changing Perspective” and omitted here for
clarity. This will be true throughout this text anytime 3D-transformed elements
appear to be fully three-dimensional. This is important to keep in mind because if
you just try to apply the transform functions shown, you won’t get the same visual
results as in the figures.

ROTATE3D() FUNCTION

Values < number >, < number >, < number >, < ang

le >

If you’re comfortable with vectors and want to rotate an
element through 3D space, rotate3d() is for you. The first
three numbers specify the x, y, and z components of a vector in
3D space, and the degree value (angle) determines the amount
of rotation around the declared 3D vector.

To start with a basic example, the 3D equivalent of
rotateZ(45deg) is rotate3d(0,0,1,45deg) . This specifies a
vector of zero magnitude on the x- and y-axes, and a magnitude

of 1 along the z-axis; in other words, the z-axis. The element is
thus rotated 45 degrees around that vector, as shown in
Figure 17-13. This figure also shows the appropriate
rotate3d() values to rotate an element by 45 degrees around
the x- and y-axes.

Figure 17-13. Rotations around 3D vectors

A little more complicated is something like
rotate3d(-0.95,0.5,1,45deg) , where the described vector
points off into 3D space between the axes. To understand how
this works, let’s start with a basic example: rotateZ(45deg)
(illustrated in Figure 17-13). The equivalent is
rotate3d(0,0,1,45deg) . The first three numbers describe the
components of a vector that has no x or y magnitude, and a z
magnitude of 1. Thus, it points along the z-axis in a positive
direction—that is, toward the viewer. The element is then
rotated clockwise as you look toward the origin of the vector.

Similarly, the 3D equivalent of rotateX(45deg) is
rotate3d(1,0,0,45deg) . The vector points along the x-axis in

the positive direction (to the right). If you stand at the end of
that vector and look toward its origin, you rotate the element 45
degrees clockwise around the vector. Thus, from the usual
viewer placement, the top of the element rotates away from,
and the bottom rotates toward, the viewer.

Now let’s make the example slightly more complex: suppose
you have rotate3d(1,1,0,45deg) . When viewed on your
monitor, that describes a vector running from the top-left to
bottom-right corner, going right through the center of the
element (by default, anyway; we’ll see how to change that later).
So the element’s rectangle has a line running through it at a 45-
degree angle, effectively spearing it. Then the vector rotates 45
degrees, taking the element with it. The rotation is clockwise as
you look back toward the vector’s origin, so again, the top of the
element rotates away from the viewer, while the bottom rotates
toward the viewer. If we were to change the rotation to
rotate3d(1,1,0,90deg) , the element would be edge-on to the
viewer, tilted at a 45-degree angle and facing off toward the
upper right. Try it with a piece of paper: draw a line from the
top left to bottom right, and then rotate the paper around that
line.

OK, so given all of that, now try visualizing how the vector is
determined for rotate3d(-0.95,0.5,1,45deg) . If we assume a

cube 200 pixels on a side, the vector’s components are 190
pixels to the left along the x-axis, 100 pixels down along the y-
axis, and 200 pixels toward the views along the z-axis. The
vector goes from the origin point (0, 0, 0) to the point (–190 px,
100 px, 200 px). Figure 17-14 depicts that vector, as well as the
final result presented to the viewer.

So the vector is like a metal rod speared through the element
being rotated. As we look back along the line of the vector, the
rotation is 45 degrees clockwise. But since the vector points left,
down, and forward, that means the top-left corner of the
element rotates toward the viewer, and the bottom right rotates
away, as shown in Figure 17-14.

Figure 17-14. Rotation around a 3D vector, and how that vector is determined

Just to be crystal clear, rotate3d(1,1,0,45deg) is not
equivalent to rotateX(45deg) rotateY(45deg)
rotateZ(0deg) ! It’s an easy mistake to make, and many people
—including your humble correspondent—have made it. It
seems like it should be equivalent, but it really isn’t. If we place
that vector inside the imaginary 200 × 200 × 200 cube
previously mentioned, the axis of rotation would go from the
origin point to a point 200 pixels right and 200 pixels down
(200, 200, 0).

Having done that, the axis of rotation is shooting through the
element from the top left to the bottom right, at a 45-degree

angle. The element then rotates 45 degrees clockwise around
that diagonal, as you look back toward its origin (the top left),
which rotates the top-right corner of the element away and a bit
to the left, while the bottom-left corner rotates closer and a bit
to the right. This is distinctly different from the result of
rotateX(45deg) rotateY(45deg) rotateZ(0deg) , as you can
see in Figure 17-15.

Figure 17-15. The difference between rotating around a 3D axis and rotating in
sequence around three different axes

The rotate property

As with translations and scaling, CSS has a rotate property
that allows you to rotate elements around various axes without
having to use the transform property to do so. The value
syntax to make that possible is a bit different, however.

ROTATE

Values none | < angle > | [x | y | z | < num

ber >{3}] && < angle >

Initial
value

none

Applies to Any transformable element

Percentages Refer to the corresponding size of the
bounding box

Computed
value

As specified

Inherited No

Animatable As a transform

The valid values are divided into three mutually exclusive
syntax options. The simplest is that the default value of none

means no rotation is applied.

If you want to rotate around a single axis, it’s easiest to give the
axis identifier along with the angle you want to rotate. In the
following code, each line contains two equivalent ways of
rotating an element around a given axis:

transform: rotateX(45deg); rotate: x 45deg;
transform: rotateY(33deg); rotate: y 33deg;
transform: rotateZ(-45deg); rotate: z -45deg;
transform: rotate(90deg); rotate: 90deg;

The last line is similar to the handling of the rotate() function
discussed earlier: a rotation with a single degree value is a 2D
rotation on the xy plane. (See Figure 17-12 for a refresher.)

If you want to define a 3D vector as the axis of rotation, the
value of rotate looks a little different. For example, suppose
we want to rotate an element 45 degrees around the vector –
0.95, 0.5, 1, as illustrated in Figure 17-14. Either of the following
two declarations will have this effect:

transform: rotate3d(-0.95, 0.5, 1, 45deg);
rotate: -0.95 0.5 1 45deg;

If you want, you can use this pattern to rotate around the
cardinal axes; that is, rotate: z 23deg and rotate: 0 0 1
23deg will have that same effect (as will rotate: 23deg). This
can be useful when changing the vector of rotation via
JavaScript, but is rarely useful in other cases.

Note that transform has a power that rotate cannot
duplicate: the ability to chain rotations in sequence. For
example, transform: rotateZ(20deg) rotateY(30deg) will
first rotate the element 20 degrees around the z-axis, and then
the result of that rotation is rotated around the y-axis. The
rotate property can do only one or the other of these on its
own. The only way to get the same result is to figure out the
vector and angle that will leave the element in the same state as
the transform operation did. The math to do that certainly
exists, but is outside the scope of this book (although see
“Matrix Functions”).

Individual Transform Property Order

When using the individual transform properties, the effects are
always applied in the order translate , then rotate , then
scale . The following two rules are functionally equivalent:

#mover {
d

This matters because, for example, translating and then
rotating is very different from rotating and then translating. If
you need to have an element’s transforms happen in an order
other than transform-rotate-scale, use transform instead of the
individual properties.

Skewing

When you skew an element, you slant it along one or both of the
x- and y-axes. There is no z-axis or 3D skewing.

SKEWX(), SKEWY() FUNCTIONS

Value < angle >

 rotate: 30deg;
 scale: 1.5 1;
 translate: 10rem;}

#mover {
 transform: translate(10rem) rotate(30deg) sca
}

In both cases, you supply an angle value, and the element is
skewed to match that angle. It’s much easier to show skewing
rather than try to explain it in words, so Figure 17-16 shows
skew examples along the x- and y-axes.

Figure 17-16. Skewing along the x- and y-axes

SKEW() FUNCTION

Values < angle > [, < angle >]?

Using skew(a,b) is different from including skewX(a) with
skewY(b) . The former specifies a 2D skew using the matrix
operation [ax,ay] . Figure 17-17 shows examples of this matrix
skewing and how they differ from double-skew transforms that
look the same at first but aren’t.

WARNING

For a variety of reasons, including the way skew(a,b) is different from skewX(a)
skewY(b) , the CSS specification explicitly discourages the use of skew() . You should
avoid using it if at all possible; we document it here in case you find yourself coming
across it in legacy code.

Figure 17-17. Skewed elements

If you supply two values, the x skew angle is always first, and
the y skew angle comes second. If you leave out a y skew angle,
it’s treated as 0.

NOTE

Unlike for translation, rotation, and scaling, CSS has no skew property as of late
2022, so any skewing has to be managed via the transform property.

Matrix Functions

If you’re a particular fan of advanced math, or stale jokes
derived from the Wachowski siblings’ movies, the matrix

functions will be your favorites. CSS has no matrix properties,
to be clear.

MATRIX() FUNCTION

Values < number > [, < number >]{5,5}

In the CSS transforms specification, we find the trenchant
description of matrix() as a function that “specifies a 2D
transformation in the form of a transformation matrix of the
six values a–f.”

First things first: a valid matrix() value is a list of six comma-
separated numbers. No more, no less. The values can be
positive or negative. Second, the value describes the final
transformed state of the element, combining all of the other
transform types (rotation, skewing, and so on) into a compact
syntax. Third, very few people use this syntax to write code
themselves, though it is often generated by drawing or
animation software.

We’re not going to go through the complicated process of doing
the matrix math. For most readers, it would be an eye-watering

wall of apparent gibberish; for the rest, it would be time wasted
on familiar territory. You can certainly research the intricacies
of matrix calculations online, and we encourage anyone with
an interest to do so. We’ll just look at the basics of syntax and
usage in CSS.

Here’s a brief rundown of how it works. Say you have this
function applied to an element:

That’s the CSS syntax used to describe this transformation
matrix:

0.838671 -0.692519 0 6.51212
0.544639 0.742636 0 34.0381
0 0 1 0
0 0 0 1

Right. So what does that do? It has the result shown in
Figure 17-18, which is exactly the same result as writing this:

rotate(33deg) translate(24px,25px) skewX(-10deg)

matrix(0.838671, 0.544639, -0.692519, 0.742636, 6.512

Figure 17-18. A matrix-transformed element and its functional equivalent

What this comes down to is that if you’re familiar with or need
to use matrix calculations, you can and should. Otherwise, you
can chain much more human-readable transform functions
together and get the element to the same end state.

Now, that was for plain old 2D transforms. What if you want to
use a matrix to transform through three dimensions?

MATRIX3D() FUNCTION

Values < number > [, < number >]{15,15}

Again, just for kicks, we’ll savor the definition of matrix3d()
from the CSS Transforms specification: “specifies a 3D
transformation as a 4 × 4 homogeneous matrix of 16 values in
column-major order.” This means the parameter of
matrix3d() must be a list of 16 comma-separated numbers, no
more or less. Those numbers are arranged in a 4 × 4 grid in
column order, so the first column of the matrix is formed by the
first set of four numbers in the value, the second column by the
second set of four numbers, the third column by the third set,
and so on. Thus, you can take the following function,

matrix3d(
 0.838671, 0, -0.544639, 0.00108928,
 -0.14788, 1, 0.0960346, -0.000192069,
 0.544639, 0, 0.838671, -0.00167734,
 20.1281, 25, -13.0713, 1.02614)

and write it out as this matrix:

 0.838671 -0.14788 0.544639 20.1281
 0 1 0 25
 -0.544639 0.0960346 0.838671 -13.0713
 0.00108928 -0.000192069 -0.00167734 1.02614

Both have an end state equivalent to the following, which is
depicted in Figure 17-19.

Figure 17-19. A matrix3d() -transformed element and its functional equivalent

A note on end-state equivalence

It’s important to keep in mind that only the end states of a
matrix() function, and of an equivalent chain of transform
functions, can be considered identical. This is for the same
reason discussed in “Element Rotation”: because a rotation
angle of 393deg will end with the same visible rotation as an
angle of 33deg . This matters if you are animating the

perspective(500px) rotateY(33deg) translate(24px,25px

transformation, since the former will cause the element to do a
barrel roll in the animation, whereas the latter will not. The
matrix() version of this end state won’t include the barrel roll,
either. Instead, it will always use the shortest possible rotation
to reach the end state.

To illustrate what this means, consider the following, a
transform chain and its matrix() equivalent:

Note the rotation of 200 degrees. We naturally interpret this to
mean a clockwise rotation of 200 degrees, which it is. If these
two transforms are animated, however, they will act
differently: the chained-functions version will indeed rotate 200
degrees clockwise, whereas the matrix() version will rotate
160 degrees counterclockwise. Both will end up in the same
place but will get there in different ways.

Other differences can arise even when you might think they
wouldn’t. Once again, this is because a matrix()
transformation will always take the shortest possible route to
the end state, whereas a transform chain might not. (In fact, it

rotate(200deg) translate(24px,25px) skewX(-10deg)
matrix(-0.939693, -0.34202, 0.507713, -0.879385, -14.

probably doesn’t.) Consider these apparently equivalent
transforms:

As ever, they end up in the same place. When animated, though,
the elements will take different paths to reach that end state.
They might not be obviously different at first glance, but the
difference is still there.

None of this matters if you aren’t animating the transformation,
but it’s an important distinction to make nevertheless, because
you never know when you’ll decide to start animating things.
(Hopefully after reading Chapters 18 and 19!)

Setting Element Perspective

If you’re transforming an element in 3D space, you most likely
want it to have some perspective. Perspective gives the
appearance of front-to-back depth, and you can vary the degree
of perspective applied to an element.

rotate(160deg) translate(24px,25px) rotate(-30deg) tr
matrix(-0.642788, 0.766044, -0.766044, -0.642788, 33.

PERSPECTIVE() FUNCTION

Value < length >

It might seem a bit weird to specify perspective as a distance.
After all, perspective(200px) seems odd when you can’t
really measure pixels along the z-axis. And yet, here we are. You
supply a length, and the illusion of depth is constructed around
that value.

Smaller numbers create a more extreme perspective, as though
you are up close to the element. Higher numbers create a
gentler perspective, as though viewing the element through a
zoom lens from far away. Really high perspective values create
an isometric effect, which looks the same as no perspective at
all.

This makes a certain amount of sense. You can visualize
perspective as a pyramid, with its apex point at the perspective
origin (by default, the center of the untransformed element’s
position) and its base as the browser window that you’re
looking through. A shorter distance between apex and base will
create a shallower pyramid, and thus a more extreme

distortion. This is illustrated in Figure 17-20, with hypothetical
pyramids representing 200-pixel, 800-pixel, and 2,000-pixel
perspective distances.

Figure 17-20. Different perspective pyramids

In documentation for Safari, Apple writes that perspective
values below 300px tend to be extremely distorted, values
above 2000px create “very mild” distortion, and values
between 500px and 1000px create “moderate perspective.” To
illustrate this, Figure 17-21 shows a series of elements with the
exact same rotation as displayed with varying perspective
values.

https://developer.apple.com/library/archive/documentation/InternetWeb/Conceptual/SafariVisualEffectsProgGuide/Using2Dand3DTransforms/Using2Dand3DTransforms.html

Figure 17-21. The effects of varying perspective values

Perspective values must always be positive, nonzero lengths.
Any other value will cause the perspective() function to be
ignored. Also note that its placement in the list of functions is
important. If you look at the code for Figure 17-21, the
perspective() function comes before the rotateY()
function:

If you were to reverse the order, the rotation would happen
before the perspective is applied, so all four examples in
Figure 17-21 would look exactly the same. So if you plan to
apply a perspective value via the list of transform functions,
make sure it comes first, or at the very least before any

#ex1 {transform: perspective(100px) rotateY(-45deg);}
#ex2 {transform: perspective(250px) rotateY(-45deg);}
#ex3 {transform: perspective(500px) rotateY(-45deg);}
#ex4 {transform: perspective(1250px) rotateY(-45deg);

transforms that depend on it. This serves as a stark reminder
that the order in which you write transform functions can be
very important.

More Transform Properties

In addition to the base transform property and the standalone
transform properties like rotate , a few related properties help
to define how the elements transform the origin point of a
transform, the perspective used for a “scene,” and more.

Moving the Transform’s Origin

So far, all of our transforms have shared one thing in common:
we’ve used the precise center of the element as the transform
origin. For example, when rotating the element, it rotated
around its center, instead of, say, a corner. This is the default
behavior, but with the property transform-origin , you can
change it.

TRANSFORM-ORIGIN

Values [left | center | right | top | bot
tom | < percentage > | < length >] | [
left | center | right | < percentag

e > | < length >] && [top | center |
bottom | < percentage > | < length >]
] < length >?

Initial
value

50% 50% (0 0 in SVG)

Applies to Any transformable element

Percentages Refer to the size of the bounding box
(see explanation)

Computed
value

A percentage, except for length values,
which are converted to an absolute
length

Inherited No

Animatable < length >, < percentage >

The syntax definition looks really abstruse and confusing, but
it’s fairly simple in practice. With transform-origin , you
supply two or three lengths or keywords to define the point
around which transforms should be made: first the horizontal,
then the vertical, and optionally a length along the z-axis. For
the horizontal and vertical axes, you can use plain-English
keywords like top and right , percentages, lengths, or a
combination of keywords and percentage or length values. For
the z-axis, you can’t use plain-English keywords or percentages,
but can use any length value. Pixels are by far the most
common.

Length values are taken as a distance starting from the top-left
corner of the element. Thus, transform-origin: 5em 22px will
place the transform origin 5 ems in from the left side of the
element, and 22 pixels down from the top of the element.
Similarly, transform-origin: 5em 22px -200px will place it 5
ems over, 22 pixels down, and 200 pixels away (that is, 200
pixels behind the untransformed position of the element).

Percentages are calculated with respect to the corresponding
axis and size of the element’s bounding box, as offsets from the
element’s top-left corner. For example, transform-origin: 67%
40% will place the transform origin 67 percent of the width to
the right of the element’s left side, and 40 percent of the

element’s height down from the element’s top side. Figure 17-22
illustrates a few origin calculations.

Figure 17-22. Various origin calculations

All right, so if you change the origin, what happens? The easiest
way to visualize this is with 2D rotations. Suppose you rotate an
element 45 degrees to the right. Its final placement will depend
on its origin. Figure 17-23 illustrates the effects of several
transform origins; in each case, the transform origin is marked
with a circle.

Figure 17-23. Rotational effects using various transform origins

The origin matters for other transform types, such as skews and
scales. Scaling down an element with its origin in the center
will pull in all sides equally, whereas scaling down an element
with a bottom-right origin will cause it to shrink toward that
corner. Similarly, skewing an element with respect to its center
will result in the same shape as if it’s skewed with respect to the
top-right corner, but the placement of the shape will be
different. Some examples are shown in Figure 17-24; again,
each transform origin is marked with a circle.

Figure 17-24. Skew and scale effects using various transform origins

The one transform type that isn’t really affected by changing
the transform origin is translation. If you move an element
around with translate() or its cousins like translateX()
and translateY() , or the translate property, the element is
going to end up in the same place regardless of where the
transform’s origin is located. If that’s all the transforming you
plan to do, setting the transform origin is irrelevant. If you ever
do anything besides translating, though, the origin will matter.
Use it wisely.

Choosing the Transform’s Box

We wrote the previous section as though the transform origin is
always calculated with respect to the outer border edge, and

that is indeed the default in HTML, but not always in SVG. You
can change this, at least in theory, with the property
transform-box .

TRANSFORM-BOX

Values border-box | content-box | fill-bo
x | stroke-box | view-box

Initial
value

view-box

Applies to Any transformable element

Computed
value

As specified

Inherited No

Animatable No

Two of the values are directly related to CSS when styling
HTML:

border-box

Use the element’s border box (defined by the outer border
edge) as the reference box for transforms.

content-box

Use the element’s content box as the reference box for
transforms.

The remaining three are designed for SVG purposes, though
they can also apply in HTML contexts:

fill-box

Use the element’s object bounding box as the reference box.

stroke-box

Use the element’s stroke bounding box as the reference box.

view-box

Use the element’s nearest SVG viewport as the reference box.

Using fill-box in an SVG context causes transforms to be
performed on the element in question, as we would expect
from HTML. The default view-box , on the other hand, causes
all transforms to be calculated with respect to the origin of the

coordinate system established by the SVG viewBox attribute.
The difference is illustrated in Figure 17-25, which is the result
of the following SVG file and the CSS it contains:

<svg xmlns="http://www.w3.org/2000/svg"
 width="500" height="200"
 fill="none" stroke="#000">
 <defs>
 <style>
 g rect {transform-origin: 0 0; transform: rotat
 g rect:nth-child(1) {transform-box: view-box;}
 g rect:nth-child(2) {transform-box: fill-box;}
 </style>
 </defs>
 <rect width="100%" height="100%" stroke-dasharray="
 <rect x="100" y="50" width="100" height="100" />
 <rect x="300" y="50" width="100" height="100" />
 <g stroke-width="3" fill="#FFF8">

 <rect x="100" y="50" width="100" height="100" />
 <rect x="300" y="50" width="100" height="100" />
 </g>
</svg>

Figure 17-25. A square rotated around the SVG origin and its own origin

The first square, on the left, is rotated 20 degrees from its
starting point, with the center of rotation as the top left of the
entire SVG file (the top-left corner of the dashed-line box). This
is because the value of transform-box for this square is view-
box . The second square has a transform-box of fill-box , so
it uses the top left of its own fill box—what in HTML we would
call the background area—as the center of rotation.

Choosing a 3D Style

If you’re setting elements to be transformed through three
dimensions—using, say, translate3d() or rotateY() —you
probably expect that the elements will be presented as though
they’re in a 3D space. The transform-style property helps
bring that to life.

TRANSFORM-STYLE

Values flat | preserve-3d

Initial value flat

Applies to Any transformable element

Computed value As specified

Inherited No

Animatable No

Suppose you want to move an element “closer” to your eye, and
then tilt it away a bit, with a moderate amount of perspective.
You might use something like this rule:

div#inner {transform: perspective(750px) translateZ(6

<div id="outer">
outer
<div id="inner">inner</div>
/di

So you do that and get the result shown in Figure 17-26—more
or less what you might expect.

Figure 17-26. A 3D-transformed inner <div>

But then you decide to rotate the outer <div> to one side, and
suddenly nothing makes sense anymore. The inner <div> isn’t
where you envisioned it. In fact, it just looks like a picture
pasted to the front of the outer <div> .

Well, that’s exactly what it is, because the default value of
transform-style is flat . The inner div got drawn in its
moved-forward, tilted-back state, and that was applied to the
front of the outer <div> as if it were an image. So when you

</div>

rotated the outer <div> , as shown in Figure 17-27, the flat
picture rotated right along with it:

Change the value to preserve-3d , however, and the result is
very different. The inner div will be drawn as a full 3D object
with respect to its parent outer <div> , floating in space nearby,
and not as a picture pasted on the front of the outer <div> . You
can see the results of this change in Figure 17-27:

div#outer {transform: perspective(750px) rotateY(60de
div#inner {transform: perspective(750px) translateZ(6

div#outer {transform: perspective(750px) rotateY(60de
 transform-style: preserve-3d;}
div#inner {transform: perspective(750px) translateZ(6

Figure 17-27. The effects of a flat versus a 3D-preserved transform style

One important aspect of transform-style is that it can be
overridden by other properties. The reason is that some values
of these other properties require a flattened presentation of an
element and its children in order to work. In such cases, the
value of transform-style is forced to be flat , regardless of
what you may have declared.

So, to avoid this overriding behavior, make sure the following
properties are set to the listed values on any 3D-transformed
container elements that also have 3D-transformed children:

overflow: visible

filter: none

clip: auto

clip-path: none

mask-image: none

mask-border-source: none

mix-blend-mode: normal

isolation: auto

Those are all the default values for those properties, so as long
as you don’t try to change any of them for your preserved 3D
elements, you’re fine! But if you find that editing some CSS
suddenly flattens out your lovely 3D transforms, one of these
properties might be the culprit.

Changing Perspective

Two properties are used to define the way perspective is
handled: one to define the perspective distance, as with the
perspective() function discussed in an earlier section; and
another to define the perspective’s origin point.

Defining a group perspective

First, let’s consider the property perspective , which accepts a
length that defines the depth of the perspective pyramid. At first
glance, it looks just like the perspective() function discussed
earlier, but some critical differences exist.

PERSPECTIVE

Values none | < length >

Initial value none

Applies to Any transformable element

Computed value The absolute length, or else none

Inherited No

Animatable Yes

As a quick example, if you want to create a very deep
perspective, one mimicking the results you’d get from a zoom
lens, you might declare something like perspective: 2500px .
For a shallow depth, one that mimics a close-up fish-eye lens
effect, you might declare perspective: 200px .

So how does this differ from the perspective() function?
When you use perspective() , you’re defining the perspective
effect for the element that is given that function. So if you write

transform: perspective(800px) rotateY(-50grad); , you’re
applying that perspective to each element that has the rule
applied.

With the perspective property, on the other hand, you’re
creating a shared perspective for all the child elements of the
element that received the property. Here’s an illustration of the
difference, as shown in Figure 17-28:

div {transform-style: preserve-3d; border: 1px solid
img {margin: 10px;}
#func {perspective: none;}
#func img {transform: perspective(800px) rotateX(-50g
#prop {perspective: 800px;}
#prop img {transform: rotateX(-50grad);}

Figure 17-28. No perspective, individual perspective() , and shared perspective ,
respectively

In Figure 17-28, we first see a line of images that haven’t been
transformed. In the second line, each image has been rotated 50
gradians (equivalent to 45 degrees) toward us, but each one
within its own individual perspective.

In the third line of images, none has an individual perspective.
Instead, all are drawn within the perspective defined by
perspective: 800px; that’s been set on the <div> that
contains them. Since they all operate within a shared
perspective, they look “correct”—that is, as we would expect if
we had three physical pictures mounted on a clear sheet of
glass and rotated that toward us around its center horizontal
axis.

This is the critical difference between perspective , the
property, and perspective() , the function. The former creates
a 3D space shared by all its children. The latter affects only the
element to which it’s applied. Another difference is that the
effect of the perspective() function is different depending on
when it is called in the chain of transforms. The perspective
property is always applied before all other transforms, which is
what you normally want to create a 3D effect.

In most cases, you’re going to use the perspective property
instead of the perspective() function. In fact, container
<div> s (or other elements) are a common feature of 3D
transforms—the way they used to be for page layout—largely to
establish a shared perspective. In the previous example, the
<div id="two"> is there solely to serve as a perspective

container, so to speak. On the other hand, we couldn’t have
done what we did without it.

Moving the perspective’s origin

When transforming elements in three dimensions, a
perspective will be used. (See transform-style and
perspective in previous sections.) That perspective will have
an origin, which is also known as the vanishing point, and you
can change its location with the perspective-origin property.

PERSPECTIVE-ORIGIN

Values [left | center | right | top | bot
tom | < percentage > | < length >] | [
left | center | right | < percentag

e > | < length >] && [top | center |
bottom | < percentage > | < length >]
]

Initial
value

50% 50%

Applies to Any transformable element

Percentages Refer to the size of the bounding box
(see explanation)

Computed
value

A percentage, except for length values,
which are converted to an absolute
length

Inherited No

Animatable < length >, < percentage >

With perspective-origin , you define the point on which sight
lines converge, and as with perspective , that point is defined
relative to a parent container.

As with most 3D transform properties, this is more easily
demonstrated than described. Consider the following CSS and
markup, illustrated in Figure 17-29:

Figure 17-29. A basic “ruler”

We have a repeated background image of tick marks on a ruler,
with the <div> that contains them tilted away from us by 60
degrees. All the lines point at a common vanishing point, the
top center of the container <div> (because of the 50% 0%
value for perspective-origin).

#container {perspective: 850px; perspective-origin: 5
#ruler {height: 50px; background: #DED url(tick.gif)
 rotate: x 60deg;
 transform-origin: 50% 100%;}

<div id="container">
 <div id="ruler"></div>
</div>

Now consider that same setup with various perspective origins
(Figure 17-30).

Figure 17-30. A basic “ruler” with different perspective origins

As you can see, moving the perspective origin changes the
rendering of the 3D-transformed element. Note that these have
an effect only because we supplied a value for perspective . If
the value of perspective is ever the default none , any value
given for perspective-origin will be ignored. That makes
sense, since you can’t have a perspective origin when there’s no
perspective at all!

Dealing with Backfaces

Over all the years you’ve been laying out elements, you’ve
probably never thought, “What would it look like if we could
see the back side of the element?” With 3D transforms, if there

comes a day when you do see the back side of an element, CSS
has you covered. What happens is determined by the property
backface-visibility .

BACKFACE-VISIBILITY

Values visible | hidden

Initial value visible

Applies to Any transformable element

Computed value As specified

Inherited No

Animatable No

Unlike many of the other properties and functions we’ve
already talked about, this one is pretty uncomplicated. All it
does is determine whether the back side of an element is
rendered when it’s facing toward the viewer, or not. That’s it.

So let’s say you flip over two elements, one with backface-
visibility set to the default value of visible and the other
set to hidden . You get the result shown in Figure 17-31:

Figure 17-31. Visible and hidden backfaces

As you can see, the first image is unchanged. The second is
flipped over its x-axis, so we see it from the back. The third has

span {border: 1px solid red; display: inline-block;}
img {vertical-align: bottom;}
img.flip {rotate: x 180deg; display: inline-block;}
img#show {backface-visibility: visible;}
img#hide {backface-visibility: hidden;}

<img src="salmon.gif" class="flip" id="show" al
<img src="salmon.gif" class="flip" id="hide" al

also been flipped, but we can’t see it at all because its backface
has been hidden.

This property can come in handy in several situations. In the
simplest, you have two elements that represent the two sides of
a UI element that flips over—say, a search area with preference
settings on its back, or a photo with some information on the
back. Let’s take the latter case. The CSS and markup might look
something like this:

(This would be a lot more interesting with an animated
rotation, causing the card to flip over in 3D space.)

A variant of this example uses the same markup, but slightly
different CSS to show the image’s backface when it’s flipped

section {position: relative;}
img, div {position: absolute; top: 0; left: 0; backfa
div {rotate: y 180deg;}
section:hover {rotate: y 180deg; transform-style: pre

<section>

 <div class="info">(…info goes here…)</div>
</section>

over. This is probably more what was intended, since it makes
information look like it’s literally written on the back of the
image. It leads to the end result shown in Figure 17-32:

Figure 17-32. Photo on the front, information on the back

All we had to do to make that happen was shift backface-
visibility: hidden to the <div> instead of applying it to
both the and the <div> . Thus, the <div> ’s backface is
hidden when it’s flipped over, but that of the image is not. (Well,

section {position: relative;}
img, div {position: absolute; top: 0; left: 0;}
div {rotate: y 180deg; backface-visibility: hidden;
 background: rgba(255,255,255,0.85);}
section:hover {rotate: y 180deg; transform-style: pre

that and use a semitransparent background so we could see
both the text and the flipped image underneath it.)

Summary

With the ability to transform elements in two- and three-
dimensional space, CSS transforms provide a great deal of
power to designers. From creating interesting combinations of
2D transforms, to creating a fully 3D-acting interface,
transforms open up a great deal of new territory in the design
space. Some dependencies exist between properties, which is
something that not every CSS author will find natural at first,
but they become second nature with practice.

One of the things authors often do with transforms is animate
them, so that a card flips over, an element scales and rotates
smoothly, and so on. In the next two chapters, we’ll get into the
details of how those transitions and animations are defined.

Chapter 18. Transitions

CSS transitions allow us to animate CSS properties from an
original value to a new value over time. These changes
transition an element from one state to another, in response to
a change. This usually involves a user interaction but can also
be due to a scripted change of class, ID, or other state.

Normally, when a CSS property value changes—when a style
change event occurs—the change is instantaneous. The new
property value replaces the old property in the milliseconds it
takes to repaint the page (or to reflow and repaint, when
necessary). Most value changes seem instantaneous, taking
fewer than 16 milliseconds to render. Even if the changes take
longer than that (like when a large image is replaced with one
that isn’t pre-fetched—which isn’t a transition, just poor
performance), it is still a single step from one value to the next.
For example, when changing a background color on mouse
hover, the background immediately changes from one color to
the other, with no gradual transition.

CSS Transitions

CSS transitions provide a way to control how a property
changes from one value to the next over a period of time. Thus,
we can make the property values change gradually, creating
(hopefully) pleasant and unobtrusive effects. For example:

button {color: magenta;
 transition: color 200ms ease-in 50ms;
}
button:hover {color: rebeccapurple;
 transition: color 200ms ease-out 50ms;
}

In this example, instead of instantaneously changing a button’s
color value on hover, that transition property means the
button’s color will gradually fade from magenta to
rebeccapurple over 200 milliseconds, even adding a 50-
millisecond delay before starting the transition.

In the unlikely event that a browser doesn’t support CSS
transition properties, the change is immediate instead of
gradual, which is completely fine. If a given property or some
property values aren’t animatable, again, the change will be
immediate instead of gradual.

NOTE

When we say animatable, we mean any properties that can be animated, whether
through transitions or animations (the subject of the next chapter, Chapter 19). The
property definition boxes throughout the book indicate whether a given property is
animatable.

Often you will want instantaneous value changes. For example,
link colors usually change instantly on hover or focus,
informing sighted users that an interaction is occurring and
that the focused content is a link. Similarly, options in an
autocomplete listbox shouldn’t fade in: you want the options to
appear instantly, rather than fade in more slowly than the user
types. Instantaneous value changes are often the best user
experience.

At other times, you’ll want a property’s value to change more
gradually, bringing attention to what is occurring. For example,
you may want to make a card game more realistic by taking 200
milliseconds to animate the flipping of a card, as the user may
not realize what happened if there is no animation.

TIP

Look for the Play symbol to know when an online example is available. All of the
examples in this chapter can be found at https://meyerweb.github.io/csstdg5figs/18-
transitions.

https://meyerweb.github.io/csstdg5figs/18-transitions/cardflip.html
https://meyerweb.github.io/csstdg5figs/18-transitions

As another example, you may want some drop-down menus to
expand or become visible over 200 milliseconds (instead of
instantly, which may be jarring). With transitions, you can
make a drop-down menu appear slowly. In Figure 18-1 , we
transition the submenu’s height by making a scale transform.
This is a common use for CSS transitions, which we will also
explore later in this chapter.

WARNING

Especially rapid transitions, particularly those that move over large distances or take
up major parts of a page, can potentially lead to seizures in some users. To reduce or
eliminate this risk, use the prefers-reduced-motion media query (see Chapter 21).
Always keep these concerns in mind, and ensure the accessibility of your designs to
people with epilepsy and other seizure disorders.

https://meyerweb.github.io/csstdg5figs/18-transitions/menus-initial-midtransition-and-final-state.html

Figure 18-1. Initial transition, midtransition, and final state

Transition Properties

In CSS, transitions are written using four transition properties:
transition-property , transition-duration , transition-
timing-function , and transition-delay , along with the
transition property as a shorthand for those four.

To create the drop-down navigation in Figure 18-1, we used all
four CSS transition properties, as well as some transform
properties defining the beginning and end states of the
transition. The following code defines the transition for that
example:

nav li ul {
 transition-property: transform;
 transition-duration: 200ms;
 transition-timing-function: ease-in;
 transition-delay: 50ms;
 transform: scale(1, 0);
 transform-origin: top center;
}
nav li:is(:hover, :focus) ul {
 transform: scale(1, 1);
}

Although we are using the :hover and :focus states for the
style change event in this example, you can transition
properties in other scenarios too. For example, you might add
or remove a class, or otherwise change the state—say, by
changing an input from :invalid to :valid or from
:checked to :not(:checked) . Or you might append a table
row at the end of a zebra-striped table or a list item at the end
of a list with styles based on :nth-last-of-type selectors.

In Figure 18-1, the initial state of the nested lists is transform:
scale(1, 0) with a transform-origin: top center . The
final state is transform: scale(1, 1) , while the transform-
origin remains the same. (For more information on transform
properties, see Chapter 17.)

In this example, the transition properties define a transition on
the transform property: when the new transform value is set
on hover , the nested unordered list scales to its original,
default size, changing smoothly between the old value of
transform: scale(1, 0) and the new value of transform:
scale(1, 1) , all over a period of 200 milliseconds. This
transition starts after a 50-millisecond delay, and eases in,
which means it proceeds slowly at first, then picks up speed as
it progresses.

Whenever an animatable target property changes, if a
transition is set on that property, the browser will apply a
transition to make the change gradual.

Note that all the transition properties were set for the default
unhovered/unfocused state of the elements. These states
were used to change only the transform, not the transition.
There’s a very good reason for this: it means that the menus not

only will slide open when the state change happens, but also
will slide closed when the hover or focus state ends.

Imagine that the transition properties were applied to the
interaction states instead, like this:

nav li ul {
 transform: scale(1, 0);
 transform-origin: top center;
}
nav li:is(:hover, :focus) ul {
 transition-property: transform;
 transition-duration: 200ms;
 transition-timing-function: ease-in;
 transition-delay: 50ms;
 transform: scale(1, 1);
}

That would mean that when not hovered or focused, the
element would have default transition values—which is to say,
no transitions or instantaneous transitions. The menus in our
previous example would slide open, but instantly disappear
when the interaction state ends—because no longer being in an
interactive state, the transition properties would no longer
apply!

Maybe you want exactly this effect: slide smoothly open but
instantly disappear. If so, then apply the transitions as shown in
the previous example. Otherwise, apply them to the element in
the default state directly so that the transitions will apply as the
interaction state is both entered and exited. When the state
change is exited, the transition timing is reversed. You can
override this default reverse transition by declaring different
transitions in both the initial and changed states.

By initial state, we mean a state that matches the element at
page load time. It could mean a content-editable element that
could get :focus , as in the following:

In this example, the fully transparent background is always the
initial state, changing only when the user gives the element

/* selector that matches elements all the time */
p[contenteditable] {
 background-color: background-color: rgb(0 0 0 / 0
}
/* selector that matches elements some of the time */
p[contenteditable]:focus {
 /* overriding declaration */
 background-color: background-color: rgb(0 0 0 / 0
}

https://meyerweb.github.io/csstdg5figs/18-transitions/contenteditable.html

focus. This is what we mean when we say initial or default value
throughout this chapter. The transition properties included in
the selector that matches the element all the time will impact
that element whenever the state changes, including from the
initial state to the changed state (being focused, in the
preceding example).

An initial state could also be a temporary state that may change,
such as a :checked checkbox or a :valid form control, or
even a class that gets toggled on and off:

/* selector that matches elements some of the time */
input:valid {
 border-color: green;
}
/* selector that matches elements some of the time,
 when the prior selector does NOT match. */
input:invalid {
 border-color: red;
}
/* selector that matches elements some of the time,
 whether the input is valid or invalid */
input:focus {
 /* alternative declaration */
 border-color: yellow;
}

In this example, either the :valid or :invalid selector can
match any given element, but never both. The :focus selector,
as shown in Figure 18-2, matches whenever an input has focus,
regardless of whether the input is matching the :valid or
:invalid selector simultaneously.

In this case, when we refer to the initial state, we are referring
to the original value, which could be either :valid or
:invalid . The changed state for a given element is the
opposite of the initial :valid or :invalid state.

Figure 18-2. The input’s appearance in the valid, invalid, and focused states

Remember, you can apply different transition values to the
initial and changed states, but you always want to apply the
value used when you enter a given state. Take the following
code as an example, where the transitions are set up to have
menus slide open over 2 seconds but close in just 200
milliseconds:

https://meyerweb.github.io/csstdg5figs/18-transitions/input-appearance-valid-invalid-focus.html

nav li ul {
 transition-property: transform;
 transition-duration: 200ms;
 transition-timing-function: ease-in;
 transition-delay: 50ms;
 transform: scale(1, 0);
 transform-origin: top center;
}
nav li:is(:hover, :focus) ul {
 transition-property: transform;
 transition-duration: 2s;
 transition-timing-function: linear;
 transition-delay: 1s;
 transform: scale(1, 1);
}

This provides a horrible user experience, but it illustrates the
point. When hovered or focused, the opening of the
navigation takes a full 2 seconds. When closing, it quickly closes
over 0.2 seconds. The transition properties in the changed state
are in force when a list item is hovered or focused. Thus, the
transition-duration: 2s defined for these states takes effect.
When a menu is no longer hovered or focused, it returns to the
default scaled-down state, and the transition properties of the
initial state—the nav li ul condition—are used, causing the
menu to take 200 milliseconds to close.

https://meyerweb.github.io/csstdg5figs/18-transitions/menus-very-slow-transition.html

Look more closely at the example, specifically the default
transition styles. When the user stops hovering over or focusing
on the parent navigational element or the child drop-down
menu, the drop-down menu delays 50 milliseconds before
starting the 200ms transition to close. This is actually a decent
user experience style, because it give users a chance (however
brief) to get the mouse pointer or focused ring back on a menu
before it starts closing.

While the four transition properties can be declared separately,
you will probably always use the shorthand. We’ll take a look at
the four properties individually first so you have a good
understanding of what each one does.

Limiting Transition Effects by Property

The transition-property property specifies the names of the
CSS properties you want to transition. This allows you to limit
the transition to only certain properties, while having other
properties change instantaneously. And, yes, it’s weird to say
“the transition-property property.”

TRANSITION-PROPERTY

Values none | [all | < property-name >]#

Initial
value

all

Applies to All elements and :before and :after
pseudo-elements

Computed
value

As specified

Inherited No

Animatable No

The value of transition-property is a comma-separated list
of properties; the keyword none if you want no properties
transitioned; or the default all , which means “transition all
the animatable properties.” You can also include the keyword
all within a comma-separated list of properties.

If you include all as the only keyword—or default to all —all
animatable properties will transition in unison. Let’s say you
want to change a box’s appearance on hover:

div {
 color: #ff0000;
 border: 1px solid #00ff00;
 border-radius: 0;
 transform: scale(1) rotate(0deg);
 opacity: 1;
 box-shadow: 3px 3px rgb(0 0 0 / 0.1);
 width: 50px;
 padding: 100px;
}
div:hover {
 color: #000000;
 border: 5px dashed #000000;
 border-radius: 50%;
 transform: scale(2) rotate(-10deg);
 opacity: 0.5;
 box-shadow: -3px -3px rgb(255 0 0 / 0.5);
 width: 100px;
 padding: 20px;
}

When the mouse pointer hovers over the <div> , every
property that has a different value in the initial state versus the

hovered (changed) state will change to the hover-state values.
The transition-property property is used to define which of
those properties are animated over time (versus those that
change instantly, without animating). All the properties change
from the default value to the hovered value on hover , but only
the animatable properties included in the transition-
property will change over the transition’s duration.
Nonanimatable properties like border-style change from one
value to the next instantly.

If all is the only value or the last value in the comma-
separated value for transition-property , all the animatable
properties will transition in unison. Otherwise, provide a
comma-separated list of properties to be affected by the
transition properties.

Thus, if we want to transition all the properties, the following
statements are almost equivalent:

div {
 color: #ff0000;
 border: 1px solid #00ff00;
 border-radius: 0;

Both transition-property property declarations will
transition all the properties listed—but the former will
transition only the six properties that may change.

The transition-property: all in the latter rule ensures that
all animatable property values that would change based on any
style change event—no matter which CSS rule block includes
the changed property value—transitions over 1 second. The

 opacity: 1;
 width: 50px;
 padding: 100px;
 transition-property: color, border, border-radius
 width, padding;
 transition-duration: 1s;
}
div {
 color: #ff0000;
 border: 1px solid #00ff00;
 border-radius: 0;
 opacity: 1;
 width: 50px;
 padding: 100px;
 transition-property: all;
 transition-duration: 1s;
}

transition applies to all animatable properties applied to all the
elements matched by the selector, not just the properties
declared in the same style block as the all .

In this case, the first version limits the transition to only the six
properties listed, but enables us to provide more control over
how each property will transition. Declaring the properties
individually lets us provide different speeds, delays, and/or
durations to each property’s transition:

<div class="foo">Hello</div>

div {
 color: #ff0000;
 border: 1px solid #0f0;
 border-radius: 0;
 opacity: 1;
 width: 50px;
 padding: 100px;
}
.foo {
 color: #00ff00;
 transition-property: color, border, border-radius
 width, padding;
 transition-duration: 1s;
}

If you want to define the transitions for each property
separately, write them all out, separating each of the properties
with a comma. If you want to animate almost all the properties
with the same duration, delay, and pace, with a few exceptions,
you can use a combination of all and the individual
properties you want to transition at different times, speeds, or
paces. Just make sure to use all as the first value, because any
properties listed before the all will be included in the all ,
overriding any other transition property values you intended to
apply to those now overridden properties:

The all part of the comma-separated value includes all the
properties listed in the example, as well as all the inherited CSS

div {
 color: #f00;
 border: 1px solid #00ff00;
 border-radius: 0;
 opacity: 1;
 width: 50px;
 padding: 100px;
 transition-property: all, border-radius, opacity;
 transition-duration: 1s, 2s, 3s;
}

properties, and all the properties defined in any other CSS rule
block matching or inherited by the element.

In the preceding example, all the properties getting new values
will transition at the same duration, delay, and timing function,
with the exception of border-radius and opacity , which
we’ve explicitly included separately. Because we included them
as part of a comma-separated list after the all , we can
transition them at the same time, delay, and timing function as
all the other properties, or we can provide different times,
delays, and timing functions for these two properties. In this
case, we transition all the properties over 1 second, except for
border-radius and opacity , which we transition over 2
seconds and 3 seconds, respectively. (The transition-
duration property is covered in an upcoming section.)

Suppressing transitions via property limits

While transitioning over time doesn’t happen by default, if you
do include a CSS transition and want to override that transition
in a particular scenario, you can set transition-property:
none to override the entire transition and ensure that no
properties are transitioned.

The none keyword can be used as only a unique value of the
property—you can’t include it as part of a comma-separated list

of properties. If you want to override the transition of a limited
set of properties, you will have to list all of the properties you
still want to transition. You can’t use the transition-property
property to exclude properties; rather, you can use that
property only to include them.

NOTE

Another method is to set the delay and duration of the property to 0s . That way, it
will appear instantaneously, as if no CSS transition is being applied to it.

Transition events

The TransitionEvent Interface provides for four transition-
related events: transitionstart , transitionrun ,
transitionend , and transitioncancel . We’ll concentrate on
transitionend , as it’s the one that can be triggered multiple
times by a single piece of CSS.

A transitionend event is fired at the end of every transition,
in either direction, for every property that is transitioned over
any amount of time or after any delay. This happens whether
the property is declared individually or is part of the all
declaration. Some seemingly simple property declarations will
use several transitionend events, as every animatable

property within a shorthand property gets its own
transitionend event. Consider the following:

When the transitions conclude, well over six transitionend
events will have occurred. For example, the border-radius
transition alone produces four transitionend events, one
each for the following:

border-bottom-left-radius

border-bottom-right-radius

border-top-right-radius

border-top-left-radius

div {
 color: #f00;
 border: 1px solid #00ff00;
 border-radius: 0;
 opacity: 1;

 width: 50px;
 padding: 100px;
 transition-property: all, border-radius, opacity;
 transition-duration: 1s, 2s, 3s;
}

The padding property is also shorthand for four longhand
properties:

padding-top

padding-right

padding-bottom

padding-left

The border shorthand property produces eight
transitionend events: four values for the four properties
represented by the border-width shorthand, and four for the
properties represented by border-color :

border-left-width

border-right-width

border-top-width

border-bottom-width

border-top-color

border-left-color

border-right-color

border-bottom-color

The border-style properties have no transitionend events,
however, as border-style is not an animatable property.

There will be 19 transitionend events in the scenario where
six specific properties— color , border , border-radius ,
opacity , width , and padding —are listed, as those six include
several shorthand properties. In the case of all , there will be
at least 19 transitionend events: one for each of the longhand
values making up the six properties we know are included in
the pre- and post-transition states, and possibly from others
that are inherited or declared in other style blocks impacting
the element.

You can listen for transitionend events like this:

The transitionend event includes three event-specific
attributes:

propertyName

The name of the CSS property that just finished transitioning.

pseudoElement

document.querySelector("div").addEventListener("trans
 , (e) => {
 console.log(e.propertyName);
});

https://meyerweb.github.io/csstdg5figs/18-transitions/transitionend.html

The pseudo-element upon which the transition occurred,
preceded by two semicolons, or an empty string if the
transition was on a regular DOM node.

elapsedTime

The amount of time the transition took to run, in seconds;
usually this is the time listed in the transition-duration
property.

A transitionend event will occur for each property that
successfully transitions to a new value. It will not fire if the
transition is interrupted, such as by removing the state change
that initiated the transition or by another change to the same
property on the same element. That said, a transitionend
event will occur when it reverts back to its initial value, or
when it finishes transitioning to the value made by that other
property value change on the element.

When the properties return to their initial value, another
transitionend event occurs. This event occurs as long as the
transition started, even if it didn’t finish its initial transition in
the original direction.

Setting Transition Duration

The transition-duration property takes as its value a
comma-separated list of lengths of time, in seconds (s) or
milliseconds (ms). These time values describe the time it will
take to transition from one state to another.

TRANSITION-DURATION

Values < time >#

Initial
value

0s

Applies to All elements and :before and :after
pseudo-elements

Computed
value

As specified

Inherited No

Animatable No

When moving between two states, if a duration is declared for
only one of those states, the transition duration will be used for
only the transition to that state. Consider the following:

input {
 transition: background-color;
}
input:invalid {
 transition-duration: 1s;
 background-color: red;
}
input:valid {
 transition-duration: 0.2s;
 background-color: green;
}

Thus, it will take 1 second for the input to change to a red
background when it becomes invalid, and only 200 milliseconds
to transition to a green background when it becomes valid.

The value of the transition-duration property is positive in
either seconds (s) or milliseconds (ms). The time unit of ms or
s is required by the specification, even if the duration is set to
0s . By default, properties change from one value to the next
instantly, showing no visible animation, which is why the
default value for the duration of a transition is 0s .

https://meyerweb.github.io/csstdg5figs/18-transitions/transition-duration-revert-difference.html

Unless a positive value for transition-delay is set on a
property, if transition-duration is omitted, it is as if no
transition-property declaration had been applied, and no
transitionend event will occur. As long as the total duration
time for a transition is greater than 0 seconds—as long as the
transition-duration is greater than the transition-delay ,
including greater than the default 0s delay—the transition will
still be applied, and a transitionend event will occur when
the transition finishes.

Negative values for transition-duration are invalid, and, if
included, will invalidate the entire transition-duration
declaration.

Using the same lengthy transition-property declaration
from before, we can declare a single duration for all the
properties, individual durations for each property, or we can
make alternate properties animate for the same length of time.
We can declare a single duration that applies to all properties
during the transition by including a single transition-
duration value:

 div {
 color: #ff0000;
 …
 transition-property: color, border, border-radius

We can also declare the same number of comma-separated time
values for the transition-duration property value as the CSS
properties listed in the transition-property property value.
If we want each property to transition over a different length of
time, we have to include a different comma-separated value for
each property name declared:

If the number of properties declared does not match the
number of durations declared, the browser has specific rules on
how to handle the mismatch. If we have more durations than
properties, the extra durations are ignored. If we have more
properties than durations, the durations are repeated. In the

p p y , ,

 width, padding;
 transition-duration: 200ms;
}

div {
 color: #ff0000;
 …
 transition-property: color, border, border-radius
 width, padding;
 transition-duration: 200ms, 180ms, 160ms, 120ms,
}

following example, color , border-radius , and width have a
duration of 100 milliseconds; border , opacity , and padding
will be set to 200 milliseconds:

If we declare exactly two comma-separated durations, every
odd property will transition over the first time declared, and
every even property will transition over the second time value
declared.

TIP

Always remember that user experience is important. If a transition is too slow, the
website will appear slow or unresponsive, drawing unwanted focus to what should
be a subtle effect. If a transition is too fast, it may be too subtle to be noticed. Visual
effects should last long enough to be seen, but not so long as to make themselves the
center of attention. Generally, the best duration for a visible, yet not distracting,
transition is 100 to 300 milliseconds.

div {
 …
 transition-property: color, border, border-radius
 width, padding;
 transition-duration: 100ms, 200ms;
}

Altering the Internal Timing of
Transitions

Do you want your transition to start off slow and get faster,
start off fast and end slower, advance at an even keel, jump
through various steps, or even bounce? The transition-
timing-function provides a way to control the pace of the
transition.

TRANSITION-TIMING-FUNCTION

Values < timing-function >#

Initial
value

ease

Applies to All elements and :before and :after
pseudo-elements

Computed
value

As specified

Inherited No

Animatable No

The transition-timing-function values include ease ,
linear , ease-in , ease-out , ease-in-out , step-start ,
step-end , steps(n , start) —where n is the number of
steps— steps(n , end) , and cubic-bezier(x1, y1, x2,
y2) . (These values are also the valid values for the animation-

timing-function , and they are described in great detail in
Chapter 19.)

Cubic Bézier timing

The nonstep keywords are easing timing functions that serve as
aliases for cubic Bézier mathematical functions that provide
smooth curves. The specification provides for five predefined
easing functions, as shown in Table 18-1.

Table 18-1. Supported keywords for cubic Bézier timing functions

Timing
function

Description
Cubic
Bézier
value

cubic-bezi
er()

Specifies a cubic Bézier
curve

cubic-bezi
er(x1, y1,
x2, y2)

ease Starts slow, then speeds
up, then slows down,
then ends very slowly

cubic-bezi
er(0.25,
0.1, 0.25,
1)

linear Proceeds at the same
speed throughout
transition

cubic-bezi
er(0, 0,
1, 1)

ease-in Starts slow, then speeds
up

cubic-bezi
er(0.42,
0, 1, 1)

ease-out Starts fast, then slows
down

cubic-bezi
er(0, 0,
0.58, 1)

Timing
function

Description
Cubic
Bézier
value

ease-in-ou
t

Similar to ease ; faster
in the middle, with a
slow start but not as
slow at the end

cubic-bezi
er(0.42,
0, 0.58,
1)

Cubic Bézier curves, including the underlying curves defining
the five named easing functions in Table 18-1 and displayed in
Figure 18-3, take four numeric parameters. For example,
linear is the same as cubic-bezier(0, 0, 1, 1) . The first
and third cubic Bézier function parameter values need to be
between 0 and 1.

Figure 18-3. Curve representations of named cubic Bézier functions

The four numbers in a cubic-bezier() function define the x
and y coordinates of two handles within a box. These handles

are the endpoints of lines that stretch from the bottom-left and
top-right corners of the box. The curve is constructed using the
two corners, and the two handles’ coordinates, via a Bézier
function.

To get an idea of how this works, look at the curves and their
corresponding values shown in Figure 18-4.

Figure 18-4. Four Bézier curves and their cubic-bezier() values (from http://cubic-
bezier.com)

Consider the first example. The first two values, corresponding
to x1 and y1, are 0.5 and 1 . If you go halfway across the box
(x1 = 0.5) and all the way to the top of the box (y1 = 1), you land
at the spot where the first handle is placed. Similarly, the
coordinates 0.5,0 for x2,y2 describe the point at the center
bottom of the box, which is where the second handle is placed.
The curve shown there results from those handle placements.

http://cubic-bezier.com/

In the second example, the handle positions are switched, with
the resulting change in the curve. Ditto for the third and fourth
examples, which are inversions of each other. Notice how the
resulting curve differs when switching the handle positions.

The predefined key terms are fairly limited. To better follow the
principles of animation, you may want to use a cubic Bézier
function with four float values instead of the predefined key
words. If you’re a whiz at calculus or have a lot of experience
with programs like Illustrator, you might be able to invent cubic
Bézier functions in your head; otherwise, online tools let you
play with different values, such as http://cubic-bezier.com, which
lets you compare the common keywords against each other or
against your own cubic Bézier function.

As shown in Figure 18-5, the website http://easings.net provides
many additional cubic Bézier function values you can use to
provide for a more realistic, delightful animation.

http://cubic-bezier.com/
http://easings.net/

Figure 18-5. Useful author-defined cubic Bézier functions (from http://easings.net)

While the authors of the site named their animations, the
preceding names are not part of the CSS specifications, and
must be written as shown in Table 18-2.

http://easings.net/

Table 18-2. Cubic Bézier timings

Unofficial
name

Cubic Bézier function value

easeInSine cubic-bezier(0.47, 0, 0.745, 0.7
15)

easeOutSine cubic-bezier(0.39, 0.575, 0.565,
1)

easeInOutSi
ne

cubic-bezier(0.445, 0.05, 0.55,
0.95)

easeInQuad cubic-bezier(0.55, 0.085, 0.68,
0.53)

easeOutQuad cubic-bezier(0.25, 0.46, 0.45,
0.94)

easeInOutQu
ad

cubic-bezier(0.455, 0.03, 0.515,
0.955)

easeInCubic cubic-bezier(0.55, 0.055, 0.675,
0.19)

Unofficial
name

Cubic Bézier function value

easeOutCubi
c

cubic-bezier(0.215, 0.61, 0.355,
1)

easeInOutCu
bic

cubic-bezier(0.645, 0.045, 0.355,
1)

easeInQuart cubic-bezier(0.895, 0.03, 0.685,
0.22)

easeOutQuar
t

cubic-bezier(0.165, 0.84, 0.44,
1)

easeInOutQu
art

cubic-bezier(0.77, 0, 0.175, 1)

easeInQuint cubic-bezier(0.755, 0.05, 0.855,
0.06)

easeOutQuin
t

cubic-bezier(0.23, 1, 0.32, 1)

easeInOutQu
int

cubic-bezier(0.86, 0, 0.07, 1)

Unofficial
name

Cubic Bézier function value

easeInExpo cubic-bezier(0.95, 0.05, 0.795,
0.035)

easeOutExpo cubic-bezier(0.19, 1, 0.22, 1)

easeInOutEx
po

cubic-bezier(1, 0, 0, 1)

easeInCirc cubic-bezier(0.6, 0.04, 0.98, 0.
335)

easeOutCirc cubic-bezier(0.075, 0.82, 0.165,
1)

easeInOutCi
rc

cubic-bezier(0.785, 0.135, 0.15,
0.86)

easeInBack cubic-bezier(0.6, -0.28, 0.735,
0.045)

easeOutBack cubic-bezier(0.175, 0.885, 0.32,
1.275)

Unofficial
name

Cubic Bézier function value

easeInOutBa
ck

cubic-bezier(0.68, -0.55, 0.265,
1.55)

Step timing

Step timing functions also are available, as well as four
predefined step values; see Table 18-3.

