CSS Visual
Dictionary

Savanah Hickman

CSS Visual
Dictionary

Savanah Hickman

Copyright © 2022 Savanah Hickman

All rights reserved.

COPYRIGHT © 2022 SAVANAH HICKMAN

All rights reserved.

No part of this book must be reproduced, stored in a
retrieval system, or shared by any means, electronic,
mechanical, photocopying, recording, or otherwise, without
written permission from the publisher.

Every precaution has been taken in the preparation of
this book; still the publisher and author assume no
responsibility for errors or omissions. Nor do they assume
any liability for damages resulting from the use of the
information contained herein.

Legal Notice:

This book is copyright protected and is only meant for
your individual use. You are not allowed to amend,
distribute, sell, use, quote or paraphrase any of its part
without the written consent of the author or publisher.

What is CSS?

Overview: First steps

Next

CSS (Cascading Style Sheets) allows you to create great-
looking web pages, but how does it work under the hood?
This article explains what CSS is with a simple syntax
example and also covers some key terms about the
language.

In the Introduction to HTML module, we covered what
HTML is and how it is used to mark up documents. These
documents will be readable in a web browser. Headings
will look larger than regular text, paragraphs break onto a
new line and have space between them. Links are colored
and underlined to distinguish them from the rest of the text.
What you are seeing are the browser's default styles —
very basic styles — that the browser applies to HTML to
make sure that the page will be basically readable even if
no explicit styling is specified by the author of the page.
However, the web would be a boring place if all websites
looked like that. Using CSS, you can control exactly how
HTML elements look in the browser, presenting your
markup using whatever design you like.

What is CSS for?

As we have mentioned before, CSS is a language for
specifying how documents are presented to users — how
they are styled, laid out, etc.

A document is usually a text file structured using a markup
language — HTML is the most common markup language,

but you may also come across other markup languages
such as SVG or XML.

Presenting a document to a user means converting it into
a form usable by your audience. Browsers, like Firefox,
Chrome, or Edge, are designed to present documents
visually, for example, on a computer screen, projector, or
printer.

CSS can be used for very basic document text styling —
for example, for changing the color and size of headings
and links. It can be used to create a layout — for example,
turning a single column of text into a layout with a main
content area and a sidebar for related information. It can
even be used for effects such as animation. Have a look at
the links in this paragraph for specific examples.

CSS modules

As there are so many things that you could style using
CSS, the language is broken down into modules. You'll see
reference to these modules as you explore MDN. Many of
the documentation pages are organized around a
particular module. For example, you could take a look at
the MDN reference to the Backgrounds and Borders
module to find out what its purpose is and the properties
and features it contains. In that module, you will also find a
link to Specifications that defines the technology (also see
the section below).

At this stage, you don't need to worry too much about how
CSS is structured; however, it can make it easier to find
information if, for example, you are aware that a certain
property is likely to be found among other similar things,
and is therefore, probably in the same specification.

For a specific example, let's go back to the Backgrounds
and Borders module — you might think that it makes logical
sense for the background-color and border-color properties
to be defined in this module. And you'd be right.

CSS specifications

All web standards technologies (HTML, CSS, JavaScript,
etc.) are defined in giant documents called specifications
(or "specs"), which are published by standards
organizations (such as the W3C, WHATWG, ECMA, or
Khronos) and define precisely how those technologies are
supposed to behave.

CSS is no different — it is developed by a group within the
W3C called the CSS Working Group. This group is made
of representatives of browser vendors and other
companies who have an interest in CSS. There are also
other people, known as invited experts, who act as
independent voices; they are not linked to a member
organization.

New CSS features are developed or specified by the CSS
Working Group — sometimes because a particular
browser is interested in having some capability, other times
because web designers and developers are asking for a
feature, and sometimes because the Working Group itself
has identified a requirement. CSS is constantly developing,
with new features becoming available. However, a key
thing about CSS is that everyone works very hard to never
change things in a way that would break old websites. A
website built in 2000, using the limited CSS available then,

should still be usable in a browser today!

As a newcomer to CSS, it is likely that you will find the CSS
specs overwhelming — they are intended for engineers to
use to implement support for the features in user agents,
not for web developers to read to understand CSS. Many
experienced developers would much rather refer to MDN
documentation or other tutorials. Nevertheless, it is worth
knowing that these specs exist and understanding the
relationship between the CSS you are using, the browser
support (see below), and the specs.

Browser support information

After a CSS feature has been specified, then it is only
useful for us in developing web pages if one or more
browsers have implemented the feature. This means that
the code has been written to turn the instruction in our CSS
file into something that can be output to the screen. We'll
look at this process more in the lesson How CSS works. It
is unusual for all browsers to implement a feature at the
same time, and so there is usually a gap where you can
use some part of CSS in some browsers and not in others.
For this reason, being able to check implementation status
is useful.

The browser support status is shown on every MDN CSS
property page in a table named "Browser compatibility".
Consult the information in that table to check if the property
can be used on your website. For an example, see the
browser compatibility table for the CSS font-family
property.

Based on your requirements, you can use the browser
compatibility table to check how this property is supported
across various browsers, or check if your specific browser
and the version you have support the property, or if there
are any caveats you should be aware of for the browser
and version you are using.

CSS Properties and Values

CSS has 415 unigue properties.
You can verify this with a simple JavaScript code snipplet as follows:

Source Code 0

var element = document.createElement("div");
var count = 0

for (index in element.style) p++;
console.log(p); // outputs 415 as of June 1st, 2018.

There may be more or less in the future as new features are being
added to the specification and old ones deprecate.

A large number of CSS properties that are rarely in use (or still don't
have full browser support across all major browsers) were skipped
from the contents of this book. They would only create unneeded
clutter.

Instead, in this book we focused only on CSS properties that are in
common use by web designers and developers today. A great deal
of effort went into creation of CSS Grid and Flex diagrams in
particular.

Placement

CSS code can be saved in a separate, external file and included as
follows:

Source Codet |
<html=

<head>
<title>=Welcome to my website. </title>
<link rel = "stylesheet" type = "text/css" href = "style.css" />
</head=>
<body=>CSS style instructions stored in "style.css" will be applied
to this page.</body>=
</html>

Or you can type it directly into your HTML document between:

<script type = "text/css">here</script> tags.

Simple Assignments

To assign a value to a property of an HTML element whose id is
"box", you would write something like this:

#box { property: value; }

Depending on the property, the value can be a measure of space
specified in pixels, pt, em or fr units, a color... in named red, blue,
black, etc..., hexadecimal #0F0 or #00FF00... or rgb(r, g. b)
formats.

Other times the value is unigue to a specific property name that
cannot be used with any other property. For example, the CSS
transform property can take a value called rotate that takes an
angle in degrees -- here, CSS requires that you append "deg" to the
numeric degree value:

#box { transform: rotate(45deq); } /* rotate this element by 45
degrees in clock-wise direction "/

CSS Comments

CSS only supports "block comment" syntax for creating in-code
comments. By surrounding a block of text or CSS code with /*
comment */ symbols.

color: #FFFFFF; /* Set font color to white using Hexadecimal
value */

color: #FFF; /* Set font color to white using short Hexadecimal
value */

color: white; /* Set font color to white using named value */

color: rgh(255,25%5,255); /* Set font color to white using an RGB
value */

Source Code |
color: var(--white-color); /* Set font color to white using a CSS
variable */

You can also comment out entire sections of CSS code to
temporarily disable them for future use:

content: "hello”;

border: 1px solid gray;

color: #FFFFEFF; *f
CSS does not support inline syntax // inline comments are not
allowed or rather... have no effect on the browser's CSS interpreter.
Other than they might confuse it a bit!

Assignment Patterns

You can use property: value pair combination to set background
images, colors and other basic properties of HTML elements.

You could alternatively use property: value value value to assign
multiple values to a single property, to avoid redundant declarations.
These are called shorthands. They usually separate multiple
property values by space.

But CSS has undergone considerable upgrades over the years.
Before we begin exploring the visual diagrams describing each CS5
property it is imperative to understand how CSS interprets property
and value patterns.

The maijority of properties use these patterns:

property: value; /* The most common pattern */

property: value, value, value,/* separated by comma */

property: value value value; /* separated by space®/

Properties that refer to a size of something can also be calculated
using cale keyword:

property: calc(value[px]); /* calculated */

property: calc(value[%)] - value[px]); /* calculated between % and
px -- ok. */

property: calc(value[%] - value[%]}; /* calculated between % and
--ok. ¥/

‘&

property: calc(value[px] + value[px]); /* add px to px -- ok. */

property: calc(value[px] - value[px]); /* subtract px from px -- ok. */

property: calc(value[px] * number}); /* multiply px by number -- ok.

‘H

property: calc(value[px] / number}),/* divide px by number -- ok. */

property: cale(number / value[px]}); /* divide number by px -- error.
¥

The last example will produce an error. When using calc you cannot
divide a number by a value specified in pixels (px).

CSS Variables

You can also use CSS variables to avoid redundancy when reusing
the same values.

element { --default-color: yellow } /* define variable --default-color

‘H

element { --variable-name: 100px; } /* define variable --variable-
name */

element { background-color: var(--default-color); } /* set
background color to --default-color variable "/

element { width: var(--variable-name); } /* set width to 100px */

Sass/SCSS

Although SASS and SCSS are outside of the scope of this book,
they are recommended for advanced CSS specialists. Note, that
Sass/SCSS will not work out of the box in any browser. You need to
install SASS compiler from the command line in order to enable it on
your web server.

$a: #E50CS5E:
$b: #E16A2E;
.mixing-colors {
background-color: mix($a, $b, 30%);

——

| encourage you to further study Sass/SCSS on your own, but only
once you feel comfortable with standard CSS described in this book!

The Idea Behind Cascading Style Sheets
Cascading Style Sheets are named this way for a reason. Imagine a
waterfall with water running down, breaking against the stones
beneath. Every one of those stones on which the water fell becomes

wet. Similarly, every CSS style inherits the styles already applied to
its parent HTML element.

Cam

G G o) Gard) Gy G

Qo>) C s 3 (>) aanlan) { v) (<)

CGOCEOEOCECO E G GO Gy G

GGG GEOEOEOEOGE GG

e D G Ce=D
Figure 1: CSS selectors help traverse the Document Object Model.

CSS styles literally "trickle down" the DOM hierarchy, consisting of a
tree-like structure of your website. The CSS language (specifically,
by providing a number of CSS selecfors) gives you ability to control
this often quirky process.

Let's take a look at this simple website structure to demonstrate the
basic concept behind CSS:

Privacy Policy. [2018 Copyright.

<body> Mailn parent containe
iy iin pare container

Figure 2: A few elements nested within the main website container.

CSS is a lot like a pair of tweezers, that helps us pick elements we
want to apply a certain style to.

If you apply black background to <body> tag then all of the nested
elements within it will automatically inherit a black background:

body { background: black color: white; };

This style will "cascade" down the parent hierarchy, making all of the
following HTML elements inherit white text on black background:

Source Code27 |
<body=

<header>Website header</header>

<article>Amazing article.</article>

<footer>Privacy Policy. ®© 2018 Copyright.
</footer=
</body=

If you want to single out the footer and highlight the word Privacy
Policy in red color and 2018 Copyright in green color, you can

expand on the cascading principle further by applying these CSS
commands:

body { background: black; color: white; };
footer { color: red; };
footer span { color: green; };

MNote that there is a space between footer and span. In CSS, a
space is an actual CSS selector character. It means: "find within of
the previously specified tag" (which is "footer” in this example.)

CSS Selectors

#id { } I" Select a single element whose id attribute is "id" */

.class1 { } I* Select all elements whose class name is "class1" */

#parent .class1 {} /* Select all elements whose class name is
"class1" cascading under another parent element whose id is
"parent™ */

Forgiving Nature

Because it was designed for environments where downloading the
full copy of a website is not always guaranteed, CSS is one of the
most forgiving languages, similar to HTML. If you make mistakes, or
for some reason the page didn't finish loading completely, CSS code
will degrade gracefully to as much as it can interpret. Ironically, this
means you can still use the / inline comments but you probably
shouldn't.

Common

Some of the most common CSS property and value combinations:

color: #FFFFFF; /* Set font color to white */

background-color: #000000; /* Set background color to black */

border: 1px solid blue; /* Create 1px-thick blue border around
the element */

font-family: Arial, sans-serif, /* Set font to Arial */

font-size: 16px; [* Set font size to 16px */

padding: 32px; /* Add padding 32px thickness in size */

margin: 16px; [* Add 16 pixels of margin around the content
area*/

Shorthand Properties

Let's assign 3 different properties that contribute to the appearance
of the background image of an HTML element:

background-color: #000000;
background-image: url("image.jpg");
background-repeat: no-repeat;

The same can be rewritten by using a single shorthand property
background, separated by space:

background: background-color background-image background-
repeat;

SourceCogedd |
background: #000000 url("image.jpg") no-repeat;

Shorthands also exist on various CSS Grid and Flex properties.

Pseudo Selectors

In CSS a pseudo-selector is any selector that starts with a colon
character (:) and usually appended to the end of the element name.

Pseudo-selectors :first and :last are used for selecting the very first
or very last element from a list of children in a parent.

Another example is :nth-child for selecting a series of elements
belonging to a row or column in a list of elements or even an HTML
table.

Let's take at a few cases that demonstrate the use of pseudo-

selectors:

Figure 3: table tr td:nth-child(2)

|
Figure 4: table tr:nth-child(2) td:nth-child(2)

. =

r [] |
Figure 5: table tr:nth-child(2)

[
Figure 6: table tr:last td:last

The same nth-child rules apply to all other nested groups of
elements, like ul and li for example, and any other arbitrary
parent/child combination.

What if you need to select absolutely all elements on the page or
within some parent element? No problem!

Figure 7: The star (*) selector selects all elements within a parent.
In this case table * selector was used.

Note that the space character itself is part of the selector. It helps
you to drill down the hierarchy of elements via some parent element.

There are also :before and :after pseudo-selectors and later down
the road in this book we will take a look at the visual diagrams that
explain their relationship the HTML elements.

CSS Box Model

The box model is the fundamental structure behind every HTML
element. Traditionally, it consists of the content area, with padding,
border and margin areas surrounding it.

fe— P

TRANSFORM-ORIGIN: W0 S0%
o efguale

Figure 8: Just you regular HTML rectangle at first sight.

The most important thing about the box model is that by default its
box-sizing property is set to content-box. | think it's a bit
unfortunate because this means adding padding, border or margin
will change the physical dimensions of its blocking area:

e

PaCA S BOROER S08

Figure 9: Note that the value 200px of the height property of the
element does not change, but its physical dimensions do, based on
box-sizing: [content-box|padding-box|border-box]

There is no margin-box because margins by definition surround a
given content area.

M2 = 102 BORDER AFFECTS DRIGIMAL ELEMENT S1ZE

CSS Is Awesome WHEN DEFAULT CONTENT-BOX 15 SET

border Ipx solid gray
width WOOpm
100
Femirad Have
m-mizing crmtent Box

Figure 10: The width and height have increased by 2 pixels on
each side because 1px border was added to each of the 4 sides,
when using default content-box model.

1M LA PADDING AFFECTS ORIGINAL ELEMENT SIZE
WHEN DEFALULT CONTENT-BOX IS SET

CSS Is Awesome tgi: Sl

wideh)00

B ight 100p;
background iesr
box-sizing Sontahit - bos

Figure 11: When both border and padding are present, the actual
physical width becomes 334px x 134px. This is 34 pixels greater

than the coriginal dimensions (1px x 2 + 16px x 2 = 34px).
. PADDING DOES NOT AFFECT ELEMENT SI1ZE WHEN

USED TOGETHER WITH PADDING-BOX

CSS Is Awesome bordar g A)

width VO
Eabght 100px,)
backgroundy Beee;

Errn- mi s ey 0 iR <l
LEpa

Fadding

Put padding in a "box" with padding-box
Figure 12: The padding-box value puts padding on the inside of
content box. Now, the original dimensions are retained but the
content is still padded.

