

Introductory Guide to Operating
Systems

INTRODUCTORY GUIDE TO
OPERATING SYSTEMS

Jocelyn O. Padallan

www.arclerpress.com

ARCLER
P r e s s

Introductory Guide to Operating Systems
Jocelyn O. Padallan

Arcler Press
224 Shoreacres Road
Burlington, ON L7L 2H2
Canada
www.arclerpress.com
Email: orders@arclereducation.com

e-book Edition 2023

ISBN: 978-1-77469-629-3 (e-book)

This book contains information obtained from highly regarded resources. Reprinted material
sources are indicated and copyright remains with the original owners. Copyright for images and
other graphics remains with the original owners as indicated. A Wide variety of references are
listed. Reasonable efforts have been made to publish reliable data. Authors or Editors or Publish-
ers are not responsible for the accuracy of the information in the published chapters or conse-
quences of their use. The publisher assumes no responsibility for any damage or grievance to the
persons or property arising out of the use of any materials, instructions, methods or thoughts in
the book. The authors or editors and the publisher have attempted to trace the copyright holders
of all material reproduced in this publication and apologize to copyright holders if permission has
not been obtained. If any copyright holder has not been acknowledged, please write to us so we
may rectify.

Notice: Registered trademark of products or corporate names are used only for explanation and
identification without intent of infringement.

Arcler Press publishes wide variety of books and eBooks. For more information about
Arcler Press and its products, visit our website at www.arclerpress.com

© 2023 Arcler Press

ISBN: 978-1-77469-444-2 (Hardcover)

Ms. Jocelyn O. Padallan is a graduate of the Bachelor of Science in Computer
Science and finished her Certificate of Teaching Proficiency Program at Laguna
State Polytechnic University - Los Banos Laguna. She also completed her Master
in Educational Management. Currently, Ms. Jocelyn O. Padallan is an IT Professor
at the Laguna State Polytechnic University - Los Banos Campus under the College
of Computer Studies (CCS) where she holds different professional courses such as
Effective n Business Communication and Programming Languages. She is actively
involved in the college extension services programs including Life Project 4 Youth and
ITeach 4 Heroes.

ABOUT THE AUTHOR

List of Figures ..xiii

List of Abbreviations ... xix

Abstract .. xxi

Preface..xxiii

Chapter 1 An Overview on Operating System ... 1

1.1. Memory Management ... 3

1.2. Device Management ... 4

1.3. File Management .. 6

1.4. Processor Management ... 7

1.5. Security .. 9

1.6. A Brief History of Operating Systems (OSS) 11

1.7. Operating System (OS) Types .. 12

Chapter 2 Types of Operating Systems .. 15

2.1. Batch Operating System (OS) .. 16

2.2. Types of Batch Operating System (OS) .. 17

2.3. Working of the Batched Operating System (OS) 19

2.4. Advantages of Batch System .. 19

2.5. Disadvantages of Batch System ... 19

2.6. Time-Sharing Operating System (OS) ... 19

2.7. Requirements of the Time-Sharing Operating System (OS) 22

2.8. Advantages of Time-Sharing Operating System (OS) 23

2.9. Disadvantages of Time-Sharing Operating System (OS) 23

2.10. Distributed Operating System (OS) ... 23

2.11. Distributed Computing Models ... 25

2.12. Design Consideration of Distributed Operating System (OS) 26

2.13. Advantages of Distributive Operating System (OS) 27

TABLE OF CONTENTS

viii

2.14. Disadvantage of Distributive Operating Systems (OSS) 27

2.15. Network Operating System (NOS) .. 28

2.16. Types of Network Operating Systems (NOS) 29

2.17. Features of Network Operating System (NOS) 30

2.18. Real Time Operating System (OS) .. 31

2.19. Characteristics of Real Time Operating System (OS) 31

2.20. Real Time Operating System (OS) in Embedded Systems 32

2.21. Advantages and Features of Real Time Operating System (OS) 33

2.22. Disciplines that Impact Real Time Operating Systems (OS) 34

2.23. Real Time Operating System (OS) Architectures 34

2.24. Soft Real Time Operating System (OS) ... 35

2.25. Hard Real Time Operating System (OS) ... 37

Chapter 3 Popular Operating Systems ... 39

3.1. How Windows Versions Have Evolved Throughout the Years 40

3.2. Linux Operating System (OS) .. 44

3.3. Advantages and Disadvantages of Linux Operating System (OS)........ 49

3.4. The Virtual Machine System .. 51

3.5. Techniques Used in their Virtual Management Systems 53

3.6. The Aix Operating System (OS) ... 55

3.7. The Os/400 ... 56

3.8. The Difference Between Os/400 Vs. Unix ... 58

3.9. Z/Os Operating System (OS) ... 59

Chapter 4 Operating System Properties ... 61

4.1. Batch Processing ... 62

4.2. Evolution of Batch Processing ... 62

4.3. Monitors and Dependencies in Batch Processing 63

4.4. Advantages of Batch Processing .. 65

4.5. Disadvantages of Batch Processing ... 66

4.6. Multitasking .. 67

4.7. Multiprograming ... 71

4.8. Types of Multiprogramming Operating Systems (OSS) 73

4.9. Advantages of Multiprograming .. 73

4.10. Disadvantages of Multiprogramming ... 74

ix

4.11. Types of Interactive Systems .. 76

4.12. Real Time Systems... 78

4.13. Applications of Real Time Systems .. 80

4.14. Spooling ... 81

4.15. Working of Spooling in Operating System (OS) 82

Chapter 5 Operating System – Processes ... 85

5.1. Process ... 86

5.2. Kernels ... 87

5.3. Program .. 88

5.4. Life Cycle of the Process ... 89

5.5. Process Control Block (PCB) ... 90

5.6. Process Scheduling ... 92

5.7. Two-State Process Model .. 93

5.8. Schedulers .. 94

5.9. Medium-Term Scheduling ... 95

5.10. Short-Term Scheduling .. 96

5.11. Dispatcher .. 97

5.12. Context Switch ... 97

5.13. Program Counter (PC) ... 100

5.14. Scheduling Algorithms .. 102

5.15. Scheduling Algorithms/Disciplines .. 103

5.16. Priority Scheduling ... 104

5.17. Shortest Remaining Time First ... 106

5.18. Fixed Priority Pre-Emptive Scheduling ... 107

5.19. Round-Robin Scheduling .. 108

5.20. Inter-Process Communication ... 110

Chapter 6 Operating System Multi-Threading ... 113

6.1. Introduction .. 114

6.2. Operating System (OS) Multi-Threading .. 114

6.3. Difference Between a Process and a Thread 117

6.4. Building Blocks for the Functioning of a Thread 118

6.5. The Central Processing Unit .. 119

6.6. Information Storage System ... 120

6.7. Similarities Between a Process and a Thread 121

x

6.8. Fibers in Multithreading .. 122

6.9. Preemptive and Cooperative Scheduling ... 123

6.10. Single and Multiprocessor System Scheduling 123

6.11. Thread Pools ... 124

6.12. Programming Language Support for Threads 125

6.13. Threads Data Synchronization .. 126

6.14. Types of Threads.. 129

6.15. Differences Between Kernel-Level Threads
and User-Level Threads .. 131

6.16. Similarities Between User-Level Threads
and Kernel-Level Threads ... 132

Chapter 7 Memory Management ... 137

7.1. Process Address Space .. 138

7.2. Address Spaces ... 139

7.3. Static Versus Dynamic Loading ... 142

7.4. Static Versus Dynamic Linking .. 143

7.5. Contrasts Between Static and Dynamic Linking 145

7.6. Swapping .. 146

7.7. Contiguous Memory Allotment in Operating System (OS) 149

7.8. Fragmentation ... 152

7.9. Paging ... 155

7.10. Address Translation ... 158

7.11. Segmentation .. 159

Chapter 8 Virtual Memory ... 161

8.1. Implementation of Virtual Memory ... 166

8.2. Demand Paging .. 169

8.3. Demand Segmentation ... 175

8.4. Swapping/Swap File .. 179

8.5. Page Replacement... 182

Chapter 9 File System .. 185

9.1. File ... 186

9.2. File Structure .. 188

9.3. Types of File Systems ... 189

xi

9.4. Structures of Directory in Operating System (OS) 195

9.5. File Access Mechanisms ... 200

9.6. Space Allocation ... 203

9.7. Allocation Based on Indexes ... 205

9.8. Design Limitations .. 209

Chapter 10 I/O Software and I/O Hardware ... 211

10.1. I/O Hardware ... 212

10.2. Device Controllers .. 213

10.3. The Memory Mapped Input Output System 214

10.4. Direct Memory Access .. 216

10.5. Direct Memory Access Controller ... 217

10.6. Interrupts Revisited ... 219

10.7. Precise and Imprecise Interrupts ... 220

10.8. I/O Software ... 220

10.9. Programmed I/O ... 223

10.10. I/O Using Direct Access Memory .. 226

Chapter 11 Operating System – Security ... 229

11.1. Common OS Security Threats ... 232

11.2. Program Threats .. 234

11.3. System Threats .. 238

11.4. One Time Passwords ... 241

11.5. Computer Security Classifications ... 242

 Bibliography .. 245

 Index ... 251

LIST OF FIGURES

Figure 1.1. Overview of OP
Figure 1.2. An illustration of external fragmentation
Figure 1.3. Device management
Figure 1.4. The storage structure in an operating system. The root directory is at the
head of the hierarchical system in this illustration. It includes all of the subdirectories
in which the files are kept. A subdirectory is a directory that resides within another
directory in the file storage system. The directory-based storage program ensures better
file organization in the memory of the computer system
Figure 1.5. Processor management steps
Figure 1.6. OS security
Figure 1.7. Timeline of OS
Figure 1.8. The User 5 is active state but User 1, User 2, User 3, and User 4 are in
waiting state whereas User 6 is in ready state
Figure 1.9. Diagram of network operating system
Figure 2.1. There are various kinds of batch operating system
Figure 2.2. A simple batch operating system
Figure 2.3. A multi-programmed batched operating system
Figure 2.4. Time-sharing operating system is an extension of logical programming
Figure 2.5. Time sharing operating systems may need virtual memory
Figure 2.6. States of time-sharing operating system
Figure 2.7. The distributed operating system handles multiple tasks
Figure 2.8. Network operating system is founding in several devices
Figure 2.9. The client network operating system
Figure 2.10. Real time operating systems have three main processes
Figure 2.11. Soft real time operating systems have soft deadlines
Figure 2.12. Hard real time operating system has hard deadlines
Figure 3.1. Operating systems
Figure 3.2. Common Windows OS
Figure 3.3. Introduction to LINUX operating system
Figure 3.4. The different distributions of the Linux operating system

xiv

Figure 3.5. Advantages and disadvantages of Linux
Figure 3.6. The virtual machine system
Figure 3.7. An example of a VM
Figure 3.8. Creating a VM system
Figure 3.9. The AIX operating system
Figure 3.10. The OS/400
Figure 3.11. The AS 400 software
Figure 3.12. Understanding the z/OS operating system
Figure 3.13. Representation of z/OS
Figure 4.1. Batch processing is very effective in performing tasks
Figure 4.2. Evolution of batch processing has made the process dependable
Figure 4.3. Process related to batch processing are conducted by the operating system
Figure 4.4. Multitasking enables the operating system perform several tasks in a given
period of time
Figure 4.5. Cooperative multitasking enables several tasks to be performed
simultaneously
Figure 4.6. Preemptive multitasking ensures that all tasks are given an opportunity for
operation
Figure 4.7. Multiprogramming is a rudimentary form of parallel processing
Figure 4.8. Operating systems have been developed to enable interactions between
human beings and computers
Figure 4.9. Command line systems were the first kind of interactive system developed
Figure 4.10. Real time systems are information processing systems
Figure 4.11. Spooling requires the creation of spools to manage data
Figure 5.1. Components of a program
Figure 5.2. Programming language
Figure 5.3. Process life cycle
Figure 5.4. A sample thread pool (green boxes) with a queue (FIFO) of waiting tasks
(blue) and a queue of completed tasks (yellow)
Figure 5.5. A basic organization of the Linux Kernel, that holds elements like process
schedulers, I/O schedulers, and packet schedulers
Figure 5.6. Difference between long-term, medium-term scheduler, and short-term
scheduler
Figure 5.7. The main functional components of the scheduler
Figure 5.8. Context switch

xv

Figure 5.9. The front panel of an IBM 701 computer, which was debuted in 1952. The
contents of numerous registers are displayed by lights in the center. The instruction
counter is located in the lower left corner
Figure 5.10. CPU process scheduling algorithms in OS
Figure 5.11. Representation of a FIFO queue
Figure 5.12. SRTS
Figure 5.13. Round robin scheduling
Figure 5.14. Non-preemptive and pre-emptive multilevel scheduling
Figure 5.15. A grid computing system that connects many personal computers over the
internet via inter-process network communication
Figure 6.1. An image showing a thread
Figure 6.2. An illustration of process cycle in operating system
Figure 6.3. An illustration of the kernel category
Figure 6.4. An illustration of a CPU
Figure 6.5. Illustration of the file system structure
Figure 6.6. A thread pool
Figure 6.7. Illustration of both user-level and kernel-level threads
Figure 6.8. An image of the many to one model
Figure 6.9. An image of the one-to-one model
Figure 6.10. An image of the many to many models
Figure 7.1. Operating system address space
Figure 7.2. Default address space layout
Figure 7.3. Swapping between main memory and backing store
Figure 7.4. Flowchart diagram of the paging process
Figure 8.1. A visualization of virtual memory in the operating system
Figure 8.2. A sample random access memory as used in virtual memory
Figure 8.3. Memory mapping, the basic functionality of virtual memory
Figure 8.4. One line code multitasking kernel. It was initially the purpose of virtual
memory to work on this
Figure 8.5. An illustration of the implementation of virtual memory
Figure 8.6. Computer hardware memory devices
Figure 8.7. The concept of address space
Figure 8.8. Demand paging and pre-paging
Figure 8.9. The initial stages of demand paging

xvi

Figure 8.10. The process of demand paging
Figure 8.11. Summarized advantages and disadvantages of demand paging
Figure 8.12. Demand segmentation
Figure 8.13. Illustration of the segmentation of virtual addresses
Figure 8.14. Swapping in the operating system
Figure 8.15. Page replacement algorithm
Figure 9.1. File management is one of the basic and important features of operating
system. Operating system is used to manage files of computer system. All the files with
different extensions are managed by operating system
Figure 9.2. OS and file system
Figure 9.3. Attributes, types, and operations of file systems
Figure 9.4. The file system enables you to view a file in the current directory as files
are often managed in a hierarchy
Figure 9.5. Structures of directory in operating system
Figure 9.6. Single-level directory
Figure 9.7. Two-level directory
Figure 9.8. Tree-structured directory
Figure 9.9. Acyclic graph directory
Figure 9.10. General graph directory structure
Figure 9.11. Contiguous allocation
Figure 9.12. Linked allocation
Figure 9.13. Index blocks
Figure 9.14. Index blocks
Figure 9.15. File systems and operating systems
Figure 10.1. Output and input devices
Figure 10.2. The memory mapped I/O systems
Figure 10.3. Input output hardware
Figure 10.4. Direct memory access
Figure 10.5. Operation of a DMA transfer
Figure 10.6. The interrupt revisited system
Figure 10.7. Goals of I/O software
Figure 10.8. Input data transfer process
Figure 10.9. Output data transfer system
Figure 10.10. Using direct access memory

xvii

Figure 11.1. Operating system security
Figure 11.2. Standard security attacks
Figure 11.3. Information security
Figure 11.4. Malicious software
Figure 11.5. Trojan horse
Figure 11.6. Trap doors
Figure 11.7. Logic bombs
Figure 11.8. A boot-sector computer virus
Figure 11.9. The Morris internet worm
Figure 11.10. One-time passwords (OTP)

LIST OF ABBREVIATIONS

APIs application programming interfacing
BPAM basic partitioned access method
DDoS distributed denial of service
DLL dynamic link libraries
DMS document management software
EDF earliest deadline first
FCFS first come, first served
FIFO first in, first out
GB gigabytes
I/O input/output
IAR instruction address register
Inode information node
IPC interprocess communication
KB kilobytes
LAN local area network
LDE limited direct execution
LRU least-recently used
ME millennium edition
MFD master file directory
MMU memory management unit
NOS network operating system
NT new technology
OS operating system
PC personal computer
PC program counter
PCB process control block
PDS partitioned data set
PDSE partitioned data set extended
PID process identification number
RAM random access memory

RDBMS relational database management system
RR round robin
RTOSs real-time operating systems
SJF shortest job is completed first
SJN shortest-job-next
SMP symmetric multiprocessing
TLB translation look-aside buffer
VTOC volume table of contents

ABSTRACT

An operating system (OS) consists of programs that regulate the implementation of
application programs and serve as a channel between the client and PC hardware. The
operating system manages the computer hardware systems as well as gives a structure
for applications to run. A few examples referenced in the volume are Windows,
Windows/NT, OS/2, and MacOS. The book presents OS as advantageous and simple to
use for the client and simplifies handling client issues.
For a PC to begin running, for example, when it is organized or rebooted, it must
have a primary program. This core system, or bootstrap program, will, in general, be
straightforward. It launches all parts of the framework, from CPU catalogs to device
regulators to memory elements. Normally, it is put in read-only memory (ROM) or
digitally erasable read-only memory (EEPROM), referred by the overall term firmware,
inside the PC equipment.
In multiprogramming systems, the OS determines which cycle gets the processor and
the duration. This capacity is known as process planning. The volume discusses an
operating system for doing these activities:
 • keeps check of processor and process status of interaction;
 • allocates the processor (CPU) to a function; and
 • de-assigns processors whenever a cycle is not generally needed.

The operating system (OS) is a connection point between a PC client and PC equipment.
The working framework is a product that plays out every one of the fundamental errands,
including file management, memory administration, process administration, managing
input and output, and handling peripheral instruments, for example, printers and disk
drives. A few well-known Operating Systems incorporate Windows Operating System,
Linux Operating System, VMS, OS/400, AIX, z/OS, and so forth. The operating system
functions as a point of interaction between the client and the PC equipment and controls
the execution of a wide range of programs. A few key subjects captured in this volume
incorporate:
 • memory management;
 • processor management;
 • security;
 • control over structural output;
 • device management;
 • file management;
 • fault detecting aids; and
 • synchronization between other programs and clients.
The operating system (OS) is the presentation of a PC system equipment abstraction,
whereby individuals manage the equipment, and to utilize the resources of the PC
system.
To develop the students’ basic understanding, pragmatic capacity, technology, and
framework plan must synchronize through programming and hardware as a technique,
the PC circuit system, PC design guideline, internal framework configuration, working
framework, and structural organization. Accordingly, links between programs are
reinforced, and the students’ PC systems analysis, design capacity and innovation.
Lately, the working framework and its abstraction systems regarding the application
programming becomes more complicated. The volume discusses the impact of different
components of modern operating system planning and physical operation, clients, and
planning, preparation of the structural framework and other systemic programs.
This volume examines a few significant forms of operating systems, which are most
usually utilized, including multi-programmed batch system and batch operating
system. In multiprogramming systems, the OS determines which interaction receives
the processor when and overall period. This procedure is called process booking. An
operating system performs different functions, such as:

PREFACE

xxiv

 • Evaluates processor and process status;
 • Allocates the processor (CPU) to a function;
 • De-allots processor when an interaction is not generally needed. An Operating

System oversees device correspondence through their individual drivers. The
digital system is moving towards cell phones. To find out more on operating
systems, clients should acquire active bit programming experience in these
conditions, which are very unique in relation to conventional computers and
servers.

The functioning of the multi-systemic batched system includes roles being assembled
empowering the CPU to execute each occupation in turn permitting the CPU to use its
resources. Roles are sustained in the operating structure each in turn. For the role to be
done, a program is completed that uses I/O activity. The client cannot become inactive
while utilizing a multi-programming framework, as the working framework will change
to another system.
The batched computer system keeps various tasks in the memory as it conducts a given
assignment until it is completely executed. It follows a sequential process. The memory
is freed once a given errand is finished and the work yield is moved to a result spoil,
permitting it to be handled or printed later. The batch activity framework restricts client
communication. The client is free once the framework takes assignments from the batch
system.

AN OVERVIEW ON OPERATING
SYSTEM

CHAPTER1

CONTENTS
1.1. Memory Management ... 3

1.2. Device Management ... 4

1.3. File Management .. 6

1.4. Processor Management ... 7

1.5. Security .. 9

1.6. A Brief History of Operating Systems (OSS) 11

1.7. Operating System (OS) Types .. 12

Introductory Guide to Operating Systems2

An operating system (OS) is a component of system software that controls
computer hardware and software whilst also offering common functions to
programs.

Activities are planned, almost scheduled, in time-sharing OS to increase
the systems efficiency. There is software that are accountable for the
distribution of processing time, mass storage, printing, and other services
and could or could not be included (Yin et al., 2016).

Despite the fact that application code is normally executed directly by the
hardware and frequently communicates with an OS function or is disrupted
by it, the OS serves as a bridge between programs and computer hardware
for hardware functions such as input and output and memory utilization.
From cellphones and game consoles to web servers and supercomputers,
OSs are available on a diverse variety of computer-based devices (Figure
1.1).

Figure 1.1. Overview of OP.

Source: https://en.wikipedia.org/wiki/Operating_system.

The following are some of important functions of an OS:
• Memory management;
• Device management;
• File management;
• Processor management;
• Security;
• Control over system performance;

An Overview on Operating System 3

• Job accounting;
• Error detecting aids;
• Coordination between other software and users.

1.1. MEMORY MANAGEMENT
Memory management is a sort of resource management that is used to keep
track of how much memory a computer has. Memory management must
contain techniques for efficiently allocating memory to programs on request
and releasing it for use when it is no longer needed. This is critical in any
computer system with numerous processes executing at the same time
(Quigley et al., 2009).

There have been several ways explored to improve memory management
efficacy. Virtual memory systems separate a process’s memory addresses
from its physical addresses, allowing it to separate processes and increase
the virtual address space beyond the amount of RAM available by paging or
shifting to auxiliary storage.

The performance of the virtual memory manager can have a big impact
on overall system efficiency and productivity. In some OSs, such as OS/360
and successors, the OS manages memory. Other OSs, such as Unix-like
OSs, handle memory at the application level.

There are two types of memory management in an address space: manual
memory management and automatic memory management. Locating
a sufficient-sized block of unoccupied memory is required to process an
allocation request. Memory demands are fulfilled by allocating pieces
of memory from the heap or free store, which is a large pool of memory
(Whipple et al., 2009). At any one time, some parts of the heap are in use,
while others are “free” (unoccupied) and hence available for subsequent
allocations.

External fragmentation, which results from multiple small gaps between
issued memory blocks, making their use for an allocation request invalid,
is one of the obstacles to implementation. The information of the allocator
can also exaggerate the size of (relatively) small allocations. Chunking is a
popular method for accomplishing this. The memory management system
must keep track of memory allocations to ensure that they never overlap and
that no memory is ever “lost” (memory leaks) (Figure 1.2).

Introductory Guide to Operating Systems4

Figure 1.2. An illustration of external fragmentation.

Source: https://en.wikipedia.org/wiki/Memory_management#/media/
File:External_Fragmentation.svg.

1.2. DEVICE MANAGEMENT
Device management refers to the control of input/output (I/O) devices
including microphones, keyboards, printers, magnetic tape, USB ports,
camcorders, projectors, and other accessories, as well as accompanying units
such support units control channels, in an OS. A process may necessitate a
range of resources, including main memory, file access, and access to a disk
drive, among others. Control can be transferred to the CPU if resources are
available (Wentzlaff et al., 2010). Alternatively, the procedure would have to
be postponed until enough resources were available. The OS needs a distinct
application designated as an ad device controller to handle the numerous
devices on the system, whether actual or virtual. It also determines whether
or not the desired device is present (Figure 1.3).

The principles of I/O devices can be classified into three types:
•	 Boot Device: It organizes data into fixed-size blocks, with every

single one of them having its own unique address. Disks, for
example.

•	 Character Device: It sends or receives a continuous stream of
characters, none of which may be addressed individually. For
example, keyboards, printers, and so on.

•	 Network Device: It is used for data packet transmission.

An Overview on Operating System 5

Figure 1.3. Device management.

Source: https://zitoc.com/device-management/.

The communication with the devices is handled by the OS via their
drivers. The Operation Systems elements offers a harmonious interface
for accessing devices with varying physical characteristics (Tsolakis et
al., 2019). OS peripheral devices are classified into three types: dedicated,
shared, and virtual.

The following are some device management features:
• The OS links up with device controllers through device drivers

when directing the device to the various processes running on the
system;

• Device drivers are also system software applications that connect
processes and device controllers;

• Another critical purpose of the device management function is to
implement the API;

• Device drivers are software programs which enable an OS to
properly regulate the operation of multiple devices;

• The device controller, which is utilized in device management
operations, consists primarily of three types of registers:
command, status, and data.

Introductory Guide to Operating Systems6

1.3. FILE MANAGEMENT
To maintain files, a file management system is employed (or management).
It’s a type of computer application that manages data files in a system.

A file management system has limited functionality and is designed to
manage individual or group files, such as specific office papers and records. It
may show information about the report’s owner, production date, completion
status, and other features that are relevant in a workplace environment.

A file management system is often known as a file manager. Each
computer’s data is kept in a complex hierarchical file system with directories
and subdirectories beneath them.

These folders are where files are saved, and they usually follow the
hierarchical arrangements prescribed by a program’s instructions.

However, many other data, such as images, videos, and documents, are
organized by the user at his or her leisure. A file management system is
essentially the software that is used to organize, move, and operate with these
files (Tang et al., 2010). In reality, file management systems are concerned
with how files are structured as opposed to just how they are saved.

The tracking component of a file management system is critical to the
construction and maintenance of this system, in which documents in different
phases of processing are distributed and interchanged on a continuous basis.
It comprises of a simple interface that displays stored files.

It enables the user to explore, transfer, and sort them based on several
criteria such as date of last modification, date of creation, file type/format,
size, and so on (Figure 1.4).

The system may include elements such as:
• The procedure of assigning queued document numbers for

processing;
• Ownership and process mapping are used to track the many

phases of processing;
• Report generation;
• Notes;
• Status;
• Create, modify, move, copy, and delete files, as well as do other

file operations;
• Basic metadata can be added or edited.

An Overview on Operating System 7

Figure 1.4. The storage structure in an operating system. The root directory is at
the head of the hierarchical system in this illustration. It includes all of the sub-
directories in which the files are kept. A subdirectory is a directory that resides
within another directory in the file storage system. The directory-based storage
program ensures better file organization in the memory of the computer system.

Source: https://princeabhishek410.medium.com/understanding-file-manage-
ment-system-in-operating-system-4c7fbfc306f2.

Advanced file management systems, such as document management
software (DMS), may be able to do additional tasks, such as arranging
important documents. To establish a searchable database for faster retrieval,
files are tagged or indexed depending on their properties (Shin et al., 2014).

A file management system is not the same as a file system, which stores
all types of data and files in an OS, or a database management system,
that includes relational database features and a scripting language for data
processing.

1.4. PROCESSOR MANAGEMENT

1.4.1. Process
A process is a job that falls under the category of Execution. Process is
often referred to as the Running Job. A system call must be made that calls

Introductory Guide to Operating Systems8

the Processor or CPU to perform any operation for execution. The process
comprises reading information from a file, writing data from a file, and
printing a page, which means that any type of operation is known as a
process. Every process has some characteristics, such as:

•	 Process	 ID	 or	 Identification	 Number:	 The CPU assigns a
process id when we request an operation. When we request a
service, we are given a process id, which is also referred to as a
unique identifying number. As we all know, there are numerous
types of operations that may be conducted on a computer. As a
result, for identification, which Process will be executed (Singh,
2014).

•	 Name of the Process: Identify the process description. The name
of the operation carried out by the Process. For instance, move
the mouse cursor, click on My Documents, open a file, and so on.

•	 Process Status (Ready, Active, Wait, or Suspend): The process
has some states, state specify the process state implies whether a
process is operating or not, whether a process waits for CPU, and
so on.

States are classified into three types.
•	 Ready: When we have completed all of the Inputs and Outputs,

the process will enter the Ready State. We expect the Execution
after providing the input. Following the end of user interaction,
which includes all inputs and outputs.

•	 Active: A process that is active is one that is executing on the
CPU.

•	 Wait: When a process is waiting for user input and output, it is
said to be in the wait state.

Process state will provide you with information about the process’s
status.

1.4.2. Process Resources
Many resources are employed when running a process. To input information
for instance, we have to use the keyboard, and to send data to the computer,
we must use the CPU. So, what types of resources are required to carry out
any operation? The term “system resources” refers to all of the devices that
are connected to the computer (Sangorrin et al., 2010).

An Overview on Operating System 9

1.4.2.1. Scheduling Information
Scheduling is utilized when multiple processes are executing at the same
time in which the following processes will be executed by the CPU. So, we
use scheduling to calculate CPU time, which means CPU time is divided
among several processes (Figure 1.5).

Figure 1.5. Processor management steps.

Source: https://operatingsystemsam.wordpress.com/processor-management/.

1.5. SECURITY
All computer system and software architecture have to address all security
issues and implement the necessary security controls. At the same time,
achieving a balance is critical because stringent security measures can
increase costs while lowering the system’s usability, utility, and efficiency.
As a result, system designers must guarantee that performance is maximized
while security is maintained.

OS security is the process of ensuring an OS’s availability, confidentiality,
and integrity. OS security refers to the strategies and tactics used to protect
the OS against dangers like viruses, worms, malware, and remote hacker
intrusions (Sharma et al., 2012). Any preventive-control mechanisms that
secure any system assets that could be taken, modified, or erased if OS
security is compromised are included in OS security (Figure 1.6).

Introductory Guide to Operating Systems10

Figure 1.6. OS security.

Source: https://www.javatpoint.com/operating-system-security.

Security alludes to the protection of computer system resources like
software, CPU, memory, storage, and so on. It is equipped to safeguard
against any risks, like viruses and unauthorized access. It can be enforced
by maintaining the integrity, confidentiality, and reliability of the OS. If an
unauthorized person starts a computer application, the system or data stored
on it may be severely harmed.

Two transgressions can jeopardize system security, and they are as
follows:

•	 Danger: A program that has the potential to gravely harm the
system.

•	 Assault: A security breach that permits unauthorized access to a
resource.

There are two kinds of security breaches that might cause problems for
the system: purposeful and unintentional. Malicious threats are types of
damaging computer code or web script that are designed to cause harm.

The following are some of an OS’s other key functions:
•	 Security: It uses passwords and other security mechanisms to

prevent unwanted access to programs and information (Arshad
et al., 2018);

•	 Monitoring System Performance: This by keeping track of
how long it takes to request a service and get a response from the
system;

An Overview on Operating System 11

•	 Job	Accounting:	It is the practice of keeping track of how much
time and resources certain occupations and users spend on them;

•	 Debugging	 and	Error-Detection	Tools:	 create dumps, traces,
error messages, and other debugging and error-detection tools;

•	 Integration with Other Software and Users: Compilers,
interpreters, assemblers, and other software are coordinated and
assigned to computer system users.

1.6. A BRIEF HISTORY OF OPERATING SYSTEMS
(OSS)
OSs were not available on the early computers. Single programs that operated
off of these early computers had to contain every single code necessary to
function on the computer, interface with the associated hardware, and do the
computations that the program was assigned for. Even the simplest programs
become extremely complicated due to this circumstance (Shaw et al., 2016).

As a result of this dilemma, the proprietors of the first computers began
to design system software that helped in the authoring and execution of the
computer’s programs, giving birth to the first OSs. In 1956, GM created the
first OS to run a single IBM central computer. The International Business
Machines Corporation was the pioneering computer firm to take on the duty
of designing OSs and to supply OSs with its machines in the 60s.

In the 1950s, when computers could only run a single program at a go,
the first OSs were created. Later in the following decades, computers began
to integrate an increasing number of software packages, what is now known
as libraries, which combined to provide the foundation for today’s OSs.

The original version of the Unix OS was developed in the 60s. Written
in the C programming language and at first provided for free. Unix adapted
swiftly to the new platforms and gained widespread appeal.

A number of contemporary OSs, like the Apple OS X and several Linux
variants, are based on or date from the Unix OS. Microsoft Windows was
developed to satisfy IBM’s need for an OS to power its personal computer
(PC) line. Microsoft’s initial OS was called MS-DOS, and it was released in
1981 after the company purchased the 86-DOS OS from Seattle Computer
Products and tweaked it to fit IBM’s specifications (Silva et al., 2006).

A graphical user interface was fitted with MS-DOS in 1985, and created
what is now known as Windows. Apple, OS X, Microsoft Windows, and
different kinds of Linux (including Android) now control the great bulk of

Introductory Guide to Operating Systems12

the current OS market. Most software packages are designed to run with a
single company’s OS, such as just Windows or only macOS (Figure 1.7).

Figure 1.7. Timeline of OS.

Source: https://www.orb-data.com/the-history-of-the-operating-system-from-
paper-tape-to-openshift/.

A piece of software will clearly state which OSs it offers, and if necessary,
will be quite detailed about which versions of those OSs it supports. For
example, a video production software package may state that it is compatible
with Windows 10, Windows 8, and Windows 7, but not with prior Windows
versions such as Vista and XP.

Additional versions of software that run with different OSs or versions
are routinely released by software developers.

It’s also crucial to understand whether your OS is 32-bit or 64-bit. When
you download software, companies frequently ask you this question.

1.7. OPERATING SYSTEM (OS) TYPES
OSs have existed since the dawn of computing, and they continue to evolve
throughout time. In this chapter, we’ll go through some of the most often
utilized OSs.

1.7.1. Batch Operating System (OS)
A batch operating is designed for a specific purpose and does not have
any of its processes controlled directly by the user. Each user presents a
designated task to the computer operator through an off-line means like with

An Overview on Operating System 13

punch cards (Sjöstrand et al., 2015). Jobs with similar needs are batched
together and run as a group to hasten processing. The programmers give
their programs to the operator, who organizes the programs into batches
based on their requirements.

Below are some issues with batch systems:
• Interaction between the user and the work is lacking;
• Because mechanical I/O devices are slower than the CPU; the

CPU is often idle;
• It’s difficult to give the required priority.

1.7.2.	Time-Sharing	Operating	Systems	(OSs)
Time-sharing is a technique of letting multiple users to use a computer
system at the same time from different stations or terminals. Multitasking
or time-sharing is a natural variation of multiprogramming. Time-sharing is
the name derived from the usage of a processor’s time by more than one user
at the same time. The fundamental difference between multiprogrammed
batch systems and time-sharing systems is that the goal of multiprogrammed
batch systems is to increase processor utilization, whereas the goal of time-
sharing systems is to lower response time (Santos et al., 2013). The CPU
changes between multiple jobs to complete them, but the shifts are common.
As a consequence, the user can expect a fast response (Figure 1.8).

Figure 1.8. The User 5 is active state but User 1, User 2, User 3, and User 4 are
in waiting state whereas User 6 is in ready state.

Source: https://www.geeksforgeeks.org/time-sharing-operating-system/.

In transaction processing, for instance, the processor executes every user
application in fast and powerful quantum computations. That is, if a certain
number of users are active, each of them can obtain a time quantum. When a
user gives a command, the response time is only a few seconds (Peter et al.,

Introductory Guide to Operating Systems14

2015). The OS makes advantage of CPU scheduling and multiprogramming
to allocate a tiny amount of time to each user. Computer systems that were
initially created as batch systems have now been converted to time-sharing
systems.

1.7.3.	Distributed	Operating	System	(OS)
In distributed systems, numerous central processors are employed to take
many real-time applications and consumers. As required, jobs for data
processing are divided across the processors.

The processors connect with one another via numerous communication
links (such as high-speed buses or telephone lines). These types of systems
are referred to as loosely coupled systems or dispersed systems. In a
distributed system, the size and function of processors may differ. These
processors are referred as sites, nodes, computers, and other words.

1.7.4. Network Operating System (NOS)
A network operating system (NOS) operates on a server and allows it to
deal with data, users, groups, security, applications, and other networking
operations. The fundamental function of a NOS is to provide shared file and
printer access across numerous computers in a network, which is often a
local area network (LAN), a private network, or another network. Microsoft
Windows, UNIX, Linux, and Mac OS X are examples of NOS (Figure 1.9).

Figure 1.9. Diagram of network operating system.

Source: https://digitalthinkerhelp.com/network-operating-system-nos-tutorial-
examples-and-types/.

TYPES OF OPERATING SYSTEMS

CHAPTER2

CONTENTS
2.1. Batch Operating System (OS) .. 16

2.2. Types of Batch Operating System (OS) ... 17

2.3. Working of the Batched Operating System (OS) ... 19

2.4. Advantages of Batch System .. 19

2.5. Disadvantages of Batch System ... 19

2.6. Time-Sharing Operating System (OS) ... 19

2.7. Requirements of the Time-Sharing Operating System (OS) 22

2.8. Advantages of Time-Sharing Operating System (OS) .. 23

2.9. Disadvantages of Time-Sharing Operating System (OS) 23

2.10. Distributed Operating System (OS) .. 23

2.11. Distributed Computing Models ... 25

2.12. Design Consideration of Distributed Operating System (OS) 26

2.13. Advantages of Distributive Operating System (OS) ... 27

2.14. Disadvantage of Distributive Operating Systems (OSS) 27

2.15. Network Operating System (NOS) ... 28

2.16. Types of Network Operating Systems (NOS) .. 29

2.17. Features of Network Operating System (NOS) ... 30

2.18. Real Time Operating System (OS) .. 31

2.19. Characteristics of Real Time Operating System (OS) 31

2.20. Real Time Operating System (OS) in Embedded Systems 32

2.21. Advantages and Features of Real Time Operating System (OS) 33

2.22. Disciplines that Impact Real Time Operating Systems (OS) 34

2.23. Real Time Operating System (OS) Architectures ... 34

2.24. Soft Real Time Operating System (OS) ... 35

2.25. Hard Real Time Operating System (OS) .. 37

Introductory Guide to Operating Systems16

2.1. BATCH OPERATING SYSTEM (OS)
The batch operating system (OS) is very different from other kinds of OSs
in that the computer and OS do not interact directly. The system makes
use of an operator that takes similar jobs with the same requirement and
groups them into batches. The operator, therefore, has the task of grouping
jobs with similar needs. For users who utilize this OS, they do not directly
interact with the computer (Ow, 2011). When using the software, the user
prepares their work in an off-line device such as a punch card. They submit
the work to the computer operator, which sorts the task. Jobs with similar
needs are batched together and run as a group so as to speed up processing.
When the programmer exits the programs with the operator then sorts the
programs according to their similarities (Figure 2.1).

Figure 2.1. There are various kinds of batch operating system.

Source: https://padakuu.com/batch-operating-systems-27-article.

This kind of OS was very popular in the 1970s as most tasks were
executed in batches. During that period, the commonly used computers
were the mainframe. Jobs with similar functions were grouped together by
the batch OS. After grouping, the jobs were treated as batches and were
simultaneously executed. Some of the batch activities performed by the OS
are as follows.

As a single unit, a job I’d composed of a preset sequence of programs,
data, and commands. In the computer, processing is done in the order that
they are received; it works on the first come first served basis. The jobs are
then stored in the memory and are executed later on without the need for
manual information. After the job is completed successfully, the OS releases
its memory (Nimodia and Deshmukh, 2012).

Types of Operating Systems 17

2.2. TYPES OF BATCH OPERATING SYSTEM (OS)
Under batching OS, there are two main branches namely the simple batched
system and the multi-programmed batched system.

2.2.1. Simple Batched System
When using the simple batched system, the use does not interact with the
computer system directly when executing a task. When using this system,
the user is required to prepare a job that includes the control information,
program, and data on the nature of the job. The information is placed in
the control cards. The job is then submitted to the computer operator. The
computer operator is in the form of a punch card. From the processing, an
output is generated which includes registers and results. When there was an
error during the execution of the program, a memory dump is the output of
the process. The output was produced after minutes, hours or days (Figure
2.2).

Figure 2.2. A simple batch operating system.

Source: https://www.tutorialspoint.com/operating_system/os_properties.htm.

The simple batch system works by transferring control from one job to
another. The process mostly involved jobs with similar requirements being
pooled together and the processor processing tasks. This makes processing
speed highly important (Nollet et al., 2004). Operators out programs with
similar needs into batches. When the batches are available, the computer
runs them one at a time. The sequence of jobs is read by the system. Each
job sequence usually Hass a control card and a predefined job which avails
them.

Introductory Guide to Operating Systems18

2.2.2.	Multi-Programmed	Batched	System
This system deals with jobs that have already been read and have not even
run on a disk. A disk usually contains a pool of jobs and allows the OS to
decide on what job it should run next to maximize COU utilization. Jobs
that come on cards or magnetic tapes cannot be run in a different order. The
jobs are executed simultaneously and are run on a first come first-served
basis. By storing jobs in a direct access device, this makes job scheduling
a in a disk very possible. An important feature of job scheduling is multi-
programming. There are limitations in the overlapped I/O, offline, and
spooling operations. A single user cannot maintain all the input and output
devices making CPU busy at all times (Figure 2.3).

Figure 2.3. A multi-programmed batched operating system.

Source: https://www.itrelease.com/2017/09/advantages-disadvantages-multi-
programming-systems/.

The working of the multi-programmed batched system involves jobs
being grouped enabling the CPU to execute one job at a time allowing
the CPU to utilize its resources. Jobs are maintained in the OS one at a
time. For the job to be done, a task is completed that included mounting
a tape on an I/O operation. The user cannot sit idle when using a multi-
programming system as the OS will switch to another task. As another job is
being completed, the other jobs remain in wait state and the CPU is returned
(Moore and Stouch, 2016).

Types of Operating Systems 19

2.3. WORKING OF THE BATCHED OPERATING
SYSTEM (OS)
The batched OS keeps a number of jobs in the memory as it performs a
given task until it is fully executed. It follows the first come, first served
(FCFS) manner. Jobs are grouped into sets known as batches. The memory
is freed once a given task is completed and the work output is transferred
to an output spoil allowing it to be processed or printed later. The batch
operation system limits user interaction. The user is free once the system
takes tasks from it. Batch system is of 10 used to update data related to
records or transactions.

2.4. ADVANTAGES OF BATCH SYSTEM
Some of the advantages of batch processing system are as follows:

• The batch systems allow several users to make use of the same
system making the system economical for several users in a given
organization;

• In the batch system, the processors are able to identify how long
it would take for a task to be completed;

• The batch system has a small idle time. Batch systems are very
easy to manage and work repeatedly.

2.5. DISADVANTAGES OF BATCH SYSTEM
Some of the disadvantages of batch system include the fact that the computer
operators work well when they are compatible with the batch system.
The batch systems are known to be hard to debug. The systems are very
expensive. If the task being run fails, other jobs will have to wait for an
unknown duration before they are taken up (Monaco et al., 2013). Bank stats
and payroll systems are examples of batch-based OSs.

2.6.	TIME-SHARING	OPERATING	SYSTEM	(OS)
The time-sharing OS is an extension of logical programming. It was
developed to deal with issues noted in multi-programmed batched systems.
Though the multi-programmed batched systems provided an environment

Introductory Guide to Operating Systems20

where system resources could function properly, it presented a challenge
with regards to user interaction. In the time-sharing OS, the CPU performs
many tasks by switches and allows the user to interact with each program
as it is being run (McClean et al., 2013). In this system, the CPU tends to
operate at a faster compared to other peripheral devices such as printers
and video display terminals. The high operation speed enables the CPU
have adequate time to solve discrete problems during the input/output (I/O)
process (Figure 2.4).

Figure 2.4. Time-sharing operating system is an extension of logical program-
ming.

Source: https://www.gatevidyalay.com/round-robin-round-robin-scheduling-
examples/

When using the time-sharing OS, the CPU addresses the problems
one at a time. However, access and retrieval from time-sharing systems
is considered instantaneous from the standpoint of remote terminals. This
is because the solutions are availed to them after the problem has been
completely. In the early 1960’s and late 1950’s, the time-sharing OS was
developed to enable efficient use of processor time. There are various kinds
of time-sharing OS techniques that include multi-programming, parallel
operation, and multiprocessing. There are a number of computer networks
organized with the goal of exchanging resources and data and are all
centered on time-sharing systems. A good thing about time shared OS is
that it enables several users to use the computers simultaneously (Manzalini

Types of Operating Systems 21

and Crespi, 2016). Each action or order becomes smaller at a time in the
time-shared OS. This gives the user little time when using the CPU. The
system rapidly switches from one user to another. This makes the user feel
as though the entire computer system is dedicated to its use though there are
multiple users using it.

To ensure optimum functioning, the time-shared OS make use of multi-
programming and CPU scheduling so that each is given a small portion of
a shared computer at once. Each of the users gets a separate program in
memory. The program is loaded on to a memory and is executed. The program
performs a short period of time before or when it is about to complete I/O.
The term time slice is used to refer to the short period of time during which
users get attention of CPU. Other names include quantum or time slot. The
time slice is usually of the order of 10 to 100 milliseconds. Compared to
multi-programmed OSs, the time-shared OSs are highly complex. In the
time-shared OS, multiple jobs are kept in the memory simultaneously. This
enables proper memory management and security. Jobs are swapped in and
out of the disk from the main memory to enable the system have a good
response time. When the jobs are swapped, the disk serves as a backing
store for the main memory. This goal can also be achieved when a virtual
memory is used. This technique enables the execution of a job that may not
be completed in memory (Figures 2.5 and 2.6).

Figure 2.5. Time sharing operating systems may need virtual memory.