Table 18-3. Step timing functions

Timing
function

Definition

steps(<int
eger>, jum
p-start)

Displays < integer > keyframes,
showing the last keyframe for the last
n/100% of the transition duration; the
first jump happens at the very
beginning of the transition. start can
be used in place of jump-start

steps(<int
eger>, jum
p-end)

Displays < integer > keyframes, staying
on the initial state for the first n/100% of
the transition duration; the last jump
happens at the very end of the
transition. end can be used in place of
jump-end

steps(<int
eger>, jum
p-both)

Displays < integer > keyframes, starting
with an immediate jump and taking the
final jump at the very end of the
transition duration; this effectively adds
one step to the transition

Timing
function

Definition

steps(<int
eger>, jum
p-none)

Displays < integer > keyframes, but
there is no jump at either the beginning
or end of the transition duration,
instead staying on the initial values for
the first n/100% of the time and showing
the final values for the last n/100% of
the time; this effectively removes one
step from the transition

step-start Stays on the final keyframe throughout
transition duration; equal to steps(1,
jump-start)

step-end Stays on the initial keyframe
throughout transition duration; equal to
steps(1, jump-end)

As Figure 18-6 shows, the step timing functions show the
progression of the transition from the initial value to the final
value in steps, rather than as a smooth curve.

Figure 18-6. Step timing functions

The step timing functions allow you to divide the transition
over equidistant steps, by defining the number and direction of
steps.

With jump-start , the first step happens at the animation or
transition start. With jump-end , the last step happens at the
animation or transition end. For example, steps(5, jump-
end) would jump through the equidistant steps at 0%, 20%,
40%, 60%, and 80%; and steps(5, jump-start) would jump
through the equidistant steps at 20%, 40%, 60%, 80%, and 100%.

The step-start function is the same as steps(1, jump-
start) . When used, transitioned property values stay on their

final values from the beginning until the end of the transition.
The step-end function, which is the same as steps(1, jump-
end) , sets transitioned values to their initial values, staying
there throughout the transition’s duration.

NOTE

Step timing, especially the precise meaning of jump-start and jump-end , is
discussed in depth in Chapter 19.

Continuing on with the same lengthy transition-property
declaration we’ve used before, we can declare a single timing
function for all the properties, or define individual timing
functions for each property, and so on. Here, we’ve set all the
transitioned properties to a single duration and timing
function:

div {
 transition-property: color, border-width, border-
 opacity, width, padding;
 transition-duration: 200ms;
 transition-timing-function: ease-in;
}

Always remember that the transition-timing-function does
not change the time it takes to transition properties: that is set
with the transition-duration property. It just changes how
the transition progresses during that set time. Consider the
following:

If we include these seven timing functions for the seven
properties, as long as they have the same transition duration
and delay, all the properties start and finish transitioning at the
same time. (The preceding transition would be a terrible user
experience, by the way. Please don’t do that.)

The best way to familiarize yourself with the various timing
functions is to play with them and see which one works best for
the effect you’re looking for. While testing, set a relatively long
transition-duration to better visualize the difference

div {
 …
 transition-property: color, border-width, border-
 opacity, width, padding;
 transition-duration: 200ms;
 transition-timing-function: ease-in, ease-out, ea
 step-end, step-start, steps(5, jump-start), s
}

between the various functions. At higher speeds, you may not
be able to tell the difference between different easing functions.
Just don’t forget to set the transition back to a faster speed
before publishing the result!

Delaying Transitions

The transition-delay property enables you to introduce a
delay between the time that the change initiating the transition
is applied to an element and the time the transition actually
begins.

TRANSITION-DELAY

Values < time >#

Initial
value

0s

Applies to All elements, :before and :after
pseudo-elements

Computed
value

As specified

Inherited No

Animatable No

A transition-delay of 0s (the default) means the transition
will begin immediately; it will start executing as soon as the
state of the element is altered. This is familiar from the instant-
change effect of a:hover , for example.

With a value other than 0s , the < time > value of transition-
delay defines the time offset from the moment the property
values would ordinarily have changed until the property values
declared in the transition or transition-property values
begin animating to their final values.

Interestingly, negative values of time are valid. The effects you
can create with negative transition-delay s are described in
“Negative delay values”.

Continuing with the 6- (or 19-) property transition-property
declaration we’ve been using, we can make all the properties
start transitioning right away by omitting the transition-
delay property, or by including it with a value of 0s . Another
possibility is to start half the transitions right away, and the rest
200 milliseconds later, as in the following:

div {
 transition-property: color, border, border-radius
 width, padding;
 transition-duration: 200ms;
 transition-timing-function: linear;
 transition-delay: 0s, 200ms;
}

By including transition-delay: 0s, 200ms on a series of
properties, each taking 200 milliseconds to transition, we make
color , border-radius , and width begin their transitions
immediately. All the rest begin their transitions as soon as the
other transitions have completed, because their transition-
delay is equal to the transition-duration applied to all the
properties.

As with transition-duration and transition-timing-
function , when the comma-separated transition-delay
values outnumber the comma-separated transition-property
values, the extra delay values are ignored. When the comma-
separated transition-property values outnumber the
comma-separated transition-delay values, the delay values
are repeated.

We can even declare seven transition-delay values so that
each property begins transitioning after the previous property
has transitioned, as follows:

div {
 …
 transition-property: color, border-width, border-
 opacity, width, padding;
 transition-duration: 200ms;
 transition-timing-function: linear;

In this example, we declare each transition to last 200
milliseconds with the transition-duration property. We then
declare a transition-delay that provides comma-separated
delay values for each property that increments by 200
milliseconds, or 0.2 seconds—the same time as the duration of
each property’s transition. The end result is that each property
starts transitioning at the point the previous property has
finished.

We can use math to give every transitioning property different
durations and delays, ensuring that they all complete
transitioning at the same time:

 transition-delay: 0s, 0.2s, 0.4s, 0.6s, 0.8s, 1s,
}

div {
 …
 transition-property: color, border-width, border-
 opacity, width, padding;
 transition-duration: 1.4s, 1.2s, 1s, 0.8s, 0.6s,
 transition-timing-function: linear;
 transition-delay: 0s, 0.2s, 0.4s, 0.6s, 0.8s, 1s,
}

In this example, each property completes transitioning at the
1.4-second mark, but each with a different duration and delay.
For each property, the transition-duration value plus the
transition-delay value will add up to 1.4 seconds.

Generally, you’ll want all the transitions to begin at the same
time. You can make that happen by including a single
transition-delay value, which gets applied to all the
properties. In our drop-down menu in Figure 18-1, we included
a delay of 50 milliseconds. This delay is not long enough for the
user to notice and will not cause the application to appear slow.
Rather, a 50-millisecond delay can help prevent the navigation
from shooting open unintentionally as the user accidentally
hovers over the menu items while moving the cursor from one
part of the page or app to another, or as they quickly move the
focus ring through the document.

Negative delay values

A negative value for transition-delay that is smaller than the
transition-duration will cause the transition to start
immediately, partway through the transition. For example:

div {
 transform: translateX(0);
 transition-property: transform;

https://meyerweb.github.io/csstdg5figs/18-transitions/transition-delay-negative.html

 transition-duration: 200ms;
 transition-delay: -150ms;
 transition-timing-function: linear;
}
div:hover {
 transform: translateX(200px);
}

Given the transition-delay of -150ms on a 200ms transition,
the transition will start three-quarters of the way through the
transition and will last 50 milliseconds. In that scenario, given
the linear timing function, the <div> jumps to being translated
150px along the x-axis immediately on hover and then
animates the translation from 150 pixels to 200 pixels over 50
milliseconds.

If the absolute value of the negative transition-delay is
greater than or equal to the transition-duration , the change
of property values is immediate, as if no transition had been
applied, and no transitionend event occurs.

When transitioning back from the hovered state to the original
state, by default, the same value for the transition-delay is
applied. In the preceding scenario, since the transition-delay
is not overridden in the hover state, when the user stops
hovering over the element, the <div> will jump to being

translated 50 pixels along the x-axis and then take 50
milliseconds to return to its initial position of being translated 0
pixels along the x-axis.

Using the transition Shorthand

The transition property combines the four properties we’ve
covered thus far— transition-property , transition-
duration , transition-timing-function , and transition-
delay —into a single shorthand property.

TRANSITION

Values [[none | < transition-property >] ‖
< time > ‖ < transition-timing-functi

on > ‖ < time >]#

Initial
value

all 0s ease 0s

Applies to All elements and :before and :after
pseudo-elements

Computed
value

As specified

Inherited No

Animatable No

The transition property accepts the value of none , or any
number of comma-separated list of single transitions. A single
transition contains a single property to transition, or the

keyword all to transition all the properties; the duration of
the transition; the timing function; and the transition delay.

If a single transition within the transition shorthand omits
the property to transition, that single transition will default to
all . If the transition-timing-function value is omitted, it
will default to ease . If only one time value is included, that will
be the duration, and no delay will occur, as if transition-
delay were set to 0s .

Within each single transition, the order of the duration versus
the delay is important: the first value that can be parsed as a
time will be set as the duration. If an additional time value is
found before the comma or the end of the statement, that will
be set as the delay.

Here are three equivalent ways to write the same transition
effects:

nav li ul {
 transition: transform 200ms ease-in 50ms,
 opacity 200ms ease-in 50ms;
}
nav li ul {
 transition: all 200ms ease-in 50ms;
}

nav li ul {
 transition: 200ms ease-in 50ms;
}

In the first example, we see a shorthand way to express each of
the two properties that are being transitioned. Because we are
transitioning all the properties that will be changed (in other
rules not shown in the code block), we could use the keyword
all , as shown in the second example. And, since all is the
default value, we could write the shorthand with just the
duration, timing function, and delay. Had we used ease instead
of ease-in , we could have omitted the timing function, since
ease is the default. Had we not wanted a delay, we could have
omitted the second time value, since 0s is the default.

We did have to include the duration, or no transition would be
visible. In other words, the only portion of the transition
property value that can truly be considered required is
transition-duration .

If we wanted to only delay the change from closed menu to
open menu without a gradual transition, we would still need to
include a duration of 0s . Remember, the first value parsable as
time will be set as the duration and the second one will be set as
the delay:

nav li ul {
 transition: 0s 200ms;
}

WARNING

This transition will wait 200 milliseconds, then show the drop-down fully open and
opaque with no gradual transition. Creating delays with no transitions is a horrible
user experience, so please do not do it.

If we have a comma-separated list of transitions (versus just a
single declaration) and the word none is included, the entire
transition declaration is invalid and will be ignored. You can
declare comma-separated values for the four longhand
transition properties, or you can include a comma-separated list
of multiple shorthand transitions:

div {
 transition-property: color, border-width, border-
 opacity, width, padding;
 transition-duration: 200ms, 180ms, 160ms, 140ms,
 transition-timing-function: ease, ease-in, ease-o
 step-end, steps(5, start), steps(3, end);
 transition-delay: 0s, 0.2s, 0.4s, 0.6s, 0.8s, 1s,
}
div {

The two preceding CSS rule blocks are functionally equivalent.
Use care when stringing multiple shorthand transitions into a
list of transitions: transition: color, opacity 200ms ease-
in 50ms will ease in the opacity over 200 milliseconds after a
50-millisecond delay, but the color change will be
instantaneous, with no transitionend event. It is still valid,
but may not be the effect you were seeking.

Reversing Interrupted Transitions

When a transition is interrupted before it is able to finish (such
as mousing off a drop-down menu before it finishes its opening
transition), property values are reset to the values they had
before the transition began, and the properties transition back
to those values. Because repeating the duration and timing

 transition:
 color 200ms ease,
 border-width 180ms ease-in 200ms,
 border-color 160ms ease-out 400ms,
 border-radius 140ms ease-in-out 600ms,
 opacity 100ms step-end 0.8s,
 width 2s steps(5, start) 1s,
 padding 3s steps(3, end) 1.2s;
}

functions on a reverting partial transition can lead to an odd or
even bad user experience, the CSS Transitions specification
provides for making the reverting transition shorter.

Let’s say we have a transition-delay of 50ms set on the
default state of a menu, and no transition properties declared
on the hover state; thus, browsers will wait 50 milliseconds
before beginning the reverse (or closing) transition.

When the forward animation finishes transitioning to the final
values and the transitionend event is fired, all browsers will
duplicate the transition-delay in the reverse states. Let’s say
the user moves off that menu 75 milliseconds after it started
transitioning. This means the drop-down menu will animate
closed without ever being fully opened and fully opaque. The
browser should have a 50-millisecond delay before closing the
menu, just as it waited 50 milliseconds before starting to open
it. This is actually a good user experience, as it provides a few
milliseconds of delay before closing, preventing jerky behavior
if the user accidentally navigates off the menu.

In the case of a step timing function, if the transition is 10
seconds with 10 steps, and the properties revert after 3.25
seconds, ending a quarter of the way between the third and
fourth steps (completing three steps, or 30% of the transition), it

will take 3 seconds to revert to the previous values. In the
following example, the width of our <div> will grow to 130
pixels wide before it begins reverting back to 100 pixels wide
on mouseout:

div {
 width: 100px;
 transition: width 10s steps(10, jump-start);
}
div:hover {
 width: 200px;
}

While the reverse duration will be rounded down to the time it
took to reach the most recently executed step, the reverse
direction will be split by the originally declared number of
steps, not the number of steps that completed. In our 3.25-
second case, it will take 3 seconds to revert through 10 steps.
These reverse transition steps will be shorter in duration at 300
milliseconds each, each step shrinking the width by 3 pixels,
instead of 10 pixels.

If the timing function is linear, the duration will be the same in
both directions. All other cubic-bezier functions will have a
duration that is proportional to progress the initial transition

made before being interrupted. Negative transition-delay
values are also proportionally shortened. Positive delays
remain unchanged in both directions.

No browser will have a transitionend for the hover state, as
the transition did not end; but all browsers will have a
transitionend event in the reverse state when the menu
finishes collapsing. The elapsedTime for that reverse transition
depends on whether the browser took the full 200 milliseconds
to close the menu, or if the browser takes as long to close the
menu as it did to partially open the menu.

To override these values, include transition properties in both
the initial and final states (e.g., both the unhovered and hovered
styles). While this does not impact the reverse shortening, it
does provide more control.

WARNING

Beware of having transitions on both ancestors and descendants. For example,
transitioning inherited properties on an element soon after transitioning the same
property on ancestor or descendant nodes can have unexpected outcomes. If the
transition on the descendant completes before the transition on the ancestor, the
descendant will then resume inheriting the (still transitioning) value from its parent.
This effect may not be what you expect.

Animatable Properties and Values

Before implementing transitions and animations, it’s important
to understand that not all properties are animatable. You can
transition (or animate) any animatable CSS properties; but
which properties are animatable?

One key to developing a sense for which properties can be
animated is to identify which have values that can be
interpolated. Interpolation is the construction of data points
between the values of known data points. The key guideline to
determining if a property value is animatable is whether the
computed value can be interpolated. If a property’s computed
values are keywords, they can’t be interpolated; if its keywords
compute to a number of some sort, they can be. The quick gut
check is that if you can determine a midpoint between two
property values, those property values are probably
animatable.

For example, the display values like block and inline-
block aren’t numeric and therefore don’t have a midpoint;
they aren’t animatable. The transform property values of
rotate(10deg) and rotate(20deg) have a midpoint of
rotate(15deg) ; they are animatable.

The border property is shorthand for border-style , border-
width , and border-color (which, in turn, are themselves
shorthand properties for the four side values). While there is no
midpoint between any of the border-style values, the
border-width property length units are numeric, so they can
be animated. The keyword values of medium , thick , and thin
have numeric equivalents and can be interpolated: the
computed value of the border-width property translates those
keywords to lengths.

In the border-color value, colors are numeric—the named
colors can all be represented using hexadecimal or other
numeric color values—so colors are animatable as well. If you
transition from border: red solid 3px to border: blue
dashed 10px , the border width and border colors will
transition at the defined speed, but border-style will jump
from solid to dashed immediately.

In the same vein, CSS functions that take numeric values as
parameters generally are animatable. An exception to this rule
is properties with discrete animation types like visibility :
while there is no midpoint between the values of visible and
hidden , visibility values jump between the discrete values,
jumping from visible to not visible. With the visibility
property, when the initial value or the destination value is

visible , the value will change at the end of the transition
from visible to hidden . For a transition from hidden to
visible , the value changes at the start of the transition.

The auto value should generally be considered nonanimatable
and should be avoided for animations and transitions.
According to the specification, it is not an animatable value, but
some browsers interpolate the current numeric value of auto
(such as height: auto) to be 0px or possibly a fit-
content() function. The auto value is nonanimatable for
properties like height , width , top , bottom , left , right ,
and margin .

Often an alternative property or value may work. For example,
instead of changing height: 0 to height: auto , use max-
height: 0 to max-height: 100vh , which will generally create
the expected effect. The auto value is animatable for min-
height and min-width , since min-height: auto actually
computes to 0.

How Property Values Are Interpolated

Numbers are interpolated as floating-point numbers. Integers
are interpolated as whole numbers, and thus increment or
decrement as whole numbers.

In CSS, length and percentage units are translated into real
numbers. When transitioning or animating calc() , from one
type of length to or from a percentage, the values will be
converted into a calc() function and interpolated as real
numbers.

Colors, whether they are HSLA, RGB, or named colors like
aliceblue , are translated to their RGBA equivalent values for
transitioning, and interpolated across the RGBA color space. If
you want to interpolate across a different color space, such as
HSL, ensure the pre- and post-transition colors are in the same
color space (in this case, HSL).

When animating font weights, if you use keywords like bold ,
they’ll be converted to numeric values and animated.

When including animatable property values that have more
than one component, each component is interpolated
appropriately for that component. For example, text-shadow
has up to four components: the color, x , y , and blur . The
color is interpolated as color , whereas the x , y , and blur
components are interpolated as lengths.

Box shadows have two additional optional keywords: inset
(or lack thereof) and spread . Because spread is a length, it is

interpolated. The inset keyword cannot be converted to a
numeric equivalent, so there is no way to gradually transition
between inset and drop shadows.

Similar to values with more than one component, gradients can
be transitioned only if you are transitioning gradients of the
same type (linear, radial, or conic) with equal numbers of color
stops. The colors of each color stop are then interpolated as
colors, and the position of each color stop is interpolated as
length and percentage units.

Interpolating Repeating Values

When you have simple lists of other types of properties, each
item in the list is interpolated appropriately for that type—as
long as the lists have the same number of items or repeatable
items, and each pair of values can be interpolated. For example:

.img {
 background-image:
 url(1.gif), url(2.gif), url(3.gif), url(4.gif
 url(5.gif), url(6.gif), url(7.gif), url(8.gif
 url(9.gif), url(10.gif), url(11.gif), url(12.
 transition: background-size 1s ease-in 0s;
 background-size: 10px 10px, 20px 20px, 30px 30px,
}

In transitioning four background-sizes , with all the sizes in
both lists listed in pixels, the third background-size from the
pretransitioned state can gradually transition to the third
background-size of the transitioned list. In the preceding
example, background images 1, 5, and 9 will transition from
10px to 25px in height and width when hovered. Similarly,
images 3, 7, and 11 will transition from 30px to 75px , and so
forth.

Thus, the background-size values are repeated three times, as
if the CSS had been written as follows:

.img:hover {
 background-size: 25px 25px, 50px 50px, 75px 75px,
}

.img {
 …
 background-size: 10px 10px, 20px 20px, 30px 30px,
 10px 10px, 20px 20px, 30px 30px,
 10px 10px, 20px 20px, 30px 30px,
 …
}
.img:hover {
 background-size: 25px 25px, 50px 50px, 75px 75px,
 25px 25px, 50px 50px, 75px 75px,

If a property doesn’t have enough comma-separated values to
match the number of background images, the list of values is
repeated until there are enough, even when the list in the
animated state doesn’t match the initial state:

If we transition from four background-size declarations in the
initial state to three background-size declarations in the
animated state, all in pixels and still with 12 background
images, the animated and initial state values are repeated
(three and four times, respectively) until we have the 12
necessary values, as if the following had been declared:

 25px 25px, 50px 50px, 75px 75px,
}

.img:hover {
 background-size: 33px 33px, 66px 66px, 99px 99px;
}

.img {
 …
 background-size: 10px 10px, 20px 20px, 30px 30px,
 40px 40px, 10px 10px, 20px 20px,
 30px 30px, 40px 40px, 10px 10px,

If a pair of values cannot be interpolated—for example, if the
background-size changes from contain in the default state to
cover when hovered—then, according to the specification, the
lists are not interpolatable. However, some browsers ignore
that particular pair of values for the purposes of the transition,
and still animate the interpolatable values.

Some property values can animate if the browser can infer
implicit values. For example, for shadows, the browser will
infer an implicit shadow box-shadow: transparent 0 0 0 or
box-shadow: inset transparent 0 0 0 , replacing any values
not explicitly included in the pre- or post-transition state. These
examples are in the chapter files for this book.

Only animatable property value changes trigger
transitionend events.

 20px 20px, 30px 30px, 40px 40px;
 …
}
.img:hover {
 background-size: 33px 33px, 66px 66px, 99px 99px,
 33px 33px, 66px 66px, 99px 99px,
 33px 33px, 66px 66px, 99px 99px,
 33px 33px, 66px 66px, 99px 99px;
}

https://meyerweb.github.io/csstdg5figs

If you accidentally include a property that can’t be transitioned,
fear not. The entire declaration will not fail: the browser will
simply not transition the property that is not animatable.

Note that a nonanimatable property or nonexistent CSS
property is not exactly ignored. The browser passes over
unrecognized or nonanimatable properties, keeping their place
in the property list order to ensure that the other comma-
separated transition properties described next are not applied
to the wrong properties.

NOTE

Transitions can occur only on properties that are not currently being impacted by a
CSS animation. If the element is being animated, properties may still transition, as
long as they are not properties that are currently controlled by the animation. CSS
animations are covered in Chapter 19.

Printing Transitions

When web pages or web applications are printed, the stylesheet
for print media is used. If your style element’s media attribute
matches only screen , the CSS will not impact the printed page
at all.

1

Often, no media attribute is included; it is as if media="all"
were set, which is the default. Depending on the browser, when
a transitioned element is printed, either the interpolating
values are ignored or the property values in their current state
are printed.

You can’t see the element transitioning on a piece of paper, but
in some browsers, like Chrome, if an element transitioned from
one state to another, the current state at the time the print
function is called will be the value on the printed page, if that
property is printable. For example, if a background color
changed, neither the pre-transition or the post-transition
background color will be printed, as background colors are
generally not printed. However, if the text color mutated from
one value to another, the current value of color will get
printed on a color printer or to a PDF.

In other browsers, like Firefox, whether the pre-transition or
post-transition value is printed depends on how the transition
was initiated. If it’s initiated with a hover, for example, the
nonhovered value will be printed, as you are no longer
hovering over the element while you interact with the print
dialog. If it transitioned with a class addition, the post-transition
value will be printed, even if the transition hasn’t completed.
The printing acts as if the transition properties are ignored.

Given that CSS has separate print stylesheets or @media rules
for print, browsers compute style separately. In the print style,
styles don’t change, so there just aren’t any transitions. The
printing acts as if the property values changed instantly instead
of transitioning over time.

Summary

Transitions are a useful and quite powerful way to add UI
enhancements. Worrying about archaic browsers should not
prevent you from including them, since if a browser doesn’t
support CSS transitions, the changes will still be applied. They’ll
just “transition” from the initial state to the end state
instantaneously when the style recomputation occurs. A user
may miss out on an interesting (or possibly annoying) effect,
but will not miss out on any content.

The defining feature of transitions is that they are applied when
an element transitions from one state to another, whether that
happens because of user action or some kind of scripted change
to the DOM. If you want elements to animate regardless of user
action or DOM changes, the next chapter will show you the way.

 This might change. The CSS Working Group is considering
making all property values animatable, switching from one
value to the next at the midpoint of the timing function if there
is no midpoint between the pre and post values.

1

Chapter 19. Animation

CSS transitions, covered in the previous chapter, enable simple
animations that are triggered by changes in the DOM state and
proceed from a beginning state to an end state. CSS animations
are similar to transitions in that values of CSS properties
change over time, but animations provide much more control
over the way those changes happen. Specifically, CSS keyframe
animations let us decide if and how an animation repeats, give
us granular control over what happens throughout the
animation, and more. While transitions trigger implicit
property value changes, animations are explicitly executed
when keyframe animations are applied.

With CSS animations, you can change property values that are
not part of the set pre- or post-state of an element. The property
values set on the animated element don’t necessarily have to be
part of the animation progression. For example, when using a
transition, going from black to white will animate only through
various shades of gray. With animation, that same element
doesn’t have to be black or white or even in-between shades of
gray during the animation.

While you can transition through shades of gray, you could
instead turn the element yellow, then animate from yellow to
orange. Alternatively, you could animate through various
colors, starting with black and ending with white, but
progressing through the entire rainbow along the way.

TIP

Look for the Play symbol to know when an online example is available. All of the
examples in this chapter can be found at https://meyerweb.github.io/csstdg5figs/19-
animation.

Accommodating Seizure and
Vestibular Disorders

WARNING

While you can use animations to create ever-changing content, repeated rapid
changing of content can lead to seizures in some users. Always keep this in mind, and
ensure the accessibility of your website for people with epilepsy and other seizure
disorders.

We don’t usually start a chapter with a warning, but in this
case, it’s warranted. Visual change, especially rapid visual
change, can trigger medical emergencies in users who are

https://meyerweb.github.io/csstdg5figs/19-animation

prone to seizures. They can also cause severe unease in users
who are prone to vestibular disorder (motion sickness).

To reduce or eliminate this risk, use the prefers-reduced-
motion media query (see Chapter 21). This allows you to apply
styles when the user has a “Reduce motion” or similar
preference set for their browser or operating system. An
approach such as this may be considered:

This disables all animations and transitions, assuming no other
!important animations are specified (and they shouldn’t be).
This is not a nuanced or perfect solution, but it’s a first step. You
can invert this approach by segregating all of your animations
and transitions in a media block for those who do not have
motion reduction enabled, like this:

@media not (prefers-reduced-motion) {
 /* all animations and transitions */
}

@media (prefers-reduced-motion) {
 * {animation: none !important; transition: none !im
}

Not all animations are dangerous or disorienting, and having at
least some animations for all users may be necessary.
Transitions and animations can be very helpful in informing
users what has changed and guiding them to focus on specific
content. In such cases, use prefers-reduced-motion to tone
down animations that are essential to understanding the UI,
and to switch off those that are not essential.

Defining Keyframes

To animate an element, you need to refer to the name of a
keyframe animation; to do that, we need a named keyframe
animation. The first step is to define this reusable CSS keyframe
animation by using the @keyframes at-rule, thus giving our
animation a name.

A @keyframes at-rule includes the animation identifier, or
name, and one or more keyframe blocks. Each keyframe block
includes one or more keyframe selectors with declaration
blocks of property-value pairs. The entire @keyframes at-rule
specifies the behavior of a single full iteration of the animation.
The animation can iterate zero or more times, depending
mainly on the animation-iteration-count property value,
which we’ll discuss in “Declaring Animation Iterations”.

Each keyframe block includes one or more keyframe selectors.
These are percentage-of-time positions along the duration of the
animation; they are declared either as percentages or with the
keywords from or to . Here’s the generic structure of an
animation:

@keyframes animation_identifier {
 keyframe_selector {
 property: value;
 property: value;
 }
 keyframe_selector {
 property: value;
 property: value;
 }
}

Here are a couple of basic examples:

@keyframes fadeout {
 from {
 opacity: 1;
 }
 to {
 opacity: 0;
 }
}

The first set of keyframes shown takes an element, sets its
opacity to 1 (fully opaque), and animates it to 0 opacity
(fully transparent). The second keyframe set animates an
element’s foreground to black and its background to white, then
animates the foreground from black to gray and then white,
and the background from white to yellow and then orange.

Note that the keyframes don’t say how long this animation
should take—that’s handled by a CSS property dedicated to the
purpose. Instead they say, “Go from this state to that state” or

@keyframes color-pop {
 0% {
 color: black;
 background-color: white;
 }
 33% { /* one-third of the way through the animati
 color: gray;
 background-color: yellow;
 }
 100% {
 color: white;
 background-color: orange;
 }
}

“Hit these various states at these percentage points of the total
animation.” That’s why keyframe selectors are always
percentages, or from and to . If you try to use time values (like
1.5s) as your keyframe selectors, you’ll render them invalid.

Setting Up Keyframe Animations

Within the opening and closing curly braces of a keyframe set,
you include a series of keyframe selectors with blocks of CSS
that declare the properties you want to animate. Once the
keyframes are defined, you “attach” the animation to an
element by using the animation-name property. We’ll discuss
that property shortly, in “Invoking a Named Animation”.

Start with the at-rule declaration, followed by the animation
name and braces:

@keyframes nameOfAnimation {
...
}

The name, which you create, is an identifier or a string.
Originally, the keyframe names had to be an identifier, but both
the specification and the browsers also support quoted strings.

Identifiers are unquoted and have specific rules. You can use
any characters a-z , A-Z , and 0-9 , the hyphen (-),
underscore (_), and any ISO 10646 character U+00A0 and
higher. ISO 10646 is the universal character set; this means you
can use any character in the Unicode standard that matches the
regular expression [-_a-zA-Z0-9\u00A0-\u10FFFF] . The
identifier can’t start with a digit (0–9) and should not start with
two hyphens (though some browsers allow this). One hyphen is
fine, as long as it is not followed by a digit—unless you escape
the digit or hyphen with a backslash.

If you include any escape characters within your animation
name, make sure to escape them with a backslash (\). For
example, Q&A! must be written as Q\&A\! . The name âœŽ can
be left as âœŽ (no, that’s not a typo), and ✎ is a valid name as
well. But if you’re going to use any keyboard characters that
aren’t letters or digits in an identifier, like ! , @ , # , $, and so
on, escape them with a backslash.

Also, don’t use any of the keywords covered in this chapter as
the name of your animation. For example, possible values for
the various animation properties we’ll be covering later in the
chapter include none , paused , running , infinite ,
backwards , and forwards . Using an animation property
keyword, while not prohibited by the spec, will likely break

https://meyerweb.github.io/csstdg5figs/19-animation/name.html

your animation when using the animation shorthand
property (discussed in “Bringing It All Together”). So, while you
can legally name your animation paused (or another keyword,)
we strongly recommend against it.

Defining Keyframe Selectors

Keyframe selectors define points during an animation where we
set the values of the properties we want to animate. If you want
a value at the start of the animation, you declare it at the 0%
mark. If you want a different value at the end of the animation,
you declare the property value at the 100% mark. If you want a
value a third of the way through the animation, you declare it
at the 33% mark. These marks are defined with keyframe
selectors.

Keyframe selectors consist of a comma-separated list of one or
more percentage values or the keywords from or to . The
keyword from is equal to 0% . The keyword to equals 100% .
The keyframe selectors are used to specify the percentage along
the duration of the animation the keyframe represents. The
keyframe itself is specified by the block of property values
declared on the selector. The % unit must be used on

https://meyerweb.github.io/csstdg5figs/19-animation/badnames.html

percentage values. In other words, 0 is invalid as a keyframe
selector:

@keyframes W {
 from { /* equivalent to 0% */
 left: 0;
 top: 0;
 }
 25%, 75% {
 top: 100%;
 }
 50% {
 top: 50%;
 }
 to { /* equivalent to 100% */
 left: 100%;
 top: 0;
 }
}

This @keyframes animation, named W , when attached to a
nonstatically positioned element, would move that element
along a W-shaped path. W has five keyframes: one each at the
0% , 25% , 50% , 75% , and 100% marks. The from is the 0%
mark, while the to is the 100% mark.

https://meyerweb.github.io/csstdg5figs/19-animation/02_W.html

Because the property values we set for the 25% and 75% mark
are the same, we can put the two keyframe selectors together as
a comma-separated list. This is very similar to regular selectors,
which you can group together with commas. Whether you keep
those selectors on one line (as in the example) or put each
selector on its own line is up to your personal preference.

Notice that keyframe selectors do not need to be listed in
ascending order. In the preceding example, we have the 25%
and 75% on the same line, with the 50% mark coming after that
declaration. For legibility, it is highly encouraged to progress
from the 0% to the 100% mark. However, as demonstrated by
the 75% keyframe in this example, it is not required. You could
define your keyframes with the last first and the first last, or
scramble them up randomly, or whatever works for you.

Omitting from and to Values

If a 0% or from keyframe is not specified, the user agent
(browser) constructs a 0% keyframe. The implicit 0% keyframe
uses the original values of the properties being animated, as if
the 0% keyframe were declared with the same property values
that impact the element when no animation was applied—that
is, unless another animation applied to that element is
currently animating the same property (see “Invoking a Named

Animation” for details). Similarly, if the 100% or to keyframe
is not defined and no other animations are being applied, the
browser creates a faux 100% keyframe using the value the
element would have had if no animation had been set on it.

Say we have a background-color change animation:

@keyframes change_bgcolor {
 45% { background-color: green; }
 55% { background-color: blue; }
}

If the element originally had background-color: red set on it,
it would be as if the animation were as follows:

@keyframes change_bgcolor {
 0% { background-color: red; }
 45% { background-color: green; }
 55% { background-color: blue; }
 100% { background-color: red; }
}

Or, remembering that we can include multiple identical
keyframes as a comma-separated list, this faux animation also
could be written as shown here:

https://meyerweb.github.io/csstdg5figs/19-animation/no0or100.html

@keyframes change_bgcolor {
 0%, 100% { background-color: red; }
 45% { background-color: green; }
 55% { background-color: blue; }
}

Note the background-color: red; declarations are not part of
the original keyframe animation; they’ve just been filled in here
for clarity. We can include this change_bgcolor animation on
many elements, and the perceived animation will differ based
on the element’s value for the background-color property in
the nonanimated state. Thus, an element that has a yellow
background will animate from yellow to green to blue and then
back to yellow.

Although we’ve been using exclusively integer values for our
percentages, noninteger percentage values, such as 33.33% , are
perfectly valid. Negative percentages, values greater than
100% , and values that aren’t otherwise percentages or the
keywords to or from are invalid and will be ignored.

Repeating Keyframe Properties

Much like the rest of CSS, the values in keyframe declaration
blocks with identical keyframe values cascade. Thus, the earlier

W animation can be written with the to , or 100% , declared
twice, overriding the value of the left property:

@keyframes W {
 from, to {
 top: 0;
 left: 0;
 }
 25%, 75% {
 top: 100%;
 }
 50% {
 top: 50%;
 }
 to {
 left: 100%;
 }
}

Notice that to is declared along with from as keyframe
selectors for the first code block? That sets both top and left
for the to keyframe. Then, the left value is overridden for
the to in the last keyframe block.

Animatable Properties

It’s worth taking a moment to note that not all properties are
animatable. If you list a property that can’t be animated within
an animation’s keyframes, it’s simply ignored. (For that matter,
so are properties and values that the browser doesn’t recognize
at all, just like any other part of CSS.)

NOTE

Exceptions to the midpoint rule include animating-timing-function and
visibility , which are discussed in the next section.

As long as an animatable property is included in at least one
block with a value that is different from the nonanimated
attribute value, and there is a calculable midpoint between
those two values, that property will animate.

If an animation is set between two property values that don’t
have a calculable midpoint, the property may not animate
correctly—or at all. For example, you shouldn’t declare an
element’s height to animate between height: auto and
height: 300px , because there is no easily defined midpoint
between auto and 300px . The element will still animate, but
browsers will jump from the preanimated state to the
postanimated state halfway through the animation. Thus, for a
1-second animation, the element will jump from auto height to

300px height at the 500-millisecond point in the animation.
Other properties may animate over the length of the same
animation; e.g., if you change the background color, it will
animate smoothly over the animation. Only those properties
that can’t be animated between will jump halfway through.

The behavior of your animation will be most predictable if you
declare both a 0% and a 100% value for every property you
animate. For example, if you declare border-radius: 50%; in
your animation, you may want to declare border-radius: 0%;
as well, because the default value of border-radius is none ,
not 0 , and there is no midpoint between none and other
values. Consider the difference in the following two animations:

@keyframes round {
 100% {
 border-radius: 50%;
 }
}
@keyframes square_to_round {
 0% {
 border-radius: 0%;
 }
 100% {
 border-radius: 50%;

https://meyerweb.github.io/csstdg5figs/19-animation/nomidpoint.html

 }
}

The round animation will animate an element from the
original border-radius value of that element to border-
radius : 50% over the duration of the animation. The
square_to_round animation will animate an element from
border-radius: 0% to border-radius: 50% over the duration
of the animation. If the element starts out with square corners,
the two animations will have exactly the same effect. But if the
element starts out with rounded corners, square_to_round
will jump to rectangular corners before it starts animating.

Using Nonanimatable Properties That
Aren’t Ignored

Exceptions to the midpoint rule include visibility and
animation-timing-function .

The visibility property is animatable, even though there is
no midpoint between visibility: hidden and visibility:
visible . When you animate from hidden to visible , the
visibility value jumps from one value to the next at the
keyframe where the change is declared. So you don’t get a

smooth fade from visible to hidden, or vice versa. The state
changes in an instant.

While the animation-timing-function is not, in fact, an
animatable property, when included in a keyframe block, the
animation timing will switch to the newly declared value at that
point in the animation for the properties within that keyframe
selector block. The change in animation timing is not animated;
it simply switches to the new value for those properties only,
and only until the next keyframe. This allows you to vary the
timing function from one keyframe to another. (This is covered
in “Changing the Internal Timing of Animations”.)

Scripting @keyframes Animations

The CSSKeyframesRule API enables finding, appending, and
deleting keyframe rules. You can change the content of a
keyframe block within a given @keyframes declaration with
appendRule(n) or deleteRule(n) , where n is the full
selector of that keyframe. You can return the contents of a
keyframe with findRule(n) . Consider this:

@keyframes W {
 from, to { top: 0; left: 0; }
 25%, 75% { top: 100%; }

 50% { top: 50%; }
 to { left: 100%; }
}

The appendRule() , deleteRule() , and findRule() methods
take the full keyframe selector as an argument, as shown in the
following:

The statement myAnimation.findRule('25%, 75%').cssText ,
where myAnimation is pointing to a keyframe animation,
returns the keyframe that matches 25%, 75% . It would not
match any block using either 25% or 75% only. If myAnimation
refers to the W animation, myAnimation.findRule('25%,
75%').cssText returns 25%, 75% { top: 100%; } .

// Get the selector and content block for a keyframe
var aRule = myAnimation.findRule('25%, 75%').cssText;

// Delete the 50% keyframe
myAnimation.deleteRule('50%');

// Add a 53% keyframe to the end of the animation
myAnimation.appendRule('53% {top: 50%;}');

Similarly, myAnimation.deleteRule('50%') will delete the last
50% keyframe—so if we have multiple 50% keyframes, the last
one listed will be the first to go. Conversely,
myAnimation.appendRule('53% {top: 50%;}') appends a 53%
keyframe after the last keyframe of the @keyframes block.

CSS has four animation events: animationstart ,
animationend , animationiteration , and animationcancel .
The first two occur at the start and end of an animation, and the
last between the end of an iteration and the start of a
subsequent iteration. Any animation for which a valid
keyframe rule is defined will generate the start and end events,
even animations with empty keyframe rules. The
animationiteration event occurs only when an animation
has more than one iteration, as the animationiteration event
does not fire if the animationend event would fire at the same
time. The animationcancel event is fired whenever a running
animation is stopped before reaching its last keyframe.

Animating Elements

Once you have created a keyframe animation, you can apply
that animation to elements and/or pseudo-elements. CSS
provides numerous animation properties to attach a keyframe

https://meyerweb.github.io/csstdg5figs/19-animation/appendRule.html

animation to an element and control its progression. At a
minimum, you need to include the name of the animation for
the element to animate, and a duration if you want the
animation to be visible. (Without a duration, the animation will
happen in zero time.)

You can attach animation properties to an element in two ways:
include all the animation properties separately, or declare all
the properties in one line by using the animation shorthand
property (or a combination of shorthand and longhand
properties). Let’s start with the individual properties.

Invoking a Named Animation

The animation-name property takes as its value a comma-
separated list of names of keyframe animations you want to
apply to the selected elements. The names are the unquoted
identifiers or quoted strings (or a mixture of both) you created
in your @keyframes rules.

ANIMATION-NAME

Values [< single-animation-name > | none]#

Initial
value

none

Applies to All elements, ::before and ::after
pseudo-elements

Computed
value

As specified

Inherited No

Animatable No

The default value is none , which means no animation is
applied to the selected elements. The none value can be used to
override any animation applied elsewhere in the CSS cascade.
(This is also the reason you don’t want to name your animation
none , unless you’re a masochist.)

https://meyerweb.github.io/csstdg5figs/19-animation/badnames.html

Using the change_bgcolor keyframe animation defined in
“Omitting from and to Values”, we have this:

 div {
 animation-name: change_bgcolor;
 }

This simple rule applies the change_bgcolor animation to all
<div> elements, however many or few are on the page. To
apply more than one animation, include more than one comma-
separated animation name:

 div {
 animation-name: change_bgcolor, round, W;
 }

If one of the included keyframe identifiers does not exist, the
series of animations will not fail; rather, the failed animation
will be ignored, and the valid animations will be applied. While
ignored initially, the failed animation will be applied if and
when that keyframe animation comes into existence as a valid
animation. Consider the following:

 div {
 animation-name: change_bgcolor, spin, round, W;
}

In this example, assume that no spin keyframe animation is
defined. The spin animation will not be applied, while the
change_bgcolor , round , and W animations will occur. Should
a spin keyframe animation come into existence through
scripting, it will be applied at that time.

If more than one animation is applied to an element and those
animations have repeated properties, the later animations
override the property values in the earlier animations. For
example, if more than two background color changes are
applied concurrently in two different keyframe animations,
whichever animation was listed later will override the
background property declarations of animations earlier in the
list, but only if the properties (background colors, in this case)
are being animated at the same time. For more on this, see
“Animation, Specificity, and Precedence Order”.

For example, assume the following, and further assume that the
animations happen over a period of 10 seconds:

div {animation-name: change_bgcolor, bg-shift;}

@keyframes bg-shift {

 }

https://meyerweb.github.io/csstdg5figs/19-animation/nameaddedlater.html
https://meyerweb.github.io/csstdg5figs/19-animation/no0or100.html

 0%, 100% {background-color: cyan;}
 35% {background-color: orange;}
 55% {background-color: red;}
 65% {background-color: purple;}
}
@keyframes change_bgcolor {
 0%, 100% {background-color: yellow;}
 45% {background-color: green;}
 55% {background-color: blue;}
}

The background will animate from cyan to orange to red to
purple and then back to cyan, thanks to bg-shift . Because it
comes last in the list of animations, its keyframes take
precedence. Anytime multiple animations specify behavior for
the same property at the same point in time, the animation
listed last in the value of animation-name will be in effect.

What’s interesting is what happens if the from (0%) or to
(100%) keyframes are omitted from the animation in force. For
example, let’s remove the first keyframes defined in bg-shift :

div {animation-name: change_bgcolor, bg-shift;}

@keyframes bg-shift {
 35% {background-color: orange;}

 55% {background-color: red;}
 65% {background-color: purple;}
}
@keyframes change_bgcolor {
 0%, 100% {background-color: yellow;}
 45% {background-color: green;}
 55% {background-color: blue;}
}

Now no background colors are defined at the beginning and
end of bg-shift . In a situation like this, when a 0% or 100%
keyframe is not specified, the user agent constructs a 0% / 100%
keyframe by using the computed values of the properties being
animated.

These are concerns only when two different keyframe blocks
are trying to change the same property’s values. In this case, it
is background-color . On the other hand, if one keyframe block
animates background-color while another animates padding ,
the two animations will not collide, and both the background
color and padding will be animated together.

Simply applying an animation to an element is not enough for
the element to visibly animate. For that to happen, the
animation must take place over some amount of time. For that,
we have the animation-duration property.

Defining Animation Lengths

The animation-duration property defines how long a single
animation iteration should take in seconds (s) or milliseconds
(ms).

ANIMATION-DURATION

Values < time >#

Initial
value

0s

Applies to All elements, ::before and ::after
pseudo-elements

Computed
value

As specified

Inherited No

Animatable No

The animation-duration property defines the length of time,
either in seconds (s) or milliseconds (ms), it should take to
complete one cycle through all the keyframes of the animation.
If you don’t declare animation-duration , the animation will
still be run with a duration of 0s , with animationstart and
animationend still being fired even though the animation,
taking 0s , is imperceptible. Negative time values are not
permitted for animation-duration .

When specifying a duration, you must include the second (s)
or millisecond (ms) unit. If you have more than one animation,
you can include a different animation-duration for each by
including more than one comma-separated time duration:

div {
 animation-name: change_bgcolor, round, W;
 animation-duration: 200ms, 100ms, 0.5s;
}

If you supply an invalid value within your comma-separated
list of durations (e.g., animation-duration: 200ms, 0, 0.5s)
the entire declaration will fail, and it will behave as if
animation-duration: 0s had been declared; 0 is not a valid
time value.

https://meyerweb.github.io/csstdg5figs/19-animation/duration_broken_value.html

Generally, you will want to include an animation-duration
value for each animation-name provided. If you have only one
duration, all the animations will last the same amount of time.
Having fewer animation-duration values than animation-
name values in your comma-separated property value list will
not fail: rather, the values will be repeated as a group. Say we
have the following:

The change_bgcolor and round animations will be run over
200ms , and the spin and W animations will run for 5s .

If you have a greater number of animation-duration values
than animation-name values, the extra values will be ignored.
If one of the included animations does not exist, the series of
animations and animation durations will not fail; the failed
animation, along with its duration, is ignored:

div {
 animation-name: change_bgcolor, spin, round, W;
 animation-duration: 200ms, 5s;
 /* same effect as '200ms, 5s, 200ms, 5s' */
}

div {
 animation-name: change_bgcolor, spinner, round, W

In this example, the duration 5s is associated with spinner .
There is no spinner animation, though, so spinner doesn’t
exist, and the 5s and spinner are both ignored. Should a
spinner animation come into existence, it will be applied to
<div> elements and last 5 seconds.

Declaring Animation Iterations

Simply including the required animation-name will lead to the
animation playing once, and only once, resetting to the initial
state at the end of the animation. If you want to iterate through
the animation more or fewer times than the default one time,
use the animation-iteration-count property.

 animation-duration: 200ms, 5s, 100ms, 0.5s;
}

ANIMATION-ITERATION-COUNT

Values [< number > | infinite]#

Initial
value

1

Applies to All elements, ::before and ::after
pseudo-elements

Computed
value

As specified

Inherited No

Animatable No

By default, the animation will occur once (because the default
value is 1). If another value is given for animation-
iteration-count , and there isn’t a negative value for the
animation-delay property, the animation will repeat the
number of times specified by the value of the property, which

can be any number or the keyword infinite . The following
declarations will cause their animations to be repeated 2, 5, and
13 times, respectively:

animation-iteration-count: 2;
animation-iteration-count: 5;
animation-iteration-count: 13;

If the value of animation-iteration-count is not an integer,
the animation will still run, but will cut off mid-iteration on the
final iteration. For example, animation-iteration-count:
1.25 will iterate through the animation one and a quarter
times, cutting off 25% of the way through the second iteration.
If the value is 0.25 on an 8-second animation, the animation
will play about 25% of the way through, ending after 2 seconds.

Negative numbers are not permitted. If an invalid value is
given, the default value of 1 will lead to a default single
iteration.

Interestingly, 0 is a valid value for the animation-iteration-
count property. When set to 0 , the animation still occurs, but
zero times. This is similar to setting animation-duration: 0s :
it will throw both an animationstart and an animationend
event.

https://meyerweb.github.io/csstdg5figs/19-animation/odditeration.html

If you are attaching more than one animation to an element or
pseudo-element, include a comma-separated list of values for
animation-name , animation-duration , and animation-
iteration-count :

.flag {
 animation-name: red, white, blue;
 animation-duration: 2s, 4s, 6s;
 animation-iteration-count: 3, 5;
}

The iteration-count values (and all other animation property
values) will be assigned in the order of the comma-separated
animation-name property value. Extra values are ignored.
Missing values cause the existing values to be repeated, as with
animation-iteration-count in the preceding scenario.

The preceding example has more name values than count
values, so the count values will repeat: red and blue will
iterate three times, and white will iterate five times. We have
the same number of name values as duration values; therefore,
the duration values will not repeat. The red animation lasts 2
seconds, iterating three times, and therefore will run for a total
of 6 seconds. The white animation lasts 4 seconds, iterating
five times, for a total of 20 seconds. The blue animation is 6

seconds per iteration with the repeated three iterations value,
animating for a total of 18 seconds.

Invalid values will invalidate the entire declaration, leading to
the animations being played once each.

If we want all three animations to end at the same time, even
though their durations differ, we can control that with
animation-iteration-count :

.flag {
 animation-name: red, white, blue;
 animation-duration: 2s, 4s, 6s;
 animation-iteration-count: 6, 3, 2;
}

In this example, the red , white , and blue animations will last
for a total of 12 seconds each, because the product of the
durations and iteration counts in each case totals 12 seconds.

You can also include the keyword infinite instead of a
number, for a duration. This will make the animation iterate
forever, or until something makes it stop, such as removing the
animation name, removing the element from the DOM, or
pausing the play state.

Setting an Animation Direction

With the animation-direction property, you can control
whether the animation progresses from the 0% keyframe to the
100% keyframe, or from the 100% keyframe to the 0%
keyframe. You can also define whether all the iterations
progress in the same direction, or set every other animation
cycle to progress in the opposite direction.

ANIMATION-DIRECTION

Values [normal | reverse | alternate | al
ternate-reverse]#

Initial
value

normal

Applies to All elements, ::before and ::after
pseudo-elements

Computed
value

As specified

Inherited No

Animatable No

The animation-direction property defines the direction of the
animation’s progression through the keyframes. It has four
possible values:

normal

Each iteration of the animation progresses from the 0%
keyframe to the 100% keyframe; this value is the default.

reverse

Sets each iteration to play in reverse keyframe order, always
progressing from the 100% keyframe to the 0% keyframe.
Reversing the animation direction also reverses the
animation-timing-function (which is described in
“Changing the Internal Timing of Animations”).

alternate

The first iteration (and each subsequent odd-numbered
iteration) proceeds from 0% to 100%, and the second
iteration (and each subsequent even-numbered cycle)
reverses direction, proceeding from 100% to 0%. This has an
effect only if you have more than one iteration.

alternate-reverse

Similar to the alternate value, except it’s the reverse. The
first iteration (and each subsequent odd-numbered iteration)
will proceed from 100% to 0%, and the second iteration (and
each subsequent even-numbered cycle) reverses direction,
proceeding from 100% to 0%:

.ball {
 animation-name: bouncing;

 animation-duration: 400ms;
 animation-iteration-count: infinite;
 animation-direction: alternate-reverse;
}
@keyframes bouncing {
 from {
 transform: translateY(500px);
 }
 to {
 transform: translateY(0);
 }
}

In this example, we are bouncing a ball, but we want to start by
dropping it, not by throwing it up in the air: we want it to
alternate between going down and up, rather than up and
down, so animation-direction: alternate-reverse is the
most appropriate value for our needs.

This is a rudimentary way of making a ball bounce. When balls
are bouncing, they are moving slowest when they reach their
apex and fastest when they reach their nadir. We include this
example here to illustrate the alternate-reverse animation
directions. We’ll revisit the bouncing animation to make it more
realistic with the addition of timing (in “Changing the Internal
Timing of Animations”). We’ll also discuss how, when the

https://meyerweb.github.io/csstdg5figs/19-animation/ball6.html

animation is iterating in the reverse direction, the animation-
timing-function is reversed.

Delaying Animations

The animation-delay property defines how long the browser
waits after the animation is attached to the element before
beginning the first animation iteration.

ANIMATION-DELAY

Values < time >#

Initial
value

0s

Applies to All elements, ::before and ::after
pseudo-elements

Computed
value

As specified

Inherited No

Animatable No

By default, an animation begins iterating as soon as it is applied
to the element, with a 0-second delay. A positive value for
animation-delay delays the start of the animation until the
time listed as the value of the property has elapsed.

Negative values for animation-delay are allowed and create
interesting effects. A negative delay will execute the animation
immediately but will begin animating the element partway
through the attached animation. For example, if animation-
delay: -4s and animation-duration: 10s are set on an
element, the animation will begin immediately but will start
approximately 40% of the way through the first animation, and
will end 6 seconds later.

We say approximately because the animation will not
necessarily start at precisely the 40% keyframe block: when the
40% mark of an animation occurs depends on the value of the
animation-timing-function . If animation-timing-function:
linear is set, the animation state will start 40% of the way
through the animation:

div {
 animation-name: move;
 animation-duration: 10s;
 animation-delay: -4s;
 animation-timing-function: linear;
}

@keyframes move {
 from {
 transform: translateX(0);

 }
 to {
 transform: translateX(1000px);
 }
}

In this linear animation example, we have a 10-second
animation with a delay of –4 seconds. In this case, the
animation will start immediately 40% of the way through the
animation, with the <div> translated 400 pixels to the right of
its original position, and last only 6 seconds.

If an animation is set to occur 10 times, with a delay of –600
milliseconds and an animation duration of 200 milliseconds, the
element will start animating right away, at the beginning of the
fourth iteration:

.ball {
 animation-name: bounce;
 animation-duration: 200ms;
 animation-delay: -600ms;
 animation-iteration-count: 10;
 animation-timing-function: ease-in;
 animation-direction: alternate;
}
@keyframes bounce {

https://meyerweb.github.io/csstdg5figs/19-animation/fortypercent.html

 from {
 transform: translateY(0);
 }
 to {
 transform: translateY(500px);
 }
}

Instead of animating for 2,000 milliseconds (200 ms × 10 = 2,000
ms, or 2 seconds), starting in the normal direction, the ball will
animate for 1,400 milliseconds (or 1.4 seconds) with the
animation starting immediately—but at the start of the fourth
iteration, and in the reverse direction.

The animation starts out in reverse because animation-
direction is set to alternate , meaning every even-numbered
iteration proceeds from the 100% keyframe to the 0% keyframe.
The fourth iteration, which is an even-numbered iteration, is
the first visible iteration.

In this case, the animation will throw the animationstart
event immediately. The animationend event will occur at the
1,400-millisecond mark. The ball will be tossed up, rather than
bounced, throwing six animationiteration events, after 200,
400, 600, 800, 1,000, and 1,200 milliseconds. While the iteration
count is set to 10, we get only six animationiteration events

https://meyerweb.github.io/csstdg5figs/19-animation/ball_animation_delay_negative.html

because we are getting only seven iterations; three iterations
don’t occur because of the negative animation-delay , and the
last iteration concludes at the same time as the animationend
event. Remember, when an animationiteration event would
occur at the same time as an animationend event, the
animationiteration event does not occur.

Let’s take a deeper look at animation events before continuing.

Exploring Animation Events

The three types of animation events are animationstart ,
animationiteration , and animationend . Each event has three
read-only properties: animationName , elapsedTime , and
pseudoElement .

The animationstart event fires at the start of the animation:
after the animation-delay (if present) has expired, or
immediately if no delay is set. If a negative animation-delay
value is present, the animationstart will fire immediately,
with an elapsedTime equal to the absolute value of the delay.

The animationend event fires when the animation finishes. If
the animation-iteration-count is set to infinite , then as
long as the animation-duration is set to a time greater than

0 , the animationend event will never fire. If the animation-
duration is set or defaults to 0 seconds, even when the
iteration count is infinite, animationstart and animationend
will occur virtually simultaneously, and in that order. These are
illustrated in the following code:

.noAnimationEnd {
 animation-name: myAnimation;
 animation-duration: 1s;
 animation-iteration-count: infinite;
}
.startAndEndSimultaneously {
 animation-name: myAnimation;
 animation-duration: 0s;
 animation-iteration-count: infinite;
}

The animationiteration event fires between iterations. The
animationend event fires at the conclusion of iterations that
do not occur at the same time as the conclusion of the
animation itself; thus, the animationiteration and
animationend events do not fire simultaneously:

.noAnimationIteration {
 animation-name: myAnimation;
 animation-duration: 1s;

https://meyerweb.github.io/csstdg5figs/19-animation/events.html

 animation-iteration-count: 1;
}

In the .noAnimationIteration example, with the animation-
iteration-count set to a single occurrence, the animation ends
at the conclusion of the first and only iteration. Whenever the
animationiteration event would occur at the same time as an
animationend event, the animationend event occurs but the
animationiteration event does not.