B I8 USING PADDING AND BORDER TOGETHER

border ipa solid gray;
CSS Is Awesome wideh: ;E;;:: e

B kgrisunad L
box-sizimg contant -box;
padding ldpn

s i

Figure 13: Here we overwrite the original value of border: 1px
solid gray from previous example to border: 16px and together
with padding: 16px the original width and height of the element are
now padded by an extra 32px pixels on each side, adding a total of
64px to each dimension of the element.

30O & 1O

box- slaing: border-box

Stuffs both border and padding
css Is Awesu,me into original bom of 308 = 100
BORDER-BOX MAKES NO CHANGE TO

ORIGINALLY SET DIMENSIONS

Figure 14: Using border-box will invert both the border and
padding retaining original width and height of the element. This
option is useful when you need to ensure your element will retain

pixel-perfect dimensions, regardless of the size of its border or
amount of padding.

CSS Is Awesome

Figure 15: There is no margin-box in CSS, because margins by
definition always refer to the space surrounding the content.

. ——— — ==

content

e —

i
:atter :befone Paren| ——

— content

Figure 16: There is much more to a single HTML element than
meets the eye.

:before :after

|| N
#container2:after {
content: ":before”; content: ":after”;
background: white; ! \ background: yellow;-

border: 10px solid #3586FF; \ border: 10px solid orange; -
width: 130px; — left: 150px%;
3 3
Figure 17: Both :before and :after elements are part of one single
HTML element. You can even apply position:absolute to them and
arrange them around without having to create any new elemenits!

Position

POSITION: RELATIVE

#container2:before {

biocking plemends ar indne eement | Snother ane AN o inking slament @ legor tham

ke up it Entine width A ot S e] i by 1 [el e
of the parent slemant regendless of
i dwn midTh

afen wEing defsull width ususdy Ehat is ihe crse

ARy M L
himRay pig s 5 & S TP e e w— § i

Figure 18: position:relative is the default value for both blocking
and inline elements.

an mmr ry——t gsrrar o e =

e g ey r—t s P m o e e — —
e o B] e b g e b b v e e e

She i s gt e 1% AN o] L N i
e e e T

Figure 19: Using display:inline-block gives you the best of both
worlds.

POSITION: ABSOLUTE

el leftio el Aghtio

Figure 20: Using position:absolute together with top & left and
top & right origin.

botes:d R0 bofter) regiaeO

Figure 21: Using position:absolute together with bottom & left

and bottom
& right origin.
POSITION: FINED; oo »
[] | |
tope0 R 0 gD right: O
[] |]

Figure 22: Using position:fixed works the same as
position:absolute except that the scrollbar will not affect its
position.

bottorml beft: O Bottom:0 righti @
[]

Figure 23: The origin point can be any corner of the element,
depending on which property pair that was used (top & left, top &
right, bottom & left or bottom & right).

Working With Text

We will not spend much space on diagrams for text because you
have virtually seen that everywhere by just browsing websites or
using social media websites. The primary properties for changing
text in CSS are font-family, font-size. color, font-weight (normal
or bold), font-style (italic, for example) and text-decoration
(underline or none).

“Enter your email address.

Figure 24: font-family:"CMU Classical Serif"; is the font used in the
creation of this book. | suggest you check it out because it's one of
the very best fonts around.

Enter your email address.

Figure 25: font-family: "CMU Bright"; is a variation of the CMU
family fonts. Another nice-looking font!

"[Enter your email address.

Figure 26: font-family: Anal, sans-serif; is Google's favorite.

"Enter your email address.

Figure 27: font-family: Verdana, sans-serif.

Note the sans-serif font is used here as a fall back font. You can
specify even more fonts, separating them by comma. If the first font
on the list is not available or cannot be rendered by current browser,
CSS will fall back to the next available font on the list. Times New
Roman, shown in the last example here will be used if no other font
was found.

L)

En_ter your email address.

-

Figure 28: Times New Roman. The default browser font.

r

= TI-EEt_er your email address. | Arial 12px
! p— —
Enter your email address Arial 16px

" Enter your email address | Avial 20px

Figure 29: You can change the size of your font with font-size
property. 16px is the default "medium" size.

pt px em Dy size default sans-serif

Li e B 0 ey e pra——— _.E.
7ot o DSSem 55% e 'E
7 Spt 10p 0B250m B2 5% x.small P .
Bt 11p= 0 T T Ly o =.
St 12pn 0. 7 Sammy T5% Harnpie el E
10p 13px O By B, small e — h
10 Spl Tl 0 BT Sy BT 5% Tartapie Lot E
11pd 18px 0 Gy [125 L arrpe et -—
T12pt 1fipx Tarm 100 sy Sawmples baxd]
1 5pi 17px 1 0% T05% Spmiple oxt

13 Sl 16px 1 17 5mm 112 5% ST] Sample text

1dp 1Epx 1 2om 120% Sample text

14508 FOpx 1. 2%m 125% Sample text

15p8 Ipx 1 Jam 130% Sample text

Lo 23pm 1 dom 140% Sample text

1T Tipw 1 45am 145% Sample text

18p1 Zapm 1 Sem 150% nlorge Sample text

Sopi Hpu 1 Gem 160% Sample text

22p4 Topx 1Gem 180% Sample text

24pt 32px Dem won wiege Sample text

26p0 3%px 22em 220% Sample text

2Tpa Wi 22%m I Sam ple text

28t ATpm 23em 230% Sample text

2op 38px | 23%em 235% Sample text

30pt A0px 245em 245% Sample text

3t | 42px | 25Sem 255% Sample text

et aspx | 27%em I7ow Sample text

et atpx dem 300% Sample text

Figure 30: Font size can be specified using pt, px, em or
% units. By default 100
% is the same as 12pt, 16px or 1em. Knowing this you can
extrapolate values to arrive at either a bigger or smaller font relative
to the default size.

font-weight Raleway

100 NI

200 | Extra-Light
300 | Light

400 Regular

500 Medium
600 Semi-Bold
700 Bold

soo Extra-Bold
500 Black

Figure 31: font-weight is demonstrated here on custom Raleway
font available via Google Fonts.

Text Align

Aligning text within an HTML element is one of the most basic things
you can do in CSS.

}CSS [s Awesome. left [default]

Figure 32: text-align: left; is the default.

CSS Is Awesome. center

Figure 33: text-align: center;

CSS Is Awesome. right

Figure 34: text-align: right;

Text Align Last

The text-align-last is the same as text-align except it refers only to
the very last line of text in a paragraph:

ICSS Is Awesome, that much we know, However, we need o
parite a bit more text here, i order 1o demonstrate how the left Idffaﬂlrfl
ICSS propenty text-align-last works, justifyving only the last

lhine of lext m a paragraph

Figure 35: text-align-last: left;

ICSS Is Awesome, that much we know. However, we need o
pavrate o bit more text here, m order o demonstrate how the t
ICSS propenty text-align-last works, justifving only the last cone
line of text m a paragraph

Figure 36: text-align-last:center,;

ICSS Is Awesome, that much we know, However, we need 1o

pavrate o bt more text here, m order 1o demonstrate how the

ICSS property text-align-last works, justifying only the last
lime of text m o paragraph

right

Figure 37: text-align-last:right;

<span style ="
text-combine-upright; all">2000< /span>

|]
=
—
-

1

Fmamaﬁ

<span style ="
text-combine-upright: all“>Is< /span>

I'Qmosamv & SSC)I

writing-mode; vertical-Ir;

Figure 38: When writing-mode is set to vertical, you can also use
text-combine-upright: all to produce the scenario shown on this
diagram.

Overflow

You should go and grab a cup

Parent: overflow: scroll;
Child: position: absolute;

Figure 39: When text is nested within a parent element you can
make it scrollable by applying overflow:scroll to the parent.

You should go and grab a cup

Parent: overflow: auto; height: 24px;

Figure 40: overflow auto; height:24px;

You should go and grab a cup
of coffee.

Parent: overflow: auto; height: 34px;
Figure 41: overflow:auto; height:34px;

You should go and grab a cup

Parent: overflow: hidden
Child: position: absolute;

Figure 42: overflow:hidden; and position:absolute;

.
CSS Is s)

Auvracon | =M

A'l'l T MY

overflow; hidden;

overflow: hidden; Moo - J

Figure 43: The classic case of overflow:hidden; You should go
and grab a cup of coffee.

CSS Is Awesome. overline
e R

CSS Is Awesome. underline

g:S:S]S AWES!!me‘ underline overline

CSS IS AWES(}me_ underline overline dotted red

Wm underline overline wavy blue

.]
C SS [S AweSOme. underline overline double green

Figure 44: Note separate values are separated by space. You'll see
a lot of this across the whole spectrum of CSS value combinations

usually used as "shorthands" for individual properties. You can add
underline to text using text-decoration property on both top and
bottom of the text. Though this property is uncommon in layout

design, it's nice to know it exists and is supported by all browsers.

Skip Ink

The text-decoration-skip-ink property can be used to superimpose
text over the underline. This is actually useful for improving visual
integrity of page titles or any underlined text that must use large
letters.

You shoul and grab a cup of coffee.

text-decoration: underline solid blue
text-decoration-skip-ink: none

You should go and grab a cup of coffee.

text-decoration: underline solid blue
text-decoration-skip-ink: auto

Text Rendering

The text-rendering property will probably not produce a noticeable
difference in the four of its manifestations (auto, optimizeSpeed,
optimizeLegibility and geometricPrecision). But it is believed that
in some browsers using optimizeSpeed value is known to improve
rendering speed of large blocks of text. The optimizelLegibility is
the only value that actually produced a physical difference on the
text in our experiments with Chrome browser, by shifting words
closer together in some character combinations.

CSS Is Awesome.

text-rendering: auto;

CSS Is Awesome.

text-rendering: optimizeSpeed;

CSS Is Awesome.

text-rendering: optimizelLegibility;

CSS Is Awesome.

text-rendering: geometricPrecision;

The names of the four possible values used here are self-
explanatory to their intended function.

Text Indent

The text-indent property will take care of aligning your text. It is
rarely used but in some cases, specifically, news sites for example,
or book editing software, they might prove to be useful.

You should go and grab a cup of
coffee.
Lt -inden 100g

Figure 45: text-indent:100px;

You should go and grab a cup of coffee.
nEat e - D0

Figure 46: text-indent:-100px;

Text Orientation

Text orientation is controlled by text-orientation property. Might be
useful for rendering text in different languages where the flow of text
can either go from right to left or from top down. Often used together
with writing-mode property.

You should go and grab a cup of coffee.

resi-prentation: mined

Figure 47: text-orientation:upright;

You should go and grab a cup of coffee.

REXT - EDgN. gt

Figure 48: text-orientation:upright;

s < - g
2 O o 3
= = o
2] v
pes) = = =
C o a0
= = e g =
- = =0
j=8 ja
S g oa <
o © S e
=" o O
= =
[cR= e o
o g
writing-moge: vertical-ri; writing-mode: vertical-Ir;

text-orientation: use-glyph-orientation; text-orientation: use-glyph-orientation;

On 5VG elements, use-glyph-orientation replaces deprecated 5VG properties
glyph-orientation-vertical and glyph-orientation-horizontal,

Figure 49: Together with writing-mode:vertical-rl (right to left) or
writing-mode:vertical-Ir (left to right) the text-orientation property
can be used to produce text align in pretty much any direction.
The same as before only this time with text-orientation set to

upright:

ccgegsyY YEgg e
ouroho ohoruo
fpa ou uo apf
f b au uab f
e o n | | n 0o e
e fadd ddafe
writing-mode: vertical-ri; writing-mode: vertical-Ir;
text-orientation: upright; text-orientation: upright;

Figure 50: text-orientation:upright; writing-mode:vertical-ri;

L)

r—'h.nd.u o zry b paren comtsiner sach @ - div

Enter your email address. iieseisn on

Figure 51: To center text vertically in any element set its line height
with line-height:60px; to the height of the element. Text size (the
height of actual letters) and its line-height are not always the same.

LIGATURES ON LIGATURES OFF Ligatures
Affirmative Affirmative MAEN MADME
FFFIFLEFE LAM

. raaperral pre P raprTa: e N NG (6 (8D (.

EMERTITWTY
ThIBLDULUPLE

) i se e ékyéteefhih fi

*rmri1at o) Ir:l reart =1 !j"ﬁ'!ll}"“bﬂll
Affirmative Affirmative 6F £ 1 e By
ailps Wirs Hase | wilyi Wins Bans figvegvipitky oe e

pyipfifdtowoy iy

Figure 52: Ligatures with font-feature-settings: "liga" 1, or
alternatively font-feature-settings: "liga" on

Enter your email address. Oblique.
Iralic . Boid Italic Bold . Regular
/ | | \ |
italic bold bold regular oblique
italic
Figure 53: Common text effects (italic, bold, and obligue) are
achieved by using the properties font-style and font-weight.

SionUp™ | [signup | e

lime-height: $0px;

Default style Align to center and
does not work 5o well line-hesght can be adjusted
for buttons for text position accuracy

Figure 54: The text-align and line-height properties are often used
to center text inside buttons.

Text Shadow

CS55 Is Awesome.

text-shadow: Opx Opx Opx

#0000FF

CSS Is Awesome.

text-shadow: Dpx Opx 1px

#0000FF

CSS Is Awesome.

text-shadow: Dpx Opx 2px

#0000FF

CSS Is Awesome.

text-shadow: Opx Opx 3px

#0D000FF

CSS Is Awesome.

text-shadow: Opx Opx 4px

#0000FF

CSS Is Awesome.

text-shadow: 2px 2px 4px

#0000FF

CSS. Is Awesome.

text-shadow: 3px 3px 4px

#0D000FF

CSS. s Awesome.

text-shadow: Spx Spx 4px

#0000FF

Figure 55: You can add a shadow to your text using text-shadow
property. See the next diagram to understand its parameters.

[shadow color } .

Figure 56: The text-shadow property takes the offset on both x and
y axis, blur radius and shadow color.

We won't be going much into SVG, which can also be controlled by

CSS properties. An entire book can be written on the subject alone.

But as a brief inset here, you can create rotated SVG text as follows:

1CSS [g 4
AW@S@M'% that mycp,
W

10 degrees

<svg width = "380"
height = "120*
style = "border:1px solid gray," >
<text x = "10"
_y="30"
stroke = "black"”
fll = "white®
tranaform = 'ro't.tl:e[if}l]'
style = "font-sipe: 30px; stroke-width: L text-anchor: left.®>
C55 s Awesome, that much we know. However, we need to write a bit more
text here, in order to demonstrate how SVG rotations work
< et >
o fSNE™

Figure 57: Using CSS to manipulate SVG text rotation.

text-anchor: middle

.bﬂnﬁm@
T€ text hepe
T to dq

Figure 58: Using text-anchor it's possible to set the center point of
the text, around which it will be rotated.

text-anchor; end

ork,

Figure 59: Setting text-anchor to end to offset center of rotation to
the very end of the text block. We'll see similar behavior on CSS
transform property that can be used to rotate entire HTML elements
and text within them.

Margin, Rounded Corners, Box Shadow

and Z-Index
These few subjects, in no particular order, were chosen to briefly
demonstrate commonly used CSS properties.

Border Radius

Figure 60: The border-radius is the property used to add rounded
corners to square or rectangular HTML elements.

4 1)
Sign Up Sign Up

Figure 61: Using the :hover pseudo-selector you can choose what
happens when the mouse hovers (enters the area of) over an
element.

Figure 62: The parent container must be explicitly set to either
position:relative or position:absolute in order to use a child
element within it that also uses position:absolute align.

display: block

margin: auto

Figure 63: You can use margin:auto to align an element
horizontally. Just make sure its display property is set to block; The
property margin-top can be used to offset an element by a space
on its upper side. You can also use margin-left, margin-right,
margin-bottom.