Source: https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/9_Virtu-
alMemory.html

Introductory Guide to Operating Systems22

Figure 2.6. States of time-sharing operating system.

Source: https://www.itrelease.com/2014/08/advantages-disadvantages-time-
sharing-operating-system/.

In the shown figure, there are different users all in different states.
There’s re three main states namely the active state, ready state and waiting
state. In the active state, the CPU controls the user’s program. In the active
state, there is only one program that is available. In the ready state, the user’s
program is ready to execute but it has to wait its turn to get the CPU. Such a
state is able to accommodate several users. The final state is the waiting state
where the user’s program waits for input or output operation. The waiting
state can also accommodate more than one user at a time (Muehlstein et al.,
2017).

2.7.	REQUIREMENTS	OF	THE	TIME-SHARING	
OPERATING SYSTEM (OS)
There are somethings that are essential in ensuring the time-sharing OS
works well. They include an alarm clock mechanism. This mechanism
sends an interrupt signal to the COU after every time slice. There is also the
protection mechanism which prevents the instructions and data from one job
from interfering with others.

Example of time-sharing OS is the transaction processing system. In
the transaction processing system, there are different types of processors
that have the ability to execute each user program in quantum or small
burst computation. For instance, if there are n users then every user can get

Types of Operating Systems 23

a time quantum. Examples of the time-sharing OS include the TOPS-20,
TOOS-19, Windows NT server, Windows 2000 server, Linux, Multics, and
UNIX (Mayoral et al., 2017). Among the features of time-sharing OS is
that each user is able to grab a dedicated time for all operations, there are
multiple online users that can use the same computer at the same time, better
interaction between computers and users, the user’s request can be made in
small time response, it does not need longer time to wait for the task to end
to the processor and it has the ability to make quick processing with lots of
tasks.

2.8.	ADVANTAGES	OF	TIME-SHARING	OPERATING	
SYSTEM (OS)
Some of the advantages of time-sharing OS are as follows:

• Each of the tasks to be done is given equal opportunity to be
performed;

• There are reduced cases of duplication of software;
• There is reduced idle time in the CPU.

2.9.	DISADVANTAGES	OF	TIME-SHARING	
OPERATING SYSTEM (OS)
Some of the disadvantages of time-sharing OS are as follows:

• One is required to take security and integrity of the user’s data
and programs;

• There are problems in data communication;
• There is a problem with regards to reliability.

2.10. DISTRIBUTED OPERATING SYSTEM (OS)
The distributed OS is a system software made by the collection of physically
separate, networked, independent, and communicating computational nodes.
This kind of system handles jobs that have been services by multiple CPUs. It
is considered to be the most important type of OS. One individual node holds
a specific subset of the global aggregate OS. The given subset is a composite
of two distinct service providers. Of the distinct service providers, the first one
is a ubiquitous minimal kernel or microkernel. The kernel and microkernel
directly control the node’s hardware. The second encompasses the level

Introductory Guide to Operating Systems24

collection of system management components (Lin and Ye, 2009). These
components coordinate the node’s collaborative and individual activities.
These components therefore abstract microkernel functions and also support
user applications. The management and microkernel components collection
work together. The collaboration is useful in supporting the goal of the
system of integrating multiple processing and resources functionality into a
stable and efficient system. The integration of individual nodes seems to be
seamless. The integration of individual nodes is done into a global system.
For this reason, the integration process is called transparency. The single
system image is useful in describing the illusion of a single computational
entity to users of the global system’s appearance (Figure 2.7).

Figure 2.7. The distributed operating system handles multiple tasks.

Source: https://teachcomputerscience.com/distributed-operating-system/.

The distributed OS can be described as an OS with the ability to provide
all the needed essential services and functionality needed by users. It also
adds to the attributes and particular configurations that are needed to enable
it support other requirements including availability and increased scale. The
distributed OS and the single-node monolithic OS bear several similarities
including the fact that even though it is made up of several nodes, the user
views it as a single-node (Levis et al., 2005). The separation of policy and
mechanism is achieved when there is a separation of minimal system-level
functionality from additional user-level modular services. Mechanism can
easily be interpreted as “What something is done” while policy is interpreted
as “how something is done.” There is a notable increase in scalability and
flexibility when there is separation.

Types of Operating Systems 25

2.11. DISTRIBUTED COMPUTING MODELS
There are three basic distributions in the distribution OS. The three basic
distributions can better be illustrated by examining three system architectures
namely the centralized, decentralized, and distributed. In the examination,
three structural aspects are considered. They include organization,
connection, and control. The physical arrangement characteristics of a system
is the organizational part. The communication pathways among the nodes
are covered by connection. The operations of the earlier two considerations
are managed by control.

2.11.1. Organization
In a centralized system, there is one level of structure and from it all
constituent elements are directly depended on a single control element. A
hierarchical system is illustrated in the decentralized system. The subsets
of a system’s entities are united in the bottom level. Ultimately, the entity
subsets combine at higher levels and finally culminate at a central master
element. The distributed OS is made of a collection of autonomous elements
with no concept of levels.

2.11.2. Connection
The central master entity and centralized systems are directly connected in
a hub and spoke fashion. This is quite different in a decentralized system as
it makes use of both direct and indirect paths between the central entity and
constituent elements. It is often at times configured as a hierarchy with only
the shortest path between any two elements (Lass and Gronau, 2020). The
distributed OS may function in the absence of a given pattern as there are
both direct and indirect connections between any two given elements. This
can be explained by the phenomena of the string art or Spirograph drawing
as a fully connected system mostly used in the 1970s.

2.11.3. Control
Both centralized and decentralized systems have directed flows of
connection that run to and from the central entity. In distributed systems,
communication occurs along arbitrary paths. This forms the pivotal notion
of the third consideration. Control mostly deals with the allocation of data
and tasks to system elements thereby balancing complexity, responsiveness,
and efficiency. Decentralized system offers users more control and also

Introductory Guide to Operating Systems26

potentially easing administration by limiting options. There is a notable
difficulty in controlling distributed OSs but have proven to scale better
horizontally and offer fewer points of system wide failure. In this kind
of system, the associations deal with the needs imposed by the designs.
However, it does not deal with problems caused by organizational chaos.

2.12. DESIGN CONSIDERATION OF DISTRIBUTED
OPERATING SYSTEM (OS)

2.12.1. Transparency
Among the elements taken into consideration in the design of the distributed
OS is transparency. Transparency is also known as the single-system image.
It refers to the ability of an application to handle an OS with little regards as
to whether it is distributed or without regards to implementation or hardware
details. Transparency benefits several areas of a system including migration,
naming, performance, location, and access. Transparency affects decision
making directly therefore, it generally affects the design of the distributed
OS (Lange et al., 2011).

2.12.2.	Inter-Process	Communication
The inter-process communication involves the implementation of general
dataflow, process interaction and communication between threads between
or within nodes in a distributed OS. A low-level IPC design is achieved
through intra-node and inter-node communication. This is a typical approach
when implementing communication functions supporting transparency. For
this reason, the inter-process communication is considered to be the greatest
underling concept of the low-level design consideration of the distributed OS.

2.12.3. Process Management
When dealing with distributed processes, there is great need for proper
distribution of resources. This is achieved through process management.
This kind of management lays down mechanism and policies that could
be used in effective and efficient sharing of resources. The mechanisms
and policies support various operations that involve the allocation and de-
allocation of processes ad ports to processors (Krohn and Tromer, 2009).
The also give the system the mechanism to halt, migrate, suspend, run,
and resume process execution. The operations and resources can either be

Types of Operating Systems 27

remote or local with respect to each other. This enables the distributed OS to
maintain its state and synchronize the overall process in the system.

2.12.4. Resource Management
Computer systems are made of a variety of resources including devices,
files, and memory. These resources are distributed throughout the system.
This makes the nodes light to idle workloads. Policy-oriented decisions
influence load balancing and load sharing. Decisions can be made with the
aid of several algorithms. However, there is need for a second level decision
making policy that will decide on the most suitable algorithm for the given
problem. In the distributed OS, the processors communicate with each other
through the use of various communication lines. These communication
lines resemble high-speed buses or telephone lines. Processors are known
as distributed systems or loosely coupled systems. The processors of the
system may vary in function and size.

2.13. ADVANTAGES OF DISTRIBUTIVE OPERATING
SYSTEM (OS)
Some of the advantages of distributive OS includes the fact that a user at one
site is able to use resources at another end as a result of the resource sharing
facility. The other advantage is that the system speeds up data exchange
with one another through electronic mail. Also, when there is a failure at
one site in the distributed system, other sites will not be affected and can
therefore remain functional during the operation process (Kushwaha and
Kushwaha, 2011). The system also offers better services to the customers.
The distributive OS has a notable reduction in the load of the host computer.
There are minimal cases of delays in data processing when using these
systems. There is more performance compared to single systems. In
distributive OS, there is great ease in the addition of resources.

2.14. DISADVANTAGE OF DISTRIBUTIVE
OPERATING SYSTEMS (OSS)
Some of the disadvantages of distributive OS include the problem of security
due to sharing of systems. Another challenge is that there is a possibility
that the messages could be lost in the network system. The databases in the
network operating may present a challenge in administration compared to a
single user system. The bandwidth may present a challenge when there are

Introductory Guide to Operating Systems28

large amounts of data is being handled. In such a case, the network wires
need to be replaced with those that are expansive. Another challenge of the
distributive OS is overloading. This may be very common. There are cases
of low performance when the database in connected to a local system that
can be accessed by several users remotely or though the distributed way.

Some of the examples of the distributed OSs include the Linux, Ubuntu,
Windows Server 2012, Windows Server 2008, and Windows Server 2003.

2.15. NETWORK OPERATING SYSTEM (NOS)
The network operating system (NOS) is defined as a specialized OS for
network devices such as firewall, switch, or router. NOS are those that
possess networking capabilities. Historically, these systems were fitted in
personal computers (PCs) allowing them to participate in printer access,
shared file, and computer networks in a local area network (LAN). Though
this description of an OS in mostly historical, some of the common OSs
include the network stack used in supporting a client-server model (Jeong et
al., 2012). The NOS were mainly designed to support workstations and old
terminals. The NOS is created using a software that allows multiple devices
in a given network allowing them to communicate with each other and
also share resources. The main role of NOS in devices is to provide basic
network services and features which will support multiple input requests
simultaneously in the environment. The NOSs were developed as a solution
to the single-user computers (Figure 2.8).

Figure 2.8. Network operating system is founding in several devices.

Source: https://www.itrelease.com/2017/01/advantages-disadvantages-net-
work-operating-system/.

Types of Operating Systems 29

2.16. TYPES OF NETWORK OPERATING SYSTEMS
(NOS)
There are two main types of NOS namely the client/server NOS and the
peer-to-peer NOS. For the peer-to-peer NOS, the system enables the user
to share network resources saved in an accessible network location. The
architecture of the system involves devices being treated equally with
regards to functionality. This system is known to work well in small to
medium LANs. They are also relatively cheap to set up (Figure 2.9).

Figure 2.9. The client network operating system.

Source: https://dcandcn.blogspot.com/2019/11/what-is-network-operating-sys-
tem-nos.html.

The client/server NOS grants users’ access to resources by accessing
a server. The architecture of this system is such that all applications and
functions are unified under one file server that can be utilized in executing

Introductory Guide to Operating Systems30

individual client actions despite their physical location (Jaeger, 2008). This
system is quite expensive with regards to implementation and technical
maintenance. However, they are very advantageous as the network is centrally
controlled making it easy to make additions and changes to technology.

2.17. FEATURES OF NETWORK OPERATING
SYSTEM (NOS)
There are a number of elements that influences the features of the NOS.
These elements include the resource management functionality, system
maintenance and user administration. Features of the system include
internetworking, web services and backup, directory, network security
capabilities such as access control and user authentication, database sharing
and common file system, printer, and application sharing and basic support
for OSs including multiprocessing, hardware detection and processor
support.

2.17.1. Network Device Operating System (OS)
Some of the devices fitted with NOS include the hardware firewall or routers.
Most of these devices operate the functions of the network layer.

Some of the NOS are as follows. Proprietary NOS common in most
Cisco System routers and current Cisco network switches. There are various
kinds of proprietary networks which include the LCOS that are mostly
used in network devices made by LANCOM systems, the ZyNOS found
in network devices made by ZyXEL, RouterOS made by MikroTik and the
Cisco IOS which is a family of the NOS (Irwansyah et al., 2018).

In the Linux based OS, FreeBSD, and NetBSD there are various kinds
of systems developed by different companies. There is the ONOS which
is an open source SDN OS used by communication service provider.
These systems are designed such that they ensure high availability, high
performance, and scalability. The Vyatta routing package has an open-source
fork called VyOS. The cumulus Linux distribution utilizes full IP/TCP stack
of Linux. Other systems include SoNiC developed by Microsoft, OPNsense
of pfSense, pfSense of MOnOwall and the Dell Networking OS.

2.17.2. Examples of Network Operating Systems (NOS)
NOS are categorized as software useful in enhancing the functionality
of OSs by provision of added network features. Some examples of NOS

Types of Operating Systems 31

include Microsoft’s LAN manager which operates as a server application.
This software was developed to run under Microsoft’s OS.

2.18. REAL TIME OPERATING SYSTEM (OS)
The real time OS is a kind of operation known to have two main features
namely determinism and predictability. The system is characterized by
repeated tasks being performed within a tight time boundary. This is not
the case for other general-purpose OS. The real time OS focuses more on
determinism and predictability as they go hand in hand. By knowing how
long a task is expected to take, we know that it will produce the same result.
There are two main subdivisions of real time OSs which include the soft real
time OS and the hard real time OS differentiated by the time taken to operate
or react to a given situation (Hellmund, 2016). Real time OS is different
from other OSs that consumers have interacted with. While other OS found
on devices such as phones and PCs have multiple apps and features by
ensuring that they are compatible with the user wants, the real time OS is
very streamlined such that it is able to execute tasks quickly and effectively.
Real time OSs are a fraction of the size of most OS by a few megabytes
having a simple graphic interface but lacks some familiar features such as
the web browser (Figure 2.10).

Figure 2.10. Real time operating systems have three main processes.

Source: https://www.javatpoint.com/hard-and-soft-real-time-operating-system.

2.19. CHARACTERISTICS OF REAL TIME
OPERATING SYSTEM (OS)
There are five main types of real time OSs. They include determinism
which involves the system repeating the input to generate the same output.

Introductory Guide to Operating Systems32

There is also high performance in that real time OS are very responsive and
fast and are able to execute actions in a small fraction of time needed by a
general OS. Security and safety are a factor where the OS is mostly utilized
in critical systems where there are some catastrophic consequences such as
flight controllers or robotics. These systems are very useful in protecting
other components around them. Real time OSs protect other components
by having high security standards and also having reliable safety features
(Høiland-Jørgensen, 2018). Another characteristic is the priority-based
scheduling which ensures that actions assigned as high priority are executed
first followed by lower priority tasks. This means that the most important
tasks will be executed first. Another characteristic is the small footprint
where the real time OS weigh in a fraction of the size of other general OSs.
For example, Windows 19 has post-install updates and takes up about 20 Gb
while VxWorks on approximately 20,000 times smaller size when measured
in the low single-digit megabytes.

Real time OS bear similarities and difference with embedded systems.
An embedded system is usually embedded into a large machine such as
a microcontroller on a robotic arm. The open-source general operating e
such as the Linux are used in non-critical systems having some timeline
flexibility. This makes the difference between real time OSs and embedded
systems. Real time OSs are used in critical systems. Real time OSs have
characteristics that are very vital for success. A good example is the robotic
arm in a factory. It requires both reliable and predictable aspects of the
systems enabling it to immediately stop when an employee enters its area
of operation. In light of any variability, there may be injuries, issues with
quality control and wasted resources.

2.20. REAL TIME OPERATING SYSTEM (OS) IN
EMBEDDED SYSTEMS
Though real time OS may be different from embedded systems, its benefits
enable it to be used in embedded systems. However, the real time OS will
operate behind the scenes of a large operation. Real time OSs have no graphical
interface. For this reason, several OSs are integrated simultaneously so as to
provide usability of a general-purpose OS and operational capability. Real
time OSs are considered to be very intelligent edge devices and are therefore
known as electrochemical edge or cyber-physical systems. Devices having
these systems are able to produce and operate on data (Hambarde et al.,
2014). For instance, if the system is fitted into a car, it will be able to monitor

Types of Operating Systems 33

the surroundings and act upon them instantaneously on its own. Most of the
devices are often coupled with artificial intelligence or machine learning and
in some cases, they are fitted with both. Presence of real time components in
devices with real time OSs increase the underlying structure’s capabilities.

2.21. ADVANTAGES AND FEATURES OF REAL TIME
OPERATING SYSTEM (OS)
The advantages of real time operating are also its best features. Some of
the advantages of the system include it being small, fast, deterministic,
and responsive. As the features of the system, it makes them execute tasks
efficiently and quickly. This enables the system to respond every time a task
is given. The real time OSs tend to have a significance to the host device
making its infrastructure more secure and minimizing chances of a fall or
crash. Another advantage is that real time OSs are developer oriented. This
means that there are roll outs of multiple updates enabling users to code
more effectively.

There are different kinds of real time OSs. There are those developed by
well-known companies and are ready to sell. There are companies that opt to
develop their own real time OSs in house (Giorgetti et al., 2020). The system
is usually tailor-made to suit the demands of the project. This is a better
alternative compared to purchasing commercial off-the-shelf OSs. Tailor-
made real time OSs have numerous advantages. One of the advantages
is that the OS is designed to suit the need and the company has thorough
knowledge of its mechanics and inner workings.

However, there are well known challenges of using tailor-made OSs.
One disadvantage is that it is quite expensive as materials will have to be
sourced. It also requires significant amounts of time for the system to be
developed and used. If the developer is not familiar with working with OSs,
they may require larger amounts of time to complete the project. This makes
commercially available real time OSs easier, faster, and also highlights the
experience of the technical team providing answers and support. Commercial
OSs eliminate the need for guaranteeing capability and performance.

Several companies opt to use real time OSs as they are reliable and
allow repeatable actions. This software is mostly used when both speed and
reliability are greatly needed.

Introductory Guide to Operating Systems34

2.22. DISCIPLINES THAT IMPACT REAL TIME
OPERATING SYSTEMS (OS)
There are various disciplines that influence the real time OS industry.
Among them is by developments in the computer hardware industry. There
are several developments in the technological world that affect hardware
industry. They include adoption of new technologies including multi-core
technologies. These technologies have become greatly common and their
usage requires OSs to be updated so as to support them (Gunadi and Tiu,
2014). There are various emerging technologies that include 5G, machine
learning and multi-core technologies that face scrutiny from developers of
OSs. Changes in the industry means that real time OSs have to be updated
and modified to support different cases. For these reasons, developers take
into consideration trends in both software and hardware development.
Changes in the field means that the developer’s profile will pivot and
updated allowing the support of new languages, new technologies, and new
deployments.

2.23. REAL TIME OPERATING SYSTEM (OS)
ARCHITECTURES
There are two main design philosophies that affect the design of such
systems. They are the microkernel and monolithic kernel. Both systems
are differentiated by their structures. Monolithic kernel system run in
single space while microkernel systems make compartments in different
components in the architecture.

2.23.1. Microkernel Systems
The microkernel system is made up of a microkernel architecture therefore
its components are stored in separate rooms that are independent of each
other though they share similar space. The architecture is such that a room
can be renovated without necessarily impacting those around it. Moving
from one room to another is disadvantageous as it consumes a lot of time.
When a task is underway, the action has to return to the kernel before it can
move to the component it reference. This causes some operations to take
longer time than it should.

Types of Operating Systems 35

2.23.2. Monolithic Systems
Monolithic systems have a different architecture from the microkernel
system as it does not have any walls between the rooms making an easy
transition from one room to another. These kernels provide services of their
own eliminating the need for the implementation of small kernels. These
kernels also regulate those of other areas (Greenwald and Thomas, 2007).
There are some exceptions made when using such systems. There are some
operations that are executed in kernel spaces and remove the recurrent need
to return to the kernel. This also improves the performance and speed of
the system. Challenges are encountered when a change is made in one area.
These changes could cause the ramifications of the entire system.

Operations and kernel are housed in separate spaces. The kernel is
bare. Operation spaces are required to return to the kernel but are not given
access to each other. Operation and kernel processes share the same space.
Compared to the kernel, operations tend to move more quickly. The system
boasts high performance. Extensive overhauls may be needed when making
updates.

2.23.3. Examples of Real Time Operating Systems (OSs)
There are various products across the world fitted with real time OSs. About
two billon devices across the world are powered by VxWorks. Some of the
systems include car engines, deep-space telescopes, helicopter guidance
systems and embedded systems. They all run all real time OSs. In A&D,
some of the systems that make use of such systems include extraterrestrial
rovers, drones, and engine turbine and flight display controller.

2.24. SOFT REAL TIME OPERATING SYSTEM (OS)
The soft real time OS form part of the two main kinds of real time OS. It
is defined as a kind of system whose operation is degraded when produced
results are not produced according to the specified timing requirement. In
this system, it is not compulsory that each task meets their deadline as much
emphasis is placed on processes being processes and generation the results.
Though the system may miss deadline for some tasks, they cannot miss the
deadline for every task or process according to task priority. The system can
either miss or meet the deadline of the task (Figure 2.11).

Introductory Guide to Operating Systems36

Figure 2.11. Soft real time operating systems have soft deadlines.

Source: https://www.javatpoint.com/hard-and-soft-real-time-operating-system.

If the system tends to have missing deadlines at a frequent basis, then it is
likely that the system’s performance will be worse rendering it un-usable by
users. Some of the most common soft real time OSs used are video systems,
audio systems and PCs. Soft real-time systems consider processes as main
tasks and can handle the entire task.

2.24.1.	Examples	of	Soft	Real-Time	Operating	Systems	(RTOSs)
Some of the most common soft real time OSs include mobile communication,
virtual reality, online transaction systems, web browsing, multimedia
systems, electronic games, weather monitoring systems, DVD players, set-
tops boxes, audio, and video systems and PCs.

There are various characteristics used in identifying the soft real time
OS. For instance, these systems are defined as systems in which one or
more failures in meeting deadlines are not considered as much emphasis is
placed on performance. With regards to file size, soft real time systems have
fairly large data files. These systems also have fairly high response time and
low utility. Soft real time OSs have enlarged databases (Fierro and Culler,
2015). These systems also tolerate peak loads and have long term data
integrity. In soft real time OSs, safety is not critical and the system tends

Types of Operating Systems 37

to be less restrictive. In these systems, there is rolling back of computation
to a previously established checkpoint causing the initiation of a recovery
system. These systems are also very flexible as there are greater laxities that
can tolerate certain amounts of deadline misses. Users of the soft real time
OSs do not get validation. Soft real time OSs are provided by Linux and
telephone switches among other OSs.

2.25. HARD REAL TIME OPERATING SYSTEM (OS)
Unlike soft real time OSs, hard time real OSs consider timelines as
deadlines. For such systems, timelines should not be omitted no matter the
circumstance. These systems do not utilize any permanent memory making
much importance on the need for processes to be completed properly in the
first time itself (Figure 2.12).

Figure 2.12. Hard real time operating system has hard deadlines.

Source: https://www.javatpoint.com/hard-and-soft-real-time-operating-system.

Hard real time OSs place much emphasis on generating accurate
responses to events within a specified time. It can therefore be considered to
be purely deterministic and a time constraint system. For example, if users
expect output of a given input within 5 seconds then the system is expected
to conduct all the processes and generate an output exactly by the 5th second.
This means that output should not be generated in by the 4th second or 6th

Introductory Guide to Operating Systems38

second. Therefore, 5 seconds is the deadline for the task to be completed.
In the hard real time OS, meeting of deadlines is very important. When a
deadline is not met then system performance fails (Fröhlich and Wanner,
2008).

2.25.1. Examples of Hard Real Time Operating Systems (OSs)
Some examples of hard real time OSs include pacemakers, autopilot system
in plane, chemical plant control, anti-missile system, nuclear reactor control
systems, air traffic control systems, railway signaling systems, inkjet printer
system, medical system, weapons defense system, missile guidance system
and flight control systems.

Some of the features used in identifying hard real time operation system
include file size where the file size of such systems tends to be small or
medium. The response time of such systems are predefined in milliseconds.
With regards to utility, the utility of such systems is high. These systems
have short databases and have predictable peak load performance. For hard
real time OSs, safety is very critical and their data has short term integrity.
The restrictive nature of such systems is very high. In such systems,
occurrence of an error causes computation to be rolled back. These systems
are not flexible and tend to have less laxity while deadlines are given full
compliance. Users of such systems are able to get validation when needed.

POPULAR OPERATING SYSTEMS

CHAPTER3

CONTENTS
3.1. How Windows Versions Have Evolved Throughout the Years 40

3.2. Linux Operating System (OS) .. 44

3.3. Advantages and Disadvantages of Linux Operating System (OS)........ 49

3.4. The Virtual Machine System .. 51

3.5. Techniques Used in their Virtual Management Systems 53

3.6. The Aix Operating System (OS) ... 55

3.7. The Os/400 ... 56

3.8. The Difference Between Os/400 Vs. Unix ... 58

3.9. Z/Os Operating System (OS) ... 59

Introductory Guide to Operating Systems40

It is important to understand the meaning of an operating system (OS)
and an OS can’t be defined as a software which act as a link between the
end-user and computers hardware. For this reason, each computer needs
to have at least one OS that is tasked with running other programs. That’s
our applications or programs that are found in our computer’s hardware
such as chrome Microsoft Word games and these applications require an
environment where they can be able to perform the task (Estefo et al., 2019).
The OS basically acts as a link between the password using the computer
with the computer this is because it helps a person communicate with the
computer using a computer’s language. Therefore, it is not possible for one
to use a computer without having an OS because he/she will not be able to
understand the language of the computer (Figure 3.1).

Figure 3.1. Operating systems.

Source: https://www.howtogeek.com/361572/what-is-an-operating-system/

3.1. HOW WINDOWS VERSIONS HAVE EVOLVED
THROUGHOUT THE YEARS

3.1.1. 1985: Windows 1.0
This was a fast version to be released by Microsoft and its aim was to
provide an interface that was user-friendly commonly known as a graphical
user interface which was to allow, they use to navigate the system features
more easily. However, the Windows 1.0 one did not drive well once it was
released into the market because its release was shaky considering that
Microsoft was considered to be a tech giant. Most of the people who used
this version of Microsoft considered this software to be very unstable but one
amazing feature about the Windows 1.1 is that it was able to fit into a single

Popular Operating Systems 41

floppy disk. There was an interface known as the point and click interface
which made it easy for new users to operate a computer that had these OS.
Windows 1.0 has continued to offer various graphical user interface is such
as the scroll bars as well as it OK buttons (Deseriis, 2017).

3.1.2. 1987: Windows 2.0 and 2.11
Compared to Windows 1.0, Windows 2.0 was considered to be more fast as
well as reliable and had more graphical user interface features. The GUI had
been slightly improved though it had a similar look to the Windows 1.01.
This new version of the OS introduced the control panel and was able to
run the fast version of Microsoft excel and Microsoft Word. The Windows
2.0 was able to support extended memory and updates for Microsoft which
are compatible with the Intel’s 80386 processor. After this revolutionary
change Microsoft became the largest vendor for software in the world
just as computers were becoming more renewal. Windows systems were
considered to be user-friendly and also affordable which makes it easy for
them to grow their PC market.

3.1.3. 1990: Windows 3.0
This version supported 16 colors and also included casual games that are
Steeler used by the OS such as solitaire minesweeper and hearts. However, it
is important to note that games that usually requires more processing power
are still ran directly on MS-DOS. The Windows 3.0 and 3.1 had graphics
and functionality that were more improved and they provided multimedia
computer capabilities and also improved graphics and application support
(Androulaki et al., 2018).

3.1.4. 1993: Windows New Technology (NT)
The Windows new technology (NT) pioneered the building of an advanced
operational system because this fashion had a hardware abstraction layer.
The DOS feature was only available through command prompt but it was
not able to run the Windows operational system. The main idea behind
Microsoft designing the NT as a workstation for the OS was for it to be
used in businesses rather than at home this system was attributed with the
introduction of the start button.

Introductory Guide to Operating Systems42

3.1.5. 1995: Windows 95
The introduction of this version is attributed with a major rhythm that
Windows underwent in the year 1995 this revamp helped with improving
multimedia and it became a more polished interface for its users. Does that
menu that is usually a common feature in most computers was introduced
by this version. Some built-in support systems included the Internet and
networking support (De et al., 2007). This version was commonly used
at home but it also proved to be very popular among various schools and
businesses. It also facilitated the pioneering of hardware installation because
of its plug and play feature.

3.1.6. 1998: Windows 98
This window version was almost similar to the Windows 95 because it’s all
filed the same functions but it is important to note that this version of bud
and what idea display as well as enhancement of multimedia support. In
this fashion the speed and the Play and Plug feature was improved. Another
important feature that is associated with this version of Microsoft OS is the
introduction of a USB support slot as well as a quick Launch bar. This version
became very popular among people which made it a target for malware it is
this fact that led to Microsoft integrating a Web technology into the OS and
came up with the best web browser to be used on the desktops.

3.1.7. 2000: Windows Millennium Edition (ME)
This operating version was the last Windows version to use the Windows
95 code base. This version is usually denoted by a new feature which was
known as a system restore. However, upon release all this version was found
to be very unstable by many customers and some of the critics said that they
ME abbreviation stood for Mistake Edition. During the same year Microsoft
released its fast professional desktop which was initially called the NT 5.0
before it was renamed to the OS Windows 2000. The improvements that
were made on the OS made it easy for each to be configured and installed in
a private computer (DiLuoffo et al., 2018).

There was a more stable that was developed for the NT version. There
was an increase in the number of home users that were using the Windows
2000 because it was greatly reliable. The plug and play support were
updated which spurred many home users to use this OS. The most significant
advantage of using the Windows 2000 fashion was that these system settings
could easily be changed without necessarily having to restart the machine.

Popular Operating Systems 43

This version to prove to be a very stable OS because it offered enhance
security as well as in the administration of the OS.

3.1.8. 2001: Windows XP
This was a fast NT-based system with a version that was specifically meant
for a home user. People who use this version as well as critics rated the
XP version highly. This system helped to improve their general appearance
of the Windows system by providing colorful themes and also providing a
stable platform. It also introduced a new gaming system known as the direct
X enabled feature which was used in 3-D gaming.

3.1.9. 2006: Windows Vista
This window fashion was very hyped by Microsoft because they spent a lot
of resources trying to develop an appearance of the Windows OS that was
more polished. This distinguishing feature about the vista is that it had an
interesting visual effect however the operational system was slow to start
and run. This version had a major flow which is that it lacked the resources
to run the systems which led to most businesses and home uses staying with
the XP version (Dixon et al., 2012).

3.1.10. 2009: Windows 7
this version was built on the Vista Kernel. This version picked up a lot of
vistas visual capabilities but the only advantage is that the capabilities were
more stable. This version was complete advantages because it was faster to
boot it had a new user interface and there was the addition of the Internet
explorer 8.

3.1.11. 2012: Windows 8
When Microsoft released this version of the OS it had a number of
enhancement and it also had been diverted to use the metro user interface.
Other enhanced features were the multi core processing, solid-state drives,
alternate input methods such as touchscreen.

3.1.12. 2015: Windows 10
This Windows version was announced in September 2014 and Windows
has skipped the launching of Windows 9 which was to be made on January
2015. What differentiates this version from other versions was the fact that

Introductory Guide to Operating Systems44

Windows 10 had the start menu which was absent in the Windows 8. The
continuum is a responsive design feature found on the Windows 10 which
was meant to adapt the interface depending on whether the password using
the computer is using the touchscreen the keyboard or the mouse to input
the commands (Dieber et al., 2017). There are Avenue features such as the
on-screen back button which helped to simplify their touch input command.
This operational system was also designed to have a consistent interface that
was to be used across various devices including laptops, tablet as well as
private computers (Figure 3.2).

Figure 3.2. Common Windows OS.

Source: https://www.google.com/url?sa=i&url=https%3A%2F%2Fskypip.
com%2Ftypes-of-Windows-operating-systems.

3.2. LINUX OPERATING SYSTEM (OS)
The Linux OS is among the most used as well as most used open-source
OSs. This software is essential in every computer system because it usually
sits behind most of the software in a computer and its work is to receive the
requests from that software and those programs well drilling these requests
or other commands to the computer’s hardware (Figure 3.3) (Chinetha et
al., 2015).

Popular Operating Systems 45

Figure 3.3. Introduction to LINUX operating system.

Source: https://analyticsindiamag.com/5-reasons-why-linux-os-is-a-hot-favor-
ite-among-coders/.

The pioneers for this OS were Thompson Dennis Ritchie Douglas
Mcllroy and Joe Osssna. The idea for this OS was initially conceived as
well as implemented in AT&T’s Bell labs based in the United States in 1969.
It was initially called the UNIX OS. When it was first released in 1971,
UNIX was written in a common language known as the assembly language
that was considered to be a common practice at the time. In 1973, Dennis
Richie became a Pioneer in writing this program using the C programming
language. What made it easier to put these programming systems in different
computer platforms was a high-level language implementation that was
done on UNIX. There were many conflicts and wars that developed from
how people used their OS between the year 1980 and the 1990 this led to
Richard Stallman coming up with that project known as the GNU project
which allowed people to access this OS for free (Cashmore et al., 2015).
This project continued to grow and has today become the best operating tool
used by the Linux OS. From the year 1990 till today it is safe to say that they
Linux OS has undergone various transformations as well as development
of the latest version of the OS and a good example is the Linux kernel 4.0
which was released in the year 2015.

3.2.1.	Linux	Distribution
The distribution of Linux OS is solely dependent on the opens with
application or various software other than the Linux kennel. The distribution
of the Linux system has various capabilities such as taking over the different

Introductory Guide to Operating Systems46

system management tools, The Saba software, various applications from
the desktop, and many other documentations that exist in a computer. The
Linux distributions are also called distraught because their aim is to offer
a common look and feel as well as an easy software management, various
operational needs as well as the system security needs. Some of the Linux
OS distributions are Ubuntu, the red heart, Debian, and Santos.’ Other
examples of the distribution of this OS include the oracle enterprise Linux
(Figure 3.4) (Cao et al., 2008).

Figure 3.4. The different distributions of the Linux operating system.

Sources: https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.tec-
mint.com%2Flinux-distro-for.

This distribution mostly consists of firms that come together and
put effort into ensuring that they produce a better software and a system
management tool making use of the Linux OS easy, secure as well as very
effective. One example is the Ubuntu which is produced by a farm known
as canonical which helped make the use of the Linux OS easier by allowing
people to use this OS without using command lines. Putting this factor is
into consideration many people who use their computers have opted to
move from OS applications such as Microsoft and embracing the Linux OS
such as Ubuntu programs.

Popular Operating Systems 47

3.2.2. How to Use Linux Operating System (OS) and Basic
Linux Tools and Commands?
There are different versions of Linux that are usually produced by the
programmers and their main work is to launch and handle applications,
manage some of the hardware resources as well as provide user interface but
in some specific forms. That is usually a very large number of developers
as well as distributors when it comes to developing the Linux version which
makes it easy for the Linux to perform any task as well as be able to penetrate
many areas of the computing system. This OS can’t be found in various
settings which supports many different uses of this system (Bhattacharjee
and Lustig, 2017).

Ubuntu requires that its users understand the basic commands found
in the computer as well as tools that are used by this OS to allow them
to have enough time as well as exciting experiences when enjoying the
service is performed by the system and its distributions. The find command
tool is usually common when using the Linux OS because this command
makes it easy for one to locate files in the system as well as creating a more
organized type of OS. Another important tool is there locating command
which is important when you’re using Linux the difference of this locate
command from the find command is that it uses an index which helps it
to identify and locate files within the system. This means that they look at
command is usually faster as well as extra efficient as compared to the find
command we’re looking for files in the OS that uses their Linux program.
There are other commands such as the data command which is used to
display dates times and the location of the password using the OS. There is
another operating command known as the Cal commander which is similar
to the data command in that it is used to display dates current month and
days of the user by highlighting the current data as well as month for the
user to use easily.

Advantages of using Linux OS. As mentioned, Linux is usually free this
means that you do not have to pay absolutely anything to access this OS
one is not even required to pay the price of a CD. This OS is usually free
because it can be downloaded because it is entirely free when access from
the Internet this means that there are no registration fees, no cost per user,
updates are usually free and the source code is usually available free if one
wants to change the behavior of their system (Blackham et al., 2011). Linux
is considered to be free speech this means that the license that is required
for one to use Linux is their GNU public license this license stipulate that

Introductory Guide to Operating Systems48

anyone who feels that like they want to change the Linux operation system
are free to do so and actually have a right to change the OS and to distribute
the version that they have created but there is usually one condition which is
that the code should be made available after the redistribution.

The operation system is portable to any hardware platform this means
that specific vendor who wishes to sell a new type of computer and do not
know what kind of OS that is required in the new machine they can always
up for the Linux kernel and install it to work on their hardware. The OS is
secure and versatile. This means that the security model that is used in the
Linux OS is usually based on their unique idea of security which has been
known to be very robust and as well provide quality results.

One of the uses of Linux OS is to create a fort against enemy attacks such
as cyber hacking from the Internet but it is usually used in other situations
because it utilizes the same exceptional standards in the security system
once this OS has been installed it is usually used as a firewall against attacks
from various hackers on the Internet. Linux is scalable. This means that
when using this OS what does not need a super computer because they’re
not OS usually provide services by using building blocks that are provided
within the system. Linux is able to do little things such as making the OS for
an embedded processor or recycling the old 486 OS (Ahmad et al., 2013).
Most of the systems that use the Linux OS have a very short debug time.
This means that areas are able to be identified very easily and taken care of
because this OS is used by thousands of people and they are able to support
these areas and report them which only takes a couple of hours for the bugs
to be fixed.

The disadvantages of the Linux OS include. There are many different
distributions that have risen from the Linux OS. This means that more
people have access to this OS and therefore there are many feedback and
opinions that these people have on the OS. Linux is also not user-friendly
and can be confusing for beginners. This means that this type of OS is
usually more complex than other OS such as the Microsoft Windows and
Mac OS however the continued research of the OS has allowed it to be easy
for new users.

Popular Operating Systems 49

3.3. ADVANTAGES AND DISADVANTAGES OF LINUX
OPERATING SYSTEM (OS)
There are several advantages of using Linux OS and they include:

• Using this OS is very secure because they use a security and privacy
data is considered a top priority in the OS. There are several locks
designed for different layers which help in preventing the system
from getting hijacked even when they are exposed to virus (Yin
et al., 2016).

• This OS has a higher resistant ability to getting viruses because
it has the ability to block out Malware is and software that might
cause trouble for the OS. This OS has a restricted root access and
like other OSs such as Windows. In this case every user needs
to be an administrator so that they can be granted permission to
control the system without causing trouble.

• This OS is stable because the likelihood of these OS to get bugs
is very rare. It has regular updates which are interested in fixing
the bags that might affect several Linux distributions. Before
releasing every new version of the OS, the Linux distributions
are tested to ensure that there are no bags that might interfere with
their efficiency of this OS.

• Another advantage is that their OS is free and open source this
means that one does not have to pay for them to be able to access
the system. It is easily accessible by downloading it from the
Internet and one can use and share in any way that they deem
convenient for them. This means that everyone is entitled to
reviewing the code and accessing the functionality of this OS by
themselves.

There are several disadvantages of using Linux OS and they include:
•	 Linux Operating System Blocks are Standard Edition:

Instead of having one single edition like in the case of Windows
and Mac Linux OS has developed several additions known as
distributions. This is often confusing to beginners because the
different distributions have different ways of executing them
which has proven to be tedious. Having this distribution also
means that the community is divided which means that in cases
where challenges are experienced getting support for a specific
distribution of Linux is very challenging. The publishing of

Introductory Guide to Operating Systems50

software is also a tedious task because every OS has it on manager
package and it has different instructions on how to be packed
(Bala et al., 2015).

•	 Linux Operating System has a Hard Learning Curve: For
people who are just beginning to use Windows it is easier for
them to understand how Windows operate. In the case of a pass on
learning Linux for the past time it becomes hard because this OS
is quite technical and requires a lot of experience. When dealing
with Linux OS needs to know how to use the terminal which is
similar to the command prompt which is found in Windows OS.
This terminal is what makes their learning curve of Linux OS to
be hard.

•	 It has a Limited Market Share: This is considered to be one of
the biggest problems that this operation system undergoes. Linux
has a limited market share which means that a lot of people are
not able to access the Linux programs by developers. This makes
it hard for many people to use Linux OS.

•	 This	 Operating	 System	 is	 Difficult	 to	 Troubleshoot:	
Troubleshooting done in a Linux OS can’t be complex if you are
not an expert in using this OS. It also becomes a problem finding
tech expert for this OS. The problems that arise are specific to
different users and answers on how to deal with such problems may
not be necessarily available on the web (Aksoy et al., 2017). The
issues that arise are from using different hardware and software
which requires that the user has knowledge on the Linux operation
system in order to provide a solution for his or her own problem.
When purchasing this OS, the software has no warranty which
means that in case it stops working or in case there is a damage to
the software one cannot be able to be refunded or given another
OS. It is also vital to note that finding the technical support to deal
with software issues of Linux OS can be very time-consuming
because one has to follow a process which is submitting a it is
also vital to note that finding the technical support to deal with
software issues of Linux OS can be very time-consuming because

Popular Operating Systems 51

one has to follow a process which is submitting a bad report and
waiting for a publisher to solve the issue bug report and waiting
for a publisher to solve the issue (Figure 3.5).

Figure 3.5. Advantages and disadvantages of Linux.

Source: http://www.xlike.org/wp-content/uploads/Jenis-Linux-yang-Dapat-Di-
gunakan-Pengguna-Dekstop-1024x576.jpg.

3.4. THE VIRTUAL MACHINE SYSTEM
A virtual machine provides a complete system platform and also supports
the execution of complete operational systems in a computer. This system
virtual machine application has several uses such as providing a concrete
platform where programs run and in situations where the real hardware is
not available this means that the virtual machine system allows execution of
several actions on platforms that are considered to be obsolete (Quigley et
al., 2009). Another use of the system virtual machine is to create situations
where there are multiple virtual machines which will help in leading to a
more efficient way of computing resources. This means that this operational
system is energy saving as well as cost effective. It is also vital to note that
this system was originally defined by Popek and Goldberg as a duplication
of an actual machine which is isolated and efficient (Figure 3.6).

Introductory Guide to Operating Systems52

Figure 3.6. The virtual machine system.

Sources: https://www.researchgate.net/profile/ for-the-Virtual-Machine-Oper-
ating-System-pattern.png.

This OS has several advantages but the most important advantages
include there are multiple operational system environments that have proven
to have the core existent capability even when they are in the same primary
hard drive. The operational system allows Visual petitioning of files shared
that are either generated in the host operational system or the guest virtual
environment. The most important aspect of these operational system is that
all files are usually done and that one hard drive or the host operational
system.

The operational system is able to conduct a disaster recovery process
depending on the virtual machine software that is selected for that particular
application. With the help of just-in-time compilation this operational
system can provide hardware environments which are simulated as well
as different from the Instruction architecture of the hosts (Whipple et al.,
2009). The virtual machines are considered to be less is active compared
to the real machine in situations where it is able to access the hard drive of
its host indirectly. The virtual machines have proven to cause an unstable
performance especially when it comes to execution of the malware protection
when many virtual machines are running on the same hard drive.

It might require a supported software because most malware protections
for VMs are usually not compatible with the hosts operational system, that
is made for server consolidation when multiple versions are running via an
operational system. This is done in order to reduce the interference from
the separate virtual machines which are on the same machine platform.
The invention of virtual machine was pioneered by the fact that there

Popular Operating Systems 53

was a need for an operational system which allowed multiple operational
system to run at once. These systems are considered to be vital because
they allowed timesharing among operational systems which were tasked
with the same task. This operational system requires that the user types
a privileged instruction in there as a code and feed it to the computer as
commands. The advantage of this operational system is that it added input/
output (I/O) devices which were not allowed by the basic standard systems.
The important advantages include improving the debugging process as well
as enabling faster reboots of operational systems (Figure 3.7).

Figure 3.7. An example of a VM.

Source: https://slidetodoc.com/presentation_image_h/bc70acfc21810a-
f3a099993298f52f8c/image-19.jpg.

3.5. TECHNIQUES USED IN THEIR VIRTUAL
MANAGEMENT SYSTEMS
Based on their usage desired there are different virtualization techniques
which are put into action. The first technique is known as the virtualization
of the underlying rule hardware which is alternatively known as native
execution. This is where the hardware fully virtualizes and is capable
of implementation using to hypervisor that is the type one or type two
hypervisor. The difference between these two hypervisors is that the type
one hypervisor is executed directly on the hardware while the type two
hypervisor is executed on another operational system which could either be
a Linux or Windows (Figure 3.8).

Introductory Guide to Operating Systems54

Figure 3.8. Creating a VM system.

Source: https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTzUIsbK2E
i_1ys9irJ2Y3EDSixN1ge2VpERQ&usqp=CAU.

If the OS is supported by their underlying hardware, then it can be
running buy a virtual machine OS (Wentzlaff et al., 2010). This characteristic
allows it to run various guest operational systems simultaneously in different
computers. Another technique is the emulation of a non-native system. This
means that the virtual machine system can’t perform the role of becoming
an emulator. An emulator is tasked with allowing software applications
as well as enabling operational systems for various computer processor
to run. Another technique is the OS level virtualization. This technique is
considered to be a server virtualization technology which uses the virtual
images from different servers on an OS otherwise known as a Kernel Layer.