When the animation-iteration-count property is omitted, or
when its value is 1 or less, no animationiteration event will
be fired. As long as an iteration finishes (even if it’s a partial
iteration) and another iteration begins, if the duration of that
subsequent iteration is greater than 0s , an
animationiteration event will be fired:

.noAnimationIteration {
 animation-name: myAnimation;
 animation-duration: 1s;
 animation-iteration-count: 4;
 animation-delay: -3s;
}

When an animation iterates through fewer cycles than listed in
the animation-iteration-count because of a negative
animation-delay , there are no animationiteration events
for the cycles that didn’t occur. The preceding example code has
no animationiteration events, as the first three cycles do not
occur (because of the -3s animation-delay), and the last
cycle finishes at the same time the animation ends.

In that example, the elapsedTime on the animationstart
event is 3 , as it is equal to the absolute value of the delay.

Animation chaining

You can use animation-delay to chain animations together so
the next animation starts immediately after the conclusion of
the preceding animation:

In this example, the red animation starts after a 3-second
delay and lasts 1 second, meaning the animationend event

.rainbow {
 animation-name: red, orange, yellow, blue, green;
 animation-duration: 1s, 3s, 5s, 7s, 11s;

 animation-delay: 3s, 4s, 7s, 12s, 19s;
}

https://meyerweb.github.io/csstdg5figs/19-animation/events2.html

occurs at the 4-second mark. This example starts each
subsequent animation at the conclusion of the previous
animation. This is known as CSS animation chaining.

By including a 4-second delay on the second animation, the
orange animation will begin interpolating the @keyframe
property values at the 4-second mark, starting the orange
animation immediately at the conclusion of the red animation.
The orange animation concludes at the 7-second mark—it lasts
3 seconds, starting after a 4-second delay—which is the delay
set on the third, or yellow , animation, making the yellow
animation begin immediately after the orange animation ends.

This is an example of chaining animations on a single element.
You can also use the animation-delay property to chain the
animations for different elements:

li:first-of-type {
 animation-name: red;
 animation-duration: 1s;
 animation-delay: 3s;
}
li:nth-of-type(2) {
 animation-name: orange;
 animation-duration: 3s;
 animation-delay: 4s;

https://meyerweb.github.io/csstdg5figs/19-animation/animationchain.html

}
li:nth-of-type(3) {
 animation-name: yellow;
 animation-duration: 5s;
 animation-delay: 7s;
}
li:nth-of-type(4) {
 animation-name: green;
 animation-duration: 7s;
 animation-delay: 12s;
}
li:nth-of-type(5) {
 animation-name: blue;
 animation-duration: 11s;
 animation-delay: 19s;
}

If you want a group of list items to animate in order,
appearing as if the animations were chained in sequence, the
animation-delay of each list item should be the combined
time of the animation-duration and animation-delay of the
previous animation.

While you can use JavaScript and the animationend event
from one animation to determine when to attach a subsequent
animation, which we discuss shortly, the animation-delay
property is an appropriate method of using CSS animation

https://meyerweb.github.io/csstdg5figs/19-animation/animationchain2a.html

properties to chain animations. There is one caveat: animations
are the lowest priority on the UI thread. Therefore, if you have
a script running that is occupying the UI thread, depending on
the browser and which properties are being animated and
what property values are set on the element, the browser may
let the delays expire while waiting until the UI thread is
available before starting more animations.

ANIMATION PERFORMANCE

Some, but not all, animations take place on the UI thread. In
most browsers, when opacity or transforms are being
animated, the animation takes place on the graphics processing
unit (GPU) instead of the central processing unit (CPU), and
doesn’t rely on the UI thread’s availability. If those properties
are not part of the animation, the unavailability of the UI
thread can lead to visual stutters (sometimes called jank):

/* Don’t do this */
* {
 transform: translateZ(0);
}

Putting an element into 3D space by using 3D transforms (see
Chapter 17) moves that element into its own layer, allowing for
jank-free animations. For this reason, the translateZ hack—
the thing we just told you not to do—became overused, and led
to the creation of the will-change property (see “Using the
will-change Property” for more).

While putting a few elements onto their own layers with this
hack is OK, some devices have limited video memory. Each
independent layer you create uses video memory and takes
time to move from the UI thread to the composited layer on the

GPU. The more layers you create, the higher the performance
cost.

For improved performance, whenever possible, include
transform and opacity in your animations rather than top ,
left , bottom , right , and visibility . Not only does it
improve performance by using the GPU over the CPU, but when
you change box-model properties, the browser needs to reflow
and repaint, which is bad for performance. Just don’t put
everything on the GPU, or you’ll run into different performance
issues.

If you are able to rely on JavaScript, another way of chaining
animations is listening for animationend events to start
subsequent animations:

<script>
 document.querySelectorAll('li')[0].addEventListener

 () => {
 document.querySelectorAll('li')[1].style.anim
 },
 false);

 document.querySelectorAll('li')[1].addEventListener
 () => {

https://meyerweb.github.io/csstdg5figs/19-animation/animationchain2.html

() {
 document.querySelectorAll('li')[2].style.anim
 },
 false);

 document.querySelectorAll('li')[2].addEventListener
 () => {
 document.querySelectorAll('li')[3].style.anim
 },
 false);

 document.querySelectorAll('li')[3].addEventListener
 () => {
 document.querySelectorAll('li')[4].style.anim
 },
 false);
</script>

<style>
 li:first-of-type {
 animation-name: red;
 animation-duration: 1s;

 }
 li:nth-of-type(2) {
 animation-duration: 3s;
 }
 li:nth-of-type(3) {
 animation-duration: 5s;
 }

In this example, there is an event handler on each of the first
four list items, listening for that list item’s animationend event.
When the animationend event occurs, the event listeners add
an animation-name to the subsequent list item.

As you can see in the styles, this animation chaining method
doesn’t employ animation-delay at all. Instead, the JavaScript
event listeners attach animations to each element by setting the
animation-name property when the animationend event is
thrown.

You’ll also note that the animation-name is included for only
the first list item. The other list items have only an animation-
duration with no animation-name , and therefore no attached
animations. Adding animation-name via JavaScript is what
attaches and starts the animation, at least in this example. To
start or restart an animation, the animation name must be

}
 li:nth-of-type(4) {
 animation-duration: 7s;
 }
 li:nth-of-type(5) {
 animation-duration: 11s;
 }
</style>

removed and then added back—at which point all the
animation properties take effect, including animation-delay .

Instead of writing the following:

<script>
 document.querySelectorAll('li')[2].addEventListener
 () => {
 document.querySelectorAll('li')[3].style.anim
 },
 false);

 document.querySelectorAll('li')[3].addEventListener
 () => {
 document.querySelectorAll('li')[4].style.anim
 },
 false);
</script

<style>
 li:nth-of-type(4) {
 animation-duration: 7s;
 }
 li:nth-of-type(5) {
 animation-duration: 11s;

we could have written this:

 }
</style>

<script>
 document.querySelectorAll('li')[2].addEventListener
 () => {
 document.querySelectorAll('li')[3].style.anim
 document.querySelectorAll('li')[4].style.anim
 },
 false);
</script>

<style>
 li:nth-of-type(4) {
 animation-duration: 7s;
 }
 li:nth-of-type(5) {
 animation-delay: 7s;
 animation-duration: 11s;
 }
</style>

When the blue animation name is added to the fifth list item at
the same time we added green , the delay on the fifth element
takes effect at that point in time and starts expiring.

While changing the values of animation properties (other than
name) on the element during an animation has no effect on the
animation, removing or adding an animation-name does have
an impact. You can’t change the animation duration from
100ms to 400ms in the middle of an animation. You can’t
switch the delay from -200ms to 5s once the delay has already
been applied. You can, however, stop and start the animation by
removing it and reapplying it. In the preceding JavaScript
example, we started the animations by applying them to the
elements.

In addition, setting display: none on an element terminates
any animation. Updating the display back to a visible value
restarts the animation from the beginning. If animation-delay
has a positive value, the delay will have to expire before the
animationstart event happens and any animations occur. If
the delay is negative, the animation will start midway through
an iteration, exactly as it would have if the animation had been
applied any other way.

Animation iteration delay

What is an animation iteration delay? Sometimes you want an
animation to occur multiple times but want to wait a specific
amount of time between each iteration.

While there is no such thing as an animation iteration delay
property, you can employ the animation-delay property,
incorporate delays within your keyframe declaration, or use
JavaScript to fake it. The best method for faking it depends on
the number of iterations, performance, and whether the delays
are all equal in length.

Let’s say you want your element to grow three times, but want
to wait 4 seconds between each 1-second iteration. You can
include the delay within your keyframe definition and iterate
through it three times:

.animate3times {
 background-color: red;
 animation: color_and_scale_after_delay;
 animation-iteration-count: 3;
 animation-duration: 5s;
}

@keyframes color_and_scale_after_delay {
 80% {
 transform: scale(1);

 background-color: red;
 }
 80.1% {
 background-color: green;
 transform: scale(0.5);
 }
 100% {
 background-color: yellow;
 transform: scale(1.5);
 }
}

Note the first keyframe selector is at the 80% mark and matches
the default state. This will animate your element three times:
it stays in the default state for 80% of the 5-second animation
(not changing for 4 seconds) and then moves from green to
yellow and small to big over the last 1 second of the animation
before iterating again, stopping after three iterations.

This method works for any number of iterations of the
animation. Unfortunately, it is a good solution only if the delay
between each iteration is identical and you don’t want to reuse
the animation with any other timing, such as a delay of 6
seconds. If you want to change the delay between each
iteration while not changing the duration of the change in size
and color, you have to write a new @keyframes definition.

https://meyerweb.github.io/csstdg5figs/19-animation/animation-iteration-delay1.html
https://meyerweb.github.io/csstdg5figs/19-animation/animation-iteration-delay.html

To enable multiple iteration delays between animations, we
could create a single animation and bake the effect of three
different delays into the animation keyframe definition:

.animate3times {
 background-color: red;
 animation: color_and_scale_3_times;
 animation-iteration-count: 1;
 animation-duration: 15s;
}

@keyframes color_and_scale_3_times {
 0%, 13.32%, 20.01%, 40%, 46.67%, 93.32% {
 transform: scale(1);
 background-color: red;
 }
 13.33%, 40.01%, 93.33% {
 background-color: green;
 transform: scale(0.5);
 }
 20%, 46.66%, 100% {
 background-color: yellow;
 transform: scale(1.5);
 }
}

This method may be more difficult to code and maintain,
however. It works for only a single cycle of the animation. To
change the number of animations or the iteration delay
durations, another @keyframes declaration would be required.
This example is even less robust than the previous one, but it
does allow for different between-iteration delays.

A solution is specifically allowed in the animation specification:
declare an animation multiple times, each with a different
animation-delay value:

.animate3times {
 animation: color_and_scale, color_and_scale, color_

 animation-delay: 0, 4s, 10s;
 animation-duration: 1s;
}

@keyframes color_and_scale {
 0% {
 background-color: green;
 transform: scale(0.5);
 }
 100% {
 background-color: yellow;
 transform: scale(1.5);
 }
}

https://meyerweb.github.io/csstdg5figs/19-animation/animation-iteration-delay2.html
https://meyerweb.github.io/csstdg5figs/19-animation/animation-iteration-delay3.html

Here, we’ve attached the animation three times, each with a
different delay. In this case, each animation iteration concludes
before the next one proceeds.

If animations overlap while they’re concurrently animating, the
values will be the values from the last declared animation. As is
true whenever multiple animations are changing an element’s
property at the same time, the animation that occurs last in the
sequence of animation names will override any animations
occurring before it in the list of names. In declaring three
color_and_scale animations but at different intervals, the
value of the property of the last iteration of the
color_and_scale animation will override the values of the
previous ones that haven’t yet concluded.

The safest, most robust, and most cross-browser-friendly
method of faking an animation iteration delay property is to
use JavaScript’s animation events. Detach the animation from
the element on animationend , and then reattach it after the
iteration delay. If all the iteration delays are the same, you can
use setInterval ; if they vary, use setTimeout :

}

https://meyerweb.github.io/csstdg5figs/19-animation/animation-iteration-delay4.html

let iteration = 0;
const el = document.getElementById('myElement');

el.addEventListener('animationend', () => {
 let time = ++iteration * 1000;

 el.classList.remove('animationClass');

 setTimeout(() => {
 el.classList.add('animationClass');
 }, time);

});

Changing the Internal Timing of
Animations

All right! The scripting was fun, but let’s get back to straight CSS
and talk about timing functions. Similar to the transition-
timing-function property, the animation-timing-function
property describes how the animation will progress from one
keyframe to the next.

ANIMATION-TIMING-FUNCTION

Values [ease | linear | ease-in | ease-ou
t | ease-in-out | step-start | step
-end | steps(< integer > , start) |
steps(< integer > , end) | cubic-be
zier (< number >, < number >,
< number >, < number >)]#

Initial
value

ease

Applies to All elements, ::before and ::after
pseudo-elements

Computed
value

As specified

Inherited No

Animatable No

Other than the step timing functions, described in “Using step
timing functions”, the timing functions are all Bézier curves.
Just like the transition-timing-function , the CSS
specification provides for five predefined Bézier curve
keywords, which we described in the preceding chapter (see
Table 18-1 and Figure 18-3).

A handy tool to visualize Bézier curves and to create your own
is Lea Verou’s cubic Bézier visualizer.

The default ease has a slow start, then speeds up, and ends
slowly. This function is similar to ease-in-out , which has a
greater acceleration at the beginning. The linear timing
function, as the name describes, creates an animation that
animates at a constant speed.

The ease-in timing function creates an animation that is slow
to start, gains speed, and then stops abruptly. The opposite
ease-out timing function starts at full speed, then slows
progressively as it reaches the conclusion of the animation
iteration.

If none of these suit your needs, you can create your own Bézier
curve timing function by passing four values, such as the
following:

https://cubic-bezier.com/

While the x values must be between 0 and 1, by using values for
y that are greater than 1 or less than 0, you can create a
bouncing effect, making the animation bounce up and down
between values, rather than going consistently in a single
direction. Consider the following timing function, whose rather
outlandish Bézier curve is (partly) illustrated in Figure 19-1:

animation-timing-function: cubic-bezier(0.2, 0.4, 0.6

.snake {
 animation-name: shrink;
 animation-duration: 10s;
 animation-timing-function: cubic-bezier(0, 4, 1, -4
 animation-fill-mode: both;
}

@keyframes shrink {
 0% {
 width: 500px;
 }
 100% {
 width: 100px;
 }
}

Figure 19-1. An outlandish Bézier curve

This animation-timing-function curve makes the animated
property’s values go outside the boundaries of the values set in
the 0% and 100% keyframes. In this example, we are shrinking
an element from 500px to 100px . However, because of the
cubic-bezier values, the element we’re shrinking will actually
grow to be wider than the 500px width defined in the 0%
keyframe and narrower than the 100px width defined in the
100% keyframe, as shown in Figure 19-2.

Figure 19-2. Effect of outlandish Bézier curve

In this scenario, the element starts with a width of 500px ,
defined in the 0% keyframe. It then quickly shrinks to a width
of about 40px , which is narrower than width: 100px defined
in the 100% keyframe. From there, it slowly expands to about
750px wide, which is larger than the original width of 500px .
It then quickly shrinks back to width: 100px , ending the
animation iteration.

https://meyerweb.github.io/csstdg5figs/19-animation/cubicbezierprint.html

You may have realized that the curve created by our animation
is the same curve as the Bézier curve. Just as the S-curve goes
outside the normal bounding box, the width of the animated
element goes narrower than the smaller width we set of 100px ,
and wider than the larger width we set of 500px .

The Bézier curve has the appearance of a snake because one y
coordinate is positive, and the other negative. If both are
positive values greater than 1 or both are negative values less
than –1, the Bézier curve is arc-shaped, going above or below
one of the values set, but not bouncing out of bounds on both
ends like the S-curve.

Any timing function declared with animation-timing-
function sets the timing for the normal animation direction,
when the animation is progressing from the 0% keyframe to
the 100% keyframe. When the animation is running in the
reverse direction, from the 100% keyframe to the 0% keyframe,
the animation timing function is reversed.

Remember the bouncing-ball example in “animation-
direction”? The bouncing wasn’t very realistic, because the
original example defaulted to ease for its timing function.
With animation-timing-function , we can apply ease-in to
the animation so that when the ball is dropping, it gets faster as

it nears its nadir at the 100% keyframe. When it is bouncing
upward, it animates in the reverse direction, from 100% to 0% ,
so the animating-timing-function is reversed as well—in this
case, to ease-out —slowing down as it reaches the apex:

.ball {
 animation-name: bounce;
 animation-duration: 1s;
 animation-iteration-count: infinite;
 animation-timing-function: ease-in;
 animation-direction: alternate;
}

@keyframes bounce {
 0% {
 transform: translateY(0);
 }
 100% {
 transform: translateY(500px);
 }
}

Using step timing functions

The step timing functions, step-start , step-end , and
steps() , aren’t Bézier curves. They’re not curves at all. Rather,

https://meyerweb.github.io/csstdg5figs/19-animation/ball1.html

they’re tweening definitions. The steps() function is most
useful when it comes to character or sprite animation.

The steps() function divides the animation into a series of
equal-length steps. The function takes two parameters: the
number of steps and the change point (more on that in a
moment).

The number-of-steps parameter value must be a positive
integer. The animation length will be divided equally into the
number of steps provided. For example, if the animation
duration is 1 second and the number of steps is 5, the animation
will be divided into five 200-millisecond steps, with the element
being redrawn to the page five times, at 200-millisecond
intervals, moving 20% through the animation at each interval.

To understand how this works, think of a flip book. Each page
in a flip book contains a single drawing or picture that changes
slightly from one page to the next, like one frame from a movie
reel stamped onto each page. When the pages of a flip book are
rapidly flipped through (hence the name), the pictures appear
as an animated motion. You can create similar animations with
CSS by using an image sprite, the background-position
property, and the steps() timing function.

Figure 19-3 shows an image sprite containing several images
that change just slightly, like the drawings on the individual
pages of a flip book.

Figure 19-3. Sprite of dancing

We put all of our slightly differing images into a single image
called a sprite. Each image in our sprite is a frame in the single
animated image we’re creating.

We then create a container element that is the size of a single
image of our sprite, and attach the sprite as the container
element’s background image. We animate the background-
position , using the steps() timing function so we see only a
single instance of the changing image of our sprite at a time.
The number of steps in our steps() timing function is the
number of occurrences of the image in our sprite. The number
of steps defines how many stops our background image makes
to complete a single animation.

The sprite in Figure 19-3 has 22 images, each 56 × 100 pixels.
The total size of our sprite is 1,232 × 100 pixels. We set our
container to the individual image size: 56 × 100 pixels. We set
our sprite as our background image: the initial or default value

of background-position is top left , which is the same as 0
0 . Our image will appear at 0 0 , which is a good default.
Browsers that don’t support CSS animation, like Opera Mini,
will simply display the first image from our sprite:

.dancer {
 height: 100px;
 width: 56px;
 background-image: url(../images/dancer.png);

}

The trick is to use steps() to change the background-
position value so that each frame is a view of a separate image
within the sprite. Instead of sliding in the background image
from the left, the steps() timing function will pop in the
background image in the number of steps we declared.

So we create an animation that simply changes the left-right
value of the background-position . The image is 1,232 pixels
wide, so we move the background image from 0 0 , which is
the left top, to 0 -1232px , putting the sprite fully outside of our
56 × 100 pixel <div> viewport.

The values of -1232px 0 will move the image completely to the
left, outside of our containing block viewport. It will no longer
show up as a background image in our 100 × 56 pixel <div> at
the 100% mark unless background-repeat is set to repeat
along the x-axis. We don’t want that to happen!

This is what we want:

@keyframes dance_in_place {
 from {
 background-position: 0 0;
 }
 to {
 background-position: -1232px 0;
 }
}

.dancer {

 background-image: url(../images/dancer.png);
 animation-name: dance_in_place;
 animation-duration: 4s;
 animation-timing-function: steps(22, end);
 animation-iteration-count: infinite;
}

What may have seemed like a complex animation is very
simple: just as in a flip book, we see one frame of the sprite at a
time. Our keyframe animation simply moves the background.

So that covers the first parameter, the number of steps. The
second parameter takes one of a few values: step-start ,
start , step-end , end , jump-none , and jump-both . The given
value specifies whether the change for the first step’s interval
takes place at the beginning or at the end of a given interval.
(Chapter 18 describes these values in more detail.)

With the default value, end , or its equivalent step-end , the
change take place at the end of the first step. In other words,
given 200-ms step lengths, the first change in the animation will
not occur until 200 ms into the animation’s overall duration.
With start or step-start , the first change will take place at
the beginning of the first step’s interval; that is to say, the
instant the animation begins. Figure 19-4 provides a timeline
diagram of how the two values work, based on the following
styles:

@keyframes grayfade {
 from {background-color: #BBB;}
 to {background-color: #333;}
}

https://meyerweb.github.io/csstdg5figs/19-animation/sprite.html

Figure 19-4. Visualizing start and end change points

The boxes embedded into each timeline represent the
background color during that step interval. Notice that in the
end timeline, the first interval is the same as the background
before the animation started. This is because the animation
waits until the end of the first frame to make the color change
for the first step (the color between “Step 1” and “Step 2”).

In the start timeline, on the other hand, the first interval
makes that color change at the start of the interval, instantly
switching from the starting background color to the color
between “Step 1” and “Step 2.” This is sort of like jumping ahead
one interval, an impression reinforced by the fact that the
background color in “Step 2” of the end timeline is the same as
that in “Step 1” of the start timeline.

.slowfader {animation: grayfade 1s steps(5,end);}
.quickfader {animation: grayfade 1s steps(5,start);}

A similar effect can be seen at the end of each animation, where
the background in the fifth step of the start timeline is the
same as the ending background color. In the end timeline, it’s
the color at the point between “Step 4” and “Step 5,” and doesn’t
switch to the ending background color until the end of “Step 5,”
when the animation is finished.

The change parameter can be hard to keep straight. If it helps,
think of it this way: in a normal animation direction, the start
value “skips” the 0% keyframe, because it makes the first
change as soon as the animation starts, and the end value
“skips” the 100% keyframe.

The step-start value is equal to steps(1, start) , with only
a single step displaying the 100% keyframe. The step-end
value is equal to steps(1, end) , which displays only the 0%
keyframe.

Animating the timing function

The animation-timing-function is not an animatable
property, but it can be included in keyframes to alter the
current timing of the animation.

Unlike animatable properties, the animation-timing-function
values aren’t interpolated over time. When included in a

keyframe within the @keyframes definition, the timing
function for the properties declared within that same keyframe
will change to the new animation-timing-function value
when that keyframe is reached, as shown in Figure 19-5:

.pencil {animation: W 3s infinite linear;}
@keyframes width {
 0% {
 width: 200px;
 animation-timing-function: linear;
 }
 50% {
 width: 350px;
 animation-timing-function: ease-in;
 }
 100% {
 width: 500px;
 }
}

In the preceding example, as shown in Figure 19-5, halfway
through the animation, we switch from a linear animation
progression for the width property to one that eases in. The
ease-in timing starts from the keyframe in which the timing
function changes.

https://meyerweb.github.io/csstdg5figs/19-animation/cubicbezierprint2.html

Specifying the animation-timing-function within the to or
100% keyframe will have no effect on the animation. When
included in any other keyframe, the animation will follow the
animation-timing-function specified in that keyframe
definition until it reaches the next keyframe, overriding the
element’s default or declared animation-timing-function .

Figure 19-5. Changing the animation timing function mid-animation

If the animation-timing-function property is included in a
keyframe, only the properties also included in that keyframe
block will have their timing function impacted. The new timing
function will be in play on that property until the next
keyframe containing that property is reached, at which point it
will change to the timing function declared within that block, or

revert back to the original timing function assigned to that
element. Take our W animation as an example:

@keyframes W {
 from { left: 0; top: 0; }
 25%, 75% { top: 100%; }
 50% { top: 50%; }
 to { left: 100%; top: 0; }
}

This follows the idea that conceptually, when an animation is
set on an element or pseudo-element, it is as if a set of
keyframes is created for each property present in any of the
keyframes, as if an animation is run independently for each
property being animated. It’s as if the W animation were made
up of two animations that run simultaneously— W_part1 and
W_part2 :

@keyframes W_part1 {
 from, to { top: 0; }
 25%, 75% { top: 100%; }
 50% { top: 50%; }
}
@keyframes W_part2 {
 from { left: 0; }

 to { left: 100%; }
}

The animation-timing-function that is set on any of the
keyframes is added to the progression of only the properties
defined at that keyframe:

The preceding code will change the animation-timing-
function from whatever was set on the CSS selector block to
ease-in for the top property only, not the left property,
impacting only the W_part1 section of our W animation, and
only from the middle of the animation to the 75% mark.

However, with the following animation, the animation-
timing-function will have no effect, because it’s been placed
in a keyframe block that has no property-value declarations:

@keyframes W {
 from { left: 0; top: 0; }
 25%, 75% { top: 100%; }
 50% { animation-timing-function: ease-in; to

 to { left: 100%; top: 0; }
}

@keyframes W {

How is it useful to change the timing function mid-animation?
In the bounce animation, we had a frictionless environment:
the ball bounced forever, never losing momentum. The ball
sped up as it dropped, and slowed as it rose, because the timing
function was inverted from ease-in to ease-out by default as
the animation proceeded from the normal to reverse
direction every other iteration.

In reality, friction exists; momentum is lost. Balls will not
continue to bounce indefinitely. If we want our bouncing ball to
look natural, we have to make it bounce less high as it loses
energy with each impact. To do this, we need a single animation
that bounces multiple times, losing momentum on each bounce,
while switching between ease-in and ease-out at each apex
and nadir:

@keyframes bounce {
 0% {

 from { left: 0; top: 0; }
 25%, 75% { top: 100%; }
 50% { animation-timing-function: ease-in; }
 50% { top: 50%; }
 to { left: 100%; top: 0; }
}

 transform: translateY(0);
 animation-timing-function: ease-in;
 }
 30% {
 transform: translateY(100px);
 animation-timing-function: ease-in;
 }
 58% {
 transform: translateY(200px);
 animation-timing-function: ease-in;
 }
 80% {
 transform: translateY(300px);
 animation-timing-function: ease-in;
 }
 95% {
 transform: translateY(360px);
 animation-timing-function: ease-in;
 }
 15%, 45%, 71%, 89%, 100% {
 transform: translateY(380px);
 animation-timing-function: ease-out;
 }
}

This animation loses height after a few bounces, eventually
stopping.

https://meyerweb.github.io/csstdg5figs/19-animation/ball3.html

Since this new animation uses a single iteration, we can’t rely
on animation-direction to change our timing function. We
need to ensure that while each bounce causes the ball to lose
momentum, it still speeds up with gravity and slows down as it
reaches its apex. Because we will have only a single iteration,
we control the timing by including animation-timing-
function within our keyframes. At every apex, we switch to
ease-in , and at every nadir, or bounce, we switch to ease-
out .

Setting the Animation Play State

If you need to pause and resume animations, the animation-
play-state property defines whether the animation is running
or paused.

ANIMATION-PLAY-STATE

Values [running | paused]#

Initial
value

running

Applies to All elements, ::before and ::after
pseudo-elements

Computed
value

As specified

Inherited No

Animatable No

When set to the default value of running , the animation
proceeds as normal. If set to paused , the animation will be,
well, paused. When paused , the animation is still applied to the
element, just frozen at the progress it had made before being
paused. If stopped mid-iteration, the properties that were in the

process of animating stay at their mid-iteration values. When
set back to running , the animation restarts from where it left
off, as if the “clock” that controls the animation had stopped
and started again.

If the property is set to paused during the delay phase of the
animation, the delay clock is also paused and resumes as soon
as animation-play-state is set back to running.

Animation Fill Modes

The animation-fill-mode property enables us to define
whether an element’s property values continue to be applied by
the animation outside of the animation’s duration time.

https://meyerweb.github.io/csstdg5figs/19-animation/ball4.html

ANIMATION-FILL-MODE

Values [none | forwards | backwards | bot
h]#

Initial
value

none

Applies to All elements, ::before and ::after
pseudo-elements

Computed
value

As specified

Inherited No

Animatable No

This property is useful because, by default, the changes in an
animation apply only during the animation itself. Before the
animation starts, the animation property values aren’t applied.
Once the animation is done, the values will all revert to their

pre-animation values. Thus, if you take an element whose
background is red, and then animate the background from
green to blue, the background will (by default) stay red until the
animation delay expires, and instantly revert to red after the
animation finishes.

Similarly, an animation will not affect the property values of the
element immediately if a positive animation-delay is applied.
Rather, animation property values are applied when the
animation-delay expires, at the moment the animationstart
event is fired.

With animation-fill-mode , we can define how the animation
impacts the element on which it is set before the
animationstart and after the animationend events are fired.
Property values set in the 0% keyframe can be applied to the
element during the expiration of any animation delay, and
property values can persist after the animationend event is
fired.

The default value for animation-fill-mode is none , which
means the animation has no effect when it is not executing.
Property values from the animation’s 0% keyframe (or the
100% keyframe in reverse animations) are not applied to the

animated element until the animation-delay has expired,
when the animationstart event is fired.

When the value is set to backwards and the animation-
direction is either normal or alternate , the property values
from the 0% keyframe are applied immediately, without
waiting for the animation-delay time to expire. If the
animation-direction is either reversed or reversed-
alternate , the property values from the 100% keyframe are
applied.

The value of forwards means that when the animation is done
executing—that is, has concluded the last part of the last
iteration as defined by the animation-iteration-count value,
and the animationend event has fired—it continues to apply
the values of the properties as they were when the
animationend event occurred. If the iteration-count has an
integer value, this will be either the 100% keyframe, or, if the
last iteration was in the reverse direction, the 0% keyframe.

The both value applies both the backwards effect of applying
the property values as soon as the animation is attached to the
element, and the forwards value of persisting the property
values past the animationend event.

https://meyerweb.github.io/csstdg5figs/19-animation/halfiterationforwards.html

If the animation-iteration-count is a float value, and not an
integer, the last iteration will not end on the 0% or 100%
keyframe; the animation will instead end its execution partway
through an animation cycle. If the animation-fill-mode is set
to forwards or both , the element maintains the property
values it had when the animationend event occurred. For
example, if the animation-iteration-count is 6.5 , and the
animation-timing-function is linear, the animationend
event fires and the values of the properties at the 50% mark
(whether or not a 50% keyframe is explicitly declared) will
stick, as if the animation-play-state had been set to pause at
that point.

For example, consider the following code:

@keyframes move_me {
 0% {
 transform: translateX(0);
 }
 100% {
 transform: translateX(1000px);
 }
}

.moved {
 transform: translateX(0);

 animation-name: move_me;
 animation-duration: 10s;
 animation-timing-function: linear;
 animation-iteration-count: 0.6;
 animation-fill-mode: forwards;
}

The animation will go through only 0.6 iterations. Being a linear
10-second animation, it will stop at the 60% mark, 6 seconds
into the animation, when the element is translated 600 pixels to
the right. With animation-fill-mode set to forwards or
both , the animation will stop animating when it is translated
600 pixels to the right, holding the moved element 600 pixels to
the right of its original position. This will keep it translated
indefinitely, or at least until the animation is detached from the
element. Without the animation-fill-mode : forwards , the
element with class moved will pop back to its original
transform: translateX(0) , as defined in the moved selector
code block.

Bringing It All Together

The animation shorthand property allows you to use one
declaration, instead of eight, to define all the parameters for an
element’s animation. The animation property value is a list of

space-separated values for the various longhand animation
properties. If you are setting multiple animations on an element
or pseudo-element, you can use a comma-separated list of
animations.

ANIMATION

Values [< animation-name > ‖ < animation-dur

ation > ‖ < animation-timing-functio

n > ‖ < animation-delay > ‖ < animation

-iteration-count > ‖ < animation-dire

ction > ‖ < animation-fill-mode > ‖ < a

nimation-play-state >]#

Initial
value

0s ease 0s 1 normal none running n
one

Applies to All elements, ::before and ::after
pseudo-elements

Computed
value

As specified

Inherited No

Animatable No

The animation shorthand takes as its value all the other
preceding animation properties, including animation-
duration , animation-timing-function , animation-delay ,
animation-iteration-count , animation-direction ,
animation-fill-mode , animation-play-state , and
animation-name . For example, the following two rules are
precisely equivalent:

We didn’t have to declare all of the values in the animation
shorthand; any values that aren’t declared are set to the default
or initial values. In the preceding example, three of the

#animated {
 animation: 200ms ease-in 50ms 1 normal running forw
}

#animated {
 animation-name: slidedown;
 animation-duration: 200ms;
 animation-timing-function: ease-in;
 animation-delay: 50ms;
 animation-iteration-count: 1;
 animation-fill-mode: forwards;
 animation-direction: normal;
 animation-play-state: running;
}

properties are set to their default values, so they are not strictly
necessary, though sometimes it’s a good idea to write them in as
a reminder to future you (or whoever takes over maintenance
of your code).

The order of the shorthand is important in two specific ways.
First, two time properties are permitted, for < animation-

duration > and < animation-delay >. When two are listed, the
first is always the duration. The second, if present, is
interpreted as the delay.

Second, the placement of the animation-name is also
important. If you use an animation property value as an
animation name—which you shouldn’t, but let’s say you do—
then the animation-name should be placed as the last property
value in the animation shorthand. The first occurrence of a
keyword that is a valid value for any of the other animation
properties, such as ease or running , is assumed to be part of
the shorthand of the animation property the keyword is
associated with, rather than the animation-name . The
following rules are equivalent:

#failedAnimation {
 animation: paused 2s;
}

#failedAnimation {
 animation-name: none;
 animation-duration: 2s;
 animation-delay: 0;
 animation-timing-function: ease;
 animation-iteration-count: 1;
 animation-fill-mode: none;
 animation-direction: normal;
 animation-play-state: paused;
}

This happens because paused is a valid animation name. While
it may seem that the animation named paused with a duration
of 2s is being attached to the element, that is not what
happens. Because words within the shorthand animation are
first checked against possible valid values of all animation
properties other than animation-name , paused is set as the
value of the animation-play-state property. Because no
recognizable animation names are found, the animation-name
value remains at its default, none .

Here’s another example of what you shouldn’t do:

#anotherFailedAnimation {
 animation: running 2s ease-in-out forwards;

}

#anotherFailedAnimation {
 animation-name: none;
 animation-duration: 2s;
 animation-delay: 0s;
 animation-timing-function: ease-in-out;
 animation-iteration-count: 1;
 animation-fill-mode: forwards;
 animation-direction: normal;
 animation-play-state: running;
}

Here, the author probably has a keyframe animation called
running . The browser, however, sees the term and assigns it to
the animation-play-state property rather than the
animation-name property. With no animation-name declared,
no animation is attached to the element.

The way to get around this is shown here:

#aSuccessfulIfInadvisableAnimation {
 animation: running 2s ease-in-out forwards runnin
}

This will apply the first running to animation-play-state ,
and the second running to animation-name . Again: this is not
advised. The potential for confusion and error is too great.

In light of all this, animation: 2s 3s 4s; may seem valid, as if
the following were being set:

#invalidName {
 animation-name: 4s;
 animation-duration: 2s;
 animation-delay: 3s;
}

But as mentioned in “Setting Up Keyframe Animations”, 4s is
not a valid identifier. Identifiers cannot start with a digit unless
escaped. For this animation to be valid, it would have to be
written as animation: 2s 3s \4s; .

To attach multiple animations to a single element or pseudo-
element, comma-separate the animations:

.snowflake {
 animation: 3s ease-in 200ms 32 forwards falling,
 1.5s linear 200ms 64 spinning;
}

Each snowflake will fall while spinning for 96 seconds, spinning
twice during each 3-second fall. At the end of the last
animation cycle, the snowflake will stay fixed on the 100%
keyframe of the falling animation. We declared six of the
eight animation properties for the falling animation and five
for the spinning animation, separating the two animations with
a comma.

While you’ll most often see the animation name as the first
value—it’s easier to read that way, because of the issue with
animation property keywords being valid keyframe identifiers
—it is not a best practice. That is why we put the animation
name at the end.

To sum up: using the animation shorthand is a fine idea. Just
remember that the placements of the duration, delay, and name
within that shorthand are important, and omitted values will be
set to their default values.

Also note that although none is basically the only word that
can’t be a valid animation name, using any animation keywords
as your identifier is never a good idea.

https://meyerweb.github.io/csstdg5figs/19-animation/snowflake.html

Animation, Specificity, and
Precedence Order

In terms of specificity, the cascade, and which property values
get applied to an element, animations supersede all other
values in the cascade.

Specificity and !important

In general, the weight of a property attached with an ID selector
1-0-0 should take precedence over a property applied by an
element selector 0-0-1 . However, if that property value is
changed via a keyframe animation, the new value will be
applied as if that property-value pair were added as an inline
style and override the previous value.

The animation specification states, “Animations override all
normal rules, but are overridden by !important rules.” That
being said, don’t add !important to properties set inside your
animation declaration block; this use is invalid, and the
property-value combination to which !important is added will
be ignored.

Animation Iteration and display: none;

If the display property is set to none on an element, any
animation iterating on that element or its descendants will
cease, as if the animation were detached from the element.
Updating the display property back to a visible value will
reattach all the animation properties, restarting the animation
from scratch:

.snowflake {
 animation: spin 2s linear 5s 20;
}

In this case, the snowflake will spin 20 times; each spin takes 2
seconds, with the first spin starting after 5 seconds. If the
snowflake element’s display property gets set to none after 15
seconds, it would have completed 5 spins before disappearing
(after getting through the 5-second delay, then executing 5 spins
at 2 seconds each). If the snowflake display property changes
back to anything other than none , the animation starts from
scratch: a 5-second delay will elapse again before it starts
spinning 20 times. It makes no difference how many animation
cycles iterated before it disappeared from view the first time.

Animation and the UI Thread

https://meyerweb.github.io/csstdg5figs/19-animation/snowflake2.html

CSS animations have the lowest priority on the UI thread. If you
attach multiple animations on page load with positive values
for animation-delay , the delays expire as specified, but the
animations may not begin until the UI thread is available to
animate.

Assume the following:

The animations all require the UI thread (that is, they aren’t
on the GPU as described in “Animation chaining”).
You have 20 animations with the animation-delay property
set to 1s , 2s , 3s , 4s , and so on in order to start each
subsequent animation 1 second after the previous animation.
The document or application takes a long time to load, with
11 seconds between the time the animated elements were
drawn to the page and the time the JavaScript finished being
downloaded, parsed, and executed.

Given all that, the delays of the first 11 animations will have
expired once the UI thread is available, and those first 11
animations will all commence simultaneously. Each remaining
animation will then begin animating at 1-second intervals.

Using the will-change Property

You could create animations so complex that they render badly,
stuttering or displaying what’s sometimes referred to as jank. In
situations such as these, it may be helpful to tell the browser
what needs to be animated ahead of time via the will-change
property.

WILL-CHANGE

Values auto | [scroll-position | contents
| < custom-ident >]#

Initial
value

auto

Applies to All elements

Computed
value

As specified

Inherited No

Animatable No

The general idea here is to give the browser hints about the
sorts of pre-optimizations it can make if expensive calculations
may be required.

WARNING

You should use will-change only when you have animation problems that you have
been unable to resolve through other methods, such as simplifying the animation in
subtle but significant ways, and that you believe pre-optimizations will address. If
you try will-change and see no worthwhile improvement, you should remove
will-change rather than leaving it in place.

The default value of auto leaves optimization work to the
browser, as per usual. The scroll-position value says that
animation of, or at least some change of, the document’s scroll
position is expected. By default, browsers generally take only
the contents of the viewport and a little of the content to either
side of it into account. The scroll-position value might cause
the browser to bring more of the content to either side of the
viewport into its layout calculations. Although this might
produce smoother scroll animations, the expanded scope could
easily slow the rendering of the content visible in the viewport.

With contents , the browser is told to expect animation of the
element’s contents. This is most likely to cause browsers to
reduce or eliminate caching of the layout of the viewport’s

contents. This would require the browser to recompute the
layout of the page from scratch every frame. Having to
constantly recompute the page layout could slow the rendering
of the page to slower than 60 frames per second, which is the
benchmark that browser makers usually try to meet. On the
other hand, if the contents will be changed and animated quite
a lot, telling the browser to cache less can make sense. Again,
try this only if you already know the animations are overtaxing
the browser—never assume ahead of time.

It’s also possible to tell the browser which properties to watch
out for by using a < custom-ident >, which, in this case, is a
fancy way of saying “properties.” For example, if you have a
complicated animation set that changes position, filter, and text
shadow, and they’re proving to be slow or stuttery, you could
try this:

will-change: top, left, filter, text-shadow;

If this smooths out the animation, it’s worth removing one
property at a time to see if the smoothness remains. You might,
for example, discover that removing the top and left
properties doesn’t affect the new smoothness, but removing

either filter or text-shadow causes the stuttering to return.
In that case, keep it at will-change: filter, text-shadow .

Also keep in mind that listing a shorthand property like font
or background causes all of the longhand properties to be
considered changeable. Thus, the following two rules are
equivalent:

This is why, in nearly any case, a shorthand property should not
be listed in will-change . Instead, identify the longhand
properties being animated, and list those.

Printing Animations

When an animated element is printed, its end state should
print. You can’t see the element animating on a piece of paper;
but if, for example, an animation causes an element to have a
border-radius of 50% , the printed element will have a
border-radius of 50% .

.textAn {will-change: font;}

.textAn {will-change: font-family, font-size, font-we
 font-variant, line-height;}

Summary

As we hope this chapter shows, animations can be powerful
additions to a user interface, as well as to decorative parts of a
design. Whether an animation is simple, complex, short, or
lengthy, all these aspects and more are in your hands.

Always exercise caution, as animation can affect some users
negatively, whether they have vestibular disorders or simply
are sensitive to motion. Fortunately, prefers-reduced-motion
is available to reduce or eliminate animations for those who do
not want them.

Chapter 20. Filters, Blending,
Clipping, and Masking

Several special properties allow authors to alter the appearance
of elements with visual filters, specify different ways to visually
blend elements with whatever is behind them, and alter the
presentation of elements by showing parts and hiding other
parts. While these may seem like disparate concepts, they all
share one thing in common: they allow elements to be altered
in ways that were previously difficult or impossible.

CSS Filters

CSS provides a way to apply built-in visual filter effects, as well
as custom filters defined in the page or in external files, to
elements by way of the filter property.

FILTER

Values [none | blur() | brightness() | co
ntrast() | drop-shadow() | graysca
le() | hue-rotate() | invert() | op
acity() | sepia() | saturate() | u
rl()]#

Initial
value

none

Applies to All elements (in SVG, applies to all
graphics elements and all container
elements except the <defs> element)

Computed
value

As declared

Inherited No

Animatable Yes

The value syntax permits a space-separated list of filter
functions, with each filter applied in sequence. Thus, given the
declaration filter: opacity(0.5) blur(1px); , the opacity is
applied to the element, and the semitransparent result is then
blurred. If the order is reversed, so too is the order of
application: the fully opaque element is blurred, and the
resulting blur made semitransparent.

The CSS specification talks of “input images” when discussing
filter , but this doesn’t mean filter is used only on images.
Any HTML element can be filtered, and all graphic SVG
elements can be filtered. The input image is a visual copy of the
rendered element before it is filtered. Filters are applied to this
input, and the final filtered result is then rendered to the
display medium (e.g., the device display).

All the values permitted (save url()) are function values, with
the permitted value types for each function being dependent on
the function in question. We’ve grouped these functions into a
few broad categories for ease of understanding.

Basic Filters

The following filters are basic in the sense that they cause the
changes that their names directly describe—blurring, drop

shadows, and opacity changes:

blur(< length >)
Blurs the element’s contents by using a Gaussian blur whose
standard deviation is defined by the < length > value
supplied, where a value of 0 leaves the element unchanged.
Negative lengths are not permitted.

opacity([< number > | < percentage >])
Applies a transparency filter to the element in a manner very
similar to the opacity property, where the value 0 yields a
completely transparent element and a value of 1 or 100%
leaves the element unchanged. Negative values are not
permitted. Values greater than 1 and 100% are permitted,
but are clipped to be 1 or 100% for the purposes of
computing the final value.

WARNING

The specification makes clear that filter: opacity() is not meant to be a
replacement or shorthand for the opacity property, and in fact both can be applied
to the same element, resulting in a sort of double-transparency.

drop-shadow(< length >{2,3} < color >?)
Creates a drop shadow that matches the shape of the
element’s alpha channel, with a blur and using an optional

color. The handling of the lengths and colors is the same as
for the property box-shadow , which means that while the
first two < length > values can be negative, the third (which
defines the blur) cannot. Unlike box-shadow, though, the
inset value is not permitted. To apply multiple drop
shadows, provide multiple space-separated drop-shadow()
functions; unlike box-shadow , comma-separated shadows
don’t work here. If no < color > value is supplied, the used
color is the same as the computed value of the color
property for the element.

Figure 20-1 shows some effects of these filter functions.

Figure 20-1. Basic filter effects

Before we go on, two things deserve further exploration. The
first is how drop-shadow() really operates. Just by looking at
Figure 20-1, it’s easy to get the impression that drop shadows
are bound to the element box, because of the boxlike nature of
the drop shadows shown there. But that’s just because the
image used to illustrate filters is a PNG, which is to say a raster
image, and more importantly one that doesn’t have any alpha
channel. The white parts of the image are opaque white, in
other words.

If the image has transparent bits, drop-shadow() will use those
in computing the shadow. To see what this means, consider
Figure 20-2.

Figure 20-2. Drop shadows and alpha channels

The other thing to point out in Figure 20-2 is the last image has
two drop shadows. This was accomplished as follows:

Any number of filters can be chained together like this. To pick
another example, you could write the following:

That would get you a blurry, drop-shadowed, half-opaque
element. It might not be the most reader-friendly effect for text,
but it’s possible nonetheless. This function-chaining is possible
with all filter functions, both those you’ve seen and those to
come.

Color Filtering

This next set of filter functions alter the colors present in the
element. This can be as simple as leaching out the colors, or as
complex as shifting all the colors by way of an angle value.

Note that for the first three of the four following functions, all
of which accept either a < number > or < percentage >, negative

filter: drop-shadow(0 0 0.5em yellow) drop-shadow(0.5

filter: blur(3px) drop-shadow(0.5em 0.75em 30px gray)

values are not permitted; the fourth permits positive and
negative angle values:

grayscale([< number > | < percentage >])
Alters the colors in the element to be shifted toward shades
of gray. A value of 0 leaves the element unchanged, and a
value of 1 or 100% will result in black and white, as a fully
grayscale element.

sepia([< number > | < percentage >])
Alters the colors in the element to be shifted toward shades
of sepia tones (sepia is the reddish-brown color used in
antique photography, defined by Wikipedia to be equivalent
to #704214 or rgba(112,66,20) in the sRGB color space). A
value of 0 leaves the element unchanged, and a value of 1
or 100% will result in a fully sepia element.

invert([< number > | < percentage >])
Inverts all colors in the element. Each of the R, G, and B
values for a given color are inverted by subtracting them
from 255 (in 0–255 notation) or from 100% (in 0%–100%
notation). For example, a pixel with the color rgb(255 128
55) will be rendered as rgb(0 127 200) ; a different pixel
with the value rgb(75% 57.2% 23%) will become rgb(25%
42.8% 77%) . A value of 0 leaves the element unchanged,

and a value of 1 or 100% results in a fully inverted element.
A value of 0.5 or 50% stops the inversion of each color at
the midpoint of the color space, leading to an element of
uniform gray regardless of the input element’s appearance.

hue-rotate(< angle >)
Alters the colors of the image by shifting their hue angle
around an HSL color wheel, leaving saturation and lightness
unchanged. A value of 0deg means no difference between
the input and output images. A value of 360deg (a full single
rotation) will also present an apparently unchanged element,
though the rotation-angle value is maintained. Values above
360deg are permitted. Negative values are also permitted,
and cause a counterclockwise rotation as opposed to the
clockwise rotation caused by positive values. (In other words,
the rotation is “compass-style,” with 0° at the top and
increasing angle values in the clockwise direction.)

Examples of the preceding filter functions are shown in
Figure 20-3, though fully appreciating them depends on a color
rendering.

Figure 20-3. Color filter effects

Brightness, Contrast, and Saturation

While the following filter functions also manipulate color,
they do so in closely related ways, and are a familiar grouping
to anyone who’s worked with images, particularly photographic
images. For all these functions, values greater than 1 and 100%
are permitted, but are clipped to be 1 or 100% for the purposes
of computing the final value:

brightness([< number > | < percentage >])
Alters the brightness of the element’s colors. A value of 0
leaves the element a solid black, and a value of 1 or 100%
leaves it unchanged. Values above 1 and 100% yield colors
brighter than the input element, and can eventually reach a
state of solid white.

contrast([< number > | < percentage >])
Alters the contrast of the element’s colors. The higher the
contrast, the more colors are differentiated from each other;
the lower the contrast, the more they converge on each other.
A value of 0 leaves the element a solid gray, and a value of
1 or 100% leaves it unchanged. Values above 1 and 100%
yield colors with greater contrast than is present in the input
element.

saturate([< number > | < percentage >])
Alters the saturation of the element’s colors. The more
saturated an element’s colors, the more intense they become;
the less saturated they are, the more muted they appear. A
value of 0 leaves the element completely unsaturated,
making it effectively grayscale, whereas a value of 1 or
100% leaves the element unchanged. Similar to
brightness() , saturate() permits and acts upon values
greater than 1 or 100% ; such values result in
supersaturation.

Examples of the preceding filter functions are shown in
Figure 20-4, though fully appreciating them depends on a color
rendering. Also, the effects of greater-than-one values may be
hard to make out in the figure, but they are present.

Figure 20-4. Brightness, contrast, and saturation filter effects

SVG Filters

The last filter value type is a function of a familiar kind: the
url() value type. This allows you to point to a (potentially very
complicated) filter defined in SVG, whether it’s embedded in the
document or stored in an external file.

This takes the form url(<uri>) , where the < uri > value points
to a filter defined using SVG syntax, specifically the <filter>
element. This can be a reference to a single SVG image that
contains only a filter, such as url(wavy.svg) , or it can be a
pointer to an identified filter embedded in an SVG image, such
as url(filters.svg#wavy) . The advantage of the latter pattern
is that a single SVG file can define multiple filters, thus

consolidating all your filtering into one file for easy loading,
caching, and referencing.

If a url() function points to a nonexistent file, or points to an
SVG fragment that is not a <filter> element, the function is
invalid and the entire function list is ignored (thus rendering
the filter declaration invalid).

Examining the full range of filtering possibilities in SVG is well
beyond the scope of this book, but let’s just say that the power
of the offered features is substantial. A few simple examples of
SVG filtering are shown in Figure 20-5, with brief captions to
indicate the kinds of operations the filters were built to create.
(The actual CSS used to apply these filters looks like filter:
url(filters.svg#rough) .)

Figure 20-5. SVG filter effects

It’s easily possible to put every last bit of filtering you do into
SVG, including replacements for every other filter function
you’ve seen. (In fact, all the other filter functions are defined
by the specification as literal SVG filters, to give a precise
rendering target for implementors.) Remember, however, that
you can chain CSS functions together. Thus, you might define a
specular-highlight filter in SVG, and modify it with blurring or
grayscale functions as needed. For example:

Always keep in mind that the filter functions are applied in
order. That’s why the grayscale() and blur() functions
come after the url() -imported spotlight filter. If they were
reversed, the logos would be made grayscale or blurred first,
and then have the spotlight filter applied afterward.

Compositing and Blending

In addition to filtering, CSS enables you to determine how
elements are composited together. Take, for example, two
elements that partially overlap because of positioning. By

img.logo {filter: url(/assets/filters.svg#spotlight);
img.logo.print {filter: url(/assets/filters.svg#spotl
img.logo.censored {filter: url(/assets/filters.svg#sp

default, the element in front, if fully opaque, completely
obscures the one behind, wherever they overlap. If the one in
front is semitransparent, the element in back is partially visible.

This is sometimes called simple alpha compositing, in that you
can see whatever is behind an element as long as some (or all)
of it has alpha channel values less than 1 . Think of how you
can see the background through an element with opacity:
0.5 , or in the areas of a PNG or GIF that are set to be
transparent. That’s simple alpha compositing.

But if you’re familiar with image-editing programs like
Photoshop or GIMP, you know that overlapping image layers
can be blended together in a variety of ways. CSS has the same
ability. CSS has two blending strategies (at least as of late 2022):
blending entire elements with whatever is behind them, and
blending the background layers of a single element together.
While similar to filter effects in many ways, blending mode
values are predefined—they don’t accept a parameter—and
while both filter effects and blend modes support multiple
values, the properties that support blend modes use a comma-
separated list of values instead of a space-separated list. (This
inconsistency in value syntaxes is rooted deep in the history of
CSS, and is something we just have to live with for the time
being.)

Blending Elements

If elements overlap, you can change the way they blend
together by using the mix-blend-mode property.

MIX-BLEND-MODE

Values normal | multiply | screen | overl
ay | darken | lighten | color-dodg
e | color-burn | hard-light | soft-
light | difference | exclusion | h
ue | saturation | color | luminosit
y

Initial
value

normal

Applies to All elements

Computed
value

As declared

Inherited No

Animatable No

The CSS specification indicates that this property “defines the
formula that must be used to mix the colors with the backdrop.”

The element is blended with whatever is behind it (the
“backdrop”), whether that’s pieces of another element, or just
the background of an ancestor element such as the <body> .

The default value, normal , shows the element’s pixels as is,
without any mixing with the backdrop, except where the alpha
channel is less than 1 . This is the simple alpha compositing
mentioned previously. It’s what we’re all used to, which is why
it’s the default value. Figure 20-6 shows a few examples.

Figure 20-6. Simple alpha-channel blending

For the rest of the mix-blend-mode keywords, we’ve grouped
them into a few categories. Let’s also nail down a few
definitions we’ll be using in the blend mode descriptions:

Foreground
The element that has mix-blend-mode applied to it.

Backdrop
Whatever is behind an element. This can be other elements,
the background of an ancestor element, and so on.

Pixel component
The color component of a given pixel: R, G, and B.

If it helps, think of the foreground and backdrop as layers atop
each other in an image-editing program. With mix-blend-mode ,
you can change the blend mode applied to the top element (the
foreground).

Darken, lighten, difference, and exclusion

The following blend modes might be called simple-math modes
—they achieve their effect by directly comparing values in
some way, or using simple addition and subtraction to modify
pixels:

darken

Each pixel in the foreground is compared with the
corresponding pixel in the backdrop, and for each of the R, G,
and B values (the pixel components), the smaller of the two is
kept. Thus, if the foreground pixel has a value corresponding
to rgb(91 164 22) and the backdrop pixel is rgb(102 104
255) , the resulting pixel will be rgb(91 104 22) .

lighten

This blend is the inverse of darken : when comparing the R,
G, and B components of a foreground pixel and its

corresponding backdrop pixel, the larger of the two values is
kept. Thus, if the foreground pixel has a value corresponding
to rgb(91 164 22) and the backdrop pixel is rgb(102 104
255) , the resulting pixel will be rgb(102 164 255) .

difference

The R, G, and B components of each pixel in the foreground
are compared to the corresponding pixel in the backdrop,
and the absolute value of subtracting one from the other is
the final result. Thus, if the foreground pixel has a value
corresponding to rgb(91 164 22) and the backdrop pixel is
rgb(102 104 255) , the resulting pixel will be rgb(11 60
233) . If one of the pixels is white, the resulting pixel will be
the inverse of the nonwhite pixel. If one of the pixels is black,
the result will be exactly the same as the nonblack pixel.

exclusion

This blend is a milder version of difference . Rather than |
back – fore, the formula is back + fore – (2 × back × fore),
where back and fore are values in the range 0 to 1. For
example, an exclusion calculation of an orange (rgb(100%
50% 0%)) and a medium gray (rgb(50% 50% 50%)) will yield
rgb(50% 50% 50%) . For the green component, as an
example, the math is 0.5 + 0.5 – (2 × 0.5 × 0.5), which reduces
to 0.5, corresponding to 50% . Compare this to difference ,

where the result would be rgb(50% 0% 50%) , since each
component is the absolute value of subtracting one from the
other.

This last definition highlights that, for all blend modes, the
actual values being operated on are in the range 0–1. The
previous examples showing values like rgb(11 60 233) are
normalized from the 0–1 range. In other words, given the
example of applying the difference blend mode to rgb(91
164 22) and rgb(102 104 255) , the actual operation is as
follows:

1. rgb(91 164 22) is R = 91 ÷ 255 = 0.357; G = 164 ÷ 255 = 0.643;
B = 22 ÷ 255 = 0.086. Similarly, rgb(102 104 255)
corresponds to R = 0.4; G = 0.408; B = 1.

2. Each component is subtracted from the corresponding
component, and the absolute value taken. Thus, R = | 0.357 –
0.4 | = 0.043; G = | 0.643 – 0.408 | = 0.235; B = | 1 – 0.086 | =
0.914. This could be expressed as rgba(4.3% 23.5% 91.4%) ,
or (by multiplying each component by 255) as rgb(11 60
233) .

From all this, you can perhaps understand why the full
formulas are not written out for every blend mode we cover. If
you’re interested in the fine details, each blend mode’s formula

is provided in the “Compositing and Blending Level 2”
specification.

Figure 20-7 depicts examples of the blend modes in this section.