Figure 64: The z-index property takes a numeric value between 0 --
2147483647 to determine element's drawing order on most common
browsers. In Safari 3 the maximum z-index value is 16777271.

Figure 65: Changing z-order of one element to change visibility
order and make it stand out.

bac-sluvdow: 0 Tipx & O8N

Figure 66: Here box-shadow is used to add a shadow around a
wide element. It takes the same parameters text-shadow does, for
example: box-shadow: 5px 5px 10px
#000 (x and y offset, radius of the shadow, and shadow color.)

bwpx-shunclow: Spx Spoc 10poc 4 (040

Figure 67: The property box-radius controls the radius of the
corner's curve on both X and Y axis.

box-shadow: i) 0 10px & FFF

Figure 68: Using bright colors with box-shadow property it is
possible to create glowing effect around HTML elements.

height: 40p=

CSS Is Awesome

display: block

Figure 69: Just what you would expect from a simple blocking
element.

line-height: S50pex CSS IS]— font-size: 25px

Awesome

Figure 70: When the width of an element becomes smaller than the
width of its text content, text automatically moves to the next
available line, even if it exists outside of the element's boundary.

Let's take an even closer look at the previous scenarios.

width: 180px — border: 10px solid silver
height: 40px- \ |
|

line-height: S0px — { k SS Is é!ﬂmsame Lo {l— font-size; 35px
{Physical height

will actually be '.':'nJ

display: block

Figure 71: The physical height of the text will actually be 27px, 2
pixels more than 25px -- the original value set. The value provided
by line-height can stretch outside of content area.

width: BOpx

height: 40px- \

|
!
lime-height: 50px —|- - -- -1--- []— font-size: 25px
| ' (Physical hesght will actually be 27pu)
1
1 e B, ginvQle wiord CANNOT Wrap.

Figure 72: Here we can clearly see that the word "Awesome"
jumped over to the next line. In addition to this, note that a single
word cannot wrap around the container element even if its width is
smaller. In other words, overflow property is visible by default.
You can effectively cut off the content outside of the content
container by setting overflow:hidden
. This will work even on elements with rounded corners:

Figure 73: overflow:hidden works on rounded corners.

Figure 74: Hiding other round elements within a circle can create
some interesting, irregular shapes.

border: 4px sofid gray;
border-radius: 1000px;
position: absolute;

top: -32px;

left: S0px;

width: 150px;

height: 50px;

overflow:hidden .
. ~position: absolute;

-~ top: 35px;

left: 250po;

width: 350px;

haight: S0px;

border: 4px solid gray;

border-radius: 1000px;

position: absolute;

top: S8px;

left: S0px;

width: 150px;

height: S0px;

border: 4px solid gray;
border-radius: 1000px;

Figure 75: By using multiple elements with overflow:hidden it is
possible to create irregular shapes.

Figure 76: The same as previous example, except with parent
container background set to gray, and the background of
elements within it set to white. You can get really creative with this
and make some interesting objects. We'll take a look at an entire car
example toward the end of the book.

Nike Logo

By combining techniques from previous section with
transform:rotate (it will be discussed in greater detail later in the
book) and our current knowledge of :before and :after pseudo
selectors, it is possible to create the NIKE logo from a single HTML
element:

NIKE

Figure 77: Nike logo created 1 HTML element and 3 CSS
commands.

Let's define our main container:
SourceCodedt . |
#nike {

position: absolute;

top: 300px; left: 300px;

width: 470px; height: 200px;

border: 1px solid gray;

overflow: hidden;

font-family: Arial, sans-serif;

font-size: 40px;

line-height: 300px;

text-indent: 350px;

Z-index: 3;

Note overflow:hidden here is used to ensure everything outside of

the container is clipped away.

Using

#nike:before and

#nike:after pseudo elements we'll create the base of the logo which
is a long black bar. Rounded corners used here to create the famous
Nike curve:

#nike:before {

content: "™

position: absolute;

top: -250px;

left:190px;

width: 150px;

height: 550px;

background: black;

border-top-left-radius: 60px 110px;

border-top-right-radius: 130px 220px;

transform: rotate(-113deg);

Z-index: 1;
}
Similarly, we'll create another curved box. Its white background will
serve as a mask to block out the rest of the logo. Here, the rotation
angle is everything. It's what forms the recognizable curve of the
logo. We've also used z-index of 1, 2 and 3 respectively to ensure
proper layering of the elements.

#nike:after {
content: ™
position: absolute;
top: -235px;
left: 220px;
width: 120px;
height: 500px;

background: black;
border-top-left-radius: 60px 110px;
border-top-right-radius: 130px 220px;
background: white;
transform: rotate(-104deg);
z-index; 2;
}
Here is another view of the logo. This time with transparent
background, so we can actually its geometric composition:

#nike:before #nike:after

NIKE
#nikeé

Figure 78: Composition of the Nike logo, consisting of 3 elements (1
HTML element and its 2 pseudo-element counterparts.)
The actual HTML is just one div element with id nike.

<div id = "nike">NIKE</div>

Display

CSS properties are used to assign behavior to HTML elements that
determine their placement on the screen. Diagrams in this section
demonstrate the effect on each element in a set of common cases.
The CSS property display can take any one of the several values:
inline, block, inline-block or float to define placement of individual

elements.

- Mb]c_de fb’ﬂ long string of |

e [: 1 | |text will carry over to the next

| | |line, but still remain within

| |confines of a single inline tag.

Figure 79: display:inline. This is the default value used for
<span=>, , <i> and a few other HTML tags created for dealing
with displaying text inside parent containers with unknown width.

Here, each element is placed directly on the right hand side after the
length of its content (or its width) in the previous element has been
exceeded, making it the natural option for displaying text.

Note: /ong inline elements are automatically carried over to the next
row.

Later, when we arrive at the Flex and CSS grid chapters, you will
see how applying the values flex or grid to the display property can
modify the behavior of its items -- elements residing inside a
container element, often referred to as their parent element.

[a
b

i A long line of text. But not long enough
o

e

f

g

Figure BO: display:block -- in contrast to inline elements -- will
automatically block an entire row of space, regardless of the width of
its content. The HTML tags <div=> is a blocking element by default.

div { width: #2 } where 2 is a numeric value in pixels or percent of container's width
a

Figure 81: display:block, with explicitly defined element widths
introduces the idea of discerning between element's container width
and its content width.

d elf

hello |b

Figure 82: display:inline-block combines inline and blocking
behavior to enable custom size for inline elements

Orange fox goes hunting
Gray wolf howls at the moon

Figure 83: Centered text (text-align:center) inside two blocking
elements with width set to 50
% of the container. Note, that while blocking the entire row of the
parent element, the content area only stretches up to 50
% of its width. A blocking element is not defined by the width of its
content.

Orange Fm: Toes hunn‘n Gra wnffhowfs at the moon

m Gray wol awfsarthemmn

i Gr‘ahaattemmn

Figure 84: Two hiocklng elements with explicit width of about 50
% and text-align:center can somewhat imitate inline elements by
also applying float:left and/or float:right. However, unlike inline
elements, a single blocking element can never cross over to the next
OW.

Text inside two span elements is always infine by default and cannot be centered

Figure 85: Inline elements are always limited to the width of their
content and therefore text within them cannot be centered.

Element Visibility

Element's visibility can hide the element's box without completely
removing it from the drawing hierarchy.

b { visibility: visible } b { visibility: hidden

a bl a

Figure 86: Setting visibility property to hidden on "b" element. The
default is visible (Same as unset, or auto, or none).

b { display: block } _ b { display: none)

aJLC a | ¢

Figure 87: display:none completely removes the element.

Floating Elements

float: left float: left float: right

Figure 88: Blocking elements with float:left and float:right appear
on the same row, as long as the sum of their widths is less than the
width of the parent element.

float: left

float: right

Figure 89: If the total sum of two floating element's is greater than
parent's width, one of them will be blocked by the other and skip
over to the next row.

float: left float: left |

. +— clear: both
float: left float: right

- ¢clear: both

| float: right float: right| float: right

Figure 90: You can use clear:both to clear floating elements and
start a new floating row.

Color Gradients

Gradients can be used for a variety of reasons. But the most
common thing they're usually used for is to provide a smooth
shading effect across the area of some User Interface element.
Here are a couple more reasons for using them:

Smooth Background Color Shading provides an elegant solution
for making your HTML elements more appealing to the eye.
Saving Bandwidth is another benefit of using gradients, because
they are automatically generated in browser by an efficient color
shading algorithm. This means that they can be used instead of
images, which would otherwise take a lot longer to download from
the web server.

Simple Definitions can be used in background property to create
some quite interesting and sometimes surprising effects. You will be
supplying the minimum required parameters to either linear-
gradient or radial-gradient properties to create any of the effects
demonstrated in the next section.

Overview

In this chapter we will learn how to create these gradients in HTML:

png geedent-long ?u-n: cieft T!-lrr gt ?irrilb- ?l-=-|'1-'| R R = T Jsr;
g g md‘:r\- et prg Bl geng

1.1-« .—u-:, pu—-lrso ;n---u:q ;l-nei.:-uf p)—r—'ld-'\l!! gue :«v:*:«; JI-:-IFSHT-H .u.s-wa-m; ;-: S e
M

na
T

gubdeani Fompam grusevn--oepe
N'.-‘l.- L ||. e .i'r-_l BEN A .."\u- 1 (= R I i
L)

Figure 91: If this is a black and white print, you WIH not see the
difference between gradients that actually use color. However, to
master gradients you really only need a good grasp on their
direction and type of which there are four -- linear-gradient, radial-
gradient, repeating-linear-gradient and repeating-radial-
gradient. This diagram gives you a good idea of the variety of
gradients it is possible to create for your HTML elements with CSS.
| cheated a little here... the images above are files from my gradients

folder that | created while working on this book. But how do we
actually create them using CSS commands? The rest of this chapter
will provide a solution!

Specimen Element for Displaying Gradients

We will perform our experiments with the background gradients
using this simple DIV element. Let's set some basic properties to it
first, including width=500px and height=500px.

For now, we just need a simple square element. Paste this code
anywhere in between <head> tags in your HTML document.

<style type = "text/css"=
div {

position: relative;
display: block;

width: 500px;
height: 500px;

et

<style>

This CSS code will turn every <div> element on the screen to a
square with dimensions of 500 by 500 pixels. The position and
display properties will be explained further in the book.
Alternatively, we probably want to assign gradients only to one
HTML element. In which case you can either specify the CSS to an
individual div element using a unique ID such as
#my-gradient-box or any other that makes sense o you.

<style type = "text/css">
diviimy-gradient-box { position: relative; display: block; width: 500px;
height: 500px; }

<style>

And then add it somewhere within your <body> tag as:

<!-- Experimenting with Color Gradient Backgrounds in HTML //-->
<div id = "my-gradient-box"=</div=

Or type the same CSS commands directly into style attribute of an
HTML element you wish to apply a color gradient to:

<div style = "position: relative; display: block; width: 500px; height:
500px;"=</div=

500px

<div>

Figure 92: A div element with dimension of 500 x 500 pixels. The
row and column on the right hand side demonstrate how gradients
automatically adapt to the element's size. The gradient property was
not changed here. Only the element's dimensions, yet the gradient
looks quite different. Keep this in mind when making your own
gradients!

CSS gradients will automatically adapt to the element’s width and
height. Which might produce a slightly different effect.

starting color
AR

S

N/

N

_/
ending color

Figure 93: The basic idea behind gradients is to interpolate between
at least two colors. By default, without providing any extra values,
vertical direction is assumed. The starting color will begin at the top
of the element, gradually blending in with 100
% of the second color at the bottom. It's possible to create gradients
by combining more than two colors. We'll take a look at that in a
moment!

All CSS gradient values are supplied to CSS background property!
Having said that, here's an example of creating a simple linear

gradient:

background: linear-gradient(black, white);
These values will be demonstrated in action below, shown just
underneath the gradient effect they produce.

Gradient Types

Let's walk through different gradient styles one by one and visualize
the type of gradient effects you would expect to be rendered within
the HTML element, when these styles are applied to it.

linear-gradient(black, white) linear-gradient|yellow, red)

Figure 94: A simple linear gradient. Left: black to white. Right:
yellow to red.

linear-gradient(to left, black, white) linear-gradient(to right, black, white)

Figure 95: Horizontal gradients can be created by specifying a
leading value of either "to left" or "to right", depending on which
direction you wish your gradient to flow across the element.

linear-gradient linear-gradient
(to top left, black, white) (to top right, black, white)

linear-gradient linear-gradient
(to bottom left, black, white) (to bottom rght, black, white)
Figure 96: You can start gradients at corners too to create diagonal
color transitions. Values "to top left”, "to top right", "to bottom left"
and "to bottom right" can be used to achieve that effect.

Gideg

Frdeg S0dey Adey 4 0deg Sikdep Tdeg iy Podey
Figure 97: When 45 degree corners are not enough, you can supply
a custom degree between 0 - 360 directly to the linear-gradient
property as in linear-gradient(30deg, black, white); Notice how in
this example the gradient gradually changes direction from flowing
toward the bottom, toward the left hand side when angle is changed
in progression from 10 to 90 degrees.

radial-gradient radial-gradient
(black, white) (whate, black)
Figure 98: Radial gradients can be created by using radial-

gradient property. Swapping colors around will produce an inverse
effect.

radial-gradient radial-gradient
(at top left, black, white) (at top left, black, white)

radial-gradient radial-gradient
(at bottom left, black, white) (at bottom right, black, white)

Figure 99: In the same way as linear gradients, radial gradients can
also take origin at any of the four corners of an HTML element.

. d
repeating-linear-gradient repeating-radial-gradient
(white 100pz, (whate 100pz,
black 200pz, black 200pz,
whate 300pz); white 300pz);

Figure 100: Repetitive patterns for linear and radial gradients can
be created using repeating-linear-gradient and repeating-radial-
gradient respectively. You can provide as many repetitive color
values in a row as needed. Just don't forget to separate them by a
comma!

linear-gradient linear-gradient
hsl(0,100%,50%), hsl(0,100%,50%),
hsl(50,100%,50%), hsl(50,100%,50%),
hsl(100,100%,50%), hsl(800,100%,50%)
hsl(150,100%,50%),
hsl(200,100%,50%),
hsl(250,100%,50%),

hsl(300,100%,50%)

Figure 101: Finally -- the most advanced type of a gradient can be
created using a series of HSL values. HSL values don't have named
or RGB equivalents, they are counted on a scale from 0 -- 300. See

the explanation below.

0 50 100 150 200 250 300
| I

Figure 102: You can cherry-pick any color by using values between
0 -- 300.

We've already provided examples of property values associated with

each gradient. But here they are again in one place. Play around

with the values and see what type of effects they produce on your

custom Ul elements:

background: linear-gradient(yellow, red);
background: linear-gradient(black, white);

background: linear-gradient(to right, black, white);
background: linear-gradient(to left, black, white);
background: linear-gradient(to bottom right, black, white);
background: linear-gradient(90deg, black, white);
background: linear-gradient(

hsl(0,100%,50%),

hsl(50,100%,50%),

hsl{(100,100%,50%),

hsl(150,100%,50%),

hsl(200,100%,50%),

hsl(250,100%,50%),

hsl(300,100%,50%));

background: radial-gradient(black, white);

background: radial-gradient(at bottom right, black, white);
background:

repeating-linear-gradient

(white 100px, black 200px, white 300px);

background:

repeating-radial-gradient

{white 100px, black 200px, white 300px);

Background Images

So you think you know HTML backgrounds? Well maybe you do and
maybe you don't. This section was created as a brief backgrounds
tutorial that hopefully introduces the reader to the big picture. We'll
explore several CSS properties that help us change background
image settings on any HTML element.

//;.u’r"i. R

Figure 103: background: url("image.jpg") or background-image:
url(image.jpg")

The specimen image used in this section is this adorable kitten on a

stripey background.