An example of the partitioning found on their virtual machine technique
is known as the Solaris zones. This partitioning helps in allowing different
operational systems to function under one hard drive as it is in the case for
Solaris 10. One particular important points to note is that the host OSs used in
the Solaris native zones are expected to be versions of Solaris because other
manufacturers OSs are not supported by this particular system. Another non-
partitioning is the system workload petition which is abbreviated as WPARs
was the one that pioneered the introduction of bash on 6.1 of an IBM AIX
OS. Use of sever resources our helps to maximize efficiency because they
use low overhead in their systems. An example of a full virtualization system
is the VMware. Another example is Xen or UML which is considered to be
part of visualization. The existence of the system level virtualization does
not allow more than one OS to run at the same time.

Popular Operating Systems 55

Components found in a virtual machine system:
•	 The Dispatcher: This component is in charge of controlling

module that is called on by a trap set for the hardware. The
dispatcher also helps in identifying the next expected module
(Tsolakis et al., 2019).

•	 Allocator: This component is in charge of deciding the allocation
of various resource systems. It is invoked by the dispatcher to
allow the allocation of resources for the VMs.

•	 Interpreter Routines: This component resembles the job
functionality of its users. However, it is important to note that the
interpreter routines are not in charge of resource reassignment
traps.

3.6. THE AIX OPERATING SYSTEM (OS)
AIX is an abbreviation which means advanced interactive executive. This
OS is a proprietary four units with systems that are sold by the IBM. This OS
is considered to be very secure and with robust infrastructure solutions for
its market. The AIX OS is also considered to be scalable. According to the
study done the AIX has a majority share of 58% in a server market where the
estimation is over $5 billion. The power systems belonging to IBM Avenue
to support several operational systems such as AIX and Linux. The AIX OS
is very reliable and has a great support team which continues to be its added
advantage with the market. This OS has recorded the lowest percentage
when it came to serve a malfunction with an average of 7.2%. There is a
live update functionality which makes the updates continue updating even
without needing a system restart (Tang et al., 2010). Such updates include
the kernel updates. This OS is also important for industries which rely on
high-performance as well as dependability and such industries are financial
institution such as banks, the government as well as healthcare providers.
Because of the type of four months X has going to need to offer the most
reliable infrastructure to its customers. The OS I love Customer to revise the
data security change permission of the USA as well as configuring common
criteria security evaluation (Figure 3.9).

Introductory Guide to Operating Systems56

Figure 3.9. The AIX operating system.

Sources: https://www.operating-system.org/betriebssystem/gfx/scr_preview_
aix.jpg.

This OS was fast designed to be used by IBM RT PC RISC. Upon further
improve or an adjustment it was able to walk on various hardware platforms
such as the Apple Network Server, the PowerPC-based systems and system
370 mainframes. It belongs to a group of five, known OSs which have been
certified by UNIX 03 standard of the open group. The advanced interactive
executive was launched in 1986 and the most recent stable version of this
OS is the AIX 7.2. The target system type of this OS includes Server, NAS,
and the workstation. The kernel type is considered to be monolithic with
specific modules.

3.7. THE OS/400
The OS/400 is an OS that was initially designed to run on a hardware such
as the AS/400. It was programmed and developed in the 1988 and it was
introduced in June while releasing was done on August. The person who
is credited with coming up with AS/400 computers is known as Frank
Gerald Soltis who was a computer scientist best known in the United States.
This OS has undergone a lot of changes and has been regularly updated
and revised (Shin et al., 2014). However, this fact has not interfered with
the fact that it is still a very competitive software because its features are
compatible and they allow the users to access programs that were created
on the specific operational system years ago. The main reason as to why the
operational system was created is to help big companies in the enterprise
resource planning process. This means that its specific functions include
purchasing inventory managing the sales of the company marketing and also
creating financial reports for the company (Figure 3.10).

Popular Operating Systems 57

Figure 3.10. The OS/400.

Source: https://slideplayer.com/slide/12830081/78/images/3/Understanding+A
S%2F400+System+Operations.jpg.

There are two divisions of this operational systems that are controlled by
the technology independent machine interface and these two divisions include
the system licensed internal code and extended control program facility. The
technology independent machine interface is a hardware that was split into
two parts that they had were dependent and they had an independent system
when it comes to these operational. These characteristics mean that they
use are using the OS that specific OS that is separate without having to re-
compile. The language used by this operational system was developed in
1959 and it is known as the report program generator (Figure 3.11).

Figure 3.11. The AS 400 software.

Source: https://www.ximplesolution.com/wp-content/uploads/2022/01/IBM-
AS400-ERP-Software.jpg.

Introductory Guide to Operating Systems58

3.8. THE DIFFERENCE BETWEEN OS/400 VS. UNIX
• The OS 400 is object based and has an integrated database

management system on the other hand UNIX is considered to
be text based and has a relationship database system. It is vital to
note that beginners might find the object the system had to use but
the OS 400 is considered to be more reliable and secure and has
the best data protection plan compared to UNIX.

• When it comes to storage the OS 400 uses the single level storage
on the other hand UNIX uses a file system that is specific to Its
operational system. The operational system 400 uses the storage
as a two-dimensional plan for all of its addresses (Singh, 2014).
The pages third in the operational system may be in the form of
a primary storage also known as a ram or a secondary storage
known as a disk. The UNIX operational system usually stores
its large files a small unit so as to make it easy to manage all the
files in the operational system. In this case the UNIX operational
system is considered to be more efficient than the OS 400.

• The UNIX OS uses their Unix Kernel to control its hardware while
the OS 400 uses this system licensed Internet code. These two
hard drives are considered to be very good and very efficient but
we’re looking for a hardware layout that is more secure and has
a complete file recovery system the system licensed internal code
is considered to be the absolute best. This means that the OS/400
operational system is better than the UNIX OS. The system
licensed internal code has the technology independent machine
interface that allows the OSs as well as programs installed in a
private computer to take advantages of advancing the hardware
and the software without having to conduct a recompilation.

• As earlier stated, the iOS/400 uses a programming language
known as the RPG while the UNIX OS uses a programming
language known as the C programming language. In this case
the UNIX OS is considered to be exceptional because of the C
programming language which was able to run on many platforms.
The RPG programming language was not portable which give
the sea programming system an added advantage making it
convenient to use the UNIX OS.

Popular Operating Systems 59

3.9. Z/OS OPERATING SYSTEM (OS)
This OS was introduced in 2000 by the IBM. It is considered to be a 64-bit
OS with its mainframes belonging to the IBM. This operational system was
developed from its predecessor OS/390 which in turn released the MVS
versions. It continues to use its past functionalities that were first developed
in the 1960s because it is designed for backward compatibility (Figure 3.12)
(Sangorrin et al., 2010).

Figure 3.12. Understanding the z/OS operating system.

Source: https://slidetodoc.com/presentation_image_h/e7bcc65ae-
a8911e729ef4441212a7207/image-4.jpg.

This OS supports various stable mainframe facilities such as CICS,
COBOL, SNA, and IBM MQ. This OS is also known to contain record-
oriented data access methods such as REXX, CLIST, and ISPF. These
compatibilities are essentially because they allow these Z/OS to run in a
range of commercial as well as open-source software (Figure 3.13).

Figure 3.13. Representation of z/OS.

Source: https://upload.wikimedia.org/wikipedia/commons/1/19/IBM_System_
z10.jpg.

Introductory Guide to Operating Systems60

Some of the characteristics of the Z/OS include:
• This system is uniquely designed to preserve the integrity of data

fed to servers regardless of how large the users of the servers
might be. This is achieved because the OS prevents different
users from accessing or changing the objects that are found within
the system including the data of the user. The only way these
changes can be implemented is if the system provided interfaces
in charge of enforcing authority rules gives a go ahead (Sharma
et al., 2012).

• This system is able to work under minimal supervision even
considering the fact that it has to manage a large number of patch
jobs which are concurrent. There is no external workforce that is
needed to balance or evaluate the integrity of the program that
arises from the simultaneous use of a given set of data.

• The security system of the OS is designed to extend its services
to other files including simple files and it can be incorporated into
applications as well as user’s profiles.

• The desperate communication-oriented applications are able to
run at the same time because the OS allows several sub systems of
communication to run at the same time which creates an unusual
flexibility. A good example is the IP addresses which are capable
of serving different applications at the same time.

• The OS has an extensive software recovery system which is very
efficient in a production environment as there is no need to make
unplanned system restarts. The interface is found in the OS allow
the application programs to provide their own layer of recovery
system (Shaw et al., 2016). However, it is vital to note that these
interfaces are not usually used by applications which are simple
they are rather used by sophisticated applications that are quite
extensive.

OPERATING SYSTEM PROPERTIES

CHAPTER4

CONTENTS
4.1. Batch Processing ... 62

4.2. Evolution of Batch Processing ... 62

4.3. Monitors and Dependencies in Batch Processing 63

4.4. Advantages of Batch Processing .. 65

4.5. Disadvantages of Batch Processing ... 66

4.6. Multitasking .. 67

4.7. Multiprograming ... 71

4.8. Types of Multiprogramming Operating Systems (OSS) 73

4.9. Advantages of Multiprograming .. 73

4.10. Disadvantages of Multiprogramming ... 74

4.11. Types of Interactive Systems .. 76

4.12. Real Time Systems... 78

4.13. Applications of Real Time Systems .. 80

4.14. Spooling ... 81

4.15. Working of Spooling in Operating System (OS) 82

Introductory Guide to Operating Systems62

4.1. BATCH PROCESSING
Batch processing is defined as the process by which computers complete
batches of jobs in n a non-stop sequential order. The jobs are completed
simultaneously. This process also works by ensuring that large jobs are
computed in small parts for to ensure that the process is efficient during the
debugging process. The process is a kind of command. These commands
are given different kinds of names including job scheduling and workload
automation (Silva et al., 2006). Batch processing has undergone a number
of changes over the years. These changes are beneficial as they have made
the process more efficient and sophisticated. Adopting of batch processing
in business has made daily activities a success (Figure 4.1).

Figure 4.1. Batch processing is very effective in performing tasks.

Source: https://medium.com/techco/ml-batch-processing-and-streaming-
162d11973eab.

4.2. EVOLUTION OF BATCH PROCESSING
Batch processing can easily be identified by one main characteristic which
is the lack of user interaction. Batch processing need few, if any, manual
processes to kick it off. The low amounts of processes needed to kick it
of contributes to the efficiency and success of the process. High levels of
success and efficiency is a recent development. Punch cards were initially
used in batch processing. They were tabulated and would give computers
instructions on what to do. Initially, batches or decks of cards would be
processed one at a time. Punch cards were created in 1890 by Herman
Hollerith. He created punch cards to process census data. This development
came as he was working for the U.S. Census Bureau. He developed a

Operating System Properties 63

system within which a punched cards could be read by an electromechanical
device. The cards were punched manually. This led to the development
of a company known as IBM (Sjöstrand et al., 2015). Development of
punch cards revolutionized operation of businesses. Batch processing has
continued it evolution over the past two decades. This has led to decline in
the need for businesses to hire data entry professionals. These developments
are such that batch processing functions can be enabled without interaction.
Tasks are done and completed to meet specified timing needs. There are
different ways of executing tasks. There are jobs that are done immediately
while others are completed in real time with daily monitoring (Figure 4.2).

Figure 4.2. Evolution of batch processing has made the process dependable.

Source: https://www.sciencedirect.com/topics/biochemistry-genetics-and-mo-
lecular-biology/batch-process

4.3. MONITORS AND DEPENDENCIES IN BATCH
PROCESSING
In the current day and age, there are exception-based alerts used in batch
processing that notify relevant stakeholders if there are any issues. This is
very advantageous for managers are they are able to work freely without

Introductory Guide to Operating Systems64

having to regularly check the progress of batches. The ideology behind
exception-based management is that the manager does have to check on
a batch unless they get an alert about a critical exception. A system of
dependencies and monitors that are very vital to the software are useful in
determining these exceptions. The dependencies are defined as the events
that trigger the start of batch processing. A good example is when a customer
places an order online or when they request for new supplies. This triggers
the system to generate a request. Batch processing is therefore set in motion
by dependency. Monitors are part of the system that identifies abnormalities
in the batch. An abnormality includes a task taking a longer duration than
the expected in completing a task. This causes a delay as other tasks cannot
be completed before the other is completed. The unusual delay is caught
by the monitor which will in turn generate and exception and send it to the
manager (Santos et al., 2013).

When using batch processing, one may encounter latencies. Several cases
of such delays are noted before the start of data transfer and is not a big issue
as processes using this function are not mission critical during that exact
moment. Some situation that may require the use of batch processing include
times when large volumes of data are to be processes, work is repetitive, tables
in relational databases have to be joined, complex algorithms must access the
entire batch, real-rime transfers and results are no crucial and when data is
accessed in batches rather than streams (Figure 4.3).

Figure 4.3. Process related to batch processing are conducted by the operating
system.

Source: https://padakuu.com/batch-operating-systems-27-article.

Operating System Properties 65

Some features of batch processing are as follows: an operating system
(OS) conducts activities related to batch processing, the OS defines a job
having predefined sequence of data as a single unit, programs, and commands
and the OS keeps several jobs in the memory that are executed without any
manual information. Also, when the execution of a task is completed, the
memory is released and the output of the job is copied into an output spool
where it will be printed or process after sometime. Another feature is that
tasks are processed in the order of submission that is the first come first
served fashion.

4.4. ADVANTAGES OF BATCH PROCESSING
Batch processing systems have been developed by a number of companies
due to a variety of reasons. These reasons have affected their outlook on
software organization. Some of the advantages are as in subsections.

4.4.1. High Speed at Lower Costs
The evolution of batch processing is such that companies to do need to
hire data entry clerks to support function of batch processing systems. This
has been useful in reducing operational costs that could be spent on labor.
The system does not need any additional hardware to function outside the
computer. It is a known fact that adoption of batch processing can reduce a
company’s reliance on expensive hardware. This provides an inexpensive
solution that helps the business to save on time and money. Batch processes
can execute a task in the most efficient way in the absence of the possibility
of user error. This makes the results fast, accurate, and time managed so that
managers are able to spend their time on other day-to-day operations (Peter
et al., 2015).

4.4.2.	Offline	Features
Another advantage of batch processing is that their systems can work offline.
This means that batch systems are processing in the background when the
workday ends. It is advantageous for managers are they get ultimate control
over when to start processes. This also enables setting of software overnight
allowing processing of batches. This is very convenient for businesses that
may not want job like automatic downloads to disrupt daily activities.

Introductory Guide to Operating Systems66

4.4.3.	Easy	Hands-Off	Management
Managers are able to benefit from the fact that they conduct other activities
without having to log in to check on progress of batches. This is brought
about by the use of exception-based notification systems. This system is a
modern batch processing software that enables managers go about with their
activities without having to worry about whether their software is properly
functioning or whether the batches are being completed. An occurrence of
an issue causes a notification to be sent to right person to solve it. This is
the hands-off approach that enables managers’ trust that batch processing
software is doing their job (Ow, 2011).

4.4.4. Simplicity
When batch processing is compared to steam processing or real-time
processing, it is found to be less complex. This is because it does not require
constant system support for unique hardware or data input. When the system
has already been installed or established, the system does not require heavy
duty maintenance and is therefore a low-barrier-to-entry solution.

4.5. DISADVANTAGES OF BATCH PROCESSING
Even though batch processing has numerous advantages, it also has its own
disadvantages. This may require companies to review its components and
highlight some components that may be disadvantageous for them. Some of
the disadvantages are as in subsections.

4.5.1. Deployment and Training
When dealing with technology, and update may require those using it undergo
training for proper utilization of the equipment. Managing of batch systems
may require owners undergo training. This is applicable for managers who
are not familiar with what triggers a batch, how to schedule them and the
meaning of exception notifications among others (Nimodia and Deshmukh,
2012).

4.5.2.	Complex	Debugging
Managers need to possess knowledge needed in fixing errors when they
occur. Batch processing systems are quite complex to debug. For this

Operating System Properties 67

reason, managers may require an in-house employee with an expertise in
these systems. Absence of such an employee may mean that the company
will have to incur extra costs on hiring an outside consultant to assist.

4.5.3. Cost
When switching to batching system, most businesses will save on money on
hardware and labor as some do not have expensive hardware or data entry
clerks. Such businesses may see the cost of batching systems as unfeasible.

In most cases, companies tend to deliberate on whether what system is
beneficial to them. They try to compare the advantages between batching
and steam processing. In as much as a clear-cut answer may be most ideal,
there is no option that can be considered as the perfect solution for various
instances. Depending on the needs of the company, there may be an optimal
method.

4.6. MULTITASKING
Multitasking is a property of an OS where by the CPU of a computer is
able to conduct multiple jobs simultaneously by switching between them.
Switches are so frequent such that the user is able to interact with each of the
programs while it is running. This kind of property therefore allows the user
to perform multiple computer tasks at a time. Multitasking is very useful in
that initially, when other tasks were being conducted the introduction of a
new task would leave the process in jeopardy. This means that tasks share
common processing resources such as the main memory while the computer
executes segments of multiple tasks in an interleaved manner (Nollet et al.,
2004). Multitasking in computer systems automatically interrupts running
programs. When a new task is introduced, the system saves the already
generated results and loads the saved state of the other program and transfers
control to it. Switching can be initiated at fixed time intervals and is known
as pre-emptive multitasking. Switching can also be initiated when a running
program can be coded to signal the supervisory software when it can be
interrupted. This is known as cooperative multitasking (Figure 4.4).

Introductory Guide to Operating Systems68

Figure 4.4. Multitasking enables the operating system perform several tasks in
a given period of time.

Source: https://www.javatpoint.com/multitasking-operating-system.

Using multitasking in the OS does not require parallel execution of
multiple tasks at a go. It however allows more than one task to be conducted
for a given period of time. In multiprocessor computers, the multitasking
feature enables the CPU run several tasks. In some cases, the tasks are more
than the CPU. Multitasking enables full utilization of computer hardware.
The computer can await for external event such as entry of data, the central
processor can continue with other programs. There are various OSs that
adopt multitasking including the real time OS. In real time OS, several users
utilize the same processors as though they were dedicated to their use. In
such a case, behind the scenes activities includes the computer serving the
several users by multitasking individual programs. Multitasking OSs may
include adoption of measures that enable the system to change the priority of
individual tasks. This enables very important jobs to receive more processing
time than those considered less significant (Moore and Stouch, 2016).

There are different kinds of tasks depending on the kind of OS. There
are cases where tasks are larger as an entire application program. In other
cases, there may be tasks made up of smaller threads that carry out portions
of the entire program. Multitasking OSs are often used with certain kinds of
processors that may include special hardware that securely supports multiple
tasks such a protection rings and memory protection. Both the protection
rings and memory protection are useful in ensuring that the supervisory
software cannot be damaged or subverted by user-mode programs having
errors.

Operating System Properties 69

4.6.1. Cooperative Multitasking
All multitasking systems are known to use applications that voluntarily cedes
time to one another. The approach was supported by computer OSs and is
currently known as cooperative multitasking. Cooperative multitasking is
rarely used in larger systems in exception of specific applications including
the JES2 and CICS subsystem. There was a time when cooperative
multitasking was the only scheduling scheme employed by classic Mac OS
and Microsoft Windows. In both cases, cooperative multitasking enabled
running of multiple applications simultaneously. In the current day and age,
cooperative multitasking is used in RISC OS systems (Monaco et al., 2013).
The cooperative multitasking systems rely on each process regularly giving
up time to other processes on the system. This means that if there is a poorly
designed program, it will take up most of the CPU’s time as it may conduct
extensive calculations or it may be busy waiting. Both cases may cause the
entire system to hang. When defined according to server environment, this
is considered a hazard as the entire environment becomes unacceptably
fragile (Figure 4.5).

Figure 4.5. Cooperative multitasking enables several tasks to be performed si-
multaneously.

Source: https://www.deeptronic.com/software-design/state-machine-and-co-
operative-multitasking-model-simplify-complex-processes-programming-for-
microcontroller/.

Introductory Guide to Operating Systems70

4.6.2. Preemptive Multitasking
Preemptive multitasking is very different from cooperative multitasking in
that it enables the computer system to reliably guarantee that each process
gets a regular slice of operating time. This kind of multitasking also enables
the system to deal rapidly with important external events such as new data
that may require important attention from the processors. For this reason,
OSs were developed in a manner that enabled them take advantage of these
hardware capabilities as well as running of multiple processes preemptively.
In 1964, the preemptive multitasking was implemented in Monitor and
MULTICS, UNIX in 1969 and OS/360 MFT in 1967. Other computers were
also able to access preemptive multitasking (Figure 4.6).

Figure 4.6. Preemptive multitasking ensures that all tasks are given an oppor-
tunity for operation.

Source: https://www.embedded.com/introduction-to-preemptive-multitasking/.

While using the preemptive multitasking, processes can be grouped in to
two categories at any specific time. The two categories include those that are
waiting for input or output hence the name I/O bound and those fully utilizing
the CPU hence the name CPU bound. When used in primitive systems, the
software could busy wait or poll while waiting for requested input such
as network input or keyboard input. During this time the system is not
performing useful work (McClean et al., 2013). In the advent of preemptive
multitasking and interruptions, I/O bound processes could be put on hold or
blocked as it waits the arrival of necessary data. This enables other processes
to utilize the CPU. This is because the arrival of new data would cause the
generation of an interruption. This also guarantees that blocked processes
can be guaranteed a timely return to execution and completion.

Operating System Properties 71

In 1984, the Sinclair QDOS on the Sinclair QL was developed as the
earliest form of preemptive multitasking OS easily available for home
users. The challenge faced was that few people bought the machinery due to
various reasons. This led to the release of the first commercially successful
home computer that utilizes the technology. The multimedia capabilities
of the machinery make it a clear ancestor of contemporary multitasking
personal computers (PCs). In the early 1990s, Microsoft made preemptive
multitasking a core feature of the flagship OS. This was done as they were
developing Windows NT 3.1. The feature was later on adopted on the Apple
Macintosh by Mac OX. The system utilized preemptive multitasking for
every native application. Other similar models were used in the Windows NT
family and Windows 9x. In both, native 2-bit applications are preemptively
multitasked. For the 64-bit editions of Windows, preemptive multitasking
supported all supported applications.

4.7. MULTIPROGRAMING
Multiprogramming is considered a rudimentary form of parallel processing
where several programs are run at the same time on a uniprocessor. In
multiprogramming there cannot be simultaneous execution of tasks as there
is only one OS. In such as case, the computer conducts part of one program
then parts of another. The user may insinuate that all programs are being run
at the same time. In the case where the machine has the ability to cause an
interruption after given period of time then the OS is able to execute each of
the programs for a given length of time. It then takes time to regain control
before it proceeds to execute another program for a given period of time.
Absence of this mechanism means that the OS has no choice but to begin
program execution with the expectation but no certainty that the program
may eventually return control to the OS (Manzalini and Crespi, 2016). A
program is less likely to interfere with the execution of other programs
when it has the capability of protecting memory. If a system does not have
memory protection, presence of a bug may make one program to change
the contents of storage that has been assigned to other programs. It can also
tamper with storage assigned to the OS. This leads to the occurrence of
system crashes that are not disruptive but are very difficult to debug since
there is no definitive knowledge on the program at fault (Figure 4.7).

Introductory Guide to Operating Systems72

Figure 4.7. Multiprogramming is a rudimentary form of parallel processing.

Source: https://www.geeksforgeeks.org/difference-between-multiprogramming-
and-multitasking/ https://www.geeksforgeeks.org/difference-between-multipro-
gramming-and-multitasking/.

The main goal of multiprogramming is to overcome issues of under-
utilization of primary memory and CPU. Multiprogramming also ensures
that all the resources are properly managed. There are certain components
that enable multiprogramming on OSs. They include the transient area, I/O
control system, file system and command processor. An OS designed to
conduct multiprogramming activities are built on the basis of a principle
stating that sub segmenting parts of transient area can be used to store
individual programs. In most cases, resource management routines are
attached with basic functions of the OS. While using a multiprogramming
system, the system enables users to perform several tasks concurrently and
can be stored into the main memory. This renders the OS able to deliver
time to several programs while it is idle mode as one is engaging with other
I/O systems (Muehlstein et al., 2017). While the system is working, one
program is able to wait for I/O transfer while the other program is ready to
use of processor. When all jobs are executed at the same time frame, it is
not referred to as multiprogramming but is defined as multiple jobs present
for processor. Part of the processor is executed followed by another segment
and so on. When a program is in the execution process, it is referred to
as a task, job, or process. Concurrent execution of programs is useful in
improving performance of system throughput.

Operating System Properties 73

4.8. TYPES OF MULTIPROGRAMMING OPERATING
SYSTEMS (OSS)
There are two main types of multiprogramming OSs. They include a
multiuser OS and multitasking OS.

4.8.1. Multitasking Operating System (OS)
Multitasking OS allows the execution of two or more programs in the same
duration. This is achieved by shifting each of the programs into and out
of memory on at a time. In the case where the program is switched out of
memory, it is temporarily saved on disk till the time is required by the system.

4.8.2. Multiuser Operating System (OS)
A multiuser OS is different from multitasking OS as it allows many users
share processing time on a powerful central computer from different
terminals. This is accomplished by the OS switching rapidly between
terminals each of which receives a set amount of processor time on the
central computer (Mayoral et al., 2017). The OS is able to change among
terminals quickly such that each user is able to have continuous access to the
central computer. In the case where there are several users on a system like
this, making obvious time taken by the central computer to reply.

4.8.3. Activities Related to Multiprogramming
Some of the activities related to multiprogramming include the OS keeping
several jobs in the memory at a time. The set of jobs is considered a subset
of jobs kept in the job pool. The job is picked by the OS and its execution
is started. The multiprogramming OSs monitor states of all active programs
and system resources. This is done using memory management programs.
These programs ensure that the CPU is never idle in exception of instances
where there are no jobs to process. Examples of multiprogramming OS
include Firefox browser, google chrome, MS-Excel, transfer data, Windows
O/S, UNIX O/S, ESQ view, MP/M, XENIX, and downloaded apps.

4.9. ADVANTAGES OF MULTIPROGRAMING
There are numerous benefits of multiprogramming in OSs are as follows:

• Multiprogramming increases CPU utilization. This way, it is
never idle.

Introductory Guide to Operating Systems74

• Multiprogramming also ensures that resources are smartly
utilized.

• OSs using multiprogramming tend to have less time response
time.

• Multiprogramming enables several users access the system all at
once.

• Multiprogramming is useful in executing multiple tasks in a
single application at the same time duration and is also useful in
improving turnaround time for short jobs (Lin and Ye, 2009).

• Multiprogramming reduces total read time required in executing
a job. It is also useful in optimizing total job throughput of a
computer.

• Multiprogramming enables fast monitoring enables entire tasks
to run in parallel.

4.10. DISADVANTAGES OF MULTIPROGRAMMING
Some of the disadvantages of multiprogramming is that the CPU requires
scheduling from systems to run properly. Multiprogramming also requires memory
management as all manner of jobs are stored in the main memory. Multiprogramming
presents the challenge of managing all jobs and processes. Some users may find
multiprogramming to be highly sophisticated and complex (Figure 4.8).

INTERACTIVITY

Figure 4.8. Operating systems have been developed to enable interactions be-
tween human beings and computers.

Source: https://ercim-news.ercim.eu/en71/special/oslab-an-interactive-operat-
ing-system-laboratory.

Operating System Properties 75

Interactivity in computer system refers to the dialog known to occur
between a computer program and a human being which is the living
creature. Interactivity occurs when there is an immediate user involved
in the running of computer programs. Those that do not interact with
immediate users are usually called background or batch programs. Great
interactivity is mostly noted in games as the user interacts with the computer
from long hours. There are other kinds of interactive software including
order entry applications and other business applications. All though they
are interactive, they are constrained in a certain way such that they offer
the user limited interaction. When using the World Wide Web, the user not
only interacts with the browser but also the pages brought by the browser.
There are implicit invitations called hypertext useful in linking the user to
pages. This is the most common form of interactivity when using the Web.
The World Wide Web can be thought of as a giant made up of interconnected
application programs (Levis et al., 2005). Other than hypertext there are
other applications that offer possibilities for interactivity. They include
the Web and other non-Web applications in a computer system. There are
various kinds of input including any kind of user input such as clicking the
mouse or typing commands. Output forms of interactivity include sounds,
motion video sequences, printouts, text, and displayed images.

In the earliest development of interaction with computers contained
an indirect interaction with computers and it consisted of submitting
commands on punch cards once on the computer reads them and performs
the commands. More advancement saw that computer system were designed
such that even the average person other than programmers were able to
interact immediately with computers. It tells them some of the programs
to run and they can interact with those programs such as editors currently
called processor, drawing programs and other interactive programs. Initially,
the interactive human-computer interface tended to be input text sequences
also known as commands and terse one-line responses from the system. The
first graphical user interface was developed in the late 1970’s and it emerged
from Xerox PARC Lab. The interface found its way into Apple Macintosh
PC and finally into Microsoft’s Windows OS. This led to PCs adopting the
use of graphical interface. There are estimates that suggest that about 90%
of computer technology development effort is focused on enhancing and
making innovations in interaction and interface. When developing such
programs, designers need to possess knowledge of programming languages
and a better understanding of human information processing capabilities
(Lass and Gronau, 2020). All of these are useful in improving efficiency

Introductory Guide to Operating Systems76

and effectiveness of programmer and computer software. It is important for
them to know how individuals perceive screen color, some of the common
patterns, how and why unambiguous icons should be constructed, errors
that occur on the user’s side and the role of user effectiveness is related to
various mental model of systems possessed by people.

4.11. TYPES OF INTERACTIVE SYSTEMS
The start of interactive system was makes by command line systems. These
systems facilitated controlled interactions between the computer and humans.
For proper interactions, users were required know the commands that can
be issued and how the arguments were to be ordered. Some of the classical
examples include the Disk OS and UNIX OSs. While using the command
line systems the users were to enter data in particular sequence. High control
was also present with regards to data output. Output was generally limited.
The command line system placed high demands on the need for the user to
remember commands as well as the syntax used in issuing the commands
(Figure 4.9).

Figure 4.9. Command line systems were the first kind of interactive system
developed.

Source: https://www.sciencedirect.com/topics/computer-science/command-
line-interface.

Operating System Properties 77

Challenges in the command line system led to the development of the
second generation of menu, form, and dialog-based systems. This system
eased some of the demands on memory. A good example of the form-based
program is the automatic teller machine. It gave users a tight controlled
set of possible actions. Form-or dialog-oriented systems include data entry
system which offered the user a limited set of choices while ensuring the
memory is relieving the memory of certain demands) (Lange et al., 2011).

This was followed by the adoption of third generation interactive
computing that was introduced in 1980 by Xerox Corporation. Half dozen
years of research led to the development of the Xerox Star. During its
development, bit-mapped displays, Windows, the desktop metaphor, icons,
and the mouse were brought together and made to function. Xerox Star was
later on replicated in Macintosh and the Lisa offered by Apple Computer Inc.
This was during mid-1980s. Microsoft made Windows, icon, pointer, and
menu universal. In the 1990s, the Windows family of OS was introduced.
This led to the shift in graphical user interface also known as WIMP interfaces
from command-based to direct manipulation. The command-based system
placed much emphasis on users specifying an action as well as the object on
which the action is to be performed. This is very different from the direct
manipulation system when by an object is selected while the user specifies
the action to be performed on the object. Currently, most developments in
interactive systems have placed much focus in agents, visualization, and
virtualization. The nature of the current generation of direct manipulation
system as well as the coming generation of virtual and agent systems.

When developing interactive system, a major component is for developers
to understand human capabilities. There is great importance for users to
known how to properly utilize highly interactive computer system. There
are different ways of describing human-computer interaction and Professor
Donald A. Norman describes human-computer interaction in terms of gulfs
of execution and evaluation. With this kind of understanding, the user has
a goal in mind and is required to reformulate their goal in term of a plan
ultimately involving the execution of series in actions on the system. The
actions cause changes to the state of the system (Krohn and Tromer, 2009).
The user then perceives, interprets, and evaluates them. Among the most
important elements in computer system developers possessing the ability to
understand how human beings perceive, interpret, evaluate, and respond to
computer actions.

Introductory Guide to Operating Systems78

4.12. REAL TIME SYSTEMS
Real time systems can be defined as an information processing system
having both software and hardware components able to perform real-time
application functions. They also have the ability to respond to event within
specific time and predictable constraints. Autonomous driving systems,
process control systems and driving control systems are some examples of
real time systems (Figure 4.10).

Figure 4.10. Real time systems are information processing systems.

Source: https://www.guru99.com/real-time-operating-system.html.

4.12.1. Advantages of Real Time Systems
There are numerous benefits of real time in applications. They are as follows:

•	 Precise Timing: Real time systems have been adequately
designers to perform tasks that should be executed within precise
cycle deadlines. These deadlines can go down to microseconds.

•	 High	Reliability	and	Predictability:	Real time systems function
within predictable time frames. This means that execution of

Operating System Properties 79

tasks is practically guaranteed making such systems very reliable
in businesses. This is also achieved because such systems tend to
use defined data (Kushwaha and Kushwaha, 2011).

•	 Prioritization of Real Time Workloads: Real time workloads
are usually completed within a given deadline to ensure that
critical systems do not fail. This is because real time systems are
able to prioritize some workloads over others. There are some
real time systems known to have task or workload prioritization.

4.12.2. Components of Real Time Systems
There are two main requirements to be met for real time systems to perform
real time computing. They include timelessness and time synchronization.
Timelessness defines the ability to produce expected result within a given
time frame while time synchronization defines agent’s ability to coordinate
independent clocks and operating together as one. Real time system
is evaluated by measuring the value of a system with regards to their
predictability in completing tasks or events (Jeong et al., 2012). There are
two main elements used when further evaluating real time system. They
include compute jitter and latency. Compute jitter is the latency variation
between iterations while latency is the measurement of time between two
events. There are two main types of real time systems namely the hard real
time software and the soft real time software.

Soft or hard real time system are used by companies depending of the
tasks at hand. The goal is to help the company meet their growing needs
for real-time data processing taking advantage of the predictability and
reliability of the real-time system. Some of the companies include Intel. It
provides solutions, technologies, and partners to achieve such systems. For
this reason, a real time system is characterized by its ability in producing
expected results within a given deadline as well as their ability to coordinate
clocks and time synchronization. Hard real time systems make use of absolute
deadlines and when the allotted time spans are not met, a system failure
occurs. This is very different form soft real time systems as the system will
continue to function even if there is a missing deadline. However, output
quality of soft real time system is very low.

Intel has been useful as it offers hardware and reference system-level
software needed in developing real time applications. For such applications,
every element will be able to perform in a predictable and reliable manner
within a specific time window and therefore able to meet hard real time
requirements.

Introductory Guide to Operating Systems80

4.12.3. Need for Real Time Systems
There has been a growing needed for real time system brought about by
the growing global connectivity, changing consumer demands for readily
available data as well as on sensor-enabled enterprise environments that
drive the creation, collection, and analysis of exponential data amounts. It is
anticipated that by 2025, there will be about 79.41 zettabytes of data created
of which 30% of it will need real time processing facilitated by real time
systems. There is also a great need for real time processing in businesses
such as robotics, high-precision industries, healthcare, and manufacturing
(Jaeger, 2008). All these industries greatly rely on real time data in ensuring
continuous improvement in reliability, efficiency, and safety. For a company,
its ability to manage, prioritize, and execute real-time workloads over non-
real time workloads is useful in ensuring that data is processed in real-time
for business in various industries.

A good illustration is in the modern automotive manufactures known
to be heavily reliant on the working together of robots in a production line
when assembling a car. While in the production line, robots will pass each
other weld, drill or parts. They are able to perform safety inspections. These
kinds of inspections require a high level of meticulous timing and precision.
In such a case, it is very important for real time system must have the ability
to process data in a predictable and defined time frame and also ensure that
critical systems are completed prior to less critical tasks. Real time systems
also ensure that data driven industries are able to process data.

4.13. APPLICATIONS OF REAL TIME SYSTEMS

4.13.1. Machine Vision
Machines are able to perform rapid interpret data through the use of
machine vision. It enables machines to see their surrounding and quickly
make decisions according to visual input. Machines with vision are key to
ensuring flow of production or the continuation of critical processes. Real
time system has been helpful in ensuring that such machines are able to
process data near real time.

Operating System Properties 81

4.13.2. Process Control Systems
Industrial applications greatly make use of process control systems. In such
industries, production is continuous and there are minimal interruptions.
Process control system help business improve performance and maintain
quality by testing processes, collecting relevant data, and returning the data
for monitoring and also troubleshooting (Irwansyah et al., 2018). Process
control systems are mostly used by companies in the gas and oil sector. These
companies are known to realize numerous benefits, increased efficiency to
safer operation of facilities and also reduced losses.

4.14. SPOOLING
Spooling as a property of the OS is a process in which data is temporarily
held to be used and executed by a system, program, or a device. In spooling,
data is usually sent to a memory or another volatile storage where it is stored
until the computer or program requests for its execution. An acronym of
simultaneous peripheral operations online is SPOOL. The computer’s
physical memory maintains the spool. It is also maintained on I/O device
specific interrupts or buffers. Processing of spool is done in the ascending
order as it works on a first-in, first-out algorithm. Spooling may therefore
be defined as the process of putting data of various I/O jobs in a buffer. The
buffer is a special area in memory or hard disk that can be accessed by I/O
devices. Some of the activities done by the OS related to the distributed
environment include handling of I/O device data spooling as devices have
different data access rates (Hellmund, 2016). The OS also maintains spooling
buffer providing a waiting station where data rests as slower devices catch
up. OSs also maintain parallel computation. This is because spooling
process can be performed by a computer whose I/O is performed in parallel
order. In such kind of an operation, the computer is able to read data from a
tape, write out to a tape printer and write data to a disk while it performs a
computing task (Figure 4.11).

Introductory Guide to Operating Systems82

Figure 4.11. Spooling requires the creation of spools to manage data.

Source: https://www.notesjam.com/2017/10/spooling-in-operating-system.
html.

4.15. WORKING OF SPOOLING IN OPERATING
SYSTEM (OS)
The following steps are followed by the OS in spooling. A buffer called
SPOOL is created and is used to hold off jobs and data till the device in
which SPOOL is created is able to use and execute the job and also operate
on the data. A secondary memory attached as a SPOOL buffer is used when
a faster device sends data to a slower device to perform some operation.
Data is retained in the SPOOL till the slower device is ready to operate on
the data. Once the slower device is ready, data in the SPOOL is loaded on to
the main memory for required operations. The next step involves spooling
considering the entire secondary memory as a huge buffer with the ability
to store data and several jobs for operations. Among the advantages of
Spooling is that it is able to create a queue of jobs that execute in FIFO order
executing jobs one by one. In the next step, the device is able to connect
too many input devices that may require operation on their data (Høiland-
Jørgensen, 2018). This means that the input devices can put their data onto
the secondary memory and can also be executed one by one on the device.
This ensures that the CPU is not left idle at any moment. One can therefore
conclude that Spooling is a combination of queuing and buffering. The final
step involves the CPU generating some output. The output is first saved in
the main memory. The output is then transferred to the secondary memory
from the main memory. The output finally finds its way to the respective put
devices.

Operating System Properties 83

4.15.1. Examples of Spooling
Among the most common examples of spooling is printing. When a
document is to be printed, it is stored in a spool and added to the queue for
printing. At this time, there are numerous processes that can perform their
operations. They also use the CPU without waiting. The printer executes
the printing process on documents one-by-one. In OS there are over several
features that can be added to the Spooling printing process. These features
include notification or setting priorities when the printing process has been
completed. It could also include the selection of different types of paper to
print on.

4.15.2. Advantages of Spooling
There are numerous advantages of Spooling. They are as follows. With
Spooling, the number of I/O devices or operations does not matter. In such a
setup, there are sever I/O devices working together simultaneously without
any interference to each other. There is so no interaction between the CPU
and I/I devices. This e means that the CPU does not have to wait for the I/O
operations to take place. Such kinds of operations take longer durations to
finish executing and in such a case, the COY does not have to wait for them
to finish. The other advantage of Spooling is that the CPU is kept busy for
the most time (Hambarde et al., 2014). The only time it goes to the idle state
when the queue is exhausted. This is a very important element of the CPU
because and idle COU is not very efficient. Several protocols were created
to effectively utilize the CPU in the least amount of time. In Spooling, all the
tasks are added to the queue and the CPU completes the tasks before it goes
into an idle state. Another advantage is that Spooling allows applications to
run at the speed of the CPU as the I/O devices run at their respective full
speeds.

4.15.3. Disadvantages of Spooling
Some disadvantages of spooling are as follows. While using spooling, large
amounts of storage is required depending on the number of requests made
by the input as well as the number of input devices connected. Spooling
mostly involves the use of a secondary storage as the Spool is created in it.
If there are several input devices working simultaneously may take up lots
of space on the secondary storage. This causes an increase in disk traffic.
The disk gets slower and traffic increases. Spooling is mostly used when
copying and executing data from slower devices to faster devices. A spool is

Introductory Guide to Operating Systems84

created in the slower device to store data to be operated upon in a queue and
the CPU works on it. The process makes Spooling futile to use in real time
environments where real time results are needed from the CPU. The delay
causes output be produced at a later time than the real time.

OPERATING SYSTEM – PROCESSES

CHAPTER5

CONTENTS
5.1. Process ... 86

5.2. Kernels ... 87

5.3. Program .. 88

5.4. Life Cycle of the Process ... 89

5.5. Process Control Block (PCB) ... 90

5.6. Process Scheduling ... 92

5.7. Two-State Process Model .. 93

5.8. Schedulers .. 94

5.9. Medium-Term Scheduling ... 95

5.10. Short-Term Scheduling .. 96

5.11. Dispatcher .. 97

5.12. Context Switch ... 97

5.13. Program Counter (PC) ... 100

5.14. Scheduling Algorithms .. 102

5.15. Scheduling Algorithms/Disciplines .. 103

5.16. Priority Scheduling ... 104

5.17. Shortest Remaining Time First ... 106

5.18. Fixed Priority Pre-Emptive Scheduling ... 107

5.19. Round-Robin Scheduling .. 108

5.20. Inter-Process Communication ... 110

Introductory Guide to Operating Systems86

A program is useless until the instructions it contains are executed by a
CPU. A process is a program that is currently running. Processes require
computer resources to do their tasks.

There could be multiple processes in the system that need the same
resource at the same time. As a result, the operating system (OS) must
efficiently and effectively handle all processes and resources (Giorgetti et
al., 2020).

To preserve consistency, some resources might have to be executed by
one process at a time or else, the system may become incompatible and a
deadlock may develop. In terms of Process Management, the OS is in charge
of the following tasks.

5.1. PROCESS
A process is basically what one would think as a running software. The
execution of a has to be carried out in a particular order.

A process is an entity that represents the very basic unit of work that
must be implemented in the system. In other words, we write our computer
programs in a text file, and when they are run, they turn into a process that
completes all of the duties specified in the program.

A program can be separated into four pieces when it is put into memory
turns into a process: stack, heap, text, and data. The diagram in Figure 5.1
depicts a basic representation of a process in main memory.

•	 Stack: This contains the temporary data such as method/function
parameters, return address and local variables.

•	 Heap: This is dynamically allocated memory to a process during
its run time.

•	 Text: This includes the current activity represented by the value
of program counter and the contents of the processor’s registers.

•	 Data: This section contains the global and static variables.

Operating System – Processes 87

Figure 5.1. Components of a program.

Source: https://www.tutorialspoint.com/operating_system/os_processes.htm.

5.2. KERNELS
The kernel is a piece of software that operates at the core of a computer’s OS
and controls all of the system parts. It’s a piece of OS code that’s always in
memory and aids in the interaction of hardware and software. A full kernel
manages all hardware resources (like I/O and memory) through device
drivers, resolves resource conflicts between processes, and optimizes the
usage of shared resources including CPU and cache use, file systems, and
network sockets. When most computers turn on, the kernel is among the
earliest programs to run (Gunadi and Tiu, 2014).

It handles the remainder of the starting process, as well as requests for
input/output (I/O) from memory, peripherals, and software, and converts
them into data-processing instructions for the CPU.

Kernel code is usually loaded into a distinct area of memory that is
isolated from application software and other less critical OS components.
The kernel executes operations such as operating programs, controlling
hardware devices such as the hard disk, and handling interrupts in this

Introductory Guide to Operating Systems88

protected kernel area. Web applications, word processing, and interactive
multimedia players, on the other end, employ user space, which is a separate
memory area. This method avoids user data and kernel data from interacting
and causing issues and delay, and also faulty programs from interfering
with other applications or crashing the whole OS. Even on systems where
the kernel is contained in application address spaces, memory protection is
employed to stop unauthorized apps from modifying the kernel.

The kernel’s interface is a low-level abstraction layer. Whenever a
process requests a service from the kernel, it must issue a system call, which
is typically done with the help of a wrapper function.

There are a variety of kernel structure designs to choose from. Monolithic
kernels, which are intended for speed, run exclusively in a single address
space with the CPU in supervisor mode. Microkernels, like user processes,
run the majority of their services in user space, but even so not all of them,
chiefly for resilience and modularity. The microkernel architecture of
MINIX 3 is a good example. While the Linux kernel is monolithic, it is also
modular in that it may install and unload loadable kernel modules at runtime
(Greenwald and Thomas, 2007).

The execution of programs is the responsibility of this essential element
of a computer system. The kernel is in charge of choosing which of the
numerous running applications should be assigned to the processor or
processors at any one time.