Figure 20-7. Darken, lighten, difference, and exclusion blending with mix-blend-
mode: applied to the foreground image

Multiply, screen, and overlay

The following blend modes might be called the multiplication
modes—they achieve their effect by multiplying values
together:

multiply

https://drafts.fxtf.org/compositing/#blendingseparable

Each pixel component in the foreground is multiplied by the
corresponding pixel component in the backdrop. This yields
a darker version of the foreground, modified by what is
underneath. This blend mode is symmetric, in that the result
will be exactly the same even if you were to swap the
foreground with the backdrop.

screen

Each pixel component in the foreground is inverted (see
invert in “Color Filtering”), multiplied by the inverse of the
corresponding pixel component in the backdrop, and the
result inverted again. This yields a lighter version of the
foreground, modified by what is underneath. Like multiply ,
screen is symmetric.

overlay

This blend is a combination of multiply and screen . For
foreground pixel components darker than 0.5 (50%), the
multiply operation is carried out; for foreground pixel
components whose values are above 0.5, screen is used.
This makes the dark areas darker, and the light areas lighter.
This blend mode is not symmetric, because swapping the
foreground for the backdrop would mean a different pattern
of light and dark, and thus a different pattern of multiplying
versus screening.

Figure 20-8 depicts examples of these blend modes.

Figure 20-8. Images with mix-blend-mode property set showing multiply, screen, and
overlay blending

Hard and soft light

The following blend modes are covered here because the first is
closely related to a previous blend mode, and the other is just a
muted version of the first:

hard-light

This blend is the inverse of overlay blending. Like overlay ,
it’s a combination of multiply and screen , but the
determining layer is the backdrop. Thus, for backdrop pixel
components darker than 0.5 (50%), the multiply operation
is carried out; for backdrop pixel components lighter than
0.5, screen is used. This makes it appear somewhat as if the
foreground is being projected onto the backdrop with a
projector that employs a harsh light.

soft-light

This blend is a softer version of hard-light . This mode uses
the same operation but is muted in its effects. The intended
appearance is as if the foreground is being projected onto the
backdrop with a projector that employs a diffuse light.

Figure 20-9 depicts examples of these blend modes.

Figure 20-9. Hard- and soft-light blending

Color dodge and burn

Color dodging and burning—terms that come from old
darkroom techniques performed on chemical film stock—are
meant to lighten or darken a picture with a minimum of change
to the colors themselves. These modes are as follows:

color-dodge

Each pixel component in the foreground is inverted, and the
component of the corresponding backdrop pixel component
is divided by the inverted foreground value. This yields a
brightened backdrop unless the foreground value is 0 , in
which case the backdrop value is unchanged.

color-burn

This blend is a reverse of color-dodge : each pixel
component in the backdrop is inverted, the inverted
backdrop value is divided by the unchanged value of the
corresponding foreground pixel component, and the result is
then inverted. This yields a result where the darker the
backdrop pixel, the more its color will burn through the
foreground pixel.

Figure 20-10 depicts examples of these blend modes.

Figure 20-10. Blending with mix-blend-mode: color-dodge and mix-blend-mode:
color-burn

Hue, saturation, luminosity, and color

The final four blend modes are different from those we’ve
shown before, because they do not perform operations on the
R/G/B pixel components. Instead, they perform operations to

combine the hue, saturation, luminosity, and color of the
foreground and backdrop in different ways. These modes are as
follows:

hue

For each pixel, combines the luminosity and saturation levels
of the backdrop with the hue angle of the foreground.

saturation

For each pixel, combines the hue angle and luminosity level
of the backdrop with the saturation level of the foreground.

color

For each pixel, combines the luminosity level of the backdrop
with the hue angle and saturation level of the foreground.

luminosity

For each pixel, combines the hue angle and saturation level
of the backdrop with the luminosity level of the foreground.

Figure 20-11 depicts examples of these blend modes.

Figure 20-11. Hue, saturation, luminosity, and color blending

These blend modes can be a lot harder to grasp without busting
out raw formulas, and even those can be confusing if you aren’t
familiar with how things like saturation and luminosity levels
are determined. If you don’t feel like you quite have a handle
on how these modes work, the best solution is to practice with a
bunch of images and simple color patterns.

Two points to note:

Remember that an element always blends with its backdrop.
If there are other elements behind an element, it will blend
with them; if there’s a patterned background on the parent
element, the blending will be done against that pattern.

Changing the opacity of a blended element will change the
outcome, though not always in the way you might expect. For
example, if an element with mix-blend-mode: difference
is also given opacity: 0.8 , the difference calculations will
be scaled by 80%. More precisely, a scaling factor of 0.8 will
be applied to the color-value calculations. This can cause
some operations to trend toward flat middle gray and others
to shift the color changes.

Blending Backgrounds

Blending an element with its backdrop is one thing, but what if
an element has multiple background images that overlap and
also need to be blended together? That’s where background-
blend-mode comes in.

BACKGROUND-BLEND-MODE

Values [normal | multiply | screen | over
lay | darken | lighten | color-dod
ge | color-burn | hard-light | soft
-light | difference | exclusion |
hue | saturation | color | luminos
ity]#

Initial
value

normal

Applies to All elements

Computed
value

As declared

Inherited No

Animatable No

We won’t go through an exhaustive list of all the blend modes
and what they mean, because we did that in “Blending
Elements”. What they meant there, they mean here.

The difference is that when it comes to blending multiple
background images, they’re blended with one other against an
empty background—that is, a completely transparent,
uncolored backdrop. They do not blend with the backdrop of
the element, except as directed by mix-blend-mode . To see
what that means, consider the following:

Here we have three background images, each with its own
blend mode. These are blended together into a single result,
shown in Figure 20-12.

#example {background-image:
 url(star.svg),
 url(diamond.png),
 linear-gradient(135deg, #F00, #AEA);
 background-blend-mode: color-burn, luminosity, da

Figure 20-12. Three backgrounds blended together

So far, fine. Here’s the kicker: the result will be the same
regardless of what might appear behind the element. We can
change the parent’s background to white, gray, fuchsia, or a
lovely pattern of repeating gradients, and in every case those
three blended backgrounds will look exactly the same, pixel for
pixel. They’re blended in isolation, a term we’ll return to
shortly. We can see the previous example (Figure 20-12) sitting
atop a variety of backgrounds in Figure 20-13.

Figure 20-13. Blending with color versus transparency

Like multiple blended elements stacked atop one another, the
blending of background layers works from the back to the
front. Thus, if you have two background images over a solid
background color, the background layer in the back is blended
with the background color, and then the frontmost layer is
blended with the result of the first blend. Consider the
following:

Given these styles, diamond.png is blended with the background
color goldenrod using the luminosity blend. Once that’s
done, star.svg is blended with the results of the diamond-
goldenrod blend using a color-burn blend.

Although it’s true that the background layers are blended in
isolation, they’re also part of an element that may have its own
blending rules via mix-blend-mode . Thus, the final result of the
isolated background blend may be blended with the element’s
backdrop after all. Given the following styles, the first example’s
background will sit atop the element’s backdrop, but the rest

.bbm {background-image:
 url(star.svg),
 url(diamond.png);
 background-color: goldenrod;
 background-blend-mode: color-burn, luminosity;}

will end up blended with it in some fashion, as illustrated in
Figure 20-14:

.one {mix-blend-mode: normal;}

.two {mix-blend-mode: multiply;}

.three {mix-blend-mode: darken;}

.four {mix-blend-mode: luminosity;}

.five {mix-blend-mode: color-dodge;}

<div class="bbm one"></div>
<div class="bbm two"></div>
<div class="bbm three"></div>
<div class="bbm four"></div>
<div class="bbm five"></div>

Figure 20-14. Blending elements with their backdrops

Throughout this section, we’ve touched on the concept of
blending in isolation as a thing that backgrounds naturally do.
Elements, on the other hand, do not naturally blend in isolation.
As you’ll see next, that behavior can be changed.

Blending in Isolation

Sometimes you might want to blend multiple elements together,
but in a group of their own, in the same way background layers
on an element are blended. This is, as you’ve seen, called
blending in isolation. If that’s what you’re after, the isolation
property is for you.

ISOLATION

Values auto | isolate

Initial
value

auto

Applies to All elements (in SVG, it applies to
container elements, graphics elements,
and graphics-referencing elements)

Computed
value

As declared

Inherited No

Animatable No

This pretty much does exactly what it says: it either defines an
element to create an isolated blending context, or not. Given the
following styles, then, we get the result shown in Figure 20-15:

img {mix-blend-mode: difference;}
p.alone {isolation: isolate;}

<p class="alone"></p>
<p></p>

Figure 20-15. Blending in isolation, and not

Take particular note of where isolation is applied, and where
mix-blend-mode is applied. The image is given the blend mode,
but the containing element (in this case, a paragraph) is set to
isolation blending. It’s done this way because you want the
parent (or ancestor element) to be isolated from the rest of the
document, in terms of how its descendant elements are

blended. So if you want an element to blend in isolation, look
for an ancestor element to set to isolation: isolate .

An interesting wrinkle arises in all of this: any element that
establishes a stacking context is automatically isolated,
regardless of the isolation value. For example, if you
transform an element by using the transform property, it will
become isolated.

The complete list of stacking-context-establishing conditions, as
of late 2022, is as follows:

The root element (e.g., <html>)
Making an element a flex or grid item and setting its z-
index to anything other than auto
Positioning an element with relative or absolute and
setting its z-index to anything other than auto
Positioning an element with fixed or sticky , regardless of
its z-index value
Setting opacity to anything other than 1
Setting transform to anything other than none
Setting mix-blend-mode to anything other than normal
Setting filter to anything other than none
Setting perspective to anything other than none

Setting mask-image , mask-border , or mask to anything
other than none
Setting isolation to isolate
Setting contain to a value that contains layout or paint
Applying will-change to any of the other properties, even if
they are not actually changed

Thus, if you have a group of elements that are blended together
and then blended with their shared backdrop, and you then
transition the group’s opacity from 1 to 0 , the group will
suddenly become isolated during the transition. This might
have no visual impact, depending on the original set of blends,
but it very well might.

Containing Elements

Similar to isolating elements for the purposes of blending
modes, CSS has a property called contain that sets limits on
how much an element’s layout can be affected by other content,
and how much its layout will affect other content. It’s meant as
a way for authors to give optimization hints to browsers.

CONTAIN

Value none | [size ‖ layout ‖ style ‖ pa
int] | strict | content

Initial
value

none

Applies to All elements (with caveats given later)

Computed
value

As declared

Inherited No

Animatable No

The default, none , means no containment is indicated and so
no optimization hints are given. Each of the other values has its
own peculiar effects, so we’ll examine them in turn.

Perhaps the simplest of the four alternatives is contain:
paint . With this value set, the painting of an element is

confined to its overflow box, so that any descendants cannot be
painted outside that area. This is in many ways similar to
overflow: hidden . The difference here is that with paint
containment enabled, there will never be a way to reveal the
unpainted portions of the element and its descendants; thus, no
scrollbar, click-dragging, or other user action will bring the
unpainted content into view. This allows browsers to
completely ignore the layout and painting of elements that are
entirely offscreen or otherwise not visible, since their
descendants cannot be displayed either.

A step up from that in complexity is contain: style . With the
style value, things like counter increments and resets, and
quotation-mark nesting, are calculated within the contained
element as though no such styles exist outside it, and
furthermore, they cannot leave the element to affect other
elements. This sounds like it creates scoped styles, where you
can have a set of styles just apply to a subtree of the DOM, but it
doesn’t, really. It does that only for things like counters and
quote nesting.

A more impactful option is contain: size . This value makes it
so that an element is laid out without checking to see how its
descendant elements might affect its layout, and furthermore,
its size is calculated as though it has no descendants, which

means it will have zero height. It’s also treated as though it has
no intrinsic aspect ratio, even if the element is an ,
<svg> , form input, or something else that would ordinarily
have an intrinsic aspect ratio.

Here are a couple examples of size containment, illustrated in
Figure 20-16:

<p>This is a paragraph.</p>

<figure>

 <figcaption>That’s a big image.</figcaption>
</figure>

Figure 20-16. Examples of size containment

Maybe that’s interesting, but is it useful? To pick one example, it
could be when JavaScript is used to size elements based on the
sizes of their ancestors, rather than the other way around

p {contain: size; border: medium solid gray; padding:
figure img {contain: size; border: 1px solid; width:

(container queries by another name) in order to prevent layout
loops. It could also be applied to elements known to be
offscreen at page render, in order to minimize the amount of
work required by the browser.

The last kind of containment is invoked with contain: layout .
This allows fragments to come into it, but no fragments to
escape, as might be possible with proposed features like CSS
Regions. When layout is set, the internal layout of the element
is isolated from the rest of the page. This means that nothing in
the element affects anything outside the element and that
nothing outside the element affects the element’s internal
layout.

More than one of these keywords can be used in a single rule,
such as contain: size paint . This leads to the last two
possible keywords, content and strict . The content
keyword is shorthand for layout paint style , and strict is
shorthand for size layout paint style . In other words,
content contains everything but size, and strict contains in
all possible ways.

An important caveat is that contain can apply to elements
with the following exceptions: elements that do not generate a
box (e.g., display: none or display: contents), internal

table boxes that aren’t table cells, internal Ruby boxes, and
nonatomic inline-level boxes can’t be set to paint , size , or
layout . Furthermore, elements that have an inside display
type of table (e.g., <table>) can’t be set to size . Any element
can be set to style .

We have one more caveat to mention: some forms of
containment can be invoked even without contain . For
example, overflow: hidden will have effectively the same
result as contain: paint , even though contain: none may
apply to the same element.

All this leads us to the other containment property, content-
visibility , which effectively invokes kinds of containment, as
well as potentially suppressing the rendering of an element’s
contents.

CONTENT-VISIBILITY

Value visible | hidden | auto

Initial value visible

Applies to Elements that can be layout-
contained

Computed
value

As declared

Inherited No

Animatable No

In the default case, visible , the contents of an element are
shown as normal.

If the hidden value is used, none of the element’s contents are
rendered, and they do not participate in the sizing of the
element, as if all the contents (including any text outside of
descendant elements) had been set to display: none .

Furthermore, the suppressed content should not be available to
things such as page search and tab-order navigation, and
should not be selectable (as with mouse click-and-drag) or
focusable.

If auto is used, paint, style, and layout containment are
enabled, as if having declared contain: content . The content
may be skipped by the user agent or may not; most likely, it will
be if the element is offscreen or otherwise not visible, but that’s
up to the user agent. The contents in this case are available to
page search and tab-order navigation, and can be selected and
focused.

WARNING

As of early 2023, content-visibility is behind a flag in Firefox and not supported
in Safari.

To be honest, you probably shouldn’t be messing with contain
or content-visibility unless you know with absolute
certainty that you really need them, and you’ll more likely be
setting and disabling them via JavaScript. But they’re there
when you do need them.

Float Shapes

Let’s take a moment to return to the world of floating elements
and see how we can shape the way text flows past them. Old-
school web designers may remember techniques such as ragged
floats and sandbagging—in both cases, using a series of short,
floated images of varying widths to create ragged float shapes.
Thanks to CSS Shapes, these tricks are no longer needed.

NOTE

In the future, shapes may be available for nonfloated elements such as elements
placed using CSS Grid, but as of late 2022, they’re allowed on only floated elements.

To shape the flow of content around a floated element, you
need to define a shape. The property shape-outside is how
you do so.

SHAPE-OUTSIDE

Value none | [< basic-shape > ‖ < shape-

box >] | < image >

Initial
value

none

Applies to Floats

Computed
value

For a < basic-shape >, as defined (see
below); for an < image >, its URL made
absolute; otherwise, as specified (see
below)

Inherited No

Animatable < basic-shape >

With none , there’s no shaping except the margin box of the
float itself—same as it ever was. That’s straightforward and
boring. Time for the good stuff.

Let’s start with using an image to define the float shape, as it’s
both the simplest and (in many ways) the most exciting. Say we
have an image of a crescent moon, and we want the content to
flow around the visible parts of it. If that image has transparent
parts, as in a GIF or a PNG, then the content will flow into those
transparent parts, as shown in Figure 20-17:

In most cases, when you have a floated image, you’ll just use
that same image as its shape. You don’t have to—you can
always load a second, different image to create a float shape
that doesn’t match the visible image—but using a single image
as both the float and its shape is by far the most common use
case. We’ll talk in the following sections about how to push the
content away from the visible parts of the image, and how to
vary the transparency threshold that determines the shape; but
for now, let’s just savor the power this affords us.

img.lunar {float: left; shape-outside: url(moon.png);

<img class="lunar" src="moon.png" alt="a crescent moo

Figure 20-17. Using an image to define a float shape

One point needs to be clarified at this stage: the content will
flow into transparent parts to which it has “direct access,” for
lack of a better term. That is, the content doesn’t flow to both
the left and right of the image in Figure 20-17, but just the right
side. That’s the side that faces the content, it being a left-floated
image. If we right-floated the image, the content would flow
into the transparent areas on the image’s left side. This is
illustrated in Figure 20-18 (with the text right-aligned to make
the effect more obvious):

Figure 20-18. An image float shape on the right

p {text-align: right;}
img.lunar {float: right; shape-outside: url(moon.png)

Always remember that the image has to have actual areas of
transparency to create a shape. With an image format like JPEG,
or even if you have a GIF or PNG with no alpha channel, the
shape will be a rectangle, exactly as if you’d used shape-
outside: none .

Shaping with Image Transparency

As you saw in the previous section, it’s possible to use an image
with transparent areas to define the float shape. Any part of the
image that isn’t fully transparent creates the shape. That’s the
default behavior, anyway, but you can modify it with shape-
image-threshold .

SHAPE-IMAGE-THRESHOLD

Values < number >

Initial
value

0.0

Applies to Floats

Computed
value

The same as the specified value after
clipping the < number > to the range [0.0,
1.0]

Inherited No

Animatable Yes

This property lets you decide what level of transparency
determines an area where content can flow, or, conversely,
what level of opacity defines the float shape. Thus, with shape-
image-threshold: 0.5 , any part of the image with more than
50% transparency can allow content to flow into it, and any

part of the image with less than 50% transparency is part of the
float shape. This is illustrated in Figure 20-19.

Figure 20-19. Using image opacity to define the float shape at the 50% opacity level

If you set the value of the shape-image-threshold property to
1.0 (or just 1), no part of the image can be part of the shape,
so there won’t be one, and the content will flow over the entire
float.

On the other hand, a value of 0.0 (or just 0) will make any
nontransparent part of the image the float shape, as if this
property was not even set. Furthermore, any value below 0 is
reset to 0.0 , and any above one is reset to 1.0 .

Using Inset Shapes

Now let’s turn back to the < basic-shape > and < shape-box >
values. A basic shape is one of the following types:

inset()

circle()

ellipse()

polygon()

In addition, the < shape-box > can be one of these types:

margin-box

border-box

padding-box

content-box

These shape boxes indicate the outermost limits of the shape.
You can use them on their own, as illustrated in Figure 20-20,
where the images have some padding in which a dark
background color can be seen, then a thick border, and finally
some (invisible, as always) margins.

Figure 20-20. The basic shape boxes

The default shape box is the margin box, which makes sense,
since that’s what float boxes use when they aren’t being shaped.

You can use a shape box in combination with a basic shape;
thus, for example, you could declare shape-outside:
inset(10px) border-box . The syntax for each of the basic
shapes is different, so we’ll take them in turn.

If you’re used to working with border images, inset shapes
should seem familiar. Even if you aren’t, the syntax isn’t too
complicated. You define distances to move inward from each
side of the shape box, using from one to four length or
percentage values, with an optional corner-rounding value.

To pick a simple case, suppose we want to shrink the shape 2.5
em inside the shape box:

shape-outside: inset(2.5em);

Four offsets are created, each 2.5 em inward from the outside
edge of the shape box. In this case, the shape box is the margin
box, since we haven’t altered it. If we wanted the shape to
shrink from, say, the padding box, the value would change like
so:

shape-outside: inset(2.5em) padding-box;

Figure 20-21 illustrates the two inset shapes we just defined.

Figure 20-21. Insets from two basic shape boxes

As with margins, padding, borders, and so on, value replication
is in force: if there are fewer than four lengths or percentages,
the missing values are derived from the given values. They go
in TRBL order, and thus the following pairs are internally
equivalent:

An interesting aspect of inset shapes is the ability to round the
corners of the shape after the inset has been calculated. The
syntax (and effects) are identical to the border-radius

shape-outside: inset(23%);
shape-outside: inset(23% 23% 23% 23%); /* same as pr

shape-outside: inset(1em 13%);
shape-outside: inset(1em 13% 1em 13%); /* same as pr

shape-outside: inset(10px 0.5em 15px);
shape-outside: inset(10px 0.5em 15px 0.5em); /* same

property. Thus, if you wanted to round the corners of the float
shape with a 5-pixel round, you’d write something like this:

shape-outside: inset(7%) round 5px;

On the other hand, if you want each corner to be rounded
elliptically, so that the elliptical curving is 5 pixels tall and half
an em wide, you’d write it like this:

shape-outside: inset(7% round 0.5em/5px);

Setting a different rounding radius in each corner is also
possible and follows the usual replication pattern, except it
starts from the top left instead of the top. So if you have more
than one value, they’re in the order top left, top right, bottom
right, bottom left (TL-TR-BR-BL, or TiLTeR-BuRBLe), and are
filled in by copying declared values in for the missing values.
Figure 20-22 shows a few examples. (The rounded shapes in the
middle are the float shapes, which have been added for clarity.
Browsers do not actually draw the float shapes on the page.)

Figure 20-22. Rounding the corners of a shape box

NOTE

If you set a border-radius value for your floated element, this is not the same as
creating a flat shape with rounded corners. Remember that shape-outside defaults
to none , so the floated element’s box won’t be affected by the rounding of borders. If
you want to have text flow closely past the border rounding you’ve defined with
border-radius , you’ll need to supply identical rounding values to shape-outside .

Circles and ellipses

Circular and elliptical float shapes use similar syntax. In either
case, you define the radius (or two radii, for the ellipse) of the
shape, and then the position of its center.

NOTE

If you’re familiar with circular and elliptical gradient images, the syntax for defining
circular and elliptical float shapes will seem very much the same. There are some
important caveats, however, as this section will explore.

Suppose we want to create a circle shape that’s centered in its
float, with a 25-pixel radius. We can accomplish that in any of
the following ways:

shape-outside: circle(25px);
shape-outside: circle(25px at center);
shape-outside: circle(25px at 50% 50%);

Regardless of which we use, the result will be that shown in
Figure 20-23.

Figure 20-23. A circular float shape

Something to watch out for is that shapes cannot exceed their
shape box, even if you set up a condition where that seems
possible. For example, suppose we applied the previous 25-
pixel-radius rule to a small image, one that’s no more than 30

pixels on a side. In that case, you’ll have a circle 50 pixels in
diameter centered on a rectangle that’s smaller than the circle.
What happens? The circle may be defined to stick out past the
edges of the shape box—in the default case, the margin box—
but it will be clipped at the edges of the shape box. Thus, given
the following rules, the content will flow past the image as if it
had no shape, as shown in Figure 20-24:

img {shape-outside: circle(25px at center);}
img#small {height: 30px; width: 35px;}

Figure 20-24. A rather small circular float shape for an even smaller image

We can see the circle extending past the edges of the image, but
notice how the text flows along the edge of the image, not the
float shape. Again, that’s because the actual float shape is
clipped by the shape box; in Figure 20-24, that’s the margin box,
which is at the outer edge of the image. So the actual float shape
isn’t a circle, but a box the exact dimensions of the image.

The same holds true no matter what edge you define to be the
shape box. If you declare shape-outside: circle(5em)
content-box; , the shape will be clipped at the edges of the
content box. Content will be able to flow over the padding,
borders, and margins, and will not be pushed away in a circular
fashion.

This means you can do things like create a float shape that’s the
lower-right quadrant of a circle in the upper-left corner of the
float, assuming the image is 3em square:

shape-outside: circle(3em at top left);

For that matter, if you have a perfectly square float, you can
define a circle-quadrant that just touches the opposite sides,
using a percentage radius:

shape-outside: circle(50% at top left);

But note: that works only if the float is square. If it’s
rectangular, oddities creep in. Take this example, which is
illustrated in Figure 20-25:

img {shape-outside: circle(50% at center);}
img#tall {height: 150px; width: 70px;}

Figure 20-25. The circular float shape that results from a rectangle

Don’t bother trying to pick which dimension is controlling the
50% calculation, because neither is. Or, in a sense, both are.

When you define a percentage for the radius of a circular float
shape, it’s calculated with respect to a calculated reference box.
The height and width of this box are calculated as follows:

In effect, this creates a square that’s a blending of the float’s
intrinsic height and width. In the case of our floated image of
70 × 150 pixels, that works out to a square that’s 117.047 pixels
on a side. Thus, the circle’s radius is 50% of that, or 58.5235
pixels.

Once again, note that the content in Figure 20-26 is flowing past
the image and ignoring the circle. That’s because the actual float

shape is clipped by the shape box, so the final float shape would
be a kind of vertical bar with rounded ends, something very
much like what’s shown in Figure 20-26.

Figure 20-26. A clipped float shape

It’s a lot simpler to position the center of the circle and have it
grow until it touches either the closest side to the circle’s center,
or the farthest side from the circle’s center. Both techniques are
possible, as shown here and illustrated in Figure 20-27:

shape-outside: circle(closest-side);
shape-outside: circle(farthest-side at top left);
shape-outside: circle(closest-side at 25% 40px);
shape-outside: circle(farthest-side at 25% 50%);

Figure 20-27. Various circular float shapes

NOTE

In one of the examples in Figure 20-27, the shape is clipped to its shape box, whereas
in the others, the shape is allowed to extend beyond it. If we hadn’t clipped the shape,
it would have been too big for the figure! You’ll see this again in the next figure.

Now, how about ellipses? Besides using the name ellipse() ,
the only syntactical difference between circles and ellipses is
that you define two radii instead of one radius. The first is the x
(horizontal) radius, and the second is the y (vertical) radius.
Thus, for an ellipse with an x radius of 20 pixels and a y radius
of 30 pixels, you’d declare ellipse(20px 30px) .

You can use any length or percentage, or the keywords
closest-side and farthest-side , for either of the radii in an
ellipse. Figure 20-28 shows some possibilities.

Figure 20-28. Defining float shapes with ellipses

Working with percentages for the lengths of the radii is a little
different with ellipses than with circles. Instead of a calculated
reference box, percentages in ellipses are calculated against the
axis of the radius. Thus, horizontal percentages are calculated
with respect to the width of the shape box, and vertical
percentages with respect to the height. This is illustrated in
Figure 20-29.

Figure 20-29. Elliptical float shapes and percentages

As with any basic shape, an elliptical shape is clipped at the
edges of the shape box.

Polygons

Polygons are a lot more complicated to write, though they may
be a little bit easier to understand. You define a polygonal shape
by specifying a comma-separated list of x-y coordinates,
expressed as either lengths or percentages, calculated from the
top left of the shape box, as in SVG. Each x-y pair is a vertex in
the polygon. If the first and last vertices are not the same, the
browser will close the polygon by connecting them. (All
polygonal float shapes must be closed.)

So let’s say we want a diamond shape that’s 50 pixels tall and
wide. If we start building the polygon from the topmost vertex,
the polygon() value would look like this:

polygon(25px 0, 50px 25px, 25px 50px, 0 25px)

Percentages have the same behavior as they do in background-
image positioning (for example), so we can define a diamond
shape that always “fills out” the shape box. It would be written
like so:

polygon(50% 0, 100% 50%, 50% 100%, 0 50%)

The result of this and the previous polygon example are shown
in Figure 20-30.

Figure 20-30. A polygonal float shape

These examples both start from the topmost vertex, but they
don’t have to. All of the following will yield the same result:

polygon(50% 0, 100% 50%, 50% 100%, 0 50%) /* clockwis
polygon(0 50%, 50% 0, 100% 50%, 50% 100%) /* clockwis
polygon(50% 100%, 0 50%, 50% 0, 100% 50%) /* clockwis
polygon(0 50%, 50% 100%, 100% 50%, 50% 0) /* counterc

As before, remember: if a shape definition exceeds the shape
box, it will always be clipped to it. So even if you create a
polygon with coordinates that lie outside the shape box (by
default, the margin box), the polygon will get clipped. Figure 20-
31 demonstrates the result.

Figure 20-31. How a float shape is clipped when it exceeds the shape box

Polygons have an extra wrinkle: you can toggle their fill rule. By
default, the fill rule is nonzero , but the other possible value is
evenodd . It’s easier to show the difference than to describe it,
so here’s a star polygon with two fill rules, illustrated in
Figure 20-32:

polygon(nonzero, 51% 0%, 83% 100%, 0 38%, 100% 38%, 2
polygon(evenodd, 51% 0%, 83% 100%, 0 38%, 100% 38%, 2

Figure 20-32. The two polygonal fills

The default nonzero case is what we tend to think of with filled
polygons: a single shape, completely filled. The evenodd option
has a different effect, in which some pieces of the polygon are
filled and others are not.

This particular example doesn’t show much difference, since
the part of the polygon that’s missing is completely enclosed by
filled parts, so the end result is the same either way. However,
imagine a shape that has sideways spikes, and then a line that
cuts vertically across the middle of them. Rather than a comb
shape, you’d end up with a set of discontinuous triangles. There
are a lot of possibilities.

As you can imagine, a polygon can become very complex, with
a large number of vertices. You’re welcome to work out the
coordinates of each vertex on paper and type them in, but it
makes a lot more sense to use a tool to do this. A good example
of such a tool is the CSS Shapes Editor extension available for
Chrome via the Chrome Web Store. (Firefox has this capability

built natively into its web inspector.) You can select a float in
the DOM inspector, bring up the CSS Shapes Editor, select a
polygon, and then start creating and moving vertices in the
browser, with live reflowing of the content as you do so. Then,
once you’re satisfied, you can drag-select-copy the polygon
value for pasting into your stylesheet. Figure 20-33 shows a
screenshot of the Shapes Editor in action.

Figure 20-33. The Chrome Shapes Editor in action

WARNING

Because of cross-origin resource sharing (CORS) restrictions, shapes cannot be edited
with the Shapes Editor unless they’re being loaded over HTTP(S) from the same
origin server as the HTML and CSS. Loading local files from your computer will
prevent the shapes from being editable. The same restriction prevents shapes from
being loaded off local storage via the url() mechanism.

Adding a Shape Margin

Once a float of any kind of shape has been defined, it’s possible
to add a “margin”—more properly, a shape modifier—to that
shape by using the property shape-margin .

SHAPE-MARGIN

Values < length > | < percentage >

Initial value 0

Applies to Floats

Computed value The absolute length

Inherited No

Animatable Yes

Much like a regular element margin, a shape margin pushes
content away by either a length or a percentage; a percentage is

calculated with respect to the width of the element’s containing
block, just as are regular margins.

The advantage of a shape margin is that you can define a shape
that exactly matches the thing you want to shape, and then use
the shape margin to create extra space. Take an image-based
shape, where part of the image is visible and the rest is
transparent. Instead of having to add opaque portions to the
image to keep text and other content away from the visible part
of the image, you can just add a shape margin. This enlarges the
shape by the distance supplied.

In detail, the new shape is found by drawing a line
perpendicular from each point along the basic shape, with a
length equal to the value of shape-margin , to find a point in
the new shape. At sharp corners, a circle is drawn centered on
that point with a radius equal to the value of shape-margin .
After all that, the new shape is the smallest shape that can
describe all those points and circles (if any).

Remember, though, that a shape can never exceed the shape
box. Thus, by default, the shape can’t get any bigger than the
margin box of the unshaped float. Since shape-margin actually
increases the size of the shape, any part of the newly enlarged
shape that exceeds the shape box will be clipped.

To see what this means, consider the following, as illustrated in
Figure 20-34:

Figure 20-34. Adding margins to float shapes

Notice the way the content flows past the second and third
examples. There are definitely places where the content gets
closer than the specified shape-margin , because the shape has
been clipped at the margin box of the floated element. To make
sure the separation distance is always observed, include
standard margins that equal or exceed the shape-margin
distance. For example, we could have avoided the problem by
modifying two of the rules like so:

img {float: left; margin: 0; shape-outside: url(star.
 border: 1px solid hsl(0 100% 50% / 0.25);}
#one {shape-margin: 0;}
#two {shape-margin: 1.5em;}
#thr (shape-margin: 10%;}

In both cases, the right and bottom margins are set to be the
same as the shape-margin value, ensuring that the enlarged
shape will never exceed the shape box on those sides. This is
demonstrated in Figure 20-35.

Figure 20-35. Making sure the shape margins don’t get clipped

If you have a float go to the right, you’ll have to adjust its
margins to create space below and to the left, not the right, but
the principle is the same. You can also use float: inline-end
and the margin-inline property to ensure that if the writing
direction changes, your layout still works as intended.

Clipping and Masking

#two {shape-margin: 1.5em; margin: 0 1.5em 1.5em 0;}
#thr (shape-margin: 10%; margin: 0 10% 10% 0;}

Similar to float shaping, CSS also offers clipping and masking of
elements, albeit without any shaping of the element box. These
are methods of showing only portions of an element, using a
variety of simple shapes as well as the application of complete
images and SVG elements. These can be used to make
decorative bits of a layout more visually interesting, among
other things—a common technique is to frame images or give
them ragged edges.

Clipping

If all you want to do is visually clip away pieces of an element,
you can use the property clip-path .

CLIP-PATH

Values none | < url > | [[inset() | circle
() | ellipse() | polygon()] ‖
[border-box | padding-box | conten
t-box | margin-box | fill-box |
stroke-box | view-box]]

Initial
value

none

Applies to All elements (in SVG, applies to all
graphics elements and all container
elements except the <defs> element)

Computed
value

As declared

Inherited No

Animatable Yes for inset() , circle() ,
ellipse() , and polygon()

With clip-path , you’re able to define a clipping shape. This is
essentially the area of the element inside which visible portions
are drawn. Any part of the element that falls outside the shape
is clipped away, leaving behind empty transparent space. The
following code gives an unclipped and a clipped example of the
same paragraph, with the result depicted in Figure 20-36:

Figure 20-36. Unclipped and clipped paragraphs

The default value, none , means no clipping is performed, as
you’d probably expect. Similarly, if a < url > value is given (as in
the preceding code) and it points to a missing resource, or to an
element in an SVG file that isn’t a <clipPath> , no clipping is
performed.

p {background: orange; color: black; padding: 0.75em;
p.clipped {clip-path: url(shapes.svg#cloud02);}

WARNING

As of late 2022, URL-based clip paths work in most browsers only if the URL points to
an embedded SVG inside the same document as the clipped element. External SVGs
are not supported. Firefox is the only browser supporting clip paths from external
SVGs.

The rest of the values are either shapes written in CSS,
reference boxes, or both.

Clip Shapes

You can define clip shapes with one of a set of four simple
shape functions. These are identical to the shape functions used
to define float shapes with shape-outside , so we won’t
redescribe them in detail here. Here’s a brief recap:

inset()

Accepts from one to four lengths or percentage values,
defining offsets from the edges of the bounding box, with
optional corner rounding via the round keyword and
another set of one to four lengths or percentages.

circle()

Accepts a single length, percentage, or keyword defining the
radius of the circle, with an optional position for the circle’s

center with the at keyword followed by one or two lengths
or percentages.

ellipse()

Accepts a mandatory two lengths, percentages, or keywords
defining the radii of the vertical and horizontal axes of the
ellipse, with an optional position for the ellipse’s center with
the at keyword followed by one or two lengths or
percentages.

polygon()

Accepts a comma-separated list of space-separated x and y
coordinates, using either lengths or percentages. Can be
prefaced by a keyword defining the fill rule for the polygon.

Figure 20-37 shows a variety of examples of these clip shapes,
corresponding to the following styles:

.ex01 {clip-path: none;}

.ex02 {clip-path: inset(10px 0 25% 2em);}

.ex03 {clip-path: circle(100px at 50% 50%);}

.ex04 {clip-path: ellipse(100px 50px at 75% 25%);}

.ex05 {clip-path: polygon(50% 0, 100% 50%, 50% 100%,

.ex06 {clip-path: polygon(0 0, 50px 100px, 150px 5px,

Figure 20-37. Various clip shapes

As Figure 20-37 shows, the elements are visible only inside the
clip shapes. Anything outside that is just gone. But note that the
clipped elements still take up the same space they would if they
weren’t clipped at all. In other words, clipping doesn’t make the
elements smaller. It just limits the part of them that’s actually
drawn.

Clip Boxes

Unlike clip shapes, clip boxes aren’t specified using lengths or
percentages. They correspond, for the most part, directly to
boundaries in the box model.

If you just write clip-path: border-box , for example, the
element is clipped along the outside edge of the border. This is
likely what you’d expect anyway, since margins are transparent.
Remember, however, that outlines can be drawn outside
borders, so if you do clip at the border edge, any outlines will be
clipped away. That includes any outlines, which can create a
major accessibility problem, so be very careful clipping any
element that can receive focus. (You probably just shouldn’t do
it in those cases.)

When used by themselves, the values margin-box , padding-
box , and content-box dictate that the clipping occurs at the
outer edges of the margin, padding, or content areas,
respectively. These are diagrammed in Figure 20-38.

Figure 20-38. Various clipping boxes

There’s another part to Figure 20-38, which shows the SVG
bounding boxes:

view-box

The nearest (the closest ancestor) SVG viewport is used as the
clipping box.

fill-box

The object bounding box is used as the clipping box. The
object bounding box is the smallest box that will fit every
part of the element’s geometry, taking into account any
transformations (e.g., rotation), not including any strokes
along its outside.

stroke-box

The stroke bounding box is used as the clipping box. Similar
to the fill box, the stroke box is the smallest box that will fit
every part of the element’s geometry, taking into account any
transformations (e.g., rotation), but the stroke box includes
any strokes along its outside.

These values apply only to SVG elements that don’t have an
associated CSS layout box. For such elements, if the CSS-style
boxes (margin-box , border-box , padding-box , content-box)
are given, fill-box is used instead. Conversely, if one of the
SVG bounding box values is applied to an element that does

have a CSS layout box—which is most elements— border-box is
used instead.

It can be useful at times to be able to use something like clip-
path: content-box just to clip away everything outside the
content area, but these box values really come into their own in
conjunction with a clipping shape. Suppose you have an
ellipse() clip shape you want to apply to an element, and
furthermore, you want to have it just touch the outer edges of
the padding box. Rather than have to calculate the necessary
radii by subtracting margins and borders from the overall
element, you can just write clip-path: ellipse(50% 50%)
padding-box . That will center an elliptical clip shape at the
center of the element, with horizontal and vertical radii half the
element’s reference box, as shown in Figure 20-39, along with
the effect of fitting to other boxes.

Figure 20-39. Fitting an elliptical clip shape to various boxes

Notice that the ellipse is cut off in the margin-box example?
That’s because the margin is invisible, so while parts of it fall
inside the elliptical clip shape, we can’t actually see those parts
unless there’s a box shadow or an outset border image on the
element.

Interestingly, the bounding-box keywords can be used only in
conjunction with clip shapes—not with an SVG-based clip path.
The keywords that relate to SVG bounding boxes apply only if
an SVG image is being clipped via CSS.

Clipping with SVG Paths

If you happen to have an SVG path handy, or you’re
comfortable writing your own, you can use it to define the
clipping shape in the clip-path property. The syntax looks like
this:

clip-path: path("…");

Replace that ellipsis with the contents of an SVG d or points
attribute, and that will give you a clipping shape. Here’s an
example of such an attribute:

<path d="M 500,0 L 1000,250 L 500,500 L 0,250"/>

This will draw a diamond from the point at x=500, y=0 to
x=1000, y=250, and so on, forming a diamond shape 1,000 pixels
across by 500 high. If applied to an image exactly 1,000 pixels by
500 pixels, you’d get the result shown in Figure 20-40.

Figure 20-40. An image clipped with an SVG clip path

You’d get the same clip shape shown in Figure 20-40 by using
the following:

clip-path: polygon(50% 0, 100% 50%, 50% 100%, 0% 50%)

The difference here is that the clipping path defined with
percentage values in a polygon is a lot more robust than one
that requires images to be exactly 1,000 pixels wide by 500
pixels tall. That’s because, as of late 2022, all SVG path
coordinates are expressed in absolute units, and can’t be
declared as percentages of the image’s height and width as the
polygon() shape can.

NOTE

This has been a necessarily very brief spotlight on the ability to use SVG paths in CSS,
as describing all the ways paths can be shaped is far beyond the scope of this book. If
you want to know more, we recommend reading Using SVG with CSS3 & HTML5 by
Amelia Bellamy-Royds et al. (O’Reilly).

Masks

When we say mask, at least in this context, we mean a shape
inside of which things are visible, and outside of which they are
not. Masks are thus very similar in concept to clipping paths.
The primary differences are twofold: first, with masks you can
only use an image to define the areas of the element that are
shown or clipped away; and second, a lot more properties are

https://learning.oreilly.com/library/view/using-svg-with/9781491921968

available to use with masks, allowing you to do things such as
position, size, and repeat the masking image.

WARNING

As of late 2022, the Chromium familiy supports most of the masking properties, but
only with the -webkit- prefix. So instead of mask-image , for example, Chrome and
Edge support -webkit-mask-image instead.

Defining a Mask

The first step to applying a mask is to point to the image that
you’ll be using to define the mask. This is accomplished with
mask-image , which accepts any image type.

MASK-IMAGE

Values [none | < image > | < mask-source >]#

Initial
value

none

Applies to All elements (in SVG, applies to all
graphics elements and all container
elements except the <defs> element)

Computed
value

As declared

Inherited No

Animatable No

Notes An < image > is any of the value types
< url >, < image() >, < image-set() >,
< element() >, < cross-fade() >, or < gr

adient >; < mask-source > is a url()
that points to a <mask> element in an
SVG image

Assuming the image reference is valid, mask-image will give
the browser an image to use as a mask for the element to which
it’s being applied.

We’ll start with a simple situation: one image applied to
another, where both are the same height and width. Figure 20-
41 shows two images separately, along with the first image
being masked by the second.

Figure 20-41. A simple image mask

As the figure shows, in the parts of the second image that are
opaque, the first image is visible. In the parts that are
transparent, the first image is not visible. For the parts that are
semitransparent, the first image is also semitransparent.

Here’s the basic code for the end result shown in Figure 20-41:

img.masked {mask-image: url(theatre-masks.svg);}

CSS doesn’t require that you apply mask images only to other
images, though. You can mask pretty much any element with an
image, and that image can be a raster image (GIF, JPG, PNG) or a
vector image (SVG). The latter is usually a better choice, if
available. You can even construct your own image with
gradients, whether linear or radial, repeated or otherwise.

The following styles will have the result shown in Figure 20-42:

*.masked.theatre {mask-image: url(i/theatre-masks.svg
*.masked.compass {mask-image: url(i/Compass_masked.pn
*.masked.lg-fade {mask-image:
 repeating-linear-gradient(135deg, #000 0 1em,
}

Figure 20-42. A variety of image masks

An important point to keep in mind is that when a mask clips
away pieces of an element, it clips away all pieces. The best
example of this occurs when you apply an image that clips
away the outer edges of elements, and the markers on list items
can very easily become invisible. Figure 20-43 shows an
example, which is the result of the following:

*.masked {mask-image: url(i/Compass_masked.png);}

<ol class="masked">
 One
 Two
 Three
 Four
 Five

Figure 20-43. A PNG with areas of transparency masking an unordered list

One other value option enables you to point directly at a
<mask> element in SVG to use the mask it defines. This is
analogous to pointing to a <clipPath> or other SVG element

from the property clip-path . Here’s an example of how a
mask might be defined:

With that SVG embedded in the HTML file directly, the mask
can be referenced like this:

.masked {mask-image: url(#hexlike);}

If the SVG is in an external file, this is how to reference it from
CSS:

.masked {mask-image: url(masks.svg#hexlike);}

The difference between using an image as a mask versus an
SVG <mask> is that SVG masking is based on luminance, rather

<svg>
 <mask id="hexlike">

 <path fill="#FFFFFF"
 d="M 50,0 L 100,25 L 100,75 L 50,100 L 0
 </mask>
</svg>

than alpha transparency. This difference can be inverted with
the mask-mode property.

Changing the Mask’s Mode

You’ve just seen the two ways to use an image as a mask.
Masking is accomplished by applying an image with an alpha
channel to another element. Masking can also be done by using
the brightness of each part of the masking image to define the
mask. Switching between these two options is accomplished
with the mask-mode property.

MASK-MODE

Values [alpha | luminance | match-source
]#

Initial
value

match-source

Applies to All elements (in SVG, applies to all
graphics elements and all container
elements except the <defs> element)

Computed
value

As declared

Inherited No

Animatable No

Two of the three values are straightforward: alpha means the
alpha channel of the image should be used to compute the
mask, and luminance means the brightness levels should be

used. The difference is illustrated in Figure 20-44, which is the
result of the following code:

When luminance is used to calculate the mask, brightness is
treated the same way alpha values are in alpha masking.
Consider how alpha masking works: any part of the image with
opacity of 0 hides that part of the masked element. A part of the
image with opacity of 1 (fully opaque) reveals that part of the
masked element.

The same is true with luminance-based masking. A part of the
mask with luminosity of 1 reveals that part of the masked
element. A part of the mask with luminosity of 0 (fully black)

img.theatre {mask-image: url(i/theatre-masks.svg);}
img.compass {mask-image: url(i/Compass_masked.png);}
img.lum {mask-mode: luminance;}

<img src="i/theatre-masks.svg" role="img" alt="theate

hides that part of the masked element. But note that any fully
transparent part of the mask is also treated as having a
luminance of 0. This is why the shadow portion of the theater-
mask image doesn’t show any part of the masked image: its
alpha value is greater than 0.

Figure 20-44. Alpha and luminance mask modes

The third (and default) value, match-source , is a combination
of alpha and luminance , choosing between them based on the
actual source image for the mask as follows:

If the source is a type of < image >, use alpha . The < image >
can be an image such as a PNG or visible SVG, a CSS gradient,
or a piece of the page referred to by the element() function.
If the source is an SVG <mask> element, use luminance .

Sizing and Repeating Masks

Thus far, nearly all the examples have been carefully crafted to
make each mask’s size match the size of the element it’s
masking. (This is why we keeping applying masks to images.) In
many cases, mask images may be a different size than the
masked element. CSS has a couple of ways to deal with this,
starting with mask-size .

MASK-SIZE

Values [[< length > | < percentage > | auto]
{1,2} | cover | contain]#

Initial
value

auto

Applies to All elements (in SVG, applies to all
graphics elements and all container
elements except the <defs> element)

Computed
value

As declared

Inherited No

Animatable < length >, < percentage >

If you’ve ever sized background images, you know exactly how
to size masks, because the value syntax is exactly the same, as

are the behaviors. As an example, consider the following styles,
which have the result shown in Figure 20-45:

p {mask-image: url(i/hexlike.svg);}
p:nth-child(1) {mask-size: 100% 100%;}
p:nth-child(2) {mask-size: 50% 100%;}
p:nth-child(3) {mask-size: 2em 3em;}
p:nth-child(4) {mask-size: cover;}
p:nth-child(5) {mask-size: contain;}
p:nth-child(6) {mask-size: 200% 50%;}

Figure 20-45. Sizing masks

Again, these should be immediately familiar to you if you’ve
ever sized backgrounds. If not, see “Sizing Background Images”
for a more detailed exploration of the possibilities.

In a like vein, just as the pattern of backgrounds repeating
throughout the background area of the element can be changed
or suppressed, mask images can be affected with mask-repeat .

MASK-REPEAT

Values [repeat-x | repeat-y | [repeat | s
pace | round | no-repeat]{1,2}]#

Initial
value

repeat

Applies to All elements (in SVG, applies to all
graphics elements and all container
elements except the <defs> element)

Computed
value

As declared

Inherited No

Animatable Yes

Note The keywords for mask-repeat are
reproduced from background-repeat
and have the same behaviors

The values available here are the same as those for
background-repeat . Figure 20-46 shows some examples, based
on the following styles:

Figure 20-46. Repeating masks

Positioning Masks

Given that sizing and repetition of mask images mirrors the
sizing and repetition of background images, you might think

p {mask-image: url(i/theatre-masks.svg);}
p:nth-child(1) {mask-repeat: no-repeat; mask-size: 10
p:nth-child(2) {mask-repeat: repeat-x; mask-size: 10%
p:nth-child(3) {mask-repeat: repeat-y; mask-size: 10%
p:nth-child(4) {mask-repeat: repeat; mask-size: 30% a
p:nth-child(5) {mask-repeat: repeat round; mask-size:
p:nth-child(6) {mask-repeat: space no-repeat; mask-si

that the same is true for positioning the origin mask image,
similar to background-position , as well as the origin box,
similar to background-origin . And you’d be exactly right.

MASK-POSITION

Values < position >#

Initial
value

0% 0%

Applies to All elements (in SVG, applies to all
graphics elements and all container
elements except the <defs> element)

Computed
value

As declared

Inherited No

Animatable < length >, < percentage >

Notes < position > is exactly the same as the
values permitted for background-posi
tion , and has the same behaviors

Once again, if you’ve ever positioned a background image, you
know how to position mask images. Following are a few
examples, illustrated in Figure 20-47:

Figure 20-47. Positioning masks

By default, the origin box for mask images is the outer border
edge. If you want to move it further inward, or define a specific
origin box in an SVG context, then mask-origin does for masks
what background-origin does for backgrounds.

p {mask-image: url(i/Compass_masked.png);
 mask-repeat: no-repeat; mask-size: 67% auto;}
p:nth-child(1) {mask-position: center;}
p:nth-child(2) {mask-position: top right;}
p:nth-child(3) {mask-position: 33% 80%;}
p:nth-child(4) {mask-position: 5em 120%;}

MASK-ORIGIN

Values [content-box | padding-box | borde
r-box | margin-box | fill-box |
stroke-box | view-box]#

Initial
value

border-box

Applies to All elements (in SVG, applies to all
graphics elements and all container
elements except the <defs> element)

Computed
value

As declared

Inherited No

Animatable No

For the full story, see “Changing the positioning box”, but for a
quick example, see Figure 20-48.

Figure 20-48. Changing the origin box

Clipping and Compositing Masks

One more property echoes backgrounds, and that’s mask-clip ,
the mask equivalent of background-clip .

MASK-CLIP

Values [content-box | padding-box | borde
r-box | margin-box | fill-box |
stroke-box | view-box | no-clip]#

Initial
value

border-box

Applies to All elements (in SVG, applies to all
graphics elements and all container
elements except the <defs> element)

Computed
value

As declared

Inherited No

Animatable No

All this does is clip the overall mask to a specific area of the
masked element. In other words, it restricts the area in which

the visible parts of the element are in fact visible. Figure 20-49
shows the result of the following styles:

Figure 20-49. Clipping the mask

The last longhand masking property, mask-composite , is quite
interesting because it can radically change the way multiple
masks interact.

p {padding: 2em; border: 2em solid purple; margin: 2e
 mask-image: url(i/Compass_masked.png);
 mask-repeat: no-repeat; mask-size: 125%;
 mask-position: center;}
p:nth-child(1) {mask-clip: border-box;}
p:nth-child(2) {mask-clip: padding-box;}
p:nth-child(3) {mask-clip: content-box;}

WARNING

As of early 2023, mask-composite is supported only by Firefox, but all browsers
(even Firefox) support the prefixed form -webkit-mask-composite .

MASK-COMPOSITE

Values [add | subtract | intersect | excl
ude]#

Initial
value

add

Applies to All elements (in SVG, applies to all
graphics elements and all container
elements except the <defs> element)

Computed
value

As declared

Inherited No

Animatable No

If you are not familiar with compositing operations, a diagram
is in order. See Figure 20-50.

Figure 20-50. Compositing operations

The image on top in the operation is called the source, and the
image beneath it is called the destination.

This doesn’t particularly matter for three of the four operations:
add , intersect , and exclude , all of which have the same
result regardless of which image is the source and which the
destination. But for subtract , the question is: which image is
being subtracted from which? The answer: the destination is
subtracted from the source.

The distinction between source and destination also becomes
important when compositing multiple masks together. In these
cases, the compositing order is from back to front, with each
succeeding layer being the source and the already-composited
layers beneath it being the destination.

To see why, consider Figure 20-51, which shows the various
ways three overlapping masks are composited together, and
how results change with changes to their order and
compositing operations.

The figure is constructed to show the bottommost mask at the
bottom, the topmost above the other two, and the resulting
mask at the very top. Thus, in the first column, the triangle and
circle are composited with an exclusion operation. The
resulting shape is then composited with the square using an
additive operation. That results in the mask shown at the top of
the first column.

Just remember that when doing a subtraction composite, the
bottom shape is subtracted from the shape above it. Thus, in the
third column, the addition of the triangle and circle is
subtracted from the square above them. This is accomplished
with mask-composite: add, subtract .

Figure 20-51. Compositing masks

Bringing It All Together

All of the preceding mask properties are brought together in the
shorthand property mask .

MASK

Values [< mask-image > ‖ < mask-position > [/
< mask-size >]? ‖
< mask-repeat > ‖ < mask-clip > ‖ < mas

k-origin > ‖
< mask-composite > ‖ < mask-mode >]#

Initial
value

See individual properties

Applies to All elements (in SVG, applies to all
graphics elements and all container
elements except the <defs> element)

Computed
value

As declared

Inherited No

Animatable Refer to individual properties

Like all the other masking properties, mask accepts a comma-
separated list of masks. The order of the values in each mask
can be anything except for the mask size, which always follows
the position and is separated from it by a forward slash (/).

Thus, the following rules are equivalent:

The triangle and square are added together, and then the result
of that additive composite is subtracted from the circle. The
result is shown in Figure 20-52 as applied to a square element
(the teal shape on the left) and a shape wider than it is tall (the
goldenrod shape on the right).

#example {
 mask-image: url(circle.svg), url(square.png), url
 mask-repeat: repeat-y, no-repeat;
 mask-position: top right, center, 25% 67%;
 mask-composite: subtract, add;
 mask-size: auto, 50% 33%, contain;
}
#example {
 mask:
 url(circle.svg) repeat-y top right / auto subtr
 url(square.png) no-repeat center / 50% 33% add,
 url(triangle.gif) repeat-y 25% 67% / contain;
}

Figure 20-52. Two masks

Setting Mask Types

When you’re using CSS to style SVG elements, and you want to
set the SVG <mask> type, then mask-type is for you.

MASK-TYPE

Values luminance | alpha

Initial value luminance

Applies to SVG <mask> elements

Computed value As declared

Inherited No

Animatable No

This property is similar to mask-mode , except there is no
match-source equivalent. You can choose only luminance or
alpha .

The interesting thing is that if mask-type is set for a <mask>
element that’s used to mask an element, and mask-mode is
declared for that masked element, mask-mode wins. As an
example, consider the following rules:

Given these rules, the masked images will have a mask with
luminance compositing, not alpha compositing. If the mask-
mode value were left at its default value, match-source , then
mask-type ’s value would be used instead.

Border-Image Masking

The same specification that defines clipping paths and element
masking, CSS Masking, also defines properties that are used to
apply masking images in a way that mirrors border-image
properties. In fact, with one exception, the properties between
border images and border masks are direct analogues, and the
values the same. Refer to “Image Borders” for a detailed
explanation of how these work, but here are some quick recaps.

Remember that without having a border of some sort, none of
these properties will have any visible effect. To apply a border
and then mask it, you must first declare a border’s style, at a
minimum. If you intend your masked border to be 10 pixels
wide, you would need something like this:

svg #mask {mask-type: alpha;}
img.masked {mask: url(#mask) no-repeat center/cover l

border: 10px solid;

Once that’s been established, you can begin masking the border.

NOTE

As of late 2022, all these properties are supported in Chromium and WebKit browsers
as -webkit-mask-box-image-* instead of the names used in the specification. The
actually supported names are noted in the property summary boxes that follow, but
examples use the standard (unprefixed) property names. Also note: as of this writing,
the Gecko (Firefox) family does not support border masks in any form.

MASK-BORDER-SOURCE

Values none | < image >

Initial
value

none

Applies to All elements, except internal table
elements when border-collapse is co
llapse

Computed
value

none , or the image with its URL made
absolute

Inherited No

Animatable No

Note Supported in Chromium and WebKit
only as -webkit-mask-box-image-sour
ce

The mask-border-source property specifies the image to be
used as a mask. This can be a URL, gradient, or other supported
< image > value type. Once the masking image has been set up,
you can move on to doing things like slicing it into sections,
defining a distinct width for the mask, and so on.

MASK-BORDER-SLICE

Values [< number > | < percentage >]{1,4} &&
fill ?

Initial
value

100%

Applies to All elements, except internal table
elements when border-collapse is co
llapse

Percentages Refer to size of the border image

Computed
value

As four values, each a number or
percentage, and optionally the fill
keyword

Inherited No

Animatable < number >, < percentage >

Note Supported in Chromium and WebKit
only as -webkit-mask-box-image-slic
e

The mask-border-slice property establishes a set of four slice-
lines that are laid over the border, and where they fall
determines how the mask will be sliced up for use in each of
the eight parts of the border area: the top, right, bottom, and
left edges, as well as the top-left, top-right, bottom-right, and
bottom-left corners. The property takes up to four values,
defining (in order) offsets from the top, right, bottom, and left
edges.

NOTE

As of late 2022, no logical-property equivalent exists for mask-border-slice . If the
proposed addition of a logical keyword, or something equivalent, to this property
is ever adopted and implemented, at that point it will be possible to use mask-
border-slice in a writing-flow-relative fashion.