If the element’s dimensions are bigger than those of the source

image, the image will be repeated within the body of that element -

repetitively filling the remainder of the element's sides with the

contents of the image. It's almost like stretching infinite wall paper

over an element.

i [2.5\
Figure 104: If the image is smaller than the element’s dimensions, it
will continue to repeat to fill up the remaining space.

To set the background image to any element you can use the
following CSS commands.

background: url(€kitten.jpg');
Or alternatively...

background-image: url(€kitten.jpg’);

You can also use internal CSS by placing this CSS code between
<style></style> tags.

Let's take a look at the same kitten background... except this time
around with no-repeat value set with the additional background-

repeat property:

Figure 105: background-repeat: no-repeat;

Figure 106: A closer look at the results created with background-
size. From left to right examples are listed as follows:
(unsetinonelinitiallauto) which all produce default behavior. The
value of 100
% will stretch the images in horizontal direction, but not vertically.
The value of 100

% 100
% will stretch the image across all available space. The value cover
will stretch the image across entire vertical space of the element, it
will cut off everything in the horizontal direction, similar to overflow.
The value contain will make sure that the image is stretched
horizontally across the width of the element, and while remaining
original proportion, stretch it vertically for however long it needs to,
repeating the image until it overflows at the bottom of the element.

Figure 107: By combining background-repeat: no-repeat; with
background-size: 100
% it is possible to stretch the image only horizontally, across the
entire width of the element.
What if you want to repeat background vertically but keep it
stretched across the width? No problem, simply remove no-repeat
from previous example.

This is what you will end up with:

Figure 108: Repeat vertically.
Above: This HTML / CSS background technique is used for sites
whose content stretches vertically over a long area of space. | think
one of the iterations of the Blizzard site used it in the past.
Sometimes you want to cut it off, and make it static. Other times you

want it to go on forever vertically. This will depend on your vision of
the layout.

Sometimes it is needed to stretch the image across to fit the
bounding box of an element. This often comes at a price of some
distortion, however. CSS will automatically stretch the image
according to some automatically-calculated percentage value:

Figure 109: Needless to say, this effect will only be observed when
the HTML element and the size of the image do not match.

Above: Set background-size:100

% 100

% to stretch the image.

Note here, 100
% 100

o is repeated twice. The first value tells CSS to stretch the image
vertically and the second 100
% does the same horizontally. You can use values between 0 € 100
% here although | do not see many cases where this would be
necessary.

Specifying Multiple Values

In HTML, whenever you need to specify multiple values they are
often separated by a space. Vertical coordinates (Y-axis or height)
always come first. Sometimes values are separated by comma.
Example? When we need to specify multiple backgrounds they are
usually separated by comma and not the space character. (As we
will see from the last section in this tutorial.)

background-position

This is background-position: center center at work here.
You can force the image to be always in the center but lose

repetitiveness of the pattern by specifying no-repeat value to
background-repeat property:

Center the image:

background-position: center center;
Turn repeat off;

background-repeat: no-repeat;
You can repeat the image across the x-axis only (horizontally) using
repeat-x;

Figure 110: This is repeat-x in action.
You can easily center and repeat the image only horizontally by
supplying repeat-x as the value for the background-repeat
property.
To the same effect but on the y-axis repeat-y property can be used:

Figure 111: Vertical wallpaper with repeat-y.
Like any other CSS property you have to juggle around the values to
achieve the results you want. | think we covered pretty much
everything there is about backgrounds. Except one last thing...

Multiple Backgrounds

It is possible to add more than one background to the same HTML
element. The process is rather simple.
Consider these images stored in two separate files:

imagel.png image2.png

The chessboard pattern in the image on the right is only used to
indicate transparency here. The white and grayish squares are not
an actual part of the image itself. This is the €see-through" area
which you would usually see in digital manipulation software.

When the image on the right is placed on top of other HTML
elements or images, the checkered area will not block that content
underneath. And this is the whole idea behind multiple backgrounds
in HTML.

Image Transparency

To fully take advantage of multiple backgrounds one of the
background images should have a transparent area. But how do we
create one?

In this example, the second image image2.png contains 5 black
dots on a transparent background indicated by a checkered pattern.

Figure 112: Finding the Magic Eraser Tool in Photoshop.
Like many other CSS properties that accept multiple values - all you
have to do - to set up multiple backgrounds is to provide a set of
values to the background property separated by comma.

Multiple Backgrounds
To assign multiple (/ayered) background images to the same HTML
element, the following CSS can be used:

Source Code b5 . . . |

body { background: url("image2.png"), url{"image1.png"); }

The order in which you supply images to the background's url
property is important. Note that the top-most image is always listed
first. This is why we start with image2.png.

This code produces the following resuit:

~

.\-\\

Figure 113: Superimposing a transparent image over another one
using multiple backgrounds in CS5.
In this example we demonstrated multiple backgrounds in theory on
a subjective <div> (or similar) element with square dimensions.
Let's take a look at another example.

pattern.png

puppy.png
Note here that the puppy.png image will be the first item on the
comma-separated list. This is the image we want to superimpose on
top of all of the other images on the list.
Combining the two:

body { background: url(€puppy.png'), url(€pattern.png’)
We get the following result:

>

Sl

A

Figure 114: Background 15
Other background properties that also take comma-separated lists
exist. Pretty much every other background related property other
than background-color.
In the same way, you can supply other parameters to each individual
background, using the other background properties demonstrated
below:

Source CodeS7 |
background

background-attachment

background-clip

background-image

background-origin

background-position

background-repeat

background-size
The following property cannot be used with a list for obvious
reasons:

background-color
What would it mean to provide multiple color values to a
background? Whenever color background property is set, it usually
fills the entire area with a solid color. But multiple backgrounds
require that at least one of the backgrounds contains transparency
of some sorts. Therefore, it cannot be used in the case of multiple
backgrounds for any meaningful purpose.
But that's not all you can say about background images. Let's finish
our discussion by taking a look at these other few cases.

background-attachment

You can determine behavior of the background image relative to
scroll bar.

Figure 115: background-attachment:scroll
Before (left) and after (right) images are shown here.

S |

Figure 116: background-attachment:fixed
Fixed backgrounds don't respond to the scroll bar.

Figure 117: background-attachment:scroll

background-origin

Property background-origin determines the extent of the area that
will be used by the background image, based on the CSS Box
Model.

— N eeddy
CorRnT ! "ny
) a B i

™ borer

content-box padding-box border-box

Figure 118: content-box | padding-box | border-box

AL Bl padding: s

Figure 119: content-box | padding-box | border-box

|
|

q.___
4
. .
I
.'-' I' -
:_.‘_ 4
e &
'.} .

=

E
5

E

Figure 120: background-position-x and background-position-y are
supplied the following values to create any of the background
positioning patterns: left top | top | right top | left | center center |
right | left bottom | bottom | right bottom.

And finally... in addition to images, the background property can
also specify either a solid color, a linear gradient or a radial gradient.

: . . -_ |

Figure 121: Examples of other possible values supplied to the
background property. Note that an entire chapter is dedicated to
describing linear and radial gradients in this book.

object-fit

Some of the backgrounds functionality has been superseded by a
slightly different image-fitting solution based on object-fit property.
By providing various values you can achieve any of the following
results:

~

|li
Lk

Flgure 122 Here object- f:t prcperty presents us with pretty much
every single possible case of how we wish to fit our object into the
parent container. Note that although similar to background property,
object-fit works with non-background images (created using the
 tag), videos and other "objects", rather than background
images.

The available values demonstrated in the above image examples
reading from left to right are: fill, cover, contain and none.

The first row has overflow:visible. The second row has
overflow:hidden. And the third row is the same as the second, but
in this example the dimensions of the actual HTML element were
flipped to demonstrate that it does produce a slightly different results
when either vertical or horizontal dimension is prevalent over the
other.

Borders

There is much more to CSS borders than meets the eye. In
particular, you want to learn how border radius (only when values for
both X and Y axis are provided) affects other corners of the same
element. But before moving forward, let's take a look at borders.

<body style = "margin: 30pz;">
<div td = "container">
<div style = "undth: 100%; height: 100%;
background: white; ">CS8S Is Awesome. </div>
</div>
< /body >

— B C85 s Awesome

var © = document. getElementByld("container”);
z.style.fontSize = "25pz";
— z.style.lineHeight = "50pz";
z.style.undth = "500pz";
z.style. height = "200pz";
! z.style.border = "320pz solid silver"”;
- z.style.background = "url(diag.png)";
z.style. padding = "30pz";

Figure 123: You can easily access all of the same CSS properties
via JavaScript. Just grab an object with
document.getElementByld("container") -- for example -- to gain

access to all CSS properties. They are attached to element.style
property on the object.
Borders can be set on all sides at the same time with the border

property.
SourceCodeS9
border: 5px solid gray;
You can also set the curvature on each of the four corners of the
element with border-radius, by specifying the radius of the circle:

W _ border-radius: 40

i
Y

beorder-top-left-radius: #0pe —

border-top-right-radivs: 40px ——

L s Ao

|

border-bottom-beft-radies 40px

Figure 124: border-radius

border-top-left-radius border-top-right-radius

border-width: 20px 40px|

A40pn

40px 40px

border-bottom-left-radius border-bottom-right-radius

Figure 125: border-top-left-radius | border-top-right-radius |
border-bottom-left-radius | border-bottom-right-radius

Using a maximum value {more or equal x2 element’s width or height)
Figure 126: Using a value equal to or greater than the size of an

element’s side -- to which border radius is applied -- will be clamped
to the greatest radius that fits in that area.

40px

40px

Figure 127: border-top-left-radius:300px | border-top-left-
radius:40px | border-bottom-left-radius:40px | border-bottom-
right-radius:40px

Elliptical Border Radius

Even after a long time working with CSS | still failed to notice that
border-radius property can be used to create elliptical borders. But
indeed, this is true. The results of elliptical curves are not always as
easily predictable as is the case with axis-uniform radius values.

Elliptical border is created by using two parameters border-top-beft-radive: 200 100

Figure 128: border-top-left-radius:200px 100px

Elliptical radius is set by specifying two values for each axis on the
same corner, separated by space.

Cirsginglly st to Milgs 100p=

£

Tha sctual cutcome s T o AT

roughly 172 of ceiginil valus

Hecaune

When wing elliptical rousded comers
Satting Lawge walues t some comers can oursride the tures of il ctber borders sharing the wme side

Figure 129: When using elliptical radius with extremely large values
the curve of one corner can affect the curve of adjacent corners,
especially ones with smaller radius values. This is where things get
a bit unpredictable. But the good thing is that this level of looseness
opens room for more creative experimentation. You just have to play
around with different values to achieve a certain effect or a curve
you're looking for.

Figure 130: The principle behind applying large values to the
elliptical corners.

Figure 131: In this example, we are changing only the value of the
upper right corner's curve. Notice however, that all rounded corners
of the element are codependent to one another -- even the ones
whose values we are not changing explicitly.

2D Transforms

2D transforms can translate, scale or rotate an HTML element.

Original specimen (parent and child)

55 Is Awesome

Figure 132: We'll use this simple HTML element specimen to
demonstrate 2D CSS transforms.

translate

translate(30pz, 10pz)

r:EE'E Awesome

Figure 133: Instead of using top and left properties, we can use
transform:translate(30px,10px) to move the element on its X and
Y axis.

rotate

rotate(5deg) will rotate the element around its center

L&]

Figure 134: Rotating an element around its center using
rotate(angle), where angle is an angle between 0 and 360 degrees,
with "deg" appended.

translate(80pz, 10pz) rotate(5deg)

L e]

Figure 135: It's possible to translate and rotate an element.

Relative position of all consequent elements 1s preserved

o _—

Figure 136: Three elements with display:block;position:relative,;
set to the same angle.

Translate by a percentage of the element’s dimensions

translate(50%, 10pz) rotate(5deg)
translate(30pz, 10pz) rotate(5deg)

Figure 137: Translate transform can take a percentage of the
element's size.

Entire structure is refained just like any blocking element

[~

S S e—

Figure 138: Relative elements retain their position within the
document even after rotation.

Different rotation angles do not offset surrounding elements

translate(30pz, 10pz) rotate(0deg)
translate(30pz, 10pz) rotate(5deg)

Figure 139: Rotating an element between others does not affect
their position. The edges will overlap.

[F]

The order of translate and rotate does not matter

translate(80pz, 10pz) rotate(5deg) is the same as:
rotate(5deg) translate(S0pz, 10pz)

Figure 140: The order is irrelevant,

form-origin: 509 505 <default>

+ SRR [i T R o T L T T v
Oelmg 154ag J Bddng , b v : e '.._ i B L1
o Elkiog T hlog
Figure 141: Rotate transform will rotate the element around its
midpoint by default.

transform-origin

o
oy

—k'-ﬁ.'i' —lﬁv _l‘.i!, -'t 5) TLF_

Figure 142: Moving element rotation origin using transform-

origin:0 0;
1 '] 2
fransform- origin: 100% ¢ |08
ruz + - =} #+ F—
Figure 143; transform-origin:100
% 0

-un_-.-_-"-.(:;;.,,-_-. oo Chy Oy By f.-[;‘ | i
+ -+ w X X 4™ + B

Figure 144: The rotation origin doesn't have to be in the middle or at
the corners of the element. It can be anywhere.

3D Transforms

3D transforms can transform your regular HTML elements into 3D
by adding perspective.

rotateX
Let's rotate the element on X-axis using transform:rotateX.

Prorapectren Crgim « B

mmm

. g e
ww-d-u-q-u LY B nm g W R Lasiaan P arge A Y U

et T gt P
Jm-llflh! Tl e gy BE% WY vt ﬂ]
X g 1

i gy Wi
-—J-n— nis -—h“ v W WP e i g 8% A

Figure 145: Each row in this example portrays what happens to an
HTML element when its perspective is changed from 100px, to
200px and then to 300px from top down, using perspective
property. The perspective-origin property is also used to
demonstrate the slant created when the origin is displaced.

rotateY and rotateZ

Rotating the element on Y and Z axis produces these results:

rotate Atk rotatn Y rotaiel rptate’y

rotate¥ [10deg) 10deg on all J axiz rotatn V|- 10deg)
rotsted]-10deg) - rotate ¥ Doag)

o prcts- e S Vs
- \-I-‘l-n it B ey
s T s 3o
i e r—

Figure 146: Rotating on the Y and Z axis.

scale

Scaling an element either reduces or increases its relative size on
any of the 3 axis.

rotataXid5deg); scalaX| 4

o SA A A A A A A A I

0.9 0.8 [%) e 0.5 0.4 0.3 0.2 (R a

v fA A M M S m - - - —

= V VVVVIVIVVVVY

Figure 147: Likewise, you can "scale" an element on any of the 3
axis. Scaling on Z axis does not change the element's appearance
when no perspective is set.

translate

You can translate an element in 3 dimensions. This diagram
explains what happens when an element is translated on either X, Y
or Z axis. Note that the camera is facing down the negative Z axis.
So, scaling an element on Z axis up will make it appear "closer” to
the view. In other words, its size will increase as it moves closer
toward the camera.

. l I . .

transialay . l . I l . l I
|Fﬁ|‘l$|l.1.ﬂ‘z . . I I . . I I

Figure 148: Translating an element across 3 axis -- X, Y and Z.

m m m m
m m m m
m m. m m,.

transform: matrixim1,m2 m3 m4, msmEm7 m8mI.mi0mii.mi2mi3mid.mi1smiG)

Figure 149: CSS provides a "matrix" consisting of a 4 x 4 grid. How
3D matrices work is outside the scope of this book. But basically,
they modify the perspective. They are often used in 3D video games
to set up the camera view to look at the main character or "lock in"
on a moving object.

Creating A 3D Cube

Let's take our knowledge of 3D transforms in CSS and construct a 3-
dimensional cube from 6 HTML elements.