5.3. PROGRAM
A program is a collection of code that can be as simple as a single line or as
complex as millions of lines. A computer program is usually developed in a
programming language by a programmer. Here’s a small program created in
the C programming language as an illustration (Figure 5.2).

Figure 5.2. Programming language.

Source: https://www.tutorialspoint.com/operating_system/os_processes.htm.

Operating System – Processes 89

A computer program is a set of instructions that, when processed by
a computer, perform a certain purpose. We can deduce that a process is a
dynamic form of a computer program when we relate a program to a process
(Arshad et al., 2018).

An algorithm is an element of a computer program that executes a certain
task. A software package is a bundle of computer programs, libraries, and
associated data.

5.4. LIFE CYCLE OF THE PROCESS
When a process runs, it goes through many states. Distinct OSs have different
stages, and the terminology of these states are not uniform (Figure 5.3).

In principle, a process can be in one of the five states listed below at any
given time.

1. Start: This is the first or primary state when a process is first
started or created.

2. Ready: The procedure is awaiting the assignment of a proces-
sor. Processes that are ready to run are waiting for the OS to
allocate them a processor. The process may acquire this state
after it has started or as it is operating, but the scheduler can
suspend it so that the CPU resources can be allocated to other
prioritized process.

3. Running: Depending on the scheduling method, the OS will se-
lect one of the processes from the ready state. As a consequence,
if our system only has a single CPU, there’ll always be just the
one process operating at any given time. We can have a specified
number of processes running at the same time if the system has
more processors (Fierro and Culler, 2015).

4. Waiting: Based on the scheduling method or the underlying na-
ture of the process, a process can migrate from the Running state
to the Block or Wait states.
When a process waits for a resource to be allotted or for user
input, the OS puts it in a block or wait state and gives the CPU
resources to other processes.

5. Terminated or Exit: The process is moved to the terminated
state, where it waits to be removed from main memory, once
it has carried out it its execution processes or been entirely
stopped by the OS.

Introductory Guide to Operating Systems90

Figure 5.3. Process life cycle.

Source: https://www.tutorialspoint.com/operating_system/os_processes.htm.

5.5. PROCESS CONTROL BLOCK (PCB)
A process control block (PCB) is a data block that computer OSs use to store
all process-related data. It’s also known as a process description. When a
process is created, the OS creates a PCB (initialized or installed). This tells
you whether the process is started, ready, running, waiting, or finished.

In multitasking OSs, the PCB stores data that is essential for proper and
successful process control. The major elements of these frameworks can be
split into three groups; however, the specifics differ based on the system:

• Process identification;
• Process state; and
• Process control.
Status tables are there for every significant entity, like memory, I/O

devices, files, and processes. Memory tables, for example, show how
much main and secondary (virtual) memory every process has, as well as
authorization settings for using memory areas used by multiple processes.
I/O tables can include entries that describe a device’s ability or assignment
to a process, the state of I/O events, the placement of memory buffers used
for them, etc. (Fröhlich and Wanner, 2008).

Process data for identification – a unique identifier for the process
(mostly just an integer), as well as data such as the identifier of the main
process, user identifier, user group identifier, and so forth, are contained in
process identity information in a multiuser-multitasking system. The process
ID is especially important because it is normally used to cross-reference the

Operating System – Processes 91

items or stages illustrated in tables above, e.g., displaying which process is
occupying which I/O resources, or memory areas.

When a process is halted, process state data defines its current state,
allowing the OS to restart it. Throughout a context switch, shift or transition,
the currently executing process is terminated and replaced by a new one.
The kernel must halt the current process’s execution, duplicate the data in
hardware registers to the fresh process’s PCB, then refresh the hardware
registers with the data from the new process’s PCB (Androulaki et al., 2018).

Process control information is employed by the OS to handle the process
as is. This uses components like:

• Process scheduling state – the status of a process, like “ready,”
“suspended,” and some pertinent scheduling information, like the
priority level and the time since the process used the services of
the CPU or was suspended.

• Information about the process’s children, or the ids of other
processes that are functionally associated to the present one,
which can be expressed as a queue or other data formats.

• Information about interprocess communication (IPC)–flags,
signals, and messages linked with communication between
independent processes.

• Process privileges – access to system resources allowed/
disallowed.

• Process state – new, ready, running, waiting, dead.
• Process identification number (PID) – each process has its own

unique identification number (also known as Process ID).
• CPU registers – register organizes where process should be saved

for execution for running state.
• Program counter (PC) – an indicator to the location of the next

task to be executed for this process.
• Information on CPU scheduling – information on CPU scheduling.
• Information on memory management – page table, memory

limitations, and segment table.
• Accounting data, such as the amount of CPU time spent on

process execution, time constraints, and execution ID.
• I/O status information – a list of the process’s I/O devices.

Introductory Guide to Operating Systems92

5.6. PROCESS SCHEDULING

5.6.1.	Definition
Process scheduling is the process manager’s job, and it entails removing a
running process from the Central processing unit and picking another one
based on established rules (Estefo et al., 2019).

Process scheduling is crucial in a Multiprogramming OS. In these kind
of OSs, numerous processes can run in accessible memory at the same
moment, and the current processes divide the CPU via temporal multiplexing
(Figure 5.4).

Figure 5.4. A sample thread pool (green boxes) with a queue (FIFO) of waiting
tasks (blue) and a queue of completed tasks (yellow).

Source: https://en.wikipedia.org/wiki/Scheduling_(computing)#/media/
File:Thread_pool.svg.

5.6.2. Process Scheduling Queues
The OS keeps all PCBs in Process Scheduling Queues. In the OS, every
process state will have its own queue, and PCBs on all processes in the same
execution stage are grouped together. When a process’s status is altered, its
PCB is withdrawn from its previous queue and moved to its new state queue.

The OS maintains the following key process scheduling queues:
• Every one of the system’s processes are retained in the work

queue (Ahmad et al., 2013).

Operating System – Processes 93

• The ready queue keeps track of all the processes in main memory
that are prepared to be run. New processes are constantly being
added to this queue.

• Device queues are processes that are paused because an I/O
device is unavailable (Figure 5.5).

Figure 5.5. A basic organization of the Linux Kernel, that holds elements like
process schedulers, I/O schedulers, and packet schedulers.

Source: https://en.wikipedia.org/wiki/Scheduling_(computing)#/media/
File:Simplified_Structure_of_the_Linux_Kernel.svg.

5.7.	TWO-STATE	PROCESS	MODEL
Two-state process model alludes to running and non-running states as shown
below:

SL. No. State and Description

1. Running: When a new process is initiated, it is introduced into
the system though the running state.

2. Not Running: Processes that aren’t currently running are kept in
a queue and will be executed later. Each queue entry corresponds
to a specific process. A queue is implemented using a linked list.
Here are some instances of how to make use of a dispatcher. A
process is automatically transferred to the waiting list when it is
stopped. Once a procedure has completed or failed, it is erased.
In either case, the dispatcher selects a process from the queue to
execute (Deseriis, 2017).

Introductory Guide to Operating Systems94

5.8. SCHEDULERS

5.8.1. Process Scheduler
The process scheduler is an OS component that figures out which processes
run at any given time. A preemptive scheduler can suspend an existing
process, put it to the tail of the running queue, and initiate a new process; or
else, it is a cooperative scheduler.

Depending on how frequently decisions must be performed, we discern
between “long-term scheduling,” “medium-term scheduling,” and “short-
term scheduling.” Though others will be introduced below as well.

5.8.2.	Long-Term	Scheduling
The long-term scheduler or the admission scheduler, organize which jobs
or processes are revealed to the ready queue; that is, when a program is
attempted to be executed, the long-term scheduler can decide to authorize or
delay its admission to the set of currently executing processes. As a result,
this scheduler dictates which processes should run on a system, as well
as the level of multitasking that should be supported at any given time –
whether many or few processes should run at the same time, as well as how
the divide between I/O-intensive and CPU-intensive processes should be
handled. Controlling the level of multiprogramming is the job of the long-
term scheduler.

Most processes can be classified as I/O-set or CPU-set in practice. An
I/O-bound process is probably going to take longer time to execute I/O
than performing computations. In contrary, a CPU-bound process creates
fewer I/O demands and spends longer durations conducting computations.
A proper process combination of I/O-bound and CPU-bound processes is
critical for a long-term scheduler. The ready queue will nearly always be
vacant if all processes are I/O-bound, and the short-term scheduler not have
processes. If all processes are CPU-bound, on the other hand, the I/O waiting
queue will nearly always be vacant, devices will go idle, and the system will
be imbalanced once more (De et al., 2007). As a result, the system with the
greatest performance will have a mix of CPU and I/O-bound tasks. This is
utilized in current OSs to guarantee that real-time processes have enough
CPU time to finish their duties (Figure 5.6).

Operating System – Processes 95

Figure 5.6. Difference between long-term, medium-term scheduler, and short-
term scheduler.

Source: https://www.geeksforgeeks.org/difference-between-long-term-and-me-
dium-term-scheduler/.

In large-scale systems like batch processing systems, computer clusters,
supercomputers, and render farms, long-term scheduling is especially critical.
Co-scheduling of interacting processes, for instance, is usually needed in
concurrent systems to avoid them from blocking owing to waiting on one
another. In these circumstances, on top of any basic admission scheduling
functionality in the OS, special-purpose job scheduler software is generally
utilized to help these functions.

Fresh tasks can only be introduced to some OSs if the present deadlines
can still be fulfilled. The admission control mechanism is the specific
heuristic technique employed by an OS to permit or reject new jobs.

5.9.	MEDIUM-TERM	SCHEDULING
The medium-term scheduler, like a hard disk drive, “swaps out” or “swaps in”
applications from primary memory to secondary memory (also incorrectly
as “paging out” or “paging in”)The medium-term scheduler may choose
to swap out a process that has not been active for a long time, or a process
with a lesser importance, or a process that is frequently page faulting, or
a process that is using a large amount of memory in order to free up main
memory for other processes, swapping the process back into play later when
more memory is readily available, or when the process has been started and

Introductory Guide to Operating Systems96

there are resources, in order to free up main memory for other processes
(DiLuoffo et al., 2018).

By considering binaries as “swapped out processes” upon execution,
the medium-term scheduler may now perform the functions of the long-
term scheduler in several systems (those that permit mapping virtual address
space to secondary storage other than the swap file). If a section of the binary
is required, it can be swapped in on request, sometimes known as “lazy
loading” or “demand paging.”

5.10.	SHORT-TERM	SCHEDULING
After a clock interrupt, an I/O interrupt, an OS call, or a kind of signal, the
short-term scheduler (commonly termed as the CPU scheduler) determines
which of the ready, in-memory processes is to be run (assigned a CPU).
As a result, the short-term scheduler must conduct scheduling decisions far
more regularly than the long-term or mid-term schedulers – a decision must
be made at the very least after each timeslot, and they are quite brief. This
scheduler can be either preemptive (or “voluntary” or “co-operative”), at
which point it can “force” processes off the CPU when it intends to assign
that CPU to another process, and sometimes non-preemptive (also referred
to as “voluntary” or “co-operative”), in which instance it cannot “force”
processes off the CPU. A preemptive scheduler uses a programmable
interval timer to trigger an interrupt handler in kernel mode, which performs
the scheduling function (Figure 5.7).

Figure 5.7. The main functional components of the scheduler.

Source: http://faculty.salina.k-state.edu/tim/ossg/Process/scheduler/sched_
parts.html.

Operating System – Processes 97

5.11. DISPATCHER
Another component involved in the CPU-scheduling function is the
dispatcher, or module that transmits command of the CPU to the process
picked by the short-term scheduler. It gets control in kernel mode as a
response to an interrupt or system call. The following are the duties of a
dispatcher:

• Context switches, where the dispatcher keeps the state (or a
context) of the earlier operating process or thread; the dispatcher
then imports the new process’s starting or previously saved state
(Dixon et al., 2012).

• Activating user mode.
• Navigating to the appropriate area within the user program in

order to restart the program specified by its changed state.
Because it is called at each process changeover, the dispatcher should

be as quick as possible. Because the processor is basically idle for a fraction
of a second during context shifts, needless context switches should be
minimized. The dispatch latency is the time taken for the dispatcher to halt
one process and start another.

5.12. CONTEXT SWITCH
A context switch is a technique in the PCB that saves and recovers a CPU’s
state or context so that a process operation can be relaunched at a later
time from the same point. This approach is used by a context switcher to
allow multiple apps to share a single CPU. Context switching is a critical
component of a multitasking OS.

When the scheduler switches the CPU from one process to another, the
status of the presently executing process is stored in the PCB. The subsequent
process’s state is then imported from its appropriate PCB and used to setup
the PC, registers, etc. The second procedure can then be started (Figure 5.8).

Introductory Guide to Operating Systems98

Figure 5.8. Context switch.

Source: https://www.tutorialspoint.com/operating_system/os_process_sched-
uling.htm.

Because register and memory state must be preserved and recovered,
context switches are computationally intensive. Some hardware systems use
two or more types of processor registers to save context switching time. The
data is saved for further use when the process is switched.

The term “context switch” has a span of meanings. It alludes to the
process of saving the system state for one task so that it can be halted and
another task restarted in a multitasking scenario. An interrupt could create
a context switch, like when a process asks for disk storage, freeing up CPU
time for other operations (Dieber et al., 2017).

To switch between user and kernel mode operations, several OS needs a
context switch. Context switching could be a detriment to the performance
of the system.

Operating System – Processes 99

Context switches are typically computationally costly, therefore
optimizing the use of context switches is a big part of OS architecture.
Switching from one process to another necessitates some administrative
time, such as saving and loading registers and memory mappings, updating
different tables and lists, and so on. The complexity of a context switch is
determined by the structures, OSs, and quantity of shared resources.

Switching registers, stack pointer, program counter, flushing the
translation lookaside buffer, and loading the page table of the next process
to start are all examples of context switching in the Linux kernel.

Additionally, equivalent context switching occurs across user threads,
particularly green threads, and is normally a straightforward affair,
preserving, and moving minimal context. A context switch is analogous to
a coroutine yield in extreme instances, like switching between goroutines in
Go, that is a little more costly than a subroutine call. There are three possible
ways a context switch can be prompted which are discussed in subsections.

5.12.1. Multitasking
Typically, as part of a scheduling mechanism, one process must be turned
off the CPU in order for another to execute. When a process is unable to
run, this context switch is triggered. A pre-emptive multitasking system’s
scheduler could optionally swap processes that are still running (Chinetha
et al., 2015). To prevent other processes from being deprived of CPU time,
pre-emptive schedulers commonly configure a timer interrupt to take action
when a job exceeds its time slice. This interrupt ensures that the scheduler
can regulate the context switch.

5.12.2. Interrupt Handling
In today’s architectures, interrupt-driven designs are widespread. This
means that if the CPU wants data from a disk, it wouldn’t have to wait until
the read is complete before issuing the request; instead, it can submit the
request and go on to another task. When the read is complete, the CPU can be
interrupted (in this case, by sending an interrupt request from hardware) and
the read delivered to it. For interruptions, an interrupt handler application is
installed, and it is the interrupt handler that manages the disk interrupt.

Introductory Guide to Operating Systems100

When an interrupt occurs, the hardware automatically moves a piece
of the context. The handler may save additional context depending on the
unique hardware and software architectures. To limit the amount of time
spent dealing with the interrupt, only a tiny section of the context is updated
on a regular basis. The kernel does not begin or schedule a separate process
to manage interrupts; rather, the handler executes in the context generated at
the beginning of interrupt handling. When interrupt servicing is completed,
the context that existed prior to the interrupt is restarted, enabling the
interrupted process to continue in its proper state.

5.12.3. User and Kernel Mode Switching
A context switch is not required when the system switches from user mode
to kernel mode; a mode transition is not a context switch in and of itself.
However, a context switch may occur at this time, depending on the OS.

5.13. PROGRAM COUNTER (PC)
The program counter (PC) or instruction pointer in Intel x86 and Itanium
microprocessors and sometimes referred to as the instruction address
register (IAR), is a processor register that indicates where the computer is in
its program sequence.

The PC is generally increased after receiving an instruction, and it
now contains the memory address of the next instruction to be performed
(Cashmore et al., 2015).

Control transfer instructions change the sequence by putting a new
value in the PC, but processors typically retrieve instructions from memory
continually. These include branches (also called jumps), subroutine calls,
and returns. A transfer that is contingent on the truth of a statement allows
the computer to follow a different sequence in different conditions (Figure
5.9).

Operating System – Processes 101

Figure 5.9. The front panel of an IBM 701 computer, which was debuted in
1952. The contents of numerous registers are displayed by lights in the center.
The instruction counter is located in the lower left corner.

Source: https://en.wikipedia.org/wiki/Program_counter#/media/
File:IBM_701console.jpg.

The following instruction is picked up from elsewhere in memory when
a branch is used. A subroutine calls not only branches, but also preserves
the PC’s previous contents. The saved contents of the PC are retrieved and
returned to the PC, and sequential execution resumes with the instruction
following the subroutine call:

• Information regarding scheduling;
• Values for the base and limit registers.
The base registers specify where the page table begins in memory

(physical or logical addresses), whereas the limit register specifies the
table’s side. Normally, the registers are not loaded directly. In most cases,
these values are written to the hardware process context block (PCB).

• Currently used register;
• Changed state;
• I/O State information.

Introductory Guide to Operating Systems102

I/O status information tells you which I/O devices should be assigned to
a specific process. It also shows which files are open, as well as the state of
the I/O device. It describes the data input and output from the input device
to the register. It describes the flow of data from the input device to the
memory (Cao et al., 2008).

These bits indicate if the current instruction has been finished, whether
a byte may be retrieved from the data-in register, and whether a device fault
has occurred.

5.14. SCHEDULING ALGORITHMS
There are six popular process scheduling algorithms (Figure 5.10):

• First-come, first-served (FCFS) scheduling;
• Shortest-job-next (SJN) scheduling;
• Priority scheduling;
• Shortest remaining time;
• Round robin (RR) scheduling;
• Multiple-level queues scheduling.

Figure 5.10. CPU process scheduling algorithms in OS.

Source: https://www.allbca.com/2020/04/cpu-process-scheduling-algorithms-
in-os.html.

Operating System – Processes 103

5.15. SCHEDULING ALGORITHMS/DISCIPLINES
A scheduling discipline or a scheduling algorithm is an algorithm for
allocating resources to parties who request them in a synchronized and
simultaneous manner. Routers (to manage packet traffic), OS (to split CPU
resources among both threads and processes), disk drives, printers, and most
embedded systems all use scheduling disciplines.

The main objective of scheduling algorithms is to lower resource use
inefficiency and bring in equal among the programs who use the resources.
The difficulty of selecting which one of the waiting requests should be
allocated the resources is handles with or by scheduling. There are numerous
scheduling algorithms to choose from. We’ll go through a few of them in
this segment (Bhattacharjee and Lustig, 2017).

The concept of a scheduling algorithm is employed as an alternative to
first-come, first-served queuing of data packets in packet-switched computer
networks and other statistical multiplexing.

First-come, first-served (FCFS) scheduling, shortest-job-next (SJN)
scheduling, priority scheduling, shortest remaining time, and RR scheduling
re some of the most common scheduling algorithms out there. Weighted
fair queuing may be used if a distinct or assured level of service is provided
rather than best-effort communication. Channel-dependent scheduling can
be used to enjoy the benefits of channel state information in sophisticated
packet radio wireless network. The capacity and system spectral efficiency
could well be boosted if the channel conditions are favorable.

5.15.1. First Come, First Served (FCFS)
The simplest scheduling technique is first in, first out (FIFO), or first come,
first served (FCFS). Processes are queued in the order they land in the ready
queue with FIFO. FIFO is a method for arranging the manipulation of a
data structure (typically, especially, a data buffer) where the oldest item,
or “head” of the queue, is processed first in computing and systems theory.
This approach is comparable to serving persons in a queuing area on a first-
come, first-served basis.

The FIFO OS scheduling technique, which gives each CPU time in the
sequence in which it is required, is also known as FCFS. LIFO, or last-
in-first-out, is the inverse of FIFO, in which the newest entry, or “head of
the stack,” is processed first. Although a priority queue is neither FIFO
nor LIFO, it may behave in a similar manner briefly or by default. These

Introductory Guide to Operating Systems104

techniques for processing data structures, along with interactions between
strict-FIFO queues, are covered by queueing theory (Blackham et al., 2011).

Context changes occur only when a process terminates, and there is no
need to reorganize the process queue, therefore scheduling overhead is low.

Because long operations might hog the CPU, throughput can be low,
requiring small processes to wait a long period. There is no starvation
because since process is given a chance to run after a set amount of time.

Turnaround, waiting, and response times are all affected by the sequence
in which they arrive and might be lengthy for the same reasons. As a result
of the lack of prioritizing, this system struggles to achieve process deadlines.

Because there is no prioritizing, there is no famine as long as all processes
are completed eventually. There can be famine in an environment when
some operations aren’t completed. It is based on the concept of queuing
(Figure 5.11).

Figure 5.11. Representation of a FIFO queue.

Source: https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)#/
media/File:Data_Queue.svg.

5.16. PRIORITY SCHEDULING
The earliest deadline first (EDF) or least time to go algorithm is a dynamic
scheduling strategy used in real-time OSs to prioritize tasks. When a
scheduling event occurs (e.g., a task is completed, a new job is released),
the queue is searched for the process that is closest to its deadline, and that
process is the next to be scheduled for execution.

Operating System – Processes 105

The EDF method is a dynamic priority scheduling strategy used in real-
time OSs to position processes in a priority queue. Every time a scheduling
event occurs, the queue will be assessed for the process that is closest to its
deadline (task completion, new task release, etc.). The next procedure to be
scheduled for execution is this one (Bala et al., 2015).

EDF is a preemptive uniprocessor-optimized scheduling algorithm in
the sense that if a catalog of independent jobs, each distinguished by an
arrival time, an execution requirement, and a deadline, can be scheduled (by
any algorithm) in such a way that all jobs complete by their deadline, the
EDF will schedule this catalog of jobs to ensure that they all finish by their
deadline.

When scheduling periodic processes with deadlines corresponding to
their durations, EDF has a bound of 100 percent utilization. That example,
as long as the total CPU use does not exceed 100 percent, EDF can guarantee
that all deadlines are met. At greater loads, EDF can ensure all system
deadlines more reliably than set priority scheduling methods such as rate-
monotonic scheduling.

EDF is also an optimal scheduling method on non-preemptive
uniprocessors, but only among scheduling strategies that do not allow
inserted inactive time.

If the system is overburdened, however, the number of processes that miss
deadlines is mostly unpredictable. For a real-time systems designer, this is a
significant disadvantage. The algorithm is also tough to design in hardware,
and the representation of deadlines in different ranges is problematic. If
future relative deadlines are calculated using modular arithmetic, the field
containing the future relative deadline must support at least the value of the
“duration.” As a result, EDF is rarely used in industrial real-time computer
systems.

Most real-time computer systems, on the other hand, adopt set priority
scheduling (usually rate-monotonic scheduling). With defined priorities, it’s
straightforward to foresee that under stress situations, low-priority processes
will miss deadlines while the highest-priority processes will still make it.

In real-time computing, there is a substantial body of research on EDF
scheduling; it is feasible to determine worst-case response times of processes
in EDF, to handle processes other than periodic processes, and to employ
servers to limit overloads.

Introductory Guide to Operating Systems106

5.17. SHORTEST REMAINING TIME FIRST
In the same way that the shortest job is completed first (SJF). The scheduler
uses this method to place processes in the queue that have the shortest
predicted processing time remaining. This necessitates in-depth knowledge
or estimates of how long a procedure will take to complete.

When a shorter process comes during the execution of another, the
current process is stopped breaking it into two independent computing
blocks. This adds to the overhead by requiring more context shifts. In
addition, the scheduler has to place every incoming task to a precise position
in the queue, which adds to the overhead.

In most circumstances, this method is designed for optimal throughput.
As the computational requirements of the operation increase, the waiting
time and response time enhance as well. Because turnaround time is
calculated as the sum of waiting time and processing time, it has a substantial
impact on longer processes. However, because no process has to wait for the
completion of the longest process, the overall waiting time is less than FIFO
(Aksoy et al., 2017).

Deadlines aren’t given much thought, and the programmer may only try
to make processes with deadlines as brief as feasible.

In a busy system with numerous little processes running, starvation is a
possibility. We should run at least two processes with different priorities in
order to use this policy (Figure 5.12).

Figure 5.12. SRTS.

Source: https://www.chegg.com/homework-help/questions-and-answers/using-
shortest-remaining-time-first-scheduling-algorithm-show-gantt-chart-sched-
uled-proces-q25910377.

Operating System – Processes 107

5.18.	FIXED	PRIORITY	PRE-EMPTIVE	SCHEDULING
Fixed-priority preemptive scheduling is a scheduling strategy that is
frequently employed in real-time systems. With fixed priority preemptive
scheduling, the scheduler ensures that the processor executes the highest
priority job of all those tasks that are currently ready to execute at any given
time.

The preemptive scheduler has a clock interrupt job that can provide the
scheduler choices to switch once the task has been running for a certain
amount of time (the time slice). This scheduling approach has the benefit of
ensuring that no task consumes the CPU for longer than the time slice. This
scheduling approach, however, is vulnerable to process or thread lockout:
because higher-priority tasks are prioritized, lower-priority processes may
have to wait an unlimited length of time (Aksoy et al., 2017). Aging is a
typical approach of resolving this scenario, as it gradually raises the priority
of waiting processes and threads, guaranteeing that they all execute at
some point. Preemptive schedulers are present in most real-time operating
systems (RTOSs). You can also get the non-preemptive RTOS by turning off
time slicing.

Preemptive scheduling is frequently distinguished from cooperative
scheduling that allows a task to execute completely from start to finish
without being interrupted by other processes. The job must specifically call
the scheduler to have a task swap. A few RTOS, such as Salvo or TinyOS, use
cooperative scheduling. Every process has a defined priority rank assigned
by the OS, and the scheduler organizes the processes in the ready queue in
order of priority. Incoming higher-priority processes disrupt lower-priority
processes:

• Overhead is neither minor nor significant;
• In terms of throughput, FPPS has no advantage over FIFO

scheduling;
• It can be described as a group of FIFO queues, one per priority

ranking, if the range of rankings is restricted. Only when all of the
higher-priority queues are empty are processes in lower-priority
queues picked (Aksoy et al., 2017);

• The amount of time spent waiting and responding is determined
by the process’s priority. Waiting and response times are shorter
for higher-priority tasks;

Introductory Guide to Operating Systems108

• Deadlines can be met by prioritizing procedures that have
deadlines;

• With a large number of high-priority processes queuing for CPU
time, lower-priority processes may be starved.

5.19.	ROUND-ROBIN	SCHEDULING
Round-robin (RR) is yet another type of algorithms employed by process
and network schedulers in computing. Time slices are distributed in equal
amounts to each process in a circular fashion, managing all processes
without regard to priority, as the term is typically used (also known as cyclic
executive). Round-robin scheduling is simple, uncomplicated, and devoid
of famine. Round-robin scheduling can be used to handle other scheduling
challenges, such as data packet scheduling in computer networks. It’s a
concept for a computer OS (Yin et al., 2016).

The algorithm’s name is derived from the round-robin principle, which
is used in various disciplines to ensure that everyone gets an equal share of
something (Figure 5.13).

• The preemptive process scheduling algorithm is known as Round
Robin (RR);

• Each process is given a fixed amount of time to complete, which
is referred to as a quantum;

• After a process has run for a set amount of time, it is preempted
and another process runs for the same amount of time;

• Preempted processes’ states are saved using context switching.

Figure 5.13. Round robin scheduling.

Source: https://www.tutorialspoint.com/operating_system/os_processes.htm.

Operating System – Processes 109

Wait time of each process is as follows:

Process Wait Time: Service Time – Arrival Time

P0 (0 – 0) + (12 – 3) = 9

P1 (3 – 1) = 2

P2 (6 – 2) + (14 – 9) + (20 – 17) = 12

P3 (9 – 3) + (17 – 12) = 11

Multi-level queueing, which has been in use since the early 1960s, is
a queue having a specified number of levels. Items are allocated to a given
level (accordance with a predetermined algorithm) at the time of entry, and
they cannot be altered to another level. Items are removed from the queue by
removing all entries from one level and then moving on to the next. When
an object is moved to a higher level, the “fetching” process is restarted.
Each level of the queue is able to use its own scheduling, providing it more
flexibility than a multi-level queue. In situations where processes may be
classified into groups based on characteristics such as process type, CPU
time, and so on (Quigley et al., 2009).

The multi-level queue: 196 scheduling approach is used for IO access,
memory capacity, etc. In essence, there are two sorts of processes: foreground
processes and background processes. A multi-level queue scheduling
technique will have ‘n’ queues, where ‘n’ is the number of groups into which
the processes are classified. Each queue gets its own priority and scheduling
method, like 194 or FCFS round-robin scheduling. To finish the whole
process in a queue, all queues with a higher priority than it must be cleared,
signaling that the process in those higher priority queues has finished. In this
scheduling strategy, once a process is allocated to a queue, it will not move
to any other queues.

To comprehend non-preemptive and pre-emptive multilevel scheduling
with FCFS algorithm for both queues, evaluate Figure 5.14 with the arrival
time, execute time, and type of process (foreground or background – where
foreground processes are given high priority).

Introductory Guide to Operating Systems110

Figure 5.14. Non-preemptive and pre-emptive multilevel scheduling.

Source: https://en.wikipedia.org/wiki/Multilevel_queue.

5.20.	INTER-PROCESS	COMMUNICATION
In computer science, inter-process communication, often known as IPC,
refers to the mechanisms that an OS provides to allow processes to manage
shared data. Clients and servers are two types of IPC that applications can
use. The client asks information, and the server responds. Many apps, as is
usual in distributed computing, act as both clients and servers.

IPC is significantly used in the design of microkernels and nanokernels,
which limit the number of functionalities supplied by the kernel. Certain
capabilities are supplied by connecting with servers via IPC, culminating in
a large increase in communication as compared to a traditional monolithic
kernel. IPC interfaces frequently incorporate variable analytic framework
structures. These processes maintain the compatibility of the multi-vector
protocols on which IPC models rely (Whipple et al., 2009).

There are both asynchronous and synchronous IPC techniques.
Synchronization primitives can be used to achieve synchronous behavior
in an asynchronous IPC system. This is how processes talk to each other
(Figure 5.15).

There are basically two methods:
•	 Shared Memory (with a Process “Kick”): Fast/no data transfer.
•	 Message Passing: distributed/better isolation.

Operating System – Processes 111

Figure 5.15. A grid computing system that connects many personal computers
over the internet via inter-process network communication.

Source: https://en.wikipedia.org/wiki/Inter-process_communication.

OPERATING SYSTEM
MULTI-THREADING

CHAPTER6

CONTENTS
6.1. Introduction .. 114

6.2. Operating System (OS) Multi-Threading .. 114

6.3. Difference Between a Process and a Thread 117

6.4. Building Blocks for the Functioning of a Thread 118

6.5. The Central Processing Unit .. 119

6.6. Information Storage System ... 120

6.7. Similarities Between a Process and a Thread 121

6.8. Fibers in Multithreading .. 122

6.9. Preemptive and Cooperative Scheduling ... 123

6.10. Single and Multiprocessor System Scheduling 123

6.11. Thread Pools ... 124

6.12. Programming Language Support for Threads 125

6.13. Threads Data Synchronization .. 126

6.14. Types of Threads.. 129

6.15. Differences Between Kernel-Level Threads
and User-Level Threads .. 131

6.16. Similarities Between User-Level Threads
and Kernel-Level Threads ... 132

Introductory Guide to Operating Systems114

6.1. INTRODUCTION
An operating system (OS) is a system program that directs computer hardware,
computer program resources, and gives common organizations for computer
programs. Time-sharing working systems arrange assignments for capable
utilize of the system and may in addition consolidate bookkeeping program
forgotten designation of processor time, mass capacity, printing, and other
resources (Wentzlaff et al., 2010). For gear capacities such as input and abdicate
and memory assignment, the working system acts as an arbiter between programs
and the computer gear, in show disdain toward the reality that the application
code is more frequently than not executed directly by the gear and as frequently
as conceivable makes system calls to an OS work or is ruined by it. Working
systems are found on various contraptions that contain a computer, from cellular
phones and video entertainment underpins to web servers and supercomputers.

6.2.	OPERATING	SYSTEM	(OS)	MULTI-THREADING

6.2.1. A Thread
A thread of execution is the humblest course of action of adjusted
enlightening that can be directed independently by a scheduler, which is
customarily a parcel of the working system. The execution of strings and
shapes shifts between working systems, but in most cases a string may well
be a component of a handle. The various strings of a given handle may be
executed concurrently through multithreading capabilities, sharing assets
such as memory, though assorted shapes do not share these resources. In
particular, the strings of a handle share its executable code and the values
of its effectively assigned variables and non-thread-local around the world
variables at any given time (Figure 6.1).

Figure 6.1. An image showing a thread.

Source: https://www.google.com/imgres?imgurl=https%3A%2F%2Fwww.
cs.uic.edu%2F~jbell%2FCourseNotes%2FOperatingSystems%2Fimages%2F

Operating System Multi-Threading 115

Chapter4%2F4_01_ThreadDiagram.jpg&imgrefurl=https%3A%2F%2Fwww.
cs.uic.edu%2F~jbell%2FCourseNotes%2FOperatingSystems%2F4_Threads.
html&tbnid=UWyRFcn55ynvqM&vet=12ahUKEwij-qu9n4n2AhXJ0KQKHZ-
b4BlwQMygAegUIARC2AQ.i&docid=obeJ6owZO6We4M&w=704&h=406
&q=a%20thread%20in%20os&ved=2ahUKEwij-qu9n4n2AhXJ0KQKHZb-
4BlwQMygAegUIARC2AQ.

Computers were built to perform an arrangement of single errands, like
a calculator. Essential working framework highlights were created within
the 1950s, such as inhabitant screen capacities that seem consequently run
diverse programs in progression to speed up handling. Working frameworks
did not exist in their cutting-edge and more complex shapes until the early
1960s. Equipment highlights were included, that empowered utilize of
runtime libraries, hinders, and parallel handling. When personal computers
(PCs) got to be well known within the 1980s, working frameworks were
made for them comparative in concept to those utilized on bigger computers.
In the 1940s, the most punctual electronic advanced frameworks had no
working frameworks (Lass and Gronau, 2020). Electronic frameworks of
this time were modified on columns of mechanical switches or by jumper
wires on plugboards. These were special-purpose frameworks that, for a
case, produced ballistics tables for the military or controlled the printing of
finance checks from information on punched paper cards.

Strings made an early appearance underneath the title of “errands” in
OS/360 Multiprogramming with a Variable Number of Errands in 1967.
Saltzer credits Victor A. Vyssotsky with the term “thread.” The notoriety
of threading has extended around 2003, as the advancement of the CPU
repeat was supplanted with the improvement of the number of centers, in
turn requiring concurrency to utilize diverse centers.

Multithreading is the ability of the OS handle to supervise its utilities
by more than one client at a time and to in fact direct distinctive requests by
the same client without having to have various copies of the programming
running inside the computer. Each client inquires for a program or system
advantage, and here a client can as well be another program, is kept track of
as a string with an apportioned character. As programs work on the purpose
of the starting inquiry for that string and are ruined by other requests, the
status of work on the purpose of that string is kept off-track until the work is
completed (Tsolakis et al., 2019).

Introductory Guide to Operating Systems116

6.2.2. Process
At the kernel level, a process contains one or more-bit strings, which share
the process’s assets, such as memory and record handles. A process is a unit of
assets, whereas a string may be a unit of planning and execution. Bit planning
is ordinarily consistently done preemptively or, less commonly, agreeably.
At the client level, preparing such as a runtime framework can itself plan
numerous strings of execution. In case these don’t share information, as in
Erlang, they are ordinarily similarly called forms, whereas in case they share
information they are as a rule called client strings, especially if preemptively
planned. Agreeably planned client strings are known as strands; diverse
forms may unexpectedly plan client strings. Client strings may be executed
by part strings in different ways, one-to-one, many-to-one, many-to-many.
The term light-weight handle differently alludes to client strings or part
components for planning client strings onto bit strings (Figure 6.2).

Figure 6.2. An illustration of process cycle in operating system.

Source: https://www.google.com/imgres?imgurl=https%3A%2F%2Fwww.
tutorialspoint.com%2Foperating_system%2Fimages%2Fprocess_state.
jpg&imgrefurl=https%3A%2F%2Fwww.tutorialspoint.com%2Foperating_
system%2Fos_processes.htm&tbnid=xXkImcvB5GXjRM&vet=12ahUKE
wj0gJTjn4n2AhUMxuAKHU8SAyUQMygBegUIARCvAQ.i&docid=RovHr
GZeLI3K9M&w=600&h=201&q=a%20process%20in%20os&ved=2ahU-
KEwj0gJTjn4n2AhUMxuAKHU8SAyUQMygBegUIARCvAQ.

A process could be a heavyweight unit of bit planning, as making,
crushing, and exchanging forms is moderately costly. Forms possess assets
apportioned by the working framework. Assets incorporate memory for
both code and information, record handles, attachments, gadget handles,
Windows, and a handle control square. Processes are confined by handle
separation and don’t share address spaces or record assets but through
unequivocal strategies such as acquiring record handles or shared memory

Operating System Multi-Threading 117

portions, or mapping the same record in a shared way (Tang et al., 2010).
Making or wrecking a process is moderately costly, as assets must be
obtained or discharged. Forms are ordinarily preemptively multitasked,
and prepare to exchange is moderately costly, past essential taken a toll of
setting exchanging, due to issues such as cache flushing; in specific, handle
exchanging changes virtual memory tending to, causing negation, and hence
flushing of an untagged interpretation lookaside buffer, strikingly on x86.

6.3. DIFFERENCE BETWEEN A PROCESS AND A
THREAD
Process implies any program is in execution. Thread implies a portion of a
process. A process takes more time to terminate. The thread takes less time
to terminate. It takes more time for creation. It takes less time for creation.
It too takes more time for setting switching. It takes less time for setting
switching. A process is less proficient in terms of communication. Thread
is more effective in terms of communication. Multiprogramming holds the
concepts of multi-process. We don’t require multi-program inactivity for
different strings since a single handle comprises numerous strings. A process
is isolated. Threads share memory. A process is called the overwhelming
weight process. A String is lightweight as each string in a prepare offers
code, information, and resources.

Process exchanging employments interface in a working system. Thread
exchanging does not require calling a working framework and causes a
hinder to the kernel. If one handle is blocked at that point it’ll not impact
the execution of other processes Second string within the same assignment
may not run, whereas one server string is blocked (Shin et al., 2014). A
process has it possess Handle Control Square, Stack, and Address Space.
Thread has Parents’ PCB; it possesses String Control Piece and Stack and
common Address space. If one handle is blocked, then no other handle can
execute until the primary prepare is unblocked. While one string is blocked
and holding up, a moment string within the same errand can run.

Changes to the parent process do not impact child forms. Since all
strings of the same handle share address space and other resources so any
changes to the foremost string may impact the behavior of the other strings
of the strategy.

Introductory Guide to Operating Systems118

6.4. BUILDING BLOCKS FOR THE FUNCTIONING
OF A THREAD
The building blocks for the functioning of a thread of an OS all exist
in an organized way in order to make the particular parts of a computer
work together. All client computer programs must go through the OS in
orchestrating to utilize any of the gear, whether it is as basic as a mouse or
as complex as a Web component.

6.4.1. The Bit
With the assistance of the firmware, the kernel, commonly referred to as
the kernel gives the first basic level of control over all of the computer’s
hardware. The kernel also manages memory get to the programs inside the
Pummel, it decides which programs get to be processed in which hardware
resources, it sets up or resets the CPU’s working states for perfect operation
at all times, and it organizes the data for long-term non-volatile capacity
with record systems on such media as disks, tapes, and flash memory (Figure
6.3).

Figure 6.3. An illustration of the kernel category.

Source: https://www.google.com/imgres?imgurl=https%3A%2F%
2Fupload.wikimedia.org%2Fwikipedia%2Fcommons%2Fthumb%
2F8%2F8f%2FKernel_Layout.svg%2F1200px-Kernel_Layout.svg.
png&imgrefurl=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FKernel_
(operating_system)&tbnid=t7ri_jKHTjYo9M&vet=12ahUKEwiDzamGoIn2A
hXuCBAIHZ-2BJwQMygAegUIARDUAQ.i&docid=nXMR5bbjPdkGrM&w=
1200&h=947&itg=1&q=kernel&ved=2ahUKEwiDzamGoIn2AhXuCBAIHZ-
-2BJwQMygAegUIARDUAQ.

Operating System Multi-Threading 119

6.5. THE CENTRAL PROCESSING UNIT
A multiprogramming OS must be able to manage all system memory that
is frequently utilized by programs. This ensures that a program does not
intrude with memory as it is being utilized by another program. Since
programs share time, each program must have independent get to memory.
Agreeable memory organization, utilized by various early working systems,
acknowledges that all programs make proper use of the kernel’s memory
chief, and do not outperform their assigned memory (Singh, 2014). This
system of memory organization is better than previous ones since programs
frequently contain bugs that can cause them to outperform their assigned
memory. On the off chance that a program comes up brief, it may cause
memory utilized by one or more other programs to be affected or overwritten
(Figure 6.4).

Figure 6.4. An illustration of a CPU.

Source: https://www.google.com/imgres?imgurl=https%3A%2F%2Fwww.
redhat.com%2Fsysadmin%2Fsites%2Fdefault%2Ffiles%2Fstyles%2F
full%2Fpublic%2F2020–07%2Fcpu-564771_1920%2520Cropped.jpg
%3Fitok%3DmLy0ZtKX&imgrefurl=https%3A%2F%2Fwww.redhat.
com%2Fsysadmin%2Fcpu-components-functionality&tbnid=BVjupNthy
V_4wM&vet=12ahUKEwj-jq2hoIn2AhXK16QKHVMxAHcQMygAegUI
ARDWAQ.i&docid=wqmdJ_hdWXj_qM&w=1000&h=600&q=the%20
cpu&ved=2ahUKEwj-jq2hoIn2AhXK16QKHVMxAHcQMygAegUIARDWAQ.

Malicious programs may purposely adjust another program’s memory
or may impact the operation of the working system itself. With a cooperative
memory organization, it takes only one malicious program to crash the
framework. Memory confirmation enables the bit to compel a process’ get
to the computer’s memory. Distinctive techniques of memory confirmation

Introductory Guide to Operating Systems120

exist, checking memory division and paging. All strategies require a number
of levels of hardware reinforcement, which doesn’t exist in all computers.

In both division and paging, certain guaranteed mode registers show
to the CPU what memory address it has to be permit a running program
to induce to. Endeavors to induce to other addresses trigger an interrupt
which cause the CPU to re-enter boss mode, putting the portion in charge
(Sangorrin et al., 2010). As a rule, called a segmentation, and since it is both
troublesome to consign a significant result to such an operation, as a result
it is commonly a sign of a getting into insidiousness program, the portion
for the foremost portion resorts to finishing the chafing program, and reports
the botch.

6.6. INFORMATION STORAGE SYSTEM
Getting to information put away on disks may be a core process of all working
frameworks. Computers store information on disks utilizing records, which
are organized in particular ways in arrange to allow for quicker get to, higher
unwavering quality, and to create superior utilize of the drive’s accessible
space. The particular way in which records are put away on a disk is called
a file system, and empowers records to have names and properties. It too
permits them to be put away in a pecking order of catalogs or organizers
organized in a catalog tree (Figure 6.5).

Figure 6.5. Illustration of the file system structure.

Source: https://www.google.com/imgres?imgurl=https%3A%2F%2Fwww.
c s . c o l o s t a t e . e d u % 2 F ~ c s 1 5 5 % 2 F f i l e c a b i n e t s y s t e m .
gif&imgrefurl=https%3A%2F%2Fwww.cs.colostate.edu%2F~cs155%2FSprin

Operating System Multi-Threading 121

g18%2FLecture%2FFileSystem&tbnid=yP8zpmCwCAGS6M&vet=12ahUKE
wj277rFoIn2AhWWM8AKHd_mAQAQMygGegUIARDCAQ.i&docid=0KF7iu
Ck17ydMM&w=436&h=447&q=file%20system%20in%20a%20computer&v
ed=2ahUKEwj277rFoIn2AhWWM8AKHd_mAQAQMygGegUIARDCAQ.

An associated capacity gadget, such as a hard drive, is accessed through
a gadget driver. The gadget driver gets the particular dialect of the drive and
is able to decipher that dialect into a standard dialect utilized by the working
framework to get to all disk drives. Different contrasts between record
frameworks make supporting all record frameworks troublesome (Sharma
et al., 2012). Permitted characters in record names, case affectability, and
the nearness of different sorts of record qualities make the usage of a single
interface for each record framework an overwhelming errand. Working
frameworks tend to suggest utilizing record frameworks particularly planned
for them. In any case, in hone, third party drivers are as a rule accessible to
donate back for the foremost broadly utilized record frameworks in most
general-purpose working frameworks.

6.7. SIMILARITIES BETWEEN A PROCESS AND A
THREAD
Both processes and threads share CPU and as it were one string dynamic at
a time. Like processes, strings inside a process, strings inside a form execute
sequentially. Like processes, a string can make children. And like processes,
in case one string is blocked, another string can run. Both processes and
strings have a parent handle. Process features a process ID the same way
string contains a string id. Numerous threads can exist inside the same
handle and share assets such as memory, whereas diverse forms don’t share
these assets.