Consider the following, diagrammed in Figure 20-53:

#one {mask-border-slice: 25%;}
#two {mask-border-slice: 10% 20%;}
#thr {mask-border-slice: 10 20 15 30;}

Figure 20-53. Some mask border-slicing patterns

You might think that numeric offsets need to be given a length
unit to define a distance, but this is not so. Number values are
interpreted in the coordinate system of the image used for the
mask. With a raster image like a PNG, the coordinate system
will be the pixels of the image. In an SVG image, the coordinate
system defined by the SVG file is used.

Using the optional fill keyword causes the center portion of
the mask image to be applied to the element inside the border
area. By default, it is not used, allowing the element’s padding
and content to be fully seen. If you do use it by adding fill ,
the part of the mask image inside the four slice lines will be
stretched over the element’s content and padding, and applied
to them. Consider the following, illustrated in Figure 20-54:

p {mask-border-image: url(circles.png);}
p.one {mask-border-slice: 33%;}
p.two {mask-border-slice: 33% fill;}

Figure 20-54. Applying the mask fill

WARNING

As of late 2022, a bug in browsers that support the prefixed property causes the
content and padding of an element to be completely hidden unless the fill
keyword is used. Thus, in order to use border masks and show the content of an
element, you need to fill the center of the mask image completely, and use fill .

MASK-BORDER-WIDTH

Values [< length > | < percentage > | < numbe

r > | auto]{1,4}

Initial
value

1

Applies to All elements, except table elements
when border-collapse is collapse

Percentages Relative to width/height of the entire
border image area—that is, the outer
edges of the border box

Computed
value

Four values: each a percentage,
number, auto keyword, or < length >
made absolute

Inherited No

Animatable Yes

Note Values can never be negative;
supported in Chromium and WebKit

only as -webkit-mask-box-image-widt
h

This property allows you to define a width (or individual
widths) for the four edge slices of the border mask. If the slices
are not actually the size(s) you declare, they will be resized to
fit. For example, a masking image might be sliced and then
sized as follows:

mask-border-slice: 33%; mask-border-width: 1em;

This allows you to slice up the masking image in one way, and
then size it as needed for the context or define a universal size
for masking image, regardless of the context in which it
appears.

MASK-BORDER-OUTSET

Values [< length > | < number >]{1,4}

Initial
value

0

Applies to All elements, except internal table
elements when border-collapse is co
llapse

Percentages N/A

Computed
value

Four values, each a number or < lengt

h > made absolute

Inherited No

Animatable Yes

Note Supported in Chromium and WebKit
only as -webkit-mask-box-image-outs
et

With mask-border-outset , you can push the mask outside the
border area. This is useful only if you’re already pushing a
border image outside the border area with border-image-
outset and want to also apply the mask to that border image,
or if you’ve applied an outline to the element and want to mask
that as well. If neither is true, the masked area outside the
border will mask only the margin area, which is already
transparent and so can’t be visibly altered.

WARNING

As of late 2022, browsers supporting the prefixed property not only push the slices
outward, but also expand the center area by the given amount, scaling up the
masked area covered by the center slice in the process. This behavior is not called for
or apparently supported by the specifications current as of this writing, and is most
likely a bug (unless the behavior is eventually made retroactively correct by a CSS
Working Group decision).

MASK-BORDER-REPEAT

Values [stretch | repeat | round | space]
{1,2}

Initial
value

stretch

Applies to All elements, except internal table
elements when border-collapse is co
llapse

Computed
value

Two keywords, one for each axis

Inherited No

Animatable No

Note Supported in Chromium and WebKit
only as -webkit-mask-box-image-repe
at

Thus far, our only example of border masking has used a
masking image that is an exact fit for the element it’s masking.
This is unlikely to be the case, since elements can be resized by
any number of factors. The default is to stretch each slice to fit
its part of the border area, but other options are possible.
Figure 20-55 illustrates the options (center areas have been
removed for clarity).

Figure 20-55. Various kinds of mask image repeating

As shown in Figure 20-55, mask-border-repeat can accept one
or two repeat values. If one is given, it’s applied to all sides of
the border area. If two are given, the first applies to the
horizontal sides of the border area, and the second to the
vertical sides.

Border masks have one styling aspect that image borders do
not, and it’s set with the property mask-border-mode .

MASK-BORDER-MODE

Values alpha | luminance

Initial
value

alpha

Applies to All elements (in SVG, applies to all
graphics elements and all container
elements except the <defs> element,
all graphics elements, and the <use>
element)

Computed
value

As specified

Inherited No

Animatable Discrete

Note Not yet supported in any browser, even
with a -webkit- prefix

The mask-border-mode property sets whether the masking
mode is alpha based, or luminance based. For more details on
the difference, see the mask-mode property discussed earlier in
the chapter.

MASK-BORDER

Values < mask-border-source > ‖ < mask-borde

r-slice > [/ < mask-border-width >? [/
< mask-border-outset >]?]? ‖ < mask-b

order-repeat > ‖ < mask-border-mode >

Initial
value

See individual properties

Applies to See individual properties

Computed
value

See individual properties

Inherited No

Animatable See individual properties

Note Supported in Chromium and WebKit
only as -webkit-mask-box-image
without the mask-border-mode value

The property mask-border incorporates all of the previous
border-masking properties into one convenient shorthand.

Object Fitting and Positioning

One more variety of masking applies solely to replaced
elements like images. With object-fit , you can change the
way the replaced element fills its element box—or even have it
not fill that box completely.

OBJECT-FIT

Values fill | contain | cover | scale-do
wn | none

Initial value fill

Applies to Replaced elements

Computed
value

As declared

Inherited No

Animatable No

If you’ve ever worked with background-size , these values
probably look familiar. They do similar things, too, only with
replaced elements.

For example, assume a 50 × 50 pixel image. We can change its
size via CSS with something like this:

img {width: 250px; height: 150px;}

The default expectation is that these style declarations will
stretch the 50 × 50 image to be 250 × 150. And if object-fit is
its default value, fill , that’s exactly what happens.

Change the value of object-fit , however, and other behaviors
occur. The following examples are illustrated in Figure 20-56:

Figure 20-56. Four kinds of object fitting

In the first instance, none , the element is drawn 250
pixels wide by 150 pixels tall. The image itself, however, is
drawn 50 × 50 pixels—its intrinsic size—because it was directed
to not fit the element box. The second instance, fill , is the

img {width: 250px; height: 150px; background: silver;
img:nth-of-type(1) {object-fit: none;}
img:nth-of-type(2) {object-fit: fill;}
img:nth-of-type(3) {object-fit: cover;}
img:nth-of-type(4) {object-fit: contain;}

default behavior, as mentioned. This is the only value that may
distort the image, as the dimensions are the element’s
dimensions, not the image’s intrinsic size.

In the third instance, cover , the image is scaled up until no
part of the element box is left “uncovered”—but the image itself
keeps its intrinsic aspect ratio. In other words, the image stays a
square. In this case, the longest axis of the element is
250px long, so the image is scaled up to be 250 × 250 pixels.
That 250 × 250 image is then placed in the 250 × 150
element.

The fourth instance, contain , is similar, except the image is
only big enough to touch two sides of the element. This
means the image is 150 × 150 pixels, and placed into the 250 ×
150 pixel box of its element.

To reiterate, what you see in Figure 20-56 is four
elements. There are no wrapper <div> or or other
elements around those images. The border and background
color are part of the element. The image placed inside
the element is fitted according to object-fit . The
element box of the element then acts rather like it’s a
simple mask for the fitted image inside it. (And then you can

mask and clip the element box with the properties covered
earlier in this chapter.)

A fifth value for object-fit , not represented in Figure 20-56,
is scale-down . The meaning of scale-down is “do the same as
either none or contain , whichever leads to a smaller size.”
This lets an image always be its intrinsic size unless the
element gets too small, in which case it’s scaled down à la
contain . This is illustrated in Figure 20-57, where each
element is labeled with the height values it’s been given; the
width in each case is 100px .

Figure 20-57. Various scale-down scenarios

So if a replaced element is bigger or smaller than the element
box into which it’s being fit, how can we affect its alignment
within that box? Using object-position is the answer.

OBJECT-POSITION

Values < position >

Initial
value

50% 50%

Applies to Replaced elements

Computed
value

As declared

Inherited No

Animatable Yes

Notes < position > is exactly the same as the
values permitted for background-posi
tion , and has the same behaviors

The value syntax here is just like that for mask-position or
background-position , allowing you to position a replaced

element within its element box if it isn’t set to object-fit:
fill . Thus, given the following CSS, we get the result shown in
Figure 20-58:

Figure 20-58. A variety of object-position values

Notice that the first example has a value of 50% 50% , even
though that isn’t present in the CSS code. That illustrates that
the default value of object-position is 50% 50% . The next
two examples show how various object-position values
move the image around within the element box.

As the last example shows, it’s possible to move an unscaled
replaced element like an image so that it’s partly clipped by its
element box. This is similar to positioning background images
or masks so that they are clipped at the element boundaries.

img {width: 200px; height: 100px; background: silver;
 object-fit: none;}
img:nth-of-type(2) {object-position: top left;}
img:nth-of-type(3) {object-position: 67% 100%;}
img:nth-of-type(4) {object-position: left 142%;}

It’s also possible to position fitted elements that are larger than
the element box, as can happen with object-fit: cover ,
although the results can be very different than with object-
fit: none . The following CSS will have results like those
shown in Figure 20-59:

Figure 20-59. Positioning a covered object

If any of these results confuse you, review “Positioning
Background Images” for more details.

Summary

With all of the effects available to CSS authors, we have an
infinite variety of outcomes and thus an infinite variety of

img {width: 200px; height: 100px; background: silver;
 object-fit: cover;}
img:nth-of-type(2) {object-position: top left;}
img:nth-of-type(3) {object-position: 67% 100%;}
img:nth-of-type(4) {object-position: left 142%;}

creative presentation of elements. Whether it’s altering
elements’ appearances with filters, changing how they’re
composited with their backdrops, clipping or masking parts of
elements, or altering the way images fill out their element
boxes, there have never been more options at your fingertips.

Chapter 21. CSS At-Rules

For 20 chapters now, we’ve explored the properties, values, and
selectors that can be combined to create CSS rules. These are
what we might call normal rules or regular rules, and they’re
powerful, but sometimes more is needed. Sometimes there
needs to be a way to encapsulate certain styles in conditional
blocks, such that styles can be applied at certain page widths or
only if a given CSS feature is recognized by the browser
processing the stylesheet.

These are almost invariably enclosed in at-rules, so called
because they start with an at (@) symbol. You’ve seen some of
these in previous chapters, such as @font-face and @counter-
style , but there are still more that aren’t so tightly bound to
specifics of styling. This chapter explores the three powerful at-
rules @media , @container , and @supports .

Media Queries

Thanks to the mechanisms defined in HTML and CSS called
media queries, you can restrict any set of styles (including entire
stylesheets) to a specific medium, such as screen or print, and to
a specific set of media conditions. These mechanisms allow you

to define a combination of media types and conditions such as
display size or color depth, to pick two examples. We’ll cover
the basic form before exploring the more complex forms.

Basic Media Queries

For HTML-based stylesheets, you can impose medium
restrictions through the media attribute. This works the same
for both the <link> and <style> elements:

<link rel="stylesheet" media="print"
 href="article-print.css">
<style media="print">
 body {font-family: sans-serif;}
</style>

The media attribute can accept a single medium value or a
comma-separated list of values. Thus, to link in a stylesheet that
should be used in only the screen and print media, you
would write this:

<link rel="stylesheet" media="screen, print"
 href="visual.css">

In a stylesheet itself, you can also impose medium restrictions
on @import rules:

@import url(visual.css) screen;
@import url(article-print.css) print;

Remember that if you don’t add medium information to a
stylesheet, it will be applied in all media. Therefore, if you want
one set of styles to apply only onscreen, and another to apply
only in print, you need to add medium information to both
stylesheets. For example:

<link rel="stylesheet" media="screen"
 href="article-screen.css">
<link rel="stylesheet" media="print"
 href="article-print.css">

If you were to remove the media attribute from the first
<link> element in this example, the rules found in the
stylesheet article-screen.css would be applied in all media.

CSS also defines syntax for @media blocks. This allows you to
define styles for multiple media within the same stylesheet.
Consider this basic example:

t l

Here we see that in all media, the <body> element is given a
white background and a black foreground by the first rule. This
happens because its stylesheet, the one defined by the style
attribute, has no media attribute and thus defaults to all .
Next, a block of rules is provided for the screen medium alone,
followed by another block of rules that applies only in the
print medium.

NOTE

The indentation shown in these blocks is solely for purposes of clarity. You don’t have
to indent the rules found inside an @media block, but you’re welcome to do so if it
makes your CSS easier to read.

<style>
body {background: white; color: black;}
@media screen {
 body {font-family: sans-serif;}
 h1 {margin-top: 1em;}

}
@media print {
 body {font-family: serif;}
 h1 {margin-top: 2em; border-bottom: 1px solid sil
}
</style>

The @media blocks can be any size, containing any number of
rules. When authors have control over a single stylesheet, such
as in a shared hosting environment or a CMS that restricts what
users can edit, @media blocks may be the only way to define
medium-specific styles. This is also the case when CSS is used to
style a document using an XML language that does not contain
a media attribute or its equivalent.

These are the three most widely recognized media types:

all

Use in all presentational media.

print

Use when printing the document for sighted users, and also
when displaying a print preview of the document.

screen

Use when presenting the document in a screen medium like
a desktop computer monitor or a handheld device. All web
browsers running on such systems are screen-medium user
agents.

It’s entirely possible that new media types will be added over
time, so remember that this limited list may not always be so
limited. It’s fairly easy to imagine augmented-reality as a

media type, for example, since text in AR displays would likely
need to be of higher contrast in order to stand out against the
background reality.

HTML4 defined a list of media types that CSS originally
recognized, but most have been deprecated and should be
avoided. These are aural , braille , embossed , handheld ,
projection , speech , tty , and tv . If you have old stylesheets
that use these media types, they should almost certainly be
converted to one of the three recognized media types, if
possible.

NOTE

As of 2022, a couple of browsers still support projection , which allows a document
to be presented as a slideshow. Several mobile-device browsers also support the
handheld type, but not in consistent ways.

It’s possible in some circumstances to combine media types into
comma-separated lists, though the rationale for doing so isn’t
terribly compelling, given the small number of media types
currently available. For example, styles could be restricted to
only screen and print media in the following ways:

<link rel="stylesheet" media="screen, print"
 href="article.css">

@import url(article.css) print, screen;

@media screen,print {
 /* styles go here */
}

Complex Media Queries

In the previous section, you saw how multiple media types
could be chained together with a comma. We might call that a
compound media query, because it allows us to address multiple
media at once. There is a great deal more to media queries,
though: it’s possible to apply styles based not just media types,
but also features of those media, such as display size or color
depth.

This is a great deal of power, and it’s not enough to rely on
commas to make it all happen. Thus, CSS includes the logical
operator and to pair media types with features of those media.

Let’s see how this plays out in practice. Here are two essentially
equivalent ways of applying an external stylesheet when

rendering the document on a color printer:

<link href="print-color.css"
 media="print and (color)" rel="stylesheet">

@import url(print-color.css) print and (color);

Anywhere a media type can be given, a media query can be
constructed. This means that, following on the examples of the
previous section, it is possible to list more than one query in a
comma-separated list:

If even one of the media queries evaluates to true , the
associated stylesheet is applied. Thus, given the previous
@import , print-color.css will be applied if rendering to a color
printer or to a color screen environment. If printing on a black-
and-white printer, both queries will evaluate to false and
print-color.css will not be applied to the document. The same

<link href="print-color.css"
 media="print and (color), screen and (color)" rel=

@import url(print-color.css) print and (color), scree

holds true in a grayscale screen environment, any speech media
environment, and so forth.

Each media descriptor is composed of a media type and one or
more listed media features, with each media feature descriptor
enclosed in parentheses. If no media type is provided, it is
assumed to be all , which makes the following two examples
equivalent:

@media all and (min-resolution: 96dpi) {…}
@media (min-resolution: 96dpi) {…}

Generally speaking, a media feature descriptor is formatted like
a property-value pair in CSS, only enclosed by parentheses. A
few differences exist, most notably that some features can be
specified without an accompanying value. For example, any
color-based medium will be matched using (color) , whereas
any color medium using a 16-bit color depth is matched using
(color: 16) . In effect, the use of a descriptor without a value
is a true/false test for that descriptor: (color) means “is this
medium in color?”

Multiple feature descriptors can be linked with the and logical
keyword. In fact, there are two logical keywords in media
queries:

and

Links together two or more media features in such a way
that all of them must be true for the query to be true. For
example, (color) and (orientation: landscape) and
(min-device-width: 800px) means that all three conditions
must be satisfied: if the media environment has color, is in
landscape orientation, and the device’s display is at least 800
pixels wide, then the stylesheet is used.

not

Negates the entire query so that if all of the conditions are
true, the stylesheet is not applied. For example, not (color)
and (orientation: landscape) and (min-device-width:

800px) means that if the three conditions are satisfied, the
statement is negated. Thus, if the media environment has
color, is in landscape orientation, and the device’s display is
at least 800 pixels wide, then the stylesheet is not used. In all
other cases, it will be used.

CSS has no or logical keyword, as its role is served by the
comma, as shown previously.

Note that the not keyword can be used only at the beginning of
a media query. It is not presently legal to write something like
(color) and not (min-device-width: 800px) . In such cases,
the entire query block will be ignored.

Let’s consider an example of how all this plays out:

@media screen and (min-resolution: 72dpi) {
 .cl01 {font-style: italic;}
}
@media screen and (min-resolution: 32767dpi) {
 .cl02 {font-style: italic;}
}
@media not print {
 .cl03 {font-style: italic;}
}
@media not print and (monochrome) {
 .cl04 {font-style: italic;}
}

Figure 21-1 shows the result, but bear in mind that, even though
you may be reading this on printed paper, the actual image was
generated with a screen-medium browser (Firefox Nightly, as it
happens) displaying an HTML document with the previous CSS
applied to it. So everything you see in Figure 21-1 was operating
under a screen medium.

Figure 21-1. Logical operators in media queries

The first line is italicized because the screen on which the file
was displayed had a resolution equal to or greater than 72 dots
per inch. Its resolution was not, however, 32767dpi or higher,
so the second media block is skipped and thus the second line
stays un-italicized. The third line is italicized because, being a
screen display, it was not print . The last line is italicized
because it was either not print or not monochrome—in this
case, not monochrome.

Another keyword, only , was designed to create deliberate
backward incompatibility. Yes, really.

only

Used to hide a stylesheet from browsers old enough that they
understand media queries but not media types. (This is
almost never a problem in modern usage, but the capability
was created and so we document it here.) In browsers that do
understand media types, the only keyword is ignored and
the stylesheet is applied. In browsers that do not understand
media types, the only keyword creates an apparent media
type of only all , which is not valid.

Special Value Types

Two value types were introduced by media queries. These types
are used in conjunction with specific media features, which are
explained later in the chapter:

< ratio >
Two numbers separated by a forward slash (/), defined in
Chapter 5.

< resolution >
A resolution value is a positive < integer > followed by either
of the unit identifiers dpi or dpcm . In CSS terms, a dot is any
display unit, the most familiar of which is the pixel. As usual,
whitespace is not permitted between the < integer > and the

identifier. Therefore, a display that has exactly 150 pixels
(dots) per inch is matched with 150dpi .

Keyword Media Features

So far you’ve seen several media features in the examples, but
not a complete list of the possible features and their values.
Let’s fix that now!

Note that none of the following values can be negative, and that
media features are always enclosed in parentheses:

Media feature: any-hover

Values: none | hover
Checks for any available input mechanism that can hover
over elements (i.e., trigger a :hover state). The none
value means there are no such mechanisms, or no
mechanisms that can do so conveniently. Compare with
the hover media feature, which restricts checking to the
primary input mechanism.

Media feature: any-pointer

Values: none | coarse | fine

Checks for an input mechanism that creates an onscreen
pointer. The none values indicates no such devices,
coarse indicates at least one device with limited accuracy
(e.g., a finger), and fine indicates at least one device with
high accuracy (e.g., a mouse). Compare with pointer ,
which restricts checking to the primary input mechanism.

Media feature: color-gamut

Values: srgb | p3 | rec2020
Tests the range of colors supported by both the browser
and the output device. As of late 2022, the majority of
displays support the srgb and p3 gamuts. The p3 value
refers to the Display P3 color space, which is a superset of
sRGB. The rec2020 value refers to the gamut specified by
the ITU-R Recommendation BT.2020 Color Space, which is a
superset of P3. The color-gamut media feature is not
supported by Firefox as of late 2022.

Media feature: display-mode

Values: fullscreen | standalone | minimal-ui |
browser

Tests the display mode of the top-level browsing context
and any child browsing contexts. This corresponds to the
Web Application Manifest specification’s display

member, and is commonly used to check if a progressive
web application visitor is browsing a website or on an
installed application, but applies whether or not a
manifest has been defined. See “Forced Colors, Contrast,
and Display Mode” for details.

Media feature: dynamic-range

Values: standard | high
Checks whether the browsing context supports a high
dynamic range for visual output. The high value means
the media environment supports high peak brightness, a
high contrast ratio, and a 24-bit color depth or higher.
There are no precisely defined values for high peak
brightness or color contrast, so this is left to browsers to
decide. Any device that matches high will also match
standard . The dynamic-range media feature achieved
widespread browser support in early 2022.

Media feature: forced-colors

Values: none | active
Checks whether the browser is in forced-color mode,
which forces browser-default values for a set of CSS
properties such as color and background-color , and

specific values for a handful of others, and may also
trigger a prefers-color-scheme value. See “Forced
Colors, Contrast, and Display Mode” for details. The
forced-colors media feature is not supported by WebKit
as of late 2022.

Media feature: grid

Values: 0 | 1
Refers to the presence (or absence) of a grid-based output
device, such as a TTY terminal. This does not refer to CSS
Grid. A grid-based device will return 1 ; otherwise, 0 is
returned. This media feature can be used in place of the
old tty media descriptor.

Media feature: hover

Values: none | hover
Checks whether the user’s primary input mechanism can
hover over elements. The none value means the primary
mechanism cannot hover, or cannot do so conveniently;
an example of the latter is a mobile device that pretends to
hover when an inconvenient tap-and-hold action is
performed. The hover value means hovering is
convenient, such as with a mouse. Compare to any-hover ,

which checks whether any mechanism permits hovering,
not just the primary.

Media feature: inverted-colors

Values: none | inverted
Checks whether colors are being inverted by the
underlying operating system. The none value means
colors are being displayed normally; inverted means that
all pixels in the display area are being inverted. The
inverted-colors media feature is supported only in
WebKit as of late 2022.

Media feature: orientation

Values: portrait | landscape
Refers to the orientation of the user agent’s display area,
where portrait is returned if the media feature height
is equal to or greater than the media feature width .
Otherwise, the result is landscape .

Media feature: overflow-block

Values: none | scroll | optional-paged | paged
Checks how the output device handles content that
overflows along the block axis. The none value means the

overflowed content cannot be accessed; scroll means the
content can be accessed by scrolling to it in some way;
optional-paged means the user can scroll to the content,
but page breaks can be manually triggered using
properties like break-inside ; paged means overflowing
content can be accessed only by “paging” to see the
content, as in an ebook. The overflow-block media
feature is supported only in Firefox as of late 2022.

Media feature: overflow-inline

Values: none | scroll
Checks to see how the output device handles content that
overflows along the inline axis. The none value means the
overflowed content cannot be accessed; scroll means the
content can be accessed by scrolling to it in some way. The
overflow-inline media feature is supported only in
Firefox as of late 2022.

Media feature: pointer

Values: none | coarse | fine
Checks whether the primary input mechanism creates an
onscreen pointer. The none value means the primary
input device generates no pointer, coarse means it does

but with limited accuracy, and fine means it does with
high accuracy (e.g., a mouse). Compare to any-pointer ,
which checks whether any mechanism creates a pointer,
not just the primary.

Media feature: prefers-color-scheme

Values: light | dark
Checks which color scheme the user has selected at the
browser or operating system level (i.e., Light mode or Dark
mode). Thus, the author can define specific color values
for, say, prefers-color-scheme: dark . Safari adds a no-
preference value, but this has not been standardized or
adopted by other browsers as of late 2022.

Media feature: prefers-contrast

Values: no-preference | less | more | custom
Checks whether the user has set a preference for high-
contrast output, at either the browser or operating system
level (e.g., Windows High Contrast mode). See “Forced
Colors, Contrast, and Display Mode” for details.

Media feature: prefers-reduced-motion

Values: no-preference | reduce

Checks whether the user has set a preference regarding
motion, at either the browser or operating system level.
The reduce value means the user has indicated they wish
motion to be reduced or eliminated, possibly because of
vestibular disorders that create discomfort when viewing
motion onscreen. Transitions and animations should most
often be put into a prefers-reduced-motion: reduce
block for accessibility reasons.

Media feature: scan

Values: progressive | interlace
Refers to the scanning process used in an output device.
The interlace value is the type generally used in CRT
and some plasma displays. As of late 2022, all known
implementations match the progressive value, making
this media feature somewhat useless.

Media feature: scripting

Values: none | initial-only | enabled
Checks whether a scripting language such as JavaScript is
available. The initial-only value means scripting can be
performed only at page load, but not thereafter. The

scripting media feature is not supported by any browser
as of late 2022.

Media feature: update

Values: none | slow | fast
Checks whether the content’s appearance can be changed
after page load. The none value means no updates are
possible, such as in print media. The slow value means
changes are possible but cannot be animated smoothly
because of device or browser constraints. The fast value
means smooth animations are possible. The update media
feature is supported only by Firefox as of late 2022.

Media feature: video-dynamic-range

Values: standard | high
Checks whether the browsing context supports a high
dynamic range for visual output on videos. This is useful
because some devices render video separately from other
graphics, and so may support a different dynamic range
for video than for other content. The high value means
the media environment supports high peak brightness, a
high contrast ratio, and a 24-bit color depth or higher.
There are no precisely defined values for high peak

brightness or color contrast, so this is left to browsers to
decide. Any device that matches high will also match
standard . The video-dynamic-range media feature
achieved widespread browser support in early 2022.

Forced Colors, Contrast, and Display Mode

Three of the previously defined media features relate to user
preference in their display, and allow you to detect those
preferences so you may style accordingly. Two are closely
intertwined, so we’ll start with them.

If a user has gone to the effort of defining a specific set of colors
to be used in the display of their content, such as with Windows
High Contrast mode, then forced-colors: active will be
matched, as will prefers-contrast: custom . You can use one
or both of these queries to apply specific styles under such
conditions.

If forced-colors: active returns true, the following CSS
properties will be forced to use the browser (or operating
system) default values, overriding any values you may have
declared:

background-color

border-color

color

column-rule-color

outline-color

text-decoration-color

text-emphasis-color

-webkit-tap-highlight-color

Also, the SVG fill and stroke attributes will be ignored and
set to their default values.

Additionally, the following property-value combinations are
enforced over whatever the author has declared:

box-shadow: none

text-shadow: none

background-image: none for values that are not URL-based
(e.g., gradients)
color-scheme: light dark

scrollbar-color: auto

This means that, to pick one example, any element whose hover
or focus styles depend on changing the color of a border will
fail to have an effect. Thus, you could provide a change of font
weight and border style (not color) instead:

This is an example of the sorts of changes you should make to
accommodate forced-color situations, providing greater
usability through small changes. You should not use this query
to set up an entire separate design for users who have forced
certain colors.

As noted previously, if a user has set things up such that
forced-colors: active is triggered, prefers-contrast:
custom will also be triggered. The meanings of this media
feature’s values are as follows:

no-preference

The browser and/or operating system are not aware of a user
preference with regards to color contrast.

less

nav a[href] {border: 3px solid gray;}
nav a[href]:is(:hover, :focus) {border-color: red;}

@media (forced-colors: active) {

 :hover {font-weight: bold; border-style: dash
}

The user has requested interfaces with less contrast than
usual. Examples of this could be users with a propensity for
migraine headaches or dyslexia, as some (not all) dyslexics
find high-contrast text difficult to parse.

more

The user has requested interfaces with more contrast than
usual.

custom

The user has defined a specific set of colors that are not
matched by either more or less , such as the Windows High
Contrast mode.

It is possible to query for any value by not supplying a value,
which is especially useful in this scenario. You might cater to
both low- and high-contrast users as follows:

body {background: url(/assets/img/mosaic.png) repeat;

@media (prefers-contrast) {
 body {background-image: none;}
}

The display-mode media feature is entirely different from the
previous two features. The display-mode media feature lets
authors determine the kind of display environment being used
and act accordingly.

First let’s define what the various values mean:

fullscreen

The application takes up the entire available display area and
does not show any application chrome (e.g., address bar,
back button, status bar, etc.).

standalone

The application appears like a native standalone application.
This removes application chrome such as address bar, but
will make operating-system-derived navigation elements like
back buttons available.

minimal-ui

The application appears similar to a native standalone
application, but provides a way to access application chrome
for things like address bars, the application’s navigation
controls, and so on. System-specific interface controls for
things like “share” or “print” may also be included.

browser

The application appears as normal, showing the entire
application chrome including things like the complete
address bar with forward/back/home buttons, scrollbar
gutters, and so on.

These various states can be triggered either by the user putting
the browser into a given mode (e.g., the user hitting F11 on
Windows to enter full-screen mode), or by a Web Application
Manifest’s display member. The values are exactly the same
in all respects; in fact, the Web Application Manifest
specification just points to the values defined in the CSS Media
Queries Level 5 specification.

Thus, you can do things like define different layouts for
different display modes. Here’s a brief example:

body {display: grid; /* add column and row templates

@media (display-mode: fullscreen) {
 body { /* different column and row templates
}
@media (display-mode: standalone) {
 body { /* more different column and row templ
}

This can be especially useful if you intend to have your design
used in multiple contexts, such as in web browsers, as web
apps, on kiosks, and so on.

Ranged Media Features

Now we turn our attention to the media features that allow
ranges, and have min- and -max variants in addition to
accepting values like lengths or ratios. They also have a more
compact way of formatting value comparisons, which are
discussed in an upcoming section.

Media features: width , min-width , max-width

Values: < length >
The width of the viewport of the user agent. In a screen-
media web browser, this is the width of the viewport plus
any scrollbars. In paged media, this is the width of the
page box, which is the area of the page in which content is
rendered. Thus, (min-width: 100rem) applies when the
viewport is greater than or equal to 100 rem wide.

Media features: height , min-height , max-height

Values: < length >

The height of the viewport of the user agent. In a screen-
media web browser, this is the height of the viewport plus
any scrollbars. In paged media, this is the height of the
page box. Thus, (height: 60rem) applies when the
viewport’s height is precisely 60 rems tall.

Media features: aspect-ratio , min-aspect-ratio , max-
aspect-ratio

Values: < ratio >
The ratio that results from comparing the width media
feature to the height media feature (see the definition of
< ratio > in “Special Value Types”). Thus, (min-aspect-
ratio: 2/1) applies to any viewport whose width-to-
height ratio is at least 2:1.

Media features: color , min-color , max-color

Values: < integer >
The presence of color-display capability in the output
device, with an optional number value representing the
number of bits used in each color component. Thus,
(color) applies to any device with any color depth at all,
whereas (min-color: 4) means there must be at least 4
bits used per color component. Any device that does not
support color will return 0 .

Media features: color-index , min-color-index , max-
color-index

Values: < integer >
The total number of colors available in the output device’s
color lookup table. Any device that does not use a color
lookup table will return 0 . Thus, (min-color-index:
256) applies to any device with a minimum of 256 colors
available.

Media features: monochrome , min-monochrome , max-
monochrome

Values: < integer >
The presence of a monochrome display, with an optional
number of bits per pixel in the output device’s frame
buffer. Any device that is not monochrome will return 0 .
Thus, (monochrome) applies to any monochrome output
device, whereas (min-monochrome: 2) means any
monochrome output device with a minimum of 2 bits per
pixel in the frame buffer.

Media features: resolution , min-resolution , max-
resolution

Values: < resolution >

The resolution of the output device in terms of pixel
density, measured in either dots per inch (dpi) or dots per
centimeter (dpcm); see the definition of < resolution > in
the next section for details. If an output device has pixels
that are not square, the least dense axis is used; for
example, if a device is 100 dpcm along one axis and 120
dpcm along the other, 100 is the value returned.
Additionally, in such nonsquare cases, a bare resolution
feature query—that is, one without a value—can never
match (though min-resolution and max-resolution
can). Note that resolution values must be not only
nonnegative, but also nonzero.

With ranged media feature values, it’s common to want to
restrict rules to a specific range with a maximum and
minimum. For example, you might want to apply a certain
margin between two display widths, like so:

@media (min-width: 20em) and (max-width: 45em) {
 body {margin-inline: 0.75em;}
}

Media Queries Level 4 defines a much more compact way to say
the same thing, using standard mathematical expressions like

equals, greater than, less than, and so on. Thus, the previous
example could be rewritten as follows:

@media (20em < width < 45em) {
 body {margin-inline: 0.75em;}
}

In other words, “width is greater than 20 em and less than 45
em.” If you want to have the rules in that media block apply at
exactly 20 and 45 em of width, the < symbols would be written
as <= instead.

This syntax can be used to limit in only one direction, so to
speak, as this example illustrates:

@media (width < 64rem) {
 /* tiny-width styles go here */
}
@media (width > 192rem) {
 /* enormous-width styles go here */
}

Any media feature that accepts a range as a value (see the
preceding section) can use this syntax format. This effectively

does away with the need for min- and max- prefixes on the
feature name, as well as for complex and constructions.

You can also do multiple ranged queries by chaining them with
the and combinator, like so:

This will add an inline margin to the <body> element only
when the width of the display area is between 20 and 45 em,
and the output resolution is below 600 dots per inch.

WARNING

As of early 2023, the Chrome and Firefox browser families support the compact
range syntax, and Safari has it in its nightly builds. We hope this is supported
everywhere soon after (or even before!) this edition is published.

Deprecated Media Features

The following media features have been deprecated, so browser
support for them could disappear at any time. We include them
here since you may come across them in legacy CSS, and will

@media (20em < width < 45em) and (resolution =< 600dp
 body {margin-inline: 0.75em;}
}

need to know what they were intended to do so you can replace
them with something more up-to-date.

Media features: device-width , min-device-width , max-
device-width

Best replaced by: width , min-width , max-width

Values: < length >
The width of the complete rendering area of the output
device. In screen media, this is the width of the screen (i.e.,
a handheld device screen’s or desktop monitor’s horizontal
measurement). In paged media, this is the width of the
page itself. Thus, (max-device-width: 1200px) applies
when the device’s output area is less than or equal to 1,200
pixels wide.

Media features: device-height , min-device-height , max-
device-height

Best replaced by: height , min-height , max-height

Values: < length >
The height of the complete rendering area of the output
device. In screen media, this is the height of the screen
(i.e., a handheld device screen’s or desktop monitor’s
vertical measurement). In paged media, this is the height
of the page itself. Thus, (max-device-height: 400px)

applies when the device’s output area is less than or equal
to 400 pixels tall.

Media features: device-aspect-ratio , min-device-aspect-
ratio , max-device-aspect-ratio
Best replaced by: aspect-ratio , min-aspect-ratio , max-
aspect-ratio

Values: < ratio >
The ratio that results from comparing the device-width
media feature to the device-height media feature (see
the definition of < ratio > in “Special Value Types”). Thus,
(device-aspect-ratio: 16/9) applies to any output
device whose display area width-to-height ratio is exactly
16:9.

Responsive Styling

Media queries are the foundation on which the practice of
responsive web design is built. By applying different sets of rules
depending on the display environment, it’s possible to marry
“mobile-friendly” and “desktop-friendly” styles into a single
stylesheet.

We put these terms in quotes because, as you may have seen in
your own life, the lines between what’s mobile and what’s
desktop are blurred. A laptop with a touch-sensitive screen that
folds all the way back can act as both a tablet and a laptop, for
example. CSS doesn’t (yet) have a way of detecting whether a
hinge is open past a certain point, nor whether the device is
held in hand or sitting on a flat surface. Instead, inferences are
drawn from aspects of the media environment, like display size
or display orientation.

A fairly common pattern in responsive design is to define
breakpoints for each @media block. This often takes the form of
certain pixel widths, like this:

/* …common styles here… */
@media (max-width: 400px) {
 /* …small-screen styles here… */
}
@media (min-width: 401px) and (max-width: 1000px) {
 /* …medium-screen styles here… */
}
@media (min-width: 1001px) {
 /* …big-screen styles here… */
}

This makes certain assumptions about what a device can
display and how it will report that, however. For example, the
iPhone 6 Plus had a resolution of 1,242 × 2,208, which it
downsampled to 1,080 × 1,920. Even at the downsampled
resolution, that’s enough pixels across to qualify for big-screen
styles in the previous example.

But wait! The iPhone 6 Plus also maintained an internal
coordinate system of points that measured 414 × 736. If it
decided to use those as its definition of pixels, which would be
entirely valid, then it would get only the small-screen styles.

The point here isn’t to single out the iPhone 6 Plus as uniquely
bad, which it wasn’t, but to illustrate the uncertainties of
relying on pixel-based media queries. Browser makers have
gone to some effort to make their browsers behave with some
semblance of sanity, but never quite as much as we’d like, and
you never know when a new device’s assumptions will clash
with your own.

Other methods are available, though they come with their own
uncertainties. Instead of pixels, you might try em-based
measures, something like this:

/* …common styles here… */
@media (max-width: 20em) {

This ties the breakpoints to text display size rather than pixels,
which is more robust. This isn’t perfect either, though: it relies
on a sensible approach to determining the em width of, say, a
smartphone. It also directly relies on the actual font family and
size used by the device, which varies from one device to
another.

Here’s another seemingly simple query set with potentially
surprising results:

/* …common styles here… */
@media (orientation: landscape) {
 /* …wider-than-taller styles here… */
}
@media (orientation: portrait) {
 /* …taller-than-wider styles here… */
}

@ () {
 /* …small-screen styles here… */
}
@media (min-width: 20.01em) and (max-width: 50em) {
 /* …medium-screen styles here… */
}
@media (min-width: 50.01em) {
 /* …big-screen styles here… */
}

This feels like a good way to tell whether a smartphone is in
use: after all, most of them are taller than they are wide, and
most people don’t turn them sideways to read. The wrinkle is
that the orientation feature refers to the height and width ;
that is, orientation is portrait if height is equal to or
larger than width . Not device-height and device-width , but
height and width , which refer to the display area of the user
agent.

That means a desktop browser window whose display area (the
part inside the browser chrome) is taller than it is wide, or even
perfectly square, will get the portrait styles. So if you assume
“portrait equals smartphone,” some of your desktop users could
get a surprise.

The basic point here is that responsive styling is powerful, and
as with any powerful tool, its use requires a fair amount of
thought and care. Carefully considering the implications of each
combination of feature queries is the minimum requirement
for successful responsiveness.

Paged Media

In CSS terms, a paged medium is any medium that handles a
document’s presentation as a series of discrete “pages.” This is
different from the screen, which is a continuous medium:
documents are presented as a single, scrollable “page.” An
analog example of a continuous medium is a papyrus scroll.
Printed material, such as books, magazines, and laser printouts,
are all paged media. So too are slideshows, which show a series
of slides one at a time. Each slide is a “page” in CSS terms.

Print Styles

Even in the paperless future, the most commonly encountered
paged medium is a printout of a document—a web page, a
word-processing document, a spreadsheet, or something else
that has been committed to the thin wafers of a dead tree. You
can do several things to make printouts of your documents
more pleasing for the user, from adjusting page breaking to
creating styles meant specifically for print.

Note that print styles would also be applied to the document
display in a print preview mode. Thus, it’s possible in some
circumstances to see print styles on a monitor.

Differences Between Screen and Print

Beyond the obvious physical differences, stylistic differences
also exist between screen and print design. The most basic
involves font choices. Most designers will tell you that sans-serif
fonts are best suited for screen design, but serif fonts are more
readable in print. Thus, you might set up a print stylesheet that
uses Times instead of Verdana for the text in your document.

Another major difference involves font sizing. If you’ve spent
any time at all doing web design, you’ve probably heard again
and again (and again) that points are a horrible choice for font
sizing on the web. This is basically true, especially if you want
your text to be consistently sized between browsers and
operating systems. However, print design is not web design any
more than web design is print design.

Using points, or even centimeters or picas, is perfectly OK in
print design because printing devices know the physical size of
their output area. If a printer has been loaded with 8.5 × 11 inch
paper, that printer knows it has a printing area that will fit
within the edges of a piece of paper. It also knows how many
dots there are in an inch, since it knows the dpi it’s capable of
generating. This means that it can cope with physical-world
length units like points.

Many a print stylesheet has started with this:

It’s so traditional, it just might bring a tear of joy to the eye of a
graphic artist reading over your shoulder. But make sure they
understand that points are acceptable only because of the
nature of the print medium—they’re still not good for web
design.

Alternatively, the lack of backgrounds in most printouts might
bring a tear of frustration to that designer’s eye. To save users
ink, most web browsers are preconfigured not to print
background colors and images. If the user wants to see those
backgrounds in the printout, they have to change an option in
the preferences.

CSS can’t do anything to force the printing of backgrounds.
However, you can use a print stylesheet to make backgrounds
unnecessary. For example, you might include this rule in your
print stylesheet:

body {font: 12pt "Times New Roman", "TimesNR", Times,

* {color: black !important; background: transparent !

This will do its utmost to ensure that all of your elements print
out as black text and remove any backgrounds you might have
assigned in an all-medium stylesheet. It also makes sure that if
you have a web design that puts yellow text on a dark gray
background, a user with a color printer won’t get yellow text on
a white piece of paper.

One other difference between paged media and continuous
media is that multicolumn layouts are even harder to use in
paged media. Suppose you have an article with text formatted
as two columns. In a printout, the left side of each page will
contain the first column, and the right side the second. This
would force the user to read the left side of every page, then go
back to the beginning of the printout and read the right side of
every page. This is annoying enough on the web, but on paper
it’s much worse.

One solution is to use CSS for laying out your two columns (by
using flexbox, perhaps) and then write a print stylesheet that
restores the content to a single column. Thus, you might write
something like this for the screen stylesheet:

article {display: flex;}
div#leftcol {flex: 0 0 45%;}
div#rightcol {flex: 0 0 5 45%;}

Then in your print stylesheet, you would write the following:

article {display: block; width: auto;}

Alternatively, in user agents that support it, you might define
actual multicolumn layout for both screen and print, and trust
the user agents to do the right thing.

We could spend an entire chapter on the details of print design,
but that really isn’t the purpose of this book. Let’s start
exploring the details of paged-media CSS and leave the design
discussions for another book.

Page Size

In much the same way as it defines the element box, CSS defines
a page box that describes the components of a page. A page box
is composed of two main regions:

Page area
The portion of the page in which the content is laid out. This
is roughly analogous to the content area of a normal element
box, to the extent that the edges of the page area act as the
initial containing block for layout within a page.

Margin area
The area that surrounds the page area.

Figure 21-2 shows the page box model.

Figure 21-2. The page box

The @page block is the method by which settings are made, and
the size property is used to define the actual dimensions of
the page box. Here’s a simple example:

@page {size: 7.5in 10in; margin: 0.5in;}

@page is a block like @media is a block, and it can contain any
set of styles. One of them, size , makes sense only in the
context of an @page block.

WARNING

As of late 2022, only Chromium-based browsers support size .

SIZE

Values auto | < length >{1,2} | [< page-size >
|| [portrait | landscape]]

Initial
value

auto

Applies to The page area

Inherited No

Animatable No

Note < page-size > is one of a defined set of
standard pages sizes; see Table 21-1 for
details

This descriptor defines the size of the page area. The value
landscape is meant to cause the layout to be rotated 90
degrees, whereas portrait is the normal orientation for
Western-language printing. Thus, you could cause a document

to be printed sideways by declaring the following, with the
result shown in Figure 21-3:

@page {size: landscape;}

Figure 21-3. Landscape page sizing

In addition to landscape and portrait , predefined page-size
keywords are available. These are summarized in Table 21-1.

Table 21-1. Page-size keywords

Keyword Description

A5 International Standards Organization
(ISO) A5 size, 148 mm wide x 210 mm
tall (5.83 in x 8.27 in)

A4 ISO A2 size, 210 mm x 297 mm (8.27 in x
11.69 in)

A3 ISO A3 size, 297 mm x 420 mm (11.69 in
x 16.54 in)

B5 ISO B5 size, 176 mm x 250 mm (6.93 in x
9.84 in)

B4 ISO B4 size, 250 mm x 353 mm (9.84 in x
13.9 in)

JIS-B5 ISO Japanese Industrial Standards (JIS)
B5 size, 182 mm x 257 mm (7.17 in x
10.12 in)

Keyword Description

JIS-B4 ISO JIS B4 size, 257 mm x 364 mm (10.12
in x 14.33 in)

letter North American letter size, 8.5 in x 11 in
(215.9 mm x 279.4 mm)

legal North American legal size, 8.5 in x 14 in
(215.9 mm x 355.6 mm)

ledger North American ledger size, 11 in x 17
in (279.4 mm x 431.8 mm)

Any one of the keywords can be used to declare a page size. The
following defines a page to be JIS B5 size:

@page {size: JIS-B5;}

These keywords can be combined with the landscape and
portrait keywords; thus, to define landscape-oriented North
American legal pages, the following is used:

@page {size: landscape legal;}

Besides using keywords, it’s also possible to define page sizes
using length units. The width is given first, and then the height.
Therefore, the following defines a page area 8 inches wide by 10
inches tall:

@page {size: 8in 10in;}

The defined area is usually centered within the physical page,
with equal amounts of whitespace on each side. If the defined
size is larger than the printable area of the page, the user
agent has to decide what to do to resolve the situation. There is
no defined behavior here, so it’s really dealer’s choice.

Page Margins and Padding

Related to size , CSS includes the ability to style the margin
area of the page box. If you want to make sure that only a small
bit at the center of every 8.5 × 11 inch page is used to print, you
could write this:

@page {margin: 3.75in;}

This would leave a printing area 1 inch wide by 3.5 inches tall.

It is possible to use the length units em and ex to describe
either the margin area or the page area, at least in theory. The
size used is taken from the page context’s font, which is to say,
the base font size used for the content displayed on the page.

Named Page Types

CSS enables you to create different page types using named
@page rules. Let’s say you have a document on astronomy that
is several pages long, and in the middle of it, a fairly wide table
contains a list of the physical characteristics of all the moons of
Saturn. You want to print out the text in portrait mode, but the
table needs to be landscape. Here’s how you’d start:

@page normal {size: portrait; margin: 1in;}
@page rotate {size: landscape; margin: 0.5in;}

Now you just need to apply these page types as needed. The
table of Saturn’s moons has an id of moon-data , so you write
the following rules:

body {page: normal;}
table#moon-data {page: rotate;}

This causes the table to be printed in landscape orientation, but
the rest of the document to be in portrait orientation. The page
propery is what makes this possible.

PAGE

Values < identifier > | auto

Initial value auto

Applies to Block-level elements

Inherited No

Animatable No

As you can see from looking at the value definition, the whole
reason page exists is to let you assign named page types to
various elements in your document.

You can use more generic page types through special pseudo-
classes. The :first page pseudo-class lets you apply special
styles to the first page in the document. For example, you might

want to give the first page a larger top margin than other pages.
Here’s how:

@page {margin: 3cm;}
@page :first {margin-top: 6cm;}

This will yield a 3 cm margin on all pages, with the exception of
a 6 cm top margin on the first page.

In addition to styling the first page, you can also style left and
right pages, emulating the pages to the left and right of a book’s
spine. You can style these differently using :left and :right .
For example:

These rules will have the effect of putting larger margins
between the content of the left and right pages, on the sides
where the spine of a book would be. This is a common practice
when pages are to be bound together into a book of some type.

WARNING

As of early 2023 the Firefox family doesn’t support :first , :left , or :right .

@page :left {margin-left: 3cm; margin-right: 5cm;}
@page :right {margin-left: 5cm; margin-right: 3cm;}

Page Breaking

In a paged medium, it’s a good idea to exert some influence
over the way page breaks are placed. You can affect page
breaking by using the properties page-break-before and
page-break-after , both of which accept the same set of
values.

PAGE-BREAK-BEFORE, PAGE-BREAK-AFTER

Values auto | always | avoid | left | rig
ht | inherit

Initial
value

auto

Applies to Nonfloated block-level elements with a
position value of relative or stati
c

Inherited No

Animatable No

Computed
value

As specified

The default value of auto means that a page break is not
forced to come before or after an element. This is the same as
any normal printout. The always value causes a page break to
be placed before (or after) the styled element.

For example, say the page title is an <h1> element, and the
section titles are all <h2> elements. We might want a page
break right before the beginning of each section of a document
and after the document title. This would result in the following
rules, illustrated in Figure 21-4:

h1 {page-break-after: always;}
h2 {page-break-before: always;}

Figure 21-4. Inserting page breaks

If we want the document title to be centered in its page, we’d
add rules to that effect. Since we don’t, we just get a
straightforward rendering of each page.

The values left and right operate in the same manner as
always, except they further define the type of page on which

printing can resume. Consider the following:

h2 {page-break-before: left;}

This will force every <h2> element to be preceded by enough
page breaks that the <h2> will be printed at the top of a left
page—that is, a page surface that would appear to the left of a
spine if the output were bound. In double-sided printing, this
would mean printing on the back of a piece of paper.

So let’s assume that, in printing, the element just before an
<h2> is printed on a right page. The previous rule would cause
a single page break to be inserted before the <h2> , thus
pushing it to the next page. If the next <h2> is preceded by an
element on a left page, however, the <h2> would be preceded
by two page breaks, thus placing it at the top of the next left
page. The right page between the two would be intentionally
left blank. The value right has the same basic effect, except it
forces an element to be printed at the top of a right page
preceded by either one or two page breaks.

The companion to always is avoid , which directs the user
agent to do its best to avoid placing a page break either before
or after an element. To extend the previous example, suppose
you have subsections whose titles are <h3> elements. You want

to keep these titles together with the text that follows them, so
you want to avoid a page break following an <h3> whenever
possible:

h3 {page-break-after: avoid;}

Note, though, that the value is called avoid , not never . There
is no way to absolutely guarantee that a page break will never
be inserted before or after a given element. Consider the
following:

Now, suppose further that an <h4> is placed between two
images, and its height calculates to be half an inch. Each image
will have to be printed on a separate page, but the <h4> can go
only two places: at the bottom of the page holding the first
element, or on the page after it. If it’s placed after the first
image, it has to be followed by a page break, since there’s no
room for the second image to follow it.

img {height: 9.5in; width: 8in; page-break-before: av
h4 {page-break-after: avoid;}
h4 + img {height: 10.5in;}

On the other hand, if the <h4> is placed on a new page
following the first image, there won’t be room on that same
page for the second image. So, again, a page break will occur
after the <h4> . And, in either case, at least one image, if not
both, will be preceded by a page break. There’s only so much
the user agent can do, given a situation like this one.

Situations such as these are rare, but they can happen—for
example, in a document containing nothing but tables preceded
by headings. The tables could print in such a way that they
force a heading element to be followed by a page break, even
though the author requested such break placement be avoided.

The same sorts of issues can arise with the other page-break
property, page-break-inside . Its possible values are more
limited than those of its cousins.

PAGE-BREAK-INSIDE

Values auto | avoid

Initial
value

auto

Applies to Nonfloated block-level elements with a
position value of relative or stati
c

Inherited Yes

Computed
value

As specified

With page-break-inside , you pretty much have one option
other than the default: you can request that a user agent try to
avoid placing page breaks within an element. If you have a
series of aside divisions, and you don’t want them broken
across two pages, then you could declare the following:

div.aside {page-break-inside: avoid;}

Again, this is a suggestion more than an actual rule. If an aside
turns out to be longer than a page, the user agent can’t help but
place a page break inside the element.

Orphans and Widows

There are two properties common to both traditional print
typography and desktop publishing that provide influence over
page breaking: widows and orphans .

WIDOWS, ORPHANS

Values < integer >

Initial value 2

Applies to Block-level elements

Computed value As specified

Inherited No

Animatable Yes

These properties have similar aims but approach them from
different angles. The value of widows defines the minimum
number of line boxes found in an element that can be placed at
the top of a page without forcing a page break to come before
the element. The orphans property has the reverse effect: it
gives the minimum number of line boxes that can appear at the
bottom of a page without forcing a page break before the
element.

Let’s take widows as an example. Suppose you declare the
following:

p {widows: 4;}

This means that any paragraph can have no fewer than four
line boxes appear at the top of a page. If the layout of the
document would lead to fewer line boxes, the entire paragraph
is placed at the top of the page.

Consider the situation shown in Figure 21-5. Cover up the top
part of the figure with your hand so that only the second page is
visible. Notice that there are two line boxes there, from the end
of a paragraph that started on the previous page. Given the
default widows value of 2 , this is an acceptable rendering.
However, if the value were 3 or higher, the entire paragraph
would appear at the top of the second page as a single block.
This would require that a page break be inserted before the
paragraph in question.

Figure 21-5. Counting the widows and orphans

Refer back to Figure 21-5, and this time cover up the second
page with your hand. Notice the four line boxes at the bottom of
the page, at the beginning of the last paragraph. This is fine as
long as the value of orphans is 4 or less. If it were 5 or
higher, the paragraph would again be preceded by a page break
and be laid out as a single block at the top of the second page.

One potential pitfall is that both orphans and widows must be
satisfied. If you declare the following, most paragraphs would
be without an interior page break:

p {widows: 30; orphans: 30;}

It would take a pretty lengthy paragraph to allow an interior
page break, given those values. If the intent is to prevent
interior breaking, that intent would be better expressed as the
follows:

p {page-break-inside: avoid;}

WARNING

Both widows and orphans have long been supported in most browsers, except for
the Firefox family, which still does not seem to support them as of early 2023.

Page-Breaking Behavior

Because CSS allows for some odd page-breaking styles, it
defines a set of behaviors regarding allowed page breaks and
“best” page breaks. These behaviors serve to guide user agents
in how they should handle page breaking in various
circumstances.

Page breaks are permitted in only two generic places. The first
of these is between two block-level boxes. If a page break falls

between two block boxes, the margin-bottom value of the
element before the page break is reset to 0 , as is the margin-
top of the element following the page break. However, two
rules affect whether a page break can fall between two element
boxes:

If the value of page-break-after for the first element—or
the value of page-break-before for the second element—is
always , left , or right , a page break will be placed
between the elements. This is true regardless of the value for
the other element, even if it’s avoid . (This is a forced page
break.)
If the value of the first element’s page-break-after value is
auto , and the same is true for the second element’s page-
break-before value, and they do not share an ancestor
element whose page-break-inside value is not avoid , then
a page break may be placed between them.

Figure 21-6 illustrates all the possible page-break placements
between elements in a hypothetical document. Forced page
breaks are represented as a filled square, whereas potential
(unforced) page breaks are shown as an open square.

Second, page breaks are allowed between two line boxes inside
a block-level box. This, too, is governed by a pair of rules:

A page break may appear between two line boxes only if the
number of line boxes between the start of the element and
the line box before the page break would be less than the
value of orphans for the element. Similarly, a page break
can be placed only where the number of line boxes between
the line box after the page break and the end of the element
is less than the value of widows .
A page break can be placed between line boxes if the value of
page-break-inside for the element is not avoid .

Figure 21-6. Potential page-break placement between block boxes

In both cases, the second of the two rules controlling page-
break placement is ignored if no page-break placement can
satisfy all the rules. Thus, if an element has been given page-
break-inside: avoid but the element is longer than a full
page, a page break will be permitted inside the element,
between two line boxes. In other words, the second rule
regarding page-break placement between line boxes is ignored.

If ignoring the second rule in each pair of rules still does not
yield good page-break placement, other rules can also be
ignored. In such a situation, the user agent is likely to ignore all
page-break property values and proceed as if they were all
auto , although this approach is not defined (or required) by
the CSS specification.

In addition to the previously explored rules, CSS defines a set of
best page-breaking behaviors:

Break as few times as possible.
Make all pages that don’t end with a forced break appear to
have about the same height.
Avoid breaking inside a block that has a border.
Avoid breaking inside a table.
Avoid breaking inside a floated element.

These recommendations aren’t required of user agents, but
they offer logical guidance that should lead to ideal page-
breaking behaviors.

Repeated Elements

A very common desire in paged media is the ability to have a
running head. This is an element that appears on every page,
such as the document’s title or the author’s name. This is
possible in CSS by using a fixed-position element:

div#runhead {position: fixed; top: 0; right: 0;}

This will place any <div> with an id of runhead at the top-
right corner of every page box when the document is outputted
to a paged medium. The same rule would place the element in
the top-right corner of the viewport in a continuous medium,
such as a web browser. Any element positioned in this way will
appear on every page. It is not possible to copy an element to
become a repeated element. Thus, given the following, the
<h1> element will appear as a running head on every page,
including the first one:

h1 {position: fixed; top: 0; width: 100%; text-align:
 font-size: 80%; border-bottom: 1px solid gray;}

The drawback is that the <h1> element, being positioned on the
first page, cannot be printed as anything except the running
head.

Eventually, we will be able to add content directly into the
margins of a printed page with the @page ’s margin at-rules.
The following would place “table of contents” in the top middle
of a printed page containing an element with page: toc set:

@page toc {
 size: a4 portrait;
 @top-middle {
 content: "Table of contents";
 }
}

Elements Outside the Page

All this talk of positioning elements in a paged medium leads to
an interesting question: what happens if an element is
positioned outside the page box? You don’t even need
positioning to create such a situation. Think about a <pre>
element that contains a line with 411 characters. This is likely to

be wider than any standard piece of paper, and so the element
will be wider than the page box. What will happen then?