Figure 150: A 3D cube made up from 6 HTML elements, each
translated by half of its width and rotated 90 degrees in all

directions.
=div class="view"> view {
=div class="cube"> width: 200px;
<div class="face front*>front</div> height: 200px;
=div class="face back">back</div> parspective: 300px;

<div class="(ace right">right</div>
=div class="face lafi"=laft</div>
=div class="lace lop">lop=/div>
=div class="face bottom*>boltom=</div>
<fdiv>
<fdiv>

Figure 151: This is our setup. It's simply 6 HTML elements, each
with a unique class and 3D transforms.
Let's build the cube!

cube {

width: 100%;

height: 100%;

position: relative;

Iranslorm-styla: prasande-3d;

transform: transiateX{50px) transiate(S0px);
}

fmom |

podilioan: abadhule;
width: 100px;
heniight: 100px;

EaCkgroand: ransparant;
i e bewrdmr: 2pn solid red;
/ iart-@lign: cambar;
J][HI{ 4 \ Trugy Iln-.r-:'-ﬂght: 1000

}

‘/..-::_-:C'{-H /,,___,:-‘:‘_H_H Arond | transiorm: rotateY| Odeq) translateZ[S0px); }

right [transform: rodate’Y | D0deg) irenslataZ{50px): }
back | tranaform: rotate’ (1 80deg) transiete 2{S0px); |

Jaft { tramaform: rotate’|-80deg) translslaZ{50px); |

beorder-radius: 10ps border-radius. 10ps top | transform: rotateX| $0deq) transiated(S0px); }
tackface-visibility: visible backince-visibility: wisitblo ‘baliom { translorm: fotMeX(-B0deg) translateZ{50px); }

Figure 152: By rotating each face around the hypothetical center of
the cube, we can construct this 3D object.
Note here backface-visibility property was set to hidden, to hide

elements that are facing away from the camera. This makes our
cube appear solid.

border-radius: 0 bordor-radius: 0
Backigca-veaibility: vigdbs backiace-wisibility: hidden

Flex

Flex is a set of rules for automatically stretching multiple columns
and rows of content across parent container.

display:flex
Unlike many other CSS properties, in Flex you have a main

container and items nested within it. Some CSS flex properties are
used only on the parent. Others only on the items.

Main Axis

flep gtard e LaiRes Fusiyfy

= In these flex examples we'll wie
item a small margn around fles wer

| x tlem Cross-Azis. ali
fo make diagrama more readoble o

gl

Figure 153: You can think of a flex element as a parent container
with display:flex. Elements placed inside this container are called
items. Each container has a flex-start and flex-end points as shown
on this diagram.

Main-axis and Cross-axis

While the list of items is provided in a linear way, Flex requires you
to be mindful of rows and columns. For this reason, it has two
coordinate axis. The horizontal axis is referred to as Main-Axis and
the vertical is the Cross-Axis.

To control the behavior of content's width and gaps between that
stretch horizontally across the Main-Axis you will use justify
properties. To control vertical behavior of items you will use align
properties.

tiem ttem iem
|

Figure 154: Flex items equally distributed on the Main-Axis. We'll
take a look at the properties and values to accomplish this in just a
moment.

Hem

| item

Figure 155: You can determine the number of columns.
If you have 3 columns and 6 items, a second row will be
automatically created by Flex to accommodate for the remaining
items.
If you have more than 6 items listed, even more rows will be
created.
How the rows and columns are distributed inside the parent element
is determined by CSS Flex properties flex-direction, flex-wrap and
a few others that will be demonstrated throughout the rest of this
chapter.

container —
Y
1 2 3 HE g
Fa
ttem itemn item

Figure 156: Here we have an arbitrary n-number of items positioned
within a container. By default, items stretch from left to right.
However, the origin point can be reversed.

Direction

It's possible to set direction of the item's flow by reversing it.

flex-direction: row-reverse

&
L5

Figure 157: flex-direction:row-reverse changes direction of the
iten list flow. The default is row, which means flowing from left to
right, as you would expect!

Wrap

’ 4 5 6

fer-wrap: wrap

Figure 158: flex-wrap:wrap determines how items are wrapped
when parent container runs out of space.

Flow

container
—

flez-flow: fex-direction<value> fler-wrap<value>

Figure 159: flex-flow is a short hand for flex-direction and flex-

wrap allowing you to specify both of them using just one property
name.

flez-flow: row wrap
Figure 160: flex-flow:row wrap determines flex-direction to be
row and flex-wrap to be wrap.

container —
R
T 0 a8 & | &8
flex-flow: row wrap-reverse
Figure 161: flex-flow:row wrap-reverse;

container _I 8 items

[R T B - —
=r=

| [————7—

fez-flow: row wrap
Justify-content; space-between
Figure 162: flex-flow:row wrap; justify-content: space-between;

mﬂtﬂmer—l
- e Eeesssleeseeees ey R [T

==

fez-flow: row-reverse wrap
Figure 163: flex-flow:row-reverse wrap;

flex-flow: row-reverse wrap-reverse
Figure 164: flex-flow:row-reverse wrap-reverse;
container — 3 tems
s e T

flez-flow: row wrap
justify-content: space-between

Figure 165: flex-flow:row wrap; justify-content: space-between;
flez-direction: column flex-direction: column-reverse

- |

Figure 166: The direction can be changed to make the Cross-Axis
primary. When we change flex direction to column, the flex-flow

property behaves in exactly the same way as in previous examples.
Except this time, they follow the vertical direction of a column.

--_ '

flez-wrap: wrap-reverse
Figure 167: flex-wrap:wrap-reverse

justify-content
flez-direction: row
——"
fles-start <defots> | G 18] MG |
flez-end & B e |
center i W e
space-between | @l b e
ace around BN & e crample 1
——— e T

o 1 1T
oo [N W

all spoces are equal regardiess element’s nize

Figure 168: flex-direction:row; justify-content: flex-start | flex-end
| center | space-between | space-around | stretch | space-evenly. In
this example we're using only 3 items per row. There is no limit on

the number of items you wish to use in flex. These diagrams only
demonstrate the behavior of items when one of the listed values is
applied to justify-content property.

flez-direction: column

Justyfyp-confend

|] E

A B | A S

A A 8

A

2 (B B

B B B B B g

;-J

e |15 & T

c a

c C c 8

& o,

. L L J-L J 1 E,
flez-gtart flez-end cenler spoce-befuern ? f §
< defoult > é‘f ::‘:‘ .."!‘

Figure 169: The same justify-content property is used to align
items when flex-direction is column.

Packing flex lines

flez-direction: row
Paclang flex ines wath aligm- comient
a & a &
a b
e d &
s 7k a b
a b
e d c d ¢ d c d 4
A
|
b
e f's
e d i
el
Ee R
flex-start [lex-end center spoce-between ;_?' e sireich
i
- &
£ £

<defoult >

Figure 170: Flex specification refers to this as "packing flex lines."

Basically, it works just like the examples we've seen on the previous

few pages. Except this time, note that the spacing is between whole
sets of items. This is useful when you want to crate gaps around a

batch of several items.

flez-direction: column

Paciang fles lmes wath ahyn.confend

{

Figure 171: Packing flex lines (continued.) But now with flex-
direction set to column.

align-items

atign-stems
flez-start — —
= .
_— _-----_

.| =

stretch —

Figure 172: align-items controls the align of items horizontally,
relative to the parent container.

flex-basis

.ﬁer-h:.u:u: auto; .
a 055 Is Awesome b ¢
flez-basis: 50px;
.n c88 Is Awesome b c

Figure 173: flex-basis works similar to another CSS property: min-
width outside of flex. It will expand item's size based on inner
content. If not, the default basis value will be used.

flex-grow
Flex Grow
B: BB B : B B:F:f: N BB 0
T 1
1 1 3 1 1 1 1 1
flex-grow: o

Figure 174: flex-grow, when applied to an item will scale it relative

to the sum of the size of all other items on the same row, which are

automatically adjusted according the the value that was specified. In

each example here the item's flex-grow value was setto 1, 7 and (3
and 5) in the last example.

flex-shrink

1

flex-shrink: T (shrink by 7 times more than the rest of items)

Figure 175: flex-shrink is the opposite of flex-grow. In this
example value of 7 was used to "shrink" the selected item in the
amount of time equal to 1/7th times the size of its surrounding items
-- which it will be also automatically adjusted.

atem { flez: none | | <flez-grows <flez-shrink> || <flez-basis>] }

Figure 176: When dealing with individual items, you can use the
property flex as a shortcut for flex-grow, flex-shrink and flex-basis
using only one property name.

order

.item { order: 0 } <default> for all items

o I = N I N

order:0 arder:(order:0 order:0 order:0

1 (2 I I e

ardec:f order:0 order:0 order:0 order:0
A
s (I :: .
order:1 order:0 order:§ order:(order:0
.
&
-1 : [I B T

order:-1 order:0 order:0 order:(order:0

;‘:

—

21| 8 a1 1

order: -2 order: -1 order:0 order:0 order:0

Figure 177: Using order property it's possible to re-arrange the
natural order of items.

justify-items

normal | aule <defoull> alse seme o slard and flez-siart or seif-slard or Igft

a] c a cs55 c
B [I d Awesame Hi
stwedch phic wadih, | r peeifie
a b
d e I
cemter {or safe cender ond unsafe cender cender (exomple £ expandy bosed on condent 's wnath
b c a CE5
d e T d Awesnme I

end same af flez-end ond self-end or right
a b € a L] €

d e I d Awsacng i

Figure 178: justify-items is similar to Flex's justify-content but for
CSS grid, which is our next subject.

CSS Grid

During my job interview at a Texas software company back in 2017
the team lead has introduced me to the idea that computer scientists
(and probably scientists in general) make progress by "filling in the
gaps."

That idea stuck with me.

| don't know but maybe like me, you found yourself trying to fill in the
gaps learning CSS grid. Just as it ought to happen, every time some
new tech emerges on the unsuspecting JavaScript crowd.

This tutorial was created by applying this ideclogy in preparation for
working on the Visual Dictionary - the book you are reading right
now - my postmortem to CSS. This is when | decided to take all of
the existing 413 CSS properties and visualize them by making
diagrams.

While primarily | consider myself a JavaScript programmer I'd like to
think that | also lean a bit toward the graphic design mindset as well.

Perhaps | took the idea of gaps out of context when | applied it to
CSS grid in this tutorial.

But bear with me.

As professional book designers may already know, the key to CS5
grid lies in grasping not the visible parts of layout design but ones
that are not.

Let me explain.

Book designers care about margins -- essentially an invisible
element of book design. It may not seem like much but remove
margins - the element that the reader is least aware of -- and the
whole reading experience turns awkward.

Readers notice lack of margins only when they are absent.
Therefore?--?as a designer (of anything) it is imperative to pay equal
attention to the invisible elements of design.

We can always just plug in the content into the layout. Could it be
then... that when we design with CS5 grid, all we're doing here to
create beautiful layouts is working with an advanced version of book
margins? Could be.

The gaps.

Of course CSS grid goes way beyond designing margins in books
but the principle of the so-called invisible design remains the same.
Things we cannot see are important. In CSS grid this concept is
thought of as gaps.

A CSS grid after all is just like taking book margins to the next level.
Sort of.

Creating Your First CSS Grid

Much like Flex, CSS grid properties are never applied to just one
element. The grid works as a single unit, consisting of a parent
element and items contained within it.

First... we will need a container and some items.

A CSS grid flow can go in either direction. But by default it's set to
oW,

This means that if all other defaults are untouched your items will
automatically form a single row where each item inherits its width
from the grid's container element:

—— Aulo Flow: Row (deln

1
-
£ 2
E 3 <div style = “display: grid">
= <div>1</div> |
4 <div=2</div=
Y <div>3</div>
<div>4</div>

</div> ‘

Auto Flow: Column

1 2 3 4 ‘

glld-au!qj flow: column -

Figure 179: Just like Flex, CSS Grid can align items in one of the
either direction:rows or columns specified by grid-auto-flow

property.

tems: =div=1</div> <div=2</div> <div=3</div>

grid-template-rows:
25px 25px 25px

grid-template-columns: 25px 25px 25px 25px 25px 25px

Figure 180: The CSS grid creates a virtual grid environment, where
the items don't have to fill up the entire area of the grid. But the
more items you add, the more placeholders will become available to
populate the grid. CSS grid just makes this automatic process a bit
more graceful.

The CSS grid uses column and row templates to choose how many

items will be used in your grid down and across. You can specify
their number by using CSS properties grid-template-rows and
grid-template-columns respectively as shown on the diagram
above. This is the basic construct of CSS grid.

One thing you will notice about CSS grid right away is the definition
of gaps. This is different from what we've seen in any other CSS
property before. Gaps are defined numerically starting from the
upper left corner of the element.

There are columns + 1 gaps between columns and similarly, rows
+ 1 gaps between rows. As you would expect.

CSS grid does not have a default padding, border, or margin and all
of its items are assumed to be content-box by default. Meaning,
content is padded on the inside of the item, not outside like in all
other common blocking elements.

That's one of the best things about CSS grid in general. Finally we
have a new layout tool that treats its box model as content-box by
default.

CSS grid's gap size can be set individually per row or column when
you use properties grid-row-gap and grid-column-gap. Or, for
convenience... together by just one property grid-gap as a
shorthand.

grid-template-columns: 100px | blpx
grid- template-rows: 23px
- 100 px - 160px

1 F 3

1 | | 2 25p

]

Figure 181: Here | created a miniature grid consisting of one row
and 2 columns. Note the wedges here specify horizontal and vertical
gaps between the items. In all future diagrams from now on, these
wedges will be used to illustrate gaps. Gaps are a bit different than
borders or margins, in that the outside of the grid area is not padded
by them.

To start getting to know CSS grid, let's take a look at this first simple

example (Figure 3 from above). Here we have grid-template-
columns and grid-template-rows CSS properties defining basic
CSS grid layout. These properties can take multiple values (which
you should separate by space) that in turn become columns and
rows. Here we used these properties to define a minimalist CSS grid
composed of two columns (100px 160px) and one row (25px.) In
addition, the gaps on the outside border of the grid container do not
add extra padding even when gap size is defined. Therefore they
should be thought of as defined right on the edge. The gaps in
between columns and rows - on the other hand - are the only ones
that are affected by gap size.

1
1 2 25px
2
3
100px 160px

Figure 182: Adding more items into a CSS grid whose row template
does not provide enough room to place them will auformatically
extend the CSS grid to open up more space. Here items 3 and 4
were added to previous example. But the grid-template-columns
and grid-template-rows properties provide a template only for 2
items maximum.

Implicit Rows and Columns

CSS grid then adds them into implicit placeholders that it creates
automatically, even if they were not specified as part of the grid
template.

Implicit (| also like to call them automatic) placeholders inherit their
width and height from the existing template.

They simply extend the grid area when necessary. Usually, when the
number of items is unknown. For example, when a callback returns
from talking to a database grabbing a number of images from a
product profile.

Y @) ©
- _ Bpx

25px

B>
100px 160px
Figure 183: In this example we have an implicitly added placeholder
for item 3. But because there is no item 4, the last placeholder is not
occupied, leaving the grid unevenly balanced.

1 2 3 4

<hrechds3<td= < ftr>
<tr><td>d</td> <td>5</td> <td>&</td> < /tr>
<fdiv>

Figure 184: CSS grid should never be compared or used in the
same way as a table. But it's interesting to note that a CSS grid
inherits some design from the HTML table. In fact, the similarities
are incredible upon a closer analysis. On the left hand side you are
seeing a grid layout. Here grid-column-start, grid-column-end,
grid-row-start and grid-row-end provide the same function of
table's colspan and rowspan. The difference is that CSS grid uses
the gap space in between to determine the span areas. Later you
will also see that there is a shortcut for this. Note that here items 7, 8
and 9 were added implicitly, because the span occupied by the item
1 on the grid has pushed 3 items out of the original grid template
layout. A table would never do this.

grid-auto-rows

The grid-auto-rows property tells CSS grid to use a specific height
for automatic (implicitly created) rows. Yes, they can be setto a
different value!