6.7.1. The Advantages of a Thread
Strings minimize the setting exchanging time. The use of threads gives
concurrency inside a process. Efficient communication. It is more prudent
to make and set switch threads. Threads permit utilization of multiprocessor
designs to a more noteworthy scale and effectiveness. Responsiveness, in
case the method is separated into numerous strings, if one string completes
its execution, at that point its yield can be promptly returned. Faster setting
switch time between strings is lower compared to prepare setting switch.
Prepare setting exchanging requires more overhead from the CPU. Effective

Introductory Guide to Operating Systems122

utilization of multiprocessor framework, in the case of different strings in
a single handle, at that point it is appropriate to plan different strings on
numerous processors. This will make handling execution quicker (Levis et
al., 2005).

Assets like code, information, and records can be shared among all
strings inside a process. Furthermore, stack and registers can’t be shared
among the strings. Each string has possessed its own stack and registers.
Communication between different strings is less demanding, as the strings
offer common address space. Whereas in handle we got to take after a few
particular communication procedures for communication between two
processes. Enhanced throughput of the framework. On the off chance that a
handle is isolated into different strings, and each string work is considered
as one work, at that point the number of occupations completed per unit of
time is expanded, hence expanding the throughput of the framework.

6.7.2. Disadvantages of a Thread
With more strings, the code gets to be troublesome to investigate and
maintain. Thread creation puts a stack on the framework in terms of memory
and CPU resources. We ought to do exemption taking care of interior
the worker strategy as any unhandled special cases can result within the
program slamming. Strings will moderate the execution of programs when
a successive calculation is refactored into an arrangement of strings. In case
the strings execute on the same center at that point the moderate down is
essentially caused by setting exchanging between the strings. In the event
that the strings are on diverse centers at that point, the moderate down is
fundamentally caused by the information synchronization required for the
arrangement of strings to pass information from one to the other (Shaw et
al., 2016).

String synchronization is an additional overhead to the developers.
Sharing the common information over the strings might cause information
irregularity or string adjustment issues. Threads blocking for assets is a more
common problem. Difficult in overseeing the code in terms of investigating
or composing the code.

6.8. FIBERS IN MULTITHREADING
Fibers are an indeed lighter unit of planning which are agreeably planned:
a running fiber must unequivocally surrender to permit another fiber to run,
which makes their execution much less demanding than the part or client

Operating System Multi-Threading 123

strings. Fiber can be planned to run in any string within the same handle.
This grants applications to pick up execution changes by managing planning
themselves, rather than depending on the part scheduler which may not be
tuned for the application.

Parallel programming situations such as Open MP ordinarily execute
their assignments through strands. Closely related to filaments are
coroutines, with the qualification being that coroutines are a language-level
development, whereas strands are a system-level development.

6.8.1. Thread Scheduling
There exist different scheduling techniques in the world of computing
threads. The most common scheduling techniques include preemptive
cooperative scheduling and single multiprocessor systems scheduling.

6.9. PREEMPTIVE AND COOPERATIVE
SCHEDULING
OS plan strings either preemptively or agreeably. Multi-user working
frameworks for the most part favor preemptive multithreading for its finer-
grained control over execution time by means of setting exchanging. In any
case, preemptive planning may context-switch strings at minutes unexpected
by software engineers, in this way causing bolt escort, need reversal, or
other side-effects (Silva et al., 2006).

In differentiate, agreeable multithreading depends on strings to give up
control of execution, hence guaranteeing that strings run to completion. This
may cause issues in case an agreeably multitasked string squares by holding
up on an asset or in the event that it starves other strings by not yielding
control of execution amid seriously computation.

6.10. SINGLE AND MULTIPROCESSOR
SYSTEM SCHEDULING
Until the early 2000s, most desktop computers had since it was one single-
core CPU, with no back for preparing strings, in show up loathe toward of
the reality that strings were still utilized on such computers since trading
between strings was for the preeminent allocate still quicker than full-process
setting switches. In 2002, Intel included back for concurrent multithreading

Introductory Guide to Operating Systems124

to the Pentium 4 processor, underneath the title hyper-threading; in 2005,
they appeared the dual-core Pentium D processor and AMD appeared the
dual-core Athlon 64 X2 processor.

Frameworks with a single processor by and large execute multithreading
by time cutting: the central handling unit switches between diverse program
strings. This setting exchanging, as a rule, happens habitually sufficient that
clients see the strings or errands as running in parallel for prevalent server
working frameworks, most extreme time cut of a string when other strings
are holding up, is frequently constrained to 100–200 ms (Sjöstrand et al.,
2015). On a multiprocessor or multi-core framework, different strings can
execute in parallel, with each processor or center executing a partitioned
string at the same time; on a processor or center with equipment strings,
isolated program strings can moreover be executed concurrently by isolated
equipment strings.

6.11. THREAD POOLS
A well-known programming design including strings is that of string pools
where a set number of strings are made at startup that at that point hold up
for an errand to be relegated. When a modern assignment arrives, it wakes
up, completes the assignment, and goes back to holding up (Santos et al.,
2013). This maintains a strategic distance from the generally costly string
creation and annihilation capacities for each errand performed and takes
string administration out of the application developer’s hand and takes off
it to a library or the working framework that’s superior suited to optimize
string administration (Figure 6.6).

Figure 6.6. A thread pool.

Source: https://www.baeldung.com/thread-pool-java-and-guava

Operating System Multi-Threading 125

6.12. PROGRAMMING LANGUAGE SUPPORT
FOR THREADS
IBM PL/I (F) included support for multithreading called multitasking and
this was continued inside the Optimizing Compiler and a though a while later
shapes. The IBM Undertaking PL/I compiler appeared an unused appear
up “string” API. Not one or the other change was distributed of the PL/I
standard. A different utilization of C and C++ back threading, and grant gets
to the neighborhood threading APIs of the working system. A standardized
interface for string utilization is POSIX Strings, which may be a set of
C-function library calls. OS shippers are free to actualize the interface as
required, but the application arrange ought to be able to utilize the same
interface over unmistakable stages. Most Unix stages checking Linux back
Pthreads. Microsoft Windows has its claim set of string capacities inside the
strategy (Cashmore et al., 2015).

A few higher levels and as a rule cross-platform programming dialects,
such as Java, Python, and .NET system dialects, uncover threading to
engineers whereas abstracting the stage particular contrasts in threading
usage within the runtime. A few other programming dialects and dialect
expansions too attempt to theoretical the concept of concurrency and
threading from the engineer completely. A few dialects are planned for
consecutive parallelism instep, without requiring concurrency or strings.

A few deciphered programming dialects have execution. The GIL may
be a shared avoidance bolt held by the translator that can avoid the mediator
from at the same time deciphering the application’s code on two or more
strings at once, which viably limits the parallelism on numerous center
frameworks. The execution of this limit is generally for processor-bound
strings, which require the processor, and not much for I/O-bound or network-
bound ones. Other usages of deciphered programming dialects, such as Tcl
utilizing the String expansion, dodge the GIL constrain by utilizing a Flat
show where information and code must be expressly shared between strings.
In Tcl, each string has one or more translators.

In programming models such as CUDA planned for information parallel
computation, a cluster of strings run the same code in parallel utilizing as it
were its ID to discover its information in memory. In pith, the application
must be outlined so that each string performs the same operation on
distinctive fragments of memory so that they can work in parallel and utilize
the GPU architecture. Hardware portrayal dialects such as Verilog have

Introductory Guide to Operating Systems126

diverse threading demonstrate that underpins greatly expansive numbers of
strings.

6.13. THREADS DATA SYNCHRONIZATION
Strings within the same prepare share the same address space. This permits
concurrently running code to couple firmly and helpfully trade information
without the overhead or complexity of an IPC. When shared between
strings, in any case, indeed basic information structures got to be inclined
to race conditions on the off chance that they require more than one CPU
instruction to upgrade: two strings may conclusion up endeavoring to
overhaul the information structure at the same time and discover it suddenly
changing underneath. Bugs caused by race conditions can be exceptionally
troublesome to duplicate and confine (Chinetha et al., 2015).

To avoid this, threading application programming interfacing (APIs)
offers synchronization primitives such as mutexes to bolt information
structures against concurrent get to. On uniprocessor frameworks, a string
running into a bolted mutex must rest and subsequently trigger a setting
switch. On multi-processor frameworks, the string may instep survey the
mutex in a spinlock. Both of these may sap execution and drive processors
in symmetric multiprocessing (SMP) frameworks to fight for the memory
transport, particularly on the off chance that the granularity of the locking
is as well fine.

6.13.1. Components of Threads
Threads are made up of three main components. They include the program
counter, the register set, and the stack space.

6.13.1.1. Program Counter (PC)
The program counter commonly called the instruction pointer in Intel x86 and
Itanium chip, and a few of the time called the instruction address to enlist, the
instruction counter, or reasonable parcel of the instruction sequencer, maybe
a processor enlist that appears where a computer is in its program course of
action. Ordinarily, the PC is increased after bringing instruction and holds
the memory address of another instruction that would be executed (Dieber
et al., 2017). Processors more often than not get information consecutively
from memory, but control exchange enlightening alters the arrangement
by putting modern esteem within the PC. These incorporate branches,
subroutine calls, and returns. An exchange that’s conditional on the truth of

Operating System Multi-Threading 127

a few statements lets the computer take after a diverse arrangement beneath
diverse conditions.

A branch gives that the taking after instruction is gotten from someplace
else in memory. A subroutine calls not because it branched but saves the
going sometime recently substance of the PC a few put. A return recuperates
the saved substance of the PC and places it back inside the PC, proceeding
progressive execution with the instruction taken after the subroutine call.

6.13.1.2. Register Set
A register set is one of a little set of information holding places that are
a portion of the computer processor. A enlist may hold an instruction, a
capacity address, or any kind of information. A few informational indicate
registers as the portion of the instruction. For a case, an instruction may
indicate that the substance of two characterized registers is included together
and after that put in an indicated enlist. A register must be gigantic enough
to hold an instruction. In a number of computer plans, there are smaller
registers for shorter instructions. Depending on the processor arrangement
and language rules, registers may be numbered or have self-assertive names.
A processor frequently contains distinctive record registers, additionally
known as address registers or registers of change. The effective address
of any substance in a computer consolidates the base, list, and relative
addresses, all of which are put absent inside the record enlist. A move select
is another sort. Bits enter the move select at one conclusion and rise from
the other conclusion. Flip flops, additionally known as bistable entryways,
store, and plan the data.

6.13.1.3. Stack Space
A stack space could be a piece of memory utilized to store brief information
required for legitimate program execution. The Propeller naturally handles
the stack for the application cog, but propelling extra cogs may require
additional stack space apportioned by the engineer. In most present-day
computer frameworks, each string features a saved locale of memory
alluded to as its stack. When a work executes, it may include a few of its
neighborhood state information to the beat of the stack; when the work exits
it is dependable for evacuating that information from the stack. At least, a
thread’s stack is utilized to store the area of a return address given by the
caller in order to permit return explanations to return to the right area (Dixon
et al., 2012).

Introductory Guide to Operating Systems128

Since the information is included and evacuated in a last-in-first-out way,
stack-based memory allotment is exceptionally basic and regularly much
speedier than heap-based memory assignment ordinarily distributed through
malloc. Another highlight is that memory on the stack is consequently, and
exceptionally effectively, recovered when the work exits, which can be
helpful for the software engineer in the event that the information is not
required.

On the off chance that in any case, the data ought to be kept in some
shape, at that point it must be imitated from the stack to the stack a few
times as of late the work exits. Hence, a stack-based task is sensible for data
that is not required after the current work exits. A thread’s assigned stack
estimate can be as little as only a few bytes on some small CPUs. Assigning
more memory on the stack than is available can result in a crash due to stack
surge.

Stack-based assignment can moreover cause minor execution issues: it
leads to variable-size stack outlines so that both stack and outline pointers
got to be overseen. This is often ordinarily much less exorbitant than calling
malloc and free besides. In specific, in case the current work contains both
calls to alloca and pieces containing variable-length nearby information at
that point a struggle happens between alloca’s attempts to extend the current
stack outline until the current work exits versus the compiler’s got to put
neighborhood factors of variable length within the same area within the
stack outline. This strife is regularly settled by making a partitioned chain of
pile capacity for each call to allocate (Cao et al., 2008). The chain records
the stack profundity at which each allotment happens, ensuing calls to alloca
in any work trim this chain down to the current stack profundity to in the
long run free any capacity on this chain. A call to alloca with the contention
of zero can moreover be utilized to trigger the liberating of memory without
designating any more such memory. As a result of this strife between alloca
and neighborhood variable capacity, utilizing alloca could be no more
productive than utilizing malloc.

Numerous Unix-like frameworks as well as Microsoft Windows,
actualize a work called alloca for powerfully designating stack memory in a
way comparative to the heap-based malloc. A compiler ordinarily interprets
it as inlined enlightening controlling the stack pointer, comparative to

Operating System Multi-Threading 129

how variable-length clusters is handled. Although there is no need to
unequivocally free the memory, there is a hazard of vague behavior due to
stack flood.

6.14. TYPES OF THREADS
In the world of OSs, threads are divided into two major categories. The
first category is referred to as the Kernel-level thread, whereas the second
category is referred to as the User-level thread.

6.14.1.	Kernel-Level	Threads
A kernel thread may be a lightweight unit of bit planning. At slightest one
part string exists inside each handle. In case different part strings exist inside
a handle, at that point they share the same memory and record assets. Bit
strings are preemptively multitasked in case the working system’s process
scheduler is preemptive. Bit strings don’t claim assets but for a stack, a
duplicate of the registers counting the program counter, and thread-local
capacity in the event that any, and are thus generally cheap to make and
annihilate. String exchanging is additionally generally cheap: it requires a
setting switch, but does not alter virtual memory and is hence cache-friendly
(DiLuoffo et al., 2018).

The bit can relegate one string to each consistent center in a framework,
since each processor parts itself up into numerous coherent centers in case it
underpins multithreading, or as it were underpins one consistent center per
physical center on the off chance that it does not, and can swap out strings
that get blocked. Be that as it may, part strings take much longer than client
strings to be swapped.

The kernel-level threads have their own advantages over the user-level
threads. Part can at the same time plan different strings from the same handle
on different processes. If one string in a handle is blocked, the Part can
plan another string of the same process. Kernel schedules themselves can
be multithreaded. Just like a coin has two sides, so do kernel-level threads,
they also have their drawbacks. One, they take time to create and manage as
compared to user threads, making them slow. The other disadvantage is that
the transfer of one thread to another within the same process requires a mode
switch to the kernel, for the transfer to be a success (Figure 6.7).

Introductory Guide to Operating Systems130

Figure 6.7. Illustration of both user-level and kernel-level threads.

Source: https://www.google.com/imgres?imgurl=https%3A%2F%2Fwww.
cs.uic.edu%2F~jbell%2FCourseNotes%2FOperatingSystems%2Fimages%
2FChapter4%2F4_08_TwoLevel.jpg&imgrefurl=https%3A%2F%2Fwww.
cs.uic.edu%2F~jbell%2FCourseNotes%2FOperatingSystems%2F4_Threads.
html&tbnid=grhu6IeE8_WZIM&vet=12ahUKEwi889SboYn2AhXZAGMBHZ
6lA4AQMygPegUIARDbAQ.i&docid=obeJ6owZO6We4M&w=597&h=401
&q=kernel%20level%20thread&ved=2ahUKEwi889SboYn2AhXZAGMBHZ-
6lA4AQMygPegUIARDbAQ.

6.14.2.	User-Level	Threads
Strings are some of the times executed in userspace libraries, hence called
user threads. The bit is unconscious of them, so they are overseen and planned
in userspace. A few executions base their client strings on the best of a few
bit strings, to advantage from multi-processor machines. Client strings as
executed by virtual machines are moreover called green strings (De et al.,
2007). As client string executions are ordinarily completely in userspace,
setting exchanging between client strings inside the same handle is greatly
productive since it does not require any interaction with the part at all: a
setting switch can be performed by locally sparing the CPU registers utilized
by the as of now executing client string or fiber and after that stacking the
registers required by the client string or fiber to be executed. Since planning
happens in user space, the planning arrangement can be more effortlessly
custom-made to the prerequisites of the program’s workload.

In any case, the utilization of blocking framework calls in client strings as
contradicted to part strings can be risky. On the off chance that a client string

Operating System Multi-Threading 131

or a fiber performs a framework call that pieces, the other client strings, and
strands within the handle are incapable to run until the framework call returns.
A normal illustration of this issue is when performing I/O: most programs
are composed to perform I/O synchronously. When an I/O operation is
started, a framework call is made and does not return until the I/O operation
has been completed. Within the mediating period, the complete preparation
is blocked by the part and cannot run, which starves other client strings and
strands within the same preparation from executing.

A common arrangement to this issue utilized, in specific, by numerous
of green strings executions is giving an I/O API that actualizes an interface
that squares the calling string, instead of the complete handle, by utilizing
non-blocking I/O inside, and planning another client string or fiber whereas
the I/O operation is in advance. Comparative arrangements can be given for
other blocking framework calls. Then again, the program can be composed
to maintain a strategic distance from the utilization of synchronous I/O
or other blocking framework calls in specific, utilizing non-blocking I/O,
counting lambda continuations, and awaiting primitives (Bhattacharjee and
Lustig, 2017).

The advantages of User-Level threads are numerous. String exchanging
does not require part mode privileges. The user-level string can run on any
OS so long as it is certified. Scheduling can be application particular within
the client level thread. User-level threads are quick to form and oversee.
This type of thread does also have its own disadvantages. They have
multiple system calls which tend to be blocked in most cases. User-level
threads do not utilize the advantage of multiprocessing, which slows down
the threading process.

6.15.	DIFFERENCES	BETWEEN	KERNEL-LEVEL	
THREADS	AND	USER-LEVEL	THREADS
User-level strings are speedier to form and manage. Kernel-level strings
are slower to make and manage. Implementation is by a string library at
the client level. Operating framework bolsters creation of Bit threads. User-
level string is nonexclusive and can run on any working system. Kernel-
level string is particular to the working system. Multi-threaded applications
cannot take advantage of multiprocessing. Kernel schedules themselves can
be multithreaded.

Introductory Guide to Operating Systems132

Client string are executed by users. Kernel strings are actualized by OS.
OS doesn’t recognize client level threads. Kernel strings are recognized by
OS. Implementation of Client strings is easy. Implementation of Bit string
is complicated. Context switch time is less. Context switch time is more.
Context switch requires no equipment support. Hardware bolster is needed.
If one client level string performs blocking operation at that point whole
prepare will be blocked. If one part string performs blocking operation at that
point another string can proceed execution. User level strings are planned as
subordinate threads. Kernel level strings are planned as autonomous strings.

6.16.	SIMILARITIES	BETWEEN	USER-LEVEL	
THREADS	AND	KERNEL-LEVEL	THREADS
In Windows, there’s basically zero contrast between bit and client strings, as
strings. A bit string runs with a substantial bit address space and an obscure
client address space; a client string runs with a substantial client address
space and no bit address space at all. Synchronization primitives in a bit
string utilize pointers to the synchronization objects rather than client strings
which require handles, but something else they work a bit like their user-level
reciprocals (Deseriis, 2017). These are minor contrasts. It is commonplace,
but not required, that part strings run at needs 16–31 whereas client strings
run at needs 1–15. But these are at best rules, not prerequisites and there are
numerous exemptions to them. The minor points of interest of the contrasts
have small effect on how strings are utilized. We cannot talk to other working
frameworks. The scheduler fair sees a bunch of strings. A high-priority user-
level string (16–31) is fair a string as distant as the scheduler is concerned.
A low-priority part string is fair another string. There are marginally diverse
dispatches to run these strings, but from a philosophical perspective these
are unessential. A string could be a string; the subtle elements of client vs.
bit have as it were minor impacts, such as how the page maps are set up to
run them.

6.16.1. Multithreading Models
As stated earlier, multithreading licenses the application to restrict its errand
into person strings. In multi-threads, the same get prepared or errand can
be done by the number of strings, or arranged to say that there’s more
than one string to perform the errand in multithreading. With the use of
multithreading, multitasking can be wrapped up. The first disadvantage of

Operating System Multi-Threading 133

single threading systems is that since it was one task can be performed at
a time, so to overcome the disadvantage of this single threading, there’s
multithreading that awards unmistakable assignments to be performed
(Estefo et al., 2019).

In a working framework, strings are isolated into the user-level string
and the Kernel-level string. User-level strings dealt with autonomous shape
over the bit and subsequently overseen without any part bolster. On the
inverse hand, the working framework straightforwardly oversees the kernel-
level strings. All things considered, there must be a frame of the relationship
between user-level and kernel-level strings.

There exist three main categories of multithreading models. They include
many to one multithreading models; one to one multithreading models; and
many to many multithreading models.

6.16.2. Many to One Multithreading Model
The many to one model maps numerous client levels strings to one part string.
This sort of relationship encourages a viable context-switching environment,
effortlessly executed indeed on the basic part with no string support. The
drawback of this demonstration is that since there’s as it were one kernel-
level string plan at any given time, this demonstration cannot take advantage
of the equipment increasing speed advertised by multithreaded forms or
multi-processor frameworks. In this, all the thread management is tired of
the userspace. On the off chance that blocking comes, this demonstrates
squares the complete framework.

There are a few points of interest to this model: Cheap synchronization.
When a client string wishes to perform synchronization, the user-level string
library checks to see in the event that the string ought to square. On the
off chance that it does, at that point, the library enqueues the string on the
synchronization primitive, dequeues a client string from the library’s run
line, and switches the dynamic thread (Fröhlich and Wanner, 2008). If it does
not have to be square, at that point the dynamic thread continues to run. No
framework calls are required in either case. Cheap string creation. To form an
unused string, the strings library requires as it made a setting for the modern
string and enqueue it within the user-level run queue. Resource proficiency,
in that; Bit memory isn’t squandered on a stack for each client string. This
permits as numerous strings as virtual memory permits. Portability; cause
user-level strings bundles are executed completely with standard UNIX and
POSIX library calls; they are regularly very versatile (Figure 6.8).

Introductory Guide to Operating Systems134

Figure 6.8. An image of the many to one model.

Source: https://static.javatpoint.com/operating-system/images/multithreading-
models-in-operating-system3.png.

Be that as it may, the many-to-one show does not come without a cost.
Specifically: Single-threaded OS interface. Since there’s as it were one bit
string, on the off chance that a client string executes a blocking system
call, the complete prepare squares, since no other client string can execute
until the part string (which is blocked within the framework call) gets to be
accessible (Fierro and Culler, 2015). Whereas it includes essentially to usage
complexity, the library can delude this issue where nonblocking variations of
framework calls exist. No parallelism. Multithreaded programs beneath the
many-to-one demonstrate will run no speedier on multiprocessors than they
run on uniprocessors. The single part string acts as a bottleneck, anticipating
ideal utilize of the multiprocessor.

In spite of considerable impediments, the relative ease of usage of
many-to-one strings bundles has made it the foremost prevalent demonstrate
to date. For case, the current usage of Netscape and Java accomplish their
multithreading entirely through user-level strings bundles.

Operating System Multi-Threading 135

6.16.3. One to One Multithreading Model
The one-to-one show maps a single user-level string to a single kernel-level
string. This sort of relationship encourages the running of numerous strings
in parallel. Be that as it may, this advantage comes with its disadvantage.
The era of each unused client string must incorporate making a comparing
bit string causing an overhead, which can ruin the execution of the parent
preparation. Windows arrangement and Linux working frameworks attempt
to handle this issue by constraining the development of the string check
(Figure 6.9).

Figure 6.9. An image of the one-to-one model.

Source: https://static.javatpoint.com/operating-system/images/multithreading-
models-in-operating-system4.png.

6.16.4. Many to Many Multithreading Model
In this sort of model, there are a few user-level strings and a few kernel-
level strings. The number of bit strings made depends upon a specific
application. The engineer can make numerous strings at both levels but
may not be the same. The numerous to numerous demonstrate could be

Introductory Guide to Operating Systems136

a compromise between the other two models. In this demonstration, in
case any string makes a blocking framework call, the bit can plan another
string for execution (Greenwald and Thomas, 2007). Moreover, with the
presentation of multiple threads, complexity isn’t shown as within the past
models. In spite of the fact that this demonstration permits the creation of
different part strings, genuine concurrency cannot be accomplished by this
demonstration. This is often since the bit can plan as it were one handle at a
time (Figure 6.10).

Figure 6.10. An image of the many to many models.

Source: https://static.javatpoint.com/operating-system/images/multithreading-
models-in-operating-system5.png.

MEMORY MANAGEMENT

CHAPTER7

CONTENTS
7.1. Process Address Space .. 138

7.2. Address Spaces ... 139

7.3. Static Versus Dynamic Loading ... 142

7.4. Static Versus Dynamic Linking .. 143

7.5. Contrasts Between Static and Dynamic Linking 145

7.6. Swapping .. 146

7.7. Contiguous Memory Allotment in Operating System (OS) 149

7.8. Fragmentation ... 152

7.9. Paging ... 155

7.10. Address Translation ... 158

7.11. Segmentation .. 159

Introductory Guide to Operating Systems138

7.1. PROCESS ADDRESS SPACE
Process address space is a category of logical addresses that synchronize
process references within the code. For instance, when 32-bit addressing
is applied, addresses can vary from 0 to 0x7fffffff; meaning, 2^31 potential
figures, for an average hypothetical scale of 2 gigabytes (GB) (Gunadi
and Tiu, 2014). The internal framework handles encoding of the logical
to physical addresses at the period of memory designation to the program
(Figure 7.1). Three forms of addresses are applicable in the program when
memory is dispensed:

• Physical addresses. The loader produces these addresses when a
program is stacked into primary memory.

• Symbolic addresses. They tend to be utilized in the source code.
The variable titles, constants, and guidance tags are the essential
components of a symbolic address space.

• Relative addresses. During compilation, a compiler changes over
symbolic addresses into relative ones.

Figure 7.1. Operating system address space.

Source: https://study.com/academy/lesson/how-operating-systems-manages-
address-space.html.

Memory Management 139

7.2. ADDRESS SPACES
Address space refers to the PC memory space and each process covers it.
There are two types which include; the physical address space and virtual
address space. Physical and virtual addresses are similar in compile duration
and load duration address-binding plans. They both vary in execution-period
address-binding plan.

7.2.1. Physical Address Space
Physical address refers to the actual spot in memory that’s material. The
system accesses information in the primary memory, with the assistance of
physical address. Every component in the PC has a one-of-a-kind physical
address. There are two memory models in which the memory address maps
within the physical address space: The flat model whereby the physical
address and linear address spaces are similar (Giorgetti et al., 2020). The
segmented pattern where the physical address space is parted into segments
making a logical address space per each section CPU Intel 64 architecture,
and supporting physical address space more than 64 GB; the original
physical address scale of IA-32 processors is execution categorical. In 64-
bit configuration, there is compositional support for 64-bit lineal address
space. Nevertheless, processors having Intel 64 structure might implement
under 64-bits. The linear address expanse is mapped within the processor
physical address space using the PAE paging instrument. The greatest scale
of the physical memory is restricted by: the address bus width within the
address storage, i.e., assuming an address store: a byte (most popular) or a
phrase.

How to get to the physical memory area by CPU?
Logical Address is utilized as a reference point to get to the physical memory
area through CPU. The Memory-Management Unit utilizes address-binding
techniques for structuring the logical address to its relating physical address.
The group of all logical addresses produced by a program is known as the
logical address space, whereas the set of addresses comparing to these logical
addresses is called physical address space. The runtime mapping from
digital to physical address is performed through the memory management
unit (MMU), or a hardware instrument. MMU applies various mechanisms
to change virtual to physical address.

Introductory Guide to Operating Systems140

• The base register value is included to each address produced
through user interaction, which is considered an offset during the
period it is sent to memory. For instance, in the event that the
base register integer is 10,000, an endeavor by the client to utilize
address location 100 will be redistributed to location 10,100.

• The user program handles virtual addresses; it’s not associated
with the physical addresses.

7.2.2. Virtual Address Space
The Virtual Address Space is processed externally from the primary
memory within the virtual memory, and it is developed within the hard disk.
Whenever our primary memory is less and we need to get more advantage
from this less memory, then, at that point, we make virtual memory. Virtual
address doesn’t exist physically, thus it cannot be said that physical address
translates to logical address. The process virtual address space is the
collection of virtual memory locations applicable. The address space for
every process is private and can’t be availed to different processes except if
it is shared (Blackham et al., 2011).

A virtual address doesn’t exemplify the real physical address of a memory
object; rather, the system keeps a page table for each interaction, which is
a private data system used to make an interpretation of virtual addresses
into their comparing physical addresses. Every time the thread references
a location, the system makes an interpretation of the virtual location to a
physical location. The virtual location space for 32-bit Windows is 4 GB in
scale and separated into two allotments: one for application by the process
while the other held for use by the internal structure (Figure 7.2).

Figure 7.2 shows the default memory category for each segment.
• Default Virtual Address Scale (32-bit Windows):
Memory range: Application:
Low 2 GB (0x00000000 across 0x7FFFFFFF) process based.
High 2 GB (0x80000000 across 0xFFFFFFFF) system based.
• Virtual Address Space (32-bit Windows) with 4GT
If 4-gigabyte tuning (4GT) is allowed, the memory scale for each

segment is as per the following.
Virtual Address Scale (32-Bit Windows) With 4GT
Memory range: Application:

Memory Management 141

Low 3GB (0x00000000 across 0xBFFFFFFF) process based.
High 1 GB (0xC0000000 across 0xFFFFFFFF) system based.
When 4GT is allowed, a process with the IMAGE_FILE_LARGE_

ADDRESS_AWARE banner set in its photo header will have 1 extra GB of
memory over the low 2 GB (Hambarde et al., 2014).

• Synchronizing the Virtual Address Space (32-bit) Windows:
You can apply the below command to establish a boot entry system that

organizes the partition size which is accessible for use within the process, up
to a value of between 2,048 (2 GB) and 3,072 (3 GB):

BCDEdit/set increase USERVA Megabytes
Following the setting of the boot entry set, the memory scale for each

segment is per the below.
• Changing the Virtual Address Space (32-BIT) Windows
Memory range: Application
Low (0x00000000 across Megabytes) process based.
High (Megabytes+1 through 0xFFFFFFFF) system based.
Windows Server 2003: Adjust the/USERVA switch in boot.ini to a value

of the range 2,048 and 3,072.

Figure 7.2. Default address space layout.

Source: https://askaresh.com/2008/11/20/32-bit-memory-management-ex-
plained/.

Introductory Guide to Operating Systems142

7.3. STATIC VERSUS DYNAMIC LOADING
The decision between static or dynamic loading is to be made at the hour of
PC program development. In case you need to stack the program statically,
the overall programs must be accumulated and connected without leaving
any surface program or module reliance. The linker consolidates the item
program with other fundamental object modules into a comprehensive
program, which additionally incorporates logical addresses.

In case you are composing a dynamically loaded program, your compiler
shall accumulate the program and for every one of the modules which you
need to integrate robustly, just references will be given and remainder of the
work shall be performed at the hour of performance (Høiland-Jørgensen,
2018).

At the hour of loading, consisting of static loading, the comprehensive
program (and data) is included into memory for implementation to begin.
Assuming that you are utilizing dynamic loading, dynamic library schedules
are put away on a circle in relocatable structure and are added into memory
just when they are required by the program.

(A) Static Loading and (B) Dynamic Loading:
A. The standard program is connected and complied without reliance

on external programs.
B. All the modules are loaded progressively. The operator gives a

reference to every one of them and the remainder of the work is
done at execution time.

A. Direct information and program are loaded into the memory to
begin execution.

B. Loading of information and data takes little by little in run time.
A. The linker joins the article program with other item modules to

make a solitary program.
B. The connecting process happens progressively in a flexible

structure. Information is loaded into the memory just when it is
required in the program.

A. The handling speed is quicker as no documents are refreshed
during the handling time.

B. The handling speed is slower as records are transferred at the
hour of handling.

Memory Management 143

A. The code might be executed whenever it is loaded into the
memory.

B. Execution happens just when it is required.
A. Static loading is done uniquely on account of organized

programming language, for example, C.
B. Dynamic loading happens on account of product group

programming language like C++, Java, and so on.
A. The main disadvantage is the wastage of memory since, when the

code is loaded, it may or probably won’t be executed.
B. The main advantage of dynamic loading is proficient memory

use.
The choice of picking between static and dynamic loading technique

likewise relies upon the program size. For example, in case the program
is too huge, its modules ought to be chosen and loaded into the primary
memory according to the prerequisites applying the dynamic loading
technique. Alternatively, static loading is the most ideal choice when the
programs are more modest in size.

7.4. STATIC VERSUS DYNAMIC LINKING
As clarified above, whenever static linking is applied, the linker consolidates
any remaining modules required by a program into a solitary executable
program to prevent any runtime reliance.

In dynamic linking, it isn’t expected to interface the real module or
library with the program, instead a reference to the unique module is given
at the hour of assemblage and connecting. Windows Dynamic Link Libraries
(DLL) is a genuine illustration of dynamic libraries.

The primary distinction of static and dynamic linkage is that static
connection duplicates all library modules utilized in the program into the
last executable record at the last phase of the computation while, in dynamic
linkage, the connecting happens at run time when both implementable
documents and libraries are added in the memory.

For the most part, a PC program is an arrangement of steps in a
programming language that directs the PC or the CPU to play out a specific
assignment. Despite the fact that the software engineer comprehends this
program, the PC doesn’t. Consequently, it is important to change over the
source code to machine code (Hellmund, 2016). Additionally, this program

Introductory Guide to Operating Systems144

could require different programs or libraries. In such cases, it is important
to carry those programs and libraries along with the program to execute it.
Subsequently, linking is the most common way of joining external programs
with the developer’s program to execute it effectively. By and large, there
are two connecting systems, the static and dynamic linkage.

7.4.1. What Is Static Linking?
Static linking duplicates every one of the libraries expected for the program
into the last executable document. The linker plays out this errand, and it is
the last advance of aggregation. The linker joins the important libraries with
the program code to determine outside references. Ultimately, the linker
creates an executable document appropriate for stacking into memory. The
last genuinely connected document contains the calling program and called
programs. For the most part, these records are huge on the grounds that they
are associated with different documents.

Accepting that there are a few changes in external programs. All things
considered, it is important to recompile and once again interface. Any other
way, the current executable document doesn’t mirror these changes. Besides,
in factual connecting, every one of the modules and libraries are accessible
as a solitary executable module. Consequently, this connecting is quicker
and doesn’t cause correspondence issues.

7.4.2. What Is Dynamic Linking?
In powerful linking, the names of the outer libraries/shared libraries are
duplicated into the last executable; in this way, the genuine connection
happens at run time when the executable document and libraries burden
to the memory. The working framework performs dynamic connecting. By
and large, there is just one duplicate of a common library in the memory
(Irwansyah et al., 2018). Subsequently, the size of the executable record
is lower. It is feasible to refresh and recompile the outer libraries. Also,
assuming the common library code is presently accessible in memory, there
will be minimal loading time.

As a rule, in dynamic liking, it is smarter to have a viable library.
Assuming that there is a change in the library, the application needs to figure
out how to make it viable with the new form of the library. Also, eliminating
the library can cause the program not to operate further.

Memory Management 145

7.5. CONTRASTS BETWEEN STATIC AND DYNAMIC
LINKING

7.5.1. Description
Static linking is the method involved with duplicating all library modules
applied in the program into the last executable picture. Conversely, dynamic
linking is the method involved with stacking the outer common libraries into
the program, and afterward ties those common libraries progressively to the
program. Hence, this is the primary contrast between static and dynamic
linking.

7.5.2. Occurrence
Additionally, static linking is the final phase of compilation, whereas
dynamic linking happens at run time.

7.5.3. Document Size
Whereas statistically linked documents are bigger in scope, dynamically
linked records are more modest in size.

7.5.4. Load Time
Additionally, static linking takes steady loading time while dynamic linking
requires less loading time. Thus, this is one more contrast between static and
dynamic linking (Jaeger, 2008).

7.5.5.	Compatibility
Besides, there can be no compatibility issues on static linking. Simultaneously,
there will be similarity issues with dynamic linking.

In a nutshell, static and dynamic linking are pair of linking systems.
The fundamental distinction among static and dynamic linking is the former
duplicates all library modules utilized in the program into the last executable
record at the last advance of the assemblage whereas in dynamic linking,
the connecting happens at run time when both executable documents and
libraries are put in the memory.

Introductory Guide to Operating Systems146

7.6. SWAPPING
Swapping is a system where an interaction can be exchanged briefly out of
primary memory (or move) to elective storage (disk) and ensure the memory
is accessible to different cycles. Later, the framework exchanges back
the interaction from the auxiliary storing to principal memory. However,
execution is normally impacted by swapping process yet it helps in running
different and huge cycles in equal and that is the explanation. Swapping is
otherwise called a method for memory compaction (Figure 7.3) (Jeong et
al., 2012).

Figure 7.3. Swapping between main memory and backing store.

Source: https://binaryterms.com/swapping-in-operating-system.html.

Swapping is a memory administration system in which any interaction
can be briefly traded from fundamental memory to optional memory so
the principal memory can be made accessible for different processes. It is
utilized to further develop fundamental memory usage. In optional memory,
where the exchanged process is put away is called trade space.

The reason for the trading in working framework is to get to the
information present in the hard plate and carry it to RAM with the goal that
the application programs can utilize it. What to recollect is that swapping is
utilized just when information is absent in RAM. Albeit the method involved
with swapping influences the exhibition of the framework, it assists with
running bigger and more than one interaction. This is the motivation behind
why swapping is additionally known as memory compaction.

Memory Management 147

The idea of swapping can be subdivided into two additional ideas: swap-
in and swap-out:

•	 Swap-In:	It is a technique for eliminating a program from a hard
disk and returning it to the primary memory or RAM (Kushwaha
and Kushwaha, 2011).

•	 Swap-Out:	It is a technique for eliminating a cycle from RAM
and adding it to the hard disk.

Example: Considering the process’s size is 2,048 Kb and is a common
hard disk, whereby swapping covers a data transfer ratio of 1 Mbps. To
determine how long it shall take to move from primary memory to auxiliary
memory, the following equation can be made:

• User process size = 2,048 Kb.
• Data exchange rate (1 Mbps = 1,024 kbps).
• Time = process scope/exchange rate.
• = 2,048/1,024.
• = 2 seconds.
• = 2,000 milliseconds.
• Factoring swap in and swap out duration, the cycle will take

4,000 milliseconds.
Benefits of swapping:
• It assists the CPU with managing numerous cycles inside a

solitary primary memory;
• It assists with making and utilizing virtual memory;
• Swapping permits the CPU to play out numerous assignments

simultaneously. Accordingly, processes don’t need to wait too
long well before implementation (Krohn and Tromer, 2009);

• It enhances primary memory usage.
Weaknesses of swapping:
• If the PC system loses power, the individual might lose all data

connected with the program if there should arise an occurrence of
significant swapping activity;

• In case the swapping calculation isn’t ideal, the composite
technique can build the amount of Page Fault and reduce the
general processing output.

Introductory Guide to Operating Systems148

Note:
• In single tasking operating framework, just one cycle involves

the client program memory area and remains in memory until the
procedure is finished.

• In multiple tasking framework, a condition emerges when every
one of the dynamic cycles can’t occur in the primary memory,
then, a process is switched from the primary memory so different
cycles can access it.

The absolute time taken by swapping process incorporates the time it
takes to move the whole interaction to an auxiliary plate and afterward to
duplicate the cycle back to memory, as well as the time the interaction takes
to recover primary memory (Lange et al., 2011).

Expecting that the client interaction is of size 2,048 KB and on a standard
hard plate where swapping will occur with move rate of around 1 MB each
second. The primary swapping of the 1,000 K interaction to or from memory
will take:
2,048 KB/1,024 KB each second
= 2 seconds
= 2,000 milliseconds

Considering in and out time, it will take total 4,000 milliseconds in
addition to another upward where the process can recover primary memory.

7.6.1. Memory Allocation
Primary memory ordinarily has two segments:

•	 Low Memory: Operating framework exists within this memory.
•	 High Memory: User processes are saved in high memory.
Operating framework utilizes the below memory allocation system.

7.6.2.	Memory	Allocation	and	Definition
•	 Single-Partition	 Distribution:	 In this kind of allotment,

migration register plot is utilized to shield user processes from
one another, and from exchanging operating framework code
and information. Relocation register covers value of slightest
physical location while limit register comprises scope of logical
addresses. Every logical address should be not less compared to
the limit register.

Memory Management 149

•	 Multiple-Segment	Portion:	In this kind of designation, primary
memory is subdivided into various fixed-sized segments where
each segment ought to contain just one cycle. When the partition
is released, a cycle is chosen from the information line and is
stacked into the free segment. Whenever the cycle ends, the
parcel opens up for another interaction.

7.7. CONTIGUOUS MEMORY ALLOTMENT IN
OPERATING SYSTEM (OS)
In contiguous memory allotment, each interaction is contained in one
adjoining part of memory. In this memory portion, all the accessible memory
space stays together in one spot which suggests that the unreservedly
accessible memory parcels are not spread to a great extent across the entire
memory space.

In contiguous memory portion which is a memory administration
strategy, at whatever point there is a request by the client interaction for
the memory then a single segment of the bordering memory block is
given to that cycle as per the necessity. Contiguous memory allotment is
accomplished only by separating the memory into the fixed-sized segment
(Lass and Gronau, 2020).

The memory can be isolated either in the fixed-sized segment or in the
variable-sized segment to apportion contiguous space to client processes.

7.7.1.	Fixed-Size	Partition	Scheme
This strategy is otherwise called Static partitioning. In this plan, the
framework isolates the memory into fixed-size parts. The allotments might
possibly be a similar size. The scale of each segment is fixed as demonstrated
by the title of the method and it can’t be transformed. In this partition
strategy, each segment might contain precisely one interaction. There is an
issue that this strategy will restrict the level of multiprogramming on the
grounds that the amount of parcels will fundamentally determine the amount
of cycles. Whenever any cycle ends then the fragment opens up for another
interaction.

7.7.1.1. Case Study
Consider an illustration of fixed size parceling plan, we will separate a
memory size of 15 KB into fixed-size allotments: It is vital to take note of

Introductory Guide to Operating Systems150

that these allotments are designated to the cycles as they show up and the
parcel that is apportioned to the revealed process fundamentally relies upon
the calculation followed. In case there is some wastage within the parcel, it
is called internal fragmentation (Levis et al., 2005).

Benefits of fixed-size partition scheme:
• This scheme is basic and not difficult to execute;
• It upholds multiprogramming as numerous cycles can be stored

within the primary memory;
• The management is simple utilizing this plan.

7.7.1.2. Detriments of Fixed-Size Partition Scheme
A few drawbacks of utilizing this plan are as per the following:

•	 Inner Fragmentation: Assume the size of the cycle is lesser
compared to the size of the parcel, all things considered some
size of the segment gets squandered and stays unused. This
wastage inside the memory is for the most part called internal
fragmentation.

•	 Restriction on the Process Size: In case the process scale size of
an interaction is more than that of a larger measured parcel then
that cycle can’t be stacked into the memory. Because of this, a
condition is forced on the size of the interaction and it is: the size
of the cycle can’t be bigger than the size of the biggest parcel (Lin
and Ye, 2009).

•	 External Fragmentation: It is one more downside of the fixed-
size parcel as absolute unused space by different allotments can’t
be utilized to stack the cycles, despite the fact that there is enough
room yet it isn’t in the contiguous design.

•	 Level of Multiprogramming is Less: In this partitioning plot,
as the scale of the segment can’t change as indicated by the size
of the cycle. In this manner the level of multiprogramming is
exceptionally less and is permanent.

7.7.2.	Variable-Size	Partition	Scheme
This program is otherwise called dynamic partitioning and appeared to
defeat the disadvantage, i.e., internal fragmentation that is brought about by
Static dividing. In this apportioning, scheme allotment is done progressively.

Memory Management 151

The scale of the segment isn’t proclaimed at first. Whenever any cycle
shows up, a segment of size equivalent to the size of the interaction is made
and afterward dispensed to the interaction. Along these lines the size of each
parcel is equivalent to the scale of the cycle.

As segment size fluctuates as indicated by the need of the interaction so
in this parcel design there is no internal separation.

7.7.2.1. Benefits of Variable-Size Partition Scheme
A few advantages of the segment scheme are as per the following:

•	 No Internal Fragmentation: Since the partition scheme space
in the primary memory is distributed uniquely as indicated by the
necessity of the cycle, along these lines there is no way of internal
fragmentation. Likewise, there will be no unused space left in the
parcel (Mayoral et al., 2017).

•	 Level of Multiprogramming is Dynamic: Since there is no
internal fragmentation within this partition plot because of which
there is no vacant space in the memory. Consequently, more
cycles can be stacked into the memory simultaneously.

•	 No Restraint on the Size of Process: In this parcel as the segment
is assigned to the interaction progressively subsequently the scale
of the cycle can’t be confined on the grounds that the segment
size is determined by the interaction scope.

7.7.2.2. Drawbacks of Variable-Size Partition Scheme
A few disadvantages of utilizing this segment conspire are as per the
following:

•	 External Fragmentation: Since there is no internal fragmentation
which is a benefit of utilizing this partition design, it doesn’t
mean there will be no external partitioning. The vacant space in
memory can’t be distributed as no spreading over is permitted in
coterminous allotment. Since the standard says that interaction
should be persistently present in the primary memory to get
executed. In this manner it brings about External Fragmentation
(Muehlstein et al., 2017).