As it turns out, CSS doesn’t say exactly what user agents should
do, so it’s up to each one to come up with a solution. For a very
wide <pre> element, the user agent might clip the element to
the page box and throw away the rest of the content. It could
also generate extra pages to display the leftover part of the
element.

CSS has a few general recommendations for handling content
outside the page box, and two that are really important. First,
content should be allowed to protrude slightly from a page box
in order to allow bleeding. This implies that no extra page
would be generated for the portions of such content that exceed
the page box but do not extend all the way off the page.

Second, user agents are cautioned not to generate large
numbers of empty pages for the sole purpose of honoring
positioning information. Consider the following:

h1 {position: absolute; top: 1500in;}

Assuming that the page boxes are 10 inches high, the user agent
would have to precede an <h1> with 150 page breaks (and thus

150 blank pages) just to honor that rule. Instead, a user agent
might choose to skip the blank pages and output only the last
one, which actually contains the <h1> element.

The other two recommendations in the specification state that
user agents should not position elements in strange places just
to avoid rendering them, and that content placed outside a page
box can be rendered in any of a number of ways. (Some of the
commentary in CSS is useful and intriguing, but some seems to
exist solely to cheerily state the obvious.)

Container Queries

As media queries are to media contexts, so container queries
are to containment contexts. Rather than saying you want to
change the layout of a piece of your design because of changes
in the display size, you can have those changes come from
changes in their parent element’s size.

For example, you might have a page header containing a logo,
some navbar links, and a search box. By default, the search box
is narrow, so as not to take up too much space. Once it gains
focus, though, it gets wider. In this situation, you might want to
change the layout and sizing of the logo and links, thus giving

way to the search box without disappearing entirely or being
overlaid. Here’s how you could set that up:

Let’s explore the new properties that container queries
introduce, and then dig into the query block syntax.

<header id="site">
 <nav>
 <img src="/i/logo.png" alt="ConHugeCo
 Products
 Services

 <!-- and so on -->
 </nav>
 <form>
 <!-- search form is here -->
 </form>
</header>

header#site nav {container: headernav / size;}

@container headernav (width < 50%) {
 /* style changes to be applied to elements wh
 shrinks in inline size below half-width */
}

WARNING

Container queries gained widespread browser support in mid- to late 2022, so be
careful when using them if you have users with browsers older than that. That said,
container queries are supported in all evergreen browsers.

Defining Container Types

There are a couple of ways to define the type of container,
while also setting the kinds of containment (see contain in
Chapter 20) that are enabled for the container. It’s all managed
through the container-type property.

CONTAINER-TYPE

Value normal | size | inline-size

Initial value normal

Applies to All elements

Computed value As declared

Inherited No

Animatable No

When using the default value, normal , a container can be
queried on specific property-value combinations. Suppose you
want to apply certain styles if a container has a specific side
padding value. That would look something like this:

header#site nav {
 container-type: normal; /* default value */
 container-name: headernav;
}

Inside a style() function, any property and value
combination can be used, including those involving custom
properties, and will match as long as that precise combination
is in effect. You could, for example, change the color of heading
text based on the value of a text-sizing custom property:

@container headernav style(padding-inline: 1em) {
 /* style changes to be applied to elements wh
 specifically has 1em inline padding, and n
}

main > section {
 container: pagesection / normal;
}

@container pagesection style(--textSize: x-small) {
 h1, h2, h3, h4, h5, h6 {color: black;}
}

@container pagesection style(--textSize: normal) {
 h1, h2, h3, h4, h5, h6 {color: #222;}
}
@container pagesection style(--textSize: x-big) {
 h1, h2, h3, h4, h5, h6 {color: #444;}
}

You can also query specific sizing values, such as (width:
30em) , but that queries only the value of the CSS property, not
the rendered size of the container. If you want to perform
range-based sizing queries, you’ll have to use one of the other
values of container-type : size or inline-size .

If you declare container-type: size , you’re able to query on
both the inline and block axes. Thus you could, for example, set
up a query that relates to both sizes of the container like this:

If you care about only the inline size, using inline-size
instead might make more sense, as follows:

header#site nav {
 container-type: size
 container-name: headernav;
}

@container headernav (block-size < 6rem) and (inline-
 /* style changes to be applied to elements wh
 has a block size below 6rem AND an inline
}

header#site nav {
 container-type: inline-size
 container-name: headernav;

What’s the real difference, besides one of them allowing for
block-axis queries? Both values set layout and style
containment (see the contain property in Chapter 20), but
size sets size containment, whereas inline-size sets inline-
size containment. This makes some sense, given their respective
names. If you’re always going to do only inline querying, use
inline-size so as to keep the block direction uncontained.

Throughout this section, we’ve been setting a container name
without having really talked about it, so let’s talk about it now.

Defining Container Names

To refer to a container, that container needs a name, and that’s
what container-name provides. It even lets you assign multiple
names to the same element.

}

@container headernav (inline-size => 50vmin) {
 /* style changes to be applied to elements wh
 has an inline size greater than or equal t
}

CONTAINER-NAME

Value none ‖ < custom-ident >

Initial
value

none

Applies to All elements

Computed
value

As declared

Inherited No

Animatable No

Note You cannot use the keywords and , non
e , not , nor or in the < custom-ident >

Pretty much anytime you set a container, you should set a
container name—or names. Both of the following rules are
legal:

OK, you probably shouldn’t be mixing camelCase, dash-
separated, and underscore_separated naming conventions, but
otherwise, everything’s fine. The <header> elements will be
given the container name pageHeader , while <footer>
elements will be given all three container names listed. This
allows you to apply different container queries for different
things, like so:

We can turn this around and assign the same container name to
a bunch of elements:

header {container-name: pageHeader;}
footer {container-name: pageFooter full-width nav_ele

@container pageFooter (width < 40em) {
 /* rules for elements in narrow footers go he
}
@container nav_element (height > 5rem) {
 /* rules for elements in tall elements that c
}
@container full-width style(border-style: solid) {
 /* rules for elements in full-width container
}

header#page, .full-width, full-bleed, footer {

Using Container Shorthand

Now let’s bring these two properties together into a single
shorthand, container .

eade page, . u dt , u b eed, oote {
 container-name: full-width;
}

@container full-width style(border-style: solid) {
 /* rules for elements in full-width container
}

CONTAINER

Value < container-name > [/ < container-typ

e >]?

Initial
value

See individual properties

Applies to All elements

Computed
value

See individual properties

Inherited No

Animatable No

Note You cannot use the keywords and , non
e , not , nor or in the < container-nam

e >

If you want to define the container name and type in one handy
declaration, this is the property for you. As an example, the
following two rules are precisely equivalent:

header#page nav {
 container-name: headerNav;
 container-type: size;
}
header#page nav {
 container: headerNav / size;
}

In the container value, the name must always be present and
must always come first. If a container type is defined, it must
come second and follow a forward slash (/). If no container
type is given, the initial value of normal is used. Thus, the
following rules are precisely equivalent:

footer#site nav {
 container-name: footerNav;
 container-type: normal;
}
footer#site nav {
 container: footerNav / normal;
}
footer#site nav {

 container: footerNav;
}

As with container-name , you can include a space-separated list
of names, like so:

So those are the ways to set container names and types. You’ve
seen that the @container block is used to invoke these, and
now it’s time to discuss exactly how that works.

Using Container At-Rules

The syntax of container query blocks will seem familiar if you
read the earlier sections on media queries, because the syntax
is nearly the same. The only real difference is that container
queries use an optional container name and the style()
function. Here’s the basic syntax format:

footer#site nav {
 container: footerNav fullWidth linkContainer
}

@container <container-name>? <container-condition> {
 /* CSS rules go here */
}

You don’t have to include a container name, but if you do, it
must go first. (We’ll talk about what happens if you don’t in just
a bit.) There must, however, be a condition of some sort—some
sort of query. It wouldn’t be a container query without one,
after all.

As with media queries, you can use the and , not , and or
modifiers to set up your queries. Suppose you want to match a
container that does not have a dashed border. That goes
something like this:

@container not style(border-style: dashed) {
 /* CSS rules go here */
}

Or perhaps you want to apply some rules when a container
named fullWidth is in a certain size range but also doesn’t
have a dashed border:

@container fullWidth (inline-size > 30em) and not sty
 /* CSS rules go here */
}

Note that you can list only one container name; there is no way
to combine them in a single query block, whether with commas
or logical combinators like and . As with all query blocks,
though, you can nest container queries, such as these:

This will be matched, and the styles applied, to elements when
they have a fullWidth container with an inline size above 30
em and a not-dashed border style, and also a headerNav
container with an inline size above 30 em. And the same
element could be both containers!

This brings us to the question of how, exactly, an element knows
which containers are being queried. Let’s extend an earlier
example a bit and fill in the actual CSS rules:

@container fullWidth (inline-size > 30em) and not sty
 @container headerNav (inline-size > 30em) {
 /* CSS rules go here */

 }
}

@container fullWidth (inline-size > 30em) and not sty
 nav {display: flex; gap: 0.5em;}
}

How does a given <nav> element on the page know when it’s
matched by a container query? By looking up its ancestor tree
to see if there are any containers above it in the tree. If there
are, and they match the name that appears in the container
block surrounding it, and the specified query matches the
container type, then the query is made. If it returns true, the
styles in the container block are applied. Let’s see that in action.
Here’s a document skeleton:

html
 body
 header.page
 img
 nav
 (links here)
 main
 h1
 aside
 nav
 p
 p
 p
 p
 footer.page

}

 nav
 (links here)
 img

To that markup, we’ll apply the following styles:

In the markup, we have three <nav> elements, and in the CSS
we have three container blocks. Let’s consider the blocks one by
one.

header.page {container: headerNav fullWidth / size;}
footer.page {container: fullWidth / size;}
body, main {container-type: normal;}

nav {display: flex; gap: 0.5em;}

@container fullWidth (inline-size < 30em) {
 nav {flex-direction: column; padding-block: 4
}
@container headerNav (block-size > 25vh) {
 nav {font-size: smaller; padding-block: 0; ma
}
@container style(background-color: blue;) {
 nav {color: white;}
 nav a {color: inherit; font-weight: bold;}
}

The first container query block says to all <nav> elements, “If
you have a container with a name of fullWidth , and that
container’s inline size is less than 30 em, then you get these
styles.” The header and footer <nav> elements do have
containers named fullWidth : the <header> and <footer>
elements both have that name. Their container types are also
size , so checking the inline size is valid. So they check the
inline sizes of their respective containers to see if the styles will
be applied.

Note that this happens per container. The header might be 40
em wide and the footer only 25 em wide because of other layout
styles (a grid template, for example). In that case, the change of
flex direction will be applied to the footer’s <nav> , but not the
header’s <nav> . As for the <nav> inside the <main> element, it
doesn’t have any containers labeled fullWidth , so it gets
skipped over regardless of the condition query.

The second container query block says to all <nav> elements,
“If you have a container named headerNav , and that
container’s block size is greater than 25 vh, you get these
styles.” The only container on the page with a container name
of headerNav is the <header class="page"> , so its <nav>
checks the block size of the container, and applies the styles if
the container’s block size is above 25 vh. The other two <nav>

elements skip this entirely, because none of their containers are
named headerNav .

The third container query block is more vague. It says to all
<nav> elements, “If you have a container and its background is
blue, then you get these styles.” Note that there’s no container
name, so the header <nav> checks its nearest-ancestor
container, which is header.page , to see if it’s set to
background-color: blue . Let’s assume it isn’t, so these styles
aren’t applied.

The same thing happens for the <nav> inside the <main> and
the footer, as well any <a> elements inside them. We already
established that its background color isn’t blue in the previous
paragraph, so if <main> or the footer have their background
color set to blue , then their respective <nav> elements and
their links will get those styles; otherwise, they won’t.

Remember that a container query matters only if an element
matches the selectors inside the query block. Imagine someone
writing something like this:

@container (orientation: portrait) {
 body > main > aisde.sidebar ol li > ul li > o
 display: flex;
 }

Only an element that matches that long and very specific
selector can check its containers to see if any of them are in
portrait orientation, and even an element that matches the
selector won’t get the styles if it doesn’t have any containers.
Otherwise, the query is kind of moot. This speaks to the
necessity of making sure your selectors will match before you
worry about querying any containers, and then making sure
your matched elements have containers to query.

Defining Container Query Features

You can check seven features in a container query, most of
which you’ve seen previously, but a couple of which we haven’t
touched on. They’re summarized here:

Feature: block-size

Value: < length >
Queries the block size of the query container’s content box.

Feature: inline-size

Value: < length >

}

Queries the inline size of the query container’s content
box.

Feature: width

Value: < length >
Queries the physical width of the query container’s
content box.

Feature: height

Value: < length >
Queries the physical height of the query container’s
content box.

Feature: aspect-ratio

Value: < ratio >
Queries the ratio of the physical width as compared to the
physical height of the query container’s content box.

Feature: orientation

Value: portrait | landscape
Queries the physical width and height of the query
container’s content box. The container is considered to be

landscape if its width is greater than its height;
otherwise, the container is considered to be portrait .

These do not have min- and max- prefixed variants. Instead,
the math-style range notation we covered previously is used.

Setting Container Length Units

In addition to querying containers, you can also style elements
with length values based on their containers’ sizes, very much
like the viewport-relative length units discussed in Chapter 5.
These are as follows:

cqb

1% of the container’s block size

cqi

1% of the container’s inline size

cqh

1% of the container’s physical height

cqw

1% of the container’s physical width

cqmin

Equivalent to cqb or cqi , whichever is smaller

cqmax

Equivalent to cqb or cqi , whichever is larger

Thus you could set up an element such that at smaller container
sizes, its children are the full width of the container, but at
larger sizes they’re some fraction of the container’s width. This
could be done with grid tracks, for example:

Here, if the container is above 45 em in width, a that is a
child of div.card will be turned into a grid container, with
columns that are sized based on the container’s width. This is
illustrated in Figure 21-7.

div.card {
 container: card / inline-size;
}

@container card (width > 45em) {
 div.card > ul {
 display: grid;
 grid-template-columns: repeat(3, 30cq
 justify-content: space-between;
 }
}

Figure 21-7. Using container query units

The advantage here is mostly in applications like web
components, for which it may be desirable to size elements
based on the size of the container, even though the container
may appear in a wide variety of sizing conditions.

Feature Queries (@supports)

CSS has the ability to apply rules when certain CSS property-
value combinations are supported by the user agent. These are
known as feature queries.

Say you want to apply color to an element only if color is a
supported property. (Which it certainly should be!) That would
look like the following:

@supports (color: black) {
 body {color: black;}

 h1 {color: purple;}
 h2 {color: navy;}
}

This says, in effect, “If you recognize and can do something with
the property-value combination color: black , apply these
styles. Otherwise, skip these styles.” In user agents that don’t
understand @supports , the entire block is skipped over.

Feature queries are a perfect way to progressively enhance
your styles. For example, suppose you want to add some grid
layout to your existing float-and-inline-block layout. You can
keep the old layout scheme and then later in the stylesheet
include a block like this:

This block of styles will be applied in browsers that understand
grid display, overriding the old styles that governed page layout,
and then applying the styles needed to make things work in a
grid-based future. Browsers too old to understand grid layout

@supports (display: grid) {
 section#main {display: grid;}
 /* styles to switch off old layout positioning */
 /* grid layout styles */
}

are too old to understand @supports , so they’ll skip the whole
block entirely, as if it had never been there.

Feature queries can be embedded inside each other, and indeed
can be embedded inside media blocks, as well as vice versa. You
could write screen and print styles based on flexible-box layout,
and wrap those media blocks in an @supports (display:
flex) block:

@supports (display: flex) {
 @media screen {
 /* screen flexbox styles go here */
 }
 @media print {
 /* print flexbox styles go here */
 }
}

Conversely, you could add @supports() blocks inside various
responsive-design media query blocks:

@media screen and (max-width: 30em){
 @supports (display: flex) {
 /* small-screen flexbox styles go here */
 }
}

@media screen and (min-width: 30em) {
 @supports (display: flex) {
 /* large-screen flexbox styles go here */
 }
}

The way you organize these blocks is really up to you. The same
holds true for container queries, which can be nested inside
feature queries, or vice versa. In fact, you can nest the various
kinds of queries inside each other, or themselves, in any
combination that makes sense for your situation (and to you).

As with media queries, feature queries also permit logical
operators. Suppose we want to apply styles only if a user agent
supports both grid layout and CSS shapes. Here’s how that
might go:

This is essentially equivalent to writing the following:

@supports (display: grid) {
 @supports (shape-outside: circle()) {

@supports (display: grid) and (shape-outside: circle(
 /* grid-and-shape styles go here */
}

 /* grid-and-shape styles go here */
 }
}

However, there’s more than “and” operations available. CSS
Shapes (covered in detail in Chapter 20) are a good example of
why “or” is useful, because for a long time WebKit supported
CSS shapes only via vendor-prefixed properties. So if you want
to use shapes, you can use a feature query like this:

@supports (shape-outside: circle()) or
 (-webkit-shape-outside: circle()) {
 /* shape styles go here */
}

You’d still have to make sure to use both prefixed and
unprefixed versions of the shape properties, but this would let
you add support for those properties backward in the WebKit
release line while supporting other browsers that also support
shapes via nonprefixed properties.

All this is handy because at times you might want to apply
different properties than those you’re testing. So, to go back to
grid layout for a second, you might want to change the margins

and so forth on your layout elements when a grid is in use.
Here’s a simplified version of that approach:

div#main {overflow: hidden;}
div.column {float: left; margin-right: 1em;}
div.column:last-child {margin-right: 0;}

@supports (display: grid) {
 div#main {display: grid; gap: 1em 0;
 overflow: visible;}
 div#main div.column {margin: 0;}
}

It’s possible to use negation as well. For example, you could
apply the following styles when grid layout is not supported:

@supports not (display: grid) {
 /* grid-not-supported styles go here */
}

You can combine your logical operators into a single query, but
parentheses are required to keep the logic straight. Suppose we
want a set of styles to be applied when color is supported, and
when one of either grid or flexible box layout is supported.
That’s written like this:

Notice that there’s another set of parentheses around the “or”
part of the logic, enclosing the grid and flex tests. Those extra
parentheses are required. Without them, the entire expression
will fail, and the styles inside the block will be skipped. In other
words, don’t do this:

Finally, you might wonder why both a property and value are
required in feature query tests. After all, if you’re using shapes,
all you need to test for is shape-outside , right? It’s because a
browser can easily support a property without supporting all its
values. Grid layout is a perfect example. Suppose you try to test
for grid support like this:

@supports (display) {
 /* grid styles go here */
}

@supports (color: black) and ((display: flex) or (dis
 /* styles go here */
}

/* the following will not work and is a bad idea */
@supports (color: black) and (display: flex) or (disp

Well, even Internet Explorer 4 supported display . Any
browser that understands @supports will certainly understand
display and many of its values—but maybe not grid . That’s
why property and value are always tested in feature queries.

WARNING

Remember that these are feature queries, not correctness queries. A browser can
understand the feature you’re testing for, but implement it with bugs, or parse it
correctly without actually supporting the intended behavior. In other words, you’re
not getting an assurance from the browser that it supports something correctly. All a
positive feature-query result means is that the browser understands what you’ve
said.

Other At-Rules

A variety of other at-rules were covered in other parts of the
book:

@counter-style (see Chapter 16)
@font-face (see Chapter 14)
@font-feature-values (see Chapter 14)
@import (see Chapter 1)
@layer (see Chapter 4)

Two more were not covered elsewhere, so we’ll cover them
here.

Defining a Character Set for a Stylesheet

The @charset at-rule is a way to set a specific character set for
a stylesheet. For example, you may have received a stylesheet in
the UTF-16 character encoding. That would be marked as
follows:

@charset "UTF-16";

In a departure from the rest of CSS, the syntax here is very
exacting. There must be exactly one space (which must be the
space defined by Unicode code point U+0020) between the
@charset and the quoted value, the value must be quoted, and
it can be quoted using only double quotes. In addition, you
cannot have space of any kind before the @charset ; it must be
the first thing on the line.

Furthermore, if you need to include @charset , it must be the
very first thing in the stylesheet, before any other at-rule or
regular rule. If you list more than one @charset , the first will
be used, and the rest ignored.

And finally, the only acceptable values are character encodings
defined in the Internet Assigned Numbers Authority (IANA)
Registry.

Use of @charset is vanishingly rare, so unless explicitly
declaring the encoding of a specific stylesheet is absolutely
required to make things work, don’t worry about it.

Defining a Namespace for Selectors

The @namespace at-rule allows you to use XML namespaces in
your stylesheets. The value of @namespace is the URL of a
document defining the namespace, like this:

Given the previous CSS, <a> elements in XHTML would be
navy on yellow, and <a> elements in SVG would be red on

<style>
@namespace xhtml url(http://www.w3.org/1999/xhtml);
@namespace svg url(http://www.w3.org/2000/svg);

xhtml|a {color: navy;}
svg|a {color: red;}

a {background: yellow;}
</style>

https://www.iana.org/assignments/character-sets/character-sets.xhtml

yellow. This is why selectors without namespaces work across
all markup languages: no namespace means no restriction.

Any @namespace at-rules must come after any @charset or
@import at-rules, but before any other stylesheet content,
whether other at-rules or normal rules. The @namespace at-rule
is rarely used outside of test pages, but if you need to use it, the
capability is there.

Summary

Thanks to the flexibility of at-rules, it is possible to provide a
wide range of design experiences from within a single set of
styles. Whether reorganizing a page to account for varying
display sizes, reworking the color scheme to support grayscale
printing, or restyling content based on elements that contain
them, you have the ability to do a great deal to make your work
the best it can be.

Appendix A. Additional Resources

Here’s a small collection of useful websites, resources, and
documentation freely available to all:

Can I Use support tables for HTML5, CSS3, etc.
A place to look up the latest support status for just about
anything in HTML, CSS, and JavaScript. Useful when you
need to support older browsers, or to see the implementation
status of your favorite bleeding-edge CSS feature.

Mozilla Developers Network (MDN)
Often referred to as “the web’s developer manual,” MDN
documents and provides support information for nearly
every aspect of every web API—HTML, CSS, JavaScript, SVG,
XML, and on and on. The hub for all things CSS is found at
https://developer.mozilla.org/en-US/docs/Web/CSS.

Web Accessibility for Seizures and Physical Reactions
An excellent coverage of various kinds of disorders that your
design could potentially trigger if you overdo features like
animation, parallax scrolling, flashing colors, and more.
Should be required reading for all new web designers and
developers.

https://caniuse.com/
https://developer.mozilla.org/
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/Accessibility/Seizure_disorders

CSS SpecifiFISHity
A chart illustrating specificity, using adorable fish (and
plankton) and the occasional shark. Suitable for printing and
hanging up next to your monitor!

Color.js
A JavaScript library to provide support for advanced CSS
color syntax. It includes several useful JavaScript methods,
including calculating the midpoint between two colors. If
you’re doing a lot of work with color manipulation, this is
worth a look.

Arkandis Digital Foundry
A set of free web fonts available to use in personal projects.
It’s the source of SwitzeraADF, which is mentioned a lot in
Chapter 14.

Font Squirrel Webfont Generator
An online tool to take a font that you have the right to use on
the web, and turn it into a web font complete with the
correct @font-face commands you’ll need to use the font in
your web designs.

Microsoft Typography Registered Features (OpenType 1.9)

http://specifishity.com/
https://colorjs.io/
https://www.arkandis.tuxfamily.org/openfonts.html
https://www.fontsquirrel.com/tools/webfont-generator
https://learn.microsoft.com/en-us/typography/opentype/spec/featurelist

All of the possible registered features available in OpenType
fonts. Useful if you want to invoke any OpenType features by
using the font-feature-settings property, for example.

A Single Div
An illustration gallery by Lynn Fisher in which every
illustration is made up of a single <div> element and a lot of
CSS. It’s worth exploring and view-sourcing to see just what
bits of mad genius Lynn used to create a given effect.

CSS conic-gradient() Polyfill
If you really want to use conic gradients but also need to
support old browsers that don’t support conic gradients, this
polyfill has you covered.

Cubic-Bézier
A tool for creating cubic Bézier curves for use in your
animations.

Easing Functions Cheat Sheet
A collection of easing curves, complete with cubic-bezier()
values, demonstrations of how they operate, and more.

Color equivalents table
A table showing the 148 CSS color keywords (such as orange
or forestgreen) and the equivalent values expressed in

https://a.singlediv.com/
https://lynnandtonic.com/
https://projects.verou.me/conic-gradient
https://cubic-bezier.com/
https://easings.net/
https://meyerweb.com/eric/css/colors

RGB, HSL, and hexadecimal notation. As of early 2023, it does
not include more modern formats like HSL, HWB, and so on.

Index

Symbols

! (exclamation point)
in !important flag, Importance, Specificity and !important
in value syntax, Value Syntax Conventions

"i", in attribute selectors, The Case-Insensitivity Identifier
(octothorpe)

in ID selectors, ID Selectors
in value syntax, Value Syntax Conventions

$= (dollar sign, equal sign), in attribute selectors, Selection
Based on Partial Attribute Values, Matching a substring at the
end of an attribute value
&& (ampersand, double), in value syntax, Value Syntax
Conventions
'… ' or "… " (quotes)

enclosing attribute values, Matching a substring at the end
of an attribute value
enclosing font names, Using Quotation Marks
enclosing strings, Strings
as generated content, Using generated quotes-Using
generated quotes

* (asterisk)

universal selector, The universal selector, Class Selectors,
ID Selectors, The negation pseudo-class, Zeroed Selector
Specificity, Inheritance
in value syntax, Value Syntax Conventions

*= (asterisk, equal sign), in attribute selectors, Matching a
substring within an attribute value-Matching a substring
within an attribute value
+ (plus sign)

adjacent-sibling combinator, Selecting Adjacent-Sibling
Elements-Selecting Adjacent-Sibling Elements
in value syntax, Value Syntax Conventions

, (comma)
separating attribute values, Attributes
separating selectors, Grouping Selectors

-- (hyphens, double), in custom properties, Custom Properties
. (period), in class selectors, Class Selectors-Class Selectors
/ (forward slash), in value syntax, Value Syntax Conventions,
Shorthand border image
/*… */ (forward slash, asterisk), enclosing CSS comments, CSS
Comments-CSS Comments
: (colon), in pseudo-class selectors, Pseudo-Class Selectors
:: (colon, double), in pseudo-element selectors, Pseudo-
Element Selectors

; (semicolon), in rules, Grouping Declarations, Grouping
Declarations
<!--… --> (angle brackets, exclamation point), enclosing HTML
comments, Markup
<… > (angle brackets), in value syntax, Value Syntax
Conventions
> (greater-than sign), Selecting Children, Ranged Media
Features
? (question mark), in value syntax, Value Syntax Conventions
[…] (square brackets), in value syntax, Value Syntax
Conventions
\ (backslash), escape character, Strings
^= (caret, equal sign), in attribute selectors, Selection Based
on Partial Attribute Values, Matching a substring at the
beginning of an attribute value
{… } (curly braces)

grouping declarations, Grouping Everything
grouping selectors, Grouping Selectors
keyframes, Setting Up Keyframe Animations
in value syntax, Value Syntax Conventions

| (vertical bar), in value syntax, Value Syntax Conventions
|= (vertical bar, equal sign), in attribute selectors, Selection
Based on Partial Attribute Values

|| (vertical bar, double), in value syntax, Value Syntax
Conventions
~ (tilde), general-sibling combinator, Selecting Following
Siblings
~= (tilde, equal sign), in attribute selectors, Selection Based on
Partial Attribute Values

A

absolute length units, Absolute Length Units-Resolution Units
absolute positioning, Types of Positioning, Offset Properties,
Absolute Positioning-Placement on the Z-Axis

auto-edges, Auto-edges-Auto-edges
containing blocks and, The Containing Block, Containing
Blocks and Absolutely Positioned Elements-Containing
Blocks and Absolutely Positioned Elements
flex items, Absolute Positioning
grid items, Grid Items and the Box Model
nonreplaced elements, A Quick Primer, Placing and Sizing
Nonreplaced Elements-Placing and Sizing Nonreplaced
Elements
replaced elements, A Quick Primer, Placing and Sizing
Replaced Elements-Placing and Sizing Replaced Elements
z-index placement, Placement on the Z-Axis-Placement on
the Z-Axis

absolute sizes for fonts, Using Absolute Sizes-Using Absolute
Sizes
absolute URL, URLs
accessibility issues

all-uppercase text and screen readers, Text
Transformation
content/background contrast, Following Good Background
Practices
element display role changes, Changing Roles
order of content and screen readers, Flexbox
Fundamentals
order of flex items, The order Property
rapid transitions, CSS Transitions
small text sizes, Using Relative Sizes
styled visited links, Hyperlink-specific pseudo-classes

Accessible Rich Internet Applications (ARIA), Changing Roles
:active pseudo-class, User Action Pseudo-Classes, Real-world
issues with dynamic styling
additive versus subtractive padding, Inline-Axis Formatting-
Inline-Axis Formatting
additive-symbols descriptor, @counter-style, Additive
Counting Patterns-Additive Counting Patterns
adjacent-sibling combinator (+), Selecting Adjacent-Sibling
Elements-Selecting Adjacent-Sibling Elements

advance measure, The ch unit
::after pseudo-element, Generating Content Before and After
Elements, Inserting Generated Content-Inserting Generated
Content
align attribute, Floating
align-content property, Flex Item Alignment, Aligning Flex
Lines-Aligning Flex Lines, Distributing Grid Items and Tracks
align-items property, Flex Item Alignment, Aligning Items-
Flex item margins and alignment, Aligning and Justifying All
Items
align-self property, Flex Item Alignment, The align-self
property, Aligning and Justifying Individual Items
alignment

flex items, Flex Item Alignment-Using the place-content
Property
grid items, Setting Alignment in Grids-Distributing Grid
Items and Tracks
table-cell, Alignment-Alignment
text, Aligning Text-Aligning the Last Line, Vertical
Alignment-Length alignment
vertical, Setting Vertical Alignment-Setting Vertical
Alignment, Inline Replaced Elements, Flex Item Features,
Creating a Grid Container, Alignment, Vertical Alignment-
Length alignment

all media type, Attributes, Basic Media Queries
all property, The all Property
all-petite-caps keyword, font-variant-caps, Capital Font
Variants
all-small-caps keyword, font-variant-caps, Capital Font
Variants
alphabetic pattern, @counter-style, Alphabetic Counting
Patterns
alternate glyphs, font variants, Alternate Variants-Alternate
Variants
alternate keyword, animation-direction, Setting an
Animation Direction
alternate stylesheets, Alternate stylesheets-Alternate
stylesheets
alternate-reverse keyword, animation-direction, Setting an
Animation Direction
ampersand, double (&&), in value syntax, Value Syntax
Conventions
ancestor-descendant relationship, document structure,
Understanding the Parent-Child Relationship
and logical keyword, Complex Media Queries, Feature
Queries (@supports)
angle brackets (<… >), in value syntax, Value Syntax
Conventions

angle brackets, exclamation point (<!--… -->), enclosing HTML
comments, Markup
angle units, Angles
animatable properties, CSS Transitions, Limiting Transition
Effects by Property, Animatable Properties and Values-
Interpolating Repeating Values, Animatable Properties
animation, Animation-Summary

animation identifier, Defining Keyframes, Setting Up
Keyframe Animations
applying to elements, Animating Elements-Animation Fill
Modes
chaining, Animation chaining-Animation chaining
delaying, Delaying Animations-Delaying Animations
direction, Setting an Animation Direction-Setting an
Animation Direction
duration, Defining Animation Lengths-Defining Animation
Lengths
events, Exploring Animation Events-Animation iteration
delay
fill modes, Animation Fill Modes-Animation Fill Modes
iteration control, Declaring Animation Iterations-Declaring
Animation Iterations, Animation iteration delay-Animation
iteration delay, Animation Iteration and display: none;

keyframes, Defining Keyframes-Invoking a Named
Animation
multiples, Invoking a Named Animation
naming, Invoking a Named Animation-Invoking a Named
Animation
pausing and resuming, Bringing It All Together-Bringing It
All Together
performance, Animation chaining, Using the will-change
Property-Using the will-change Property
play state setting, Setting the Animation Play State
precedence order, Animation, Specificity, and Precedence
Order-Animation and the UI Thread
printing, Printing Animations
shorthand property, Bringing It All Together-Bringing It All
Together
specificity, Specificity and !important
timing of, Changing the Internal Timing of Animations-
Animating the timing function
of transforms, Element Rotation, A note on end-state
equivalence
UI thread usage by, Animation chaining, Animation and
the UI Thread
of visibility, Animating Visibility
visual stuttering of (jank), Animation chaining

animation property, Bringing It All Together-Bringing It All
Together
animation-delay property, Delaying Animations-Delaying
Animations
animation-direction property, Setting an Animation
Direction-Setting an Animation Direction
animation-duration property, Defining Animation Lengths-
Defining Animation Lengths
animation-fill-mode property, Animation Fill Modes-
Animation Fill Modes
animation-iteration-count property, Declaring Animation
Iterations-Declaring Animation Iterations
animation-name property, Invoking a Named Animation-
Invoking a Named Animation
animation-play-state property, Setting the Animation Play
State
animation-timing-function property, Using Nonanimatable
Properties That Aren’t Ignored, Delaying Animations,
Changing the Internal Timing of Animations-Animating the
timing function
animationend event, Scripting @keyframes Animations,
Defining Animation Lengths, Exploring Animation Events,
Animation chaining-Animation chaining

animationiteration event, Scripting @keyframes Animations,
Exploring Animation Events
animationstart event, Scripting @keyframes Animations,
Defining Animation Lengths, Exploring Animation Events
anonymous items

flex items, The align-self property, What Are Flex Items?
grid items, Understanding Basic Grid Terminology
table objects, Inserting Anonymous Table Objects-Inserting
Anonymous Table Objects

anonymous text, Basic Terms and Concepts
any-hover descriptor, @media, Keyword Media Features
:any-link pseudo-class, Hyperlink-specific pseudo-classes,
Hyperlink-specific pseudo-classes
any-pointer descriptor, @media, Keyword Media Features
anywhere keyword, line-break, Line Breaking
appearance order, cascade rules, The Cascade
appendRule() method, Scripting @keyframes Animations
ARIA (Accessible Rich Internet Applications), Changing Roles
ascent metric, Override Descriptors
ascent-override descriptor, @font-face, Override Descriptors
aspect-ratio descriptor, @media, Ranged Media Features
aspect-ratio property, Box Sizing with Aspect Ratios-Box
Sizing with Aspect Ratios

aspect-ratio, background image, Maintaining the background
image’s aspect ratio
asterisk (*)

universal selector, The universal selector, Class Selectors,
ID Selectors, The negation pseudo-class, Zeroed Selector
Specificity, Inheritance
in value syntax, Value Syntax Conventions

asterisk, equal sign (*=), in attribute selectors, Matching a
substring within an attribute value-Matching a substring
within an attribute value
at-rules, CSS At-Rules-Defining a Namespace for Selectors

@charset, Defining a Character Set for a Stylesheet
container queries, Container Queries-Setting Container
Length Units
@counter-style, Types of Lists, Defining Counting Patterns-
Speaking Counting Patterns
feature queries, Feature Queries (@supports)-Feature
Queries (@supports)
@font-face (see @font-face rule)
@font-feature-values, Alternate Variants
@import, The @import Directive-The @import Directive,
Sorting by Cascade Layer-Sorting by Cascade Layer, Basic
Media Queries
@keyframes, Defining Keyframes-Defining Keyframes

@layer, Sorting by Cascade Layer-Sorting by Cascade Layer
media queries, Media Queries-Responsive Styling
@namespace for selectors, Defining a Namespace for
Selectors
paged media, Paged Media-Elements Outside the Page

atomic inline-level boxes, Transforming
attr() expression, Attribute Values, Inserting attribute values-
Inserting attribute values
attribute selectors, Attribute Selectors-The Case-Insensitivity
Identifier

based on exact value, Selection Based on Exact Attribute
Value-Selection Based on Exact Attribute Value
based on partial value, Selection Based on Partial Attribute
Values-Matching a substring at the end of an attribute
value
case-insensitivity identifier for, The Case-Insensitivity
Identifier
chaining, Simple Attribute Selectors, Selection Based on
Exact Attribute Value
specificity, ID and Attribute Selector Specificity

attributes
event-specific, Transition events
external stylesheet linking to HTML, Attributes-Attributes
function values, Attribute Values

generated content inserted, Inserting attribute values-
Inserting attribute values
pulling in values from HTML, Attribute Values

author origin, The Cascade, Sorting by Importance and Origin
auto block sizing, Auto Block Sizing
auto-edges, absolute positioning, Auto-edges-Auto-edges
:autofill pseudo-class, UI-State Pseudo-Classes, Default-value
pseudo-classes
autofilling grid tracks, Autofilling tracks-Autofilling tracks
automatic font-size adjustment, Automatically Adjusting Size-
Automatically Adjusting Size
automatic-width layout, tables, Automatic layout-Automatic
layout

B

::backdrop pseudo-element, The Backdrop Pseudo-Element
backface-visibility property, Dealing with Backfaces-Dealing
with Backfaces
background images, Working with Background Images-Using
the Background Shorthand

attaching to viewing area, Getting Attached-Useful side
effects of attached backgrounds
background color, Working with Multiple Backgrounds

clipping, Clipping the Background-Clipping the
Background, Tiling and clipping repeated backgrounds
gradients (see gradients)
inheritance and, Understanding Why Backgrounds Aren’t
Inherited
multiple, Working with Multiple Backgrounds-Working
with Multiple Backgrounds
positioning, Positioning Background Images-Changing the
positioning box, Positioning images that repeat, Working
with Multiple Backgrounds
repeating, Background Repeating (or Lack Thereof)-Tiling
and clipping repeated backgrounds, Covering and
containing, Working with Multiple Backgrounds
rounding, Spacing and rounding repeat patterns
shorthand properties, Bringing It All Together-Bringing It
All Together, Using the Background Shorthand
sizing, Sizing Background Images-Covering and containing
spacing, Spacing and rounding repeat patterns-Spacing
and rounding repeat patterns
specifying, Following Good Background Practices

background painting area, Clipping the Background
background property, Bringing It All Together-Bringing It All
Together, Using the Background Shorthand

background-attachment property, Getting Attached-Useful
side effects of attached backgrounds
background-blend-mode property, Blending Backgrounds-
Blending Backgrounds
background-clip property, Padding, Clipping the Background-
Clipping the Background, Tiling and clipping repeated
backgrounds, Covering and containing, Bringing It All
Together
background-color property, Setting Background Colors-
Background and Color Combinations, Working with Multiple
Backgrounds
background-image property, Using an Image-Using an Image
background-origin property, Changing the positioning box-
Changing the positioning box, Tiling and clipping repeated
backgrounds, Covering and containing, Bringing It All
Together
background-position property, Position, Positioning
Background Images-Changing the offset edges, Bringing It All
Together
background-repeat property, Positioning Background
Images, Background Repeating (or Lack Thereof)-Tiling and
clipping repeated backgrounds, Working with Multiple
Backgrounds

background-size property, Useful side effects of attached
backgrounds-Covering and containing, Bringing It All
Together
backgrounds, Backgrounds-Creating Box Shadows

applying styles in HTML, Inheritance
blending, Blending Backgrounds-Blending Backgrounds
box shadows, Creating Box Shadows-Creating Box
Shadows
clipping, Padding, Clipping the Background-Clipping the
Background, Tiling and clipping repeated backgrounds,
Covering and containing, Bringing It All Together
colors, Applying Color, Setting Background Colors-
Background and Color Combinations, Working with
Multiple Backgrounds, Differences Between Screen and
Print
containing block, The Containing Block
inline elements, Basic Terms and Concepts
padding with, Padding, Logical Padding, Padding and
Inline Elements-Padding and Inline Elements
positioning, Position, Positioning Background Images-
Changing the positioning box, Bringing It All Together
transparent, Explicitly Setting a Transparent Background

backslash (\), escape character, Strings
baseline keyword, table, Alignment

baselines
flex item alignment, Baseline alignment-Baseline
alignment
inline replaced elements, Replaced Elements and the
Baseline-Replaced Elements and the Baseline
line heights and, Understanding baselines and line heights
vertical alignment of text, Baseline alignment

::before pseudo-element, Generating Content Before and
After Elements, List-Item Images, Inserting Generated
Content-Inserting Generated Content
Bézier curve functions, Cubic Bézier timing-Cubic Bézier
timing, Changing the Internal Timing of Animations-
Changing the Internal Timing of Animations
blank space (see spacing)
blending, Compositing and Blending-Blending in Isolation

backgrounds, Blending Backgrounds-Blending
Backgrounds
border corners, Corner blending
elements, Blending Elements-Hue, saturation, luminosity,
and color
in isolation, Blending in Isolation-Blending in Isolation
mix-blend-mode (see mix-blend-mode property)

block direction (axis), A Quick Primer, Indentation and Inline
Alignment, Vertical Alignment-Length alignment

block keyword, font-display, Working with Font Display
block-axis properties, Block-Axis Properties-Collapsing Block-
Axis Margins

auto block sizing, Auto Block Sizing
collapsing block-axis margins, Collapsing Block-Axis
Margins-Collapsing Block-Axis Margins
content overflow, Handling Content Overflow-Single-axis
overflow
negative margins and collapsing, Negative Margins and
Collapsing
percentage heights, Percentage Heights

block-size property, Logical Element Sizing-Logical Element
Sizing, Block-Axis Properties, Replaced Elements
blocks, Block-level elements-Inline-level elements, A Quick
Primer, Handling Block Boxes-Logical Element Sizing

auto sizing, Auto Block Sizing
block-axis properties, Block-Axis Properties-Collapsing
Block-Axis Margins
blockification of flex items, Flex Item Features
containing blocks, Floating: The Details, The Containing
Block, Containing Blocks and Absolutely Positioned
Elements-Containing Blocks and Absolutely Positioned
Elements

content overflow, Handling Content Overflow-Single-axis
overflow
element boxes, A Quick Primer, Handling Block Boxes
floated elements and, Floating: The Details
formatting context, Block-level elements
horizontal formatting, Handling Block Boxes-Logical
Element Sizing
inline-axis, Inline-Axis Formatting-List Items
keyframes in animation, Defining Keyframes-Defining
Keyframes
line height for, Line Heights
padding for, Padding-Percentage Values and Padding
percentage heights, Percentage Heights
sizing of, Altering Box Sizing-Altering Box Sizing
vertical formatting, Handling Block Boxes-Logical Element
Sizing
writing modes, Handling Block Boxes-Handling Block
Boxes, A Simple Example

blur radius
box-shadow, Creating Box Shadows
filter-effects, CSS Filters
text shadow, Text Shadows

blur() function, Basic Filters
border property

animatability, Animatable Properties and Values
shorthand property, Global Borders

border-block-color property, Logical border colors
border-block-end property, Block-Axis Properties, Single-Side
Shorthand Border Properties-Single-Side Shorthand Border
Properties
border-block-end-color property, Logical border colors
border-block-end-style property, Logical styles
border-block-end-width property, Logical border widths
border-block-start property, Block-Axis Properties, Single-
Side Shorthand Border Properties-Single-Side Shorthand
Border Properties
border-block-start-color property, Logical border colors
border-block-start-style property, Logical styles
border-block-start-width property, Logical border widths
border-block-style property, Logical styles
border-block-width property, Logical border widths
border-bottom property, Single-Side Shorthand Border
Properties-Single-Side Shorthand Border Properties
border-bottom-color property, Border Colors
border-bottom-left-radius property, Individual rounding
properties
border-bottom-right-radius property, Individual rounding
properties

border-bottom-style property, Single-side styles
border-bottom-width property, Border Widths
border-collapse property, Table Cell Borders, Collapsed Cell
Borders-Border collapsing
border-color property, Border Colors
border-end-end-radius property, Individual rounding
properties
border-end-start-radius property, Individual rounding
properties
border-image property, Shorthand border image
border-image-outset property, Creating a border overhang-
Creating a border overhang
border-image-repeat property, Altering the repeat pattern-
Altering the repeat pattern
border-image-slice property, Loading and slicing a border
image-Loading and slicing a border image
border-image-source property, Loading and slicing a border
image
border-image-width property, Altering the image widths-
Altering the image widths
border-inline-color property, Logical border colors
border-inline-end property, Inline-Axis Properties, Single-
Side Shorthand Border Properties-Single-Side Shorthand
Border Properties

border-inline-end-color property, Logical border colors
border-inline-end-style property, Logical styles
border-inline-end-width property, Logical border widths
border-inline-start property, Inline-Axis Properties, Single-
Side Shorthand Border Properties-Single-Side Shorthand
Border Properties
border-inline-start-color property, Logical border colors
border-inline-start-style property, Logical styles
border-inline-start-width property, Logical border widths
border-inline-style property, Logical styles
border-inline-width property, Logical border widths
border-left property, Single-Side Shorthand Border
Properties-Single-Side Shorthand Border Properties
border-left-color property, Border Colors
border-left-style property, Single-side styles
border-left-width property, Border Widths
border-radius property, Rounding Border Corners-Individual
rounding properties, How They Are Different, Using Inset
Shapes
border-right property, Single-Side Shorthand Border
Properties-Single-Side Shorthand Border Properties
border-right-color property, Border Colors
border-right-style property, Single-side styles
border-right-width property, Border Widths

border-spacing property, Applying border spacing-Applying
border spacing
border-start-end-radius property, Individual rounding
properties
border-start-start-radius property, Individual rounding
properties
border-style property, The Containing Block, Borders with
Style-Multiple styles, No border at all
border-top property, Single-Side Shorthand Border
Properties-Single-Side Shorthand Border Properties
border-top-color property, Border Colors
border-top-left-radius property, Individual rounding
properties
border-top-right-radius property, Individual rounding
properties
border-top-style property, Single-side styles
border-top-width property, Border Widths
border-width property, Border Widths-No border at all
borders, Borders-Some examples

background and, Borders, Clipping the Background-
Clipping the Background
in box model, Basic Element Boxes
colors, Borders, Borders with Style, Border Colors-
Transparent borders

containing block, The Containing Block, Collapsing Block-
Axis Margins
corner blending, Corner blending
corner rounding, Rounding Border Corners-Individual
rounding properties, Clipping the Background
global, Global Borders
images as (see image borders)
inheritance risks with, Inheritance
inline elements, Basic Terms and Concepts, Adding Box
Properties to Nonreplaced Elements, Borders and Inline
Elements-Borders and Inline Elements
intermittent, Borders
lack of percentage values for, Percentages
multiple styles, Multiple styles
none, No border at all
versus outlines, The only outline shorthand-How They Are
Different
padding and, Padding
replaced elements, Adding Box Properties to Replaced
Elements
shorthand properties for, Single-Side Shorthand Border
Properties-Single-Side Shorthand Border Properties
single-side properties, Single-side styles, Border Colors,
Single-Side Shorthand Border Properties-Single-Side

Shorthand Border Properties
styles for, Borders with Style-Logical styles
table-cell, Columns, Table Cell Borders-Border collapsing
transparent, Transparent borders, Clipping the
Background
width of, Borders, Border Widths-No border at all

bottom keyword, table cell, Alignment
bottom keyword, vertical-align, Setting Vertical Alignment,
Top and bottom alignment
bottom property, Offset Properties-Offset Properties
bounding box, Transforming, Clip Boxes
box model, Basic Element Boxes, Grid Items and the Box
Model-Grid Items and the Box Model
box-decoration-break property, Changing Breaking Behavior
box-model properties, Inheritance, Animation chaining
box-shadow property, Creating Box Shadows-Creating Box
Shadows, How Property Values Are Interpolated, Basic Filters
box-sizing property, Altering Box Sizing-Altering Box Sizing,
Only one auto, Box Sizing with Aspect Ratios, The flex-basis
Property
boxes, Basic Boxes

(see also blocks; flexible box layout; grid layout)
background image position, Changing the positioning box-
Changing the positioning box

basic, Basic Boxes-The Containing Block
block-axis properties, Block-Axis Properties-Collapsing
Block-Axis Margins
clipping based on, Handling Content Overflow, Clip Boxes-
Clip Boxes
container queries (see container queries)
element boxes, Basic Boxes-A Quick Primer, Basic Element
Boxes

borders, Borders-Some examples
edges, Handling Block Boxes
inline boxes, A Quick Primer, Constructing a line,
Transforming
margins, Margins-Margins and Inline Elements
outlines, Outlines-How They Are Different
padding, Padding-Padding and Replaced Elements

em box (em square), Basic Terms and Concepts, Glyphs
Versus Content Area, Font Size
grid layout and box model, Grid Items and the Box Model-
Grid Items and the Box Model
line boxes, Constructing a line
sizing alterations, Altering Box Sizing-Altering Box Sizing
sizing with aspect ratios, Box Sizing with Aspect Ratios-Box
Sizing with Aspect Ratios
table columns and rows, Table Arrangement Rules

transform-box property, Choosing the Transform’s Box-
Choosing the Transform’s Box

braces (see curly braces)
brackets (see square brackets)
breaks

changing, Changing Breaking Behavior
line, Changing Breaking Behavior, Whitespace,
Hyphenation, Line Breaking-Wrapping Text
page, Page Breaking-Page-Breaking Behavior
word, Word Breaking-Word Breaking

brightness() function, Brightness, Contrast, and Saturation

C

calc() function, Fractions, Calculation Values, Using Fixed-
Width Grid Tracks
cap unit, Other relative length units
cap-height metric keyword, Automatically Adjusting Size
capitalize keyword, text transform, Text Transformation-Text
Transformation
capitals, font variants, Capital Font Variants-Capital Font
Variants
caption-side property, Using Captions-Using Captions
caret, equal sign (^=), in attribute selectors, Matching a
substring at the beginning of an attribute value

Cartesian coordinate system, Coordinate Systems-Coordinate
Systems
cascade, Specificity, Inheritance, and the Cascade, The
Cascade-Working with Non-CSS Presentational Hints

by cascade layer, Sorting by Cascade Layer-Sorting by
Cascade Layer
by element attachment, Sorting by Element Attachment
by importance and origin, Sorting by Importance and
Origin-Sorting by Importance and Origin
by order, Sorting by Order-Sorting by Order
by specificity, The Cascade, Sorting by Specificity

cascade layer, The @import Directive, The Cascade
Cascading Style Sheets (see CSS)
case sensitivity

attribute selectors, Matching a substring within an
attribute value, The Case-Insensitivity Identifier
class selectors, Multiple Classes
ID selectors, Deciding Between Class and ID
identifiers (strings), Identifiers

cell borders, table, Columns, Table Cell Borders-Border
collapsing
cellspacing attribute, HTML, Separated Cell Borders
ch unit, The ch unit
ch-width metric keyword, Automatically Adjusting Size

chaining, Multiple Classes, Combining Pseudo-Classes,
Animation chaining-Animation chaining
character box (em box), Basic Terms and Concepts, Font Size
@charset rule, Defining a Character Set for a Stylesheet
:checked pseudo-class, UI-State Pseudo-Classes, Check states
checkerboard pattern, conic gradient, Repeating Conic
Gradients
child combinator, Selecting Children
circle() function, clip shapes, Clip Shapes
circular float shapes, Circles and ellipses-Circles and ellipses
circular gradients (see radial gradients)
CJK or CJKV text characters, Text Transformation, Placing
Emphasis Marks, Line Breaking
clamping of rounded corners in borders, Rounded corner
clamping
clamping values, functions, Clamping Values
class attribute, Class Selectors
class selectors, Class Selectors-Multiple Classes, Deciding
Between Class and ID
clear property, Clearing-Clearing, Flex Item Features,
Creating a Grid Container
clearance, floating elements, Clearing
clip-path property, Clipping-Clipping with SVG Paths
clipping, Clipping-Clipping with SVG Paths

backgrounds, Padding, Clipping the Background-Clipping
the Background, Tiling and clipping repeated
backgrounds, Covering and containing, Bringing It All
Together
based on an image, Clipping with SVG Paths
based on boxes, Handling Content Overflow, Clip Boxes-
Clip Boxes
based on simple shapes, Clip Shapes
masks, Clipping and Compositing Masks
with SVG paths, Clipping with SVG Paths

clipping shape, Clip Shapes
closest-corner keyword, radial gradients, Setting Shape and
Size
closest-side keyword, radial gradients, Setting Shape and Size
cm (centimeters) unit, Absolute Length Units
collapsed cell borders, table, Columns, Table Cell Borders,
Collapsed Cell Borders-Border collapsing
collapsing margins, Negative Margins and Collapsing-
Collapsing Block-Axis Margins, Margin Collapsing-Margin
Collapsing, Creating a Grid Container
colon (:), in pseudo-class selectors, Pseudo-Class Selectors
colon, double (::), in pseudo-element selectors, Pseudo-
Element Selectors
color blend mode, Hue, saturation, luminosity, and color

color descriptor, @media, Complex Media Queries, Ranged
Media Features
color filtering, Color Filtering-Color Filtering
color hints, for linear gradients, Setting Color Hints-Setting
Color Hints
color property, Named Colors-Color Keywords, Background
and Color Combinations
color stops

conic gradients, Conic Gradients-Creating Conic Color
Stops
linear gradients, Linear Gradients, Positioning Color Stops-
Positioning Color Stops
radial gradients, Using Radial Color Stops and the Gradient
Ray-Using Radial Color Stops and the Gradient Ray

color values, Color-Inheriting Color
affecting form elements, Affecting Form Elements
applying color, Applying Color-Applying Color
color() function, Using color()
hexadecimal RGB colors, Hexadecimal RGB colors
hexadecimal RGBa colors, Hexadecimal RGBa colors
HSL colors, HSL and HSLa Colors-HSL and HSLa Colors
HSLa colors, HSL and HSLa Colors
HWB colors, Colors with HWB
inheriting color, Inheriting Color

keywords, Color Keywords
Lab colors, Lab Colors
LCH colors, LCH Colors
named colors, Named Colors
Oklab and Oklch, Oklab and Oklch
RGB colors, Colors by RGB and RGBa-Functional RGB colors
RGBa, RGBa colors

color() function, Using color()
color-burn blend mode, Color dodge and burn
color-dodge blend mode, Color dodge and burn
color-gamut descriptor, @media, Keyword Media Features
color-index descriptor, @media, Ranged Media Features
colors, Color

(see also gradients)
background, Applying Color, Setting Background Colors-
Background and Color Combinations, Working with
Multiple Backgrounds, Differences Between Screen and
Print
border, Border Colors-Transparent borders
borders, Borders, Borders with Style
emphasis marks, Changing Emphasis Color
foreground, Color Keywords, Applying Color, Borders,
Borders with Style, Clipping the Background
form elements, Affecting Form Elements

@media, Complex Media Queries, Ranged Media Features
outlines, Outline Color
text decoration, Setting Text Decoration Color,
Understanding Weird Decorations
in transitions, How Property Values Are Interpolated

column and row grid lines, Using Column and Row Lines-
Using Row and Column Shorthands
column boxes, tables, Table Arrangement Rules
column group’s box, Table Arrangement Rules
column property, Creating a Grid Container
column-gap property, Opening Gaps Between Flex Items-
Opening Gaps Between Flex Items, Autofilling tracks
columns, properties for table, Columns
combinators

adjacent-sibling, Selecting Adjacent-Sibling Elements-
Selecting Adjacent-Sibling Elements
child, Selecting Children
descendant selectors, Defining Descendant Selectors
general-sibling combinator, Selecting Following Siblings-
Selecting Following Siblings
multiple types, Selecting Adjacent-Sibling Elements
specificity and, Zeroed Selector Specificity

comma (,)
separating attribute values, Attributes

separating selectors, Grouping Selectors
comments, CSS Comments-CSS Comments
common-ligatures keyword, Ligature Variants
compositing, Compositing and Blending

(see also blending)
computed value, Animatable Properties and Values
conic gradients, Conic Gradients-Repeating Conic Gradients
contain property, Containing Elements-Containing Elements
container box

flexbox layout, Flex Containers-Understanding Axes
grid layout, Creating a Grid Container-Creating a Grid
Container

container property, Using Container Shorthand
container queries, Container Queries-Setting Container
Length Units

at-rules for, Using Container At-Rules-Using Container At-
Rules
features, Defining Container Query Features
length units, Setting Container Length Units-Setting
Container Length Units
naming containers, Defining Container Names-Defining
Container Names, Using Container At-Rules
shorthand property, Using Container Shorthand

types of containers, Defining Container Types-Defining
Container Types

containing background image, Covering and containing-
Covering and containing
containing blocks, The Containing Block

collapsing margins, Collapsing Block-Axis Margins
floated elements and, Floating: The Details
positioning and, The Containing Block, The Containing
Block, Containing Blocks and Absolutely Positioned
Elements-Containing Blocks and Absolutely Positioned
Elements, Relative Positioning
viewport as fixed element’s, Fixed Positioning

content area, Basic Boxes-Basic Boxes
block-level elements, Block-level elements
versus glyphs, Glyphs Versus Content Area
inline-level elements, Basic Terms and Concepts, Basic
Terms and Concepts, Constructing a line
overflow of, Handling Content Overflow-Single-axis
overflow

content edge, The Containing Block
content keywords, The flex-grow Property, The content
keywords-The content keywords
content property, Specifying Content-Using generated quotes,
Displaying counters-Counters and scope

content-aware grid tracks, Content-aware tracks-Content-
aware tracks
content-visibility property, Containing Elements
contextual-ligatures keyword, Ligature Variants
continuous versus paged media, Paged Media
contrast() function, Brightness, Contrast, and Saturation
coordinate systems, Coordinate Systems-Coordinate Systems
corners

blending, Corner blending
rounding, Rounding Border Corners-Individual rounding
properties, Clipping the Background, Using Inset Shapes
shaping, Rounded corner clamping-More complex corner
shaping