Instead of inheriting from grid-template-rows we can tell CSS grid
to use a specific height for all implicit rows that fall outside of your
default definitions.

1 2 La

1 2 25px

T Opx

100px 160px

Figure 185: Implicit row height is determined by grid-auto-rows.
Bear in mind - of course - you can still set all of the values explicitly
yourself, as shown in the following example:

grid-template-columns: 100px 160px
gric-template-rows: 25px 50px

- 100px - 160px
1] 3
1]
1 2 25
2 1
3 4 50px
3

Figure 186: Explicitly specifying dimensions of all rows and
columns.
In a way, CSS grid's grid-auto-flow:column invites Flex-like
functionality:

i

£ ¥ L] [] L] r [
1
Fipa i Yipu P 5 g

]
1 00px
grid- template: columns. 1Dy

grid template- rows 1 Spx
gred-sulo- Row: oolusreh
grid sutio- cobumns: 2qm

Figure 187: You can make your CSS grid behave similar to Flex by
overwriting its grid-auto-flow property's default value of row to
column. Note that here in this example we also used grid-auto-

columns: 25pxto determine the width of consecutive columns. This

works in the same way as grid-auto-rows in one of the previous
examples except this time the items are stretched horizontally.

Automatic Column Cell Width

CSS grid is excellent for creating traditional website layouts with two
smaller columns on each side. There is an easy way to do this.
Simply provide auto as a value to one of the widths in your grid-
template-column property:

AUTOMATIC COLUMN CELL WIDTH

4 5 6 P

Figure 188: This is what happens with grid-template-columns:
100px auto 100px
Your grid will span across the entire width of the container or the
browser.
As you can see already CSS grid offers a wide variety of properties
to help you get creative with your website or application layout! |
really like where this is going so far.

Gaps

Lock, it's those gaps again.

We already talked about the gaps. Mostly just the fact that they
cover the space between columns and rows. But we haven't talked
about actually changing them.

The set of diagrams that follows will provide visual clues as to how
gaps modify the appearance of your CSS grid.

grid-column-gap: 15px

grid-row-gap: 0
- grid-column-gap: 15px

D@ B ((2)) B)

25px |® ﬂm@

Figure 189: CSS grid has a property grid-column-gap, which is
used to specify vertical gaps of equal size between all columns in
your CSS grid.
| intentionally left the horizontal gaps clasped to their default value of

0, because they're not being discussed in this example.
| can already envision a Pinterest-like design with multiple columns
using the setup above.

grid-row-gap: 15px

1 S0ipa i 50px 1 50px '] 50px 8

25pat
Y
: :
) A
25pm
)
|" grid-cohamn-gap. O
2 = grid-row-gap: 15px
25px A
)
‘ g
25pot A
[

Figure 190: Likewise, using grid-row-gap property we can set
horizontal gaps for the entire grid.
This is the same thing, except with horizontal gaps.

Using grid-gap property we can set gaps in both dimensions at the
same time:

Figure 191: It is possible to set the gaps on entire CSS grid by
using shorthand property grid-gap. But this means that gaps in both
dimensions will be set to the same value. In this example it is 15px.
And finally... you can set gaps individually for each of the two
dimensions.

The next 3 diagrams were created to demonstrate the different
possibilities made of using the CSS grid that can be useful in various

cases.

42px 42px

— -

1 25px 2) 25px [a 25px | «

I

Y
b r—
X

Figure 192: Here gaps are set individually per row and column
which allows for varied column design. In this example wide column
gaps are used, You can probably use this strategy for crafting image

galleries for wide-screen layouts.

Figure 193: Here is the same thing as the previous example. Except
we're using wider row gaps.

One thing | was disappointed about was the lack of support for the

ability to create varied gap sizing within the same dimension. | think

this is the most daunting limitation of CSS grid. And | hope in the

future it gets fixed.

grid-column-gap: 15px 42px 15px;

1 42 i
- Bpe — — P — -— . —

1) 25px 2 25px 3 25px 4 25px | s |

;.

Figure 194: This layout cannot be created using CSS grid. Varied
gap sizing is currently (June 2nd, 2018) not a possibility with CSS
grid.

3

fr -- Fractional Unit -- for efficiently sizing

the remaining space.

One somewhat recent addition to CSS language is the fr unit.

The fr units can be used on things other than CSS grid. But in
combination with one they are magical for creating layouts with
unknown screen resolution... and still preserve proportion without
thinking in percent.

The fr unit is similar to percentage values in CSS (25

%, 50

%, 100

%... etc) except represented by a fractional value (0.25, 0.5, 1.0...)
But although it could be Tfris not always 100

%. The frunit automatically dissects remaining space. The easiest
way to demonstrate this is by following diagrams.

Here is a basic example of using fr units:

15px 15px
:-p--: :--p-:

1 2 L3 4

10fr 5fr 1fr

Figure 195: An example of using the fr CSS unit.
This is great news for intuitive designers.
1fr will be 10/1 of 10fr regardless of how much space 10fr takes up.
It's all relative.

-_mﬁpx - -_“_lﬁpr -
1 2) [3 4

1fr 1fr 1fr

Figure 196: Using 1fr to define 3 columns produces columns of
equal width.

1
o 1BX

[2 3

- 1fr 0.5fr

Figure 197: You can also use fractions.

Relative to 1fr, 0.5fr is exactly half of 1fr.
These values are calculated relative to the parent container.
Can you mix percentage values with 1fr? Of course you can!

- L . -t

1fr 1fr

50% 1

Figure 198: The example here demonstrates mixing
% units with fr. The results are always intuitive and produce the
effect you would expect.

:-15'“-:
[2

0.5fr 0.25fr

Figure 199: Fractional fr units are relative to themselves within
some parent container.

300px 1ir 1fr 1
| 300px 1 1tr 1
| 300px e 1 1t
| 300px 1 1 1t
: 300px 1fr 1 1r

Figure 200: Using 1fr units and increasing column gaps at the same
time will produce this result. | just wanted to include this here to
demonstrate that 7fr units will be affected by gaps too. 5 different
CSS grids used here to demonstrate how we should be also mindful
of the gaps when designing with 1fr units.

)) C’) (&
--- =

grid-template-rows: 1fr 1.5fr 2.0fr 2.5fr 2.0fr 1.5fr 1fr;
gm-mmmm 1fr 1.5fr 2.0fr 2.5fr 2.0fr 1.5fr 1fr;
Figure 201: And just to be complete in our understanding of fr units,
you can use them to create something like this. Although | don't
know where you would require such a dinosauric layout it clearly
demonstrates how fr units can affect both rows and columns.

g O O

Repeating Values

CSS grid allows the use of repeat property value.

The repeat property takes two values: times to repeat and what to
repeat.

repeat(times, ...what);

At its basic this is how it works:

1 El 3 4 8 L} 7

[®oex | [®8ex | [_6oex | [38x | [60px | [3%x |

grid-taenplate -columns repeei(l, S0pu JSpa)
geid template-cotumen. 60px 15gn Spe 15px B0y Wi

Figure 202: Here we're using grid-template-columns with repeat
and without repeat to produce exactly the same effect. It is usually
wise to choose the shortest path.

Here grid-template-columns are provided two different values to
produce the same effect. Obviously repeat saves a lot of hassle
here.

Final verdict: to save yourself from redundancy in cases where your
grid must contain repetitive dimension values use repeat as a
remedy.

The repeat property can be sandwiched between other values, too.

|) [[] [o] [[] e

)

w

grad-fmmpdate-columne: S0px repead(d, 15px Jlpa) Sdpa
Figure 203: grid-template-columns: 50px repeat(3, 15px 30px)
50px
In this example we repeat a section of two columns 15px 30px for 3
times in a row. | mean in a column. Ahh! You know what | mean.

Spans

Using CSS grid spans you allow your items to stretch across
multiple rows or columns. This is a lot like rowspan and colspan in
a <table>.

We will create a grid using repeat to avoid redundant values. But it
could have been created without it - anyway, let's make it our
specimen for this section.

When we add grid-column:span 3 to item

#4 a somewhat unexpected effect has occurred:

grid-template-columns: repeat(5, 25px)

i 8 9 10 11

Figure 204: Using grid-column:span 3 to take up 3 columns.
However, CSS grid makes a decision to remove some of the items,
because the €spanned"” item cannot fit into suggested area. Notice

the blank squares!
In CSS grids spans can also be used to cover multiple rows. And if it
so happened that the column is now greater in height than the

height of the grid itself the CSS grid adapt itself to this:

grid-template-columns: repeat(5, 25px)

(1) (2] (3) Y .5)

10

1 12 13 14

™
c
@
a
w
S
2
2
o
o

Figure 205: CSS grid is adapting itself in several cases where items
go beyond grid's parent container.

You can also span across multiple rows and columns at the same

time. | created this other minimalistic example just to quickly

demonstrate limitations, even though in most cases this will probably

not happen:

grid-template-columns: repeat(5, 25px)

-
N
w

. 8

Figure 206: CSS grid fills in the blanks.
Pay attention to how CSS grid adapts to the items around spans that
cover multiple rows and columns. All of the items still remain in the
grid but intuitively wrap around other spanned items.

g9 10 grid-column: span 3 11 13 14
15 16 17 18 19 20 21
22 24 25 26
27 | it | 28 (| 20 || 30 || 31
32 33 34 35 36

3ar 38 39 40 41 42 43 44

When | tried to break the layout with a large span | ended up with
the following case that demonstrates the key limitations of CSS grid:

8) 10 1 12 I l .

T st againon

Figure 207: CSS grid replaces potential item cells with empty space
in two distinct situations.

But it's still a lot like a . See my other CSS grid vs table tutorial

where | show you the frightening similarities.

However... there is a solution.

Start and End

So far we used CSS grid spans to create multi-column and
multi-row items that occupy a ton of space. But... CSS grid
has another much more elegant solution to solve the same
problem.

The grid-row-start and grid-row-end properties can be
used to define the starting and ending point of an item on the
grid Likewise, their column equivalents are grid-column-

start and grid-column-end. The are also two short-hand
properties: grid-row:1/2 and grid-column:1/2.

These work an a slightly different way than spans.

With -start and -end properties, you can physically move
your item to another location in the grid. Let's take a look at
this minimalist example:

1 2 3 4 5 2 3 4 5 B
¥ —a &
B T 8) 10 T 1 B 8 10
1 12 13 14 15 1 12 13 14 15
I
background: yalow, background: yellow
grid-row-start: 2

Y grid-column-start: 2
Figure 208: Using CSS grid's grid-row-start and grid-
column-start on an item (first item in this example) you

have the ability to physically move an item within your grid to

another location!

T 8 Containiar;
gdduumpl-u-cﬂum; 100gx 100px 100px 100px 100px 100px
template-rows: 100px 1000 100px 100px

10 1 Tiorn[B
= — S— —. L grid-row-stant 2
][]]][] [25
12 13 14 15 16 17 grid-column-starn: 2 ——
| | q-j-mlumn-andE—J

Figure 209: Here we've taken item 8 and (redundantly)
specified its location using grid-row-start and grid-column-
start. Notice however, this alone has no effect on item 8,
because item 8 is already positioned at that location on the
grid anyway. However, by doing this you can achieve span-
like functionality if you also specify an ending location using
grid-column-end and grid-column-end.

Interestingly, designers of CSS grid have decided for the
direction of the span vector to be insignificant. The span is
still created within the specified area regardless of whether
starting or ending points are provided in reverse order:

1 2 3 | 4 5 - 1 2 a 4 5 a8
—_— = *
-
7 - T B
8 I -]
10 11 10 1
i,
12 13 14 15 | 16 17 12 13 14 16 16 17

grid-column-start: 2 grid-column-start: # -

Iterm| 8 | ‘ Heem | B
grid-ros-sinet 2 1 grid-row-ginet: 4

Figure 210: Specifying item span regardless of the direction
of the start/end points produces the same results.

Let's consider this 6 x 4 CSS grid. If you explicitly specify an

items's column end position that goes outside the number of

specified columns (>=7) you will experience this wonky

effect:

|
2 3 4 | 5 ‘ 6 l T |
- - .
8] 1
10 1" 12 ‘ 13 ‘ 14 H 15 |
16 17 18
—— 1
background: yedlow

grid-row-start: 2
grid-column-start: 3 —
grid-column-and: 7

Figure 211: Making column width of an item greater than the
original number of columns specified in the CSS grid.

In this case CSS grid will adapt the resulting layout of your

grid to what you see in the example above. It's usually a

good idea to design your layouts by being mindful of grid's

boundaries to avoid these types of scenarios.

Start and End’'s Shorthand

You can use the shorthand properties grid-row and grid-
column to same effect as above using / to separate values.
Except instead of providing an end value, it takes width or
height of the span:

1 2 3 4 5 B

7 s |

>y — f - __: | Hom| &

10 1 |

| grid-row: 2/
17 |
grid-column: 2 /

12 ‘ 13 14 15 | 16

Figure 212: We can use / character for this short-hand
syntax.

What if we need to reach the absolute maximum boundary of
the grid?
Use -1 to extend a column (or row) all the way to the end of
CSS grid's size when number of columns or rows is
unknown. But be mindful of any implicit items (16, 17)
slipping away from the bottom of the grid:

1[2 a|4‘5 B
| _.: 11 |

> : -
1 T |
P 8 — e 8

10

|/

grid-row: 212
grid-column: 2 7

12 |13 1 |15 16 1w

Figure 213: Using negative -1 value to count from right-most
gap to left.

Then | tried to do the same with rows, but the results were

more chaotic, depending on which combinations of values |

provided. | know there are other ways of using / but for the
sake of clarity | want to keep things simple.

1 2 3 4 5 a T
1 2 3 4 5 6
2 *
7 9
10 8

grid-column: 2 / 6
grid-row: 2 [-1

Figure 214: | only used 10 items in this example. CSS grid
seems to gracefully resize itself.
When | was experimenting with rows to do the same thing, it
seems like 4 in grid-column:2/4 had to be changed to 2/6...
but only if grid-row:2/-1 was specified.
That puzzled me a bit. But | guess | still have a lot of learning
to do on how /-separated values work.

What | found out though is that juggling around values here
produced results that cannot be easily documented using
visual diagrams.

Well, at least we get the basic idea here. You can extend
either column or row all the way to the maximum boundary
using -1. How one affects the other takes a bit of practice to
figure out in some specific cases.

We can expand on this a bit. CSS grid has a secondary
coordinate system, so to speak. And because it doesn't
matter which direction you use to make cross-column and
Cross-row spans you can use negative values:

10 11

12 13 14 15 16 17

grid-column: -6 / -2
grid-row: -2 [-4
|

Figure 215: Using negative values to specify column and
row's start and end, we can create the same span from
previous examples, since CSS grid is coordinate system
agnostic. You can use both positive and negative numbers!
As you can see CSS grid coordinate system is pretty flexible.

Content Align Within CSS Grid Items

Let's say you've gone to the great lengths mastering CSS
grid item spans. You crossed the seas of implicitly generated

rows and columns. Now you're curious to see what else is in
store for you.

Good news for you then.

As a web designer, I've for a long time craved multi-
directional float. | wanted to be able to float in the middle and
on any corner of the container.

This functionality is only limited to CSS grids' align-self and
justify-self and does not appear to work on any other HTML
element. If your entire site's layout is built using a CSS grid
then it solves a lot of issues associated with corner and
center element placement.

align-self
B Bl oD 5 S

Figure 216: An example of using align-self and justify-self
properties. The difference between the 9 squares is the
combination of start and end values provided to the said
properties to produce any of the results depicted above. |

won't mention all of these combinations here, because it's
quite intuitive.

VERTICAL: Use align-self: end to align the content to the
bottom of the item. Likewise, align-self: start will make sure
content sticks to the upper border.

HORIZONTAL: Use justify-self. start (or end) to justify your
content left or right. In combination with align-self you can
achieve placement depicted on any of the above examples.
Just to finalize this discussion here is how align-self affects a
slightly more complex situation - one we've taken a look at
before in this tutorial:

Figure 217: Using align-self it is possible to align the item's
content with start, center and end values.