•	 Tough Implementation: The execution of this partition design
is hard when contrasted with the Fixed Partitioning plan as it
includes the allotment of memory during run-time, rather than

Introductory Guide to Operating Systems152

during the framework design. The OS monitors every one of the
allotments however here portion and deallocation are performed
consistently, and parcel size will be changed at each time so it
will be hard for the working framework to oversee every process.

7.8. FRAGMENTATION
As processes are stacked and taken out from memory, the freed memory
space is partitioned into small sections. It occurs after in some cases that
cycles can’t be distributed to memory blocks considering their little size and
memory blocks stay unused. This issue is known as Fragmentation.

It is an undesirable issue in the operating framework where the cycles
are stacked and dumped from memory, and free memory space is divided.
Processes can’t be allocated to memory blocks because of their small size,
and the memory blocks stay unused (Manzalini and Crespi, 2016).

Contiguous memory assignment dispenses space to processes at
whatever point the cycles enter RAM. The RAM spaces are separated either
by fixed partitioning or through dynamic apportioning. Since the process is
stacked and dumped from memory, these regions are divided into small bits
of memory that can’t be distributed to the next cycles.

Fragmentation is of two kinds:
•	 External Break: Absolute memory space is to the point of

fulfilling a request or to live an interaction in it, yet it isn’t
contiguous, thus it can’t be utilized.

•	 Internal Break: Memory block allocated to process is larger.
Some aspect of memory is left unused, as it can’t be utilized by
another cycle.

External fragmentation can be decreased by compaction or mix memory
substance to put all free memory together in one huge square. To make
compaction attainable, migration should be dynamic.

The inner fragment can be decreased by successfully allocating the
tiniest segment yet huge enough for the interaction.

•	 Reasons for Fragmentation: Client processes are stacked and
dumped from the primary memory, and cycles are kept in memory
blocks in the primary memory. Many spaces remain after process
stacking and trading that another cycle can’t stack because of their
scale. Primary memory is accessible, yet its space is inadequate

Memory Management 153

to stack another process as a result of the dynamical distribution
of primary memory processes.

7.8.1. Internal Fragmentation
When a process is allotted to the memory block, and assuming the process is
more modest than how much memory is required, a free space is made in the
particular memory block. Because of this, the free space within the memory
block is unused creates internal discontinuity. For Instance: Considering that
memory allocation in RAM is performed utilizing fixed partitioning (that
is., memory squares of fixed sizes). 2 MB, 4 MB, 4 MB, and 8 MB are the
accessible sizes. The OS utilizes a section of this RAM (Bala et al., 2015).

Considering a P1 with a scale of 3 MB shows up and is provided a
memory square of 4 MB. Thus, the 1 MB of free space in this square is
unused and can’t be utilized to assign memory to another platform. It is
called internal fragmentation.

7.8.1.1. Preventing Internal Fragmentation
The issue of internal fragmentation might arise because of the fixed scales
of memory blocks. It very well might be solved by relegating space to the
cycle through dynamic apportioning. Dynamic partitioning allots just the
amount of space mentioned by the process. Accordingly, there isn’t any
internal fragmentation.

7.8.2. External Fragmentation
It occurs when a unique dynamic memory strategy distributes some memory
yet leaves a modest quantity of memory unusable. The ratio of accessible
memory is considerably diminished assuming that there is an excess of
external fragmentation. There is sufficient memory space to finish a request,
yet it isn’t contiguous. It’s called external fragmentation.

7.8.2.1. Preventing External Fragmentation
This issue happens when you distribute RAM to processes continually. It
is present in paging and segmentation, whereby memory is dispensed to
processes non-contiguously. Subsequently, in the event that you eliminate
this condition, external fragmentation would be diminished (McClean et al.,
2013).

Introductory Guide to Operating Systems154

Compaction is one more technique for eliminating external fragmentation.
External fragmentation might be diminished when dynamic fragmentation
is utilized for memory designation by joining all free memory into a single
massive square. The bigger memory block is utilized to apportion space
in light of the necessities of the new processes. This strategy is otherwise
called defragmentation.

7.8.3.	Benefits	and	Drawbacks	of	Fragmentation
There are different benefits and drawbacks of fragmentation which are as
per the following:

•	 Quick Data Writes: Data write in a framework that upholds data
fragmentation might be quicker than rearranging data storage to
allow contiguous data writing.

•	 Less Failures: Assuming there is inadequate sequential space in
a framework that doesn’t support fragmentation, the write will
come up short.

•	 Capacity Optimization: A fragmented structure could
conceivably make a better utility of storage appliance by making
use of the storage block.

•	 Detriments: There are different detriments of fragmentation.
Some of them are as per the following:

I. Need for Constant Defragmentation
A highly fragmented storage product’s performance will debase with time,
requiring the necessity for tedious defragmentation tasks (Monaco et al.,
2013).

II. Reduced Read Times
The duration it takes to go through a non-sequential document could increase
as a storage device turns out to be more divided.

To put it plainly, internal, and external fragmentation are normal cycles
that cause either memory loss or void memory space. Be that as it may, the
issues in the two cases can’t be totally overcome, in spite of the fact that they
can be diminished somewhat utilizing the measures given above.

Memory Management 155

7.9. PAGING
Paging is a memory administration strategy where process address space is
divided into squares of a similar size known as pages (scale is power of 2,
between 512 bytes and 8,192 bytes). The scale of the process is estimated in
the quantity of pages (Figure 7.4).

Figure 7.4. Flowchart diagram of the paging process.

Source: https://tutorialspoint.dev/computer-science/operating-systems/operat-
ing-system-paging.

Also, primary memory is divided into tiny fixed-sized squares of
(physical) memory known as frames, and the frame size is kept equivalent to
that of a page to have ideal usage of the principle memory and to keep away
from external fragmentation. This plan allows the actual location space of
interaction to be non-coterminous.

• Logical Address or Virtual Address (addressed in bits): A location
created by the CPU.

• Logical Address Space or Virtual Address Space (addressed in
words or bytes): The arrangement of all logical addresses created
by a program.

• Physical Address (addressed in bits): A location really accessible
on memory unit.

• Physical Address Space (addressed in words or bytes): The
arrangement of all actual addresses relating to the logical
addresses.

Introductory Guide to Operating Systems156

Example:
• In the event that Logical Address = 31-piece, Logical Address

Space = 231 words = 2 G words (1 G = 230).
• In the event that Logical Address Space = 128 M words = 27 *

220 words, then, at that point, Logical Address = log2 227 = 27
pieces.

• If Physical Address = 22-piece, Physical Address Space = 222
words = 4 M words (1 M = 220).

• If Physical Address Space = 16 M words = 24 * 220 words, then,
at that point, Physical Address = log2 224 = 24 pieces.

The planning from virtual to physical location is done by the MMU
which is known as paging strategy.

• The Physical Address Space is adeptly separated into various
fixed-size blocks, known as frames.

• The Logical Address Space is additionally subdivided into fixed-
size blocks, known as frames.

• Page Size = Frame Size.
Consider this example:
• Physical Address = 12 pieces, then, at that point, Physical Address

Space = 4 K words.
• Logical Address = 13 pieces, then, at that point, Logical Address

Space = 8 K words.
• Page size = frame scale= 1 K words (assumption) (Moore and

Stouch, 2016).
Address produced by CPU is segmented into:
•	 Page	number(p): Amount of bits needed to address the pages in

Logical Address Space or Page number.
•	 Page offset(d): Amount of bits needed to address specific word

in a page or page size of Logical Address Space or word integer
of the page or page offset.

Physical address is separated into:
•	 Frame	 number(f):	 Amount of bits expected to address the

Physical Address Space frame or Frame number.

Memory Management 157

•	 Frame offset(d): Amount of bits needed to address specific word
in a frame or casing size of Physical Address Space or word
integer of a casing or frame offset.

The hardware execution of page table should be possible by utilizing
specific registers. However, the use of register for the page table is good
provided that page table is minor. In the event that page table contains a
large number of sections, it is possible to utilize a TLB (translation Look-
aside buffer), a unique, small, quick look into equipment cache (Nollet et
al., 2004).

• The TLB is acquainted, fast memory;
• Every passage in TLB comprises of two sections: a tag and value;
• At the point when this memory is utilized, then, at that point,

something is contrasted and all labels simultaneously. If the item
is found, then, at that point, relating value is returned.

Primary memory access time = m
Assuming page table are kept in primary memory:
Viable access time = m(for page table) + m(for specific page in page

table)
A PC can address more memory than the sum physically introduced on

the framework. This additional memory is really called virtual memory and
it is a part of a hard that is set up to imitate the PC’s RAM. Paging method
assumes a significant part in applying virtual memory.

7.9.1.	Benefits	and	Disadvantages	of	Paging
Here is a rundown of benefits and drawbacks of paging:

• Paging decreases external fragmentation, yet at the same time
experience the negative effects of internal fragmentation;

• Paging is easy to execute and expected as a proficient memory
management method;

• Because of equivalent size of pages and frames, swapping is
exceptionally simple;

• Page table needs additional memory space, so might not be great
for a framework having minimal RAM.

Introductory Guide to Operating Systems158

7.10. ADDRESS TRANSLATION
In fostering the virtualization of the CPU, researchers zeroed in on an
instrument known as limited direct execution (LDE). The thought behind
LDE is basic: generally, let the program run directly on the equipment;
notwithstanding, at specific central issues on schedule, (for example,
when an interaction gives a structural call, or a clock hinderance happens),
orchestrate so the OS reaches out and ensures the “right” thing occurs.
Hence, the OS, with a little equipment support, makes an honest effort to
move of the running project, to convey a productive virtualization; in any
case, by intervening at those basic moments, the OS guarantees that it keeps
up with command over the equipment. Effectiveness and control together
are two of the principle objectives of any advanced working structure
(Nimodia and Deshmukh, 2012). In virtualizing memory, researchers seek
after a comparable technique, accomplishing both proficiency and control
while giving the ideal virtualization. Productivity directs that they utilize
equipment support, which at first will be very simple (e.g., only a couple of
registers) yet will develop to be genuine implementation (e.g., TLBs, page-
table help, etc.). Control suggests that the OS guarantees that no application
is permitted to get to any memory however its own; consequently, to shield
applications from each other, and the OS from applications.

Page address is known as logical address and provided by page integer
and the offset:

Logical Address = Page number + page offset
Frame address is known as physical address and numbered by a frame

integer and the offset:
Physical Address = Frame number + page offset
A data system known as page map table is utilized to monitor the

connection between a frame page and interaction to a physical memory
frame.

When the framework assigns a frame to some page, it makes an
interpretation of this consistent location into a physical address and make
entry into the page table to be utilized all through implementation of the
program. When a cycle is to be implemented, its comparing pages are stacked
into any suitable memory frames. Assuming you have an 8 Kb program yet
your memory can oblige just 5 Kb at a given moment, then, at that point,
the paging idea will come into picture. At the point when a PC runs out of
RAM, the OS will move inactive or undesirable pages of memory to optional

Memory Management 159

memory to let loose RAM for different cycles and brings them back when
required by the program. This process continues during the entire execution
of the program where the OS continues to eliminate inactive pages from the
primary memory, and consider them onto the secondary memory and bring
them back when expected by the program.

The generic method which can be considered apart from the LDE, is
something alluded to as hardware-style address translation, or simply
address translation. With address translation, the equipment changes every
memory access (e.g., guide fetch, loading, or store), changing the virtual
location given by the guidance to an actual location where the actual
data is really found. Subsequently, on every single memory reference, a
location interpretation is performed by the equipment to divert application
memory references to their real areas in memory (Ow, 2011). Obviously,
the equipment can’t virtualize memory, as it simply gives the low-level
instrument to doing so productively. The OS should get involved at central
issues to set up the equipment so the right interpretations occur; it should
in this manner oversee memory, monitoring which areas are free and which
are being used, and sensibly interceding to keep up with command over how
memory is utilized.

The objective of all of this work is to make a lovely deception: that the
program has its own private memory, where its own code and information
dwell. Behind that augmented simulation lies the revolting actual truth: that
many programs are really sharing memory simultaneously, as the CPU (or
CPUs) switches between running one program and the following. Through
virtualization, the OS (with the equipment’s assistance) transforms the
revolting machine reality into a valuable, strong, and simple to use platform.

7.11. SEGMENTATION
In OSs, Segmentation is a memory management procedure where the
memory is partitioned into variable size fragments. Each part is called a
section which can be designated to a sequence. The insights concerning each
fragment are put in a table known as segment table. It is stored in one or
multiple segments.

Segment table contains primarily two details on segment:
•	 Base: It is the base segment address; and
•	 Limit: It is the segment length.

Introductory Guide to Operating Systems160

Segmentation is a memory administration procedure wherein each
occupation is separated into a few portions of various sizes, one for every
module that contains bits that fill related roles. Each fragment is really an
alternate consistent location space of the program. At the point when a
cycle is to be executed, its relating division are stacked into non-contagious
memory however every section is stacked into an adjacent block of accessible
memory. Segmentation memory is basically the same as paging however
here fragments are of variable-dimensions whereas in paging pages are of
permanent size (Peter et al., 2015).

A program section contains the program’s primary capacity, utility
capacities, information structures, etc. The working framework keeps a
section map table for each cycle and a rundown of free memory blocks
alongside fragment numbers, their size and comparing memory areas in
primary memory. For each portion, the table stores the beginning location
of the section and the length of the fragment. A reference to a memory area
incorporates a value that distinguishes a section and an offset.

7.11.1. Why Segmentation Is Necessary?
While paging is a common memory management procedure. It is nearer
the OS compared to the User. It separates every one of the processes into
the type of pages, no matter what the interaction can have a few relative
capacity sets which should be stacked in a similar page.

The operating framework couldn’t care less with regards to the User’s
perspective on the cycle. It might separate similar capacity into various
pages and those pages could possibly be stacked simultaneously into the
memory. It diminishes the proficiency of the framework. It is smarter to
have division what isolates the interaction into the sections. Each fragment
contains similar forms of capacities, for example, the principle capacity can
be remembered for one portion and the library capacities can be remembered
for the other section.

VIRTUAL MEMORY

CHAPTER8

CONTENTS
8.1. Implementation of Virtual Memory ... 166

8.2. Demand Paging .. 169

8.3. Demand Segmentation ... 175

8.4. Swapping/Swap File .. 179

8.5. Page Replacement... 182

Introductory Guide to Operating Systems162

A virtual memory in the OS is a software-managed page replacement
algorithm; this type of algorithm assumes that the entire working set of the
process is to be kept in main memory. For this feature in an OS, memory
available for a program to use can expand beyond the four gigabytes (GB)
installed in the machine by using the hard disk drive as extra RAM. The
virtual memory can also be termed as an artificial memory function provided
by the OS using the space of your hard disk. It helps one when dealing
with software and large memory file (Bala et al., 2015). Virtual memory is
a mechanism that allows each process/user to have its own private virtual
address space. A virtual address can be defined as a program generated integer
that an application program uses to access its work space in main memory.
A virtual address therefore is a pointer to physical memory” (Figure 8.1).

Figure 8.1. A visualization of virtual memory in the operating system.

Source: Image by Tutorialspoint.

If one’s computer frequently runs out of memory while running multiple
applications, virtual memory allows your system to use hard disk space as
additional RAM. The OS can move pages rarely used to the hard drive,
freeing up precious, physical RAM for more active pages. Increasing the
amount of your paging file may help speed up applications that require a lot
of memory like video-editing software or web browsers with multiple tabs.
Virtual memory solves the problem of overextending the physical RAM on

Virtual Memory 163

your device. Virtual memory is a storage area that holds frequently used
programs or data in the system’s RAM so they can be accessed quicker
than if they had to be accessed on the hard drive. When a computer runs a
program, it creates an area in memory for that program’s use. This area is
called virtual memory, and it is essentially a section of the hard drive that’s
been allocated to function as RAM (Figure 8.2).

Figure 8.2. A sample random access memory as used in virtual memory.

Source: Image by Wikipedia.

It can also be termed as page file or swap file. The swap file maps
the virtual addresses used by a process to physical addresses in computer
memory. The OS manages virtual address spaces and the assignment of
real memory to virtual memory. Address translation hardware in the CPU,
often referred to as a memory management unit or MMU, automatically
translates virtual addresses to physical addresses when virtual memory is
implemented (Santos et al., 2013). Virtual memory can be implemented
in software using a page table. Virtual memory assigns computer pages
to random access memory (RAM) and enables the OS to run with larger
memory on any machine. It is important to note that memory (RAM) is
too expensive for each application to have as much as it might need at any
one moment. Virtual memory is a mechanism that allows the OS to extend
physical memory by temporarily transferring data to disk storage. Virtual
memory thus expands the size of the address space, which can be larger than
the physical memory. This forms the basis of its existence.

As a memory management technique, it is implemented using both
hardware and software. It maps memory addresses used by a program,
called virtual addresses, into physical addresses in computer memory; main
storage as seen by a process or task appears as a contiguous address space or

Introductory Guide to Operating Systems164

collection of contiguous segments. Software within the OS may extend these
capabilities to provide a virtual address space that can exceed the capacity of
real memory and thus reference more memory than is physically present in
the computer. A paging system moves data between RAM and disk. Other
post-virtualization techniques such as shared libraries, interpreted programs,
and disk caching (not used for DASD Paging) occur only after this time. In
principal main storage (real memory) is much faster than disk storage but
too small in capacity; disk storage is larger but less fast. By segmenting out
blocks from main storage, replacing it with disk storage, combining them
with demand paging techniques, the OS can create a large, slower virtual
storage from smaller, faster main storage (Figure 8.3).

Figure 8.3. Memory mapping, the basic functionality of virtual memory.

Source: Image by ResearchGate.

A virtual memory system uses a combination of RAM and a portion
of a hard drive, called a swap file or paging file, to logically expand the
available memory beyond what physically exists. The virtual memory
allows one to maintain consistent memory despite the physical components
changing. It handles this by creating a Page file on your hard drive and uses
it as the swap file, where information that is currently not in use is stored
temporarily A (Ksoy et al., 2017). This method has its drawbacks, primarily
the performance hit due to hard drive access speeds being slower than RAM,
but it does allow for uses such as being able to use more virtual RAM than
you have installed. This technique virtualizes a computer architecture’s

Virtual Memory 165

various hardware memory devices, allowing a program to be designed as
though there is only one type of memory (RAM) (Figure 8.4).

Figure 8.4. One line code multitasking kernel. It was initially the purpose of
virtual memory to work on this.

Source: Image by Embedded.

The virtual memory was initially developed for multitasking kernels.
This technique virtualizes a computer architecture’s various hardware
memory devices, allowing a program to be designed as though the computer
has (for example) only one kind of memory, “random access memory”
(RAM), when it might in fact have several different kinds of memory
and longer latency for some than for others. Virtual address space design
protects the actual hardware from an errant program. This new virtual
memory in the OS will definitely change the way people use their PCs. It is
amazing that today’s hard disk drive, compared with the pre-war computer,
almost reached the level of thousands of times. Virtual memory organizes
the usage of both RAM and hard disk storage to ensure that programs work
efficiently. For this reason, virtual memory often uses multiple partitions on
your computer’s hard disk drive.

Virtual memory is a huge part of what allows modern computers to
function. Without it, your code would have to have access to all the memory
it needed at all times (it would be said to be “resident” in memory), or you’d
have to manage swapping the code in and out of memory yourself (Ahmad et
al., 2013). Virtual memory allows for your applications and OS to have more
memory available than is physically installed on the machine, which means

Introductory Guide to Operating Systems166

that you can run many programs concurrently, or at least give the illusion
of doing so. Because virtual memory utilizes drive space, it inherently
slows down program execution and data access. However, virtual memory
can be allocated to provide a swap file for temporary storage and retrieval
of program data. Windows 9x uses by default a swap file of 2.5 times the
amount of RAM, while Windows NT uses a default swap file of 1.5 times
the amount of RAM. The OS manages the information stored in RAM to
ensure that a program is placed into a region of memory in which it can run
without being interfered with by another program. The OS accomplishes
this virtual memory by dividing memory into regions called pages, which
are assigned at execution time to executing programs (page mapping).

8.1. IMPLEMENTATION OF VIRTUAL MEMORY
Implementation of virtual memory in computing is the process by which
memory addressing is supported transparently to the application by the
computer hardware and OS. It is based on the principle that main memory
is usually too small to accommodate all data and programs with reasonable
response time. The idea behind virtual memory is to allow a program to
address more memory than actually available in the computer. Virtual memory
is a memory management technique that provides an “idealized abstraction of
the storage resources that are actually available on a given machine” which
“create the illusion to users of a very large (main) memory” (Figure 8.5).

Figure 8.5. An illustration of the implementation of virtual memory.

Source: Image by People.

Virtual Memory 167

Implementation of virtual memory in computing further refers to
handling the memory management aspects of a system such as demand
paging, page replacement, segmentation, and swapping. The implementation
of virtual memory in computing is a method that allows for the OS to
separate its processes’ memory into a disk in order to generate an address
space. Virtual memory can be implemented into a computer system using a
number of methods, but the implementation of virtual memory in computing
is generally done through a process called ‘paging.’ This involves mapping
virtual addresses to physical addresses through the use of ‘memory pages’
that are sections of physical memory allocated to each process (Figure 8.6).

Figure 8.6. Computer hardware memory devices.

Source: Image by Digitalworld839.

Virtual memory is a memory management technique developed for
multitasking kernels. This technique virtualizes a computer architecture’s
various hardware memory devices (e.g., RAM, hard disk, CD-ROM) so that
multiple processes (i.e., programs) can be executed independently in the
same address space (i.e., with their own view of the virtual address space).
Each separate process can be allocated its own quota of virtual memory by
associating “pages” from the main system’s physical memory; thus, each
process is given the impression that it is running on a machine with as much
physical memory as it “sees” (which may actually be far less than what
the entire physical machine has). Virtual memory also allows for greater
multitasking capacity since a program which would otherwise use up too

Introductory Guide to Operating Systems168

much physical memory can be assigned some other pages of virtual memory
which are swapped in and out when need (Sjöstrand et al., 2015). During
this swapping or “virtual memory,” some pages at the end of the program
are saved to space on the hard drive temporarily while others are brought
into those empty slots. This allows several programs to share resources and
space in physical memory simultaneously; if they do not need access to
those resources at exactly the same time, this swapping or “virtual memory”
(Figure 8.7).

Figure 8.7. The concept of address space.

Source: https://www.researchgate.net/figure/An-example-of-a-process-virtual-
address-space_fig1_344039145.

This technique virtualizes the concept of the address space, allowing
processes to use memory that they do not physically own, or requires no
physical memory at all the address space is divided into pages and frames
(page frame). When a program is launched, it may not be available in
the main memory. It must be brought from external storage to an address
space. A special graphic window is used to display all text being entered
into the system and to show all text output by the system (Androulaki et
al., 2018). In addition, the majority of windowing systems provide at least
one window, which is used as a small display surface and a keyboard input
mechanism, called a cursor. A computing platform for developing and
running applications (also called a runtime environment), where the OS,
database management system and development tools can be installed.

As we shall see, virtual memory is actually a form of very modular
caching. It separates the set of logical addresses that the program sees from

Virtual Memory 169

actual main memory addresses. This separation ensures that programs
access memory in an appropriate way and are largely isolated from locations
of data in main memory. A virtual memory system is an abstraction layer on
top of the real hardware memory which allows processes (software) to use
more memory than they physically own. Virtual memory is implemented by
creating page tables that contain references to blocks of physical memory.

8.2. DEMAND PAGING
Demand paging is a method of handling memory management while
implementing virtual memory. Use it to facilitate multitasking and improve
system efficiency by reducing the use of RAM. The process occurs as
needed, rather than being executed as a matter of course. This is a technique
that calls for pages to be brought into main memory only as needed by the
running processes. Also known as lazy paging or on-demand, it is a method
of handling memory management. Demand paging is used by some modern
OSs (specifically virtual memory operations) to solve “out of memory”
error when allocating pages for task. In such a case, the OS finds a page in
physical memory, using demand paging, instead of allocating pages only
once, the OS takes care of the allocation while the process is being executed
(Figure 8.8).

Figure 8.8. Demand paging and pre-paging.

Source: https://afteracademy.com/blog/what-are-demand-paging-and-pre-
paging#:~:text=In%20demand%20paging%2C%20that%20page,loads%20
them%20into%20the%20memory.

Introductory Guide to Operating Systems170

This process allows hardware to load data only when it needs to be used
and thus allows the use of larger virtual memory than the physical memory.
The basic principle is that instead of having all the items in working set, we
keep only those pages that are constantly needed in RAM. Demand paging
is a method of implementing virtual memory. True virtual memory demand-
paged systems were never very common, primarily because the increase in
programming complexity was not considered worthwhile for most systems
(Silva et al., 2006).

Virtual memory is a hugely important computational resource. It allows
the entire memory of a computer to be used by programs rather than size
being limited by the amount of physical RAM. In this chapter, we explore
how demand paging works as a method of implementing virtual memory
through mapping of virtual address to physical addresses. We show that
demand paging must consider all applications running on the machine as
well as their memory requirements, and this may be problematic when
implementing a method for saving, swapping out and swapping in processes
in need of access to main memory (Figure 8.9).

Figure 8.9. The initial stages of demand paging.

Source: Image by Jhu.

Virtual Memory 171

Nonetheless, it is a page-loading scheme that is used in virtual memory
systems. In this method, pages of a process are loaded into memory only on
the demand of instruction fetch by the CPU. When an address translation
results in a page fault, whether due to the page being in a swapped form or
not being present at all, the OS loads the required page into RAM, bringing
it into memory. It is a swap-out process that essentially turns virtual memory
into RAM when it is needed (as opposed to pre-loading all possible memory
options into RAM and then swapping as needed).

It allows parts of each process to be loaded into memory only when they
are needed, rather than at the time each process is created. This reduces the
amount of RAM needed to run multiple processes at once, but increases the
potential for CPU work and system I/O. Demand paging is an important
method of handling memory management while implementing virtual
memory (Shaw et al., 2016). Demand paging is used in conjunction with
page tables, page faults, and page frames to implement a working virtual
memory system. These systems allow for much larger memory pools than
would normally be possible on any given machine.

Paging occurs when main memory cannot hold the entire address
space of a process and places parts of the process into secondary storage.
When the program needs to use that particular page from the secondary
storage, it is brought back into main memory. Demand paging takes this a
step further and brings pages only when needed instead of bringing them
all at once as part of swapping processes. This is useful for CPU intensive
programs where certain parts are not needed immediately. Demand paging
as a method of implementing virtual memory is one of the most efficient
memory management methods existing today. The method has been in use
for several decades, and is universally accepted by OS designers.

Demand paging is a method of handling memory management at the
physical level of computer operation. The page table must keep track of
which physical pages may contain valid data for a given process. It does so by
paging only those pages from disk to main memory that are actually needed,
rather than paging in all pages from disk. The terms “demand paging” and
“lazy paging” are used interchangeably. Virtual memory systems separate
the memory space into fixed-size units called pages. A typical page size
might be 4 kilobytes (KB), although many OSs allow the use of different
page sizes and a mixture of pages within an address space. The programs in
the virtual memory are divided into pages, and the real memory is divided

Introductory Guide to Operating Systems172

into equal-sized partitions that are the same size as a page; each partition is
opened to hold one page from the program being executed at any time. The
process gets brought in from disk, the OS allocates enough space for it to
execute, then it writes that memory back out onto the disk when complete.
This is a great method for handling limited amounts of physical memory and
running multiple processes at the same time. Demand paging is the opposite
of demand feeding and a more advanced mode than the preemptive paging.
It reduces the access time to data and increases throughput performance
by overlaying additional pages onto underlying ones. A crossed-out page
symbol (⊘) in a circle with the letter P on some OSs is a warning that not
enough space is left on the specified drive (Sharma et al., 2012).

The process involved starts when memory space is allocated only
when an application requests for more memory. Pages are loaded into main
memory from disk as needed by the process. The program in execution
accesses them whenever it refers to any page not already in main memory.
Pages of the current process, which have been loaded in main memory but
are not being used currently, can be swapped out to make space for other
processes or I/O buffers, thus freeing some main storage. This is done using
a dynamic relocation algorithm and a logical-to-physical address translation
mechanism (MMU) (Figure 8.10).

Figure 8.10. The process of demand paging.

Source: Image by GeekforGeeks.

• It starts when the CPU tries to indicate or rather refer a particular
page not available at the moment.

• The computer will hence generate an interrupt that indicates a
memory access fault.

Virtual Memory 173

• The OS, e.g., Windows, Linux or Ubuntu will put the then
interrupted process in a blocking state.

• This implies that for the execution to proceed, the OS must bring
the required page into the memory.

• The OS will hence go searching for a logical address space.
• From the logical address space, it will be brought into the physical

address space with the use of page replacement algorithms.
• The page table is hereby updated.
• The CPU will be signaled to hereby continue with the execution.
• Without any fault, demand paging will be successful.

8.2.1. Advantages of Demand Paging
Rather than trying to fit everything in RAM, the MMU stores and retrieves
only what you need when you need it. Demand paging also reduces the risk
of exceeding your processor’s memory capacity by reducing your workload
during these operations. Its major advantage is that it allows a process to
be allocated a range of virtual addresses that are not physically resident on
the machine. A program may be developed assuming it will have complete
memory available for its use, when in fact only part of the address range is
resident at any given time (Figure 8.11).

Figure 8.11. Summarized advantages and disadvantages of demand paging.

Source: Image by Slide Player.

Introductory Guide to Operating Systems174

Demand paging is a mechanism in which we don’t load the pages in
RAM until they are needed, page faults are expensive and quite slow. But all
the pages aren’t needed at the same time and can be loaded when required.
This requires more memory to keep track of existence of pages, RAM isn’t
left fragmented rather it is used effectively if a new process is allocated
memory, if it needs a particular page, it can be loaded from disk to RAM
instead of demanding all the processes to use first fit or best fit algorithm
(Sangorrin et al., 2010).

The primary benefit of demand paging is that it allows the physical
memory of a computer system to be used much more efficiently than
demand paging. With demand paging, if a process references a page that is
not resident in physical memory, the processor issues a page fault. The OS
then allocates space in physical memory and loads the required page into
this newly-allocated space. However, if the page was previously swapped
out and exists on the swap device, then the OS can either read the entire page
back into physical memory (and thus occupy a full frame), or it can read just
part of each page back into memory (rather than reading all 4 KB for each
page). In this manner, multiple pages may be loaded into memory and share
a single physical frame.

The advantage of demand paging over swapping is that it allows a
process only to pay for those pages it needs (or the OS thinks the process
needs). In contrast, the process must be continuously kept in memory with
swapping even if those are rarely or never used. When demand paging is
used, memory use can be distributed more efficiently and the system can run
with a full working set of pages as many programs experience a locality-of-
reference effect.

8.2.2. Disadvantages of Demand Paging
It might be an unfair question. The more pertinent question may be: when not
to use demand paging? The advantages are mostly obvious, and for a typical
user with a typical machine, the disadvantages may not be obvious at all.
One of the problems with demand paging is locality of reference. Locality
refers to frequently accessed data. If a page you need is not in memory, then
it takes time to bring it in from disk. That is known as a page fault (Singh,
2014). While it is bringing the page into memory, your program has to wait
(contrast this with paging systems that use pre-paging). Locality suggests
that you will be accessing pages that have been recently accessed. Contrast
this with the situation on some old time-share computers where everyone’s

Virtual Memory 175

jobs were lined up together and ran round-robin. They had no locality since
they essentially picked random pages each time.

Furthermore, not all programs benefit from paging, Program layout
affects the performance of demand paging, Memory may become rapidly
fragmented and Program size tends to increase due to overlaying. If the user
has selected too small a size for the unit of paging, then there is excessive
internal fragmentation, which results in wastage of memory and decreased
efficiency. Physical memory storage is expensive and limited compared to
virtual memory. When the OS loads a process into memory, the loading takes
much longer than normal execution, which creates processor inefficiency.
The OS has times of idleness when it could be performing useful work and
instead spends time waiting for input/output (I/O) operations needed to load
a page from disk into memory.

8.3. DEMAND SEGMENTATION
Demand segmentation was a way of implementing virtual memory in many
early microprocessors. As a feature of most modern computer systems,
it enables programs to address more memory than actually exists in real
storage. It is usually achieved by using disk storage instead of main memory
as part of the system’s virtual address space.

Demand segmentation is a technique for implementing virtual memory in
which main memory is organized into fixed-sized blocks, called “segments.”
The registers are also organized as a segment, this one called “the stack” or
simply “stack.” (The subject of this chapter is the traditional organization
of the stack and its relationship to the rest of the machine’s virtual memory
system.) At each execution point, some information is kept on the stack,
while other information is on disk. The disk information can be brought
into the main memory stack area when needed (Shin et al., 2014). When no
parts of that disk data are needed any more, it is freed, thus allowing another
data section to be placed there. This system makes better use of the limited
and expensive desk space than do other techniques, such as paged virtual
memory. Segmented virtual memory systems afford two distinct but closely
related benefits. First, they allow easy access to large data structures by
providing short absolute addresses within each segment. Second, they make
effective use of main storage since only those portions of an active program
that are currently required need be stored in main storage. From computer
user’s standpoint, both attributes improve performance (Figure 8.12).

Introductory Guide to Operating Systems176

Figure 8.12. Demand segmentation.

Source: Image by T4Tutorials.

It is a scheme of implementing virtual memory by dividing the larger
logical address space into fixed-size blocks called segments. Virtual addresses
consist of two parts; a segment number and an offset. The segment number
represents the segment table which contains the base address (starting
memory address) of each segment in main memory. The program counter
contains the address of the next instruction to be fetched from memory.
Usually, the program counter contains only the 12 most significant bits since
instructions are typically aligned on word boundaries. If a program exceeds
its allotted memory space, it is said to be thrashing and can run very slowly
as the OS tries to keep up with its requests for additional memory storage.
It can be termed as the idea of only loading into main memory the pieces of
a process or program that are currently needed. The rest of the program or
process is kept on disk (Figure 8.13).

Virtual Memory 177

Figure 8.13. Illustration of the segmentation of virtual addresses.

Source: Image by Enterprise Storage Forum.

In converting physical memory addresses to virtual addresses, each
address whose most significant (leftmost) bits correspond to a page number
is translated (segmented) into a virtual address with these bits translated into
an equivalent value that identifies a corresponding virtual-memory page. The
less significant bits of the physical address, which correspond to an offset
within the physical boundary of the real memory chip in which they reside,
are simply left unaltered to serve as offsets in the corresponding virtual-
address space (Tang et al., 2010). The earlier conversion of the contents
of any real memory page (whose references now lie outside the currently
active region) into a virtual-memory page was called sectioning. Sectioning
was one way of physically implementing virtual memory.

Modern computers may support both a virtual mode of operation and
an unprivileged mode of operation. In the virtual mode, instructions and
accesses to memory are supplied by a monitor program which permits any
user of the computer to behave as if he were in complete control of the
machine; all accesses are privileged and also checked against two tables
in memory to see if they are permitted. In unprivileged mode, the normal
OS is in control of the computer and checks accesses on a more limited
basis. Virtual memory systems permit more processes (jobs, programs) to be
active than can be contained directly within physical main memory (that is,
RAM). The extra flexibility this provides is usually worthwhile, given that

Introductory Guide to Operating Systems178

most programs do not use all their allocated memory all the time and simply
dividing up main memory between active programs would leave many parts
unused or under-used.

8.3.1. Advantages of Demand Segmentation
An advantage of demand segmentation as a way of implementing virtual
memory is that it allows more than one process to be in main memory at
the same time. This increases CPU utilization and, therefore, overall system
throughput. Demand segmentation as a way of implementing virtual memory
can help reduce the number of logical address spaces, manage the system
‘memory et. Furthermore, (i) demand segmentation is fully automatic, since
OS software manages it; (ii) there is no need to select virtual memory size,
since there is no preallocation of physical memory and no limit to virtual
memory size; (iii) in some systems you can swap processes in and out of
main memory by using a disk storage area for each process; (iv) it is easily
implemented on most general-purpose computers; (v) it is more efficient
in terms of space and time because when a page fault occurs the frame
allocated to the faulting logical page contains only the data needed by that
process (Tsolakis et al., 2019).

It is also related to demand paging. Demand paging organizes virtual
memory by segments and stores each segment on a separate location on a
hard drive. This approach gains many advantages because it allows the OS
to access virtual memory that is not stored in physical memory, increase the
program size beyond what fits in physical memory, allow multiple programs
to run at the same time (multitasking), allow for the sharing of files and
resources by multiple users and processes, create an effective swapping
mechanism for moving data between memory locations and help bring more
complex programs into memory from a larger virtual memory space.

Every process may not require the use of all its allocated memory during
execution. Memory required to execute a process is called “demand set” of
the process. The demand set of a process will be kept in the main memory
and another part is as usual on disk. This can be achieved by dividing a
logical address space into two parts; one which is held in main memory
and other on disk in segments. This helps to reduce thrashing which was
the main cause for decrease in OS performance for pure demand paging
systems, since a process has all its pages with it, the pages are likely to be
re-referenced again and again thus decreasing thrashing.

Virtual Memory 179

8.3.2. Disadvantages of Demand Segmentation
Demand segmentation and demand paging are two common methods
for implementing virtual memory. While demand segmentation has the
advantage of loading less pages at first, it imposes more overhead on the
swapping out of memory. Disadvantages of demand segmentation as a way
of implementing virtual memory include: slow running time (as processes
are swapped in and out of physical memory), complex hardware, and not
cost effective on large jobs.

Segmentation has disadvantages as a memory management technique.
The segmentation hardware must translate each segmented address. This
means that the performance of the system is impacted by the execution
of memory reference instructions (Wentzlaff et al., 2010). Improper
segmentation can result in a situation where enough segments are used
that the overhead associated with accessing them causes significant system
slowdown or errors due to lack of available room in the segment table. It is
also based on the principle that a program cannot use all its allocated store at
any one time, so should be split into parts that can be brought into memory
as needed.

Other disadvantages include; (i) A single process may need to be loaded
into RAM prior to execution, and then it will be swapped out of RAM to
make room for one or more other processes. Since several processes are
using physical memory at the same time, the system experiences more
overhead from swapping in and swapping out processes than if only one
process was loaded into memory at a time. (ii) The division of memory of
each application cannot be adjusted if necessary, so there might be a waste
some sectors of the system’s memory.

8.4. SWAPPING/SWAP FILE
Swapping can be used as a method of implementing a virtual memory
abstraction, although doing so is now less common than it once was. When
swapping is used for implementing virtual memory, pages of memory are
moved between a RAM and a swap disk. The swap disk is usually a hard disk.
A swap disk may, however, be any sort of block storage device. Typically,
the OS will write RAM pages to a predetermined area on a hard drive when
they are no longer needed in physical memory. The free areas in RAM are
then filled with data from other programs/pages as needed. Swapping is
usually faster than an alternative method of implementing virtual memory,
known as paging (Figure 8.14).

Introductory Guide to Operating Systems180

Figure 8.14. Swapping in the operating system.

Source: Image by Study tonight.

Swapping is a method for giving processes as many of the advantages of
a large address space as possible. Virtual memory is implemented through
paging and segmentation. The use of real memory is managed by the MMU,
and portions of a process are loaded from disk into real memory when
needed. The paging mechanism prevents processes from interfering with
each other. Processes are moved in and out of main memory to secondary
storage. A process can be swapped temporarily out of memory to a disk, and
then brought back into memory for continued execution. Computer users
have been familiar with virtual memory since the mid-1980s. But most users
probably aren’t aware that virtual memory is implemented using a technique
known as swapping.

Swapping can also be termed as a method of moving processes and
data from main memory to disk when they are not being used. This allows
additional processes to be loaded into memory and can help the system to
be more efficient. Swapping can be manual or automatic, but is typically
transparent to the user. This is a process whereby a page of memory is copied
to the pre-allocated space on the hard disk called swap space, then that page
of memory is cleared. If the system needs more memory resources and the
RAM is full, inactive pages in RAM are moved to the swap space. While
swapping is less efficient than paging because of seeks times and transfer
times of disks, it can be simple to implement because it never requires
relocation of data (Whipple et al., 2009).

Virtual Memory 181

Physical memory and virtual memory are two different things. As a quick
reminder from CS 170, virtual memory is a layer that lies over physical
memory and consists of pages instead of frames. In other words, for each
process, there is a translation table that maps virtual addresses to physical
addresses in this way: (process id, virtual page number) → (physical frame
number). A process can access only one set of physical frames at any given
time; the rest will be swapped out by the OS kernel until needed again.

8.4.1. Advantages of Swapping
They include: (i) address-bounds registers can be omitted from the CPU;
(ii) a program can be larger than real memory; (iii) it is easier to implement
than paging; (iv) swapping creates smaller page tables than paging. This
process also helps in free memory organization and producing a process; all
the inactive pages are being removed from memory and held on a paging
device. This is a very common way of implementing virtual memory. The
overhead of keeping track of all the pages that are allocated to a given
process can be reduced by using Swapping. It decreases the number of page
frames required for a job, by keeping only those page frames in the physical
memory that are actively being used. Swapping is a kind of scheduling,
so it is done only as needed. The swap area is not allocated from the main
memory unlike fixed partition method. So, user can use it more efficiently.
It makes effective memory usage. So, it enhances performance.

8.4.2. Disadvantages of Swapping
It can suffer from external fragmentation. If many CPU bursts are small
and slow processes require large contiguous memory, there may not be
enough contiguous memory to swap them in. It is expensive. Data needs to
be moved between disk and RAM. This data movement takes time and adds
considerable overhead. Also, data has to be moved twice (once from main
memory to swap area and then from swap area back to main memory).

Other disadvantages include: (i) Low-throughput. The entire process is
slow, because each time a process goes to the secondary storage, there will be
context switch time and then low I/O transfer rate; (ii) complex management
algorithm (Quigley et al., 2009). With swapping, it is hard to determine if
there should be another process swapped in or which one should be swapped
out; (iii) memory with no access reference will not get swapped out. All

Introductory Guide to Operating Systems182

above problems also exist for Demand Paging, but with Demand Paging
these problems become much less serious compared to swapping.

8.5. PAGE REPLACEMENT
Page replacement is a way of implementing virtual memory. Virtual memory
is a concept that allows an application to address more physical (and logical)
memory than is installed on the system. It works by having the processor
create an address space larger than the physical RAM and mapping addresses
within that space to physical memory as an application accesses memory
(Yin et al., 2016). The portion of the address space that has no corresponding
physical memory is called virtual memory, and needs to be mapped to some
location in real, physical memory (RAM). Virtual memory allows programs
that address bigger than physical RAM. When the system needs additional
physical memory for its work, it can take some of the pages that are not busy
and store them temporarily on a disk, so that this space becomes available
for the future memory needs (Figure 8.15).

Figure 8.15. Page replacement algorithm.

Source: Image by GitHub.

Virtual Memory 183

Page replacement is a property of virtual memory utilized by OSs,
hardware, and software side, in order to implement virtual memory. Page
replacement policies are used in virtual memory implementations to select
the page frame pages into the working set of a process. It is a mechanism
in which a computer stores and retrieves data from secondary storage
such as a hard disk drive. When there is a lack of space in memory, the
page replacement algorithm moves pages from memory to disk. The page
replacement algorithm decides which page needs to be replaced when new
page comes in. Most OSs use paging for virtual memory management,
in addition to another method of virtual memory management like
segmentation. In an OS using virtual memory, there are many benefits to
using an implementation like demand paging and page replacement. Some
of these benefits include the capacity for multiprogramming and efficient
memory utilization. A system that implements page table’s takes advantage
of this mechanism by allowing page faults to occur when loading programs
into main memory.

To compensate for a relatively small amount of physical memory,
LMOS uses a technique known as page replacing. This feature enables
the system to address and access a much larger virtual memory than it has
physical page-frames for storing physical pages. In other words, whatever
is in virtual memory may not be in physical memory at any given time. The
OS will move things from virtual to real storage just in time for their use
(Arshad et al., 2018).

This technique is used to decide which memory pages to page out (swap
out, write to disk) when a page of memory needs to be allocated. Whenever a
new page has to be brought in, one which is already in the working set must
be evicted and marked as free. The least-recently used (LRU) algorithm will
discard the page that was not used for the longest time. This is an extremely
efficient algorithm as it reflects real life behavior in handling pages. The
FIFO policy discards the oldest (i.e., first-in) page when a new one needs to
be loaded.

8.5.1. Advantages of Page Replacement
The major advantage of page replacement as a way of implementing
virtual memory is that it can be done fairly simply and easily. The main
disadvantage is that finding the appropriate page to replace at any given time
can be processor-intensive.

Introductory Guide to Operating Systems184

Many of the advantages of page replacement as a way of implementing
virtual memory are based on its being an effective alternative to address
translation hardware. The TLB is a limited resource, and it may not support
all of the pages that are simultaneously in use. Elements cannot be moved
from one cache to another as easily as pages can be moved from RAM to
disk. Pages can be grouped into processes or even sub processes, thereby
avoiding process contention for shared elements. Pages may execute from
disk without being first loaded into RAM or cache. Protection can be enforced
by removing pages, rather than by trapping references to the removed pages.

FILE SYSTEM

CHAPTER9

CONTENTS
9.1. File ... 186

9.2. File Structure .. 188

9.3. Types of File Systems ... 189

9.4. Structures of Directory in Operating System (OS) 195

9.5. File Access Mechanisms ... 200

9.6. Space Allocation ... 203

9.7. Allocation Based on Indexes ... 205

9.8. Design Limitations .. 209

Introductory Guide to Operating Systems186

9.1. FILE
A file is a labeled collection of related data that is stored on secondary
storage devices like magnetic disks, magnetic tapes, and optical disks. A
file, in principle, is a series of bits, bytes, lines, or entries whose value is
established by the creator and user of the file.