CORS (cross-origin resource sharing), Polygons
counter identifier, Resetting and incrementing
counter-increment property, Resetting and incrementing
counter-reset property, Resetting and incrementing
@counter-style descriptors, Types of Lists, Defining Counting
Patterns-Speaking Counting Patterns
counters and counting patterns, Defining Counters-Speaking
Counting Patterns

additive, Additive Counting Patterns-Additive Counting
Patterns
alphabetic, Alphabetic Counting Patterns

cyclic, Cyclic Counting Patterns-Cyclic Counting Patterns
displaying, Displaying counters-Displaying counters
extending, Extending Counting Patterns-Extending
Counting Patterns
fixed, Fixed Counting Patterns-Fixed Counting Patterns
incrementing, Resetting and incrementing
numeric, Numeric Counting Patterns-Numeric Counting
Patterns
resetting, Resetting and incrementing
scope of, Counters and scope-Counters and scope
speaking, Speaking Counting Patterns-Speaking Counting
Patterns
symbolic, Symbolic Counting Patterns-Symbolic Counting
Patterns

cover, background image, Covering and containing-Covering
and containing
cross-axis, flexbox, Understanding Axes
cross-end, flexbox, Understanding Axes
<cross-fade> value type, Images
cross-origin resource sharing (CORS), Polygons
cross-size, flexbox, Understanding Axes
cross-start, flexbox, Understanding Axes
CSS (Cascading Style Sheets), CSS Fundamentals-Summary

basic style rules, Basic Style Rules

cascade, Specificity, Inheritance, and the Cascade, The
Cascade-Working with Non-CSS Presentational Hints
comments, CSS Comments-CSS Comments
elements of document structure, Element Display Roles-
Inline-level elements
historical development, A Brief History of (Web) Style-A
Brief History of (Web) Style
inheritance, Inheritance-Inheritance
linking to HTML documents, Bringing CSS and HTML
Together-Inline Styles
markup in, Markup
specificity, Specificity-Importance
vendor prefixing, Vendor Prefixing
whitespace in, Whitespace Handling, CSS Comments,
Grouping Declarations

CSS Fonts Level 4 specification, Using Absolute Sizes
CSS Shapes, Float Shapes
CSS variables (see custom properties)
CSS Working Group, A Brief History of (Web) Style
CSS1 specification, A Brief History of (Web) Style

fonts, Fonts, Font Variants
scaling factor, Using Absolute Sizes

CSS2 specification, A Brief History of (Web) Style
attribute selectors, Attribute Selectors

direction of text, Declaring Direction
generated quotes, Using generated quotes
inline boxes overlapping with floats, Floats, Content, and
Overlapping
pseudo-elements, Pseudo-Element Selectors
quotes, Using generated quotes
scaling factor, Using Absolute Sizes

CSS3, A Brief History of (Web) Style
cubic-Bézier timing functions, Cubic Bézier timing-Cubic
Bézier timing, Changing the Internal Timing of Animations-
Changing the Internal Timing of Animations
::cue pseudo-element, The Video-Cue Pseudo-Element-The
Video-Cue Pseudo-Element
curly braces ({… })

grouping declarations, Grouping Everything
grouping selectors, Grouping Selectors
keyframes, Setting Up Keyframe Animations
in value syntax, Value Syntax Conventions

currentcolor keyword, Color Keywords, Applying Color,
Borders, Text Shadows
cursive fonts, Font Families
curtain effect, with gradients, Creating Special Effects
custom properties, Custom Properties-Custom Property
Fallbacks

cyclic calculation, Opening Gaps Between Flex Items
cyclic pattern, @counter-style, Cyclic Counting Patterns-
Cyclic Counting Patterns

D

darken blend mode, Darken, lighten, difference, and
exclusion
dashes (see hyphens)
declaration blocks, Rule Structure
declarations, Rule Structure

cascade order, The Cascade-The Cascade
grouping of, Grouping Declarations-Grouping Everything
important, Importance-Importance, Specificity and
!important
specificity, Declarations and Specificity-Declarations and
Specificity

:default pseudo-class, UI-State Pseudo-Classes, Default-value
pseudo-classes
:defined pseudo-class, Selecting defined elements
deg (degrees) unit, Angles
deleteRule() method, Scripting @keyframes Animations
descendant (contextual) selectors, Defining Descendant
Selectors-Defining Descendant Selectors
descent metric, Override Descriptors

descent-override descriptor, @font-face, Override Descriptors
device-aspect-ratio descriptor, @media, Deprecated Media
Features
device-height descriptor, @media, Deprecated Media
Features
device-width descriptor, @media, Deprecated Media Features
diagonal-fractions numeric display keyword, Numeric Font
Variants
difference blend mode, Darken, lighten, difference, and
exclusion
dir attribute, HTML, Using the flex-direction Property,
Working with Other Writing Directions
:dir() pseudo-class, The :lang() and :dir() Pseudo-Classes
direction property, The :lang() and :dir() Pseudo-Classes, The
all Property, Working with Other Writing Directions, Aligning
and Justifying Individual Items, Declaring Direction
directives (see at-rules)
:disabled pseudo-class, UI-State Pseudo-Classes, Enabled and
disabled UI elements
discretionary-ligatures keyword, Ligature Variants
display property

altering element display, Altering Element Display
animatability, Animatable Properties and Values
flex items, What Are Flex Items?

flow display, Flow Display
grid layout, Creating a Grid Container
inline-level elements, Inline-level elements-Inline-level
elements

display roles
block display, Element Display Roles-Inline-level elements
changing, Altering Element Display-Handling Block Boxes
contents display, Content Display
flex and inline-flex display (see flexible box layout)
flow and flow-root display, Flow Display
inline display, Element Display Roles-Inline-level elements
inner and outer display types for, Flow Display
table display (see table layout)

display, device (see viewport)
display-mode descriptor, @media, Keyword Media Features
distance values, Translation, Using Inset Shapes, Adding a
Shape Margin
Document Object Model (DOM)

disabling UI elements, Enabled and disabled UI elements
ID selectors and, Deciding Between Class and ID
pseudo-class selectors and, Selecting every nth child
shadow DOM, Shadow Pseudo-Classes and -Elements-
Shadow Pseudo-Elements
visited links and, Hyperlink-specific pseudo-classes

document structure
element types, Elements-Inline-level elements
inheritance based on, Inheritance-Inheritance
selectors based on, Using Document Structure-Summary,
Structural Pseudo-Classes-Selecting every nth of a type
type selectors for, Type Selectors

document stylesheet, The <style> Element
dollar sign, equal sign ($=), in attribute selectors, Selection
Based on Partial Attribute Values, Matching a substring at the
end of an attribute value
DOM (see Document Object Model)
dpcm (dots per centimeter) unit, Resolution Units
dpi (dots per inch) unit, Resolution Units
dppx (dots per pixel) unit, Resolution Units
drawing order, text, Setting Text Drawing Order
drop shadow for text, Text Shadows-Text Shadows
drop-shadow() function, Basic Filters-Basic Filters
dynamic pseudo-classes, User Action Pseudo-Classes-Real-
world issues with dynamic styling
dynamic-range descriptor, @media, Keyword Media Features

E

each-line indent, Indenting Text

ease timing function, Changing the Internal Timing of
Animations
ease-in timing function, Changing the Internal Timing of
Animations
ease-in-out timing function, Changing the Internal Timing of
Animations
ease-out timing function, Changing the Internal Timing of
Animations
East Asian font variant, East Asian Font Variants
element (type) selectors, Type Selectors
element boxes, Elements-Inline-level elements, Basic Boxes-A
Quick Primer

blocks, Block-level elements, A Quick Primer, Handling
Block Boxes-Handling Block Boxes
inline boxes, Inline-level elements, A Quick Primer,
Constructing a line
positioning (see positioning)

element-attached declarations, cascade rules, The Cascade
element-attached styles, cascade rules, Sorting by Element
Attachment
elements, Elements-Inline-level elements

animating, Animating Elements-Animation Fill Modes
block-level, Block-level elements-Inline-level elements
containment of, Containing Elements-Containing Elements

display roles, Element Display Roles-Inline-level elements,
Altering Element Display-Handling Block Boxes
frame of reference, Coordinate Systems-Coordinate
Systems
inline-level, Inline-level elements-Inline-level elements,
Basic Terms and Concepts, Constructing a line,
Transforming
nonreplaced (see nonreplaced elements)
order in cascade, The Cascade-The Cascade
replaced (see replaced elements)
root, Understanding the Parent-Child Relationship, A Quick
Primer
table, Table Arrangement Rules
visibility, Element Visibility-Animating Visibility

ellipse() function, clip shapes, Clip Shapes
elliptical float shapes, Circles and ellipses-Circles and ellipses
elliptical gradients (see radial gradients)
em box (em square), Basic Terms and Concepts, Glyphs
Versus Content Area, Font Size
em unit, The em unit
embedded stylesheet, The <style> Element
emphasis marks, text, Text Emphasis-Setting Text Drawing
Order
:empty pseudo-class, Selecting empty elements

empty-cells property, Handling empty cells
:enabled pseudo-class, UI-State Pseudo-Classes, Enabled and
disabled UI elements
encapsulation context, cascade rules, The Cascade
end and start alignment, Start and end alignment
escape character (\), Strings
event-specific attributes, Transition events
events

animation, Exploring Animation Events-Animation
iteration delay
transition, Transition events-Transition events

ex unit, The ex unit
exclamation point (!)

in !important flag, Importance, Specificity and !important
in value syntax, Value Syntax Conventions

exclusion blend mode, Darken, lighten, difference, and
exclusion
explicit grid, Creating Grid Lines, Defining Explicit Tracks
explicit weight, cascade order, The Cascade
external leading, Override Descriptors
external stylesheets, The <link> Tag

F

fallback descriptor, @counter-style, Symbolic Counting
Patterns
fallback keyword, font-display, Working with Font Display
fantasy fonts, Font Families
farthest-corner keyword, radial gradients, Setting Shape and
Size
farthest-side keyword, radial gradients, Setting Shape and
Size
feature queries, Feature Queries (@supports)-Feature Queries
(@supports)
<FilesMatch> for importing font faces, Using Font-Face
Descriptors
fill-box, SVG, Clip Boxes
filter property, Creating Box Shadows, CSS Filters-SVG Filters
filters, CSS Filters-SVG Filters

blurring, Basic Filters
brightness, Brightness, Contrast, and Saturation
color, Color Filtering-Color Filtering
contrast, Brightness, Contrast, and Saturation
drop shadows, Basic Filters-Basic Filters
opacity, Basic Filters
saturation, Brightness, Contrast, and Saturation
SVG, SVG Filters-SVG Filters

findRule() method, Scripting @keyframes Animations

:first-child pseudo-class, Selecting first children-Selecting first
children, Selecting the first and last of a type
::first-letter pseudo-element, Styling the First Letter,
Restrictions on ::first-letter and ::first-line, Creating a Grid
Container
::first-line pseudo-element, Styling the First Line-The
Placeholder Text Pseudo-Element, Creating a Grid Container
:first-of-type pseudo-class, Selecting the first and last of a
type-Selecting the first and last of a type
fit-content keyword, Content-Based Sizing Values, Content-
Based Sizing Values, The content keywords
fit-content() function, Fitting Track Contents-Fitting Track
Contents
fitting objects, Object Fitting and Positioning-Object Fitting
and Positioning
fixed pattern, @counter-style, Fixed Counting Patterns-Fixed
Counting Patterns
fixed positioning, Types of Positioning, Fixed Positioning-
Fixed Positioning
fixed-width grid tracks, Using Fixed-Width Grid Tracks-Using
Fixed-Width Grid Tracks
fixed-width layout model, tables, Table Sizing-Fixed layout
flash of invisible text (FOIT), Working with Font Display
flash of unstyled content (FOUC), Working with Font Display

flash of unstyled text (FOUT), Working with Font Display
flex display (see flexible box layout)
flex keyword, flex property, The flex Shorthand
flex property, Flex-Item-Specific Properties-The flex Property,
The flex Shorthand-Numeric flexing
flex-basis property, The flex Property, The flex-basis
Property-Zero basis

automatic flex basis, Automatic flex basis-Automatic flex
basis
content keywords, The content keywords-The content
keywords
default values, Default values
fit-content keyword, Content-Based Sizing Values, Content-
Based Sizing Values, The content keywords
growth factors and, Growth Factors and the flex Property-
Growth Factors and the flex Property
length units, Length units
percentage units, Percentage units-Percentage units
shrink factor and, Differing basis values-Differing basis
values
zero basis, Zero basis

flex-direction property, Using the flex-direction Property-
Working with Other Writing Directions, Understanding Axes-
Understanding Axes

flex-flow property, Defining Flexible Flows, Understanding
Axes, Arrangement of Flex Items
flex-grow property, The flex-grow Property-Growth Factors
and the flex Property
flex-shrink property, The flex-shrink Property-Responsive
flexing

differing basis values, Differing basis values-Differing
basis values
max-content keyword, The content keywords
proportional shrinkage, Proportional shrinkage based on
width and shrink factor
responsive flexing, Responsive flexing-Responsive flexing

flex-wrap property, Wrapping Flex Lines-Wrapping Flex
Lines
flexible box (flexbox) layout, Flexible Box Layout-Summary

flex containers, Flexbox Fundamentals-Flexbox
Fundamentals, Flex Containers-Understanding Axes, Flex
Items-What Are Flex Items?

axes in, Understanding Axes-Understanding Axes
defining flexible flows, Defining Flexible Flows
flex-direction property, Using the flex-direction
Property-Working with Other Writing Directions,
Understanding Axes-Understanding Axes

justifying content, Justifying Content-justify-content
example
ordering grid items, Layering and Ordering
other writing directions, Working with Other Writing
Directions-Working with Other Writing Directions
wrapping flex lines, Wrapping Flex Lines-Wrapping
Flex Lines

flex items, Flexbox Fundamentals-Flexbox Fundamentals,
Flex Containers, Arrangement of Flex Items-Tabbed
Navigation Revisited

absolute positioning, Absolute Positioning
alignment of, Flex Item Alignment-Using the place-
content Property
anonymous, The align-self property, What Are Flex
Items?, Flex Item Features
default sizing, Default values
features, Flex Item Features-Flex Item Features
flex containers and, Flex Items-What Are Flex Items?
individually applied properties, Flex-Item-Specific
Properties-Numeric flexing
minimum widths, Minimum Widths-Flex-Item-Specific
Properties
opening gaps between, Opening Gaps Between Flex
Items-Opening Gaps Between Flex Items

order of, The order Property-Tabbed Navigation
Revisited
shorthand property, Using the place-content Property,
The flex Shorthand-Numeric flexing

margins and, Flex item margins and alignment-Flex item
margins and alignment, Opening Gaps Between Flex Items,
Flex Item Features

flexible grid tracks, Using Flexible Grid Tracks-Content-aware
tracks
flexible ratio (fraction), Fractions
float property, Floating-No floating at all, Flex Item Features,
Creating a Grid Container
floating, Floating and Positioning-Clearing

backgrounds and, Applied Behavior-Applied Behavior
clearing to control, Clearing-Clearing
containing blocks, Floating: The Details
floated element rules, Floated Elements-Floating: The
Details
grid layouts and, Creating a Grid Container
inline elements, Floats, Content, and Overlapping-Floats,
Content, and Overlapping
margins and, Floated Elements, Clearing, Adding a Shape
Margin-Adding a Shape Margin

overlapping content prevention, Floating: The Details-
Floating: The Details, Floats, Content, and Overlapping-
Floats, Content, and Overlapping
preventing, No floating at all
shaping content around floats, Float Shapes-Adding a
Shape Margin
width of, Applied Behavior

flow display, Flow Display
flow-root display, Flow Display
fluid pages, Percentage Values and Padding
:focus pseudo-class, User Action Pseudo-Classes
:focus-visible pseudo-class, User Action Pseudo-Classes, User
Action Pseudo-Classes
:focus-within pseudo-class, User Action Pseudo-Classes, The
:focus-within pseudo-class
FOIT (flash of invisible text), Working with Font Display
following siblings, selecting, Selecting Following Siblings-
Selecting Following Siblings
font property, The font Property-Using the Shorthand
Properly
font stack, Using Generic Font Families
font-display descriptor, Working with Font Display-Working
with Font Display
@font-face rule

combining descriptors, Combining Descriptors-Combining
Descriptors
custom font considerations, Using Font-Face Descriptors
feature settings, The font-feature-settings Descriptor
font-family descriptor, Using Font-Face Descriptors-Using
Font-Face Descriptors
font-variant descriptor, Capital Font Variants, The font-
feature-settings Descriptor
font-weight descriptor, The font-weight Descriptor-The
font-weight Descriptor
format() values, Using Font-Face Descriptors
licenses for, Using Font-Face Descriptors
local() font function, Using Font-Face Descriptors
override descriptors, Override Descriptors
resources used by, Using Font-Face Descriptors
restricting character range, Restricting Character Range-
Restricting Character Range
src descriptor, Using Font-Face Descriptors-Using Font-Face
Descriptors
stretching fonts, The font-stretch Descriptor-The font-
stretch Descriptor
styles, The font-style Descriptor-The font-style Descriptor
tech() function, Using Font-Face Descriptors
URL for, Using Font-Face Descriptors

font-family descriptor, @font-face, Using Font-Face
Descriptors-Using Font-Face Descriptors
font-family property, Using Generic Font Families-Using
Quotation Marks
font-feature-settings descriptor, @font-face, The font-feature-
settings Descriptor
font-feature-settings property, Font Feature Settings-Font
Feature Settings
@font-feature-values rule, Alternate Variants
font-kerning property, Font Kerning
font-optical-sizing property, Font Optical Sizing
font-size property, Font Size-Automatically Adjusting Size

absolute sizes, Using Absolute Sizes-Using Absolute Sizes
automatically adjusting, Automatically Adjusting Size-
Automatically Adjusting Size
inheritance, Setting Sizes as Percentages-Setting Sizes as
Percentages
inline element height from, Basic Terms and Concepts-
Basic Terms and Concepts
leading determined by, Constructing a line
length units for, Setting Sizes as Percentages
monospaced text, Numeric Font Variants
percentages, Setting Sizes as Percentages-Setting Sizes as
Percentages

relative sizes, Using Relative Sizes-Using Relative Sizes
font-size-adjust property, Automatically Adjusting Size-
Automatically Adjusting Size
font-stretch descriptor, @font-face, The font-stretch
Descriptor-The font-stretch Descriptor
font-stretch property, Font Stretching-Font Stretching
font-style descriptor, @font-face, The font-style Descriptor-
The font-style Descriptor
font-style property, Font Style-The font-style Descriptor
font-synthesis property, Font Synthesis
font-variant descriptor, @font-face, Capital Font Variants, The
font-feature-settings Descriptor
font-variant property, Font Variants-Font Variants
font-variant-alternates property, Alternate Variants-Alternate
Variants
font-variant-caps property, Capital Font Variants-Capital Font
Variants
font-variant-east-asian property, East Asian Font Variants
font-variant-ligatures property, Ligature Variants-Ligature
Variants
font-variant-numeric property, Numeric Font Variants-
Numeric Font Variants
font-variant-position property, Font Variant Position

font-variation-settings, Font Variation Settings-Font Variation
Settings
font-weight descriptor, @font-face, The font-weight
Descriptor-The font-weight Descriptor
font-weight property, Font Weights-The font-weight
Descriptor
fonts, Fonts-Summary

families, Font Families-Using Quotation Marks
feature settings, Font Feature Settings-The font-feature-
settings Descriptor
font faces, Font Families, Using Custom Fonts-Combining
Descriptors

(see also @font-face rule)
glyphs not matching em boxes, Basic Terms and Concepts
kerning, Font Kerning
licensing issue, Using Font-Face Descriptors
ligatures, Font Variants, Ligature Variants-Ligature
Variants, Letter Spacing
matching, Font Matching-Font Matching
OpenType font features, Capital Font Variants, Ligature
Variants, Alternate Variants, Font Feature Settings-The
font-feature-settings Descriptor
optical sizing, Font Optical Sizing
override descriptors, Override Descriptors

shorthand property, The font Property-Using the
Shorthand Properly
sizes, Font Size-Automatically Adjusting Size
sizing, Differences Between Screen and Print
styles, Font Style-The font-style Descriptor
synthesizing, Font Synthesis
system, Using System Fonts
text properties (see text properties)
variants, Font Variants-Font Variant Position
variation settings, Font Variation Settings-Font Variation
Settings
weights, Font Weights-The font-weight Descriptor

forced page break, Page-Breaking Behavior
forced-colors descriptor, @media, Keyword Media Features
foreground colors, Color Keywords, Applying Color, Borders,
Borders with Style, Clipping the Background
forgiving selector list, The :is() and :where() pseudo-classes
form elements

background color, Affecting Form Elements
::file-selector-button pseudo-element, The Form Button
Pseudo-Element
padding, Padding and Replaced Elements
placeholder text, The Placeholder Text Pseudo-Element

as replaced elements, A Quick Primer, Padding and
Replaced Elements

format() hint for font importing, Using Font-Face Descriptors,
Using Font-Face Descriptors
forward slash (/), in value syntax, Value Syntax Conventions,
Shorthand border image
forward slash, asterisk (/*… /*), enclosing CSS comments, CSS
Comments-CSS Comments
FOUC (flash of unstyled content), Working with Font Display
FOUT (flash of unstyled text), Working with Font Display
fr (fractional) unit, Fractions, Fractional units-Fractional
units
<fraction> value type, Fractions
fragment identifier, Nonhyperlink location pseudo-classes
frequency units, Time and Frequency
from keyframe selector, animations, Omitting from and to
Values
full-width keyword, text-transform, Text Transformation
function values, Function Values-Attribute Values

G

gap property, Opening Gaps Between Flex Items-Opening
Gaps Between Flex Items, Autofilling tracks
gaps

opening between flex items, Opening Gaps Between Flex
Items-Opening Gaps Between Flex Items
subgrids, Giving Subgrids Their Own Gaps-Giving Subgrids
Their Own Gaps
text-alignment behavior, Baseline alignment

general sibling combinator, Selecting Following Siblings-
Selecting Following Siblings
generated content, Creating Generated Content-Counters and
scope

attribute values (attr()), Inserting attribute values-
Inserting attribute values
before and after elements, Generating Content Before and
After Elements
counters (see counters)
inserting, Inserting Generated Content-Inserting Generated
Content
list markers as, Creating Generated Content
quotes as, Using generated quotes-Using generated quotes
specifying content, Specifying Content-Using generated
quotes

geometricPrecision keyword, text-rendering, Text Rendering
global borders, Global Borders
global keywords, Global keywords-revert-layer
grad (gradians) unit, Angles

gradient lines, Linear Gradients, Understanding Gradient
Lines: The Gory Details, Understanding Gradient Lines: The
Gory Details
gradient ray, Radial Gradients, Using Radial Color Stops and
the Gradient Ray-Using Radial Color Stops and the Gradient
Ray
<gradient> value type, Images
gradients, Gradients-Triggering Average Gradient Colors

color hints, Setting Color Hints-Setting Color Hints
color stops, Linear Gradients, Positioning Color Stops-
Positioning Color Stops, Using Radial Color Stops and the
Gradient Ray-Creating Conic Color Stops, Conic Gradients
conic gradients, Conic Gradients-Repeating Conic
Gradients
dimensions of, Gradients
linear, Linear Gradients-Repeating Linear Gradients
list marker style, List-Item Images
radial, Radial Gradients-Repeating Radial Gradients
repeating for special effect, Manipulating Gradient Images-
Creating Special Effects
in transitions, How Property Values Are Interpolated
triggering average colors in, Triggering Average Gradient
Colors

::grammar-error pseudo-element, Highlight Pseudo-Elements,
Highlight Pseudo-Elements
grayscale() function, Color Filtering
greater-than sign (>), Selecting Children, Ranged Media
Features
grid cells, Understanding Basic Grid Terminology, Defining
Grid Areas
grid cells, tables, Visually Arranging a Table
grid descriptor, @media, Keyword Media Features
grid items, Creating a Grid Container, Understanding Basic
Grid Terminology
grid layout, Grid Layout-Summary

absolute positioning, Grid Items and the Box Model
alignment, Setting Alignment in Grids-Distributing Grid
Items and Tracks
box model and, Grid Items and the Box Model-Grid Items
and the Box Model
distributing grid items and tracks, Distributing Grid Items
and Tracks-Distributing Grid Items and Tracks
error handling when placing, Handling Errors
floated elements and, Creating a Grid Container
grid areas, Understanding Basic Grid Terminology,
Defining Grid Areas-Defining Grid Areas, Using Areas-
Using Areas

grid cells, Understanding Basic Grid Terminology
grid container, Creating a Grid Container-Creating a Grid
Container
grid flow, specifying, Using Column and Row Lines,
Specifying Grid Flow-Specifying Grid Flow
grid items, Creating a Grid Container, Understanding Basic
Grid Terminology
grid lines, Understanding Basic Grid Terminology-Defining
Grid Areas

autofilling tracks, Autofilling tracks-Autofilling tracks
content-aware, Content-aware tracks-Content-aware
tracks
distributing tracks, Distributing Grid Items and Tracks
fitting content to, Fitting Track Contents-Fitting Track
Contents
fixed-width tracks, Using Fixed-Width Grid Tracks-Using
Fixed-Width Grid Tracks
flexible tracks, Using Flexible Grid Tracks-Content-
aware tracks
naming, Creating Grid Lines, Using Fixed-Width Grid
Tracks-Using Fixed-Width Grid Tracks, Repeating Grid
Tracks
placing elements, Placing Elements in the Grid-Using
Row and Column Shorthands

repeating, Repeating Grid Tracks-Autofilling tracks
grid tracks, Understanding Basic Grid Terminology

autofilling, Autofilling tracks-Autofilling tracks
automatic, Defining Automatic Grid Tracks-Defining
Automatic Grid Tracks
distributing, Distributing Grid Items and Tracks
flexible, Using Flexible Grid Tracks-Content-aware
tracks

grid-formatting context, Creating a Grid Container,
Understanding Basic Grid Terminology
implicit grid, Working with Implicit Grid-Working with
Implicit Grid, Defining Automatic Grid Tracks-Defining
Automatic Grid Tracks
inline grids, Creating a Grid Container, Creating a Grid
Container
layering and ordering elements, Layering and Ordering-
Layering and Ordering
margins and grid, Creating a Grid Container, Grid Items
and the Box Model-Grid Items and the Box Model
nesting grids, Creating a Grid Container
ordering layers, Layering and Ordering-Layering and
Ordering
overlapping elements, Understanding Grid-Item Overlap,
Specifying Grid Flow, Layering and Ordering-Layering and

Ordering
properties not applicable to, Creating a Grid Container
shorthand property, Using the grid Shorthand-Using the
grid Shorthand
subgrids, Using Subgrids-Giving Subgrids Their Own Gaps
versus table layout, Grid Layout
terminology, Understanding Basic Grid Terminology-
Understanding Basic Grid Terminology

grid property, Using the grid Shorthand-Using the grid
Shorthand
grid-area property, Using Areas-Using Areas
grid-auto-columns property, Defining Automatic Grid Tracks-
Defining Automatic Grid Tracks
grid-auto-flow property, Specifying Grid Flow-Specifying Grid
Flow
grid-auto-rows property, Defining Automatic Grid Tracks-
Defining Automatic Grid Tracks
grid-column property, Using Row and Column Shorthands-
Using Row and Column Shorthands
grid-column-end property, Using Column and Row Lines-
Using Column and Row Lines
grid-column-start property, Using Column and Row Lines-
Using Column and Row Lines

grid-row property, Using Row and Column Shorthands-Using
Row and Column Shorthands
grid-row-end property, Using Column and Row Lines-Using
Column and Row Lines
grid-row-start property, Using Column and Row Lines-Using
Column and Row Lines
grid-template-areas property, Defining Grid Areas-Defining
Grid Areas
grid-template-columns property, Creating Grid Lines-
Autofilling tracks
grid-template-rows property, Creating Grid Lines-Autofilling
tracks
grouping of declarations, Grouping Declarations-Grouping
Everything
grouping of selectors, Grouping Selectors-Grouping
Everything
growth factor, flex box layout, The flex-grow Property,
Growth Factors and the flex Property-Growth Factors and the
flex Property
gutter space

between flex items, Opening Gaps Between Flex Items
between grid columns, Autofilling tracks
grid track sizing, Distributing Grid Items and Tracks

H

half-leading, Basic Terms and Concepts, Inline Nonreplaced
Elements
hanging indent, Indenting Text
“hard” color stops, linear gradients, Positioning Color Stops
hard-light blend mode, Hard and soft light
hard-wrapping of text, Word Breaking
:has() pseudo-class, The :has() Pseudo-Class-The :has()
Pseudo-Class, Specificity
hash mark (#)

in ID selectors, ID Selectors
in value syntax, Value Syntax Conventions

height property, Height
block-axis properties, Block-Axis Properties
logical element sizing, Height and Width-Height and Width
positioning elements, Setting Width and Height-Setting
Width and Height

hexadecimal RGB colors, Hexadecimal RGB colors
hexadecimal RGBa colors, Hexadecimal RGBa colors
hidden keyword, Handling Content Overflow, Element
Visibility
highlight pseudo-elements, Highlight Pseudo-Elements-
Highlight Pseudo-Elements
historical-ligatures keyword, Ligature Variants
horizontal formatting

auto settings for, Auto Block Sizing, Using auto-Too many
autos
block boxes, Handling Block Boxes-Logical Element Sizing
box sizing, Altering Box Sizing-Altering Box Sizing
content-based sizing, Content-Based Sizing Values-Content-
Based Sizing Values
inline-axis formatting, Inline-Axis Formatting-Inline-Axis
Formatting
logical element sizing, Logical Element Sizing-Height and
Width
negative margins, Single-axis overflow, Negative Margins-
Negative Margins
percentages, Percentages
properties, Inline-Axis Properties
table content alignment, Alignment

horizontal writing direction (see inline direction)
:host() pseudo-class, Shadow Pseudo-Classes
:host-content() pseudo-class, Shadow Pseudo-Classes
:host-context() pseudo-class, Shadow Pseudo-Classes
hover descriptor, @media, Keyword Media Features
:hover pseudo-class, User Action Pseudo-Classes, Real-world
issues with dynamic styling
href attribute, Attributes
HSL colors, HSL and HSLa Colors-HSL and HSLa Colors

HSLa colors, HSL and HSLa Colors
.htaccess file, HTTP Linking
HTML

attribute selectors with, Simple Attribute Selectors
comment syntax from, in style sheets, Markup
multiple selector values versus CSS, Multiple Classes,
Deciding Between Class and ID
relationship to CSS, Bringing CSS and HTML Together-
Inline Styles
root element in, Selecting the root element
upward propagation rule exception, Inheritance

HTTP headers, linking CSS to HTML documents, HTTP
Linking
hue blend mode, Hue, saturation, luminosity, and color
hue-rotate() function, Color Filtering
HWB colors, Colors with HWB
hyperlink-specific pseudo-classes, Hyperlink-specific pseudo-
classes-Hyperlink-specific pseudo-classes
hyperlinks (see <link> tag; links)
hyphens (-… -), enclosing vendor prefixes, Vendor Prefixing
hyphens property, Hyphenation-Hyphenation
hyphens, double (--), in custom properties, Custom Properties
Hz (Hertz) unit, Time and Frequency

I

ic unit, Other relative length units
ic-height metric keyword, Automatically Adjusting Size
ic-width metric keyword, Automatically Adjusting Size
id attribute, ID Selectors, ID and Attribute Selector Specificity
ID selectors, ID Selectors-Deciding Between Class and ID,
Selection Based on Exact Attribute Value, ID and Attribute
Selector Specificity
<identifier> value type, Identifiers
image borders, Image Borders-Some examples

loading, Loading and slicing a border image
overhanging, Creating a border overhang-Creating a
border overhang
repeating, Altering the repeat pattern-Altering the repeat
pattern
shorthand properties, Shorthand border image
slicing, Loading and slicing a border image-Loading and
slicing a border image
source for, Loading and slicing a border image
width of, Altering the image widths-Altering the image
widths

<image-set> value type, Images
images

background (see background images)

fitting and positioning, Object Fitting and Positioning-
Object Fitting and Positioning
floating (see floating)
gradients (see gradients)
list style as, List-Item Images-List-Item Images
value types, Images

 element, Replaced elements
implicit grid, Working with Implicit Grid-Working with
Implicit Grid, Defining Automatic Grid Tracks-Defining
Automatic Grid Tracks
@import rule, The @import Directive-The @import Directive,
Sorting by Cascade Layer-Sorting by Cascade Layer, Basic
Media Queries
important declarations, Importance-Importance, Specificity
and !important
!important flag, Importance, Specificity and !important
in (inches) unit, Absolute Length Units
:in-range pseudo-class, UI-State Pseudo-Classes, Range
pseudo-classes
indentation, Indenting Text-Indenting Text, List Layout
:indeterminate pseudo-class, UI-State Pseudo-Classes, Check
states
inherit global keyword, inherit

inheritance, Specificity, Inheritance, and the Cascade,
Inheritance-Inheritance

background images and, Understanding Why Backgrounds
Aren’t Inherited
color values, Inheriting Color
font-size property, Setting Sizes as Percentages-Setting
Sizes as Percentages
line-height, Understanding line-height and inheritance
text decoration's lack of, Understanding Weird Decorations
transitions, Reversing Interrupted Transitions

initial containing block, The Containing Block, The
Containing Block
initial global keyword, initial
initial keyword, flex property, Flexing with initial-Flexing
with initial
initial state, transitions and animations, Transition
Properties-Transition Properties
inline base direction (axis), A Quick Primer
inline boxes, Inline-level elements, A Quick Primer, Basic
Terms and Concepts, Building the Boxes-Building the Boxes
inline direction, Indentation and Inline Alignment
inline display, Inline-level elements-Inline-level elements,
Altering Element Display-Changing Roles
inline formatting, Inline Formatting-Other Display Values

background, Line Layout, Adding Box Properties to
Nonreplaced Elements
baselines, Replaced Elements and the Baseline-Replaced
Elements and the Baseline
borders, Borders and Inline Elements-Borders and Inline
Elements
box model and, Setting Alignment in Grids-Aligning and
Justifying Individual Items
building boxes, Building the Boxes-Building the Boxes
containing block and, The Containing Block
content area versus glyphs, Glyphs Versus Content Area
content display, Content Display
context of, Block-level elements
flow display, Flow Display
inline-block elements, Inline-Block Elements-Inline-Block
Elements
line breaks, Changing Breaking Behavior
line heights, Line Heights-Scaling line heights
line layout, Line Layout-Basic Terms and Concepts
margins, Margins and Inline Elements-Margins and Inline
Elements
nonreplaced elements, Inline Nonreplaced Elements,
Adding Box Properties to Nonreplaced Elements-Adding
Box Properties to Nonreplaced Elements

padding, Adding Box Properties to Nonreplaced Elements,
Padding and Inline Elements-Padding and Inline Elements
replaced elements, Basic Terms and Concepts, Inline
Replaced Elements-Replaced Elements and the Baseline
terms and concepts, Basic Terms and Concepts-Basic Terms
and Concepts
vertical alignment, Setting Vertical Alignment-Setting
Vertical Alignment

inline grids, Creating a Grid Container, Creating a Grid
Container
inline outer display type, Inline-level elements
inline styles, Inline Styles, Sorting by Element Attachment
inline-axis formatting, Inline-Axis Formatting-List Items

auto, using, Using auto-Too many autos
list items, List Items
negative margins, Negative Margins-Negative Margins
percentages, Percentages
properties, Inline-Axis Properties
replaced elements, Replaced Elements

inline-level elements, Inline-level elements-Inline-level
elements, Constructing a line, Transforming
inline-size property, Logical Element Sizing, Inline-Axis
Properties-Too many autos, Replaced Elements
inline-table keyword, display, Setting Table Display Values

inner display type, Flow Display
<input> element, Matching a substring within an attribute
value
input image, CSS Filters
inset keyword, box-shadow property, Creating Box Shadows
inset property, Inset Shorthands
inset shapes, for floated elements, Using Inset Shapes-
Polygons
inset() function, clip shapes, Clip Shapes
inset-block property, Inset Shorthands
inset-block-end property, Offset Properties-Offset Properties
inset-block-start property, Offset Properties-Offset Properties
inset-inline property, Inset Shorthands
inset-inline-end property, Offset Properties-Offset Properties
inset-inline-start property, Offset Properties-Offset Properties
<integer> value type, Integers
internal table elements versus table elements, Visually
Arranging a Table
interpolation, transitions, Animatable Properties and Values,
How Property Values Are Interpolated-Interpolating
Repeating Values
:invalid pseudo-class, UI-State Pseudo-Classes
invert keyword, Outline Color
invert() function, Color Filtering

:is() pseudo-class, The :is() and :where() pseudo-classes-The
:is() and :where() pseudo-classes, Specificity
isolation property, Blending in Isolation-Blending in Isolation
italic keyword, fonts, Font Style

J

JavaScript, CSS influence on, Nonhyperlink location pseudo-
classes
justified items, grid layout, Aligning and Justifying Individual
Items-Distributing Grid Items and Tracks
justify-content property, Justifying Content-justify-content
example, Distributing Grid Items and Tracks
justify-items property, Aligning and Justifying All Items
justify-self property, Aligning and Justifying Individual Items

K

kerning, Font Kerning
keyframes, Defining Keyframes-Invoking a Named Animation

animatable properties, Animatable Properties
keyframe blocks, Defining Keyframes-Defining Keyframes
@keyframe rule, Defining Keyframes-Defining Keyframes
named animation, invoking, Invoking a Named Animation-
Invoking a Named Animation
naming, Defining Keyframes-Defining Keyframes

nonanimatable properties not ignored, Using
Nonanimatable Properties That Aren’t Ignored
omitting from or to values in, Omitting from and to Values
repeating properties, Repeating Keyframe Properties
scripting, Scripting @keyframes Animations
selectors, including to and from, Defining Keyframes,
Defining Keyframe Selectors-Scripting @keyframes
Animations
setting up, Setting Up Keyframe Animations

keywords, as values, Keywords-revert-layer
kHz (kiloHertz) unit, Time and Frequency

L

Lab colors, Lab Colors
lang attribute, HTML, The :lang() and :dir() Pseudo-Classes,
Hyphenation
:lang() pseudo-class, The :lang() and :dir() Pseudo-Classes
language flow direction, Writing Modes-Declaring Direction
:last-child pseudo-class, Selecting last children
last-line alignment, Aligning the Last Line
:last-of-type pseudo-class, Selecting the first and last of a type-
Selecting the first and last of a type
@layer rule, Sorting by Cascade Layer-Sorting by Cascade
Layer

layout (see flexible box layout; grid layout)
lazy loading of font faces, Using Custom Fonts, Restricting
Character Range
LCH colors, LCH Colors
leading, Basic Terms and Concepts, Override Descriptors,
Adjusting the Height of Lines
left property, Offset Properties-Offset Properties
left-to-right (LTR) writing mode, Working with Other Writing
Directions, Understanding Axes
letter-spacing property, Font Kerning, Letter Spacing, Spacing
and Alignment
lh unit, Other relative length units
ligatures, Font Variants, Ligature Variants-Ligature Variants,
Letter Spacing
lighten blend mode, Darken, lighten, difference, and
exclusion
line boxes, Basic Terms and Concepts, Basic Terms and
Concepts, Constructing a line
line breaks, Changing Breaking Behavior, Whitespace,
Hyphenation, Line Breaking-Wrapping Text
line layout, Line Layout-Basic Terms and Concepts
line-break property, Line Breaking-Line Breaking
line-gap metric, Override Descriptors

line-gap-override descriptor, @font-face, Override
Descriptors
line-height property, Basic Terms and Concepts-Scaling line
heights, Inline Replaced Elements, Adding the Line Height,
Adjusting the Height of Lines-Understanding line-height and
inheritance
linear gradients, Linear Gradients-Repeating Linear
Gradients

color hints, Setting Color Hints-Setting Color Hints
color settings, Setting Gradient Colors
color stops, Linear Gradients, Positioning Color Stops-
Positioning Color Stops
direction of, Linear Gradients
easing functions, Setting Color Hints
gradient lines, Linear Gradients, Understanding Gradient
Lines: The Gory Details-Understanding Gradient Lines: The
Gory Details
repeating, Repeating Linear Gradients-Repeating Linear
Gradients

linear timing function, Changing the Internal Timing of
Animations
lining-nums numeric display keyword, Numeric Font
Variants

:link pseudo-class, Hyperlink-specific pseudo-classes-
Hyperlink-specific pseudo-classes
<link> tag, Basic Media Queries

linking CSS to HTML documents, The <link> Tag-The <link>
Tag
media attribute, Attributes

link-visited-focus-hover-active (LVFHA) ordering, Sorting by
Order-Sorting by Order
links

:any-link pseudo-class, Hyperlink-specific pseudo-classes,
Hyperlink-specific pseudo-classes
:link pseudo-class, Hyperlink-specific pseudo-classes-
Hyperlink-specific pseudo-classes
:local-link pseudo-class, Hyperlink-specific pseudo-classes
LVFHA ordering, Sorting by Order-Sorting by Order
:visited pseudo-class, Hyperlink-specific pseudo-classes-
Hyperlink-specific pseudo-classes

list-item display, Changing Roles
list-style property, List Styles in Shorthand
list-style-image property, List-Item Images-List-Item Images
list-style-position property, List Items, List-Marker Positions
list-style-type property, Types of Lists-Types of Lists
lists, Lists and Generated Content-Summary

counters, Defining Counters-Speaking Counting Patterns

displaying, Displaying counters-Displaying counters
incrementing, Resetting and incrementing
patterns for, Defining Counting Patterns-Speaking
Counting Patterns
resetting, Resetting and incrementing
scope of, Counters and scope-Counters and scope

formatting items, List Items
layout of, List Layout-List Layout
marker for, Types of Lists-List Styles in Shorthand
types of, Types of Lists-Types of Lists

local() font function, @font-face rule, Using Font-Face
Descriptors, Using Font-Face Descriptors
:local-link pseudo-class, Hyperlink-specific pseudo-classes
location pseudo-classes, Location Pseudo-Classes-
Nonhyperlink location pseudo-classes
logical properties

border styles, Logical styles, Logical border widths, Logical
border colors, Individual rounding properties
element sizing, Logical Element Sizing-Height and Width
floating and positioning (inset), Offset Properties-Inset
Shorthands
margins, Handling Block Boxes, Height and Width-Height
and Width
outlines, Outline Styles, Outline Width

padding, Logical Padding-Logical Padding
logical pseudo-classes, Logical Pseudo-Classes-Selecting
defined elements
loose keyword, line-break, Line Breaking
LTR (left-to-right) writing mode, Working with Other Writing
Directions, Understanding Axes
luminosity blend mode, Hue, saturation, luminosity, and
color
LVFHA (link-visited-focus-hover-active) ordering, Sorting by
Order-Sorting by Order

M

main-axis, flexbox, Flexbox Fundamentals, Understanding
Axes
main-end, flexbox, Understanding Axes
main-size, flexbox, Understanding Axes
main-start, flexbox, Understanding Axes
margin area, paged media, Page Size
margin property, Margins-Margins
margin-block property, Single-Side Margin Properties
margin-block-end property, Block-Axis Properties, Single-
Side Margin Properties
margin-block-start property, Block-Axis Properties, Single-
Side Margin Properties

margin-bottom property, Single-Side Margin Properties,
Page-Breaking Behavior
margin-inline property, Single-Side Margin Properties
margin-inline-end property, Inline-Axis Properties, Only one
auto, Percentages, Single-Side Margin Properties
margin-inline-start property, Inline-Axis Properties, Only one
auto, Single-Side Margin Properties
margin-left property, Single-Side Margin Properties
margin-right property, Single-Side Margin Properties
margin-top property, Single-Side Margin Properties, Page-
Breaking Behavior
margins, Margins-Margins and Inline Elements

in box model, Basic Element Boxes
collapsing, Negative Margins and Collapsing-Collapsing
Block-Axis Margins, Margin Collapsing-Margin Collapsing,
Flex Item Features, Creating a Grid Container
flexbox layout, Flex item margins and alignment-Flex item
margins and alignment, Opening Gaps Between Flex Items,
Flex Item Features
floating images, Floated Elements, Negative margins-
Negative margins, Clearing, Adding a Shape Margin-
Adding a Shape Margin
grid layout, Creating a Grid Container, Grid Items and the
Box Model-Grid Items and the Box Model

inline elements, Margins and Inline Elements-Margins and
Inline Elements
length values, Length Values and Margins
negative, Negative Margins and Collapsing, Collapsing
Block-Axis Margins-Collapsing Block-Axis Margins,
Negative Margins-Negative Margins, Negative Margins-
Negative Margins, Negative margins-Negative margins
padding and, Replicating Values
paged media, Page Margins and Padding
percentage values, Percentages and Margins
replaced elements, Adding Box Properties to Replaced
Elements
single-side properties, Single-Side Margin Properties

::marker pseudo-element, List-Marker Positions, The ::marker
Pseudo-Element-The ::marker Pseudo-Element
markers, list, Working with Lists-List Styles in Shorthand

as generated content, Creating Generated Content
images as, List-Item Images-List-Item Images
positioning, List-Marker Positions
shorthand property, List Styles in Shorthand
strings as, String markers

markup (see HTML)
mask property, Bringing It All Together
mask-border property, Border-Image Masking

mask-border-mode property, Border-Image Masking
mask-border-outset property, Border-Image Masking
mask-border-repeat property, Border-Image Masking
mask-border-slice property, Border-Image Masking
mask-border-source property, Border-Image Masking
mask-border-width property, Border-Image Masking
mask-clip property, Clipping and Compositing Masks
mask-composite property, Clipping and Compositing Masks-
Clipping and Compositing Masks
mask-image property, Defining a Mask-Defining a Mask
mask-mode property, Changing the Mask’s Mode-Changing
the Mask’s Mode
mask-origin property, Positioning Masks
mask-position property, Positioning Masks-Positioning Masks
mask-repeat property, Sizing and Repeating Masks
mask-size property, Sizing and Repeating Masks-Sizing and
Repeating Masks
mask-type property, Setting Mask Types
masks, Masks-Border-Image Masking

border-image masking, Border-Image Masking-Border-
Image Masking
changing mode, Changing the Mask’s Mode-Changing the
Mask’s Mode

clipping, Clipping-Clipping with SVG Paths, Clipping and
Compositing Masks
compositing, Clipping and Compositing Masks-Clipping
and Compositing Masks
image for, Defining a Mask-Defining a Mask
origin, Positioning Masks
positioning, Positioning Masks-Positioning Masks
repeating, Sizing and Repeating Masks
setting types, Setting Mask Types
shorthand property, Bringing It All Together
sizing, Sizing and Repeating Masks-Sizing and Repeating
Masks

match-parent keyword, text-align, Parent matching
mathematical expressions (calc() function), Fractions,
Calculation Values
matrix() function, Matrix Functions-A note on end-state
equivalence
matrix3d() function, Matrix Functions
max() function, Minimum Values
max-block-size property, Minimum and Maximum Logical
Sizing
max-content keyword, Content-Based Sizing Values, The
content keywords, The content keywords, Content-aware
tracks

max-height property, Limiting Width and Height-Limiting
Width and Height
max-inline-size property, Minimum and Maximum Logical
Sizing
max-width property, Limiting Width and Height-Limiting
Width and Height
maximum values, function, Maximum Values
measurement units (see units of measure)
media attribute, Attributes, Basic Media Queries-Basic Media
Queries
media queries (@media), Media Queries-Responsive Styling

complex, Complex Media Queries-Complex Media Queries
deprecated media features, Deprecated Media Features
media attribute, Attributes, Basic Media Queries-Basic
Media Queries
media feature descriptors and values, Keyword Media
Features-Keyword Media Features
ranged media features, Ranged Media Features-Ranged
Media Features
for reduced-motion animations, Accommodating Seizure
and Vestibular Disorders
responsive styling using, Responsive Styling
special value types, Special Value Types

user preference and media features, Forced Colors,
Contrast, and Display Mode-Forced Colors, Contrast, and
Display Mode

middle keyword, table cell, Alignment
middle keyword, vertical-align, Setting Vertical Alignment,
Middle alignment
min() function, Maximum Values
min-block-size property, Minimum and Maximum Logical
Sizing
min-content keyword, Content-Based Sizing Values, The
content keywords, The content keywords, Content-aware
tracks
min-height property, Limiting Width and Height-Limiting
Width and Height
min-inline-size property, Minimum and Maximum Logical
Sizing
min-width property, Limiting Width and Height-Limiting
Width and Height, Minimum Widths-Flex-Item-Specific
Properties
minified CSS, Whitespace Handling
minimum values, function, Minimum Values
minmax() function, Using Fixed-Width Grid Tracks,
Fractional units, Content-aware tracks, Fitting Track
Contents-Fitting Track Contents

mirrored linear gradient, Handling Degenerate Cases
mix-blend-mode property, Blending Elements-Hue,
saturation, luminosity, and color

color blend mode, Hue, saturation, luminosity, and color
color-burn blend mode, Color dodge and burn
color-dodge blend mode, Color dodge and burn
darken blend mode, Darken, lighten, difference, and
exclusion
difference blend mode, Darken, lighten, difference, and
exclusion
exclusion blend mode, Darken, lighten, difference, and
exclusion
hard-light blend mode, Hard and soft light
hue blend mode, Hue, saturation, luminosity, and color
lighten blend mode, Darken, lighten, difference, and
exclusion
luminosity blend mode, Hue, saturation, luminosity, and
color
multiply blend mode, Multiply, screen, and overlay
non-mode categories, Blending Elements
overlay blend mode, Multiply, screen, and overlay
saturation blend mode, Hue, saturation, luminosity, and
color
screen blend mode, Multiply, screen, and overlay

soft-light blend mode, Hard and soft light
mm (millimeters) unit, Absolute Length Units
monochrome descriptor, @media, Ranged Media Features
monospace fonts, Font Families
ms (milliseconds) unit, Time and Frequency
multiple border styles, Multiple styles
multiple class selectors, Multiple Classes-Multiple Classes
multiply blend mode, Multiply, screen, and overlay
mutability pseudo-classes, Mutability pseudo-classes

N

@namespace rule, Defining a Namespace for Selectors
navigation bars (see flexible box layout)
negation pseudo-class, The negation pseudo-class-The
negation pseudo-class
negative counter values, Resetting and incrementing
negative delay values, transition delays, Negative delay
values
negative descriptor, @counter-style, Numeric Counting
Patterns
negative margins, Negative Margins and Collapsing,
Collapsing Block-Axis Margins-Collapsing Block-Axis Margins,
Negative Margins-Negative Margins, Adding Box Properties

to Replaced Elements, Negative Margins-Negative Margins,
Negative margins-Negative margins
nesting grids, Creating a Grid Container
newline character, in strings, Strings
no-common-ligatures keyword, Ligature Variants
no-contextual-ligatures keyword, Ligature Variants
no-discretionary-ligatures keyword, Ligature Variants
no-historical-ligatures keyword, Ligature Variants
non-CSS presentational hints, Working with Non-CSS
Presentational Hints
non-hyperlink location pseudo-classes, Nonhyperlink
location pseudo-classes-Nonhyperlink location pseudo-
classes
nonanimatable properties, using, Using Nonanimatable
Properties That Aren’t Ignored
nonreplaced elements, Nonreplaced elements, A Quick
Primer, Building the Boxes-Building the Boxes
normal flow, A Quick Primer
not logical keyword, Complex Media Queries, Using
Container At-Rules, Feature Queries (@supports)
:not() pseudo-class, The negation pseudo-class-The negation
pseudo-class, Selecting defined elements, Specificity
:nth-child() pseudo-class, Selecting every nth child-Selecting
every nth child

:nth-last-child() pseudo-class, Selecting every nth child-
Selecting every nth child
:nth-last-of-type() pseudo-class, Selecting every nth of a type
:nth-of-type() pseudo-class, Selecting every nth of a type
null cell tokens, grid layout, Defining Grid Areas
number sign (#)

in ID selectors, ID Selectors
in value syntax, Value Syntax Conventions

<number> value type, Numbers
numeric font variants, Numeric Font Variants-Numeric Font
Variants
numeric pattern, @counter-style, Numeric Counting Patterns-
Numeric Counting Patterns

O

object bounding box, Transforming
object-fit property, Object Fitting and Positioning-Object
Fitting and Positioning
object-position property, Object Fitting and Positioning-
Object Fitting and Positioning
oblique font style, Font Style, The font-style Descriptor
octothorpe (#)

in ID selectors, ID Selectors
in value syntax, Value Syntax Conventions

offsets
absolute positioning, Types of Positioning, Offset
Properties, Absolute Positioning-Placement on the Z-Axis
basic properties, Offset Properties-Offset Properties
box-shadow, Creating Box Shadows
changing edges, Changing the offset edges-Changing the
offset edges
fixed positioning, Types of Positioning, Fixed Positioning-
Fixed Positioning
length values, Length values, Setting Width and Height-
Limiting Width and Height
relative positioning, Types of Positioning, Relative
Positioning-Relative Positioning
shorthand properties, Inset Shorthands
static positioning, Types of Positioning, Auto-edges
sticky positioning, Types of Positioning, Sticky Positioning-
Sticky Positioning
subgrids, Dealing with Offsets-Dealing with Offsets
text-underline-offset, Offsetting Underlines

Oklab and Oklch, Oklab and Oklch
oldstyle-nums numeric display keyword, Numeric Font
Variants
only keyword, Complex Media Queries

:only-child pseudo-class, Selecting only children-Selecting
only children, Selecting every nth child
:only-of-type pseudo-class, Using only-of-type selection-Using
only-of-type selection, Selecting the first and last of a type,
Selecting every nth of a type
opacity() function, Basic Filters
OpenType font features, Capital Font Variants, Ligature
Variants, Alternate Variants, Font Feature Settings-The font-
feature-settings Descriptor
operating system fonts, Using System Fonts
optical sizing, fonts, Font Optical Sizing
optimizeLegibility keyword, text-rendering, Text Rendering
optimizeSpeed keyword, text-rendering, Text Rendering
optional keyword, font-display, Working with Font Display
:optional pseudo-class, UI-State Pseudo-Classes, Optionality
pseudo-classes
or logical keyword, Complex Media Queries, Feature Queries
(@supports)
order property, Absolute Positioning, The order Property-
Tabbed Navigation Revisited, Layering and Ordering-
Layering and Ordering
order, cascade by, Sorting by Order-Sorting by Order
ordinal group, The order Property
ordinal numeric display keyword, Numeric Font Variants

orientation descriptor, @media, Keyword Media Features
origin, in cascade rules, Sorting by Importance and Origin-
Sorting by Importance and Origin
orphans property, Orphans and Widows-Orphans and
Widows
:out-of-range pseudo-class, UI-State Pseudo-Classes, Range
pseudo-classes
outer display type, Block-level elements, Flow Display
outline property, The only outline shorthand
outline-color property, Outline Color
outline-style property, Outline Styles
outline-width property, Outline Width
outlines, Outlines-How They Are Different

versus borders, The only outline shorthand
colors, Outline Color
shorthand property, The only outline shorthand
styles for, Outline Styles
width of, Outline Width

overconstraining
formatting properties, Only one auto
relative positioning, Relative Positioning

overflow property, Handling Content Overflow-Single-axis
overflow
overflow-block descriptor, @media, Keyword Media Features

overflow-inline descriptor, @media, Keyword Media Features
overflow-wrap property, Wrapping Text-Wrapping Text
overflow-x property, Single-axis overflow
overflow-y property, Single-axis overflow
overflowing flex container, Justifying and overflow-Justifying
and overflow, Flex item margins and alignment, Aligning
Flex Lines
overhanging image borders, Creating a border overhang-
Creating a border overhang
overlapping elements

floated, Floating: The Details-Floating: The Details, Floats,
Content, and Overlapping-Floats, Content, and
Overlapping
grid items, Understanding Grid-Item Overlap, Specifying
Grid Flow, Layering and Ordering-Layering and Ordering

overlay blend mode, Multiply, screen, and overlay

P

pad descriptor, @counter-style, Numeric Counting Patterns-
Numeric Counting Patterns
padding, Collapsing Block-Axis Margins, Collapsing Block-
Axis Margins, Padding-Padding and Replaced Elements

additive versus subtractive, Inline-Axis Formatting-Inline-
Axis Formatting

in box model, Basic Element Boxes
inline elements, Adding Box Properties to Nonreplaced
Elements, Padding and Inline Elements-Padding and Inline
Elements
logical, Logical Padding-Logical Padding
margins and, Replicating Values
percentage values, Percentage Values and Padding-
Percentage Values and Padding
replaced elements, Adding Box Properties to Replaced
Elements, Padding and Replaced Elements
replicating values, Replicating Values-Replicating Values
single-side, Single-Side Padding-Single-Side Padding

padding property, Padding-Replicating Values
padding-block property, Logical Padding
padding-block-end property, Block-Axis Properties, Logical
Padding
padding-block-start property, Block-Axis Properties, Logical
Padding
padding-bottom property, Single-Side Padding
padding-inline property, Logical Padding
padding-inline-end property, Inline-Axis Properties, Logical
Padding
padding-inline-start property, Inline-Axis Properties, Logical
Padding

padding-left property, Single-Side Padding
padding-right property, Single-Side Padding
padding-top property, Single-Side Padding
page area, Page Size
@page block rule, Page Size-Named Page Types
page property, Named Page Types
page-break-after property, Page Breaking-Page Breaking,
Page-Breaking Behavior
page-break-before property, Page Breaking-Page Breaking,
Page-Breaking Behavior
page-break-inside property, Page Breaking, Page-Breaking
Behavior
paged media, Paged Media-Elements Outside the Page

elements outside the page, Elements Outside the Page
margins, Page Margins and Padding
named page types, Named Page Types-Named Page Types
orphan and widow handling, Orphans and Widows-
Orphans and Widows
page breaking, Page Breaking-Page-Breaking Behavior
page size, Page Size-Page Size
print styles for, Print Styles
repeated elements on every page, Repeated Elements
screen versus print, Differences Between Screen and Print

parent-child relationship, document structure,
Understanding the Parent-Child Relationship
pc (picas) unit, Absolute Length Units
<percentage> value type, Percentages
performance issues

animations, Animation chaining
custom fonts, Using Font-Face Descriptors
text shadows, Text Shadows

period (.), in class selectors, Class Selectors-Class Selectors
perspective property, Defining a group perspective-Defining
a group perspective
perspective() function, Setting Element Perspective-Setting
Element Perspective, Defining a group perspective-Defining a
group perspective
perspective-origin property, Moving the perspective’s origin-
Moving the perspective’s origin
petite-caps keyword, font-variant-caps, Capital Font Variants
phantom classes (see pseudo-class selectors)
physical properties, Height and Width
pixels, Pixel lengths, Resolution Units
place-content property, Using the place-content Property
place-items property, Aligning and Justifying All Items
place-self property, Aligning and Justifying Individual Items