You can use values start, center and end.

Note, however there aren't top and bottom values for align-

self.

justify-self

Another property that does the same thing but horizontally is
justify-self:

Figure 218: CSS grid item property justify-self in action
using unset, start, center and end values.
You can use start|left or end|right values interchangeably
here.

Template Areas

Template areas provide a way to refer to an isolated part of
your grid by a predefined name. This name cannot include
spaces. Use - instead.

Each set of row names is enclosed in double quotes. You
can further separate these sets of row names either by a line
break or by space to create columns as shown in the
example below.

Although only & items are present template are names can
logistically occupy places not yet filled with items:

3 -

grid-template-areas:
“ToplLeft Top TopRight” “Left Middle-of-Nowhere Right™ “BottomlLeft Bottom BottomRight™;

Figure 219: Example of specifying template areas with grid-
template-areas property.

You can specify an area for any of the row and column as
long as you separate the set of each consequent row by a
space, and provide names for each row using double
guotes. Within double quotes, each item is separated by
space. This means no spaces are allowed in template
area names.

Similar principle to specifying row and column size is
followed here to name all of the areas in the grid. Just
separate them by space or tab.

This syntax simply allows us to intuitively name our template
dareas.

But things get a lot more convenient when you start
combining areas with the same name across multiple
containers. Here | named 3 items in the left column Left and

3 items in the right column Right. CSS grid template areas
automatically combined them to occupy the same space by

name.

1 2

1 S
|

tem1 rtem2 Jtem3

item1 { grid-area: Left; } item3 { grid-area: Right; }

gred-template-areas
“Left Top Right™ “Left Middle-of-Nowhere Right” “Left Bottom Right”;

Figure 220: Spanning template areas across multiple grid
@cells." Simply name your columns and rows, and adjacent
blocks will ¢merge" into larger areas. Just make sure to
keep them rectangular!

It's important to make sure that areas consist of items
aligned into larger rectangle areas. Doing Tetris blocks
here will not work. Straying from the rule of always keeping
your areas rectangular is likely to break the CSS grid and/or
produce unpredictable outcome.

Naming Grid Lines
Working with numbers (and negative numbers) can become
redundant over time especially when dealing with complex

grids. You can name grid lines with whatever you want using
[name] brackets right before size value.

To name the first grid line you can: grid-template-column:
[left] 100px Likewise for rows it is: grid-template-row:[top]
100px.

You can name multiple grid lines. The [] brackets are
inserted at an intuitive place in the set. Exactly where the
grid line (a.k.a. gap) would appear:
grid-template-columns:[left] 5px 5px [middle] 5px 5px
[right]

Now you can use the names left, middle and right to refer to
your grid lines when creating columns and rows that need to
reach that area:

pradecnigenn: lefi / conter | | | grid-columm: center § nigit
grid-rowe top | Comter grad-rowe. top |/ conter

grad-colamn: left | cester gnd-column, center [right
prid-row. center | botioen || | grad-row; center J boibm

bottam

grid-template-columns: [left] 100px 100px 100px [center] 100px 100px 100px [right]

|
grid-template-rows: [top] 100px 100px 100px [center] 100px 100px 100px [bottom]

Figure 221: Instead of using numbers it is possible to name
and refer to lines in between grid's cells as values to your
properties grid-template-columns and grid-template-
rows. Note how each span in the diagram refers to named
lines and not the gap's numbers. You can use any name you
want.

Naming gap lines creates a more meaningful experience. It's

a lot better to think of the middle line as center (or middie)
instead of 4. This tutorial covered almost everything there is

to CSS grid using visual diagrams.

cleardoublepage

In conclusion... remember...

The music is not in the notes, but in the silence between
-- Wolfgang Amadeus Mozart

This seems to be true of CSS grid also. And so many other
things!

Nearly 8 weeks have been spent drawing diagrams
representing pretty much every single thing you can possibly
do with CSS grid. And you've just looked at (and hopefully
learned from) them all.

Of course, | assume the possibility that a few things were
missed here and there. It's impossible to document
absolutely every possible case. And | will be glad for anyone
in the community to point it out so this book can be improved
in the future editions with even more useful examples.

Tesla CSS Art

Although CSS language was designed primarily for helping
with the creation of websites and web application layouts,
some talented Ul designers have pushed it to its absolute
limit! Some argue that there is little practical use in doing
this. But the fact remains... these artists create challenging
designs using deep knowledge of CSS properties and
values.

Below is a CSS model of Tesla

in space, designed by Sasha Tran (@sa_sha26 on Twitter)
exclusively for this book!

front { left: -190px; } .rear { right: -130px; }

Figure 222: Tesla in space, designed entirely in CSS by
Sasha Tran (@sa_sha26) you should follow her on Twitter if
you want to stay in touch with a talented Ul designer!

The remaining pages of this book will describe, in great
detail, how each separate part of this car was created, which
CSS properties were used, etc.

Making CSS art can be a challenge, even for web designers.
We're taking everything we've learned so far in this book and
putting it into action!

It's all about how skillful you are with the CSS properties:
overflow:hidden, transform:rotate, box-shadow and
border-radius.

Figure 223: By making all backgrounds transparent you can
clearly see the Tesla's composition, consisting of several
HTML <div> elements.

On the pages that follow we'll break down each significant
element of the car to demonstrate how it was created.

Jace {

position: absolute;

width: 40px;

height: 40pax;
border-radius: 50%;
background-color: F#f2f2{2;
top: -60px;

left: -10px;

border: 4px solid $border;
overflow: hidden;
box-shadow: inset -4px -4px 0 rgba(#333, 0.2);

ér:before {

position: absolute;
content: "";
width: 17pox;
height: 17px;
border-radius:; 3px;
background: #{Tac76;
transform: rotate(-45deg);
left: -Tp;
top: Tpx;
border: 2px solid $border;
box-shadow:

inset -5px Spx

3px O rgba(# A, 0.4);

h
}

Figure 224: The helmet consists of a circle and the orange
face shield which is just a nested, rotated square with white
inner box shadow, that cuts off at the radius line because
face is set to overflow:hidden.

Note how
&:before is nested inside .face using
{ brackets

}. This is accomplished by using the SASS extension
(Syntactically Awesome Style Sheets). | recommend looking
more into it at http://sass-lang.com. It is also briefly
discussed at the very beginning of this book.

Of course you can still rewrite this in standard vanilla CSS by
replacing

&:before and the brackets by a separate element with its
own id or class.

&-bumper-top {
width: 135px;
height: 23px;
position: absolute;
background-color: $car-body;
border: 4px solid;

border-radius: 50%; :)
left: -235px;

transform: rotate(ldeg);

border-color: §border transparent transparent $border;
overflow: hidden;

z-index: 99;

box-shadow: inset 0 3px 0 rgba(#ff, 0.17);

front-light-bulb {

position: absolute;

width: 33px;

height: 10px;

background:
rgba(# i, 0.5);

transform:
rotate(-10deg);

border-radius: 50px 0;

left: -4px;

top: 1px;

}
}

caption{The hood is a long oval element rotated by just 1
degree. In the same way as the helmet's face shield, the
light bulb is hidden within the parent by using
overflow:hidden

. Hiding the overflow is what helps us get away with creating
more complex, irregular shapes that closely describe real-life
objects.}

&-rear-top {
position: absolute;
width: 113px;
height: 33px;
background-color: Scar-body;
top: -25px;
left: 50px;
border-radius: 0 T0% 0 O;
transform: rotate(9.2deg);
border: 4px solid;
border-color:

$border Eborder transparent transparent;

z-index: $hand;
box-shadow: inset 0 4px O rgba(#£f0, 0.17);

.back-light {
position: absolute;
width: 23pox;
height: 10px;
background-color: $border;
top: 2Tpx;
left: Sdpor;
z-index: 0;
border-radius: Opx 0 0 50px;
}
)

Figure 225: The importance of overflow:hidden in creating
CSS art cannot be understated. The back light is using
absolutely the same technique as the previous two
examples. The back of the car is a rotatedrectangle with just
one of the corners rounded. Here you just have to follow
your artist's instinct, in order to create shapes that match
your preference and a sense of style.

&-fender {

position: absolute;

top: -2px;

left: -100px;

width: 260px;

height: 65px;

border-radius: 30px 20px 40px 20px;

background-color: #ce4038;

border: 4px solid;

border-color: $border;

z-index: $car-rear;

overflow: hidden;

box-shadow: inset 0 4px 0 rgba(#fff, 0.17),
inset -5px -4px 0 rgba(#333, 0.2);

Figure 226: The base of the car that stretches toward its
back is simply a large rectangular div element with rounded
corners and an inner box-shadow.

&-tire {

.front,.rear {
width: 60px;
height: 60px;
background: $border;
position: absolute;
border-radius: 50%;
top: 22px;
z-index: $tire;
display: flex;
justify-content: center;
align-items: center;

& :before {
position: absolute;
width: 60px;
height: 60px;
content: "";
border: 5px solid #£333;
opacity: 0.2;
border-radius: 50%:;

DOCUMENT OUTLINE

1234 2 _CSS Visual Dictionary_Kindle Page 001
1234 2 _CSS Visual Dictionary_Kindle Page 002
1234 _2_CSS Visual Dictionary_Kindle Page 003
1234 2 _CSS Visual Dictionary_Kindle Page 004
1234 2_CSS Visual Dictionary_Kindle Page 005
1234 2_CSS Visual Dictionary_Kindle Page 006
1234 2 CSS Visual Dictionary_Kindle Page 007
1234 2 CSS Visual Dictionary_Kindle Page 008
1234 2 _CSS Visual Dictionary_Kindle Page 009
1234 2_CSS Visual Dictionary_Kindle Page 010
1234 _2_CSS Visual Dictionary_Kindle Page 011
1234 2_CSS Visual Dictionary_Kindle Page 012
1234 2_CSS Visual Dictionary_Kindle Page 013
1234 2_CSS Visual Dictionary_Kindle Page 014
1234 2 _CSS Visual Dictionary_Kindle Page 015
1234 2_CSS Visual Dictionary_Kindle Page 016
1234 2 _CSS Visual Dictionary_Kindle Page 017
1234 2 _CSS Visual Dictionary_Kindle Page 018
1234 2 _CSS Visual Dictionary_Kindle Page 019
1234 _2_CSS Visual Dictionary_Kindle Page 020
1234 2_CSS Visual Dictionary_Kindle Page 021
1234 2_CSS Visual Dictionary_Kindle Page 022
1234 2 _CSS Visual Dictionary_Kindle Page 023

1234 2 _CSS Visual Dictionary_Kindle Page 024
1234 2 _CSS Visual Dictionary_Kindle Page 025
1234 2 _CSS Visual Dictionary_Kindle Page 026
1234 _2_CSS Visual Dictionary_Kindle Page 027
1234 2_CSS Visual Dictionary_Kindle Page 028
1234 2_CSS Visual Dictionary_Kindle Page 029
1234 2_CSS Visual Dictionary_Kindle Page 030
1234 2 _CSS Visual Dictionary_Kindle Page 031
1234 2 _CSS Visual Dictionary_Kindle Page 032
1234 2 _CSS Visual Dictionary_Kindle Page 033
1234 2 _CSS Visual Dictionary_Kindle Page 034
1234 _2_CSS Visual Dictionary_Kindle Page 035
1234 2_CSS Visual Dictionary_Kindle Page 036
1234 2_CSS Visual Dictionary_Kindle Page 037
1234 2_CSS Visual Dictionary_Kindle Page 038
1234 2 _CSS Visual Dictionary_Kindle_Page 039
1234 2 _CSS Visual Dictionary_Kindle Page 040
1234 2 _CSS Visual Dictionary_Kindle Page 041
1234 2 _CSS Visual Dictionary_Kindle Page 042
1234 2 _CSS Visual Dictionary_Kindle Page 043
1234 2_CSS Visual Dictionary_Kindle Page 044
1234 2_CSS Visual Dictionary_Kindle Page 045
1234 2_CSS Visual Dictionary_Kindle Page 046
1234 2 _CSS Visual Dictionary_Kindle Page 047
1234 2 _CSS Visual Dictionary_Kindle Page 048
1234 2 _CSS Visual Dictionary_Kindle Page 049
1234 2 _CSS Visual Dictionary_Kindle Page 050

1234 2_CSS Visual Dictionary_Kindle Page 051
1234 2 _CSS Visual Dictionary_Kindle Page 052
1234 2 _CSS Visual Dictionary_Kindle Page 053
1234 2 _CSS Visual Dictionary_Kindle Page 054
1234 2_CSS Visual Dictionary_Kindle Page 055
1234 2_CSS Visual Dictionary_Kindle Page 056
1234 2_CSS Visual Dictionary_Kindle Page 057
1234 2 _CSS Visual Dictionary_Kindle Page 058
1234 2 _CSS Visual Dictionary_Kindle Page 059
1234 2 _CSS Visual Dictionary_Kindle Page 060
1234 2 _CSS Visual Dictionary_Kindle Page 061
1234 2_CSS Visual Dictionary_Kindle Page 062
1234 2_CSS Visual Dictionary_Kindle Page 063
1234 2_CSS Visual Dictionary_Kindle Page 064
1234 2_CSS Visual Dictionary_Kindle Page 065
1234 2_CSS Visual Dictionary_Kindle_Page 066
1234 2 _CSS Visual Dictionary_Kindle_Page 067
1234 2 _CSS Visual Dictionary_Kindle Page 068
1234 2 _CSS Visual Dictionary_Kindle Page 069
1234 2 _CSS Visual Dictionary_Kindle Page 070
1234 2_CSS Visual Dictionary_Kindle Page 071
1234 2_CSS Visual Dictionary_Kindle Page 072
1234 2_CSS Visual Dictionary_Kindle Page 073
1234 2_CSS Visual Dictionary_Kindle Page 074
1234 _2_CSS Visual Dictionary_Kindle_Page 075
1234 2_CSS Visual Dictionary_Kindle Page 076
1234 2 _CSS Visual Dictionary_Kindle Page 077

1234 2 _CSS Visual Dictionary_Kindle Page 078
1234 2_CSS Visual Dictionary_Kindle Page 079
1234 2 _CSS Visual Dictionary_Kindle Page 080
1234 2 _CSS Visual Dictionary_Kindle Page 081
1234 2_CSS Visual Dictionary_Kindle Page 082
1234 2_CSS Visual Dictionary_Kindle Page 083
1234 2_CSS Visual Dictionary_Kindle Page 084
1234 2 _CSS Visual Dictionary_Kindle Page 085
1234 2 _CSS Visual Dictionary_Kindle Page 086
1234 2 _CSS Visual Dictionary_Kindle Page 087
1234 2 _CSS Visual Dictionary_Kindle Page 088
1234 2_CSS Visual Dictionary_Kindle Page 089
1234 2_CSS Visual Dictionary_Kindle Page 090
1234 2_CSS Visual Dictionary_Kindle Page 091
1234 2_CSS Visual Dictionary_Kindle Page 092
1234 2_CSS Visual Dictionary_Kindle Page 093
1234 2 _CSS Visual Dictionary_Kindle Page 094
1234 2 _CSS Visual Dictionary_Kindle Page 095
1234 2 _CSS Visual Dictionary_Kindle Page 096
1234 2_CSS Visual Dictionary_Kindle Page 097
1234 2_CSS Visual Dictionary_Kindle Page 098
1234 2_CSS Visual Dictionary_Kindle Page 099
1234 2_CSS Visual Dictionary_Kindle Page 100
1234 2 _CSS Visual Dictionary_Kindle Page 101
1234 2 _CSS Visual Dictionary_Kindle Page 102
1234 2 _CSS Visual Dictionary_Kindle Page 103
1234 2 _CSS Visual Dictionary_Kindle Page 104