A file system or filesystem (usually shortened to fs) is a technique and
data structure used by the OS to regulate how data is saved and accessed.
Without a file system, data stored on a storage medium would just be one
huge body of data with no way of knowing where one set of data ended and
the next started, or where a particular piece of data was stored when it came
time to access it (Estefo et al., 2019).

The data is conveniently extracted and distinguished by dividing it into
pieces and giving every component a name. Every group of data is referred
to as a “file,” after the manner a paper-based information management
system is referred to. A “file system” is the design and logic rules employed
to organize sets of data and their names.

There are numerous types of file systems. Each one has a unique
structure and logic, as well as speed, adaptability, security, size, and other
characteristics. Some file systems are intended to be used just for specific
applications. The ISO 9660 file system, for instance, is developed exclusively
for optical discs.

File systems can be employed on a variety of storage devices that utilize
various types of media. Hard disk drives are still important storage devices
in 2018 and are expected to be so for the foreseeable future. SSDs, magnetic
tapes, and optical discs are some of the other types of media that are used.
In other circumstances, such as with tmpfs, the main memory (RAM) of the
computer is used to establish a temporary file system for relatively brief use.

Some file systems are utilized on local data storage devices, while
others enable file access through a network protocol. Other file systems
are “virtual,” which means that the given “files” (known as virtual files)
are computed on demand (like procfs and sysfs) or are just a mapping into
another file system exploited as a backing store. The file system controls
access to both the information of files and their metadata. It is in charge of
organizing storage space; dependability, efficiency, and tuning in relation
to the actual store medium are all significant design factors (Fröhlich and
Wanner, 2008).

File System 187

Prior to the invention of computers, the phrase file system referred to
a method of storing and accessing paper records. By the 60s, the phrase
had been extended to include automated filing in addition to its original
meaning. It was widely used by 1964.

A file system is made up of two or three layers. The levels are sometimes
expressly segregated, and other times the functions are mixed.

Interface with the user application is handled via the logical file system.
It offers the API for file operations such as OPEN, CLOSE, READ, etc., and
forwards the input to the layer under it for execution. The logical file system
“controls open file table entries and per-process file descriptors” This layer
is in charge of “file access, directory operations, [as well as] security and
protection.”

The virtual file system is the next alternative layer. “This interface
supports several simultaneous versions of physical file systems, which are
referred to as a file system implementation.”

The physical file system is the third tier. This layer is associated with the
storage device’s physical functioning. It interprets physical blocks that are
being read or written (Fierro and Culler, 2015). It is in charge of buffering
and memory administration, as well as the physical arrangement of units on
the storage media. To operate the storage device, the physical file system
communicates with the device drivers or the channel (Figure 9.1).

Figure 9.1. File management is one of the basic and important features of oper-
ating system. Operating system is used to manage files of computer system. All
the files with different extensions are managed by operating system.

Source: https://princeabhishek410.medium.com/understanding-file-manage-
ment-system-in-operating-system-4c7fbfc306f2.

Introductory Guide to Operating Systems188

9.2. FILE STRUCTURE
A file structure should be in a format that the OS can interpret:

• Depending on its category, a file has a specific defined structure;
• A text file is a line-by-line succession of characters;
• A source file consists of a series of processes and routines;
• An object file is a series of bytes structured into machine-

understandable blocks;
• When an OS defines a new file structure, it also includes the code

to support that structure. Unix and MS-DOS support a limited
number of file structures.

9.2.1. File Format
The capacity of the OS to discriminate between distinct types of files, such
as text files, source files, and binary files, is referred to as file type. Many
OS support a wide range of file formats. The following file types are found
in OSs such as MS-DOS and UNIX:

1. Ordinary Documents:
i. These are the files that carry user information and may hold text,

databases, or executable programs;
ii. The user can perform numerous actions on such files, such as

adding, modifying, deleting, or removing the entire file (Dese-
riis, 2017).

2. Files in a Directory:
i. These files display a collection of file names as well as other

information about these files.
3. Specimen Files:
i. These files are also referred to as device files;
ii. These files contain physical devices such as disks, terminals,

printers, networks, and tape drives, among others.
There are two kinds of files here (Figure 9.2):
• As with terminals or printers, data is processed character by

character in character special files; and
• Block special files: data is processed in blocks, similar to disks

and tapes.

File System 189

Figure 9.2. OS and file system.

Source: http://faculty.salina.k-state.edu/tim/ossg/File_sys/file_system_stds.
html.

9.3. TYPES OF FILE SYSTEMS
There are many sorts of file systems, most of which are listed in subsections.

9.3.1. File Systems on Disk
A disk file system can randomly address data on a disk storage media within
a few milliseconds. It also contains the expectation that resulted in the speed
with which data was accessed. With the use of a disk file system, numerous
users can access various data on the drive regardless of the data’s sequential
location.

A disk file system normally includes a master file directory (MFD) as
well as a map of occupied and free data areas. Each and every file addition,
updates, or removals necessitate the updating of the directory as well as
the used/free maps. Because random access to data areas is recorded in
milliseconds, this technique is suitable for drives.

9.3.2. Flash Storage Devices
A flash file system is in charge of flash memory’s constraints, performance,
and special abilities. It is preferable to use a file system developed for a flash
device; nonetheless, a disk file system is the fundamental storage media that
can be used with a flash memory device.

Introductory Guide to Operating Systems190

9.3.3. Tape File Systems
As a tape format and file system, a tape file system is used to store files on
the tape. Magnetic tapes are more robust than disks for accessing data for
extended periods of time, which presents issues for a broad sense file system
in regards to generation and efficient administration. A tape file system is
a good file system and tape format generally used for storing files on tape.
Magnetic tapes are sequential storage media that have much longer random
data access periods than disks, making the development and management of
a general-purpose file system difficult later (Greenwald and Thomas, 2007).

To wind and unwind possibly exceedingly long reels of media, tape
demands linear motion. Moving the read/write units from one side of the
tape to the other could take a few seconds to many minutes.

As a result, a MFD and usage map on tape might be highly slow and
ineffective. Reading the block usage map to discover empty blocks for
writing, updating the usage map and directory to include the data, and finally
forwarding the tape to store the data in the correct position are common
steps in writing.

Each subsequent file write necessitates updating the map and directory
as well as recording the data, which can take numerous seconds per file.

Tape file systems, on the other hand, often allow the file directory to
be scattered over the tape intermixed with the data, a process known as
streaming, which eliminates the need for time-consuming and recurring tape
movements to write new data.

Nevertheless, as a result of this layout, reading a tape’s file directory
frequently necessitates scanning the whole tape to read together all dispersed
directory entries. Many data archiving software to run with tape storage will
keep a local duplicate of the tape catalog on a disk file system, allowing you
to rapidly add files to a tape. If a local tape catalog replica is not utilized for
a set amount of time, it is normally deleted, at which juncture the tape has
to be re-scanned were it to be accessed again later (Gunadi and Tiu, 2014).

The Linear Tape File System is a tape file system created by IBM. The
IBM Linear Tape File System—Single Drive Edition product is an open-
source implementation of this file system. The Linear Tape File System
records index meta-data on a distinct partition on the tape, eliminating the
issues associated with distributing directory entries throughout the tape
(Figure 9.3).

File System 191

Figure 9.3. Attributes, types, and operations of file systems.

Source: https://www.geeksforgeeks.org/file-systems-in-operating-
system/?ref=lbp.

9.3.4.	Database	File	Systems
Another way for managing files is to use a database-based file system.
Rather than hierarchical organized administration, files are identified by
their properties (such as file type, author, topic, and so on). A database-based
file system is another option for file management. Files are distinguished
by their attributes, such as kind of file, topic, author, or equivalent rich
metadata, instead of or in addition to hierarchical organized management
(Giorgetti et al., 2020).

IBM DB2 for I (previously identified as DB2/400 and DB2 for i5/OS)
is a database file system that runs on IBM Power Systems and is part of
the object-based IBM OS. It was designed by Soltis, IBM’s former chief
scientist. In the 1970s and 1980s, IBM Rochester successfully invented and
implemented technology such as the database file system, which others such
as Microsoft later struggled to do. These technologies are colloquially known
as ‘Fortress Rochester’ and were, in several respects, more sophisticated
technologically than early Mainframe systems in a few basic features. Other

Introductory Guide to Operating Systems192

projects that aren’t “pure” database file systems but make use of some
database file system features.

Many web content management systems store and retrieve files using
a relational database management system (RDBMS). XHTML files, for
instance, are saved as XML or text fields, while picture files are stored as
blob fields; SQL SELECT queries fetch the files and enabling the application
of more advanced logic and richer information associations than “ordinary
file systems.” Many CMSs also allow you to store merely metadata in the
database, with the conventional filesystem employed to store file content.

Some database file system features are used in very large file systems,
as typified by applications such as Apache Hadoop and Google File System.

9.3.5. Transactional File Systems
Some programs, for whatever reason, require one or more changes to fail,
while others require numerous file system changes yet do not make any
changes. For example, when installing or updating software, a program
may generate configuration files, libraries, and executables. If the software
is interrupted during upgrading or installing, it may become unusable or
malfunctioning. Furthermore, if the process of installing or updating the
software is not completed, the entire system may become inoperable (De
Hambarde et al., 2014). Some programs must either make several file
system modifications or, if one or more of the changes fails for whatever
reason, make no changes at all. A program that installs or updates software,
for example, may generate executables, libraries, and/or configuration files.
If portion of the writing misses and the software is only partly installed
or updated, it may become faulty or unusable. An inadequate update of a
critical system utility, like the command shell, could render the entire system
inoperable. Transaction processing provides the atomicity promise, which
ensures that activities within a transaction are either entirely resolved or the
transaction can be canceled and all of its preliminary data are discarded.
This implies that if there is a failure or a power outage, the stored state
will be constant following recovery. The software will be fully installed or
the unsuccessful installation will be totally reversed, but a useless partial
installation will not be stored on the machine. Transactions also give the
isolation guarantee, which means that operations within a transaction
are concealed from other processes on the system until the transaction is
confirmed, and that interfering activities on the system will be integrated
properly with the transaction. Starting with Vista, Windows introduced

File System 193

transaction capabilities to NTFS in the form of Transactional NTFS, however
its adoption is currently discouraged. There are several research prototypes
of transactional file systems for UNIX systems, like the Valor file system,
Amino, LFS, and a transactional ext3 file system on the TxOS kernel, and
also transactional file systems for embedded systems, such as TFFS.

Without file system transactions, ensuring consistency across many
file system operations is challenging, if not impossible. File locking can be
used to manage concurrency for individual files, although it usually does
not secure the directories or file metadata. File locking, for example, cannot
stop TOCTTOU race situations on symbolic links. File locking cannot also
immediately roll back an unsuccessful operation, like a software upgrade,
because atomicity is required (Høiland-Jørgensen, 2018).

One strategy for introducing transaction-level integrity to file system
structures is logging file systems. Journal transactions are not available to
programs as elements of the OS API; instead, they are utilized internally
to assure consistency at the resolution of a single system call. Data backup
systems often do not offer direct backup of data stored in a transactional
way, making it hard to retrieve accurate and reliable data sets. Irrespective of
the transactional state distributed across numerous files in the entire dataset,
conventional backup software merely records what files have modified since
a particular time. As a solution, some database systems easily produce an
archived state file holding all data up to that moment, and the backup software
solely backs that up, not interacting remotely with the active transactional
databases. After the backup software has recovered the file, the database
must be recreated separately from the state file (Figure 9.4).

Figure 9.4. The file system enables you to view a file in the current directory as
files are often managed in a hierarchy.

Source: https://sourceforge.net/projects/javafilesystem/.

Introductory Guide to Operating Systems194

9.3.6. Network File Systems
A network file system allows you to access files on a server. Programs on
remote network-connected machines can use local interfaces to generate,
manage, and retrieve hierarchical files and directories. Network file systems
include file-system-like clients for FTP and WebDAV, as well as AFS, SMB
protocols, and NFS.

9.3.7. File Systems on Shared Disks
A shared-disk file system lets several machines to access the very same
external disk subsystem; however, when multiple computers access the
same external disk subsystem, conflicts may arise; therefore, to avoid
collisions, the file system determines which subsystem to access (DiLuoffo
et al., 2018).

9.3.8. Minimal File System
Disk and digital tape technologies were prohibitively expensive for some
early microcomputer users in the 1970s. A few low-cost basic data storage
devices based on conventional audio cassette tape were created. When the
system required data to be written, the user was notified to push “RECORD”
on the cassette recorder. To alert the system, press the “RETURN” key on
the keyboard. In addition, when the system wanted to read data from the
cassette recorder, the user had to hit the “PLAY” button.

9.3.9. Flat File Systems
The flat system does not support subdirectories. It has only one directory,
and all files are stored in that directory. Because of the limited volume of
data space accessible, this form of file system sufficed when floppy disk
media became finally available.

There are no subdirectories in a flat file system; directory entries for
all files are stored in a single directory. Due to the limited amount of data
capacity available on floppy disk medium at the time, this form of file
system was suitable. CP/M machines had a flat file system in which files
could be allocated to one of 16 user regions and generic file operations could
be limited to work on one rather than all of them. These user areas were just
special properties connected with the files; that is, no explicit quotas were
required for each of these areas, and files may be introduced to groups as
soon as there was still spare storage space on the disk. The Macintosh File

File System 195

System, which was included with early Apple Macintosh computers, was
similarly a flat file system. The file management tool (Macintosh Finder)
provided the illusion of a somewhat hierarchical filing system on top of
EMFS, which was uncommon. This layout required that every file, even if
it looked to be in a separate folder, have a distinct name. IBM DOS/360 and
OS/360 keep entries for all files on a disk pack (volume) in a directory called
the volume table of contents (VTOC).

While simple flat file systems are easy to use, they become cumbersome
when the number of files increases, making it hard to structure data into
affiliated groups of files (Dixon et al., 2012).

Amazon’s S3, a remote storage service that is purposely simple to let
users to modify how their data is stored, is a new addition to the flat file
system class. The only variables are buckets (picture an infinitely large hard
drive) and objects (similar, but not identical to the standard concept of a
file). The flexibility to use practically any character (even ‘/’) in the object’s
name allows for advanced file management, as does the ability to choose
portions of the bucket’s content based on the same prefixes.

9.4. STRUCTURES OF DIRECTORY IN OPERATING
SYSTEM (OS)
A directory is a framework that holds folders and files. It uses a hierarchical
structure to organize files and directories (Figure 9.5).

Figure 9.5. Structures of directory in operating system.

Source: https://www.geeksforgeeks.org/file-systems-in-operating-system/.

Introductory Guide to Operating Systems196

A directory has multiple logical structures, which are listed below:
•	 Single-Level	Directory: The single-level directory structure is

the most basic. All files are stored in the same location, making it
simple to support and comprehend.

When the quantity of files grows or the system has more than one user, a
single level directory has a severe constraint. Because all of the files are all
in the same directory, each one must have a distinct name. If two users refer
to their dataset as test, the distinctive name rule has been broken (Figure
9.6).

Figure 9.6. Single-level directory.

Source: https://www.geeksforgeeks.org/file-systems-in-operating-system/.

•	 Advantages:
•	 Because it is a single directory, it is relatively simple to implement;
•	 Searching will be faster if the files are less in size (Blackham et al.,

2011);
•	 In such a directory structure, actions such as file creation, searching,

deletion, and updating are relatively simple.
•	 Disadvantages:
•	 There is a possibility of name conflict because two files can have the

same name;
•	 Searching will take longer if the directory is vast;
•	 This cannot group files of the same type together.
1.	 Two-Level	Directory: As we have seen, a single level directory

frequently leads to file name confusion among different users.
This problem can be solved by creating a different directory for
each user.

File System 197

Each user all have their own user files directory in the two-level directory
structure (UFD). The structures of the UFDs are comparable, but each only
displays the files of a single user. When a different user ID is logged in, the
system’s MFD is searched. The MFD is categorized by username or account
number, and each entry leads to the user’s UFD (Figure 9.7).

Figure 9.7. Two-level directory.

Source: https://www.geeksforgeeks.org/file-systems-in-operating-system/.

•	 Advantages:
•	 We can provide the whole path, such as /User-name/directory-name;
•	 Multiple users can share the same directory and file name (Høiland-

Jørgensen, 2018);
•	 Path-name and user-grouping make it simpler to search for files.
•	 Disadvantages:
•	 A user cannot exchange files with other users; nevertheless, it is not

particularly scalable, as two files of the same type cannot be pooled
together in the same user.

2.	 Tree-Structured	Directory:	Having seen a two-level directory
as a tree of height 2, the simple generalization is to stretch the
directory structure to any height tree.

This generalization enables the user to construct their own subdirectories
and organize their files as desired (Figure 9.8).

Introductory Guide to Operating Systems198

Figure 9.8. Tree-structured directory.

Source: https://www.geeksforgeeks.org/file-systems-in-operating-system/.

The most frequent directory structure is a tree structure. There is a root
directory in the tree, and each file in the system has a distinct path.

•	 Advantages:
•	 Very general, because the complete pathname can be specified;
•	 Because it is very scalable, the likelihood of name collision is low;
•	 Searching becomes much easier because we can utilize both abso-

lute and relative paths.
•	 Disadvantages:
•	 Because not every file fits into the hierarchical model, files may well

be saved in many directories;
•	 We are unable to share files;
•	 It is inefficient since obtaining a file may require browsing across

numerous folders.
1. Acyclic Graph Directory: An acyclic graph is a non-cyclic

graph that enables us to exchange subdirectories and files. The
same file or subdirectory may exist in two distinct directories. It
is a logical extension of the tree-structured directory.

File System 199

It is used when two programmers are working on a collaborative project
and need to access files. The related files are placed in a subfolder, which
separates them from other programmers’ projects and files because they
are collaborating on a shared project and want the subdirectories to be in
their own directories) (Hellmund, 2016). The subdirectories that are shared
should be shared. As a result, we employ Acyclic directories in this case. It
is important to understand that the shared file and the copy file are not the
same thing. Any modifications made by a programmer in the subfolder will
be reflected in both subdirectories (Figure 9.9).

Figure 9.9. Acyclic graph directory.

Source: https://www.geeksforgeeks.org/file-systems-in-operating-system/.

•	 Advantages:
•	 We can exchange files;
•	 Because of the numerous paths, searching is simple.
•	 Disadvantages:
•	 We share files by linking them in case deleting them causes an issue;
•	 If the link is a soft link, we are left with a hanging reference after

deleting the file;
•	 In the case of a hard link, deleting a file necessitates deleting all

references to it.
2. General Graph Directory Structure: Cycles are permitted

within a directory structure in which multiple directories can be

Introductory Guide to Operating Systems200

generated from more than one root directory in the general graph
directory structure. The biggest issue with this type of directory
layout is calculating the total amount or space occupied by the
files and directories (Figure 9.10).

Figure 9.10. General graph directory structure.

Source: https://www.geeksforgeeks.org/file-systems-in-operating-system/.

•	 Advantages:
• It permits cycles;
• It is more adaptive than other directories structure.
•	 Disadvantages:
• It is more expensive;
• It needs recycling bins.

9.5. FILE ACCESS MECHANISMS
The technique by which the data in a file can be retrieved is referred to as
the file access mechanism. There are various methods for gaining access to
files.

9.5.1. Sequential Access Method
It is the most basic mode of access. The data in the file is handled
sequentially, one record after the other. This is the most popular way of
access; for instance, editors and compilers typically access the file in this
manner (Irwansyah et al., 2018).

The majority of file operations are read and write. A read action -read
next- reads the file’s next place and advances a file pointer, which takes

File System 201

account of I/O location. Likewise, for the -write next- command, add to the
end of the file and move forward to the newly written data.

•	 Key Points:
• In an order, data is accessed one record after another;
• If we use the read command, it advances the pointer by one;
• If we use the write command, memory is allocated and the pointer

is moved to the end of the file;
• This procedure is appropriate for tape.

9.5.2. Direct or Random Access Methods
Another method is direct access method also known as relative access
method. A filed-length logical record that allows the program to read and
write record rapidly in no particular order. The direct access is based on
the disk model of a file since disk allows random access to any file block
(Jaeger, 2008). For direct access, the file is viewed as a numbered sequence
of block or record. Thus, we may read block 14 then block 59, and then
we can write block 17. There is no restriction on the order of reading and
writing for a direct access file.

A block number given by the user to the OS is often a relative block
number, with 0 being the first relative block in the file, followed by 1, and
so on. In other terms:

• Random access file organization allows for direct access to
records;

• Each entry has its own address on the file, which can be used to
access it directly for reading or writing;

• The records do not have to be in any particular order within the
file or at multiple places on the storage medium.

9.5.3. Index Access Method
An indexed file is a computer file that has an index that enables quick
random access to every record providing its file key. The key is a feature
that distinguishes a record in a unique way. If many indexes are present, the
others are referred to as alternate indexes. The indexes are created with the
file but preserved by the system.

Introductory Guide to Operating Systems202

9.5.3.1. Index Sequential Access Method
The direct access method has been modified by the index sequential access
method. Essentially, it is a hybrid of both sequential and direct access. The
basic idea behind this method is that it first directly accesses the file and then
accesses it sequentially (Jeong et al., 2012). It is required to keep an index in
this access mechanism. The index is simply a pointer to a block. The index is
used directly to access an item in a file. The information collected from this
access is utilized to get access to the file. The indices might be quite large
at times. To manage all of these index hierarchies, one direct index access
connects to information from another index access. The primary advantage
of this form of access is that it allows for both direct and sequential file
access.

Important points:
• This technique is based on sequential access;
• For each file, an index is produced that contains pointers to

various blocks;
• The index is examined consecutively, and its pointer is used to

directly access the file.
A sequential access is one in which the records are accessed in a specific

order, i.e., the information in the file is processed one record at a time. This
is the most basic mode of access. Compilers, for example, typically access
files in this manner.

9.5.3.2. Basic Partitioned Access Method (BPAM)
The basic partitioned access method (BPAM) organizes entries on DASD as
members of a partitioned data set (PDS) or a partitioned data set extended
(PDSE). BPAM may be used to see a UNIX directory and its files as if
they were PDS files. With BSAM or QSAM, you can see each PDS, PDSE,
or UNIX member sequentially (Kushwaha and Kushwaha, 2011). A PDS
or PDSE has a directory that maps member names to data set locations.
Individual members can be found in the PDS, PDSE, or UNIX directories.
The directory for program libraries (register modules and program objects)
provides program properties required to load and rebind the member. Despite
the fact that UNIX files can include program objects, program management
does not reach UNIX files via BPAM.

File System 203

9.6. SPACE ALLOCATION
The OS allots disk space to files. OSs use one of three methods to allocate
disk space to files.

• Contiguous allocation;
• Linked allocation;
• Indexed allocation.

9.6.1. Contiguous Allocation
Each file in this approach takes up a contiguous set of blocks on the disk.
For instance, if a file needs n blocks and is given an initial location of block
b, the blocks allocated to the file will be: b, b+1, b+2, …, b+n–1 (Krohn and
Tromer, 2009). This implies that we can calculate the blocks filled by the
file from the originating block address and the length of the file (in units of
blocks required).

The directory entry for a file with contiguous allocation includes the
following information (Figure 9.11):

• Starting block address;
• The length of the allotted section.

Figure 9.11. Contiguous allocation.

Source: https://www.geeksforgeeks.org/file-systems-in-operating-system/.

•	 Advantages:
• The address of the kth block of the file, which begins at block b,

can be easily determined for direct access as (b+k);

Introductory Guide to Operating Systems204

• This is exceptionally quick because the number of seeks is kept to
a minimum due to the contiguous allocation of file blocks.

•	 Disadvantages:
• As a result, it is inefficient in terms of memory consumption;
• It is difficult to increase file size since it is dependent on the

availability of contiguous memory at a given time.
So, to summarize:
• On disk, each file takes up a contiguous address space;
• Assigned disk address is in linear order;
• Easy to implement;
• External fragmentation is a key issue with this kind of allocation

method.

9.6.2. Linked Allocation
Each file in this approach is a connected array of disk blocks that do not have
to be contiguous. Disk blocks can be found wherever on the disk (Blackham
et al., 2011).

The directory entry includes a pointer to the beginning and end of the file
block. Each block provides a link to the next block that the file will occupy.

The file ‘jeep’ in the image below shows how the blocks are spread at
random. The final block (25) includes the value–1, indicating a null pointer
that does not reference to any other block (Figure 9.12).

Figure 9.12. Linked allocation.

Source: https://www.geeksforgeeks.org/file-systems-in-operating-system/.

File System 205

•	 Advantages:
• In regards to file size, this is quite adaptable. Because the system

does not have to hunt for a contiguous portion of memory, file
size can be readily increased;

• This approach is free of external fragmentation. As a result, it
performs relatively well in regards to memory use.

•	 Disadvantages:
• Because file blocks are placed arbitrarily on the disk, it takes a

huge number of seeks to retrieve each block independently. This
slows down linked allocation;

• It does not allow for either random or direct access. We cannot
directly access a file’s blocks. A file’s block k can be retrieved by
traveling k blocks sequentially (sequential access) from the file’s
starting block using block pointers) (Lange et al., 2011).

The use of pointers in the linked allocation incurs some additional
overhead:

• Each file contains a list of disk block links;
• The directory includes a link or a pointer to the first block of a

file.
There is no external fragmentation:
• Used well in a sequential access file;
• Inefficient when using a direct access file.

9.7. ALLOCATION BASED ON INDEXES
A unique block defined as the Index block in this architecture holds
references to all the blocks consumed by a file. Each file has a unique index
block. The disk address of the ith file block is contained in the index block’s
ith entry. As illustrated in Figure 9.13, the directory entry includes the index
block’s address.

Introductory Guide to Operating Systems206

Figure 9.13. Index blocks.

Source: https://www.geeksforgeeks.org/file-systems-in-operating-system/.

•	 Advantages:
• It allows for direct access to the file’s occupied blocks, allowing

for quick access to the file’s blocks.
• It solves the issue of external fragmentation.
•	 Disadvantages:
• Indexed allocation has a higher pointer overhead than linked

allocation.
• In the case of very small files, like those that extend only 2–3

blocks, the indexed allocation would retain one complete block
(index block) for the pointers, which is limited in terms of memory
consumption. Nevertheless, in linked allocation, we lose only one
pointer per block (Bala et al., 2015).

• For particularly big files, a single index block may not be able to
retain all of the pointers.

To resolve this, the following mechanisms can be used:
•	 Schemes That are Linked: This approach connects two or more

index blocks to retain the pointers. Each index block will also
have a pointer or address to the next index block.

•	 Multilevel Index: In this strategy, a first level index block is
utilized to point to second level index blocks, which refer to the

File System 207

disk blocks filled by the file. Based on the peak file size, this can
be expanded to three or more levels.

•	 Combined	 Scheme:	 In this system, a special block known as
the Inode (information node) includes all of the file’s information
like the name, size, authority, and so on, and the residual space of
the Inode is used to store the Disk Block addresses that contain
the actual file, as shown in the image below (Lass and Gronau,
2020). The first several pointers in Inode point to direct blocks,
i.e., the pointers hold the addresses of the disk blocks containing
the file’s data. The following points go to indirect blocks. There
are three types of indirect blocks: single indirect, double indirect,
and triple indirect. A single indirect block is a disk block which
does not carry file data but does include the disk addresses of the
blocks that do.

Similarly, double indirect blocks need not include file data but rather the
disk address of the blocks holding the file data (Figure 9.14).

Figure 9.14. Index blocks.

Source: https://www.geeksforgeeks.org/file-systems-in-operating-system/.

Introductory Guide to Operating Systems208

In general, indexed allocation:
• Provides answers to contiguous and linked allocation difficulties;
• An index block is built with all file pointers;
• Each file has its own index block, that stores the file’s disk space

addresses;
• The directory holds the addresses of file index blocks.
Within a single system, multiple file systems can exist. Retail systems

are often designed with a single file system that takes up the entire storage
drive. Another option is to split the disk and use multiple file systems with
varying properties. One file system may be established with a minimal
allocation size for usage as a browser cache or email storage. This maintains
the regular browser behavior of generating and deleting files (Levis et al.,
2005).

This maintains the regular browser activity of generating and deleting
files in a restricted area of the disk where it wouldn’t interfere with other file
allocations. Another partition could be formed to store music or video files
with reasonably high block sizes. Another may generally be set to read-only
and only be made writable on a periodic basis.

A third option, which is typically used in cloud systems, is to employ
“disk images” to store other file systems, with or without the same properties,
as files within another file system. Virtualization is a frequent example: one
person can operate an experimental Linux distribution in a virtual machine
within his or her production Windows environment (with NTFS).

The ext4 file system is included within a disk image, which is viewed as
a file (or multiple files, based on the hypervisor and settings) in the NTFS
host file system.

Having many file systems on just one system has the added benefit of
ensuring that if a single partition becomes corrupted, the other file systems are
generally still intact. This includes virus-induced system partition damage or
a system that would not boot. File system utilities that need dedicated access
can be executed effectively piecemeal (Lin and Ye, 2009). Furthermore,
defragmentation may be more effective. Virus scans and backups are two
examples of system maintenance utilities that can be run in segments. For
example, if no new files have been recorded since the last backup, it is not
essential to backup the file system holding videos together with all other
files. In terms of image files, one may easily “spin off” differential images

File System 209

that include solely “new” data added to the master image. Differential
images could be used for both safety issues (as a “disposable” system – can
be quickly revived if destroyed or tainted by a virus, as the old image can
be deleted and a new image can be generated in a matter of seconds, with or
without automated procedures and quick virtual machine deployment.

9.8. DESIGN LIMITATIONS
Every file system has a functional limit that defines the maximum amount
of data that can be stored within that system. These functional limits are the
designer’s best estimation based on how huge the storage systems are now
and how large they are projected to become in the future. Disk storage has
continued to grow at near exponential rates (see Moore’s law), therefore
after a few years, file systems have reached design limits that force computer
users to upgrade to a newer system with ever-greater capacity (Figure 9.15).

Figure 9.15. File systems and operating systems.

Source: https://www.sitesbay.com/os/os-file-system-in-operating-system-os.

The complexity of a file system is often proportionate to the available
store capacity. Early 1980s home computer file systems with 50 KB to 512
KB of storage would be unsuitable for current storage systems with hundreds
of gigabytes (GB) of memory. Similarly, current file systems may not be a
good fit for these early systems since the intricacy of modern file system
architecture would soon deplete or even surpass the early storage systems’
very low capabilities.

Introductory Guide to Operating Systems210

9.8.1. File Systems and Operating Systems (OSs)

9.8.1.1. Limitations
•	 Converting the Type of a File System: It may be advantageous

or necessary to have files in a different file system than they
currently exist. Reasons include the need for an increase in the
space requirements beyond the limits of the current file system.
The depth of path may need to be increased beyond the restrictions
of the file system. There may be performance or reliability
considerations. Providing access to another OS which does not
support the existing file system is another reason.

•	 In-Place	Conversion/Migrating	to	a	Different	File	System:	It
may be desirable or required to store files in a separate file system
than the one in which they are now stored. The need for increased
space requirements beyond the constraints of the current file
system is one of the reasons. The depth of the route may need
to be raised beyond the file system’s limitations. There may be
efficiency or reliability issues to consider. Another motive is to
provide access to another OS that does not match the existing file
system (Aksoy et al., 2017).

•	 Long	File	Paths	and	File	Names	are	Both	Acceptable:	Files
in hierarchical file systems are accessible via a path, which is a
branching list of folders holding the file. The depth of the path is
limited differently in different file systems. Individual filenames
are likewise limited in length in file systems.

Copying files with large names or those placed in deep paths from one file
system to another can have unfavorable consequences. This is determined
by how the tool performing the copy resolves the disparity.

I/O SOFTWARE AND I/O HARDWARE

CHAPTER10

CONTENTS
10.1. I/O Hardware ... 212

10.2. Device Controllers .. 213

10.3. The Memory Mapped Input Output System 214

10.4. Direct Memory Access .. 216

10.5. Direct Memory Access Controller ... 217

10.6. Interrupts Revisited ... 219

10.7. Precise and Imprecise Interrupts ... 220

10.8. I/O Software ... 220

10.9. Programmed I/O ... 223

10.10. I/O Using Direct Access Memory .. 226

Introductory Guide to Operating Systems212

10.1. I/O HARDWARE
An OS is designed to take care of the most important jobs as well as manage
some of the input/output (I/O) devices. Some of these input output devices
include various hardware of a computer such as the keyboard and mouse
attached pad display adapter USB device and a disk drive. An OS is also
known to have the analog to digital converter and other important parts such
as the printers and stable network connections. An input output system is
designed to take the request of any application to add that includes or input
data, then it sends it to a physical device. The input output system then
relays the information obtained from the physical device and relays the
feedback to the application. Basically, the input output system hardware acts
as a medium between the application and an external physical device. This
hardware device can be divided into two categories and that is the block
devices and character devices (Figure 10.1).

Figure 10.1. Output and input devices.

Source: https://gcallah.github.io/OperatingSystems/graphics/IOHw_Intro.png.

A block device can be defined as the part that is responsible for
communication by sending the designated blocks of data. In other times
the block device is also known as a driver communicator. Some examples
of the block devices include a hard disk, USB cameras, as well as disks
on key devices. This device size usually ranges from 512 to 4,096 bytes.
On the other hand, a character device can be defined as the part that drives
communication by using and sending as well as receiving single characters.
By single characters this means bytes and octets (Muehlstein et al., 2017).
Examples of these devices include zero pots, parallel pots, and sound cards.

I/O Software and I/O Hardware 213

The character device does not pay any attention to any block structure. This
device is also not addressable and is not mandated to seek operation. Other
examples of this device generally include devices that do not take the form
of a disk but instead I reviewed as character devices. Another category of the
input output devices includes that ‘doesn’t really fit’ category. In this case
this means that these devices do not fall in either block devices or character
devices. A good example is the clocks which cannot be blocked and they
also do not accept any character streams. Another example of these devices
includes the memory map screens.

10.2. DEVICE CONTROLLERS
This is the electronic component of the input-output units. It is also known
as an adapter because the OSs use these adapters to handle all input output
hardware devices. Each device contains a device controller and a device
driver for the purpose of communicating with the overall OS. The device
controller is capable of handling several devices at the same time. It is
considered to be an interface and it is mainly tasked with processing serial bit
streams and converting them to block all bytes as well as ensuring that errors
that might arise are corrected as required. Examples of device controllers
include the cathode ray tube controller and LCD controller.

The cathode ray tube controller refers to the oldest versions of existing
monitors which were very bulky, consumed a lot of power and were very
fragile. This controller is tasked with firing a beam of electrons onto a
fluorescent screen creating the effect that we see in our private computers.
This system also uses a magnetic field which allows it to bend this beam of
electrons and the end result is a drawing of pixels that are seen on the screen.
The first laptop to be under this controller weighed about 12 kg which is
quite heavy as compared to the newest forms of computers (Manzalini and
Crespi, 2016).

The LCD controller is considered to be a bit of a serial device but it
belongs to the lower level. This device is tasked with reading the bytes
that have the characters which are meant to be displayed from the original
memory. The signals generated from this process I meant to modify the
polarization of the backlight that belong to other corresponding pixels in an
attempt to write them on the screen. Devices that have the LCD controller
do not require an OS programmer to use their expertise in programming the
electrical field that is found on the screen.

Introductory Guide to Operating Systems214

10.3. THE MEMORY MAPPED INPUT OUTPUT
SYSTEM
The controller contains registers and the operational system is able to ride
these registers in a way of suggesting giving order to the devices or reading
the state of the device. These registers are similar to the central processing
unit registers but the registers in these devices are specifically designed for
this device. Some of the orders written by these registers include shutting
down of the computer as well as accepting data by the computer. These are
some of the orders that the registers convey to the device and the device
obeys these registers by executing what the register states. There are two
ways that the central processing unit can interact with the control registers
and the device data buffers. It can interact with the two devices through
either dedicated pod which are allocated for this purpose or using the device
memory to map all the control registers as well as device data buffers. The
central processing unit is able to communicate to the control registers and
the device that is above us in three ways and they include:

• The separate input output and memory space. In this case every
control register is usually assigned an input and output port
number that is meant to be a differentiation factor for every
controlled register. The special input output instructions include
IN REG, PORT, and OUT PORT REG and IN and MOV. These
instructions are meant to be different and unique to every control
register.

• The memory mapped input output hardware system. In this case
the memory and input output devices share the same address space
(McClean et al., 2013). In order for their input-output devices to
transfer blocks of data to and from the memory there are certain
main memory locations that are connected to the devices so as to
ensure that the data does not go through the central processing
unit.

• The last way is the hybrid way. The pods for control registers are
memory-mapped above us as well as separate input-output ports.
This way is also known as the Pentium way (Figure 10.2).

I/O Software and I/O Hardware 215

Figure 10.2. The memory mapped I/O systems.

Source: https://gcallah.github.io/OperatingSystems/graphics/IOHw_Memory-
Mapped.png.

The strength or advantages of the memory mapped input–output systems:
• The OS usually results in using assembly codes in cases where

special input output instructions are fed to the computer. The
special instructions include in and out and they cannot be executed
using programming languages such as C or C++.

• The memory mapped input output system hardware usually
allows the programming language C to have a direct connection
with a memory. The programming language C simply writes to
the memory without using other mediums.

• The control registers are usually mapped to the overall memory.
Weaknesses or disadvantages of using memory mapped input–output

hardware systems:
• The use of memory-caching in devices that use the control

registers is usually very disastrous. In this case it is very difficult
to detect when a device has changed its state. To fix such a
problem requires that several selected caching disabled (Monaco
et al., 2013).

• Using the memory mapped input output hardware device system
required that all memory modules as well as devices examine
the differences of each memory to see if it best suits what

Introductory Guide to Operating Systems216

they represent. These days the memory bus operates at a very
high speed. This becomes a problem because the I/O hardware
devices won’t be able to see the allocated memory addresses on
the Memory bus. One way to fix this issue is by sending all the
requests to the main memory of the device as a test to see if these
requests will fail. The requests are then sent to the I/O device.
Another way is snooping on the requests from the memory and
then relaying the important ones to the Input-Output controls. The
problem with this specific method is that the snooping process is
usually very slow (Figure 10.3).

Figure 10.3. Input output hardware.

Source: https://gcallah.github.io/OperatingSystems/graphics/IOHw_BusArch.
png.

10.4. DIRECT MEMORY ACCESS
Direct memory access has a task of transferring data between the input out-
put device and the memory on a private computer. It does this by bypassing
the central processing unit and its aim is to reduce the overhead of interrup-
tions (Moore and Stouch, 2016). Direct memory access he’s also in charge
of controlling the exchange of data between the input output device and a
memory that is considered to be the main memory of a private computer.
During this process the central processing unit is only involved in the pro-
cess at the beginning and towards the end. Interruption is only possible after
the entire block has been completely transferred (Figure 10.4).

I/O Software and I/O Hardware 217

Figure 10.4. Direct memory access.

Source: https://gcallah.github.io/OperatingSystems/graphics/IOHw_DMA.
png.

10.5. DIRECT MEMORY ACCESS CONTROLLER
This principle is in charge of transferring data and it also gets to arbitrate
between the system buses. The direct memory access controller is written as
android by the central processing unit because of several registers. Some of
these registers include the memory address register, byte count register as
well as more than one control registers.

10.5.1. How Direct Memory Access Works?
• The first step is for the central processing unit to program the

day or tomorrow access controller and this is achieved by setting
registers in a way that makes it easy for the controller to know
what it’s meant to transfer and where it is supposed to transfer.

• The Direct memory access controller usually transfers commands
to certain parts of the OS such as the disk controller. The command
is meant to instruct the disk controller to internalize data that
comes from other disks. Internalization is meant to occur in
the internal buffer as a way to verify the checksum. The direct
memory access can only begin when valid data is entered into
their disk controller buffers.

Introductory Guide to Operating Systems218

• The transfer is initiated by the direct memory access controller
issuing an additional request over the control buses to the disk
controller (Ahmad et al., 2013).

• The memory written is considered to be another type of bus cycle.
• The bus acts as a median between the controller and the direct

memory access controller. When the writing process is complete
their direct memory access controller usually receives a signal of
acknowledgment from the disk controller.

• The controller usually increases the memory addresses that are
to be used in the byte count. In a hypothetical situation where
the byte count turns out to be greater than value zero there is the
repetition of steps two, three, and four until a count of value zero
is reached. During the repetition process the controller usually
interrupts the program that is run by the central processing unit
and informs the CPU that the transfer has been completed (Figure
10.5).

Figure 10.5. Operation of a DMA transfer.

Source: https://gcallah.github.io/OperatingSystems/graphics/IOHw_DMA-
Transfer.png.

The controllers are different based on their sophistication. The controllers
can either be simple or sophisticated. The simple controllers are in charge
of handling one transfer at a time while they’re sophisticated controllers are
made up of multiple sets belonging to registers that are found internally. The
transferring of various words can use the round-robin algorithm which is

I/O Software and I/O Hardware 219

designed to enable transfer. Another way for a transfer to become successful
is if their OS has a priority skin design which is meant to favor some input-
output devices over other devices (Nollet et al., 2004). There are only two
mods that can operate on many bases and include one word at a time mode
as well as a block mode. There are some controllers which are capable
of operating in either of the two modes. In the word at a time would the
controller ask to transfer just one word and the request is approved.

This means that in cases where the central processing unit is in need
of the bus it has to wait. This equal telling mechanism can be defined as
controllers trying to sneak in and steal some of their bicycles from the
central processing unit. This is only done once in a while and the result is
that it results in slight delays. On the other hand, the block mod allows the
controller to inform the input output devices that they need to acquire the
buses, ensure that a series of transfers occurs, and only then can it release the
buses. The best mood which is considered to be a form of operation in the
block mode is more efficient than the cycles stealing. The only disadvantage
of using the burst mode is that it is capable of blocking the central processing
unit as well as other devices for a considerable amount of time if there is a
long burst that is meant to be transferred. The advantage is that the process
of acquiring buses is cut short because the mode is capable of transferring
several words by acquiring only one bus and not many as compared to the
cycle stealing.

10.6. INTERRUPTS REVISITED
After the input-output device has completely finished its walk, it usually
causes an interruption by sending an attaching signal to the bus line indicating
that it has already been assigned. The interrupt controller chip is in charge
of detecting the signals. If there are no other interests that are pending, the
interrupt controller ensures that the interrupt process is completed almost
immediately (Ow, 2011). If there is an interrupt in progress or there is a
request that is considered to be simultaneous, there is an interrupt signal
that is released continuously until the Central Process Unit notices and
acts on servicing the interrupt. The only way for the controller to interrupt
the central processing unit is by putting numbers on the address lines and
coming up with signals that are meant to interrupt the CPU. The number is
usually used in the interrupt with that as an index and its main task is to start
a corresponding interrupt service procedure (Figure 10.6).

Introductory Guide to Operating Systems220

Figure 10.6. The interrupt revisited system.

Source: https://gcallah.github.io/OperatingSystems/graphics/IOHw_Interrupt.
png.

10.7. PRECISE AND IMPRECISE INTERRUPTS
A precise interrupt is defined as an interrupt that leaves a machine in a well-
defined state. The process interrupt has four properties and they include:

• The program counter which is usually saved in a place that is
known;

• Completion of all instructions before the one pointed out by the
PC;

• Once the pointed instruction has been completed there are no
other instructions beyond this point; and

• This date of execution by the instructions pointed to the PC is
usually known.

In cases where an Internet does not have this property it is known as an
imprecise interrupt. The imprecise interrupt is difficult and unpleasant for
items to program the OS because they are tasked with finding out exactly
what happened and what is meant to happen.

10.8. I/O SOFTWARE
The software is often organized in various layers and they include:

•	 The	User	Level	Libraries:	The main function of this layer is
to provide an interface that allows programs to perform input
and output functions. A good example is the studio which is a

I/O Software and I/O Hardware 221

library that is brought about by the existence of the C and the C++
programming languages.

•	 The Kernel Level Modules: This layer usually provides a device
driver that is meant to interact with other device controllers and
independent modules which are meant to be used by the device
drivers (Peter et al., 2015).

•	 Hardware: In this layer they had a controller and the actual
hardware usually interacted with several device drivers as a way
of ensuring that the hardware stays alive.

An important factor to keep in mind when designing the input output
software is that the software has to be device independent which means
that it can write programs that can be able to access any input output device
without having to specifically list that device in its system in advance.

10.8.1. Principles of I/O Software
That input output software has goals that they are meant to achieve and they
include:

•	 The Device Independence: It is a key concept that is contained
in the input of the software design. This concept allows their input
output devices accessible to various programs without having to
specify the device that is supposed to be done in the accessibility
process in advance.

•	 Another Goal is the Uniform Naming: The name is meant to be
a thing or an integer that is not dependent on any device. This is
common in the UNIX OS.

•	 Error Handling: Institutions where the controller comes across
a read error is supposed to ensure that it corrects the error by
itself if it is possible. In other situations where their problem is to
integrate the device driver should be used to handle the situation
and this is done by trying to read the block again. There are many
situations where the correction of errors is done transparently in
lieu of labels and attention is that the high levels are not aware of
that error (Santos et al., 2013).

•	 Synchronous and Asynchronous Transfers: The synchronous
transfer is also known as blocking and then a synchronous
transfer is known as the Interrupt driven transfer. Most of the
physical input of what software devices are considered to be

Introductory Guide to Operating Systems222

interrupt driven however, this situation leads to the demand of
high-performance applications that are supposed to control the
details of their input output software devices.

•	 Buffering: This process is important because they usually come
up with a device that is not capable of being stored directly in
their set final destination.