::placeholder pseudo-element, The Placeholder Text Pseudo-
Element
:placeholder-shown pseudo-class, UI-State Pseudo-Classes,
Default-value pseudo-classes
plus sign (+)

adjacent-sibling combinator, Selecting Adjacent-Sibling
Elements-Selecting Adjacent-Sibling Elements
in value syntax, Value Syntax Conventions

pointer descriptor, @media, Keyword Media Features
polygon float shapes, Polygons-Polygons
polygon() function, clip shapes, Clip Shapes
position property, Types of Positioning-Types of Positioning
position values, Position
positional numbering, Numeric Counting Patterns
positioning, Positioning-Sticky Positioning

absolute (see absolute positioning)
auto edges and, Auto-edges-Auto-edges
background images, Working with Background Images-
Changing the positioning box, Positioning images that
repeat, Working with Multiple Backgrounds
backgrounds, Position, Working with Background Images-
Changing the positioning box, Bringing It All Together
containing blocks and, The Containing Block, The
Containing Block, Containing Blocks and Absolutely

Positioned Elements-Containing Blocks and Absolutely
Positioned Elements, Relative Positioning
fixed, Types of Positioning, Fixed Positioning-Fixed
Positioning
gradient, Positioning Color Stops-Positioning Color Stops,
Positioning Radial Gradients-Using Radial Color Stops and
the Gradient Ray
images, Object Fitting and Positioning-Object Fitting and
Positioning
inset shorthand properties, Inset Shorthands-Inset
Shorthands
list markers, List-Marker Positions
masks, Positioning Masks-Positioning Masks
nonreplaced elements, A Quick Primer, Placing and Sizing
Nonreplaced Elements-Placing and Sizing Nonreplaced
Elements
object, Object Fitting and Positioning-Object Fitting and
Positioning
offset properties, Offset Properties-Offset Properties
relative, Types of Positioning, Relative Positioning-Relative
Positioning
replaced elements, A Quick Primer, Placing and Sizing
Replaced Elements-Placing and Sizing Replaced Elements
static, Types of Positioning, Auto-edges

sticky, Types of Positioning, The Containing Block, Sticky
Positioning-Sticky Positioning
transforms (see transforms)
types, Types of Positioning-Types of Positioning
width and height, Setting Width and Height-Limiting
Width and Height

pound sign (#)
in ID selectors, ID Selectors
in value syntax, Value Syntax Conventions

precedence rules (see cascade)
preferred stylesheet, Alternate stylesheets
prefers-color-scheme descriptor, @media, Keyword Media
Features
prefers-contrast descriptor, @media, Keyword Media
Features
prefers-reduced-motion descriptor, @media, Keyword Media
Features
prefers-reduced-motion media query, Accommodating
Seizure and Vestibular Disorders
prefix descriptor, @counter-style, Cyclic Counting Patterns-
Cyclic Counting Patterns
presentational hints, non-CSS, Working with Non-CSS
Presentational Hints
print media type, Basic Media Queries

printing
animations, Printing Animations
paged media styles, Print Styles
transitions and, Printing Transitions

privacy issue
::selection pseudo-element and, Highlight Pseudo-Elements
visited links and, Hyperlink-specific pseudo-classes

properties, Rule Structure
(see also specific properties by name)
animatable, CSS Transitions, Limiting Transition Effects by
Property, Animatable Properties and Values-Interpolating
Repeating Values, Animatable Properties
custom, Custom Properties-Custom Property Fallbacks
logical, Logical Element Sizing-Height and Width, Logical
Padding-Logical Padding, Logical styles, Logical border
widths, Logical border colors, Individual rounding
properties
repeating in keyframes, Repeating Keyframe Properties

proportional fonts, Font Families
proportional-nums numeric display keyword, Numeric Font
Variants
pseudo-class selectors, Pseudo-Class Selectors-Other Pseudo-
Classes

chaining pseudo-classes, Combining Pseudo-Classes,
Selecting last children
hyperlink pseudo-classes, Hyperlink-specific pseudo-
classes-Hyperlink-specific pseudo-classes
location pseudo-classes, Location Pseudo-Classes-
Nonhyperlink location pseudo-classes
logical pseudo-classes, Logical Pseudo-Classes-Selecting
defined elements
shadow pseudo-classes, Shadow Pseudo-Classes
structural pseudo-classes, Structural Pseudo-Classes-
Selecting every nth of a type
UI-state pseudo-classes, UI-State Pseudo-Classes-Mutability
pseudo-classes
user action pseudo-classes, User Action Pseudo-Classes-
Real-world issues with dynamic styling

pseudo-element selectors, Pseudo-Element Selectors-The
Video-Cue Pseudo-Element

::backdrop, The Backdrop Pseudo-Element
::file-selector-button pseudo-element, The Form Button
Pseudo-Element
::first-letter, Styling the First Letter
::first-line, Styling the First Line-The Placeholder Text
Pseudo-Element
::first-letter, Restrictions on ::first-letter and ::first-line

highlight pseudo-elements, Highlight Pseudo-Elements-
Highlight Pseudo-Elements
nesting issue with :has pseudo-class, The :has() Pseudo-
Class
::placeholder pseudo-element, The Placeholder Text
Pseudo-Element
shadow DOM pseudo-elements, Shadow Pseudo-Elements
::video-cue, The Video-Cue Pseudo-Element-The Video-Cue
Pseudo-Element

pt (points) unit, Absolute Length Units
px (pixels) unit, Absolute Length Units

Q

q (quarter-millimeters) unit, Absolute Length Units
question mark (?), in value syntax, Value Syntax Conventions
quotes ('… ' or "… ")

enclosing attribute values, Matching a substring at the end
of an attribute value
enclosing font names, Using Quotation Marks
enclosing strings, Strings
as generated content, Using generated quotes-Using
generated quotes

R

rad (radians) unit, Angles
radial gradients, Radial Gradients-Repeating Radial Gradients

color stop positioning, Using Radial Color Stops and the
Gradient Ray-Using Radial Color Stops and the Gradient
Ray
colors in, Radial Gradients, Using Radial Color Stops and
the Gradient Ray, Using Radial Color Stops and the
Gradient Ray-Using Radial Color Stops and the Gradient
Ray
degenerate (edge) cases, Handling Degenerate Cases-
Handling Degenerate Cases
gradient rays, Radial Gradients, Setting Shape and Size,
Using Radial Color Stops and the Gradient Ray-Using
Radial Color Stops and the Gradient Ray
positioning, Positioning Radial Gradients-Using Radial
Color Stops and the Gradient Ray
radial-gradient() function, Radial Gradients
repeating, Repeating Radial Gradients
shape of, Setting Shape and Size
size of, Setting Shape and Size-Setting Shape and Size

range pseudo-classes, Range pseudo-classes
<ratio> value type, Ratios, Special Value Types
:read-only pseudo-class, UI-State Pseudo-Classes, Mutability
pseudo-classes

:read-write pseudo-class, UI-State Pseudo-Classes, Mutability
pseudo-classes
reader origin, The Cascade, Sorting by Importance and Origin
reduced-motion animations, Accommodating Seizure and
Vestibular Disorders
rel attribute (HTML), Attributes
relative font sizes, Using Relative Sizes-Using Relative Sizes
relative length units, Relative Length Units-Other root-
relative units
relative positioning, Types of Positioning, Relative
Positioning-Relative Positioning
relative URLs, URLs-URLs
rem unit, The rem unit
rendering speed and legibility of text, Text Rendering
repeat() function, Repeating Grid Tracks-Autofilling tracks
repeating elements

animation keyframe properties, Repeating Keyframe
Properties
background images, Background Repeating (or Lack
Thereof)-Tiling and clipping repeated backgrounds,
Covering and containing
gradients, Repeating Linear Gradients-Repeating Linear
Gradients, Repeating Radial Gradients, Repeating Conic
Gradients-Triggering Average Gradient Colors

grid tracks, Repeating Grid Tracks-Autofilling tracks
image borders, Altering the repeat pattern-Altering the
repeat pattern

replaced elements, Replaced elements, A Quick Primer
borders for, Adding Box Properties to Replaced Elements,
Borders and Inline Elements
inline, Basic Terms and Concepts, Inline Replaced
Elements-Replaced Elements and the Baseline
inline-axis formatting, Replaced Elements
margins, Adding Box Properties to Replaced Elements,
Margins and Inline Elements
padding, Adding Box Properties to Replaced Elements,
Padding and Replaced Elements
positioning, A Quick Primer, Placing and Sizing Replaced
Elements-Placing and Sizing Replaced Elements

replicating values, padding, Replicating Values-Replicating
Values
:required pseudo-class, UI-State Pseudo-Classes, Optionality
pseudo-classes
resolution descriptor, @media, Ranged Media Features
resolution units, Resolution Units
<resolution> value type, Special Value Types
resources, Using Code Examples, Additional Resources-
Additional Resources

responsive flexing, Responsive flexing-Responsive flexing
responsive styling, media features, Responsive Styling
reverse keyword, animation-direction, Setting an Animation
Direction
revert keyword, revert
revert-layer keyword, revert-layer
RGB colors, Colors by RGB and RGBa-Functional RGB colors
RGBa colors, RGBa colors
right property, Offset Properties-Offset Properties
right-to-left (RTL) writing mode, Working with Other Writing
Directions, Understanding Axes
Roman numeral counting, generated, Additive Counting
Patterns
root elements, Understanding the Parent-Child Relationship,
A Quick Primer
:root pseudo-class, Selecting the root element
root-relative values, Root-Relative Length Units-Other root-
relative units
rotate property, The rotate property-The rotate property
rotate() function, Element Rotation
rotate3d() function, Element Rotation-Element Rotation
rotateX() function, Element Rotation
rotateY() function, Element Rotation
rotateZ() function, Element Rotation

rounding corners, Rounding Border Corners-Individual
rounding properties, Spacing and rounding repeat patterns,
Using Inset Shapes
row boxes, tables, Table Arrangement Rules
row group boxes, tables, Table Arrangement Rules
row primacy, tables, Row primacy
row-gap property, Opening Gaps Between Flex Items-
Opening Gaps Between Flex Items, Autofilling tracks
RTL (right-to-left) writing mode, Working with Other Writing
Directions, Understanding Axes
rules, Stylesheet Contents, The <link> Tag-The <style>
Element, Basic Style Rules

(see also at-rules)
cascade, Specificity, Inheritance, and the Cascade,
Declarations and Specificity, The Cascade-Working with
Non-CSS Presentational Hints
declarations, Inline Styles, Grouping Declarations-
Grouping Everything, Importance-Importance, Specificity
and !important
inheritance, Specificity, Inheritance, and the Cascade,
Inheritance-Inheritance
vendor prefixes, Vendor Prefixing

S

s (seconds) unit, Time and Frequency
safe and unsafe flex item alignment, Safe and unsafe
alignment
sans-serif fonts, Font Families
saturate() function, Brightness, Contrast, and Saturation
saturation blend mode, Hue, saturation, luminosity, and color
scale property, The scale property, Individual Transform
Property Order
scale() function, Scaling
scale3d() function, Scaling
scaleX() function, Scaling
scaleY() function, Transforming, Scaling
scaleZ() function, Scaling
scaling factor, Scaling line heights, Spacing and rounding
repeat patterns, Using Absolute Sizes
scan descriptor, @media, Keyword Media Features
:scope pseudo-class, Nonhyperlink location pseudo-classes,
Nonhyperlink location pseudo-classes
scoped styles, Containing Elements
scoping root, Nonhyperlink location pseudo-classes
screen blend mode, Multiply, screen, and overlay
screen media type, Basic Media Queries

(see also viewport)

scripting @keyframes animations, Scripting @keyframes
Animations
scripting descriptor, @media, Keyword Media Features
scrolling

absolutely positioned elements, Containing Blocks and
Absolutely Positioned Elements
attaching background image and, Getting Attached
block box overflow, Handling Content Overflow, Single-
axis overflow
sticky positioning and, Sticky Positioning-Sticky
Positioning

seizure disorders, animations affecting, Accommodating
Seizure and Vestibular Disorders
::selection pseudo-element, Highlight Pseudo-Elements
selectors, Rule Structure, Selectors-Summary

adjacent-sibling combinator, Selecting Adjacent-Sibling
Elements-Selecting Adjacent-Sibling Elements
attribute, Attribute Selectors-The Case-Insensitivity
Identifier
child combinator for, Selecting Children
class, Class Selectors-Multiple Classes, Deciding Between
Class and ID
descendant (contextual), Defining Descendant Selectors-
Defining Descendant Selectors

document structure and, Using Document Structure-
Summary
grouping of, Grouping Selectors-Grouping Everything
ID, ID Selectors-Deciding Between Class and ID
@namespace rule for, Defining a Namespace for Selectors
pseudo-class (see pseudo-class selectors)
pseudo-element, Pseudo-Element Selectors-The Video-Cue
Pseudo-Element, Shadow Pseudo-Elements-Shadow
Pseudo-Elements
specificity, Specificity-Importance
type, Type Selectors
universal, The universal selector, Class Selectors, ID
Selectors, The negation pseudo-class, Zeroed Selector
Specificity, Inheritance

semicolon (;), in rules, Grouping Declarations, Grouping
Declarations
separated cell borders, table, Separated Cell Borders-
Handling empty cells
sepia() function, Color Filtering
serif fonts, Font Families
shadow DOM pseudo-elements, Shadow Pseudo-Elements
shadow pseudo-classes, Shadow Pseudo-Classes
shadows

box-shadow property, Creating Box Shadows-Creating Box
Shadows, How Property Values Are Interpolated, Basic
Filters
drop shadow filter, Basic Filters-Basic Filters
text, Text Shadows-Text Shadows

shape-image-threshold property, Shaping with Image
Transparency
shape-margin property, Adding a Shape Margin-Adding a
Shape Margin
shape-outside property, Float Shapes-Float Shapes
shaping content around floats, Float Shapes-Adding a Shape
Margin, Shaping with Image Transparency

with image transparency, Shaping with Image
Transparency
inset shapes, Using Inset Shapes-Polygons
margins, Adding a Shape Margin-Adding a Shape Margin

shaping of rounded corners in borders, Rounded corner
clamping-More complex corner shaping
shrink factor, for flexbox layout, Growth Factors and the flex
Property, The flex-shrink Property-Responsive flexing
sibling elements, document structure, Understanding the
Parent-Child Relationship, Selecting Adjacent-Sibling
Elements-Selecting Following Siblings
simple alpha compositing, Compositing and Blending

single-axis overflow, Single-axis overflow-Single-axis
overflow
single-side border styles, Single-side styles, Border Colors
single-side margins, Single-Side Margin Properties
single-side padding, Single-Side Padding-Single-Side Padding
size property, Page Size
size-adjust descriptor, for fonts, Automatically Adjusting Size
skew() function, Skewing
skewX() function, Skewing
skewY() function, Skewing
skipping ink, text decoration, Skipping Ink-Skipping Ink
slashed-zero numeric display keyword, Numeric Font
Variants
slashes

backslash, Strings
forward slash, Value Syntax Conventions, CSS Comments-
CSS Comments, Shorthand border image

:slotted() pseudo-class, Shadow Pseudo-Classes
::slotted() pseudo-element, Shadow Pseudo-Elements
small-caps keyword, font-variant, Capital Font Variants
soft-light blend mode, Hard and soft light
soft-wrapping of text, Word Breaking, Wrapping Text
space-separated list of words, Matching one word in a space-
separated list

spacing, Line Layout
(see also whitespace)
aligning content, Aligning Flex Lines
background images, Spacing and rounding repeat
patterns-Spacing and rounding repeat patterns
border-spacing property, Applying border spacing-
Applying border spacing
flex items, Opening Gaps Between Flex Items-Opening
Gaps Between Flex Items
justifying content, Justifying and overflow
letter, Font Kerning, Letter Spacing-Spacing and Alignment
margins and blank space, Margins
word, Word Spacing-Word Spacing

spanning grid lines, Using Column and Row Lines-Using
Column and Row Lines
speak-as descriptor, @counter-style, Speaking Counting
Patterns-Speaking Counting Patterns
specificity, Specificity-Importance

animation, Specificity and !important
in cascade rule order, The Cascade, Sorting by Specificity
declarations, Declarations and Specificity-Declarations and
Specificity
ID selector and attribute, ID and Attribute Selector
Specificity

importance of, Importance-Importance
lack of in universal selector, Inheritance
multiple match resolution, Resolving Multiple Matches
zeroed selector, Zeroed Selector Specificity

::spelling-error pseudo-element, Highlight Pseudo-Elements,
Highlight Pseudo-Elements
spherical coordinate system, Coordinate Systems
square brackets ([…]), in value syntax, Value Syntax
Conventions
src descriptor, @font-face, Using Font-Face Descriptors-Using
Font-Face Descriptors
src() function, URLs
stacking of elements, Placement on the Z-Axis-Placement on
the Z-Axis, Understanding Axes
starburst pattern, conic gradient, Repeating Conic Gradients
start and end alignment, Start and end alignment
state, pseudo-classes based on (see UI-state pseudo-classes)
static positioning, Types of Positioning, Auto-edges
step timing functions, Step timing-Step timing, Using step
timing functions-Using step timing functions
step-end timing function, Using step timing functions-Using
step timing functions
step-start timing function, Using step timing functions-Using
step timing functions

sticky positioning, Types of Positioning, The Containing
Block, Sticky Positioning-Sticky Positioning
sticky-constraint rectangle, The Containing Block
stretching

aligning content, Aligning Flex Lines
of fonts, The font-stretch Descriptor-The font-stretch
Descriptor

strict keyword, line-break, Line Breaking
string values, Strings, Specifying Content
stroke-box, SVG, Clip Boxes
structural pseudo-classes, Structural Pseudo-Classes-Selecting
every nth of a type
style attribute (HTML), Inline Styles
<style> element, Basic Media Queries-Basic Media Queries

linking CSS to HTML documents, The <style> Element
media attribute, Markup

style sheets (see CSS)
sub keyword, vertical-align, Setting Vertical Alignment
subgrids

explicit tracks, Defining Explicit Tracks
gaps for, Giving Subgrids Their Own Gaps-Giving Subgrids
Their Own Gaps
naming lines, Naming Subgridded Lines-Naming
Subgridded Lines

offsets, Dealing with Offsets-Dealing with Offsets
subscripts, Font Variant Position, Superscripting and
subscripting
subsetting fonts, Using Font-Face Descriptors
substring matching, for attribute selectors, Selection Based
on Partial Attribute Values-Matching a substring at the end of
an attribute value
suffix descriptor, @counter-style, Cyclic Counting Patterns-
Cyclic Counting Patterns
super keyword, vertical-align, Setting Vertical Alignment
superscripts, Font Variant Position, Superscripting and
subscripting
@supports (feature query) rule, Feature Queries (@supports)-
Feature Queries (@supports)
SVG format

clip paths and, Clipping, Clipping with SVG Paths
filtering, SVG Filters-SVG Filters
object bounding box, Transforming, Clip Boxes
text rendering and, Text Rendering

swap keyword, font-display, Working with Font Display
symbolic pattern, @counter-style, Symbolic Counting
Patterns-Symbolic Counting Patterns
symbols descriptor, @counter-style, Defining Counting
Patterns

syntax conventions used in this book, Value Syntax
Conventions-Value Syntax Conventions
synthesizing fonts, Font Synthesis
system descriptor, @counter-style, Defining Counting
Patterns
system fonts, Using System Fonts

T

tab-size property, Setting Tab Sizes
table cells versus grid cells, Visually Arranging a Table
table keyword, display, Setting Table Display Values
table layout, Table Layout in CSS-Summary

alignment within cells, Alignment-Alignment
anonymous objects, Inserting Anonymous Table Objects-
Inserting Anonymous Table Objects
arrangement rules, Table Arrangement Rules
bounding box, Transforming
display values, Setting Table Display Values-Columns
versus grid layout, Grid Layout
height of, Height
layers in, Working with Table Layers
row primacy, Row primacy
sizing, Table Sizing-Alignment
table versus grid cells, Visually Arranging a Table

visual arrangement, Visually Arranging a Table
table-caption keyword, display, Setting Table Display Values
table-cell keyword, display, Setting Table Display Values
table-column keyword, display, Setting Table Display Values
table-column-group keyword, display, Setting Table Display
Values
table-footer-group keyword, display, Setting Table Display
Values
table-header-group keyword, display, Setting Table Display
Values
table-layout property, Automatic layout-Automatic layout
table-row keyword, display, Setting Table Display Values
table-row-group keyword, display, Setting Table Display
Values
tabular-nums numeric display keyword, Numeric Font
Variants
:target pseudo-class, Nonhyperlink location pseudo-classes-
Nonhyperlink location pseudo-classes
::target-text pseudo-element, Highlight Pseudo-Elements,
Highlight Pseudo-Elements
:target-within pseudo-class, Nonhyperlink location pseudo-
classes, Nonhyperlink location pseudo-classes
tech() function, @font-face rule, Using Font-Face Descriptors
text nodes

:empty pseudo-class using, Selecting empty elements
in flex items, Flex Item Features

text properties, Text Properties-Summary
alignment of lines in an element, Vertical Alignment-
Length alignment
alignment within a line, Aligning Text-Aligning the Last
Line, Spacing and Alignment
block direction, Indentation and Inline Alignment
capitalization, Text Transformation-Text Transformation
emphasis marks, Text Emphasis-Setting Text Drawing
Order
fonts (see fonts)
gap behavior in, Baseline alignment
hyphenation, Hyphenation-Hyphenation
indentation, Indenting Text-Indenting Text
inline direction, Indentation and Inline Alignment
letter spacing, Letter Spacing-Spacing and Alignment
line breaks, Whitespace, Hyphenation, Line Breaking-
Wrapping Text
line height, Adjusting the Height of Lines-Understanding
line-height and inheritance
rendering speed and legibility, Text Rendering
shadows, Text Shadows-Text Shadows

shaping content around floats, Float Shapes-Adding a
Shape Margin
text decoration, Text Decoration-Understanding Weird
Decorations
transformations, Text Transformation-Text
Transformation
vertical alignment, Vertical Alignment-Length alignment
whitespace, handling, Whitespace-Setting Tab Sizes
word breaking, Word Breaking-Word Breaking
word spacing, Word Spacing-Word Spacing
wrapping text, Wrapping Text
writing modes (flow direction), Writing Modes-Declaring
Direction

text shadows, transitions, How Property Values Are
Interpolated
text-align property, Alignment, Aligning Text-Parent
matching, Spacing and Alignment
text-align-last property, Aligning the Last Line
text-bottom keyword, vertical-align, Setting Vertical
Alignment
text-combine-upright property, Combining Characters-
Combining Characters
text-decoration property, Using the Text Decoration
Shorthand Property

text-decoration-color property, Setting Text Decoration Color
text-decoration-line property, Setting Text Decoration Line
Placement-Setting Text Decoration Line Placement
text-decoration-skip-ink property, Skipping Ink-Skipping Ink
text-decoration-style property, Setting Text Decoration Style
text-decoration-thickness property, Setting Text Decoration
Thickness
text-emphasis property, Using the text-emphasis Shorthand
text-emphasis-color property, Changing Emphasis Color
text-emphasis-position property, Placing Emphasis Marks
text-emphasis-style property, Setting Emphasis Style-Setting
Emphasis Style
text-indent property, Indenting Text-Indenting Text
text-orientation property, Working with Other Writing
Directions, Changing Text Orientation
text-rendering property, Text Rendering-Text Rendering
text-shadow property, Text Shadows-Text Shadows
text-top keyword, vertical-align, Setting Vertical Alignment
text-transform property, Text Transformation-Text
Transformation
text-underline-offset, Offsetting Underlines
tilde (~), general-sibling combinator, Selecting Following
Siblings

tilde, equal sign (~=), in attribute selectors, Selection Based on
Partial Attribute Values
tiling background images, Background Repeating (or Lack
Thereof)-Tiling and clipping repeated backgrounds
time units, Time and Frequency
timing functions

animations, Changing the Internal Timing of Animations-
Animating the timing function
transitions, Altering the Internal Timing of Transitions-
Step timing

title attribute, Alternate stylesheets-Alternate stylesheets
titling-caps keyword, font-variant-caps, Capital Font Variants
to keyframe selector, animations, Omitting from and to
Values
top keyword, table cell, Alignment
top keyword, vertical-align, Setting Vertical Alignment, Top
and bottom alignment
top property, Offset Properties-Offset Properties
transform property, Transforming-Transforming
transform-box property, Choosing the Transform’s Box-
Choosing the Transform’s Box
transform-origin property, Moving the Transform’s Origin-
Moving the Transform’s Origin

transform-style property, Choosing a 3D Style-Choosing a 3D
Style
transformation, text properties, Text Transformation-Text
Transformation
transforms, Transforms-Summary

3D style for, Coordinate Systems-Coordinate Systems,
Choosing a 3D Style-Choosing a 3D Style
animated, Element Rotation, A note on end-state
equivalence
backface visibility, Dealing with Backfaces-Dealing with
Backfaces
bounding box for, Transforming
coordinate systems used by, Coordinate Systems-
Coordinate Systems
end-state equivalence, A note on end-state equivalence
functions used with, The Transform Functions-Setting
Element Perspective
order of individual properties, Individual Transform
Property Order
origin of, moving, Moving the Transform’s Origin-Moving
the Transform’s Origin
perspective change, Changing Perspective-Moving the
perspective’s origin

transition property, Using the transition Shorthand-Using the
transition Shorthand
transition-delay property, Delaying Transitions-Negative
delay values
transition-duration property, Setting Transition Duration-
Setting Transition Duration
transition-property property, Limiting Transition Effects by
Property-Transition events
transition-timing-function property, Altering the Internal
Timing of Transitions-Step timing
transitionend event, Transition events-Transition events
TransitionEvent Interface, Transition events
transitions, Transitions-Summary

animatable properties for, CSS Transitions, Limiting
Transition Effects by Property, How Property Values Are
Interpolated
border corner rounding, Corner blending
delaying, Delaying Transitions-Negative delay values
duration, Setting Transition Duration-Setting Transition
Duration, Reversing Interrupted Transitions
events, Transition events
initial state, Transition Properties-Transition Properties
limiting effects by property, Limiting Transition Effects by
Property-Transition events

printing, Printing Transitions
reversing interrupted, Reversing Interrupted Transitions
shorthand property, Using the transition Shorthand-Using
the transition Shorthand
suppressing, Suppressing transitions via property limits
timing of, Altering the Internal Timing of Transitions-Step
timing, Reversing Interrupted Transitions
on transform property, Transition Properties-Transition
Properties

translate property, The translate property, Individual
Transform Property Order
translate() function, Translation
translate3d() function, Translation
translateX() function, Translation
translateY() function, Translation
translateZ() function, Translation
transparent backgrounds, Explicitly Setting a Transparent
Background, Setting Gradient Colors
transparent borders, Transparent borders
transparent keyword, Color Keywords
turn unit, Angles
type selectors, Type Selectors
typographic character unit, Using the text-emphasis
Shorthand

U

UI-state pseudo-classes, UI-State Pseudo-Classes-Mutability
pseudo-classes
underlining text, Setting Text Decoration Line Placement
unicase keyword, font-variant-caps, Capital Font Variants
Unicode encoding, Strings
unicode-bidi property, The all Property, Declaring Direction
unicode-range descriptor, @font-face, Restricting Character
Range-Restricting Character Range
units of measure

absolute length, Absolute Length Units-Resolution Units
angle, Angles
fractional, Fractional units-Fractional units
frequency, Time and Frequency
lengths for container queries, Setting Container Length
Units
with linear gradients, Linear Gradients
relative length, Relative Length Units-Other root-relative
units
resolution, Resolution Units
time, Time and Frequency

universal selector (*), The universal selector
class selector and, Class Selectors, ID Selectors
inheritance and), Inheritance

zeroed selector specificity), Zeroed Selector Specificity
unset keyword, unset
update descriptor, @media, Keyword Media Features
URI values, generated content, Specifying Content
<url> value type, Images
url() function, SVG Filters
url(), using to import font faces, Using Font-Face Descriptors
URLs, images specified by, URLs-URLs
user action pseudo-classes, User Action Pseudo-Classes-Real-
world issues with dynamic styling
user agent origin, The Cascade, Sorting by Importance and
Origin

V

:valid pseudo-class, UI-State Pseudo-Classes, Validity pseudo-
classes
values, Rule Structure

(see also specific values by name)
all property, The all Property
color (see color values)
custom properties, Custom Properties-Custom Property
Fallbacks
function, Function Values-Attribute Values
identifiers, Identifiers

images, Images
interpolated, How Property Values Are Interpolated-
Interpolating Repeating Values
keywords, Keywords-revert-layer
mixed-value padding, Padding
numbers, Numbers and Percentages-Fractions
percentages, Percentages
position, Position
ratio, Ratios
replicating in borders, Border Widths
replicating in padding, Replicating Values-Replicating
Values
specifying multiple, Grouping Selectors
strings, Strings
syntax conventions, Value Syntax Conventions-Value
Syntax Conventions
URLs, URLs-URLs

var() function, Custom Properties-Custom Property Fallbacks
variable font files, Font Families
variables (see custom properties)
vb (viewport block) unit, Viewport-Relative Units
vendor prefixes, Vendor Prefixing
vertical bar (|), in value syntax, Value Syntax Conventions

vertical bar, double (||), in value syntax, Value Syntax
Conventions
vertical bar, equal sign (|=), in attribute selectors, Selection
Based on Partial Attribute Values
vertical formatting

alignment setting, Setting Vertical Alignment-Setting
Vertical Alignment, Inline Replaced Elements, Flex Item
Features, Creating a Grid Container, Alignment, Vertical
Alignment-Length alignment
auto block sizing, Auto Block Sizing-Percentage Heights
block boxes, Handling Block Boxes-Logical Element Sizing
box sizing, Altering Box Sizing-Altering Box Sizing
collapsing margins, Collapsing Block-Axis Margins-
Collapsing Block-Axis Margins, Margin Collapsing-Margin
Collapsing, Flex Item Features, Creating a Grid Container
content-based sizing, Content-Based Sizing Values-Content-
Based Sizing Values
line heights, inline formatting, Basic Terms and Concepts
logical element sizing, Logical Element Sizing-Height and
Width
negative margins, Negative Margins and Collapsing
overflowing content, handling, Handling Content
Overflow-Single-axis overflow
percentage heights, Percentage Heights

properties, Inline-Axis Properties
vertical writing direction, A Quick Primer, Indentation and
Inline Alignment, Vertical Alignment-Length alignment
vertical-align property

flex items, Flex Item Features
grid items and, Creating a Grid Container
line heights, Basic Terms and Concepts
setting, Setting Vertical Alignment-Setting Vertical
Alignment
in table cells, Alignment
in text, Vertically Aligning Text-Length alignment,
Understanding Weird Decorations

vestibular disorders, animations affecting, Accommodating
Seizure and Vestibular Disorders
vh (viewport height) unit, Viewport-Relative Units
vi (viewport inline) unit, Viewport-Relative Units
::video-cue pseudo-element, The Video-Cue Pseudo-Element-
The Video-Cue Pseudo-Element
video-dynamic-range descriptor, @media, Keyword Media
Features
view-box, SVG, Clip Boxes
viewport (browser display)

as container for fixed positioning, Fixed Positioning
resolution units, Resolution Units

viewport-relative units, Resolution Units, Viewport-Relative
Units-Viewport-Relative Units
visibility property

animatability, Animatable Properties and Values
animatability and, Using Nonanimatable Properties That
Aren’t Ignored
elements, Element Visibility
table columns, Columns

visible keyword, Handling Content Overflow, Element
Visibility
visited links and privacy, Hyperlink-specific pseudo-classes
:visited pseudo-class, Hyperlink-specific pseudo-classes-
Hyperlink-specific pseudo-classes, Real-world issues with
dynamic styling
visual formatting, Basic Visual Formatting-Summary

block flow direction, A Quick Primer, Types of Positioning,
Containing Blocks and Absolutely Positioned Elements-
Containing Blocks and Absolutely Positioned Elements
borders, The Containing Block, Altering Box Sizing-Auto
Block Sizing, Collapsing Block-Axis Margins, Collapsing
Block-Axis Margins
boxes (see boxes)
content area, Basic Boxes-Basic Boxes
display roles, Element Display Roles-Inline-level elements

element display, altering, Altering Element Display-
Handling Block Boxes
horizontal formatting, Handling Block Boxes-Height and
Width, Single-axis overflow
inline base direction, A Quick Primer
inline formatting, Inline Formatting-Other Display Values
inline-axis formatting, Inline-Axis Formatting-List Items
list items, List Items
margins (see margins)
normal flow, A Quick Primer
outlines, The Containing Block, Outlines-How They Are
Different
padding (see padding)
sizing of logical element, Logical Element Sizing-Height
and Width
vertical formatting (see vertical formatting)
visibility of elements, Element Visibility-Animating
Visibility

vmax (viewport maximum) unit, Viewport-Relative Units
vmin (viewport minimum) unit, Viewport-Relative Units
vw (viewport width) unit, Viewport-Relative Units

W

weight, in cascade rules, The Cascade-The Cascade

:where() pseudo-class, The :is() and :where() pseudo-classes-
The :is() and :where() pseudo-classes, Zeroed Selector
Specificity
white-space property, Whitespace-Whitespace, Wrapping
Text
whitespace

calc() function and, Calculation Values
CSS comments not considered, CSS Comments
handling of, Whitespace Handling, CSS Comments
as ignored by flex container, What Are Flex Items?
separating value keywords, Grouping Declarations
in text, Whitespace-Setting Tab Sizes, Wrapping Text

widows property, Orphans and Widows-Orphans and
Widows
width descriptor, @media, Ranged Media Features
width property

logical element sizing, Height and Width-Height and Width
positioning elements, Setting Width and Height-Setting
Width and Height
table columns, Columns

will-change property, Using the will-change Property-Using
the will-change Property
word-break property, Word Breaking-Word Breaking
word-spacing property, Word Spacing-Word Spacing

word-wrap property (see overflow-wrap property)
wrapping flex lines, Wrapping Flex Lines-Wrapping Flex
Lines
wrapping text, Whitespace, Wrapping and Hyphenation
writing modes (flow direction), Handling Block Boxes-Height
and Width

block box handling, Handling Block Boxes-Handling Block
Boxes, A Simple Example
changing for languages, Using the flex-direction Property,
Working with Other Writing Directions-Working with
Other Writing Directions
flexbox as agnostic to, A Simple Example
grid flow and, Specifying Grid Flow
inline layout’s horizontal bias, A Simple Example
logical element sizing, Logical Element Sizing-Height and
Width
text alignment, Aligning Text-Start and end alignment

writing-mode property, Working with Other Writing
Directions, Setting Writing Modes-Setting Writing Modes

X

x-height, Automatically Adjusting Size
x/y/z coordinate system, Coordinate Systems-Coordinate
Systems

XML
attribute selectors with, Simple Attribute Selectors,
Selection Based on Exact Attribute Value
class selector support, Deciding Between Class and ID
dot-class notation issue for, Deciding Between Class and ID
root element and, Selecting the root element
type selectors for, Type Selectors

Z

z-index property, Placement on the Z-Axis-Placement on the
Z-Axis, Sticky Positioning
zero size situation, radial gradients, Handling Degenerate
Cases-Handling Degenerate Cases
zeroed selector specificity, Zeroed Selector Specificity

About the Authors

Eric A. Meyer has been working with the web since late 1993
and is an internationally recognized expert on the subjects of
HTML, CSS, and web standards. A widely read author, he joined
Igalia in 2021 as a developer advocate and standards evangelist,
a role he originally performed for Netscape Communications in
2001.

Beginning in early 1994, Eric was the visual designer and
campus web coordinator for the Case Western Reserve
University website, where he also authored a widely acclaimed
series of three HTML tutorials and was project coordinator for
the online version of the Encyclopedia of Cleveland History and
the Dictionary of Cleveland Biography, the first encyclopedia of
urban history published fully and freely on the web.

He is the author of Design for Real Life (A Book Apart), Eric
Meyer on CSS and More Eric Meyer on CSS (New Riders), CSS:
The Definitive Guide, 4e (O’Reilly), and CSS2.0 Programmer’s
Reference (Osborne/McGraw-Hill), as well as numerous articles
for A List Apart, Net Magazine, Netscape DevEdge, UX Booth, UX
Matters, the O’Reilly Network, Web Techniques, and Web
Review. Eric also created the classic CSS Browser Compatibility

https://learning.oreilly.com/library/view/css-the-definitive/9781449325053

Charts (a.k.a. “The Mastergrid”) and coordinated the authoring
and creation of the W3C’s first official CSS Test Suite.

He has conducted customized training for a wide variety of
organizations through his independent consulting, and has
delivered keynotes and technical talks at numerous
conferences around the world. In 2006, he was inducted into
the International Academy of Digital Arts and Sciences for
“international recognition on the topics of HTML and CSS” and
helping to “inform excellence and efficiency on the Web.” In
December 2014, he accidentally touched off Slate’s Internet
Outrage of the Day.

In his personal time, Eric acts as list chaperone of the css-
discuss mailing list, which he cofounded with John Allsopp of
Western Civilisation, and which is now supported by evolt.org.
Eric lives in Cleveland, Ohio, which is a much nicer city than
you’ve been led to believe. For nine years he was the host of
“Your Father’s Oldsmobile,” a big-band radio show heard
weekly on WRUW 91.1 FM in Cleveland. He’s a staunch
defender of the Oxford comma and the right of everyone
everywhere to follow a sentence with however many spaces
they deem proper. He enjoys a good meal whenever he can and
considers almost every form of music to be worthwhile.

http://www.w3.org/Style/CSS/Test/current
http://iadas.net/
http://www.css-discuss.org/
http://evolt.org/

You can find more detailed information on Eric’s personal web
page.

How does someone get to be the author of Flexbox in CSS,
Transitions and Animations in CSS, and Mobile HTML5
(O’Reilly), and coauthor of CSS3 for the Real World (SitePoint)
and CSS: The Definitive Guide? For Estelle Weyl, the journey
was not a direct one. She started out as an architect, used her
master’s degree in health and social behavior from the Harvard
School of Public Health to lead teen health programs, and then
began dabbling in website development. By the time Y2K rolled
around, she had become somewhat known as a web
standardista at http://www.standardista.com.

Today, she writes a technical blog that pulls in millions of
visitors, and speaks about CSS, HTML, JavaScript, accessibility,
and web performance at conferences around the world. In
addition to sharing esoteric programming tidbits with her
reading public, Estelle has consulted for Kodak Gallery,
SurveyMonkey, Visa, Samsung, Yahoo!, Apple, Williams-
Sonoma, and Google Chrome’s Web.Dev, where she wrote Learn
HTML, among others. She is currently a technical writer for
Open Web Docs working on MDN.

http://www.meyerweb.com/eric
https://learning.oreilly.com/library/view/mobile-html5/9781491948903
http://www.standardista.com/
https://web.dev/learn/html

When not coding, she spends her time cooking, gardening, and
doing construction, striving to update her 1910s-throwback
home. Basically, it’s just one more way Estelle is working to
bring the world into the 21st century.

Colophon

The animals on the cover of CSS: The Definitive Guide are
salmon (salmonidae), which is a family of fish consisting of
many species. Two of the most common salmon are the Pacific
salmon and the Atlantic salmon.

Pacific salmon live in the northern Pacific Ocean off the coasts
of North America and Asia. There are five subspecies of Pacific
salmon, with an average weight of 10 to 30 pounds. Pacific
salmon are born in the fall in freshwater stream gravel beds,
where they incubate through the winter and emerge as inch-
long fish. They live for a year or two in streams or lakes and
then head downstream to the ocean. There they live for a few
years, before heading back upstream to their exact place of
birth to spawn and then die.

Atlantic salmon live in the northern Atlantic Ocean off the
coasts of North America and Europe. There are many
subspecies of Atlantic salmon, including the trout and the char.
Their average weight is 10 to 20 pounds. The Atlantic salmon
family has a life cycle similar to that of its Pacific cousins, and
also travels from freshwater gravel beds to the sea. A major
difference between the two, however, is that the Atlantic

salmon does not die after spawning; it can return to the ocean
and back to spawn again, usually two or three times.

Salmon, in general, are graceful, silver-colored fish with spots
on their backs and fins. Their diet consists of plankton, insect
larvae, shrimp, and smaller fish. Their unusually keen sense of
smell is thought to help them navigate from the ocean back to
the exact spot of their birth, upstream past many obstacles.
Some species of salmon remain landlocked, living their entire
lives in fresh water.

Salmon are an important part of their ecosystems; their
decaying bodies provide fertilizer for streambeds. Their
numbers have been dwindling over the years, however. Factors
in the declining salmon population include habitat destruction,
fishing, dams that block spawning paths, acid rain, droughts,
floods, and pollution.

The cover illustration is by Karen Montgomery, based on an
antique line engraving from Dover’s Animals. The cover fonts
are Gilroy Semibold and Guardian Sans. The text font is Adobe
Minion Pro; the heading font is Adobe Myriad Condensed; and
the code font is Dalton Maag’s Ubuntu Mono.

	Preface
	Conventions Used in This Book
	Value Syntax Conventions

	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
	Eric Meyer
	Estelle Weyl

	1. CSS Fundamentals
	A Brief History of (Web) Style
	Stylesheet Contents
	Rule Structure
	Vendor Prefixing
	Whitespace Handling
	CSS Comments
	Markup

	Elements
	Replaced and Nonreplaced Elements
	Element Display Roles

	Bringing CSS and HTML Together
	The <link> Tag
	The <style> Element
	The @import Directive
	HTTP Linking
	Inline Styles

	Summary

	2. Selectors
	Basic Style Rules
	Type Selectors
	Grouping
	Grouping Selectors
	Grouping Declarations
	Grouping Everything

	Class and ID Selectors
	Class Selectors
	Multiple Classes
	ID Selectors
	Deciding Between Class and ID

	Attribute Selectors
	Simple Attribute Selectors
	Selection Based on Exact Attribute Value
	Selection Based on Partial Attribute Values
	The Case-Insensitivity Identifier

	Using Document Structure
	Understanding the Parent-Child Relationship
	Defining Descendant Selectors
	Selecting Children
	Selecting Adjacent-Sibling Elements
	Selecting Following Siblings

	Summary

	3. Pseudo-Class and -Element Selectors
	Pseudo-Class Selectors
	Combining Pseudo-Classes
	Structural Pseudo-Classes
	Location Pseudo-Classes
	User Action Pseudo-Classes
	UI-State Pseudo-Classes
	The :lang() and :dir() Pseudo-Classes
	Logical Pseudo-Classes
	The :has() Pseudo-Class
	Other Pseudo-Classes

	Pseudo-Element Selectors
	Styling the First Letter
	Styling the First Line
	Restrictions on ::first-letter and ::first-line
	The Placeholder Text Pseudo-Element
	The Form Button Pseudo-Element
	Generating Content Before and After Elements
	Highlight Pseudo-Elements
	The Backdrop Pseudo-Element
	The Video-Cue Pseudo-Element

	Shadow Pseudo-Classes and -Elements
	Shadow Pseudo-Classes
	Shadow Pseudo-Elements

	Summary

	4. Specificity, Inheritance, and the Cascade
	Specificity
	Declarations and Specificity
	Resolving Multiple Matches
	Zeroed Selector Specificity
	ID and Attribute Selector Specificity
	Importance

	Inheritance
	The Cascade
	Sorting by Importance and Origin
	Sorting by Element Attachment
	Sorting by Cascade Layer
	Sorting by Specificity
	Sorting by Order
	Working with Non-CSS Presentational Hints

	Summary

	5. Values and Units
	Keywords, Strings, and Other Text Values
	Keywords
	The all Property
	Strings
	Identifiers
	URLs
	Images

	Numbers and Percentages
	Integers
	Numbers
	Percentages
	Fractions

	Distances
	Absolute Length Units
	Resolution Units
	Relative Length Units
	Root-Relative Length Units

	Viewport-Relative Units
	Function Values
	Calculation Values
	Maximum Values
	Minimum Values
	Clamping Values
	Attribute Values

	Color
	Named Colors
	Color Keywords
	Colors by RGB and RGBa
	HSL and HSLa Colors
	Colors with HWB
	Lab Colors
	LCH Colors
	Oklab and Oklch
	Using color()
	Applying Color
	Affecting Form Elements
	Inheriting Color

	Angles
	Time and Frequency
	Ratios
	Position
	Custom Properties
	Custom Property Fallbacks

	Summary

	6. Basic Visual Formatting
	Basic Boxes
	A Quick Primer
	The Containing Block

	Altering Element Display
	Changing Roles
	Handling Block Boxes

	Logical Element Sizing
	Content-Based Sizing Values
	Minimum and Maximum Logical Sizing
	Height and Width

	Altering Box Sizing
	Block-Axis Properties
	Auto Block Sizing
	Percentage Heights
	Handling Content Overflow
	Negative Margins and Collapsing
	Collapsing Block-Axis Margins

	Inline-Axis Formatting
	Inline-Axis Properties
	Using auto
	Negative Margins
	Percentages
	Replaced Elements
	List Items

	Box Sizing with Aspect Ratios
	Inline Formatting
	Line Layout
	Basic Terms and Concepts
	Line Heights
	Inline Nonreplaced Elements
	Building the Boxes
	Setting Vertical Alignment
	Managing the Line Height
	Adding Box Properties to Nonreplaced Elements
	Changing Breaking Behavior
	Glyphs Versus Content Area
	Inline Replaced Elements
	Adding Box Properties to Replaced Elements
	Replaced Elements and the Baseline
	Inline-Block Elements
	Flow Display
	Content Display
	Other Display Values

	Element Visibility
	Animating Visibility

	Summary

	7. Padding, Borders, Outlines, and Margins
	Basic Element Boxes
	Padding
	Replicating Values
	Single-Side Padding
	Logical Padding
	Percentage Values and Padding
	Padding and Inline Elements
	Padding and Replaced Elements

	Borders
	Borders with Style
	Border Widths
	Border Colors
	Single-Side Shorthand Border Properties
	Global Borders
	Borders and Inline Elements
	Rounding Border Corners
	Image Borders

	Outlines
	Outline Styles
	Outline Width
	Outline Color
	How They Are Different

	Margins
	Length Values and Margins
	Percentages and Margins
	Single-Side Margin Properties
	Margin Collapsing
	Negative Margins
	Margins and Inline Elements

	Summary

	8. Backgrounds
	Setting Background Colors
	Explicitly Setting a Transparent Background
	Background and Color Combinations

	Clipping the Background
	Working with Background Images
	Using an Image
	Understanding Why Backgrounds Aren’t Inherited
	Following Good Background Practices
	Positioning Background Images
	Background Repeating (or Lack Thereof)
	Getting Attached
	Sizing Background Images
	Bringing It All Together
	Working with Multiple Backgrounds
	Using the Background Shorthand

	Creating Box Shadows
	Summary

	9. Gradients
	Linear Gradients
	Setting Gradient Colors
	Positioning Color Stops
	Setting Color Hints
	Understanding Gradient Lines: The Gory Details
	Repeating Linear Gradients

	Radial Gradients
	Setting Shape and Size
	Positioning Radial Gradients
	Using Radial Color Stops and the Gradient Ray
	Handling Degenerate Cases
	Repeating Radial Gradients

	Conic Gradients
	Creating Conic Color Stops
	Repeating Conic Gradients

	Manipulating Gradient Images
	Creating Special Effects
	Triggering Average Gradient Colors

	Summary

	10. Floating and Positioning
	Floating
	Floated Elements
	Floating: The Details
	Applied Behavior
	Floats, Content, and Overlapping

	Clearing
	Positioning
	Types of Positioning
	The Containing Block
	Offset Properties
	Inset Shorthands
	Setting Width and Height
	Limiting Width and Height

	Absolute Positioning
	Containing Blocks and Absolutely Positioned Elements
	Placement and Sizing of Absolutely Positioned Elements
	Auto-edges
	Placing and Sizing Nonreplaced Elements
	Placing and Sizing Replaced Elements
	Placement on the Z-Axis

	Fixed Positioning
	Relative Positioning
	Sticky Positioning
	Summary

	11. Flexible Box Layout
	Flexbox Fundamentals
	A Simple Example

	Flex Containers
	Using the flex-direction Property
	Working with Other Writing Directions
	Wrapping Flex Lines
	Defining Flexible Flows
	Understanding Axes

	Arrangement of Flex Items
	Flex Item Alignment
	Justifying Content
	Aligning Items
	Aligning Flex Lines
	Using the place-content Property

	Opening Gaps Between Flex Items
	Flex Items
	What Are Flex Items?
	Flex Item Features
	Absolute Positioning
	Minimum Widths

	Flex-Item-Specific Properties
	The flex Property
	The flex-grow Property
	Growth Factors and the flex Property
	The flex-shrink Property
	The flex-basis Property
	The flex Shorthand

	The order Property
	Tabbed Navigation Revisited

	Summary

	12. Grid Layout
	Creating a Grid Container
	Understanding Basic Grid Terminology
	Creating Grid Lines
	Using Fixed-Width Grid Tracks
	Using Flexible Grid Tracks
	Fitting Track Contents
	Repeating Grid Tracks
	Defining Grid Areas

	Placing Elements in the Grid
	Using Column and Row Lines
	Using Row and Column Shorthands
	Working with Implicit Grid
	Handling Errors
	Using Areas
	Understanding Grid-Item Overlap

	Specifying Grid Flow
	Defining Automatic Grid Tracks
	Using the grid Shorthand
	Using Subgrids
	Defining Explicit Tracks
	Dealing with Offsets
	Naming Subgridded Lines
	Giving Subgrids Their Own Gaps

	Grid Items and the Box Model
	Setting Alignment in Grids
	Aligning and Justifying Individual Items
	Aligning and Justifying All Items
	Distributing Grid Items and Tracks

	Layering and Ordering
	Summary

	13. Table Layout in CSS
	Table Formatting
	Visually Arranging a Table
	Table Arrangement Rules
	Setting Table Display Values
	Inserting Anonymous Table Objects
	Working with Table Layers
	Using Captions

	Table Cell Borders
	Separated Cell Borders
	Collapsed Cell Borders

	Table Sizing
	Width
	Height
	Alignment

	Summary

	14. Fonts
	Font Families
	Using Generic Font Families
	Using Quotation Marks

	Using Custom Fonts
	Using Font-Face Descriptors
	Restricting Character Range
	Working with Font Display
	Combining Descriptors

	Font Weights
	How Weights Work
	The font-weight Descriptor

	Font Size
	Using Absolute Sizes
	Using Relative Sizes
	Setting Sizes as Percentages
	Automatically Adjusting Size

	Font Style
	The font-style Descriptor

	Font Stretching
	The font-stretch Descriptor

	Font Synthesis
	Font Variants
	Capital Font Variants
	Numeric Font Variants
	Ligature Variants
	Alternate Variants
	East Asian Font Variants
	Font Variant Position

	Font Feature Settings
	The font-feature-settings Descriptor

	Font Variation Settings
	Font Optical Sizing
	Override Descriptors
	Font Kerning
	The font Property
	Understanding font Property Limitations
	Adding the Line Height
	Using the Shorthand Properly
	Using System Fonts

	Font Matching
	Summary

	15. Text Properties
	Indentation and Inline Alignment
	Indenting Text
	Aligning Text
	Aligning the Last Line
	Word Spacing
	Letter Spacing
	Spacing and Alignment

	Vertical Alignment
	Adjusting the Height of Lines
	Vertically Aligning Text

	Text Transformation
	Text Decoration
	Setting Text Decoration Line Placement
	Setting Text Decoration Color
	Setting Text Decoration Thickness
	Setting Text Decoration Style
	Using the Text Decoration Shorthand Property
	Offsetting Underlines
	Skipping Ink
	Understanding Weird Decorations

	Text Rendering
	Text Shadows
	Text Emphasis
	Setting Emphasis Style
	Changing Emphasis Color
	Placing Emphasis Marks
	Using the text-emphasis Shorthand
	Setting Text Drawing Order

	Whitespace
	Setting Tab Sizes

	Wrapping and Hyphenation
	Hyphenation
	Word Breaking
	Line Breaking
	Wrapping Text

	Writing Modes
	Setting Writing Modes
	Changing Text Orientation
	Combining Characters
	Declaring Direction

	Summary

	16. Lists and Generated Content
	Working with Lists
	Types of Lists
	List-Item Images
	List-Marker Positions
	List Styles in Shorthand
	List Layout
	The ::marker Pseudo-Element

	Creating Generated Content
	Inserting Generated Content
	Specifying Content
	Defining Counters

	Defining Counting Patterns
	Fixed Counting Patterns
	Cyclic Counting Patterns
	Symbolic Counting Patterns
	Alphabetic Counting Patterns
	Numeric Counting Patterns
	Additive Counting Patterns
	Extending Counting Patterns
	Speaking Counting Patterns

	Summary

	17. Transforms
	Coordinate Systems
	Transforming
	The Transform Functions
	Translation
	Scaling
	Element Rotation
	Individual Transform Property Order
	Skewing
	Matrix Functions
	Setting Element Perspective

	More Transform Properties
	Moving the Transform’s Origin
	Choosing the Transform’s Box
	Choosing a 3D Style
	Changing Perspective
	Dealing with Backfaces

	Summary

	18. Transitions
	CSS Transitions
	Transition Properties
	Limiting Transition Effects by Property
	Setting Transition Duration
	Altering the Internal Timing of Transitions
	Delaying Transitions
	Using the transition Shorthand
	Reversing Interrupted Transitions

	Animatable Properties and Values
	How Property Values Are Interpolated
	Interpolating Repeating Values

	Printing Transitions
	Summary

	19. Animation
	Accommodating Seizure and Vestibular Disorders
	Defining Keyframes
	Setting Up Keyframe Animations
	Defining Keyframe Selectors
	Omitting from and to Values
	Repeating Keyframe Properties
	Animatable Properties
	Using Nonanimatable Properties That Aren’t Ignored
	Scripting @keyframes Animations

	Animating Elements
	Invoking a Named Animation
	Defining Animation Lengths
	Declaring Animation Iterations
	Setting an Animation Direction
	Delaying Animations
	Exploring Animation Events
	Changing the Internal Timing of Animations
	Setting the Animation Play State
	Animation Fill Modes

	Bringing It All Together
	Animation, Specificity, and Precedence Order
	Specificity and !important
	Animation Iteration and display: none;
	Animation and the UI Thread

	Using the will-change Property
	Printing Animations
	Summary

	20. Filters, Blending, Clipping, and Masking
	CSS Filters
	Basic Filters
	Color Filtering
	Brightness, Contrast, and Saturation
	SVG Filters

	Compositing and Blending
	Blending Elements
	Blending Backgrounds
	Blending in Isolation

	Containing Elements
	Float Shapes
	Shaping with Image Transparency
	Using Inset Shapes
	Adding a Shape Margin

	Clipping and Masking
	Clipping
	Clip Shapes
	Clip Boxes
	Clipping with SVG Paths

	Masks
	Defining a Mask
	Changing the Mask’s Mode
	Sizing and Repeating Masks
	Positioning Masks
	Clipping and Compositing Masks
	Bringing It All Together
	Setting Mask Types
	Border-Image Masking

	Object Fitting and Positioning
	Summary

	21. CSS At-Rules
	Media Queries
	Basic Media Queries
	Complex Media Queries
	Special Value Types
	Keyword Media Features
	Forced Colors, Contrast, and Display Mode
	Ranged Media Features
	Deprecated Media Features
	Responsive Styling

	Paged Media
	Print Styles
	Differences Between Screen and Print
	Page Size
	Page Margins and Padding
	Named Page Types
	Page Breaking
	Orphans and Widows
	Page-Breaking Behavior
	Repeated Elements
	Elements Outside the Page

	Container Queries
	Defining Container Types
	Defining Container Names
	Using Container Shorthand
	Using Container At-Rules
	Defining Container Query Features
	Setting Container Length Units

	Feature Queries (@supports)
	Other At-Rules
	Defining a Character Set for a Stylesheet
	Defining a Namespace for Selectors

	Summary

	A. Additional Resources
	Index
	About the Authors