1234 2 _CSS Visual Dictionary_Kindle Page 105
1234 2 _CSS Visual Dictionary_Kindle Page 106
1234 2 _CSS Visual Dictionary_Kindle Page 107
1234 2_CSS Visual Dictionary_Kindle Page 108
1234 2_CSS Visual Dictionary_Kindle Page 109
1234 2_CSS Visual Dictionary_Kindle Page 110
1234 2 _CSS Visual Dictionary_Kindle Page 111
1234 2 _CSS Visual Dictionary_Kindle Page 112
1234 2 _CSS Visual Dictionary_Kindle Page 113
1234 2 _CSS Visual Dictionary_Kindle Page 114
1234 2 _CSS Visual Dictionary_Kindle Page 115
1234 2_CSS Visual Dictionary_Kindle Page 116
1234 2_CSS Visual Dictionary_Kindle Page 117
1234 2_CSS Visual Dictionary_Kindle Page 118
1234 2_CSS Visual Dictionary_Kindle Page 119
1234 2 _CSS Visual Dictionary_Kindle Page 120
1234 2 _CSS Visual Dictionary_Kindle Page 121
1234 2 _CSS Visual Dictionary_Kindle Page 122
1234 2 _CSS Visual Dictionary_Kindle Page 123
1234 2_CSS Visual Dictionary_Kindle Page 124
1234 2_CSS Visual Dictionary_Kindle Page 125
1234 2_CSS Visual Dictionary_Kindle Page 126
1234 2_CSS Visual Dictionary_Kindle Page 127
1234 2 _CSS Visual Dictionary_Kindle Page 128
1234 2 _CSS Visual Dictionary_Kindle Page 129
1234 2 _CSS Visual Dictionary_Kindle Page 130
1234 2 _CSS Visual Dictionary_Kindle Page 131

1234 2_CSS Visual Dictionary_Kindle Page 132
1234 2 _CSS Visual Dictionary_Kindle Page 133
1234 2 _CSS Visual Dictionary_Kindle Page 134
1234 2 _CSS Visual Dictionary_Kindle Page 135
1234 2_CSS Visual Dictionary_Kindle Page 136
1234 2_CSS Visual Dictionary_Kindle Page 137
1234 2_CSS Visual Dictionary_Kindle Page 138
1234 2_CSS Visual Dictionary_Kindle Page 139
1234 2 _CSS Visual Dictionary_Kindle Page 140
1234 2 _CSS Visual Dictionary_Kindle Page 141
1234 2 _CSS Visual Dictionary_Kindle Page 142
1234 _2_CSS Visual Dictionary_Kindle Page 143
1234 2_CSS Visual Dictionary_Kindle Page 144
1234 2_CSS Visual Dictionary_Kindle Page 145
1234 2_CSS Visual Dictionary_Kindle Page 146
1234 2 _CSS Visual Dictionary_Kindle Page 147
1234 2 _CSS Visual Dictionary_Kindle Page 148
1234 2_CSS Visual Dictionary_Kindle Page 149
1234 2 _CSS Visual Dictionary_Kindle Page 150
1234 2 _CSS Visual Dictionary_Kindle Page 151
1234 2_CSS Visual Dictionary_Kindle Page 152
1234 2_CSS Visual Dictionary_Kindle Page 153
1234 2_CSS Visual Dictionary_Kindle Page 154
1234 2 _CSS Visual Dictionary_Kindle Page 155
1234 2 _CSS Visual Dictionary_Kindle Page 156
1234 2 _CSS Visual Dictionary_Kindle Page 157
1234 2 _CSS Visual Dictionary_Kindle Page 158

1234 2 _CSS Visual Dictionary_Kindle Page 159
1234 2_CSS Visual Dictionary_Kindle Page 160
1234 2 _CSS Visual Dictionary_Kindle Page 161
1234 2 _CSS Visual Dictionary_Kindle Page 162
1234 2_CSS Visual Dictionary_Kindle Page 163
1234 2_CSS Visual Dictionary_Kindle Page 164
1234 2_CSS Visual Dictionary_Kindle Page 165
1234 2 _CSS Visual Dictionary_Kindle Page 166
1234 2 _CSS Visual Dictionary_Kindle Page 167
1234 2 _CSS Visual Dictionary_Kindle Page 168
1234 2 _CSS Visual Dictionary_Kindle Page 169
1234 2 _CSS Visual Dictionary_Kindle Page 170
1234 2_CSS Visual Dictionary_Kindle Page 171

	1234_2_CSS Visual Dictionary_Kindle_Page_001
	1234_2_CSS Visual Dictionary_Kindle_Page_002
	1234_2_CSS Visual Dictionary_Kindle_Page_003
	1234_2_CSS Visual Dictionary_Kindle_Page_004
	1234_2_CSS Visual Dictionary_Kindle_Page_005
	1234_2_CSS Visual Dictionary_Kindle_Page_006
	1234_2_CSS Visual Dictionary_Kindle_Page_007
	1234_2_CSS Visual Dictionary_Kindle_Page_008
	1234_2_CSS Visual Dictionary_Kindle_Page_009
	1234_2_CSS Visual Dictionary_Kindle_Page_010
	1234_2_CSS Visual Dictionary_Kindle_Page_011
	1234_2_CSS Visual Dictionary_Kindle_Page_012
	1234_2_CSS Visual Dictionary_Kindle_Page_013
	1234_2_CSS Visual Dictionary_Kindle_Page_014
	1234_2_CSS Visual Dictionary_Kindle_Page_015
	1234_2_CSS Visual Dictionary_Kindle_Page_016
	1234_2_CSS Visual Dictionary_Kindle_Page_017
	1234_2_CSS Visual Dictionary_Kindle_Page_018
	1234_2_CSS Visual Dictionary_Kindle_Page_019
	1234_2_CSS Visual Dictionary_Kindle_Page_020
	1234_2_CSS Visual Dictionary_Kindle_Page_021
	1234_2_CSS Visual Dictionary_Kindle_Page_022
	1234_2_CSS Visual Dictionary_Kindle_Page_023
	1234_2_CSS Visual Dictionary_Kindle_Page_024
	1234_2_CSS Visual Dictionary_Kindle_Page_025
	1234_2_CSS Visual Dictionary_Kindle_Page_026
	1234_2_CSS Visual Dictionary_Kindle_Page_027
	1234_2_CSS Visual Dictionary_Kindle_Page_028
	1234_2_CSS Visual Dictionary_Kindle_Page_029
	1234_2_CSS Visual Dictionary_Kindle_Page_030
	1234_2_CSS Visual Dictionary_Kindle_Page_031
	1234_2_CSS Visual Dictionary_Kindle_Page_032
	1234_2_CSS Visual Dictionary_Kindle_Page_033
	1234_2_CSS Visual Dictionary_Kindle_Page_034
	1234_2_CSS Visual Dictionary_Kindle_Page_035
	1234_2_CSS Visual Dictionary_Kindle_Page_036
	1234_2_CSS Visual Dictionary_Kindle_Page_037
	1234_2_CSS Visual Dictionary_Kindle_Page_038
	1234_2_CSS Visual Dictionary_Kindle_Page_039
	1234_2_CSS Visual Dictionary_Kindle_Page_040
	1234_2_CSS Visual Dictionary_Kindle_Page_041
	1234_2_CSS Visual Dictionary_Kindle_Page_042
	1234_2_CSS Visual Dictionary_Kindle_Page_043
	1234_2_CSS Visual Dictionary_Kindle_Page_044
	1234_2_CSS Visual Dictionary_Kindle_Page_045
	1234_2_CSS Visual Dictionary_Kindle_Page_046
	1234_2_CSS Visual Dictionary_Kindle_Page_047
	1234_2_CSS Visual Dictionary_Kindle_Page_048
	1234_2_CSS Visual Dictionary_Kindle_Page_049
	1234_2_CSS Visual Dictionary_Kindle_Page_050
	1234_2_CSS Visual Dictionary_Kindle_Page_051
	1234_2_CSS Visual Dictionary_Kindle_Page_052
	1234_2_CSS Visual Dictionary_Kindle_Page_053
	1234_2_CSS Visual Dictionary_Kindle_Page_054
	1234_2_CSS Visual Dictionary_Kindle_Page_055
	1234_2_CSS Visual Dictionary_Kindle_Page_056
	1234_2_CSS Visual Dictionary_Kindle_Page_057
	1234_2_CSS Visual Dictionary_Kindle_Page_058
	1234_2_CSS Visual Dictionary_Kindle_Page_059
	1234_2_CSS Visual Dictionary_Kindle_Page_060
	1234_2_CSS Visual Dictionary_Kindle_Page_061
	1234_2_CSS Visual Dictionary_Kindle_Page_062
	1234_2_CSS Visual Dictionary_Kindle_Page_063
	1234_2_CSS Visual Dictionary_Kindle_Page_064
	1234_2_CSS Visual Dictionary_Kindle_Page_065
	1234_2_CSS Visual Dictionary_Kindle_Page_066
	1234_2_CSS Visual Dictionary_Kindle_Page_067
	1234_2_CSS Visual Dictionary_Kindle_Page_068
	1234_2_CSS Visual Dictionary_Kindle_Page_069
	1234_2_CSS Visual Dictionary_Kindle_Page_070
	1234_2_CSS Visual Dictionary_Kindle_Page_071
	1234_2_CSS Visual Dictionary_Kindle_Page_072
	1234_2_CSS Visual Dictionary_Kindle_Page_073
	1234_2_CSS Visual Dictionary_Kindle_Page_074
	1234_2_CSS Visual Dictionary_Kindle_Page_075
	1234_2_CSS Visual Dictionary_Kindle_Page_076
	1234_2_CSS Visual Dictionary_Kindle_Page_077
	1234_2_CSS Visual Dictionary_Kindle_Page_078
	1234_2_CSS Visual Dictionary_Kindle_Page_079
	1234_2_CSS Visual Dictionary_Kindle_Page_080
	1234_2_CSS Visual Dictionary_Kindle_Page_081
	1234_2_CSS Visual Dictionary_Kindle_Page_082
	1234_2_CSS Visual Dictionary_Kindle_Page_083
	1234_2_CSS Visual Dictionary_Kindle_Page_084
	1234_2_CSS Visual Dictionary_Kindle_Page_085
	1234_2_CSS Visual Dictionary_Kindle_Page_086
	1234_2_CSS Visual Dictionary_Kindle_Page_087
	1234_2_CSS Visual Dictionary_Kindle_Page_088
	1234_2_CSS Visual Dictionary_Kindle_Page_089
	1234_2_CSS Visual Dictionary_Kindle_Page_090
	1234_2_CSS Visual Dictionary_Kindle_Page_091
	1234_2_CSS Visual Dictionary_Kindle_Page_092
	1234_2_CSS Visual Dictionary_Kindle_Page_093
	1234_2_CSS Visual Dictionary_Kindle_Page_094
	1234_2_CSS Visual Dictionary_Kindle_Page_095
	1234_2_CSS Visual Dictionary_Kindle_Page_096
	1234_2_CSS Visual Dictionary_Kindle_Page_097
	1234_2_CSS Visual Dictionary_Kindle_Page_098
	1234_2_CSS Visual Dictionary_Kindle_Page_099
	1234_2_CSS Visual Dictionary_Kindle_Page_100
	1234_2_CSS Visual Dictionary_Kindle_Page_101
	1234_2_CSS Visual Dictionary_Kindle_Page_102
	1234_2_CSS Visual Dictionary_Kindle_Page_103
	1234_2_CSS Visual Dictionary_Kindle_Page_104
	1234_2_CSS Visual Dictionary_Kindle_Page_105
	1234_2_CSS Visual Dictionary_Kindle_Page_106
	1234_2_CSS Visual Dictionary_Kindle_Page_107
	1234_2_CSS Visual Dictionary_Kindle_Page_108
	1234_2_CSS Visual Dictionary_Kindle_Page_109
	1234_2_CSS Visual Dictionary_Kindle_Page_110
	1234_2_CSS Visual Dictionary_Kindle_Page_111
	1234_2_CSS Visual Dictionary_Kindle_Page_112
	1234_2_CSS Visual Dictionary_Kindle_Page_113
	1234_2_CSS Visual Dictionary_Kindle_Page_114
	1234_2_CSS Visual Dictionary_Kindle_Page_115
	1234_2_CSS Visual Dictionary_Kindle_Page_116
	1234_2_CSS Visual Dictionary_Kindle_Page_117
	1234_2_CSS Visual Dictionary_Kindle_Page_118
	1234_2_CSS Visual Dictionary_Kindle_Page_119
	1234_2_CSS Visual Dictionary_Kindle_Page_120
	1234_2_CSS Visual Dictionary_Kindle_Page_121
	1234_2_CSS Visual Dictionary_Kindle_Page_122
	1234_2_CSS Visual Dictionary_Kindle_Page_123
	1234_2_CSS Visual Dictionary_Kindle_Page_124
	1234_2_CSS Visual Dictionary_Kindle_Page_125
	1234_2_CSS Visual Dictionary_Kindle_Page_126
	1234_2_CSS Visual Dictionary_Kindle_Page_127
	1234_2_CSS Visual Dictionary_Kindle_Page_128
	1234_2_CSS Visual Dictionary_Kindle_Page_129
	1234_2_CSS Visual Dictionary_Kindle_Page_130
	1234_2_CSS Visual Dictionary_Kindle_Page_131
	1234_2_CSS Visual Dictionary_Kindle_Page_132
	1234_2_CSS Visual Dictionary_Kindle_Page_133
	1234_2_CSS Visual Dictionary_Kindle_Page_134
	1234_2_CSS Visual Dictionary_Kindle_Page_135
	1234_2_CSS Visual Dictionary_Kindle_Page_136
	1234_2_CSS Visual Dictionary_Kindle_Page_137
	1234_2_CSS Visual Dictionary_Kindle_Page_138
	1234_2_CSS Visual Dictionary_Kindle_Page_139
	1234_2_CSS Visual Dictionary_Kindle_Page_140
	1234_2_CSS Visual Dictionary_Kindle_Page_141
	1234_2_CSS Visual Dictionary_Kindle_Page_142
	1234_2_CSS Visual Dictionary_Kindle_Page_143
	1234_2_CSS Visual Dictionary_Kindle_Page_144
	1234_2_CSS Visual Dictionary_Kindle_Page_145
	1234_2_CSS Visual Dictionary_Kindle_Page_146
	1234_2_CSS Visual Dictionary_Kindle_Page_147
	1234_2_CSS Visual Dictionary_Kindle_Page_148
	1234_2_CSS Visual Dictionary_Kindle_Page_149
	1234_2_CSS Visual Dictionary_Kindle_Page_150
	1234_2_CSS Visual Dictionary_Kindle_Page_151
	1234_2_CSS Visual Dictionary_Kindle_Page_152
	1234_2_CSS Visual Dictionary_Kindle_Page_153
	1234_2_CSS Visual Dictionary_Kindle_Page_154
	1234_2_CSS Visual Dictionary_Kindle_Page_155
	1234_2_CSS Visual Dictionary_Kindle_Page_156
	1234_2_CSS Visual Dictionary_Kindle_Page_157
	1234_2_CSS Visual Dictionary_Kindle_Page_158
	1234_2_CSS Visual Dictionary_Kindle_Page_159
	1234_2_CSS Visual Dictionary_Kindle_Page_160
	1234_2_CSS Visual Dictionary_Kindle_Page_161
	1234_2_CSS Visual Dictionary_Kindle_Page_162
	1234_2_CSS Visual Dictionary_Kindle_Page_163
	1234_2_CSS Visual Dictionary_Kindle_Page_164
	1234_2_CSS Visual Dictionary_Kindle_Page_165
	1234_2_CSS Visual Dictionary_Kindle_Page_166
	1234_2_CSS Visual Dictionary_Kindle_Page_167
	1234_2_CSS Visual Dictionary_Kindle_Page_168
	1234_2_CSS Visual Dictionary_Kindle_Page_169
	1234_2_CSS Visual Dictionary_Kindle_Page_170
	1234_2_CSS Visual Dictionary_Kindle_Page_171