•	 Shareable	and	Dedicated	Devices:	In this case several Input out
of your devices are capable of being used by many users at the
same time and an example is the disks. There is no problem that
is encountered by multiple users having to open data files that
belong to the same disks at the same time. On the other hand,
devices such as printers can only be used by a single user until
they have finished their tasks. It is only after one user has finished
with the printer does another person get to use the printer. The
disadvantage of one user using a single device at a time, is the
existence of deadlock (Figure 10.7).

Figure 10.7. Goals of I/O software.

Source: https://upload.wikimedia.org/wikipedia/commons/c/cf/Interrupt_Pro-
cess.PNG.

I/O Software and I/O Hardware 223

10.9. PROGRAMMED I/O
This is considered to be one of the three principles of input output
software. It is considered to be the simplest type of input output technique
that is responsible for extending data as well as facilitating any type of
communication that is done between the processes and other external
devices. When it comes to programmed input output software, Exchange of
data is made to be precisely between the processor and the I/O module. The
program that is executed with the processor allows it to have total control
over the I/O operation (Sjöstrand et al., 2015). This control allows it to
sense the status of devices, write commands and interpret comments that
they have received, and ensure that data is transferred. Once a comment has
been issued to the input output model by the processor, the processor has to
wait until the input output operation comes to a standstill. In cases where the
processor is faster than the model, this leads to a waste of the processor time.
The following is the summary of an operation of the programmed input
output software device:

• The processor is performing its function of executing problems
when it encounters instructions that are related to the input output
operation;

• Once the processor encounters the instructions it executes his
instructions by ensuring that it issues a command but only to the
appropriate module;

• The model is in charge of performing the requested action based
on the commands that are issued with its input output device,
especially the processor;

• The last operation is for the processor to periodically check
the status of that module and this is supposed to go on until the
operation has been completed.

10.9.1. Programmed I/O Mode: Input Data Transfer
• During data transfer the input is read only after the devices have

been tested to ascertain whether they are ready for the input.
• The program is usually tasked with waiting for the ready status

from the input devices. The status is achieved by testing the status
bit repeatedly and ensuring all bytes are read (Silva et al., 2006).

Introductory Guide to Operating Systems224

• The program is said to an unwitting state which indicates that it
is busy but this is done only after the device is in the right state
(Figure 10.8).

Figure 10.8. Input data transfer process.

Source: https://gcallah.github.io/OperatingSystems/graphics/IOSw_Pro-
grammed_Input.png.

10.9.2. Programmed I/O Mode: Output Data Transfer
• After the output has been written which is done after testing the

device to a certain that the device is in a position to accept bytes.
• The program then waits for their release status by testing their

status bits repeatedly.
• The program automatically goes to a busy State another time

soon as a non-waiting state.
Using the programmed I/O has several advantages such as this system

is simple to implement and requires almost none hardware support. The
disadvantages of the programmed I/O Software is they have a long busy
waiting period. And these periods are usually the central processing unit
from contacting and the functions or other useful works (Figure 10.9).

I/O Software and I/O Hardware 225

Figure 10.9. Output data transfer system.

Source: https://gcallah.github.io/OperatingSystems/graphics/IOSw_Pro-
grammed_Output.png.

10.9.3.	Interrupt-Driven	I/O
They interrupt driven input of the best software that is used to deal with I/O.
It is a way of controlling I/O activities. It is in charge of ensuring that a tell
Mina that is in need of making and receiving data has a capability of sending
signals to initiate this process. This process allows a program interrupt to
come to light. In this case the processor usually enters the interrupt service
routine.

•	 Inputs: In this case the device is in charge of interrupting the
central processing unit when there is a rival of fresh data which
can be easily retrieved by the system processor (Shaw et al.,
2016). The actions to be performed usually depend on certain
conditions and one of them is whether the device uses I/O ports
or Memory Mapping.

•	 Outputs: In this case the device usually delivers an interrupt
either when it gets a chance to acquire a new set of data or when it
is ready to acknowledge that the data transfer was successful. The
interrupts are generated by Memory-Mapped and direct memory
access devices. They usually inform the system once they are
done with the buffer.

Introductory Guide to Operating Systems226

10.9.3.1. Operations Found in the Interrupt I/O
• The central processing unit which is the backbone of the whole

computer system is tasked with reading the commands that are
generated and interpreting them.

• The I/O module usually receives a set of data from the peripheral.
The Central Processing Unit is meant to continue doing other
tasks.

• The module is in charge of interrupting the CPU once a signal has
been received.

• The central processing unit is in charge of requesting fresh data
for analysis.

• The I/O modules are tasked with ensuring that the transfer of data
is made possible.

The interrupt driven I/O has several advantages but the most important
include, the software is very fast as compared to the software that is found in
the Programmed I/O devices. The disadvantages of the Interrupt-Driven I/O
devices include, the commands are usually hard to write especially in cases
where only low-level languages are accepted. The other disadvantage is that
it becomes such a tedious task to get various pieces of the OS to perform the
same function.

10.10. I/O USING DIRECT ACCESS MEMORY
As stated, direct memory access is considered to be a technique that is
responsible for transferring data that is contained within the main memory
of a computer to and from an external device without having to use the
central processing unit. The dirt access memory is responsible for improving
processor activity as well as the input output transfer rate. This is done by
the technique taking over the functions of transferring data that is meant to
be stored in the processor and allowing the processor to perform other tasks
which are of importance (Sharma et al., 2012). This technique is better than
the other two input output techniques because it is not time consuming when
it comes to issuing comments that are meant to facilitate the data transfer. It
is also safe and very efficient to use the direct access memory when dealing
with large volumes of data that needs to be transferred. For this technique
to be implemented, the processor is supposed to share its system bus with
the direct memory access module. The main functions of the direct memory
access include:

I/O Software and I/O Hardware 227

• Reading and writing commands;
• controlling the lines that are meant for communication purposes;
• Data lines that are also meant for communication purposes.
The only advantage of the direct memory access is that it performs in

functions at a high speed which means that there are no waiting time which
results in a shorter execution path (Figure 10.10).

Figure 10.10. Using direct access memory.

Source: https://gcallah.github.io/OperatingSystems/graphics/IOSw_DMA_
Read.png.

OPERATING SYSTEM – SECURITY

CHAPTER11

CONTENTS
11.1. Common OS Security Threats ... 232

11.2. Program Threats .. 234

11.3. System Threats .. 238

11.4. One Time Passwords ... 241

11.5. Computer Security Classifications ... 242

Introductory Guide to Operating Systems230

Operating system security (OS security) is the process of assuring the
integrity, confidentiality, and reliability of an OS.

OS security refers to the process or methods implemented to protect
the OS against threats like as viruses, worms, malware, or distant hacker
intrusions. Such preventive-control methods that secure any computerized
assets that could be seized, manipulated, or destroyed if OS security is
broken are included in OS security (Sangorrin et al., 2010).

The term OS security consists of techniques and practices that can ensure
the confidentiality, integrity, and resilience of an OS (CIA).

The goal of OS security is to protect the OS against numerous threats like
malicious software like worms, trojans, as well as other viruses, incorrect
setups, and remote intrusions.

Generally, OS security entails the adoption of control measures that can
safeguard your assets against unauthorized alteration and destruction, as
well as theft.

OS security encompasses all preventive and control mechanisms
implemented on a computer to protect it and other connected devices (e.g.,
printers) that contain secret information that hackers will likely take, modify,
or destroy if the system is infiltrated (Figure 11.1).

Figure 11.1. Operating system security.

Source: https://www.techslang.com/definition/what-is-operating-system-secu-
rity/.

Operating System – Security 231

Consider OS to be all of the processes (e.g., heading through a security
check at an entrance of the building, and so on.) and safeguards (e.g., locking
out all unauthorized access from internal staff-only areas, etc.), used by
building management and employees to keep crooks and other undesirable
people out of company premises (Singh, 2014).

The most typical methods for protecting OSs include using antivirus
software as well as other terminal safety protocols, many OS patch updates,
a firewall for controlling network traffic, and the implementation of secure
access through minimum privileges and user controls.

OS security includes a wide range of approaches and methods for
protecting against threats and attacks. OS security enables multiple
applications and programs to accomplish needed activities while preventing
illegal intervention (Figure 11.2).

Figure 11.2. Standard security attacks.

Source: https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/15_Se-
curity.html.

Introductory Guide to Operating Systems232

OS security can be tackled in a variety of ways, such as the following
(Figure 11.3):

• Updating the OS’s patches on a regular basis;
• Updating antivirus engines and software;
• Using a firewall to inspect all incoming and outgoing network

connections;
• Establishing secure accounts with just the required privileges

(i.e., user management).

Figure 11.3. Information security.

Source: https://en.wikipedia.org/wiki/Security-focused_operating_system#/me-
dia/File:CIAJMK1209-en.svg.

11.1. COMMON OS SECURITY THREATS
Some of the most frequent threat vectors that can harm an OS are discussed
in subsections.

11.1.1. Authentication
Authentication is the procedure of detecting each system user and associating
the programs that are operated by those users. It is the responsibility of the
OS to create a security mechanism that ensures the validity of a user who is

Operating System – Security 233

running a certain program. OSs often employ the three methods listed below
to recognize and authenticate users:

• To access or log into the system, the user needs to submit an
existing username and password with the OS;

• To log in, the user must insert a card into a card slot or insert a key
generated by a key generator into an area given by the OS; and

• User attribute – to login into the system, the user needs to pass
his or her physical attribute (could be a retina scan or a fingerprint
identifier) through the OS’s designated input device.

11.1.2. Malware
Malware is short for malicious software, that comprises of a wide range
of attack vectors such as viruses, trojans, worms, and rootkits. Malware is
software that is introduced into a system without the consent of the owner,
or that masquerades as legitimate software, with the intent of stealing,
damaging, or distorting data, or corrupting the device (Shin et al., 2014).

Malware can also replicate itself, causing it to spread further inside and
outside of a business network. Malware attacks are typically undiscovered
by the target victim, allowing for the stealthy extraction of critical data. In
other cases, attackers’ “herd” hijacked devices into botnets, where they are
exploited for illegal operations such as distributed denial of service (DDoS)
attacks (Figure 11.4).

Figure 11.4. Malicious software.

Sources: https://www.metacompliance.com/blog/what-is-malware-and-how-to-
prevent-against-it/.

Introductory Guide to Operating Systems234

11.2. PROGRAM THREATS
The processes and kernel of the OS carry out the prescribed task as ordered.
When a user application induces these processes to do harmful tasks, this is
referred to as a program threat. A common scenario of a software threat is
a program loaded on a system that can save and send user credentials to a
hacker through a network. The list includes well-known program dangers.

11.2.1. Trojan Horse
A Trojan Horse is a program that, in complement to its visible actions,
surreptitiously executes destructive behavior.

Some Trojan horses are purposefully designed to be that way, while
others are the consequence of genuine programs that got infected with
viruses.

Long search routes, particularly those that have the current directory
(.””) as part of the path, are a potential entry point for Trojan horses. If a
harmful application with the same name as a genuine program (or a common
misspelling, like “sl” instead of “ls”) is inserted wherever on the path, a user
could be tricked into launching the erroneous program.

A login emulator is another common Trojan Horse that collects a user’s
account ID and password, displays a “password wrong” message, and
then logs the user out of the system. The user then attempts afresh (with a
legitimate login attempt), correctly gets in, and is unaware that their data has
been stolen (Figure 11.5).

Figure 11.5. Trojan horse.

Source: https://knowyourmeme.com/memes/trojan-horse-object-labels.

Operating System – Security 235

To combat Trojan Horses, two methods are to have the system display
the usage data on logouts and to necessitate the use of non-trappable key
combinations like Control-Alt-Delete to log in. This is the reason this specific
series is required to begin logging in, that can’t be imitated or captured by
standard programs. That is, that key sequence always gives control to the OS
(Androulaki et al., 2018). Spyware is a type of Trojan Horse that is frequently
found in software acquired from the Internet. Spywares display pop-ups that
possibly may collect data on the user and send it to a centralized server.
This is an illustration of a covert channel where secret communications take
place. Some other typical tasks of spyware are to transmit spam e-mails that
appear to be sent by the afflicted user.

11.2.2. Trap Door
A trap door occurs when a developer or programmer purposefully adds a
security flaw which would later be exploited to gain access to the system.

Due to the possibilities of trap doors, if a system becomes unreliable, it
could never think of as reliable again. Backups may also hold a duplicate of
a cleverly concealed back door.

A smart trap door could be placed into a compiler, resulting in a security
weakness in just about any programs created using that compiler. This is
particularly problematic because a visual review of the code being generated
would disclose no errors (Figure 11.6).

Figure 11.6. Trap doors.

Source: https://www.youtube.com/watch?v=iDZjyotmkRw.

Introductory Guide to Operating Systems236

11.2.3.	Logic	Bomb
A logic bomb is software that is designed to cause havoc only when a
specified set of circumstances is met, such as when a specific date or time is
met or some other significant event occurs.

A common example is the Dead-Man Switch, which is designed to check
if a specific person (for example, the writer) logs in frequently, and if they
don’t log in for a longer length of time (ostensibly as they’ve been ejected),
then the logic bomb goes off, potentially exposing security vulnerabilities or
resulting in other problems (Figure 11.7).

Figure 11.7. Logic bombs.

Source: https://www.youtube.com/watch?v=yZswqdrb88s.

11.2.4. Virus
Viruses, as the term suggests, have the power to move throughout computer
systems. They are incredibly harmful, with the capacity to alter or even
delete user files and crash machines. A virus is usually a small piece of code
that is embedded in software. The virus starts to attach itself in other files
or programs as the user interacts with the program, potentially turning the
user’s machine useless (Tang et al., 2010).

A virus is a bit of code that is placed in a legitimate program and is
designed to multiply (by infecting other programs) and (in the end) wreak
havoc.

Viruses are more effective in attracting PCs than UNIX or other multi-
user systems, because applications in the latter have limited authorization
to update other programs or access critical system structures (like the boot
system).

Operating System – Security 237

Viruses are often spread to systems by a viral payload, which is generally
a Trojan Horse, as well as via e-mail or harmful downloads. Viruses can
manifest themselves in a variety of ways (Figure 11.8).

Figure 11.8. A boot-sector computer virus.

Source: https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/15_Se-
curity.html.

Below is a list of some computer viruses:
•	 File: A file virus infects itself onto executable file, forcing it to

run the viral code first and then return to the original program’s
beginning. These viruses are classified as parasitic since they
leave no new files behind and the initial application remains fully
functional.

•	 Boot: A boot virus infects the boot system and operates before
the OS loads. These viruses are sometimes referred to as memory
viruses since they operate in memory which do not show in the
file system.

•	 Macro Viruses: These viruses reside in the form of a macro
(script) which is executed by a specific set of programs that run
them like Microsoft Word or Excel. Macroviruses can be found
in word processing or spreadsheets.

Introductory Guide to Operating Systems238

•	 Source Code: Viruses seek out and infect source code to be able
to spread.

•	 Polymorphic: These viruses modify when they spread – not their
fundamental functioning, but only the way they register and are
detected by virus checkers.

•	 Encrypted: These viruses move in encryption in order to avoid
being found out. In reality, decrypt themselves, allowing them to
infect more files.

•	 Stealth: These viruses attempt to stay undetected by changing
system components that can be used to spot them. For instance,
the read system call could be updated such that when an infected
file is read, the infected portion is ignored and the reader is
presented with the original, unaltered file (Tsolakis et al., 2019).

•	 Tunneling: These viruses try to evade detection by embedding
themselves through interrupt handler chains or device drivers.

•	 Multipartite: These viruses target several sections of the system,
including files, the boot sector, and memory.

•	 Armored: These viruses are coded in such a way that anti-virus
experts find it difficult to decode and analyze them. Furthermore,
many virus-related files are buried, secured, or given innocuous-
sounding names like “…”

A virus attacked three weaknesses in Microsoft products to infect scores
of Windows servers (along with many trustworthy sites) using the Internet
Information Server, infecting any web browser that accessed any of the
infected server sites. A keystroke logger, which captures users’ keystrokes,
revealing passwords and other confidential material, was one of the backdoor
apps it installed.

In the computing field, there is some dispute about whether a
monoculture, in which almost every system run the very same hardware,
OS, and applications, enhances the threat of viruses and their potential harm.

11.3. SYSTEM THREATS
System threats are described as the exploitation of system services and
network communications to produce user difficulties. A system threat could
be employed to launch program threats throughout a whole network, resulting
in a program attack. System vulnerabilities provide an environment in which

Operating System – Security 239

OS resources and user files are misused. A collection of well-known system
threats is provided in subsections.

11.3.1. Worm
Worm is a mechanism that can choke the performance of a system by using all
system resources. A Worm process generates several clones, each of which
uses system resources and prevents all other processes from acquiring them
(Arshad et al., 2018). Worm processes have the potential to put a network
to a standstill.

A worm is a process that duplicates itself using the fork or spawn process
in order to wreak havoc on a system. Worms use system resources, usually
interfering with legitimate processes. Worms that propagate across networks
can be especially disruptive since they can waste vast amounts of network
resources and bring down large-scale systems. In 88, Robert Morris, a
graduate student at Cornell, developed one of the most well-known worms.
The worm, which targeted Sun and VAX computers that run BSD UNIX
version 4, traversed the Internet in a couple of hours and devoured enough
resources to drive many systems down (Figure 11.9).

This worm was made up of two elements:
• A small program known as a grappling hook, was implanted on

the target system through one of three vulnerabilities; and
• The main worm program, that was moved onto the target system

and transmitted by the grappling hook program.

Figure 11.9. The Morris internet worm.

Source: https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/15_Se-
curity.html.

Introductory Guide to Operating Systems240

11.3.2. Port Scanning
Port scanning is a strategy or methodology used by hackers to identify
system flaws in order to conduct a network attacks.

Port scanning is not technically an attack, but rather a search for
weaknesses to exploit. The basic aim is to integrate to every open (or
common or likely) network port on some distant machine and make contact.
When it has been established that a specific computer is watching a specific
port, the next objective is to establish what daemon is listening and whether
or not it is an edition with a known security flaw that could be exploited
(Wentzlaff et al., 2010).

Port scanning is frequently launched by zombie systems since it is easily
detected and tracked. Specifically, previously compromised systems are
being exploited without the knowledge or agreement of their true owner. As
a result, it is vital to protect both “innocent” systems and accounts as well as
those carrying sensitive data or special privileges.

Other port scanners are available for administrators to utilize to test
their own systems, which reveal any faults identified but do not attack or
create any problems. Such systems include Nmap (http://www.insecure.
org/nmap) and Nessus (http://www.nessus.org). The former determines the
OS, firewalls, and which services are listening on which ports. The latter
also maintains a database of known security flaws and detects those that are
uncovered.

11.3.3. Denial of Service
Denial of service attacks often prevent users from lawfully utilizing
the system. For instance, if a denial-of-service attack hits the browser’s
information preferences, the user might be incapable to access the internet.

DOS attacks do not intend to gain access to or harm computers, but
rather to clog them so excessively that they can’t be employed any practical
purposes. This attack consists of short loops that constantly request system
services (Whipple et al., 2009).

DOS attacks can also involve social engineering, such as Internet chain
letters that say “send this promptly to 10 of your friends, then go to a certain
URL,” which clogs not only the Internet mail system but also the web server
to which everyone is sent.

Operating System – Security 241

Security systems that block accounts after a certain number of failed
attempts are subject to DOS assaults, which repeatedly attempt to login to
all accounts with wrong passwords in order to block all accounts.

DOS is not always the consequence of evil intent. Consider the following:
• A website that receives a large number of visitors as a consequence

of a successful marketing effort;
• CNN.com periodically becomes overburdened on major news

days, like September 11, 2001;
• When given their first programming project utilizing fork(), CS

students frequently quickly fill up process tables or otherwise
occupy all system resources. :-)

• When functioning on the inter-process communications
assignment, please use ipcs and ipcrm!

11.4. ONE TIME PASSWORDS
One-time passwords, in addition to regular authentication, provide an
additional degree of protection. A unique password is required each time a
user attempts to connect into the One-Time Password system. A one-time
password cannot be reused after it has been used once. One-time passwords
can be used in a variety of situations.

Users are randomly assigned cards with numbers and corresponding
alphabets printed on them. The system asks for integers that correspond to a
few alphabets chosen at random (Quigley et al., 2009). Users are provided
with a hardware device capable of generating a secret ID that is linked to
their user ID. The system prompts you for a secret id, which you must enter
every time you log in.

Some commercial apps generate one-time passwords and deliver them
to registered cellphone or email addresses, that must be entered before
logging in (Figure 11.10).

Introductory Guide to Operating Systems242

Figure 11.10. One-time passwords (OTP).

Source: https://www.10duke.com/blog/one-time-passwords-a-beginners-
guide/.

11.5. COMPUTER SECURITY CLASSIFICATIONS
There are four security classes in computer systems, according to the US
Department of Defense Trusted Computer System Evaluation Criteria: A, B,
C, and D. This specification is commonly used to determine and simulate the
security of systems and security solutions. Each classification is described
briefly below.

SL. No. Classification	Type	and	Description

1. Type A: The highest level. Formal design specifications and verifica-
tion methodologies are used. Provides a high level of process security
assurance.

2. Type B: Provides a system of required protection. Have all of the char-
acteristics of a class C2 system. Each object is given a sensitivity label.
There are three kinds of it.
· B1 keeps track of each object’s security label in the system. Labels are
used to make access control choices.
· B2 Extends sensitivity labels to all system resources, like storage ob-
jects, and provides covert channels and event auditing (Yin et al., 2016).
· B3 Enables the creation of lists or user groups for access control in
order to grant or revoke access to a designated object.

Operating System – Security 243

3. Type C: Using audit capabilities, it offers protection and user account-
ability. There are two kinds of it.
· C1 includes settings that allow users to protect their personal informa-
tion and prevent other users from mistakenly reading or deleting their
data. The majority of UNIX versions are Cl class.
· C2 extends the possibilities of a Cl level system by adding individual-
level access control.

4. Type D: Lowest level. Minimum protection. MS-DOS, Window 3.1 fall
in this category.

BIBLIOGRAPHY

Ahmad, M. S., Musa, N. E., Nadarajah, R., Hassan, R., & Othman, N. E.,
(2013). Comparison between android and iOS operating system in terms of
security. In: 2013 8th International Conference on Information Technology
in Asia (CITA) (pp. 1–4). IEEE.
Aksoy, A., Louis, S., & Gunes, M. H., (2017). Operating system fingerprinting
via automated network traffic analysis. In: 2017 IEEE Congress on
Evolutionary Computation (CEC) (pp. 2502–2509). IEEE.
Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De
Caro, A., & Yellick, J., (2018). Hyperledger fabric: A distributed operating
system for permissioned blockchains. In: Proceedings of the 13th EuroSys
Conference (pp. 1–15).
Arshad, S., Shah, M. A., Wahid, A., Mehmood, A., Song, H., & Yu, H.,
(2018). SAMADroid: A novel 3-level hybrid malware detection model for
android operating system. IEEE Access, 6, 4321–4339.
Bala, K., Sharma, S., & Kaur, G., (2015). A study on smartphone-based
operating system. International Journal of Computer Applications, 121(1).
Bhattacharjee, A., & Lustig, D., (2017). Architectural and operating system
support for virtual memory. Synthesis Lectures on Computer Architecture,
12(5), 1–175.
Blackham, B., Shi, Y., Chattopadhyay, S., Roychoudhury, A., & Heiser, G.,
(2011). Timing analysis of a protected operating system kernel. In: 2011
IEEE 32nd Real-Time Systems Symposium (pp. 339–348). IEEE.

Introductory Guide to Operating Systems246

Cao, Q., Abdelzaher, T., Stankovic, J., & He, T., (2008). The liteOS operating
system: Towards Unix-like abstractions for wireless sensor networks.
In: 2008 International Conference on Information Processing in Sensor
Networks (IPSN 2008) (pp. 233–244). IEEE.
Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carrera, A., &
Carreras, M., (2015). ROSPlan: Planning in the robot operating system. In:
Proceedings of the International Conference on Automated Planning and
Scheduling (Vol. 25, pp. 333–341).
Chinetha, K., Joann, J. D., & Shalini, A., (2015). An evolution of android
operating system and its version. International Journal of Engineering and
Applied Sciences, 2(2), 257997.
De, P., Kothari, R., & Mann, V., (2007). Identifying sources of operating
system jitter through fine-grained kernel instrumentation. In: 2007 IEEE
International Conference on Cluster Computing (pp. 331–340). IEEE.
Deseriis, M., (2017). Direct parliamentarianism: An analysis of the political
values embedded in Rousseau, the “operating system” of the five-star
movement. In: 2017 Conference for E-Democracy and Open Government
(CeDEM) (pp. 15–25). IEEE.
Dieber, B., Breiling, B., Taurer, S., Kacianka, S., Rass, S., & Schartner, P.,
(2017). Security for the robot operating system. Robotics and Autonomous
Systems, 98, 192–203.
DiLuoffo, V., Michalson, W. R., & Sunar, B., (2018). Robot operating
system 2: The need for a holistic security approach to robotic
architectures. International Journal of Advanced Robotic Systems, 15(3),
1729881418770011.
Dixon, C., Mahajan, R., Agarwal, S., Brush, A. J., Lee, B., Saroiu, S., & Bahl,
P., (2012). An operating system for the home. In: 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12) (pp. 337–352).
Estefo, P., Simmonds, J., Robbes, R., & Fabry, J., (2019). The robot operating
system: Package reuse and community dynamics. Journal of Systems and
Software, 151, 226–242.
Fierro, G., & Culler, D. E., (2015). XBOS: An extensible building operating
system. In: Proceedings of the 2nd ACM International Conference on
Embedded Systems for Energy-Efficient Built Environments (pp. 119–120).
Fröhlich, A. A., & Wanner, L. F., (2008). Operating system support for
wireless sensor networks. Journal of Computer Science, 4(4), 272.

Bibliography 247

Giorgetti, A., Sgambelluri, A., Casellas, R., Morro, R., Campanella, A., &
Castoldi, P., (2020). Control of open and disaggregated transport networks
using the open network operating system (ONOS). Journal of Optical
Communications and Networking, 12(2), A171–A181.
Greenwald, L. G., & Thomas, T. J., (2007). Toward Undetected Operating
System Fingerprinting (Vol. 7, pp. 1–10). Woot.
Gunadi, H., & Tiu, A., (2014). Efficient runtime monitoring with metric
temporal logic: A case study in the android operating system. In: International
Symposium on Formal Methods (pp. 296–311). Springer, Cham.
Hambarde, P., Varma, R., & Jha, S., (2014). The survey of real time operating
system: RTOS. In: 2014 International Conference on Electronic Systems,
Signal Processing and Computing Technologies (pp. 34–39). IEEE.
Hellmund, A. M., Wirges, S., Taş, Ö. Ş., Bandera, C., & Salscheider, N.
O., (2016). Robot operating system: A modular software framework
for automated driving. In: 2016 IEEE 19th International Conference on
Intelligent Transportation Systems (ITSC) (pp. 1564–1570). IEEE.
Høiland-Jørgensen, T., Brouer, J. D., Borkmann, D., Fastabend, J., Herbert,
T., Ahern, D., & Miller, D., (2018). The express data path: Fast programmable
packet processing in the operating system kernel. In: Proceedings of the
14th International Conference on Emerging Networking Experiments and
Technologies (pp. 54–66).
Irwansyah, F. S., Yusuf, Y. M., Farida, I., & Ramdhani, M. A., (2018).
Augmented reality (AR) technology on the android operating system in
chemistry learning. In: IOP Conference Series: Materials Science and
Engineering (Vol. 288, No. 1, p. 012068). IOP Publishing.
Jaeger, T., (2008). Operating system security. Synthesis Lectures on
Information Security, Privacy, and Trust, 1(1), 1–218.
Jeong, K., Kim, J., & Kim, Y. T., (2012). QoS-aware network operating
system for software defined networking with generalized OpenFlows. In:
2012 IEEE Network Operations and Management Symposium (pp. 1167–
1174). IEEE.
Krohn, M., & Tromer, E., (2009). Noninterference for a practical DIFC-
based operating system. In: 2009 30th IEEE Symposium on Security and
Privacy (pp. 61–76). IEEE.
Kushwaha, A., & Kushwaha, V., (2011). Location based services using
android mobile operating system. International Journal of Advances in
Engineering & Technology, 1(1), 14.

Introductory Guide to Operating Systems248

Lange, M., Liebergeld, S., Lackorzynski, A., Warg, A., & Peter, M., (2011).
L4Android: A generic operating system framework for secure smartphones.
In: Proceedings of the 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices (pp. 39–50).
Lass, S., & Gronau, N., (2020). A factory operating system for extending
existing factories to industry 4.0. Computers in Industry, 115, 103128.
Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A.,
& Culler, D., (2005). TinyOS: An operating system for sensor networks. In:
Ambient Intelligence (pp. 115–148). Springer, Berlin, Heidelberg.
Lin, F., & Ye, W., (2009). Operating system battle in the ecosystem of
smartphone industry. In: 2009 International Symposium on Information
Engineering and Electronic Commerce (pp. 617–621). IEEE.
Manzalini, A., & Crespi, N., (2016). An edge operating system enabling
anything-as-a-service. IEEE Communications Magazine, 54(3), 62–67.
Mayoral, V., Hernández, A., Kojcev, R., Muguruza, I., Zamalloa, I., Bilbao,
A., & Usategi, L., (2017). The shift in the robotics paradigm—The hardware
robot operating system (H-ROS); an infrastructure to create interoperable
robot components. In: 2017 NASA/ESA Conference on Adaptive Hardware
and Systems (AHS) (pp. 229–236). IEEE.
McClean, J., Stull, C., Farrar, C., & Mascarenas, D., (2013). A preliminary
cyber-physical security assessment of the robot operating system (ROS).
In: Unmanned Systems Technology XV (Vol. 8741, p. 874110). International
Society for Optics and Photonics.
Monaco, M., Michel, O., & Keller, E., (2013). Applying operating system
principles to SDN controller design. In: Proceedings of the Twelfth ACM
Workshop on Hot Topics in Networks (pp. 1–7).
Moore, T., & Stouch, D., (2016). A generalized extended Kalman filter
implementation for the robot operating system. In: Intelligent Autonomous
Systems 13 (pp. 335–348). Springer, Cham.
Muehlstein, J., Zion, Y., Bahumi, M., Kirshenboim, I., Dubin, R., Dvir, A.,
& Pele, O., (2017). Analyzing HTTPS encrypted traffic to identify user’s
operating system, browser, and application. In: 2017 14th IEEE Annual
Consumer Communications & Networking Conference (CCNC) (pp. 1–6).
IEEE.
Nimodia, C., & Deshmukh, H. R., (2012). Android operating system.
Software Engineering, 3(1), 10.

Bibliography 249

Nollet, V., Marescaux, T., Verkest, D., Mignolet, J. Y., & Vernalde, S.,
(2004). Operating-system controlled network on chip. In: Proceedings of
the 41st Annual Design Automation Conference (pp. 256–259).
Ow, D. W., (2011). Recombinase‐mediated gene stacking as a transformation
operating system F. Journal of Integrative Plant Biology, 53(7), 512–519.
Peter, S., Li, J., Zhang, I., Ports, D. R., Woos, D., Krishnamurthy, A., &
Roscoe, T., (2015). Arrakis: The operating system is the control plane. ACM
Transactions on Computer Systems (TOCS), 33(4), 1–30.
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., & Ng,
A. Y., (2009). ROS: An open-source robot operating system. In: ICRA
Workshop on Open-Source Software (Vol. 3, No. 3.2, p. 5).
Sangorrin, D., Honda, S., & Takada, H., (2010). Dual Operating System
Architecture for Real-Time Embedded Systems, 6, 1–24.
Santos, J. M., Portugal, D., & Rocha, R. P., (2013). An evaluation of 2D
SLAM techniques available in robot operating system. In: 2013 IEEE
International Symposium on Safety, Security, and Rescue Robotics (SSRR)
(pp. 1–6). IEEE.
Sharma, H. K., Shastri, A., & Biswas, R., (2012). A framework for automated
database tuning using dynamic SGA parameters and basic operating system
utilities. Database Systems Journal, 3(4), 25–32.
Shaw, H., Ellis, D. A., Kendrick, L. R., Ziegler, F., & Wiseman, R., (2016).
Predicting smartphone operating system from personality and individual
differences. Cyberpsychology, Behavior, and Social Networking, 19(12),
727–732.
Shin, S., Song, Y., Lee, T., Lee, S., Chung, J., Porras, P., & Kang, B. B.,
(2014). Rosemary: A robust, secure, and high-performance network
operating system. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (pp. 78–89).
Silva, D. D., Krieger, O., Wisniewski, R. W., Waterland, A., Tam, D., &
Baumann, A., (2006). K42: An infrastructure for operating system research.
ACM SIGOPS Operating Systems Review, 40(2), 34–42.
Singh, R., (2014). An overview of android operating system and its security.
Int. Journal of Engineering Research and Applications, 4(2), 519–521.
Sjöstrand, T., Ask, S., Christiansen, J. R., Corke, R., Desai, N., Ilten, P., &
Skands, P. Z., (2015). An introduction to PYTHIA 8.2. Computer Physics
Communications, 191, 159–177.

Introductory Guide to Operating Systems250

Tang, S., Mai, H., & King, S. T., (2010). Trust and protection in the Illinois
browser operating system. In: 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 10).
Tsolakis, N., Bechtsis, D., & Bochtis, D., (2019). AgROS: A robot operating
system-based emulation tool for agricultural robotics. Agronomy, 9(7), 403.
Wentzlaff, D., Gruenwald, III. C., Beckmann, N., Modzelewski, K., Belay,
A., Youseff, L., & Agarwal, A., (2010). An operating system for multicore
and clouds: Mechanisms and implementation. In: Proceedings of the 1st
ACM Symposium on Cloud Computing (pp. 3–14).
Whipple, J., Arensman, W., & Boler, M. S., (2009). A public safety
application of GPS-enabled smartphones and the android operating system.
In: 2009 IEEE International Conference on Systems, Man, and Cybernetics
(pp. 2059–2061). IEEE.
Yin, X., Guo, S., Hirata, H., & Ishihara, H., (2016). Design and experimental
evaluation of a teleoperated haptic robot-assisted catheter operating system.
Journal of Intelligent Material Systems and Structures, 27(1), 3–16.

INDEX

A

Accounting data 91
acyclic graph 198
adapter 212, 213
Address space 139
algorithm 89, 103, 104, 105, 106,

108, 109
antivirus software 231
application programming interfac-

ing (APIs) 126
Authentication 232
automatic memory management 3
Autonomous driving systems 78

B

batches 16, 17, 19
batch operating system 16, 17
Batch processing 62, 64, 65, 66
batch processing software 66
boot virus 237
bytes 186, 188

C

cache flushing 117
cathode ray tube controller 213
cellular phones 114

Central processing unit 92
commands 16
communication 117, 121, 122
computer 40, 41, 42, 44, 45, 46, 47,

48, 51, 53, 54, 56, 58
computer-based devices 2
contemporary multitasking personal

computers 71
Control over system performance 2
Cooperative multitasking 69
C++ programming languages 221

D

database-based file system 191
Demand paging 169, 170, 171, 173,

174, 178
Demand segmentation 175, 176,

178, 179
Denial of service attacks 240
device controller 213
Device management 2, 4, 5
digital converter 212
direct memory access 217, 218,

225, 226, 227
Direct memory access 216, 217
dirt access memory 226
disk caching 164

Introductory Guide to Operating Systems252

disk file system 189
distant hacker intrusions 230
driver communicator 212
driving control systems 78
dynamic liking 144
Dynamic Link Libraries (DLL) 143

E

Electronic frameworks 115
Error detecting aids 3
exception-based notification sys-

tems 66

F

Fibers 122
File management 2
file system 120, 186, 187, 189, 190,

191, 192, 193, 194, 195, 208,
209, 210

file virus 237
Firefox browser 73
first come, first served (FCFS) 19
flash file system 189
flash memory 118
flash memory device 189

G

gigabytes (GB) 138
google chrome 73
graphical user interface 40, 41

H

hard drive 121
hardware device 212, 215

I

indexed file 201
input/output (I/O) devices 53, 212
input output system 212, 215

Intel x86 126
interactive multimedia players 88
interpreted programs 164
interprocess communication (IPC)

91
Interruption 216
Itanium chip 126

J

Java 125, 134
Job accounting 3
job scheduling 18, 62

K

kernel 87, 88, 91, 96, 97, 98, 99,
100, 110

Kernel code 87
kernel’s interface 88
kernel thread 129
keyboard 212
kilobytes (KB) 171

L

LCD controller 213
limited direct execution (LDE) 158
lines 186
Linux 23, 28, 30, 32, 37
logical programming 19, 20
logic bomb 236

M

magnetic disks 186
magnetic field 213
magnetic tapes 186
main memory 86, 89, 93, 95
Malicious programs 119
Malware 233
manual memory management 3

Index 253

master file directory (MFD) 189
memory dump 17
Memory management 2, 3
memory management unit (MMU)

139
memory protection 88
memory utilization 2
metadata 186, 191, 192, 193
Microsoft 40, 41, 42, 43, 46, 48
Minimal File System 194
modern computer systems 175
MS-Excel 73
Multics 23
multi-programmed batched system

17, 18
Multiprogramming 71, 72, 73, 74,

115, 117
Multitasking 67, 68, 69, 70, 73
Multithreading 115, 132, 133, 135

N

native execution 53
Network file systems 194
network sockets 87

O

One-Time Password system 241
operating system (OS) 2
Operating system security 230
optical disks 186

P

Page replacement 182, 183
Paging 155, 157
parallel processing 71, 72
personal computers (PCs) 71
Physical addresses 138
Port scanning 240

Preemptive multitasking 70
Process address space 138
Process control 90, 91
process control block (PCB) 90
process control systems 78, 81
Process identification 90, 91
Processor management 2, 9
Process scheduling 91, 92
Process state 90, 91
Program counter (PC) 91
programmed input output software

223
Punch cards 62
Python 125

R

random access memory (RAM) 163
Real time systems 78, 80
Real time workloads 79
register set 126, 127
relational database management sys-

tem (RDBMS) 192
Relative addresses 138
resource management routines 72
rootkits 233

S

Security 2, 10
Segmentation 159, 160
Segmented virtual memory systems

175
shared-disk file system 194
shared libraries 164
simple batched system 17
software organization 65
software package 89
stack 86, 99, 103
stack space 126, 127

Introductory Guide to Operating Systems254

Static linking 144, 145
Static partitioning 149
String 117, 122, 125, 129, 131
supercomputers 2, 114
Swapping 146, 147, 179, 180, 181
Switching 67
Symbolic addresses 138
symmetric multiprocessing (SMP)

126
system software 2, 5, 11
System threats 238

T

tape file system 190
temporary data 86
Threads share memory 117
Transactional File Systems 192
trap door 235
Trojan Horse 234, 235, 237
trojans 230, 233

U

User-level strings 131, 133
User-level threads 131

V

video-editing software 162
Virtual Address Space 140, 141, 155
virtual machine 51, 52, 54, 55
virtual memory 140, 147, 157
virtual memory abstraction 179
Virtual memory systems 3
Viruses 236, 237, 238

W

Web applications 88
web browsers 162
web servers 2, 114
Windows 1.0 40, 41
Windows 1.1 40
Windows 2.0 41
Windows 2000 server 23
Windows new technology 41
Windows NT server 23
Windows operational system 41
Windows systems 41
word processing 88
Working frameworks 115, 121
Working systems 114
workload automation 62
World Wide Web 75
worms 230, 233, 239

	Cover

	Title Page

	Copyright

	ABOUT THE AUTHOR
	TABLE OF CONTENTS
	List of Figures
	List of Abbreviations
	Abstract
	Preface
	Chapter 1 An Overview on Operating System
	1.1. Memory Management
	1.2. Device Management
	1.3. File Management
	1.4. Processor Management
	1.5. Security
	1.6. A Brief History of Operating Systems (OSS)
	1.7. Operating System (OS) Types

	Chapter 2 Types of Operating Systems
	2.1. Batch Operating System (OS)
	2.2. Types of Batch Operating System (OS)
	2.3. Working of the Batched Operating System (OS)
	2.4. Advantages of Batch System
	2.5. Disadvantages of Batch System
	2.6. Time-Sharing Operating System (OS)
	2.7. Requirements of the Time-Sharing Operating System (OS)
	2.8. Advantages of Time-Sharing Operating System (OS)
	2.9. Disadvantages of Time-Sharing Operating System (OS)
	2.10. Distributed Operating System (OS)
	2.11. Distributed Computing Models
	2.12. Design Consideration of Distributed Operating System (OS)
	2.13. Advantages of Distributive Operating System (OS)
	2.14. Disadvantage of Distributive Operating Systems (OSS)
	2.15. Network Operating System (NOS)
	2.16. Types of Network Operating Systems (NOS)
	2.17. Features of Network Operating System (NOS)
	2.18. Real Time Operating System (OS)
	2.19. Characteristics of Real Time Operating System (OS)
	2.20. Real Time Operating System (OS) in Embedded Systems
	2.21. Advantages and Features of Real Time Operating System (OS)
	2.22. Disciplines that Impact Real Time Operating Systems (OS)
	2.23. Real Time Operating System (OS) Architectures
	2.24. Soft Real Time Operating System (OS)
	2.25. Hard Real Time Operating System (OS)

	Chapter 3 Popular Operating Systems
	3.1. How Windows Versions Have Evolved Throughout the Years
	3.2. Linux Operating System (OS)
	3.3. Advantages and Disadvantages of Linux Operating System (OS)
	3.4. The Virtual Machine System
	3.5. Techniques Used in their Virtual Management Systems
	3.6. The Aix Operating System (OS)
	3.7. The Os/400
	3.8. The Difference Between Os/400 Vs. Unix
	3.9. Z/Os Operating System (OS)

	Chapter 4 Operating System Properties
	4.1. Batch Processing
	4.2. Evolution of Batch Processing
	4.3. Monitors and Dependencies in Batch Processing
	4.4. Advantages of Batch Processing
	4.5. Disadvantages of Batch Processing
	4.6. Multitasking
	4.7. Multiprograming
	4.8. Types of Multiprogramming Operating Systems (OSS)
	4.9. Advantages of Multiprograming
	4.10. Disadvantages of Multiprogramming
	4.11. Types of Interactive Systems
	4.12. Real Time Systems
	4.13. Applications of Real Time Systems
	4.14. Spooling
	4.15. Working of Spooling in Operating System (OS)

	Chapter 5 Operating System – Processes
	5.1. Process
	5.2. Kernels
	5.3. Program
	5.4. Life Cycle of the Process
	5.5. Process Control Block (PCB)
	5.6. Process Scheduling
	5.7. Two-State Process Model
	5.8. Schedulers
	5.9. Medium-Term Scheduling
	5.10. Short-Term Scheduling
	5.11. Dispatcher
	5.12. Context Switch
	5.13. Program Counter (PC)
	5.14. Scheduling Algorithms
	5.15. Scheduling Algorithms/Disciplines
	5.16. Priority Scheduling
	5.17. Shortest Remaining Time First
	5.18. Fixed Priority Pre-Emptive Scheduling
	5.19. Round-Robin Scheduling
	5.20. Inter-Process Communication

	Chapter 6 Operating System Multi-Threading
	6.1. Introduction
	6.2. Operating System (OS) Multi-Threading
	6.3. Difference Between a Process and a Thread
	6.4. Building Blocks for the Functioning of a Thread
	6.5. The Central Processing Unit
	6.6. Information Storage System
	6.7. Similarities Between a Process and a Thread
	6.8. Fibers in Multithreading
	6.9. Preemptive and Cooperative Scheduling
	6.10. Single and Multiprocessor System Scheduling
	6.11. Thread Pools
	6.12. Programming Language Support for Threads
	6.13. Threads Data Synchronization
	6.14. Types of Threads
	6.15. Differences Between Kernel-Level Threads and User-Level Threads
	6.16. Similarities Between User-Level Threads and Kernel-Level Threads

	Chapter 7 Memory Management
	7.1. Process Address Space
	7.2. Address Spaces
	7.3. Static Versus Dynamic Loading
	7.4. Static Versus Dynamic Linking
	7.5. Contrasts Between Static and Dynamic Linking
	7.6. Swapping
	7.7. Contiguous Memory Allotment in Operating System (OS)
	7.8. Fragmentation
	7.9. Paging
	7.10. Address Translation
	7.11. Segmentation

	Chapter 8 Virtual Memory
	8.1. Implementation of Virtual Memory
	8.2. Demand Paging
	8.3. Demand Segmentation
	8.4. Swapping/Swap File
	8.5. Page Replacement

	Chapter 9 File System
	9.1. File
	9.2. File Structure
	9.3. Types of File Systems
	9.4. Structures of Directory in Operating System (OS)
	9.5. File Access Mechanisms
	9.6. Space Allocation
	9.7. Allocation Based on Indexes
	9.8. Design Limitations

	Chapter 10 I/O Software and I/O Hardware
	10.1. I/O Hardware
	10.2. Device Controllers
	10.3. The Memory Mapped Input Output System
	10.4. Direct Memory Access
	10.5. Direct Memory Access Controller
	10.6. Interrupts Revisited
	10.7. Precise and Imprecise Interrupts
	10.8. I/O Software
	10.9. Programmed I/O
	10.10. I/O Using Direct Access Memory

	Chapter 11 Operating System – Security
	11.1. Common OS Security Threats
	11.2. Program Threats
	11.3. System Threats
	11.4. One Time Passwords
	11.5. Computer Security Classifications

	Bibliography
	Index
	Back Cover

